
NOTRY: Deniable messaging with retroactive avowal
Faxing Wang

University of Melbourne

Shaanan Cohney

University of Melbourne

Riad Wahby

Carnegie Mellon University

Joseph Bonneau

a16z Crypto Research

Abstract
Modern secure messaging protocols typically aim to provide

deniability. Achieving this requires that convincing cryptographic

transcripts can be forged without the involvement of genuine users.

In this work, we observe that parties may wish to revoke deniabil-

ity and avow a conversation after it has taken place. We propose

a new protocol called Not-on-the-Record-Yet (NOTRY) which en-

ables users to prove a prior conversation transcript is genuine. As a

key building block we propose avowable designated verifier proofs
which may be of independent interest. Our implementation in-

curs roughly 8× communication and computation overhead over

the standard Signal protocol during regular operation. We find it

is nonetheless deployable in a realistic setting as key exchanges

(the source of the overhead) still complete in just over 1ms on a

modern computer. The avowal protocol induces only constant com-

putation and communication performance for the communicating

parties and scales linearly in the number of messages avowed for

the verifier—in the tens of milliseconds per avowal.

Keywords
proof of non-knowledge, deniable messaging, AKE, avowal

1 Introduction
Imagine Mallory wrongfully accuses Alice and Bob of a heinous

crime. Alice and Bob have an alibi attested in their chat history,

but alas! They communicated using the Off-the-Record protocol

[12] (OTR), which is cryptographically deniable. They are therefore

unable to satisfactorily prove their innocence to the public!

In this paper, we propose a new protocol called Not-On-The-

Record-Yet (NOTRY), which preserves the benefits of deniable pro-

tocols while enabling Alice and Bob to jointly avow the contents of

a conversation should it later become necessary. NOTRY aims to

provide the best of both worlds between deniable protocols (that

prevent Alice or Bob from individually proving what was said to a

third party) and non-repudiable protocols where each message is

accompanied by such a proof.

Deniable protocols are commonplace. The widely used Signal [1,

55] and recent Messaging Layer Security (MLS) [2, 4] protocols both

aim to provide deniability—which comes in various flavors. Such

This work is licensed under the Creative Commons Attribu-

tion 4.0 International License. To view a copy of this license

visit https://creativecommons.org/licenses/by/4.0/ or send a

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Proceedings on Privacy Enhancing Technologies 2024(2), 1–21
© 2024 Copyright held by the owner/author(s).

https://doi.org/10.56553/popets-2024-0001

variants include transcript deniability (neither party can prove what

was said) and participation deniability (neither party can prove who

participated at all). Protocols achieve deniability by providing a

construction that allows any party to forge a cryptographically

valid conversation transcript, without knowledge of the private

keys that the participants used to mutually communicate. Herein

we present a new variant of deniable communications—with a twist:

at some future time 𝑡1 after their initial exchange, Alice and Bob

may retroactively avow their transcript. That is, Alice and Bob may

disseminate additional values showing that a unique version of the

transcript is correct (and hence that any other claims are forgeries

including those generated prior to 𝑡1).

Beyond the exonerating evidence example provided above, there

are many possible scenarios in which two communicating parties

might later wish to avow a conversation that they initially intended

to remain off the record. A transcript may contain evidence useful

to a proceeding in which the interests of the two parties are aligned

(e.g.; co-inventors who wish to prove first-to-invent in patent pro-

ceedings, an alibi for a crime, or a journalist and source proving

the authenticity of a conversation after events have elapsed).

1.1 Proofs of non-knowledge
The essential technical idea underlying our work is a trick to

prove non-knowledge of a discrete log relationship. Given a value

𝑋 and two bases 𝑔, ℎ chosen such that the discrete log relationship

between them is unknown, proving knowledge of the discrete log-

arithm of 𝑋 to the base 𝑔 serves as a proof of non-knowledge of

the discrete logarithm of 𝑋 to the base ℎ. Symmetrically, proving

knowledge of the discrete logarithm of 𝑋 to the base ℎ proves non-

knowledge of 𝑋 to the base 𝑔. This works because if the discrete

logarithm of 𝑋 were known to both bases, this would enable com-

puting of the discrete log of ℎ to the base 𝑔, therefore the discrete

log of 𝑋 may be known to at most one of the bases 𝑔, ℎ. The two

bases can be chosen using a nothing up my sleeve technique such
as hashing a constant value in two different ways to produce two

pseudorandom group elements.

