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ABSTRACT

We present Private Random Access Computations (PRAC), a 3-
party SecureMulti-Party Computation (MPC) framework to support
random-access data structure algorithms for MPC with efficient
communication in terms of rounds and bandwidth. PRAC extends
the state-of-the-art DORAM Duoram with a new implementation,
more flexibility in how the DORAMmemory is shared, and support
for Incremental and Wide DPFs. We then use these DPF extensions
to achieve algorithmic improvements in three novel oblivious data
structure protocols for MPC. PRAC exploits the observation that a
secure protocol for an algorithm can gain efficiency if the protocol
explicitly reveals information leaked by the algorithm inherently.
We first present an optimized binary search protocol that reduces
the bandwidth from O(lg2 𝑛) to O(lg𝑛) for obliviously searching
over 𝑛 items. We then present an oblivious heap protocol with
rounds reduced from O(lg𝑛) to O(lg lg𝑛) for insertions, and band-
width reduced from O(lg2 𝑛) to O(lg𝑛) for extractions. Finally, we
also present the first oblivious AVL tree protocol for MPC where
no party learns the data or the structure of the AVL tree, and can
support arbitrary insertions and deletions with O(lg𝑛) rounds and
bandwidth. We experimentally evaluate our protocols with realistic
network settings for a wide range of memory sizes to demonstrate
their efficiency. For instance, we observe our binary search pro-
tocol provides > 27× and > 3× improvements in wall-clock time
and bandwidth respectively over other approaches for a memory
with 226 items; for the same setting our heap’s extract-min protocol
achieves > 31× speedup in wall-clock time and > 13× reduction in
bandwidth.

KEYWORDS

Oblivious data structures, Secure multi-party computation, Oblivi-
ous RAMs, Distributed privacy

1 INTRODUCTION

The modern Internet is riddled with problems. As more activities be-
come digital, users sharemore personal information online, and con-
sequently, the threats of cyber-attacks and data breaches loom large.
One way of protecting data is building systems so no unauthorized
entity can access the data they are not supposed to; building fire-
walls is one such direction, but the prevalence of successful attacks
shows that it is not sufficiently effective. A more robust approach
to tackling this problem is making systems that are databreach
proof ; i.e., even if an unauthorized entity gets access to data they
are not supposed to, they can make no sense of it. There are three
main ways to build databreach-proof systems: (i) trusted hardware,
(ii) fully homomorphic encryption, and (iii) distributed trust. In this

paper, we focus on the distributed-trust setting, where operations
on data are performed via secure Multi-Party Computation (MPC).
MPC has been studied for several decades. However, many com-
putations one might wish to perform with MPC use dynamic data
structures [9, 23]. Such computations require oblivious random
access memory (ORAM), where the indices at which memory is
read or written must themselves be kept private. These computa-
tions remain challenging to do efficiently in MPC, especially in
deployments with typical Internet latencies and throughputs. This
paper presents PRAC (Private Random Access Computations), a
general MPC framework designed to support random-access data
structure algorithms with efficient communication costs, both in
terms of rounds and bandwidth used.

PRAC provides both generic optimizations, and ones specific
to particular data structures and algorithms. PRAC exploits the
fact that if an algorithm innately leaks some information, a cryp-
tographic protocol implementing such an algorithm can be made
more efficient if the protocol explicitly reveals this leakage. Broadly
speaking, data structures can be (i) static, where no insertions or
deletions can be made to the data, (ii) restrictively dynamic, where
some specific types of insertions or deletions can be made, and
(iii) fully dynamic, where arbitrary insertions or deletions can be
performed. In this work, we provide an example of each of these
data structure types.

We start with a simple example, by presenting a novel oblivious
binary search protocol for static data. Existing works that design
binary search protocols for MPC stem from Distributed ORAMs
(DORAMs) [8, 12, 22, 33]. The high-level idea is to initialize a DO-
RAM with all the items to be searched already sorted, and then
perform a logarithmic number of DORAM accesses to perform
a binary search in the straightforward manner. We observe that
the binary search protocol inherently leaks the lists of indices po-
tentially accessed in each ORAM operation, and so by using the
Incremental Distributed Point Function [5] cryptographic primi-
tive, the algorithm can explicitly leak this information and achieve
performance gains.

Next, we present oblivious heaps, which fall in the category
of “restrictively dynamic” data structures. Heaps are “restrictive”
in that, while any item can be inserted into the heap, only the
minimal element of the heap can be deleted. The “heapification”
process requires DORAM update operations. We observe that the
indices at which these updates happen are related. Our protocols
explicitly reveal this relationship and reduce the computation and
communication costs by a factor of 3. Heaps also leverage our
optimized binary search protocol to reduce the communication
rounds of an insert operation from O(lg𝑛) to O(lg lg𝑛).

1



Sajin Sasy, Adithya Vadapalli, and Ian Goldberg

Finally, we present oblivious AVL trees, an example of a fully
dynamic data structure supporting arbitrary insertions and dele-
tions. AVL trees differ from the binary search and heap in how the
data is laid out to represent them; those protocols’ memory lay-
out have an implicit structure. In other words, the memory indices
dictate the tree structure in both binary search and heaps. In AVL
trees, the position of items in the tree is dynamic, as items change
position when the tree is rebalanced. This rebalancing operation
(which must itself be oblivious) would have prohibitive cost if the
tree structure were determined by the memory indices. Therefore,
AVL trees require pointers to maintain parent-child relationships
and correctly traverse the tree structure; we refer to such proto-
cols as explicit-structure protocols. These protocols take advantage
of PRAC’s extremely efficient oblivious RAM operations to keep
the costs of oblivious searches, insertions, and deletions (including
rebalancing) low.

The contributions of our work are:

(1) We extend the state-of-the-art DORAM Duoram [33] with
implementation improvements (Section 3) and support for
Incremental DPFs (IDPFs) and Wide DPFs (WDPFs). We
use the latter for algorithmic improvements in three novel
oblivious data structure protocols:
(a) Our binary search protocol (Section 4) uses incre-

mental DPFs to reduce bandwidth, as the lg𝑛 DPFs
required can be replaced with 1 IDPF.

(b) Our heap protocols (Section 5) reduce rounds of in-
sertion from O(lg𝑛) to O(lg lg𝑛) by leveraging our bi-
nary search protocol. Our extract-min protocol reduces
bandwidth from O(lg2 𝑛) to O(lg𝑛) with WDPFs.

(c) Finally, we present the first AVL tree (Section 6) con-
struction in a distributed trust setting that enables
oblivious insertion and deletion of data items.

(2) To implement the above, we present PRAC, a three-party
MPC framework to implement oblivious data structures
with low communication costs (both rounds and band-
width). We use PRAC to provide an open-source implemen-
tation of all the above contributions. We experimentally
compare our protocols against other DORAM-based binary
search and heap protocols (Section 8) with realistic network
settings to demonstrate their efficiency. For instance, with
a memory of 226 items, we observe: (i) > 18× and > 3× im-
provements in wall-clock time and bandwidth respectively
for our binary search protocols, and (ii) > 16× and > 7×
improvements in wall-clock time and bandwidth for our
heap extract-min protocol.

Applications to privacy enhancing technologies. Data structures
such as heaps and AVL trees can be crucial in designing various pri-
vacy enhancing technologies. For instance, priority queues (which
can be realized using heaps) enable the implementation of sam-
pling algorithms [28], widely utilized in differential privacy. Priority
queues are also used by Mazloom et al. [23] and Cartlidge et al. [9]
in implementing dark pools. Similarly, Nearest Neighbor Search
is fundamental in many machine learning applications, including
targeted advertising [27], pattern recognition [24], recommenda-
tion systems [1], and DNA sequencing. One way to implement

nearest neighbor search is using priority queues, which in turn can
be implemented using heaps. Therefore, a privacy-preserving heap
implementation would enable the implementation of the aforemen-
tioned applications while maintaining privacy.

Maintaining efficient search and manipulation operations in
databases is crucial for handling large volumes of data effectively.
AVL trees enable quick search for specific records and provide
efficient worst-case insertion and deletion of data, making them
valuable in data-oblivious MPC settings.

2 BACKGROUND

2.1 Secret Sharing

A method by which two or more parties distribute a secret among
themselves is known as secret sharing. Secret sharing is a critical
component in establishing distributed trust. Definition 2.1 formal-
izes the notion of secret sharing.

Definition 2.1. An (𝑛, 𝑡) secret sharing scheme allows a dealer to
distribute a secret among 𝑛 parties such that only a subset of size
at least 𝑡 can reconstruct the secret and any subset of size less than
𝑡 can learn nothing about the secret.

We only use (2, 2) secret sharing in this work and omit “(2, 2)”
henceforth. PRAC uses three types of secret sharing:, (i) additive
shares, modulo 2𝑟 unless otherwise specified, (ii) 𝑟 -bit XOR shares,
and (iii) single-bit boolean shares. (We typically use 𝑟 = 64.) When
two parties additively secret share an integer R, we denote it as Ras,
and the two shares add to Rmod 2𝑟 . Similarly, when two parties XOR
secret share an integer R, we denote it as Rxs, and the two shares
XOR to R. We use the notation bbs to denote the boolean sharing
of a bit b, where the two (single-bit) shares XOR to b. The shares
held by parties P0 and P1 are denoted as Rgs0 and Rgs1 respectively,
where g ∈ {a, x, b}. If g is b, then R is a single bit; otherwise, it is
(typically) an 𝑟 -bit word.

2.2 Distributed Point Functions

A 1-hot vector is a vector with size 𝑛 that has 𝑛 − 1 zeros and
exactly one non-zero value. A point function is a function over a
domain that evaluates to 0 at every point in the domain (of the
point function) except at one unique point where it evaluates to
a non-zero value. The outputs of a point function over its entire
domain result in a 1-hot vector.

Secret shares of the outputs of point functions have been used
in many cryptographic constructions, ranging from private infor-
mation retrieval protocols (to select elements from vectors or ma-
trices obliviously) [3, 15, 17, 18] through ring signature schemes
(where they choose public verification keys from the set) [25], to
secure MPC (where they allow random read and write accesses
into arrays) [12, 32, 33]. Gilboa and Ishai introduced Distributed
Point Functions (DPFs) [14], with further improvements by Boyle
et al. [6, 7]. DPFs are a concise way to share a point function among
two or more parties. In this paper, we only concern ourselves with
DPFs that share a point function between exactly two parties. Def-
inition 2.2 (a restatement of Vadapalli et al. [34, Def 4]) formally
defines (2, 2)-DPFs.
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Figure 1: Distributed Point Functions. The two trees on the left hand side, are the DPF trees held by P0 and P1 respectively. Each
node in the tree is a (label, advice bit) tuple (s (−−) , b) ∈ {0, 1}_ × {0, 1}. The tuples (𝑟𝑖 , b) ∈ {0, 1}

_ × {0, 1} are nodes that XOR to 0

before the final correction word is applied. The tuple (𝑅𝑏 , b) is node that XORs to a random value before the final correction

word is applied. 𝐿𝑖 ∈ {0, 1}
_×𝑤

are the leaf nodes. Two corresponding nodes in the two trees having the same color are equal; for

instance, s (00)0 = s (00)1 . If the DPF is a “wide DPF” of width𝑤 , leaves are ∈ {0, 1}_×𝑤 .

Definition 2.2. A (2, 2)-distributed point function, or (2, 2)-DPF, is
a pair of PPT algorithms (Gen, Eval) defining secret-shared repre-
sentations of point functions (with domain i ∈ [0, 𝑛)); that is, given
(i) a security parameter _ ∈ N, (ii) a target point i*, and (iii) a target
value M, we have

1. Correctness: If (k0, k1) ← Gen(1_, i*,M), then, for all i ∈
[0, 𝑛),

Eval(k0, i) ⊕ Eval(k1, i) =
{
M if i = i*, and
0 otherwise.

2. Simulatability: There exists a PPT simulator S such that, for
a tuple of target index and a target value, (i*,M), and bit
𝑏 ∈ {0, 1}, the distribution ensembles

{
S(1_, 𝑏)

}
_∈N and{

k𝑏
�� (k0, k1) ← Gen(1_, i*,M)

}
_∈N are computationally

indistinguishable.

The k𝑏 output by Gen are called (2, 2)-DPF keys.

2.2.1 DPF constuction. For a detailed description of the construc-
tion of DPFs, we refer the reader to the original DPF construction [7]
and some of the subsequent works [5, 32–34] that used DPFs. In
brief, a DPF is represented as two complete binary trees of height
ℎ = lg𝑛; each party will learn one of the trees. Each node of each
tree contains a _-bit label and a single advice bit (called in some
works the flag bit). The construction begins with the roots of the
two trees having random _-bit labels, and the root advice bit in tree
𝑏 being 𝑏 itself (𝑏 ∈ {0, 1}).

The invariant is that for each 0 ≤ 𝑗 ≤ ℎ, the corresponding
nodes in level 𝑗 of the two trees will be identical, except for one,
which will have different labels and different advice bits in the two
trees. This invariant is maintained through the use of ℎ correction
words, one for each non-leaf level. The labels and advice bits of the
two children of a node are then a deterministic pseudo-random
function (typically based on AES) of the label on the node, XORed
with the correction word for that level if the node’s advice bit is 1.
Importantly, the nodes that are the same in the two trees will always
have each of their children the same in the two trees. Further, the
correction word is chosen exactly so that for the one node in each
(non-leaf) level that is different in the two trees, exactly one of its
children will be the same in the two trees, and the other will have
different labels and advice bits. Which child will be the same and

which will be different in level 𝑗 will depend on the 𝑗
th bit of the

DPF target index i*.
Then by the invariant, the leaf layer (before the application of

the final correction word) of the two trees will be the same, except
for one node, which will have different (pseudo-random) labels and
different advice bits. Then there is a final correction word that is
XORed into the label of each leaf with advice bit equal to 1. In this
way, the final correction word can be set so that the XOR of the
two unequal leaf nodes is the desired target valueM.

The DPF keys (k0, k1) output by Gen are then the random root
labels (different in the two output keys), the ℎ correction words,
and the final correction word (the latter two the same in the two
output keys). Computing Eval(k𝑏 , i) involves evaluating the path
from the root to leaf i (including all the correction words), and
outputting the label on that leaf. Figure 1 illustrates the process.

2.2.2 Incremental DPFs. The tree-based DPF construction we use
has the property that the XOR of the two parties’ trees is zero
everywhere except on a single path from the root to the target
leaf index i*. Boneh et al. [5] observe that this construction can
be leveraged to yield what they call an incremental DPF, or IDPF.
In an IDPF, the parties can evaluate their DPFs at bitstrings i of
any length 1 ≤ 𝑗 ≤ lg𝑛. The parties will produce different outputs
exactly when i is a prefix of the target index i*, and the same output
otherwise.

The cost to construct an IDPF is about 50% more than a regular
DPF, but you end up with effectively lg𝑛 DPFs (one each of sizes
2, 4, 8, 16, . . . , 𝑛), whose target indices are the 𝑗-bit prefixes of a
single i*.

2.2.3 Wide DPFs. Wide DPFs (WDPFs) are DPFs with leaves wider
than internal nodes. In particular, for a WDPF of width, 𝑤 , the
leaf nodes are𝑤 times longer than the internal nodes. The WDPF
construction differs from the traditional DPF construction in that
the final layer uses a “length-𝑤-stretching” PRG before applying the
final correction word (which is also𝑤 times longer than the internal
correction words). Note that creating a wide DPF with width 𝑤

requires 𝑛 · (𝑤 − 1) more AES evaluations than a regular DPF. For
instance, in Figure 1, if the leaves 𝐿𝑖 are 𝑤 times longer than the
internal nodes, then we say that it is a width-𝑤 DPF. We will see
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in Section 5.2 that WDPFs are particularly useful to efficiently do
reads and updates of related indices in a DORAM.

2.3 Secure Multi-party Computation

Secure Multi-Party Computation (MPC) is a cryptographic prim-
itive that allows parties holding some secret inputs to compute
functions on those secret inputs while revealing no other informa-
tion. A 3-MPC comprises three parties where some or all the three
parties have secret inputs, and all three parties are interactive in
the protocol. A (2+1)-MPC is a three-party protocol where one of
the parties does not hold any secret and only sends correlated ran-
domness to the other two parties to facilitate their MPC. (2+1)-MPC
is also called server-aided 2-MPC.
Evaluating the cost of an MPC protocol. There are three main
parameters that are used to evaluate the cost of an MPC protocol,
namely, (i) local computation cost, (ii) bandwidth cost (the amount
of data that needs to be sent to different parties), and (iii) round
cost (the number of sequential messages sent).1

Secure MPC to generate DPFs. Doerner and shelat [12] intro-
duced a technique to generate DPFs, which has been used in the
DORAM literature [12, 33]. The technique involves computing par-
ties performing PRG evaluations outside MPC locally. The cost is
(i) O(𝑛) computational cost, (ii) O(lg𝑛) bandwidth, and (iii) O(lg𝑛)
sequential messages. We use Doerner and shelat’s DPF generation
algorithm.

2.4 Distributed Oblivious RAMs (DORAMs)

Oblivious RAM (ORAM) [16] is a cryptographic primitive that en-
ables a client to outsource data storage to an untrusted server.
The untrusted server is oblivious to memory contents and access
patterns, while the client has full visibility into them. Distributed
ORAM (DORAM) introduced by Lu and Ostrovsky [22] is a variant
of the traditional ORAM, with no distinct notion of a client and a
server. Instead, the computing parties act as both clients and servers.
As such, no party knows the contents of the DORAM or the access
patterns. Doerner and shelat, with Floram [12], identify bandwidth
and round complexity as the bottleneck in DORAM settings, rather
than local computation. Floram uses different memory layouts for
reading and writing, and incurs an amortized O(

√
𝑛) cost to switch

between them. Vadapalli et al. took this a step forward and pre-
sented Duoram [33]. Duoram stores the memory as secret shares
for both read and write operations, thus avoiding the amortized
O(
√
𝑛) cost incurred in Floram. Additionally, Duorammoves most

of the expensive work to a preprocessing phase and only requires
constant rounds and bandwidth in the online phase.

For each read and update operation, Duoram requires the gen-
eration of three DPFs with a size of 𝑛, at the index i*. However, it is
worth noting that these DPFs can be generated in advance during
a preprocessing phase at a random location ri. In the online phase,
the target index of these DPFs can be moved to i* by exchanging a
single word over the network. Duoram requires a constant number
of rounds and a constant bandwidth during the online phase. In
the preprocessing phase, the protocol incurs a bandwidth cost of

1A protocol uses𝑚 sequential messages if the time spent on Internet latency is𝑚
times the one-way latency.

O(lg𝑛), and O(lg𝑛) rounds, to generate a DPF triple (three dif-
ferent DPFs with the same target index and value) for an ORAM
operation. Note that the number of rounds (unlike the bandwidth)
is independent of the number of DPFs created, since they can all be
done in parallel. Duoram incurs a linear local computation cost in
both the preprocessing and online phases. Of course, scaling local
computation is much easier than reducing latency or increasing
bandwidth between the (non-colluding) parties. Therefore, it is typ-
ically preferable to have a DORAM with a lower communication
cost, particularly in terms of the number of rounds, than a lower
computation cost but a higher number of rounds.

3 PRAC

PRAC has three servers P0, P1, and P2. P0 and P1 hold the shares of
the data; P2 does not hold any input. There are two main phases
for all PRAC protocols: (i) the preprocessing phase, and (ii) the
online phase. In the preprocessing phase, P2 sends different types
of correlated randomness (for instance, AND and Multiplicative
Triples [33]) to parties P0 and P1 to facilitate the MPC. The DPF
generation (discussed in Section 2.3) also occurs in the preprocess-
ing phase in which P2 sends correlated randomness to do the MPC
to produce the DPFs.

PRAC uses a DORAM to perform its oblivious memory accesses.
We denote access to a (for example) XOR-shared index i of a DO-
RAM D as D[ixs]. This paper uses Duoram [33] as the underlying
DORAM. The choice of picking Duoram as our underlying DO-
RAM is because PRAC protocols require several DORAMs to be
initialized, and the initialization cost in Duoram is almost zero
(each party initializes local memory to 0). In the most efficient in-
stantiation of Duoram, P2 not only sends correlated randomness
to P0 and P1 but also actively participates in the DORAM read and
update protocols in the online phase [33]; therefore, PRAC is a
3-party protocol.2

As compared to previous work, PRAC includes both algorithmic
improvements to MPC protocols to reduce the number and com-
plexity of MPC operations required to implement them (described
in the following sections), as well as implementation improvements
to substantially lower the computation and communication costs
of executing those operations (as we will see in Section 8). For
example, as PRAC aims to minimize the number of rounds required
by its oblivious protocols, all computations are implemented as
coroutines. In this way, each party can easily perform multiple
subcomputations with minimal latency: each subcomputation will
run, one at a time, until it emits a message to send. When all sub-
computations have emitted a message (or terminated), the batch
of messages is flushed. Each non-terminated subcomputation will
then receive its response and continue, with only a single message
latency having been incurred. Thus, PRAC computations can be
written modularly, with each interactive MPC operation unaware of
any other operations happening simultaneously, but the resulting
messages are automatically optimally batched to minimize latency.
In addition, PRAC also improves upon the original Duoram imple-
mentation. The original Duoram protocol stores the memory and

2If we were to replace Duoram with a (2 + 1)-party or a 2-party DORAM, all the
PRAC protocols would also involve the same number of parties. In other words, the
number parties in the DORAM determine the number of parties required in PRAC.
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the indices into which memory access must be performed as addi-
tive shares. PRAC extends the Duoram construction (and provides
an entirely fresh implementation) to support XOR- or additive-
shared indices, and XOR- or additive-shared memory (or even a
memory whose elements are structures of some XOR-shared and
some additive-shared fields), in any combination. PRAC works in
a semi-honest model. The security assumptions are (i) Existence
of PRGs (for the construction of DPFs), (ii) Existence of a secure
communication channel, and (iii) None of the three parties, P0, P1,
and P2 collude with each other.

3.1 MPC Operations used in PRAC

All of the non-DORAM MPC operations in PRAC we list below
involve only P0 and P1 in the online phase. For each operation, we
list the bandwidth and number of rounds in the online phase. In
the preprocessing phase, P2 sends all the correlated randomness
required for arbitrarily many of these operations to P0 and P1 in a
single message to each player.

Definition 3.1 (MPC AND). P0 and P1 hold boolean shares of 𝑥 ∈
{0, 1} and 𝑦 ∈ {0, 1}, and wish to jointly compute boolean shares of
the AND of 𝑥 and 𝑦. We denote the operation as 𝑧bs ← 𝑥

bs ∧ 𝑦bs.
MPC AND requires one word being sent in one round in the online
phase.

Definition 3.2 (MPC Flag-Word (FW) Multiplication). P0 and P1
hold additive shares of 𝑦 ∈ Z2𝑟 and boolean shares of 𝑓 ∈ {0, 1}.
The two parties compute additive shares of 𝑧 ∈ Z2𝑟 , such that
𝑧 = 𝑓 ·𝑦. We denote this as 𝑧as ← 𝑓

bs ·𝑦as. MPC FW-multiplication
requires two words being sent in one round in the online phase.

Definition 3.3 (Oblivious Swap). P0 and P1 hold (additive or XOR)
shares of both 𝑥 and 𝑦. They also hold boolean shares of a bit b.
After the Oblivious Swap protocol, denoted asOswap(𝑥gs, 𝑦gs, 𝑏bs)
If b = 0, the two parties’ shares of 𝑥 and 𝑦 are replaced by fresh
sharings of 𝑥 and 𝑦 respectively. If 𝑏 = 1, they are replaced by fresh
sharings of 𝑦 and 𝑥 respectively. Oswap requires two words being
sent in one round in the online phase.

Definition 3.4 (Oblivious Select). P0 and P1 hold (additive or XOR)
shares of both 𝑥 and 𝑦. Oblivious Select, denoted as Oselect, is
defined as: 𝑧gs ← Oselect(𝑥gs, 𝑦gs, bbs). If b = 1, then 𝑧 = 𝑦 and
if b = 0, then 𝑧 = 𝑥 . Oselect requires one word being sent in one
round in the online phase.

Definition 3.5 (Oblivious Compare). P0 and P1 hold additive shares
of both 𝑥 and 𝑦. The comparison protocol3 outputs boolean shares
of the possible results of the comparison. We denote the compare
protocol as (ltbs, eqbs, gtbs) ← Ocompare(𝑥as, 𝑦as). The property
that holds (i) if 𝑥 < 𝑦, then lt = 1, eq = 0, gt = 0, (ii) if 𝑥 > 𝑦, then
lt = 0, eq = 0, gt = 1, and (iii) if 𝑥 = 𝑦, then lt = 0, eq = 1, gt = 0.
Ocompare requires one word being sent in one round in the online
phase.

4 OBLIVIOUS BINARY SEARCH

As a warmup (and because we use this functionality in our heap
implementation later), we will look at PRAC’s two implementations

3PRAC uses the oblivious compare due to Storrier, Vadapalli, Lyons, and Henry [30].

of binary search: a basic version that uses DORAM in the obvious
way, and an optimized version, which uses PRAC’s improved MPC
operations (in this case, IDPF-based related reads). The former will
be used for head-to-head comparisons with previous work to show
our implementation improvements, while the latter will show the
benefits specifically due to our algorithmic improvements.
Memory layout. For simplicity, assume thememory to be searched
is a power of 2 in size; that is, there are 𝑛 = 2ℎ items. (PRAC handles
non-power-of-2 sizes by virtually extending the memory to the next
power of 2, but in a manner that only actually consumes a small
constant amount of actual memory.) Binary search operates over
an additive-shared DORAM Das, which is required to be sorted.
(PRAC also provides an implementation of bitonic sort, which will
obliviously sort𝑛 items with ⌈lg𝑛⌉ (⌈lg𝑛⌉+1) rounds.) The DORAM
is laid out linearly. In other words, P0 and P1 hold additive DORAM
shares Das

0 and Das
1 respectively, such that, for any i, j with i < j,

we have (Das
0 [i] + D

as
1 [i] mod 2𝑟 ) ≤ (Das

0 [j] + D
as
1 [j] mod 2𝑟 ).

Their goal is to search for an item M in D, for which they hold
shares Mas. Our protocol returns shares of the smallest memory
index containing a value at leastM. (This is the index at which one
would insert the valueM to maintain the sorted order, which will
be important in Section 5.2.)

4.1 Basic Oblivious Binary Search Protocol

We denote by CurInd, the current pointer of the binary search,
and CurValas = Das [CurIndas]. Suppose that we are obliviously
searching forM. We start at depth d = ℎ, and first set the CurInd to
the middle of the memory, i.e., index 2ℎ−1 − 1. The invariant is that
the result we are looking for is in a range of width 2d, and CurInd
is the rightmost element of the left half of that range. We begin by
an oblivious comparison of M and D[CurInd]. If D[CurInd] ≥ M,
then the desired result index is at CurInd or to the left, and therefore,
we subtract 2d−2 from the current pointer. Otherwise, the desired
result index is to the right, and therefore, we add 2d−2 to the current
pointer. If (lt, eq, gt) ← Compare(M, CurVal), then the above
operations can be done obliviously with CurInd← CurInd−2d−2+
lt · 2d−1︸    ︷︷    ︸
FW-Mult

. We then decrement d and loop until d = 0. Note that the

basic binary search protocol requires lg𝑛 DORAM read operations,
thus requiring lg𝑛 DPFs. Figure 2 illustrates this protocol. The
detailed protocol description appears in Appendix A.

We make a few observations about the basic binary search pro-
tocol. The DORAM calls in the basic binary search completely hide
the indices that are being accessed. This hides more information
than required; since we are doing a binary search, it is public knowl-
edge that after an access is made at index CurInd, the next access
would be made at index either CurInd − 2d−2 or CurInd + 2d−2.
Therefore, using a special-purpose DORAM specifically for such
queries could be more efficient than a general-purpose DORAM. In
the next section, we will explicitly reveal this information to our
DORAM calls in exchange for efficiency.

4.2 Optimized Binary Search

This section details PRAC’s innovative method for binary search,
which reduces the number of DPFs required from lg𝑛 to exactly
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(0) (1) (2) (3)
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(0)

Figure 2: The binary search protocol. The shaded elements

are all the accessible items (the items the binary search pro-

tocol could possibly access) at that depth. The thick arrow

represents the current pointer. The two gray arrows are the

options the current pointer has to move to the next level. The

pointers, memory contents, and the item to search for are all

secret shared and not known to any party.

one IDPF to do the lg𝑛 ORAM operations. Observe that a binary
search on a memory of size 𝑛 requires lg𝑛 read operations. Next,
observe that the number of items that could possibly be read in
each of these lg𝑛 read operations are 1, 2, 4, . . . , 𝑛/2 respectively as
seen in Figure 2. We call these the accessible items for that particular
read operation, denoted as D (1)

, . . . ,D (lg𝑛) respectively. The final
observation about binary search is that, if we have made access
into index i of memory D (𝑖 ) , we would have made access into index
⌊i/2⌋ into memory D (𝑖−1) . In other words, if the binary representa-
tion of the index accessed is b, then in the next iteration, the binary
representation of the index that will be accessed by either b∥0 or
b∥1, which is the structure of an IDPF.

From this observation, at each depth, the index (within the ac-
cessible elements for that level) that we access is the previous index
appended with the bit lt. Accessing indices with prefixes being
incrementally appended with a bit in this way, can be done with
a single incremental DPF. A formal protocol describing the IDPF-
based binary search appears in Appendix A. Note that, unlike the
simple binary search protocol, the IDPF-based binary search proto-
col does not require any Flag-Word MPC multiplications.

We remark here that a recent work by Blaton and Yuan [4] pre-
sented a similar optimization for a generic DORAM-based binary
search where the read operations can be done on lg(𝑛/2) ORAMs
of sizes 2, 4, . . . , 𝑛/2, respectively. In contrast, our optimization ex-
ploits the observation that IDPFs produce the shares of the standard
basis vectors that are required to do precisely those lg(𝑛/2) opera-
tions. This allows us to do a binary search with exactly one IDPF
producing lg(𝑛/2) shares of the required standard basis vectors,
each operating on subsets D (1)

, . . . ,D (lg𝑛) of the underlying DO-
RAM, thus avoiding the cost of initializing and working on lg(𝑛/2)
different DORAMs.

PRAC’s key advantage here is in recognizing that it is public
information that the sequence of indices that will be accessed will

be prefixes each of the next. We can therefore gain efficiency by ex-
plicitly leaking that information through the use of a single IDPF, as
opposed to performing logarithmically many independent oblivious
memory accesses.

5 OBLIVIOUS HEAPS

In this section we describe our oblivious heap data structure. In
particular, PRAC supports the HeapInsert and ExtractMin oper-
ations.
Memory layout. The root of the heap lies in D[1]. The left child
of a node at D[i] is D[2 · i], and the right child is D[2 · i + 1].
The memory at index 0 holds no value. A heap can be initialized as
empty, and have elements added to it one at a time using HeapIn-
sert, or it can be initialized with pre-existing data by obliviously
sorting the data (as a sorted array is automatically a heap).
The main heap algorithms. Heaps have two main protocols
(i) ExtractMin, and (ii) HeapInsert. The ExtractMin algorithm
returns the smallest element in a heap, which will be at the root,
and replaces the root with the last element in the heap. The heap
property no longer holding true, it runs a heapify algorithm to
restore the heap property. The HeapInsert protocol adds a new
element into the heap at the next available memory location, and
then restores the heap property.

5.1 Basic Oblivious Heap Protocols

Basic Oblivious HeapInsert. Consider a heap with 𝑛 items.
Suppose we want to insert a new item M into the heap. We first
assign the item M to the (𝑛 + 1)th position in the memory (not a
DORAM operation). Next, we need to restore the heap property.
We obliviously compare M with its parent. If M is smaller than the
parent, we swap them. This process is continued up to the root of
the heap, at which point the heap property is restored, and M is
in its correct position. Therefore, the basic oblivious HeapInsert
protocol requires one oblivious comparison and swap at each level,
without any DORAM operations at all. A formal description of the
basic HeapInsert protocol appears in Appendix B
Basic Oblivious ExtractMin. The ExtractMin protocol begins
with saving a copy of the root (i.e., the item situated at index 1)
and replacing it with the last leaf node (i.e., the item at D[𝑛]) and
decrementing 𝑛. After that, we have to restore the heap property,
which is done by the Heapify protocol. The Heapify algorithm
begins by comparing the new root with the smaller child. If the
root is larger, then we swap the root with the smaller child. This
process is repeated down the path following the smaller child. For
some random index i, suppose that (i) D[i] = 𝑥 , (ii) D[2 · i] = 𝑦,
and (iii) D[2 · i + 1] = 𝑧. There are two comparison operations that
we do, namely,

(1) (ltc, eqc, gtc) ← Compare(𝑦, 𝑧)
- Let 𝑠 ← Oselect(𝑧,𝑦, ltc) = min(𝑦, 𝑧)

(2) (ltp, eqp, gtp) ← Compare(𝑥, 𝑠)

Thus, we have the following truth table for the desired new values
for the three cells in question:
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Figure 3: Accessible elements during the optimized Extract-

Min. The elements shaded in gray are P, elements in red are

L, and the ones in blue are R.

ltc ltp D′ [i] D′ [2 · i] D′ [2 · i + 1]
0 0 𝑧 𝑦 𝑥

0 1 𝑥 𝑦 𝑧

1 0 𝑦 𝑥 𝑧

1 1 𝑥 𝑦 𝑧

From the above truth table we infer that, to restore the heap prop-
erty, we define P← (𝑠−𝑥)·(1−ltp) and L← (𝑥−𝑦)·(ltc)·(1−ltp),
and update: (i) D′ [i] ← D[i] + P, (ii) D′ [2 · i] ← D[2 · i] + L, and
(iii) D′ [2 · i + 1] ← D[2 · i + 1] − (P + L). Therefore to do this pro-
cess in an oblivious manner, we require two oblivious comparisons,
three oblivious reads, and three oblivious updates at each level of
the heap. The formal description of the basic ExtractMin appears
in Appendix B.