A similar idea has been used in protocols for oblivious transfer
(OT)[5, 36, 56, 61]. For example, the sender in a classic 1-out-of-2

OT chooses two bases 𝑔, ℎ such that the receiver doesn’t know the

discrete log relation between them. The receiver then generates

two public keys 𝐾 and 𝐾 ′ = 𝐾
ℎ
. The sender is convinced that the

receiver can’t know the private key (discrete log) of both keys (to

the base 𝑔) without learning a discrete log relation between 𝑔 and

ℎ, and therefore can only decrypt one of two messages.

Thisworks effectively as a proof (to the sender) of non-knowledge

of one of the two private keys. In this work, we generalize this

1

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2024-0001

Proceedings on Privacy Enhancing Technologies 2024(2) Faxing Wang, Shaanan Cohney, Riad Wahby, and Joseph Bonneau

idea and provide an explicit description (where previously it was

implicit). We extend the idea to proofs-of-non-knowledge in a pub-

licly verifiable setting (whereas in OT the proofs are effectively

designated-verifier). We also apply this idea in a new context,

avowal of (formerly) deniable proofs. Consider classic designated

verifier proofs that prove either knowledge of some witness𝑤 for

a statement 𝑆 or knowledge of a secret key 𝑠𝑘𝑉 . We can transform

this proof by proving the following:

(knowledge of𝑤 AND the discrete log of 𝑋 to the base 𝑔) OR
(knowledge of 𝑠𝑘𝑉 AND the discrete log of 𝑋 to the base ℎ).

If nothing is known about𝑋 , then this serves as a designated verifier

proof, as it may have been satisfied either by knowing the genuine

witness 𝑤 or the verifier’s key 𝑠𝑘𝑉 . However, if a separate proof

establishes that the discrete log of 𝑋 is known to either base, this

establishes which half of the disjunction was satisfied and reveals

if the original designated verifier proof is real or a forgery.

We use an extension of this technique during NOTRY’s authen-

ticated key exchange, in which Alice and Bob mutually create a

value𝑋 = 𝐴𝐵 such that its discrete log to the base 𝑔 is secret-shared

between the two parties (e.g. 𝐴𝐵 = 𝑔𝛾+𝛿 for values 𝛾 , 𝛿 chosen by

Alice and Bob respectively). If desired, the two parties can later col-

laborate to prove knowledge of this discrete logarithm and revoke

deniability of the key exchange.

1.2 Contributions
With NOTRY we present the first Deniable Authenticated Key

Exchange (DAKE) satisfying the security properties described by

Unger [66] while additionally supporting retroactive avowal. Our
technical contributions are as follows:

• We first develop a new primitive: avowable designated veri-
fier proofs. As with standard designated verifier proofs, they

can be forged by a party with a specified public key (the

designated verifier) and hence are not convincing to other

parties. However, with avowable designated verifier proofs

the prover later convince a verifier that a previously gener-

ated proof is genuine and not a forgery. We formally define

the notion of an avowable designated verifier proof as well

as providing a concrete instantiation.

• We construct a modified DAKE that incorporates our avow-

able designated verifier proof construction, leading to a se-

cure messaging protocol with retroactive avowal. Our pro-

posal (NOTRY) is the first DAKEA (DAKE with avowal) pro-

tocol. We assume that both parties store avowal secrets and

verifiers store a genuine log of ciphertext transcripts to be

avowed. Without authentic ciphertext it is trivial for parties

to retroactively create a fake conversation and avow it. De-

signing an efficient and secure logging protocol is out of our

scope.

• Weprove the security of our construction using the Universal-

Composability framework [16] under a special random or-

acle model. The proof is conducted under the standard de-

cisional Diffie-Hellman hardness assumption (noting that

our protocol is therefore not quantum secure). We show that

NOTRY guarantees a strong form of deniability, online de-

niability [33, 68], and also demonstrate that NOTRY offers

standard AKE security properties of AKE.