Like the basic binary search, the basic heap protocol hides more
information than is needed. The DORAMs in the basic heap op-
eration hide the indices being read and the indices into which an
update occurs. Since the heap algorithm inherently leaks part of
this information, having general-purpose DORAMs is unnecessary.
Next, we will see that using a “heap-specific” DORAM is beneficial.

5.2 Optimized Heap Protocol

Optimized ExtractMin. The main underlying observation to
optimize ExtractMin is that, at each level, the algorithm is doing
three reads and updates at related indices i, 2 · i, and 2 · i + 1. This
fact is public knowledge, even though the value of i itself is not. We
can perform these related-index reads and updates more efficiently
than doing three arbitrary reads and updates.

Similarly to the binary search case, given the level d of the heap
we are currently working on, only a subset of elements of D are
accessible; i.e., are possible candidates of elements we might be
accessing. Let P be the subset of D consisting of the nodes in level
d, L be the left children of those nodes, and R be the right children
of those nodes. Note that P, L, and R all have the same size. (See
Figure 3.) Then we can use a single DPF to read index i* = i − 2d
from each of the three accessible sets, yielding the shares of the
parent and the two children at the same time. Updating the values
is slightly trickier; the Duoram update protocol [33, §4.2.3] exposes
the difference between the update value M and the random leaf
value at the target index of the DPF (see Section 2.2.1). We therefore
cannot reuse these random leaf values with multiple updates, even
if we can reuse the DPF itself because the index being updated is
fixed. The solution is to use wide DPFs (see Section 2.2.3), where
each leaf stores three random values instead of one. The updates

of P[i*], L[i*], and R[i*] can then all use the same (wide) DPF,
and indeed the very same one used for reading. Furthermore, this
operation can be performed for all levels with a single incremental
wide DPF.
OptimizedHeapInsert. We optimized theHeapInsert protocol
using our binary search from Section 4.2. Recall that the objective
of the procedure is to insert a value M into the heap. The protocol
begins by adding an empty node at the end of the heap array. The
key observation is that after HeapInsert is complete, the only
entries that might change are the ones on the path from the root
to this new node. Further, since the number of entries in the heap
is public, which entries in D form this path is also public. We form
the accessible set P of the nodes from the root to the newly added
(empty) node. The next observation is that this path (from root
to leaf) starts off sorted, and will end up with the new element
M inserted into the correct position so as to keep the path sorted.
The path is of length lg𝑛, so we use our binary search to find the
appropriate insertion position with a single IDPF of height lg lg𝑛.

The advice bits of that IDPF will then be bit shares of a vector
t = [0, 0, 1, 0, . . . , 0] with the 1 indicating the position at which the
new value must be inserted. The shares of t are (locally) converted
to shares of u = [0, 0, 1, 1, . . . , 1] by taking running XORs. The bits
of t and u are used in 2 lg𝑛 parallel Flag-Word multiplications to
shift the elements greater than M down one position, and to write
M into the resulting hole, with a single message of communication.
Figure 4 illustrates the optimized insert protocol.

6 AVL TREES

In the previous section, we presented oblivious heaps, which admit
arbitrary dynamic insertions, but only deletions of the minimum
element. In this paper, we do not give a detailed description on
how AVL Trees work. We refer the reader to any Algorithms text-
book [11] for a refresher on AVL trees. The binary search tree (BST)
is a classic data structure that supports arbitrary insertions and
deletions. Unfortunately, BSTs have 𝑂 (𝑛) worst-case costs for all
its operations (insert, delete, and lookup). Worse, when working in
an oblivious setting, every BST operation has to necessarily incur
this worst-case 𝑂 (𝑛) cost lest it reveal the structure of the BST. We
therefore look at AVL trees, which are balanced binary search trees
that support a worst-case 𝑂 (lg𝑛) cost for their operations, as their
depths are guaranteed to be bounded by 1.44 lg𝑛, and thus are far
more appealing than BSTs under the obliviousness constraint. In
AVL trees, an imbalance at an element happens when the differ-
ence between the heights of its subtrees (the subtrees rooted at
its children) is greater than one. Any operation that results in an
imbalance is fixed by rotations which modify the positions of the
imbalanced element and its children. Both insertions and deletions
can result in potential imbalances.

Oblivious AVL trees have been proposed in the client-server
model [37]. In such a setting, the structure of the AVL tree is known
to the client but hidden from the server. Our work is the first obliv-
ious AVL tree design in the model where all the parties involved4

are oblivious to the underlying AVL tree structure that is being

4Recall from Section 2.4 that in our setting the computing parties play the role of both
clients and servers.
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Figure 4: Binary search-basedHeapInsert protocol. In the first step (left), a new empty node is created, and an oblivious binary

search is done to find the location where M = 13 should be inserted in the (sorted) path from the root to the new node. In

the second step (center), an oblivious trickle-down is performed using the output of the binary search. In the last step (right),
the desired value is obliviously written into the hole. Note that the gray path is the set of accessible items in the heap. The

heap contents and M are secret shared and not known to any party, but which heap locations form the accessible set is public

knowledge.
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(b) Insertion Phase 1: BST insertion. Com-

pare with key in current node and compute

direction bit 𝑑 . Since the next pointer is ⊥,
we insert node 7 here. st𝐼 remains empty in

this
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(c) Insertion Phase 2: Gather st𝐼 . At node 8,

we have an imbalance so obliviously update

st𝐼 to store all the imbalance information

at this and lower levels, namely F
bs

𝑖𝑚𝑏 ,
®𝑝xs ,

®𝑐xs , 𝑑𝑝𝑐 , 𝑑𝑐𝑛 .
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(d) Insertion Phase 2: Gather st𝐼 . At node

8’s parent, since it hit an imbalance at the

lower level, obliviously update st𝐼 to store

the parent to imbalance node ®𝑔xs , and the

direction from parent 𝑑𝑔𝑝 .

Figure 5: Illustration of AVL insertion. (a),(b): Phase 1 - BST Insertion. (c),(d): Phase 2 - Gather insertion state st𝐼 . The insertion

is completed by Phase 3 (not shown here) - FixImb𝐼 that uses the state st𝐼 to complete the balancing procedure obliviously. The

imbalance chain is 𝑔→ 𝑝 → 𝑐 → 𝑛, with 𝑔 - grandparent, 𝑝 - parent / imbalance point, 𝑐 - child, and 𝑛 - 𝑐’s child on the insertion

path. The 𝑑𝑥 are direction bit flags, with 𝑥 ∈ {𝑔→ 𝑝, 𝑝 → 𝑐, 𝑐 → 𝑛}. The balance values at each node are 𝑏.

maintained. To this end we design novel oblivious algorithms for
AVL imbalance detection and balancing rotations.

Our binary search and heap protocols leveraged an implicit struc-
ture; i.e., the indices of the memory dictate the tree structure. In
AVL trees, the position of items in the tree are ephemeral due to
the imbalance-fixing rotations. These rotations incur significant
overheads if we try to leverage implicit structure as every oper-
ation potentially requires reorganizing portions of the DORAM.
Obliviousness worsens this overhead as it requires padding each
imbalance rotation to the worst case of repositioning all elements
in the tree. Hence, AVL trees cannot exploit an implicit structure
(and the optimizations it enables).

We therefore consider the DORAM D to be composed of items
that are nodes of an AVL tree. A node is a structure containing
key, value, the left and right child pointers (DORAM indices), and
left and right balance bits, and as before each server holds a share
of this DORAM composed of nodes. We say such types of data
structures have an explicit structure, as the locations of nodes in
the DORAM D are independent of the tree structure. The AVL tree
structure is maintained by child pointers of each node in the tree
and an external root pointer. We refer to the key, value, children,
and balance bits of this structure for a node 𝑥 as 𝑥as𝑘 , 𝑥xs𝑣 , 𝑥xs𝑐 [2],
and 𝑥xs𝑏 [2] respectively.

Memory Layout. Database entry D[0] is a special entry contain-
ing a 0 entry for all fields of the node. The rest of D will store nodes
as they are inserted without any tree-specific layout (unlike our
heap). The child pointers of each node store shares of indices of
its children nodes in the DORAM. A child pointer with the value
0 denotes a NULL pointer (the child does not exist). A child node
is retrieved by a DORAM read on its shared index. For a node 𝑥 ,
we refer to its pointer (index) in the DORAM as ®𝑥 . Additionally,
AVL trees also maintain a global root which stores shares of the
index in the DORAM that correspond to the current root of the
AVL tree ®rxs, and the number of items currently in the tree n. As
with heaps, an oblivious AVL tree can be initialized as empty, or
from an existing dataset by sorting it; the pointers and balance bits
can then be added entirely with local operations.

6.1 Insertion

Inserting a new node 𝑥 into an AVL tree establishes an insertion
path, which starts at the root and terminates at a leaf node ℓ , and 𝑥 is
inserted as ℓ ’s left or right child. Since an insertion can result in an
imbalance at any node along the insertion path, naively converting
insertion to be oblivious would require us to perform an oblivious
rotation step at each level of the AVL tree to prevent leaking the
level at which an imbalance occurs. This would incur significant
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performance penalties. However, for an insert operation we observe
that at most one rotation is required to restore balance. Instead of
performing oblivious rotations at all levels of the tree, then, we
design a novel recursive insert protocol which returns an insertion
state, st𝐼 , that captures the imbalance point (if any) during the
insertion. To restore balance, we introduce a FixImb𝐼 protocol
which takes in st𝐼 as its only parameter. This insertion state st𝐼 ,
contains shares of (i) Fbs𝑖𝑚𝑏 a flag indicating if an imbalance has
occured, (ii) index of the imbalanced node ®𝑝xs, (iii) parent of the
imbalanced node ®𝑔xs, (iv) the child of the imbalanced node ®𝑐xs, and
(v) three bit shares dbs𝑔𝑝 , d

bs
𝑝𝑐 , and dbs𝑐𝑛 that capture the direction bits

between these nodes (whether 𝑝 is the left or right child of 𝑔, for
example), where 𝑛 is 𝑐’s child on the insertion path.

To insert an item into the AVL tree, the corresponding node 𝑥 is
inserted into the next available free index ®𝑥 in the DORAM. The
AVL insert effectively has three phases. The first phase is identical
to a classic BST insert. Starting with the node stored at the root (®rxs)
as the current node, the insertion node’s key 𝑥𝑘 is compared with
the current node’s key to get a direction bit 𝑑 which dictates the
direction of traversal for the next level. This process is repeated until
we arrive at a nodewith no children in the traversal direction from it.
The new node is obliviously inserted here by updating the children
pointers of the current node. In the second phase the imbalance (if
any) is captured in st𝐼 , through oblivious flag manipulations on the
return path of the recursive insert. Figure 5 illustrates both these
phases. The state st𝐼 is used in the third phase, where the imbalance
(if any) is fixed with the procedure FixImb𝐼 . FixImb𝐼 performs the
rotations (if required) obliviously and updates the balance bits of
the nodes involved in the imbalance, to arrive at a balanced state
after the insertion. The insertion protocol in its entirety is detailed
in Protocols 8–15 provided in Appendix C.

6.2 Deletion

The deletion procedure of AVL tree begins identical to that of stan-
dard BST; i.e., (i) if the node to be deleted 𝑦 has no children, it can
be deleted directly, (ii) if it has one child, then 𝑦 is deleted and 𝑦’s
parent is updated to point to 𝑦’s only child, and (iii) if 𝑦 has both
children, then 𝑦 is swapped with its successor first and then deleted
from the tree. Of course, in our setting all of these cases have to
be handled obliviously; the computing parties will not be aware
of which case they are in. Deletions may result in an imbalance,
but in contrast to insertion, deleting a node can require imbalance-
fixing rotations at each level on the deletion path. Hence unlike our
AVL insert, the fix imbalance operation cannot be deferred to the
end. However, we can still perform deletion in𝑂 (log𝑛) rounds and
bandwidth by performing the fix-imbalance operation FixImb𝐷 , at
every level of the AVL tree. Protocols 16–21 in Appendix C detail
the complete deletion protocol.

7 APPLICATION: OBLIVIOUS STREAM

SAMPLER

An example application of oblivious data structures is oblivious
stream sampling. A stream sampler of size 𝑘 receives items one at
a time, in a stream of length unknown in advance. At the end of
the stream, the stream sampler outputs a random subset of size 𝑘
of the streamed items, while using only 𝑂 (𝑘) memory.

A stream sampler provides the key functionality to take advan-
tage of an important result in differential privacy (DP), particularly
as used in federated learning: roughly, if you first sample your
dataset of size 𝑛 down to a random sample of size 𝑘 , and then
apply an 𝜖-DP algorithm to it, you end up with an 𝑂 (𝑘𝜖/𝑛)-DP
algorithm [2].

Crucially, however, this result requires that the choice of ele-
ments in the sample be unknown. Previous work [26] has imple-
mented sampling in this fashion in the setting of trusted execution
environments (TEEs), like Intel SGX. If one does not wish to trust
the security of SGX, however, one can use MPC.

Shi [28, §V-B] provided an oblivious heap-based stream sampler
for this application in the client-server MPC model, where the
single client can see all of the data, but the data is oblivious to the
server. Using PRAC, we port over this application to the secret-
shared server MPC model, where the data is oblivious to all of the
players participating in the computation. In our setting, the items
may arrive, for example, by having many clients across the Internet
asynchronously submit items by each splitting their item into secret
shares, and submitting one share to each player.

We, like Shi, use a heap with random labels to implement the
reservoir sampling algorithm by Vitter [35], which works as follows:
(i) store the first 𝑘 items, and (ii) for item number𝑚 > 𝑘 , select an
already stored item at random and replace it with the arrived item
with probability 𝑘/𝑚. (We correct here a typo of Shi [28], where this
value is written as 1/𝑚.) Our implementation replaces Shi’s client-
server Path Oblivious Heap with our optimized heap oblivious to
all parties, and corrects the typo noted above, but otherwise follows
Shi’s algorithm faithfully.

We evaluate our implementation in Section 8.2.3.

8 EVALUATION

8.1 Analytical Evaluation

This section analytically evaluates PRAC’s algorithms with the
state of the art. We start with Table 1, which analytically compares
PRAC’s binary search (basic and optimized) with (i) Floram’s bi-
nary search, and (ii) Blanton and Yuan [4]. We remark that the
latter works in either the malicious or semi-honest model, but with
the same asymptotic complexities [4, §VIII-A]. Floram’s amortized
bandwidth cost for a DORAM operation is O(

√
𝑛), from its linear-

cost refresh operation, which needs to be performed before every√
𝑛/8 write operations. However for binary search, we need to only

perform DORAM reads, which can use Florom (Floram optimized
for only read operations) with an O(lg𝑛) bandwidth cost [12, Table

Table 1: Analytical comparison of MPC binary search. The

protocol marked as * works in either the semi-honest or the

malicious security model (with the same asymptotic com-

plexity [4, §VIII-A]).

Protocol

Communication

Computation

Bandwidth Rounds

Floram [12] O(lg2 𝑛) O(lg2 𝑛) O(𝑛 lg𝑛)
Blanton & Yuan [4] * O(

√
𝑛) O(lg𝑛) O(𝑛)

PRAC (Basic) O(lg2 𝑛) O(lg𝑛) O(𝑛 lg𝑛)
PRAC (Optimized) O(lg𝑛) O(lg𝑛) O(𝑛)

9
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Table 2: Analytical comparison of MPC Heap protocols. The protocol marked as * works in the malicious security model with

an honest majority.