• We implementNOTRY and evaluate its performance. In com-

parison to Signal [55, 59], clients incur an 8× times commu-

nication overhead and an 8× times computational overhead

per key exchange—a manageable performance hit in the face

of likely future improvements. When parties wish to avow a

message, both they and the judge pay further computation

and communication costs to run the avowal protocol.

• We further show that our avowal protocol scales effectively

to an entire transcript. Parties are free to avow a stream

of messages in a conversation without incurring commu-

nication overhead above that of avowing a single message.

They only need to operate an extra scalar addition for each

additional message avowal. The computation and commu-

nication performance overhead of the designated verifier

grows linearly with the number of messages to be avowed

for the verifier, with the slope of 0.006 for computation and

receiving extra 32 bytes each time for avowing one more

message.

The remainder of the paper proceeds as follows:We commence in

Section 2 with a review of work relevant to our design space, which

includes message franking schemes and work on retroactivity in

cryptography. In Section 3 we introduce all the primitives needed

to build our scheme. This proceeds with reintroducing designated

verifier proofs (DVs) for the unfamiliar reader, before proceeding

on our novel construction of avowable designated verifier proofs

(ADVs)—allowing a prover to render a proof verifiable at some

point after they first generate it. In Section 3.4 we extend ADVs by

introducing mutually avowable DVs, whereby it takes two cooper-

ating provers to avow a message transcript to a third-party verifier.

We are then in Section 3.4 able to introduce our overall deniable

messaging scheme with retroactive avowal (NOTRY), deferring its

security proofs until Section 5. We conclude with implementing

and evaluating the protocol in Section 6 followed by a few closing

remarks.

2 Related Work
Our work draws from several similar notions to that of crypto-

graphic avowal—disavowal (its mirror image) and message franking

(a one-sided complement to avowal). Here we highlight works that

relate across two axes: similar cryptographic notions, and deniable

messaging protocols on which we build.

2.1 Avowal, Disavowal, and Franking
Chaum[24] defined cryptographic disavowal in his work on zero-

knowledge signatures —wherein a signer could convince others

under zero-knowledge that a signature does not correspond to the

signer’s public key and purported message. Cryptographic avowal

is also closely related to message franking [41, 65]. Message frank-

ing schemes allow a single party in a conversation to prove the

authenticity of part of a conversation, typically only to one specific

third party (the judge). Such schemes are useful for abuse manage-

ment in encrypted communication systems, as they can provide

a method for a message recipient to report content to a platform

hosting the otherwise encrypted messaging service. Our scheme

differs in two ways: 1) both parties to a conversation must agree to

avow a conversation and 2) they can choose any third-party as a

2

NOTRY: Deniable messaging with retroactive avowal Proceedings on Privacy Enhancing Technologies 2024(2)

judge. This vitiates its usefulness as an abuse reporting mechanism

but leads to the other use cases we described in Section 1.

2.2 Retroactivity in Signature Schemes
There are several other primitives of a similar flavor—providing

the ability for parties to change the epistemic status of signatures

ex post facto, which we here review.

Park and Sealfon introduced the notion of claimable ring signa-
tures [57]. Traditional ring signatures provide a form of deniability

by allowing a signer to choose an arbitrary set of public keys and

prove that a message was signed by some key from that set (without

revealing which key). Claimable ring signatures allow the signer to

later claim the signature by proving that their specific key was the

one used to sign, similar to our notion of revoking deniability after

the fact. The corollary notion of unclaimable ring signatures also

exists in which it is not possible to provably claim who signed.

Much like ring signature schemes, some threshold signature

sch-emes offer accountability in that the signature reveals which

key shares were used to sign. Others may offer privacy in that

signatures are indistinguishable regardless of which shares were

used. Boneh and Komlo [11] proposed threshold signature schemes

with private accountability by introducing a separate accountability

key that can be used to compute (and prove) which shares were

used to sign, similar to our notion of avowal.