Protocol

HeapInsert ExtractMin
Communication

Computation

Communication

Computation

Bandwidth Rounds Bandwidth Rounds

Mazloom et al. [23] * O(lg2 𝑛) O(lg2 𝑛) O(lg2 𝑛) O(1) O(1) O(𝑛)
PRAC’s Basic Heap O(lg𝑛) O(lg𝑛) O(lg𝑛) O(lg2 𝑛) O(lg𝑛) O(𝑛 lg𝑛)

PRAC’s Optimized Heap O(lg𝑛) O(lg lg𝑛) O(lg𝑛) O(lg𝑛) O(lg𝑛) O(𝑛)

1]. Performing naive binary search with Floram would require lg𝑛
ORAM read operation each incurring lg𝑛 bandwidth and rounds.
Note that the reduction in bandwidth for optimized PRAC is from
using a single IDPF.

PRAC’s heap protocols (basic and optimized) are compared against
Mazloom et al. [23] in Table 2. Mazloom et al.’s heaps work in the
malicious model with an honest majority. Mazloom et al.’s Extract-
Min operations have an amortized communication cost of O(1),
compared to PRAC’s worst-case O(lg𝑛) cost. However, PRAC’s
HeapInsert has a bandwidth cost of O(lg𝑛) sent in O(lg lg𝑛)
rounds, in contrast to Mazloom et al.’s amortized O(lg2 𝑛) cost
for bandwidth, rounds, and computation. We remark here that a
cheaper HeapInsert is preferable since the number of insert oper-
ations has to be at least the number of extract operations.

PRAC is the only framework to support AVL trees in a distributed
trust setting, hence we do not provide any comparisons. Our AVL
algorithms incur an O(lg𝑛) bandwidth and round cost, with an
O(𝑛) computation cost. We present a breakdown of the number
of MPC operations in the various PRAC algorithms in Table 6 in
Appendix D.

8.2 Empirical Evaluation

Experimental Setup. We implemented5 and benchmarked PRAC
with a reference implementation in C++, using Boost Asio for asyn-
chronous network communications. All of our experiments except
those in Section 8.2.3 were performed on a single machine with dual
Intel 8380 2.3 GHz 40-core processors. We ran each party in its own
docker container, each pinned to a dedicated 20 cores, and used
netem to induce 100Mbps bandwidth and 30ms each-way latency
between the containers. For the comparator systems, we ran their
available code in this same setup. To test our system across a live
network, in Section 8.2.3 we also include experiments performed on
Amazon EC2 instances located at us-east, ca-central, and us-west.
The PRGs in DPFs are implemented using AES. Our experiments
use DORAMs with 64-bit words.

8.2.1 Evaluating PRAC’s DORAM. Figure 6 compares the perfor-
mance (both wall-clock time and bandwidth) of PRAC’s improved
Duoram, under the typical Internet conditions used by priorwork [8,
33] (30ms latency and 100Mbps bandwidth) with priorwork, namely
(i) Ramen [8], (ii) Duoram [33], (iii) Floram [12], and (iv) 3P-Cir-
cuit ORAM [20]. To compare, we (i) fix the DORAM size at 220 and
vary the number of Read operations, and (ii) fix the number of
Read operations at 10 and vary the DORAM sizes from 216 to 230.

5Code available at https://git-crysp.uwaterloo.ca/iang/prac/.

Figure 6 shows that for a DORAM of size 220, PRAC is the best
performing DORAM. PRAC’s implementation-level improvements
as mentioned in Section 3 makes its performance better than Duo-
ram. Our benchmarks also include the initialization costs. Observe
that for DORAM sizes of 230, 3P-Circuit ORAM outperforms PRAC
as PRAC’s linear computational cost becomes the bottleneck [33,
Table 1]. We observe that Ramen, PRAC, and Duoram have the
least bandwidth consumption, but Ramen must perform a refresh
process with an 𝑂 (𝑛) bandwidth cost every

√
𝑛 operations, not

accounted for in Figure 6.

8.2.2 Evaluating Oblivious Data Structures.

Baseline setups for evaluating data structures. Sincemost DORAM
schemes do not implement data structures (except Floram, which
implements binary search), we estimate costs for other schemes
based on their underlying DORAM costs. We estimate these costs
as follows. Table 6 (Appendix D) presents a detailed accounting
for all the operations involved in our oblivious data structures.
However, we limit ourselves to the underlying DORAM costs for
estimated costs. In particular we use (i) the DORAM preprocessing
cost for the 𝑛 in consideration, (ii) the DORAM cost per access
for this value of 𝑛, and (iii) and the number of such operations
required for the data structure, to arrive at just the DORAM costs
of the data structure and project this as the total data structure
cost. The overheads of computation, communication latency, and
bandwidth from all the other MPC operations (see Table 6) are
not accounted for in the estimates of PRAC’s comparators, but
they are for PRAC. Consequently, the performance benefits we
claim throughout this section are conservative. Also, note that the
estimates of Ramen and 3P-Circuit ORAM are for the basic binary
search and heap versions; these DORAMs cannot leverage our
optimizations since the underlying Square-root ORAM and Circuit
ORAM (of Ramen and 3P-Circuit ORAM, respectively) preclude
them from operating over a subset (of accessible elements) of the
ORAM. From Section 8.2.1, we observe that among the comparators
of PRAC, Ramen performs best for small DORAMs, and 3P-Circuit
ORAM performs best for large DORAMs. Therefore, to evaluate
PRAC’s data structures, we benchmark them against estimates for
Ramen and 3P-Circuit ORAM.

Binary Search. Figure 7 compares PRAC’s optimized and basic
binary search with (i) Floram’s binary search implementation,
(ii) Ramen (estimate), and (iii) 3P-Circuit ORAM (estimate). For a
constant DORAM size, we observe that as the number of searches
increases linearly, so does the time taken. Next, we consider the case
of doing one binary search and varying the DORAM size. Recall

10
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that the crossover point between PRAC and 3P-Circuit ORAM is 230

for performing DORAM reads. Thus, we observe similar behaviour
for basic binary search. However, our optimized IDPF-based binary
search outperforms 3P-Circuit ORAM for even DORAM sizes ex-
ceeding the crossover point, despite our underlying DORAM being
costlier at these sizes, highlighting the benefits of our optimizations.

We also observe that using one IDPF rather than lg𝑛 DPFs reduces
bandwidth consumption.

Concretely, for 226 items6 PRAC (optimized) presents a 3.4× and
5.0× improvement over PRAC (basic) for binary search in wall-clock

6We pick 226 as the comparison point, since Ramen only supports DORAM sizes of up
to 226 .
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Table 3: HeapInsert evaluation, comparing PRAC Basic (B)

and PRACOptimized (O) in terms of wall-clock time, number

of rounds, and bandwidth to do one insert onDORAMof sizes

216, 220, and 224. The preprocessing numbers are shaded in

gray.

Size Wall-Clock Time (s) Rounds BW (KiB)

Insert (B)

216 0.183 ± 0.001 + 3.747 ± 0.001 1 + 61 9.7 + 0.6
220 0.184 ± 0.001 + 4.716 ± 0.005 1 + 77 12.3 + 0.7
224 0.184 ± 0.001 + 5.667 ± 0.003 1 + 93 14.9 + 0.8

Insert (O)

216 1.525 ± 0.001 + 0.866 ± 0.004 17 + 17 5.6 + 0.6
220 1.525 ± 0.001 + 0.866 ± 0.003 17 + 17 5.7 + 0.7
224 1.526 ± 0.001 + 0.860 ± 0.006 17 + 17 5.9 + 0.8

Table 4: AVL tree evaluation, showing wall-clock time, num-

ber of rounds, and bandwidth to do one insert or delete on

DORAM of sizes 216, 220, and 224. The preprocessing numbers

are shaded in gray.

Size Wall-Clock Time (s) Rounds BW (KiB)

Insert

216 3.08 ± 0.04 + 25.4 ± 0.1 37 + 440 107.6 + 2.7
220 5.5 ± 0.3 + 34.5 ± 0.2 45 + 525 147.8 + 3.2
224 21.2 ± 0.3 + 70 ± 2 53 + 627 199.9 + 3.8

Delete

216 3.12 ± 0.01 + 67.46 ± 0.03 37 + 1182 239.3 + 9.2
220 8.88 ± 0.08 + 86.5 ± 0.2 45 + 1427 343.7 + 11.3
224 29.88 ± 0.08 + 147 ± 2 53 + 1721 479.2 + 13.6

time and bandwidth, respectively, showcasing our algorithmic im-
provements. For the same 226 items, when comparing with Ramen,
PRAC (optimized) provides 61× and 3.6× improvements in wall-
clock time and bandwidth, respectively. Compared with 3P-Circuit
ORAM, PRAC (optimized) improves wall-clock time by 27.1× and re-
duces bandwidth bymore than three orders of magnitude (> 6400×).
While there is a recent work by Blanton and Yuan [4], we do not
compare against them since their implementation is not publicly
available.

Heaps. Figure 8 compares basic and optimized PRAC’s Extract-
Min with Ramen and 3P-Circuit-ORAM. The gap between Ramen
and (basic) PRAC is lower in Figure 8 than in Figure 6 since the
initialization cost of Ramen is amortized over many DORAM op-
erations. Like in the case of binary search, the basic PRAC imple-
mentation crosses over 3P-Circuit-ORAM at DORAM sizes of 230.
However, our wide IDPF helps optimized PRAC perform better even
at DORAM sizes where our underlying DORAM is inferior.

The improvements that we see in optimized ExtractMin pro-
tocol are because (i) the preprocessing is much cheaper since it
requires the generation of a single wide IDPF, and (ii) the online
phase is cheaper because the ORAM operations are performed on
smaller logical DORAM rather than the full DORAM. We see from
the plot that for smaller DORAM sizes, PRAC’s basic and optimized
ExtractMin perform almost the same in the online phase. This
is because the latency cost is the bottleneck at this point, which
is similar for both our versions. As the DORAM size increases,
the advantage of operating on smaller DORAM for ORAM reads
starts bearing fruit. Concretely, for 226 items, PRAC (optimized)
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in the stream; 𝑘 is the number of items in the resulting sam-

ple.

improves over PRAC (basic) 7.1× and 11.7× in terms of wall-clock
time and bandwidth respectively, highlighting our algorithmic im-
provements. Against Ramen, PRAC (optimized) provides 31× and
13× improvements in terms of time and bandwidth for the same size
of 226 items; in comparison to 3P-Circuit ORAM, PRAC (optimized)
presents a 69× improvement in time and over four magnitudes
improvements (> 17500×) in terms of bandwidth.

Since HeapInsert has no DORAM operations, we do not pro-
vide comparisons with other works and only compare our basic
and optimized implementations. Table 3 compares PRAC’s basic
HeapInsert with our binary search-based optimization. Since the
basic HeapInsert does not require DPF generation, its prepro-
cessing cost is over 8× cheaper than the optimized version. The
number of rounds for our optimized HeapInsert for a heap of size
𝑛 is 3⌈lg lg(𝑛 + 1)⌉ + 2; this is nearly a constant for all practical
purposes.

AVL Trees. Since PRAC is the first framework to support AVL
trees in a distributed trust setting, we do not have any direct com-
parisons. Furthermore, since DORAM operations do not constitute
the bulk of the AVL cost, there is no reasonable way to estimate
the performance of an AVL implementation using other DORAMs.
Table 4 presents the evaluation of PRAC’s AVL implementation.

8.2.3 Evaluating the Stream Sampler Application. We next evaluate
our implementation of the heap-based stream sampling application
described in Section 7. In this evaluation, we also demonstrate
running PRAC on machines separated over the Internet, as opposed
to in docker containers on a single machine with artificial latency.

For the experiments in this section, we used three Amazon EC2
t2.large instances, in the us-west, us-east, and ca-central regions.
The one-way latencies between them ranged from 10 to 35ms,
which is comparable to the latencies in the docker experiments.

The stream sampler has two parameters: 𝑛 is the number of data
items in the stream; the parties learn the data items one at a time in
secret-shared form. 𝑘 is the size of the sample; the stream sampler
will keep a random subset of size 𝑘 of the data items (without
knowing 𝑛 in advance).

We ran our experiment using PRAC for multiple values of 𝑛 and
𝑘 (always with 𝑛 > 𝑘 of course); the resulting end-to-end timings
are shown in Figure 9. Unlike for the docker experiments above, the
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error bars for the results of this experiment are visible (if barely),
owing to the variability in the real-life latency between the parties.

For the largest configuration we tested ((𝑛, 𝑘) = (211, 300)),
PRAC’s total time was about 2.5 hours. We also compared this
configuration to 3P-Circuit ORAM and Ramen. For the comparator
systems, as in Figure 8, we conservatively estimate the time those
systems would take by only taking into account the DORAM op-
erations required for only the heap extraction component of the
heap-based stream sampler protocol. (We emphasize that PRAC’s
timings, on the other hand, are a complete end-to-end time of the
entire stream sampler protocol.) We ran the comparator schemes
on the same EC2 instances as we used for the PRAC experiments
in this section. We found that where PRAC took about 2.5 hours to
evaluate the largest configuration we tested, Ramen would require
at least 15 hours, and 3P-Circuit ORAMwould require over 3.5 days.

9 RELATEDWORK

Distributed ORAMs. The distributed ORAM literature can be classi-
fied into two categories on a broad level: (i) Communication-effi-
cient, and (ii) Computation-efficient. Communication-efficient DO-
RAMs typically have linear local computation costs. These ORAM
schemes optimize for round complexity and bandwidth cost. Such
DORAMs are built on top of DPFs, and the evaluation of the DPFs
incurs the linear cost. Floram [12] and Duoram [33] fall in this
category. Computation-efficient DORAMs optimize for the local
computation cost, in exchange for higher bandwidth and rounds.
Jarecki and Wei’s 3P-Circuit ORAM [20] derived from tree-based
ORAMs [36] and Braun et al.’s Ramen [8] based on the square-root
ORAM [16] fall in this category. A recent work by Falk et al. [13]
presents GigaDORAM. Their work targets the setting where the
threemutually distrusting parties have their servers colocated in the
same datacentre, while PRAC allows for typical Internet latencies
between the servers.

Oblivious Binary Search. Floram performs binary search with
the basic oblivious binary search protocol from Section 4.1 with
the difference that the lg𝑛 DPFs are produced in the online phase.
Blanton and Yuan [4] present a collection of binary search protocols
for MPC without DORAMs. Their best construction achieves a
O(
√
𝑛) communication and O(𝑛) computation for performing a

binary search. Their work also details extensions for binary search
for updating the items being searched upon or inserting (similarly
deleting) items from the search set; these extensions have an O(𝑛)
local computation and bandwidth cost.

Oblivious Heaps. Oblivious heaps have been studied in MPC for
the client-server model [19, 28, 37], a different setting from our
work. In such protocols, the client knows the state of the oblivious
data structure; clients perform computations over subsets of the
data in private unobservable memory on the client side, and the
single untrusted server stores the entire data structure. In contrast,
in our work, the computing servers play the role of servers and
clients, and the data structure state is oblivious to all parties.

Keller and Scholl [21] present an oblivious priority queue with
𝑂 (log5 𝑛) computation and 𝑂 (log3 𝑛) rounds per operation. Their
work ports the first tree-based ORAM, SCSL ORAM [29], to the
MPC setting, and designs a priority queue in the basic fashion

(Section 5.1). We compare our heap protocols against Keller and
Scholl’s approach with 3P-Circuit ORAM, the current state-of-the-
art version of tree-based MPC ORAMs, resulting in a heap with
𝑂 (log4 𝑛) computation and 𝑂 (log2 𝑛) rounds per operation. Ma-
zloom et al. [23] presents a data-independent priority queue that im-
proves upon work by Toft [31]. Their construction has an O(log2 𝑛)
amortized insertion cost and O(1) amortized extract cost, where the
cost is in terms of comparison operations. Not included in this O(1)
amortized extract cost is a ‘pack’ operation which incurs an O(𝑛)
local computation. In comparison, our heaps support an O(log𝑛)
worst-case insertion cost in terms of bandwidth and rounds with a
comparison cost of 𝑂 (log log𝑛), and extract with worst-case band-
width, round, and comparison cost of O(log𝑛). Our lower insertion
cost is favorable in practice as the number of delete operations
cannot be greater than the number of inserts. However, their prior-
ity queue works in a stronger adversarial model (one of the three
parties may be malicious), and is designed to support extra function-
ality, namely Read-Front(𝑥 ), meant to read (but not delete) the front
𝑥 items in the queue with an O(1) worst-case cost. Our algorithms
can easily support a Read-Front(1) with O(1) worst-case cost, but
reading more than the minimum item is non-trivial. However this
functionality is extraneous to the definition of a heap, and they
introduce it to facilitate their dark pool application.

AVL Trees. While ours is the first oblivious AVL tree protocol in
the distributed trust setting, Wang et al. put forth Oblivious AVL
trees [37] in the client-server model. In our work, the data structure
state is oblivious to all parties. In contrast, Wang et al.’s protocol
takes advantage of private unobservable client-side memory (just
like the client-server model oblivious heaps discussed earlier), and
the client knows the data structure state in their protocol.

10 CONCLUSION

In this work, we present PRAC, a general MPC framework designed
for oblivious data structures in MPC with efficient communica-
tion costs, in terms of both rounds and bandwidth overheads. We
present three different oblivious data structures exemplifying dif-
ferent functionalities within PRAC, namely binary search (for static
data), heaps (restrictively dynamic), and AVL trees (fully dynamic).
PRAC presents algorithmic optimizations for these data structures
that exploit different types of DPFs, and the ability of DORAMs
like Duoram to selectively access a subset of the ORAM efficiently.
These improvements result in asymptotic as well as significant
concrete performance improvements.

For binary search, our optimizations reduce computation from
O(𝑛 lg𝑛) to O(𝑛) and communication from O(lg2 𝑛) to O(lg𝑛),
and concretely improves the wall-clock time by more than an order
of magnitude. Similarly for heaps, our techniques reduce the round
trips from O(lg𝑛) to O(lg lg𝑛) for insertion, and reduces the band-
width from O(lg2 𝑛) to O(lg𝑛) for extracting the min item; our
extract algorithm improves wall-clock time by more than an order
of magnitude. PRAC presents the first AVL tree construction in a
distributed trust setting as a means to demonstrate fully dynamic
data structures for MPC. We hope that the flexibility of PRAC will
enable the exploration and design of more efficient fully dynamic
data structures for MPC in the future.
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A OBLIVIOUS BINARY SEARCH PROTOCOLS

In this section, we present the basic and optimized binary search
protocols we described in Section 4. Protocol 1 describes the ba-
sic oblivious binary search protocol, and Protocol 2 describes the
optimized version.

From Section 4.2, recall that the accessible elements are the ele-
ments of the DORAM that could possibly be accessed in a particular
DORAM operation. In binary search, these elements are separated
by a fixed distance (see Figure 2).We formalize this notion of equally
spaced elements forming an accessible set as a Stride:

Definition A.1 (Stride). Stride refers to the elements in the DO-
RAM that are separated by a fixed distance. More formally, D′ ←
Stride(D, 𝜎, offset), such that D′ [i] = D[offset + i · 𝜎].

Importantly, PRAC allows DORAM operations on accessible sets
such as a Stride with a cost that depends only on the size of the
accessible set, not on the size of the entire DORAM D.

An IDPF allows access to these accessible sets via an index with
a incrementally growing prefix. IDPFs also allow appending a bit
to this prefix. This reveals publicly that the subsequent index being
retrieved is either twice the previous one, or one more than twice
the previous one, while hiding (even from the computational parties
themselves) which case they are in, or what the previous or new
indices are. Since this information is clear from the structure of
binary search anyway, it is safe to leak, and yields our performance
improvements.

B OBLIVIOUS MIN-HEAP PROTOCOLS

In this section we present the basic and optimized heap protocols we
described in Section 5. Protocol 3 describes the basic HeapInsert
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Protocol 1 Basic Oblivious Binary Search Protocol, searching for
M

as in a sorted array Das with numitems elements. The protocol
returns the shares of the smallest memory index containing the
value at leastM.

1: Find d such that 2d > numitems

// CurIndas initially holds shares of 2d−1 − 1
2: CurIndas ← party · (2d−1 − 1), for party ∈ {0, 1}
3: while d > 0 do
4: CurValas ← D[CurIndas]
5: (ltbs, eqbs, gtbs) ← Ocompare(Mas

, CurValas)
6: if d > 1 then

// P0 sets its share of uncd to 0
// P1 sets it to 2d−2

7: uncd
as ← party · 2d−2

// P0 sets its share of cond to 0
// P1 sets it to 2d−1

8: cond
as ← party · 2d−1

// A Flag-Word Multiplication
9: condprod

as ← ltbs · condas

// Conditionally add or subtract 2d−2

10: CurIndas ← CurIndas − uncdas + condprodas
11: else

// P0 and P1 get shares of 1
12: cond

as ← party

// A Flag-Word Multiplication
13: condprod

as ← ltbs · condas
14: CurIndas ← CurIndas + condprodas
15: end if

16: d← d − 1
17: end while

18: return CurIndas

protocol. This protocol adds the element M to the end of the heap.
Note that the location of the added item is public, but its value is not.
It then obliviously swaps the item in that location with its parent,
so that the smaller value becomes the parent. It then obliviously
swaps the parent with the parent’s parent, and so on, until it hits
the root of the heap.

Protocol 4 describes the optimized HeapInsert protocol. Recall
from Section 5.2 that the accessible items in a HeapInsert protocol
lie on the path from the root to the newly inserted item. This notion
is formalized as follows.

DefinitionB.1 (Path). The notion of Path exists when theDORAM
represents an implicit tree structure, such thatD[2·i] andD[2·i+1]
are left and right children of D[i], and D[1] is the root. Path refers
to elements in the ORAM that form a path from the root to a
particular node. More formally, D′ ← Path(D, node), such that
D′ [𝑘] = D[⌊node/2𝑛−𝑘−1⌋] for a path with 𝑛 = ⌊lg node⌋ + 1
elements.

By the heap property, elements in the path from the root to
the last value in the heap are sorted. Suppose we want to write
a value, M, into the heap. PRAC’s optimized heap insert does a
binary search on this path to find the position where M belongs. It
then obliviously trickles down the elements in the path, starting

Protocol 2 Optimized Oblivious Binary Search Protocol, searching
forMas in a sorted arrayDas with numitems elements. The protocol
returns the shares of the smallest memory index containing the
value at leastM.

1: Find d such that 2d > numitems

2: mid← 2d−1 − 1
// Explicit, not DORAM, read

3: valas ← D[mid]
4: (ltbs, eqbs, gtbs) ← Ocompare(Mas

, val
as)

5: if d = 1 then
6: return ltbs

7: end if

// Append lt to empty IDPF prefix
8: ixs,(p) ← ixs,(𝜖 ∥lt

bs )

9: d← d − 1
10: while d > 0 do

// D (d) is the array of accessible items at the current depth
11: 𝜎 ← 2d, offset← 2d−1 − 1
12: D (d) ← Stride(D, 𝜎, offset)

// read is performed using IDPF
13: val

as ← D (d) [ixs,(p) ]
14: (ltbs, eqbs, gtbs) ← Ocompare(Mas

, val
as)

// Append lt to current prefix
15: ixs,(p) ← ixs,(p∥lt

bs )

16: d← d − 1
17: end while

18: return ixs

that position and thus creating room forM at the desired location.
Finally,M is obliviously written to the correct location.

Protocol 5 describes ExtractMin protocol. The ExtractMin
protocol saves the root (which is the minimum element), replaces
it with the last element of the heap, and then restores the heap
property by running a Heapify protocol at each level of the heap
from the root down. Heapify obliviously swaps the node at the
index it is given with its smaller child (if that child is smaller than
the node itself), and returns the share of the index of the smaller
child. In this way, repeatedly calling Heapify on the output of the
previous call will restore the heap property.

The basic version of the Heapify protocol is described in Proto-
col 6. The optimizedHeapify protocol, described in Protocol 7, uses
a wide incremental DPF to perform the read and update operations.
It exploits the fact that each level the accessible elements for the
three update operations are (i) all the nodes in that level (a Stride
with 𝜎 = 1), (ii) all the left children in the next level (a Stride with
𝜎 = 2), and (iii) all the right children in the next level (a Stride with
𝜎 = 2), and the same index into these three Strides will yield the
desired node and its two children.

C OBLIVIOUS AVL TREE PROTOCOLS

In Section 6, we presented the high-level idea of our oblivious
AVL tree protocols, and here we present the protocols in depth.
For AVL trees, the maximum depth of a tree with 𝑛 items inserted
is upper bounded by 1.44 · lg𝑛 [10]. In order to traverse the tree
for any operation, starting with the root as the current node, at
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Protocol 3 BasicHeapInsert protocol, insertingMas into the heap
Das with 𝑛 elements, preserving the heap property.
1: 𝑛 ← 𝑛 + 1
2: Das [𝑛] = M

as

// pi is the parent index of ci
3: ci = 𝑛; pi = ci/2
4: while pi ≠ 0 do

// Note these are accesses at public indices, not DORAM opera-
tions

5: (ltbs, eqbs, gtbs) ← Ocompare(Das [ci],Das [pi])
6: Oswap(Das [ci],Das [pi], ltbs)
7: ci = pi
8: pi = pi/2
9: end while

Protocol 4 Optimized HeapInsert protocol, inserting M
as into

the heap Das with 𝑛 elements, preserving the heap property.
1: 𝑛 ← 𝑛 + 1

// The accessible set is the path from the root to the new node
2: P← Path(D, 𝑛)

// Do a binary search along P to locate the position where we
need to writeM

3: ixs𝐹 ← BinarySearch(Pas,Mas)
// Evaluate a DPF at the target location i𝐹 , yielding shares of a
vector like [0, 0, 1, 0, 0, 0] with the 1 in position i𝐹 .

4: tbs ← EvalDPF(i𝐹 )
// Local computation yielding a vector like [0, 0, 1, 1, 1, 1]

5: ubs [0] ← tbs [0]
6: ∀i > 0 : ubs [i] ← tbs [i] ⊕ ubs [i − 1]

// Flag-Word multiplications (parallel) to obliviously trickle
down the entries in the path from i𝐹 on

7: was [0] ← 0
8: ∀i > 0 : was [i] ← ubs𝑏 [i − 1] · (P

as [i − 1] − Pas [i])
// Flag-Word multiplications (also parallel) to obliviously write
M into position i𝐹 of the path

9: ∀i : v[i]as ← tbs𝑏 [i] · (M
as − Pas [i])

// Local operations to update the path entries
10: ∀i : Pas [i] ← Pas [i] + (was [i] + vas [i])

each level we compare the current node’s key with the operation
(lookup/insert/delete) key, and choose the next node index from
the left or right child pointers depending on the comparison result.
All traversals on the tree have to be padded up to the maximum
depth of the tree. (This is why a balanced tree is beneficial: a naive
binary search tree has maximum depth 𝑛 and so all traversals would
have to take 𝑛 steps because the computing parties do not know
the depth of the tree.)
Notation. When the servers hold shares of an index in the AVL tree
ixs, by performing an ORAM read: 𝑥←D[ixs], the servers retrieve
shares of the node structure 𝑥 ; Note that 𝑥 is a structure composed
of several shared variables. We refer to the key, value, children, and
balance bits of this structure as xas𝑘 , xxs𝑣 , xxs𝑐 [], and xxs𝑏 [] respectively.
For ease of exposition, we will overload the notation to refer to
both the children indices as xxs𝑐 , and similarly both the balance bits
as xbs𝑏 . The index (or pointer) to the node 𝑥 , we represent as ®𝑥 , so 𝑥

Protocol 5 Basic ExtractMin protocol for the heap Das with 𝑛

elements. The protocol returns shares of theminimum value in heap,
deletes that value, and restores the heap property. The optimized
ExtractMin protocol is the same, except it uses an IDPF index
ixs,(p) in place of smallerchild

xs, and calls the optimized Heapify
(Protocol 7).

1: min
as ← Das [1]; Das [1] ← Das [𝑛]; Das [𝑛] ← 0

2: 𝑛 ← 𝑛 − 1
// Restores the heap property at the root

3: smallerchild
xs ← Heapify(1, 0)

4: depth← 1
5: while depth < ⌊lg𝑛⌋ do

// Heapify restores the heap property at that level
6: smallerchild

xs ← Heapify(smallerchild
xs
, depth)

7: depth← depth + 1
8: end while

return min
as

Protocol 6 Basic Heapify protocol, taking as input an index share
ixs and the current depth d. Restores the heap property at that depth
by obliviously swapping the node at that index with its smaller
child (if that child is smaller than the node itself) and outputs the
share of the index of the smaller child.
1: pixs ← ixs, lixs ← 2 · ixs, rixs ← lixs ⊕ party

// Three DORAM reads in parallel
2: parentas ← Das [pixs ]
3: leftchildas ← Das [lixs ]
4: rightchildas ← Das [rixs ]
5: (ltbs𝑐 , eqbs𝑐 , gtbs𝑐 ) ← Ocompare(leftchildas, rightchildas)

// Compute the smaller child and its index in parallel
6: smaller

as ← Oselect(rightchildas, leftchildas, ltbs𝑐 )
7: sixs ← Oselect(rixs, lixs, ltbs𝑐 )
8: (ltbs𝑝 , eqbs𝑝 , gtbs𝑝 ) ← Ocompare(smaller

as
, parent

as)
// MPC AND operation

9: ltbs𝑐,𝑝 ← ltbs𝑐 ∧ lt
bs
𝑝

// Compute parent and left child offsets in parallel
10: 𝐿 ← (parent − leftchild)as · ltbs𝑐,𝑝
11: 𝑃 ← (smaller − parent)as · ltbs𝑝

// Three DORAM updates in parallel
12: D[ixs ] ← D[ixs ] + 𝑃
13: D[lixs ] ← D[lixs ] + 𝐿
14: D[rixs ] ← D[rixs ] − (𝑃 + 𝐿)

return sixs

← D[®𝑥xs] The balance bits for any node 𝑥 , namely 𝑥𝑏 [0] (𝑥𝑏 [1])
indicate if the left (right) subtree has a greater depth than the other
subtree or not. Note that 𝑥𝑏 [0] and 𝑥𝑏 [1] can never be 1 at the same
time. At several points in our AVL algorithms, we read andwrite just
the children pointers and balance fields of a node. For convenience
we overload the read and write operations to represent this by
just modifying the output (input) to capture the fields being read
(written); for instance, reading just the balance bits and children
pointers of a node we express as (pxs𝑐 , pbs𝑏 )← D[®𝑝xs]. Writes follow
similarly, D[®𝑝xs]← (𝑝′𝑐

xs, 𝑝′𝑏
bs). Additionally for better readability,
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Protocol 7 Optimized Heapify protocol, taking as input a wide-
IDPF index ixs,(p) and the current depth d. Restores the heap prop-
erty at that depth by obliviously swapping the node at that index
with its smaller child (if that child is smaller than the node itself)
and outputs the share of the index of the smaller child.

// P contains all the nodes depth d

1: P← Stride(D, 1, 2d)
// L contains all the left children at depth d + 1

2: L← Stride(C, 2, 2d+1)
// R contains all the right children at depth d + 1

3: R← Stride(C, 2, 2d+1 + 1)
// Three DORAM reads in parallel using a wide IDPF

4: parentas ← Pas [ixs,(p) ]
5: leftchildas ← Las [ixs,(p) ]
6: rightchildas ← Ras [ixs,(p) ]
7: (ltbs𝑐 , eqbs𝑐 , gtbs𝑐 ) ← Ocompare(leftchildas, rightchildas)

// Compute smaller child
8: smaller

as ← Oselect(rightchildas, leftchildas, ltbs)
9: (ltbs𝑝 , eqbs𝑝 , gtbs𝑝 ) ← Ocompare(smaller

as
, parent

as)
// MPC AND operation

10: ltbs𝑐,𝑝 ← ltbs𝑐 ∧ lt
bs
𝑝

// Compute parent and left child offsets in parallel
11: 𝐿 ← (parent − leftchild)as · ltbs𝑐,𝑝
12: 𝑃 ← (smaller − parent)as · ltbs𝑝

// Three DORAM updates in parallel using a wide IDPF
13: P[ixs,(p) ] ← P[ixs,(p) ] + 𝑃
14: L[ixs,(p) ] ← L[ixs,(p) ] + 𝐿
15: R[ixs,(p) ] ← R[ixs,(p) ] − (𝑃 + 𝐿)

// Append (gt𝑐 ⊕ eq𝑐 ) to the IDPF index
16: return ixs,(p∥ (gt𝑐 ⊕ eq𝑐 ) )

we contract array dereferencing using shared flags with the short
hand notation xxs𝑗 [dbs], which stands for Oselect (xxs𝑗 [0], xxs𝑗 [1],
dbs), where 𝑗 ∈ {𝑐, 𝑏} (child pointer/balance bits of node 𝑥 ). Table 5
provides a succinct summary of the notations used for AVL trees.