Chaum and van Antwerpen introduced undeniable signatures
[25]. Undeniable signatures cannot be verified without online in-

teraction with the original signer (though the verification protocol

does not provide transferable proof). Effectively, the signer can “dis-

avow” a past signature by refusing to verify it, meaning signatures

are effectively deniable until avowed. This is somewhat similar to

the goal of proofs with retroactive avowal, although (among other

differences) we are working in a two-party setting and support

public avowal.

2.3 Secure Messaging and Deniability
Modern secure messaging protocols, such as Signal, possess a

variety of cryptographic properties, many derived from the exten-

sions on a key-exchange protocol (Diffie-Hellman [32]). The most

basic required additional property is authentication, achieved in

later authenticated key exchange (AKE) protocols [7, 31, 46, 51].

Modern protocols also possess more sophisticated properties such

as composability [6, 8, 14, 20, 29, 52], security under distinct adver-

sarial powers [20, 27, 50], forward secrecy [27, 46], key confirmation

[29, 38], and repudiability/deniability [34].

Deniability allows users to convince a judge that they never had

such a conversation. It works by providing an easy mechanism for

a third-party to generate a forgery that a judge would be unable to

distinguish from a legitimate transcript.

Deniability is of particular interest because it directly contrasts

with the otherwise desired property of non-repudiabiliy—like past
work on franking, our contribution suggests that in the context of

secure messaging, both properties may be desirable depending on

local context.

Early work explored potential deniable protocols [12, 13, 47, 48]

but lacked a corresponding formalism. Di Raimondo et al. [30] for-

mally introduced the notion of deniable authenticated key exchange

protocol (DAKE). Deniability now spans an independent line of re-

search [34, 35, 44, 71] and is a standard feature for secure messaging

applications, such as Signal and OTR. Considerable work has gone

into improving the performance characteristics of DAKEs [30, 33,

43, 55, 63, 66, 70]. Finally we point to two works that we particularly

draw on for our extensions: Walfish [69] who devised a DAKE pro-

tocol which provides deniability, forward secrecy, adaptive secure,

and without a trusted third party, and Unger [66] who presented

protocols enhanced against insider threats and compatible with

group messaging.

3 Building blocks

3.1 Notations
Let 𝑞 be a prime and G be a cyclic group of order 𝑞. We use 𝑔 and

ℎ to denote two independently sampled generators of G (that is,

the discrete log relationship of 𝑔 and ℎ is unknown). Suppose Alice

holds a pair of identity keys, the corresponding public key 𝑝𝑘 and

private key 𝑠𝑘 are denoted as 𝑘𝐴 = (𝑝𝑘𝐴, 𝑠𝑘𝐴). For 𝑖-𝑡ℎ round key

exchange protocol, we denote 𝛾𝑖 𝑎𝑛𝑑 𝛿𝑖 to be secrets independently

chosen by each party and 𝐴𝑖 𝑎𝑛𝑑 𝐵𝑖 to be the corresponding public

exponents to the base ℎ. We denote the secret for avowal as 𝛼 and

𝛽 respectively.

We write a uniform random number 𝑟 sampled from set 𝑈 as

𝑟
$← 𝑈 . We use 𝑋 ← 𝑌 to denote X being set to Y and ≈𝑐 to denote

computational indistinguishibility. Our security parameter overall

is denoted as _. We use | | to denote message concatenation, as in

𝑚1 | |𝑚2. Finally, 𝜎 denotes a signature and 𝐾 denotes an established

symmetric key.

3.2 Designated Verifier Proofs
To develop our construction we start with Jakobsson, Sako, and

Impagliazzo’s idea of designated verifier (DV) proofs. They used a

disjunctive statement to provide deniability [42].
1
To illustrate this

notion we introduce two parties, Alice (the prover) who possesses

a statement 𝑆 , and a Judge, Judy (the verifier).

Given a statement 𝑆 to be proven to a verifier in zero knowledge,

Jackobsson et al. proposed issuing a proof of the modified statement:

𝑆 ′ = {Either 𝑆 is true or I know Judy’s private key} (3.1)

We will abbreviate this construction here:

𝑆 ′ = 𝑆 ∨ Know(𝑠𝑘 𝐽) (3.2)

A proof of the compound statement 𝑆 ′ is only convincing to Judy: If
Judy is confident that nobody else knows her private key 𝑠𝑘 𝐽 (and

that she did not compute the proof), then she knows the second

clause is false and therefore 𝑆 is true.