C.1 Insertion

Protocol 8 details the main insert function Insert(), which inter-
nally calls a recursive insert RInsert(). To insert a new node 𝑥 , 𝑥 is
first stored into the next available slot in the DORAM, and Insert()
is invoked with 𝑥 ’s index (ixs) in the DORAM, its key (xas𝑘 ), and
index of the current root of the AVL tree ®rxs. In an AVL insertion
that results in an imbalance, a single rotation at the imbalance point
on the path from the root to the newly inserted node resolves the
imbalance. To insert obliviously, one might think a rotation (or
dummy rotation) must be performed at every level of the traversal
to hide the depth of the imbalance point. Instead one can ‘lift’ the
rotation into a one-time operation after the insertion by storing
the imbalance point during the traversal. If the insertion did not
result in an imbalance, no rotation is needed. However to maintain
obliviousness a dummy rotation is performed which operates over
just the special D[0] node, emulating the memory accesses and
computation of a real rotation.

Protocol 8 Oblivious AVL insert. Insert(®rxs, ixs, kas)→ ®rxs. In-
puts: ixs: insertion index, and kas: insertion key.
Outputs: new root ®rxs.
1: if n == 0 then
2: ®rxs← ixs

3: n + +
4: return ®rxs
5: else if n == 1 then
6: TTL← 1
7: else
8: TTL← ⌈1.44 lg(n)⌉
9: end if

// state st𝐼 : {®𝑔
xs, ®𝑝xs, ®𝑐xs, dbs𝑔𝑝 , d

bs
𝑝𝑐 , d

bs
𝑐𝑛 , F

bs
𝑖𝑚𝑏 , F

bs
𝑔 }

10: st𝐼←⊥
11: (𝑢bs, ⊥, st𝐼 )← RInsert(®rxs, ixs, kas, TTL, 0bs, st𝐼 )
12: ®rxs← FixImb𝐼 (st𝐼 )
13: n + +
14: return ®rxs

Protocol 9 Oblivious recursive AVL insert function.
RInsert(ℓxs, ixs, kas, TTL, Fbs𝑑 , st𝐼 )→ (ubs, dbs𝑟 , st𝐼 )
Inputs: ℓxs: index for this level, ixs: insertion index, kas: insertion
key, TTL: Time-To-Live, Fbs𝑑 : dummy flag, st𝐼 : insertion state struc-
ture.
Outputs: ubs: update bit, dbs𝑟 : direction bit returned from recursion,
st𝐼 : updated state.

1: if TTL = 0 then
2: return (0bs, 0bs, st𝐼 )
3: end if

4: 𝑛𝑙← D[ℓxs] ⊲𝑛𝑙 : node at this level
5: (ltbs, eqbs, gtbs)← Ocompare (nlas𝑘 , kas)
6: npxs← Oselect (𝑛𝑙𝑐

xs[0], 𝑛𝑙𝑐
xs[1], gtbs)

7: Fbs𝑖 ← ((!Fbs𝑑 )· (IsZero(npxs)))
8: Fbs𝑑 ← Fbs𝑑 ⊕ Fbs𝑖
9: (ubs, dbs𝑟 , st𝐼 )← RInsert(npxs, ixs, kas, TTL-1, Fbs𝑑 , st𝐼 )

// If 𝐹𝑖 , insert the node here, and set 𝑢 to 1
10: nlxs𝑐 ← UpdCPtrs(nlxs𝑐 , gtbs, ixs, Fbs𝑖 )
11: ubs← Oselect (ubs, 1bs, Fbs𝑖 )
12: (nlxs𝑏 , ubs, Fbs𝑖𝑚𝑏 )← UpdBal𝐼 (nl

bs
𝑏 , ubs, gtbs)

13: D[ℓxs]← (nlxs𝑏 , nlxs𝑐 )
// Lines 14-21 update st𝐼

′to store the imbalance chain.
14: st𝐼 .F

bs
𝑖𝑚𝑏← st𝐼 .F

bs
𝑖𝑚𝑏⊕ Fbs𝑖𝑚𝑏

15: st𝐼 .®𝑝
xs← Oselect (st𝐼 .®𝑝

xs, ℓxs, Fbs𝑖𝑚𝑏 )
16: st𝐼 .d

bs
𝑝𝑐← Oselect (st𝐼 .d

bs
𝑝𝑐 , gt

bs, Fbs𝑖𝑚𝑏 )
17: st𝐼 .®𝑐

xs← Oselect (st𝐼 .®𝑐
xs, npxs, Fbs𝑖𝑚𝑏 )

18: st𝐼 .d
bs
𝑐𝑛← Oselect (st𝐼 .d

bs
𝑐𝑛 , d

bs
𝑟 , Fbs𝑖𝑚𝑏 )

// If 𝐹𝑔 (imbalance at lower level), update ®𝑔 and 𝑑𝑔𝑝 .
19: st𝐼 .®𝑔

xs← Oselect (st𝐼 .®𝑔
xs, ℓxs, Fbs𝑔 )

20: st𝐼 .d
bs
𝑔𝑝← Oselect (st𝐼 .d

bs
𝑔𝑝 , gt

bs, Fbs𝑔 )
// Set 𝐹𝑔 if the imbalance was at this level.

21: st𝐼 .F
bs
𝑔 ← Fbs𝑖𝑚𝑏

22: return (ubs, dbs𝑟 , st𝐼 )
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Table 5: Table summarizing variables and notations used in

Protocols 8 - 21.

Variables Definition

TTL Time-To-Live
𝐹𝑥 Flag for 𝑥
st a state object used to capture stateful variables
𝑥 Node x
®𝑥 Pointer to (index of) node x
𝑥𝑐 children pointers for node 𝑥 .

𝑥𝑐 [0]: left child, 𝑥𝑐 [1]: right child
𝑥𝑏 balance bits of node 𝑥 .

𝑥𝑏 [0]: left balance, 𝑥𝑏 [1]: right balance
𝑔, 𝑝 grandparent node, parent node
𝑐 , 𝑛 child node, next node after child on path

𝑔→ 𝑝 → 𝑐 → 𝑛 represents a potential
imbalance chain, with imbalance rooted at 𝑝

𝑢 update bit. Semantically, for insertion 𝑢 ∈ {0, 1},
and for deletion 𝑢 ∈ {0,−1}

𝑛𝑙 node at this level of recursion
𝑛𝑝 next pointer for traversing the tree
𝑑𝑥𝑦 The direction bit from 𝑥 → 𝑦. 𝑥𝑦 ∈ {𝑔𝑝, 𝑝𝑐, 𝑐𝑛}
𝑑𝑟 The direction bit returned from recursion,

i.e., direction for 𝑛𝑝 in the recursive level
Global variables Definition

n Number of items in the tree
®r Pointer to (index of) the tree root in D

Protocol 10 FixImb𝐼 . Fix the imbalance during insertion (if any).
FixImb𝐼 (st𝐼 )→ (®𝑟 ′xs).
Inputs: st𝐼 : state structure after RInsert that stores the imbalance
chain (if any).
Outputs: ®rxs: new AVL root,

// 𝐹𝑑𝑟 : flag for double rotation case (LR/RL).
1: Fbs𝑑𝑟← (st𝐼 .d

bs
𝑝𝑐⊕ st𝐼 .d

bs
𝑐𝑛)· st.F

bs
𝑖𝑚𝑏

2: (gxs𝑐 , gbs𝑏 )← D[st𝐼 .®𝑔
xs], (pxs𝑐 , pbs𝑏 )← D[st𝐼 .®𝑝

xs]
3: (cxs𝑐 , cbs𝑏 )← D[st𝐼 .®𝑐

xs]
4: ®𝑛xs← Oselect (cxs𝑐 [0], cxs𝑐 [1], st𝐼 .d

bs
𝑐𝑛)

5: (nxs𝑐 , nbs𝑏 )← D[®𝑛xs]
6: (®𝑞xs, cxs𝑐 , nxs𝑐 )← ORotate(®𝑐xs, cxs𝑐 , ®𝑛xs, nxs𝑐 , st𝐼 .d

bs
𝑐𝑛 , F

bs
𝑑𝑟 )

7: pxs𝑐 ← UpdCPtrs(pxs𝑐 , st𝐼 .d
bs
𝑝𝑐 , ®𝑞

xs, Fbs𝑑𝑟 )
// If 𝐹𝑑𝑟 : Switch c and n before the next ORotate().

8: 𝑡𝑚𝑝_𝑐𝑐
xs← Oselect (cxs𝑐 , 𝑛′𝑐

xs, Fbs𝑑𝑟 )
9: 𝑡𝑚𝑝_®𝑐xs← Oselect (®𝑐xs, ®𝑛xs, Fbs𝑑𝑟 )
10: ( ®𝑚xs, pxs𝑐 , 𝑡𝑚𝑝_𝑐𝑐

xs)← ORotate(®𝑝xs, pxs𝑐 , 𝑡𝑚𝑝_®𝑐xs, 𝑡𝑚𝑝_𝑐𝑐
xs,

st𝐼 .d
bs
𝑝𝑐 , F

bs
𝑖𝑚𝑏 )

11: gxs𝑐 ← UpdCPtrs(gxs𝑐 , st𝐼 .d
bs
𝑝𝑐 , ®𝑚

xs, (!Fbs𝑔 ).Fbs𝑖𝑚𝑏 )
// Return c and n’s children pointers back correctly.

12: nxs𝑐 ← Oselect (nxs𝑐 , 𝑡𝑚𝑝_𝑐𝑐
xs, Fbs𝑑𝑟 )

13: cxs𝑐 ← Oselect (𝑡𝑚𝑝_𝑐′𝑐
xs, cxs𝑐 , Fbs𝑑𝑟 )

14: (pbs𝑏 , cbs𝑏 , nbs𝑏 )← FixBal𝐼 (p
bs
𝑏 , cbs𝑏 , nbs𝑏 , st𝐼 .d

bs
𝑝𝑐 , F

bs
𝑖𝑚𝑏 , F

bs
𝑑𝑟 )

15: D[st𝐼 .®𝑔
xs]← gxs𝑐 , D[st𝐼 .®𝑝

xs]← (pxs𝑐 , pbs𝑏 )
16: D[st𝐼 .®𝑐

xs]← (cxs𝑐 , cbs𝑏 ), D[®𝑛xs]← (nxs𝑐 , nbs𝑏 )
17: txs← Oselect (®𝑐xs, ®𝑛xs, Fbs𝑑𝑟 )

// If 𝐹𝑔 , update root
18: ®rxs← Oselect (®rxs, txs, st𝐼 .F

bs
𝑔 )

19: return (®rxs)

Protocol 11 ORotate. Performs a single parent-child rotation as
illustrated in Figure 11, if flag Fbs𝑖𝑚𝑏= 1. If Fbs𝑖𝑚𝑏= 0, ORotate has no
effect. ORotate(®𝑝xs, pxs𝑐 , ®𝑐xs, cxs𝑐 , dbs𝑝𝑐 , F

bs
𝑖𝑚𝑏 )→ (®𝑞xs, 𝑝′𝑐

xs, 𝑐′𝑐
xs).

Inputs: ®𝑝xs: parent (𝑝) pointer, pxs𝑐 : parent’s children pointers, ®𝑐xs:
child (𝑐) pointer, cxs𝑐 : 𝑐’s children pointers, dbs𝑝𝑐 : direction bit from 𝑝

to 𝑐 , Fbs𝑖𝑚𝑏 : imbalance flag.
Outputs: ®𝑞xs: pointer to the node in 𝑝’s position after rotation, pxs𝑐 :
updated children pointers for 𝑝 , cxs𝑐 : updated children pointers for
𝑐 .
1: pxs𝑐 [dbs𝑝𝑐 ]← Oselect (pxs𝑐 [dbs𝑝𝑐 ], c

xs
𝑐 [!dbs𝑝𝑐 ], F

bs
𝑖𝑚𝑏 )

2: cxs𝑐 [!dbs𝑝𝑐 ]← Oselect (cxs𝑐 [!dbs𝑝𝑐 ], ®𝑝
xs, Fbs𝑖𝑚𝑏 )

3: ®𝑞xs← Oselect (®𝑝xs, ®𝑐xs, Fbs𝑖𝑚𝑏 )
4: return (®𝑞xs, pxs𝑐 , cxs𝑐 )

Protocol 12 UpdCPtrs. Update Child Pointers of a node.
UpdCPtrs(nlxs𝑐 , dbs, ®𝑞xs, 𝐹𝑟= 1bs)→ nlxs𝑐
Inputs: nlxs𝑐 : current child pointers of𝑛𝑙 , dbs: direction of next node,
®𝑞xs: new pointers to update nlxs𝑐 [𝑑] with, 𝐹𝑟 : optional real/dummy
(1/0) flag
Outputs: nlxs𝑐 : updated child pointers

1: nlxs𝑐 [1]← Oselect (nlxs𝑐 [1], ®𝑞xs, dbs · 𝐹𝑟 )
2: nlxs𝑐 [0]← Oselect (nlxs𝑐 [0], ®𝑞xs, (!dbs)· 𝐹𝑟 )
3: return (nlxs𝑐 )

Protocol 13 RSBal (Right Shift Balances) and LSBal (Shift Bal-
ances).
RSBal(pbs𝑏 , Fbs𝑏 , Fbs𝑖𝑚𝑏 , F

bs
𝑟𝑠 )→ (pbs𝑏 , Fbs𝑖𝑚𝑏 )

LSBal(pbs𝑏 , Fbs𝑏 , Fbs𝑖𝑚𝑏 , F
bs
𝑙𝑠 )→ (𝑝′𝑏

bs, Fbs𝑖𝑚𝑏 )
Inputs: pbs𝑏 : balance bits of node 𝑝 , Fbs𝑏 : flag for if this node is bal-
anced, Fbs𝑖𝑚𝑏 : current imbalance flag, Fbs𝑟𝑠 : flag to right shift balances
(or Fbs𝑙𝑠 : flag to left shift balances for LSBal)
Output: pbs𝑏 : new balance bits for node 𝑝 , Fbs𝑖𝑚𝑏 : updated imbalance
flag.

// If 𝐹𝑟𝑠 , RSBal() performs a right shift:
// Right shift chain: 𝑝𝑏[0]→ 𝐹𝑏 → 𝑝𝑏[1]→ 𝐹𝑖𝑚𝑏

1: RSBal(pbs𝑏 , Fbs𝑏 , Fbs𝑟𝑠 , F
bs
𝑖𝑚𝑏 )→ (pbs𝑏 , Fbs𝑖𝑚𝑏 ):

2: Fbs𝑖𝑚𝑏← Oselect (Fbs𝑖𝑚𝑏 , p
bs
𝑏 [1], Fbs𝑟𝑠 )

3: pbs𝑏 [1]← Oselect (pbs𝑏 [1], Fbs𝑏 , Fbs𝑟𝑠 )
4: Fbs𝑏 ← Oselect (Fbs𝑏 , pbs𝑏 [0], Fbs𝑟𝑠 )
5: pbs𝑏 [0]← Oselect (pbs𝑏 [0], 0bs, Fbs𝑟𝑠 )
6: return (pbs𝑏 , Fbs𝑖𝑚𝑏 )

// LSBal(pbs𝑏 , Fbs𝑏 , Fbs𝑙𝑠 , F
bs
𝑖𝑚𝑏 )→ (pbs𝑏 , Fbs𝑖𝑚𝑏 )

// Similar to RSBal, except left shift if Fbs𝑙𝑠 :
// Left shift chain: 𝐹𝑖𝑚𝑏 ← 𝑝𝑏[0]← 𝐹𝑏 ← 𝑝𝑏[1]

To store the imbalance point, let state st𝐼 be a structure con-
taining index shares ®𝑔xs, ®𝑝xs, ®𝑐xs(grandparent, parent, and child
respectively of the imbalance chain, with the imbalance rooted at
𝑝), dbs𝑔𝑝 , d

bs
𝑝𝑐 (the shares of bit flags of direction from g to p, and p to

c), dbs𝑐𝑛(shares of direction from the child to next node on traversal
path) and Fbs𝑖𝑚𝑏 a shared bit flag indicating if the insertion resulted
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Protocol 14 Update Balance for AVL Insert function.
UpdBal𝐼 (p

bs
𝑏 , ubs, gtbs)→ (pbs𝑏 , ubs, Fbs𝑖𝑚𝑏 )

Inputs: pbs𝑏 : balance bits of current node 𝑝 , ubs: update bit, gtbs:
direction of update bit, i.e., is the update coming from the left or
right child
Outputs: pbs𝑏 : updated balance bits for 𝑝 , ubs: new update bit, Fbs𝑖𝑚𝑏 :
imbalance flag.

// Updates balances for the current node 𝑝 on the path from
root to inserted node. In case of imbalance FixBal𝐼 completes
the balance update resulting from rotations.

1: Fbs𝑟𝑠← 𝑢
bs·𝑔𝑡bs

2: Fbs𝑙𝑠← 𝑢
bs·!𝑔𝑡bs

3: Fbs𝑏 ← pbs𝑏 [0] ⊕ pbs𝑏 [1]
4: (pbs𝑏 , Fbs𝑖𝑚𝑏 )← RSBal(pbs𝑏 , Fbs𝑏 , 0bs, Fbs𝑟𝑠 )
5: (pbs𝑏 , Fbs𝑖𝑚𝑏 )← LSBal(pbs𝑏 , Fbs𝑏 , Fbs𝑖𝑚𝑏 , F

bs
𝑙𝑠 )

6: Fbs𝑏 ← pbs𝑏 [0]bs ⊕ pbs𝑏 [1]
7: Fbs𝑏𝑢← (Fbs𝑏 ·𝑢

bs)
// If update results in this node being balanced (Fbs𝑏𝑢 ), or an
imbalance (𝐹 ′𝑖𝑚𝑏

bs). Then 𝑢 ← 0; no more height changes to
propagate in either case.

8: ubs← Oselect (ubs, 0bs, Fbs𝑏𝑢 )
9: ubs← Oselect (𝑢bs, 0bs, Fbs𝑖𝑚𝑏 )
10: return (pbs𝑏 , ubs, Fbs𝑖𝑚𝑏 )

Protocol 15 Fix Balance for AVL Insert function. FixBal𝐼 (p
bs
𝑏 , cbs𝑏 ,

nbs𝑏 , dbs𝑝𝑐 , F
bs
𝑖𝑚𝑏 , F

bs
𝑑𝑟 )→ (pbs𝑏 , cbs𝑏 , nbs𝑏 )

Inputs: pbs𝑏 : parent(𝑝)’s balance bits, cbs𝑏 : child(𝑐)’s balance bits, nbs𝑏 :
balance bits for next node after child on the insertion path (𝑛), dbs𝑝𝑐 :
direction bit from 𝑝 to 𝑐 , Fbs𝑖𝑚𝑏 : imbalance flag, Fbs𝑑𝑟 : double rotation
flag.
Outputs: pbs𝑏 , cbs𝑏 , nbs𝑏 : Updated balance bits for 𝑝 , 𝑐 , and 𝑛.

// Balance updates from rotation result in 𝑝𝑏 and 𝑐𝑏being set
to zeroes. (Note 𝑝𝑏 is already set to 0 by UpdBal𝐼 if there was
an imbalance.)

1: cbs𝑏 ← Oselect (cbs𝑏 , 0bs, Fbs𝑖𝑚𝑏 )
// 𝑛𝑏 stays same, except in a double rotation case 𝑛𝑏 ← 0.

2: nbs𝑏 ← Oselect (nbs𝑏 , 0bs, Fbs𝑑𝑟 )
3: 𝐹𝑛𝑙0

bs← IsZero(nxs𝑐 [0])
4: 𝐹𝑛𝑟0

bs← IsZero(nxs𝑐 [1])
// 𝐹𝑛𝑐 : does n have children. If 𝐹𝑛𝑐 and 𝐹𝑑𝑟 , 𝑝𝑏 and 𝑐𝑏 have their
balances tweaked to account for 𝑛’s children.

5: Fbs𝑛𝑐← !(𝐹𝑛𝑙0
bs·𝐹𝑛𝑟0

bs)
6: Fbs𝑝𝑐𝑢← Fbs𝑑𝑟 · F

bs
𝑛𝑐

7: pbs𝑏 [!dbs𝑝𝑐 ]← Oselect (pbs𝑏 [!dbs𝑝𝑐 ], !(n
bs
𝑏 [!dbs𝑝𝑐 ]), F

bs
𝑝𝑐𝑢 )

8: cbs𝑏 [dbs𝑝𝑐 ]← Oselect (cbs𝑏 [dbs𝑝𝑐 ], !(n
bs
𝑏 [dbs𝑝𝑐 ]), F

bs
𝑝𝑐𝑢 )

in an AVL imbalance. The imbalance point is the parent 𝑝 , and the
rotation happens over the chain 𝑝 → 𝑐 → 𝑐𝑐 [𝑑𝑐𝑛], but we need
to track the grandparent node as well, since any rotation on the
𝑝 → 𝑐 → 𝑐𝑐 [𝑑𝑐𝑛], requires updating 𝑔𝑐 [𝑑𝑔𝑝 ] link to point to the
new node occupying the former parent node’s position after the
rotation.

𝑝

0 𝑐

𝑛2 𝑛1

Case 1: 𝑛1 inserted
Case 2: 𝑛2 inserted

Case 1: L(R) Rotation
𝐹𝑑𝑟 = 𝑑𝑝𝑐 ⊕ 𝑑𝑐𝑛 = 0
After first ORotate:

𝑝

𝑐

𝑛1

After second ORotate:
𝑐

𝑝 𝑛1

Case 2: RL(LR) Rotation
𝐹𝑑𝑟 = 𝑑𝑝𝑐 ⊕ 𝑑𝑐𝑛 = 1
After first ORotate:

𝑝

𝑛2

𝑐

After second ORotate:
𝑛2

𝑝 𝑐

Figure 10: AVL insertion imbalance rotations. The figure

shows the L and RL rotation case. The mirror images of L

and RL rotations correspond to R and LR rotation cases re-

spectively.

𝑝

𝑝𝑙 𝑐

𝑐𝑙 𝑐𝑟

ORotate (𝑝 → 𝑐)

ORotate (𝑐 → 𝑝)

𝑐

𝑝

𝑝𝑙 𝑐𝑙

𝑐𝑟

Figure 11: The single AVL rotation operation performed by

ORotate().

We first look at the recursive insert detailed in Protocol 9. At
each level of the tree, we compare the insertion key with the key
of the current node at this level and pick the next index to iterate
to depending on the comparison result (lines 4–6), just like how an
item lookup is performed. Line 7 sets the flag Fbs𝑖 , which dictates if
the insertion happens at this level or not. Fbs𝑖 checks if the operation
is not a dummy and that the next index is 0; i.e., no more real nodes
along the path in this direction. Line 8 toggles the operation to a
dummy if we find the point to insert at, and in line 9, the function
recurses. On the path back from the recursion, line 10 completes the
insertion by updating the child pointers at the level where Fbs𝑖 is true,
and line 12 triggers the update bit propagation as the height has
increased by one at this node. Finally, lines 16–21 obliviously store
the chain of nodes that has an imbalance (if any arises from this
insertion). This recorded state is then used to complete imbalance
rotation to restore the AVL property of the tree in lines 8 to 24
of Insert(), and Figure 10 illustrates the the insertion imbalance
rotations.

C.1.1 Fixing Imbalance in Insert(). In the case of any imbalance
(during insertion or deletion), imbalances are fixed via one of four
possible rotations referred to as L, R, LR, or RL rotations, where
the former two have exactly one rotation, while the latter two have
two rotations. Figure 10 illustrates the L and RL rotations; the R
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and LR rotations are mirror images of the rotations shown in the
figure. Hence, in the context of oblivious AVL trees, all imbalance
fix procedures perform two rotations (padded up with dummy
rotations if only one or no rotations are needed) to hide if a rotation
happened and the rotation type. Each of these rotations transforms
the chain 𝑝 → 𝑐 to 𝑐 → 𝑝 in the tree, i.e., rotating the parent and
child nodes such that their parent-child relationship gets swapped
by modifying their children pointers. Figure 11 illustrates the single
rotation performed by an ORotate.

In line 8 in Insert(), once RInsert() completes, Insert() in-
vokes FixImb𝐼 () in Protocol 10 to fix the imbalance if any. FixImb𝐼
first computes if the imbalance (if any) requires a double rotation
(LR/RL) in line 1. Lines 2–5 read all the child pointers and balances
of the nodes involved in the imbalance chain; note that this read
does not require reading the keys and the values of each node in
this chain. As explained earlier, any imbalance is resolved with
up to two rotations, and each rotation is performed by invoking
the ORotate protocol. ORotate operates over shares of the chil-
dren pointers (𝑝𝑐 , 𝑐𝑐 ), the node pointers (®𝑝 and ®𝑐), the direction
bits (𝑑𝑔𝑝 , 𝑑𝑝𝑐 ), and flag Fbs𝑖𝑚𝑏 . The internals of ORotate are detailed
in Protocol 11, and perform the operations depicted in Figure 11.
Lines 8–9 and 12–13 in FixImb𝐼 bridge the two rotations together
in the case of a double rotation. In the case of a double rotation
after the first rotations, the chain turns from (𝑝 → 𝑐 → 𝑛) to (𝑝 →
𝑛→ 𝑐), so we swap the node and child pointers for 𝑐 and 𝑛 before
the second rotation in lines 8–9 and then update 𝑛 and 𝑐’s final
child pointers correctly in lines 12–13. To complete the rotation,
we need to update the balances of 𝑝 , 𝑐 , and 𝑛 to account for their
final position. This is handled by FixBal𝐼 detailed in Algorithm 15,
and these updated balances and children pointers are all written
back into the DORAM in lines 15–16. Finally, lines 17–18 update
and return this AVL tree’s new root if the imbalance chain began
at the root.

C.2 Deletion

Since deleting a node can lead to imbalances at possibly every level
on the path from the root to the deletion node (or more precisely
until its successor), making it oblivious requires that we perform ro-
tations at all nodes along this path lest we leak the depth of the node
deleted. So unlike insertion where we could lift the imbalance-fixing
rotation into a one-time operation, here it has to be performed at
every level. Protocol 16 presents the main Delete function, which
internally invokes the recursive delete operation RDeletein Pro-
tocol 17. Unlike RInsert where the traversal direction is dictated
by just the comparison of keys, in RDelete there are four cases
(𝐹𝐶1–𝐹𝐶4) that modify this traversal direction captured by lines
6–12.

- 𝐹𝐶1: Node to delete was found ∧ current node has only one
child. In this case, to delete we simply skip the node at this
level.

- 𝐹𝐶2: Node to delete was found ∧ current node has both
children. This case corresponds to finding the successor and
swapping the successor node with the deletion node, and
removing the successor from the tree. To find the successor,
we need to find the smallest item greater than this deletion

Protocol 16 Oblivious AVL delete. As convention, Delete deletes
the first node in the tree (in case of repeated entries) that matches
the deletion key. Delete(®rxs, 𝑘as)→ (®rxs, 𝐹𝑓 )
Input: 𝑘as: deletion key.
Outputs: 𝐹𝑓 : flag for if deletion was successful, ®rxs: new root

1: if n == 0 then
2: return (⊥, 0)
3: else if n == 1 then
4: 𝑛𝑙← D[®rxs]
5: (𝑙𝑡bs, 𝑒𝑞bs, 𝑔𝑡bs)← Ocompare (nlas𝑘 , 𝑘as)
6: 𝐹𝑓← Reconstruct(𝑒𝑞bs)
7: if 𝐹𝑓 == 1 then
8: n← 0
9: return (⊥, 𝐹𝑓 )
10: else

11: return (®rxs, 𝐹𝑓 )
12: end if

13: else
14: TTL← ⌈1.44 lg(n)⌉;
15: end if

// state st𝐷 : {F
bs
𝑓 , Fbs𝑓 𝑠 , F

bs
𝑠𝑠 , ®𝑛𝑑

xs, ®𝑛𝑠xs, Fbs𝑟 , rixs}
16: st𝐷←⊥
17: (𝐹𝑓 , ®r

xs, st𝐷 )← RDelete(®rxs, 𝑘as, TTL, st𝐷 )
18: if 𝐹𝑓 == 0 then
19: return (𝐹𝑓 , ®r

xs)
20: else
21: n − −

// Swap successor and node to delete (if applicable)
22: (ndxs𝑘 , ndxs𝑣 )← D[st𝐷 . ®𝑛𝑑

xs]
23: (nsxs𝑘 , nsxs𝑣 )← D[st𝐷 . ®𝑛𝑠

xs]
// If (𝐹𝑠𝑠 ): D[st𝐷 . ®𝑛𝑑

xs]←⊥; else D[st𝐷 . ®𝑛𝑠
xs]←⊥

24: ndxs𝑘 ← Oselect (ndxs𝑘 , nsxs𝑘 , Fbs𝑠𝑠 )
25: ndxs𝑣 ← Oselect (ndxs𝑣 , nsxs𝑣 , Fbs𝑠𝑠 )
26: D[st𝐷 . ®𝑛𝑑

xs]← (ndxs𝑘 , ndxs𝑣 )
// The index shares st𝐷 . ®𝑛𝑑

xsor st𝐷 . ®𝑛𝑠
xsis obliviously

// added to a queue of empty locations for future inserts.
27: ®rxs← Oselect (®rxs, 𝑟𝑖 , st𝐷 .F

bs
𝑟 )

28: return (𝐹𝑓 , ®r
xs)

29: end if

key, so we go to the right subtree and then traverse to find
the leftmost (smallest) item in it.

The latter two cases are really subcases of 𝐹𝐶2 since they deal with
handling the successor search.

- 𝐹𝐶3: Finding successor ∧ current node has a left child. In
this case we traverse left, since the objective is to find the
node with smallest key greater than the deletion key.

- 𝐹𝐶4: Finding successor∧ current node has no left child. This
means we are at the successor node. Since the successor
node would be deleted (by skipping it, like case 𝐹𝐶1), we
traverse down the only (right) child path or just dummy
traversal if successor was a leaf node.
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Protocol 17 Oblivious AVL recursive delete.
RDelete(ℓxs, kas, TTL, st𝐷 )→ (𝐹𝑓 , u

bs, st𝐷 )
Inputs: ℓxs: current index, kas: deletion key, TTL: Time-To-Live,
st𝐷 : deletion state.
Outputs: 𝐹𝑓 : flag for deletion success, ubs: balance update bit, st𝐷 :
updated state

1: if TTL = 0 then
2: return (Reconstruct(st𝐷 .F

bs
𝑓 ), 0bs, st𝐷 )

3: end if

4: 𝑛𝑙← D[ℓxs] ⊲𝑛𝑙 : node at this level
5: (𝑙𝑡bs, 𝑒𝑞bs, 𝑔𝑡bs)← Ocompare (nlas𝑘 , kas)

// Unlike RInsert, the direction to traverse is altered by 4
possible special cases (C1-C4) in RDelete.
// 𝐹𝑙 𝑓 : is this the first instance of deletion key

6: Fbs𝑙 𝑓← 𝑒𝑞
bs·!(st𝐷 .F

bs
𝑓 )

// 𝑙0: is left child empty, 𝑟0: is right child empty
7: l0bs← IsZero(𝑛𝑙𝑐 [0]

xs), r0bs← IsZero(𝑛𝑙𝑐 [1]
xs)

// The number of children at this level (𝐹0, 𝐹1, 𝐹2).
8: Fbs0 ← l0bs·r0bs, Fbs1 ← l0bs⊕r0bs, Fbs𝑑ℎ← Fbs0 · F

bs
𝑙 𝑓

9: Fbs2 ← !(Fbs0 ⊕F
bs
1 )

// C1: Found key ∧ one child. Traverse lone child.
// C2: Found key ∧ both children. Find successor: go right (then
find leftmost node in this subtree)

10: Fbs𝐶1← Fbs𝑙 𝑓 ·F
bs
1 , Fbs𝐶2← Fbs𝑙 𝑓 ·F

bs
2

// C3: Finding successor ∧ left child. Go left.
// C4: Finding successor ∧ no left child. This node is the suc-
cessor, go right.

11: Fbs𝐶3← st𝐷 .F
bs
𝑓 𝑠 ·(!l0

bs), Fbs𝐶4← st𝐷 .F
bs
𝑓 𝑠 ·l0

bs

// Direction bit computed by accounting for C1-C4 cases alto-
gether.

12: dbs← ((Fbs𝐶2 |F
bs
𝐶4)·(!F

bs
𝐶3))|(F

bs
𝐶1·l0

bs)
13: npxs← Oselect (nlxs𝑐 [0], nlxs𝑐 [1], dbs)
14: st𝐷 .𝐹𝑓← Oselect (st𝐷 .𝐹𝑓 , 1

bs, Fbs𝑙 𝑓 )
15: st𝐷 .F

bs
𝑓 𝑠← st𝐷 .F

bs
𝑓 𝑠⊕ Fbs𝐶2

16: st𝐷 .F
bs
𝑠𝑠← st𝐷 .F

bs
𝑠𝑠⊕ Fbs𝐶2

17: st𝐷 .F
bs
𝑓 𝑠← Oselect (st𝐷 .F

bs
𝑓 𝑠 , 0

bs, Fbs𝐶4)
18: (𝐹𝑓 , u

bs, st𝐷 )← RDelete(npxs, kas, TTL-1, st𝐷 )
// Abort if the deletion key was not found.

19: if 𝐹𝑓 ==0 then
20: return (0, ⊥, ⊥)
21: end if

22: nlxs𝑐 ← UpdCPtrs(nlxs𝑐 , dbs, st𝐷 .𝑟𝑖 , st𝐷 .F
bs
𝑟 )

23: (nlxs𝑏 , ubs, Fbs𝑖𝑚𝑏 )← UpdBal𝐷 (nl
xs
𝑏 , ubs, dbs)

24: (ℓxs, ubs)← FixImb𝐷 (ℓ
xs, dbs, ubs, Fbs𝑖𝑚𝑏 , st𝐷 )

// Fbs𝑟𝑠 : return skip flag. Handles the two cases where we delete
(skip) the next child on path.

25: Fbs𝑟𝑠← (Fbs𝐶2|F
bs
𝐶4)

// If Fbs𝑟𝑠 : we skipped a node, so balance update u = 1
26: ubs← Oselect (ubs, 1bs, Fbs𝑟𝑠 )
27: st𝐷← UpdState(Fbs𝑟𝑠 , F

bs
𝑖𝑚𝑏 , ℓ

xs, Fbs𝐶2, F
bs
𝐶4, F

bs
𝑑ℎ , st𝐷 )

28: return (1, ubs, st𝐷 )

Protocol 18 UpdBal𝐷 : Update Balance for Delete.
UpdBal𝐷 (p

bs
𝑏 , ubs, dbs)→ (pbs𝑏 , ubs, Fbs𝑖𝑚𝑏 )

Inputs: pbs𝑏 : current balances of the node, ubs: update bit, dbs: di-
rection of child responsible for update
Outputs: pbs𝑏 : updated balances, ubs: new update bit to propogate
upward, Fbs𝑖𝑚𝑏 : imbalance flag
Note in case of an imbalance, this function sets pbs𝑏 to zeroes.

1: Fbs𝑙𝑠← 𝑢
bs·𝑔𝑡bs

2: Fbs𝑟𝑠← 𝑢
bs·!𝑔𝑡bs

3: Fbs𝑏 ← pbs𝑏 [0] ⊕ pbs𝑏 [1]
4: (pbs𝑏 , Fbs𝑖𝑚𝑏 )← RSBal(pbs𝑏 , Fbs𝑏 , 0bs, Fbs𝑟𝑠 )
5: (pbs𝑏 , Fbs𝑖𝑚𝑏 )← LSBal(pbs𝑏 , Fbs𝑏 , Fbs𝑖𝑚𝑏 , F

bs
𝑙𝑠 )

// If update results in this node becoming left or right heavy:
the height of the subtree has not changed. Set 𝑢bs to 0.

6: Fbs𝑏 ← pbs𝑏 [0] ⊕ pbs𝑏 [1]
7: Fbs𝑏𝑢← Fbs𝑏 · 𝑢

bs

8: ubs← Oselect (ubs, 0bs, Fbs𝑏𝑢 )
// If update results in this node becoming balanced, height of
this subtree has decreased, so continue propogating 𝑢bs.
// FixBal𝐷 handles the balance updates in case of an imbalance.

9: return (pbs𝑏 , ubs, Fbs𝑖𝑚𝑏 )

Protocol 19 FixImb𝐷 . Fix the imbalance (if there is one) at a level
during deletion.
FixImb𝐷 (ℓ

xs, pxs𝑐 , pbs𝑏 , dbs, ubs, Fbs𝑖𝑚𝑏 , st𝐷 )→ (ℓxs, ubs)
Inputs: ℓxs: current subtree root, pxs𝑐 : children pointers of subtree
root, pbs𝑏 : balance bits of subtree root, dbs: traversal direction, ubs:
update bit shares, Fbs𝑖𝑚𝑏 : imbalance flag, st𝐷 : state
Outputs: ubs: new update bit, ℓxs: new root for current subtree.

// ®𝑐𝑠: pointer to the child’s sibling, i.e. 𝑝𝑐 [!𝑑]
1: ®𝑐𝑠xs← Oselect (pxs𝑐 [1], pxs𝑐 [0], dbs)
2: (csxs𝑐 , csbs𝑏 )← D[ ®𝑐𝑠xs]

// 𝑛 is the node 𝑐𝑠[𝑑], 𝑛𝑏 (𝑛’s balance) dictates if the imbalance
requires a LRRL rotation.

3: ®𝑛xs← csxs𝑐 [𝑑bs]
4: (nxs𝑐 , nbs𝑏 )← D[®𝑛xs]
5: Fbs𝑑𝑟← Fbs𝑖𝑚𝑏 · cs

bs
𝑏 [𝑑bs]

6: (®𝑞xs, csxs𝑐 , nxs𝑐 )← ORotate( ®𝑐𝑠xs, csxs𝑐 , ®𝑛xs, nxs𝑐 , st.dbs𝑐𝑛 , F
bs
𝑑𝑟 )

7: pxs𝑐 ← UpdCPtrs(pxs𝑐 , !dbs, ®𝑞xs, Fbs𝑑𝑟 )
// If Fbs𝑑𝑟 : Switch 𝑐𝑠 and 𝑛 before the next ORotate().

8: 𝑡𝑚𝑝_𝑐𝑠𝑐
xs← Oselect (csxs𝑐 , nxs𝑐 , Fbs𝑑𝑟 )

9: 𝑡𝑚𝑝_𝑐𝑠′xs← Oselect ( ®𝑐𝑠xs, ®𝑛xs, Fbs𝑑𝑟 )
10: (ℓxs, pxs𝑐 , 𝑡𝑚𝑝_𝑐𝑠𝑐

xs) ← ORotate(®𝑝xs, pxs𝑐 , 𝑡𝑚𝑝_𝑐𝑠′xs,
𝑡𝑚𝑝_𝑐𝑠𝑐

xs, st.dbs𝑝𝑐 , F
bs
𝑖𝑚𝑏 )

// Return cs and n’s children pointers back correctly.
11: nxs𝑐 ← Oselect (nxs𝑐 , 𝑡𝑚𝑝_𝑐𝑠𝑐

xs, Fbs𝑑𝑟 )
12: csxs𝑐 ← Oselect (𝑡𝑚𝑝_𝑐𝑠𝑐

xs, 𝑐′𝑐
xs, Fbs𝑑𝑟 )

// FixBal𝐷 updates balances of pbs𝑏 , csbs𝑏 , nbs𝑏 to account for
rotations performed.

13: (ubs, pbs𝑏 , csbs𝑏 , nbs𝑏 )← FixBal𝐷 (p
bs
𝑏 , csbs𝑏 , nbs𝑏 , dbs, ubs, Fbs𝑖𝑚𝑏 )

14: D[ℓxs]← (pbs𝑏 , pxs𝑐 ), D[ ®𝑐𝑠xs]← (csbs𝑏 , csxs𝑐 ),
15: D[®𝑛xs]← (nbs𝑏 , nxs𝑐 )
16: return (ℓxs, ubs)
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Protocol 20 FixBal𝐷 . Fixes the balances of nodes affected by an
imbalance (if there is one) at the current level.
FixBal𝐷 (p

bs
𝑏 , csbs𝑏 , nbs𝑏 , dbs, ubs, Fbs𝑖𝑚𝑏 )→ (ubs, pbs𝑏 , csbs𝑏 , nbs𝑏 )

Inputs: pbs𝑏 : parent(𝑝)’s balance bits, csbs𝑏 : child’s sibling(𝑐𝑠)’s bal-
ance bits, nbs𝑏 : balance bits of next node in the direction dbsfrom 𝑐𝑠 ,
dbs: direction bit from 𝑝 to 𝑐 (and also from 𝑐𝑠 to 𝑛), ubs: update bit,
Fbs𝑖𝑚𝑏 : imbalance flag
Outputs: ubs: new update bit, pbs𝑏 : updated balance bits for parent
(𝑝), csbs𝑏 : updated balance bits for child’s sibling (𝑐𝑠), nbs𝑏 : updated
balance bits for 𝑛.

// IC(1-3) correspond to three possible imbalance cases.
1: Fbs𝐼𝐶1← Fbs𝑖𝑚𝑏 · cs

bs
𝑏 [!dbs]

2: Fbs𝐼𝐶3← Fbs𝑖𝑚𝑏 · cs
bs
𝑏 [dbs]

3: Fbs𝐼𝐶2← Fbs𝑖𝑚𝑏 · !(F
bs
𝐼𝐶1⊕ Fbs𝐼𝐶3)

// IC1 case: set 𝑐𝑠𝑏[!𝑑] to 0.
4: csbs𝑏 [!dbs]← Oselect (0bs, csbs𝑏 [!dbs], Fbs𝐼𝐶1)

// IC2 case: set 𝑐𝑠𝑏[𝑑] to 1, and 𝑝𝑏[!𝑑] to 1.
5: csbs𝑏 [dbs]← Oselect (csbs𝑏 [dbs], 1bs, Fbs𝐼𝐶2)
6: pbs𝑏 [!dbs]← Oselect (pbs𝑏 [!dbs], 1bs, Fbs𝐼𝐶2)

// IC2 rotation does not decrease subtree height, so 𝑢 ← 0.
7: ubs← Oselect (ubs, 0bs, Fbs𝐼𝐶2)

// IC3 has 3 subcases. IC3-S1 : 𝑛𝑏 [!𝑑] = 1, IC3-S2 : 𝑛𝑏 [𝑑] = 1,
IC3-S3: 𝑛𝑏 [𝑑] = 𝑛𝑏 [!𝑑] = 0

8: Fbs𝐼𝐶3−𝑆1← nbs𝑏 [!dbs], Fbs𝐼𝐶3−𝑆2← nbs𝑏 [dbs]
9: Fbs𝐼𝐶3−𝑆3← !(Fbs𝐼𝐶3−𝑆1⊕ Fbs𝐼𝐶3−𝑆2)

// IC3-S1: set 𝑝𝑏[𝑑] to 1, and 𝑐𝑠𝑏[𝑑] to 0.
10: pbs𝑏 [dbs]← Oselect (1bs, pbs𝑏 [dbs],Fbs𝐼𝐶3−𝑆1)
11: csbs𝑏 [dbs]← Oselect (0bs, csbs𝑏 [dbs],Fbs𝐼𝐶3−𝑆1)

// IC3-S2: swap 𝑐𝑠𝑏[𝑑] and 𝑐𝑠𝑏[!𝑑]. Set 𝑛𝑏[𝑑] to 0.
12: Oswap (csbs𝑏 [dbs], csbs𝑏 [!dbs], Fbs𝐼𝐶3−𝑆2)
13: nbs𝑏 [dbs]← Oselect (0bs, nbs𝑏 [dbs], Fbs𝐼𝐶3−𝑆2)

// IC3-S3: set 𝑐𝑠𝑏[𝑑] to 0.
14: csbs𝑏 [dbs]← Oselect (0bs, csbs𝑏 [dbs], Fbs𝐼𝐶3−𝑆3)
15: return (ubs, pbs𝑏 , csbs𝑏 , nbs𝑏 )

When a leaf node is reached, the protocol does dummy recursions
until the maximum height of the AVL tree.

Once the next node pointer 𝑛𝑝 from this level is selected (line
12), lines 13 to 15 update the flags keeping the state of if the node
was found (st.𝐹𝑓 ), and if we are finding successor (st.𝐹𝑓 𝑠 ), and then
we recurse to the next level. In deletion, imbalances arise on the
sibling path (rather than the traversal path). Since we remove a node
along the traversal path, the relative height of the sibling subtree
may increase, leading to an imbalance. Hence 𝑐𝑠 corresponds to the
child’s sibling (with the child being the node at the next pointer 𝑛𝑝
we arrived at after the four cases). The relevant node for handling
imbalances during deletion is 𝑐𝑠 (and not 𝑐 which was the case
during insert), and lines 20–21 extract this child’s sibling node. Line
22 handles updating the child pointers at the current level based on
the state st′ returned by the recursive RDelete invocation. There
are three cases that result in updating child pointers:

• Skip deletion node: At the deletion node level, we return
the return index 𝑟𝑖 returned from the recursion.

• Skip successor node: Same as above. Both cases are handled
by the UpdState protocol detailed in Protocol 21.

Protocol 21 UpdState(Fbs𝑟𝑠 , F
bs
𝑖𝑚𝑏 , ℓ

xs, Fbs𝐶2, F
bs
𝐶4, F

bs
𝑑ℎ , st𝐷 )→ (st𝐷 )

Inputs: Fbs𝑟𝑠 : return skip flag, Fbs𝑖𝑚𝑏 : imbalance flag, ℓxs: pointer to
current subtree root after imbalance fix, Fbs𝐶2: flag to delete node
(with both childen) at this level, Fbs𝐶4: flag to indicate successor
found, Fbs𝑑ℎ : flag to delete leaf node, st𝐷 : current state
Outputs: st𝐷 : updated state

// If we skip a level or had an imbalance, child pointers of the
node at the higher level needs to be updated.

1: st𝐷 .F
bs
𝑟 ← Fbs𝑟𝑠 | F

bs
𝑖𝑚𝑏 | F

bs
𝑑ℎ

2: st𝐷 .ri
xs← Oselect (ℓxs, st𝐷 .ri

xs, st𝐷 .F
bs
𝑟 )

Store deletion and successor node
3: st𝐷 . ®𝑛𝑑

xs← (st𝐷 . ®𝑛𝑑
xs, ℓxs, Fbs𝐶2)

4: st𝐷 . ®𝑛𝑠
xs← (st𝐷 . ®𝑛𝑠

xs, ℓxs, Fbs𝐶4)
5: return st𝐷

• Update child subtree root with new node from imbalance-
fixing rotations: FixImb𝐷 detailed in Protocol 19 returns
the index for the new root of this subtree ℓ′ (either index of
the present root itself, or in the case of an imbalance either
®𝑐𝑠 or 𝑐𝑠𝑐 [𝑑].)

Similar to insert, line 23 updates balances to propagate the poten-
tial decrease in the height of a subtree and this process is detailed
in Protocol 18. As we mentioned earlier, since there could be an
imbalance at possible every level on the traversal path in the case
of deletion, we perform the imbalance fix procedure, similar to the
one-time imbalance-fix operation we detailed at the end of Insert,
at every level by invoking FixImb𝐷 . The difference is that the bal-
ance bit updates have a different semantic meaning in deletion
(decrease by one instead of increase by one). Finally, line 27 updates
the state to ensure: (i) the correct return index 𝑟𝑖 is returned by the
recursion depending on the flag bits that manipulate if a skip or
imbalance has happened (𝐹𝑟 , F

bs
𝑟𝑠 , F

bs
𝑖𝑚𝑏 ), and (ii) the deletion and

successor node index (when applicable) are stored in 𝑠𝑡 .

D MPC OPERATION BREAKDOWN OF PRAC

PROTOCOLS

Table 6 gives a granular breakdown of the number of MPC opera-
tions required in data structures implemented in PRAC. We denote
the DORAM operations as tuple (𝑛,S), where 𝑛 is the number of
ORAM operations and (a size 𝑛) S is a set of sizes on which the 𝑛
ORAM operations are performed.
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Table 6: Presenting MPC and ORAM operations for our optimized data structure algorithms. 𝑁 = [𝑛, 𝑛, . . . , 𝑛], 𝐴 = [2, 4, . . . , 𝑛/2],
𝐵 = [2, 4, . . . , lg𝑛/2]. We denote the change in the number of operations from basic to optimized counts as (basic counts →
optimized counts). Green indicates a decrease in the count and Red indicates an increase in the count.

BinarySearch HeapInsert ExtractMin AVLInsert AVLDelete
ORAM Read (lg𝑛, 𝑁 ) → (lg𝑛,𝐴) 0→ (lg lg𝑛, 𝐵) 3 · lg𝑛 (r,p) (4 + 1.44 · lg𝑛, 𝑁 ) 2 + 3 · 1.44 · lg𝑛

ORAM Update 0 0 3 · lg𝑛 (r,p) (4 + 1.44 · lg𝑛, 𝑁 ) 2+3 · 1.44 · lg𝑛
# ORAM DPFs lg𝑛 → 1 0→ 1 3 · lg𝑛 (r) 4 + 1.44 · lg𝑛 2 + 3 · 1.44 · lg𝑛
Ocompare lg𝑛 lg𝑛 → lg(lg𝑛) 2 · lg𝑛 1.44 · lg𝑛 2 + 3 · 1.44 lg𝑛
Oselect 0 0 2 lg𝑛 40 + lg𝑛 4 + 69 · 1.44 · lg𝑛
Oswap 0 lg𝑛 → 0 0 0 0

MPC-ANDs 0 0 lg𝑛 5 + 8 · 1.44 · lg𝑛 40 · 1.44 · lg𝑛
MPC-FW-Mults lg𝑛 → 0 0 2 · lg𝑛(2𝑝) 0 0
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