For anyone other than Judy, it is unclear which side of the dis-

junction is true—it is possible that either 𝑆 is true or that Judy

herself created a valid proof of 𝑆 ′ by satisfying the second clause.

Therefore, the prover has deniability—the prover can always claim

to an outsider that Judy generated the proof whether or not 𝑆 is

true, and the outsider will be unable to tell.

1
Another approach to constructing signatures with the designated-verifier property

is chameleon signatures [49], which uses a standard hash-and-sign construction but

with a chameleon hash function whose trapdoor is known by the intended verifier,

providing deniability if the verifier attempts to transfer the signature to another party.

3

Proceedings on Privacy Enhancing Technologies 2024(2) Faxing Wang, Shaanan Cohney, Riad Wahby, and Joseph Bonneau

3.3 Avowable designated verifier proofs
We build on DV proofs to introduce what we believe is a novel

tool: avowable designated verifier proofs (ADV proofs). We later use

this to develop NOTRY, however ADV proofs may be of indepen-

dent interest for other applications.

Given a statement 𝑆 , an ADV proof 𝜋 is a proof of a modified

statement 𝑆 with two key properties:

(1) at time 𝑡0 no party, not even the judge, can ascertain the

truth of 𝑆 from 𝑆 alone and

(2) at some future time 𝑡1, the generator of the proof can com-

plete a protocol such that the judge can validate that 𝑆 attests

to the truth of 𝑆 .

Note that it is not enough to merely provide an unconditional

(non-designated-verifier) or direct proof that 𝑆 is true. Providing

an unconditional proof would not preclude that previous proofs of

𝑆 were created as forgeries.

A one-time ADV scheme: A strawman approach would be to

prove that nobody knows Judy’s private key. Assume that Judy’s

public key is a group element of the form 𝑝𝑘 𝐽 = 𝑔
𝑥
and Judy’s pri-

vate key is 𝑠𝑘 𝐽 = 𝑥 . If Judy chooses her public key pseudorandomly

as 𝑝𝑘 𝐽 = 𝐻 (𝑦) for some pre-image 𝑦, then under the discrete-log

assumption revealing 𝑦 proves that nobody knows the correspond-

ing private key 𝑠𝑘 𝐽 and therefore any proofs issued to 𝑝𝑘 𝐽 were

genuine. However, this scheme means that Judy must use a new

key for every proof, and the key must be chosen by the prover in

the case of genuine proofs.

A candidate scheme: Instead, we allow the prover to create a new

proof-specific statement 𝑃 which can later be easily proven to be

true or false. Given such an auxiliary statement 𝑃 , our ADV proof

scheme works by creating a proof of the following statement:

𝑆 = (𝑆 ∧ 𝑃) ∨ (Know(𝑠𝑘 𝐽) ∧ ¬𝑃) (3.3)

Revealing the veracity (or falsehood) of 𝑃 then makes it clear

which half of the disjunction was satisfied and hence whether such

a proof was created by an honest prover or by Judy. Note that in

either case, the proof creator must choose 𝑃 and retain a witness

to either prove 𝑃 (in the case of the honest prover) or prove ¬𝑃 (in

case of the forger). The construction symmetrically enables both

avowing an honestly created proof and avowing a forgery.

Based on the candidate scheme, we provide a formal definition

of the security properties of an ADV in Section 3.4 and proofs in

Section 5.4.1 (deferring them for overall clarity of exposition).

3.3.1 ADV Functions An ADV proof scheme consists of the follow-

ing five functions:

Setup(_) generates public parameters which can be used con-

currently and repeatedly for multiple ADV proofs. Separately, we

assume a PKI to establish public/private key pairs for all parties

and a designated judge.

Gen(𝑆,�̄�) outputs an ADV proof 𝜋 of the disjunction 𝑆 with the

witness�̄� ∈ {(𝑤,𝑤𝑃), (𝑠𝑘 𝐽 ,𝑤𝑃)}, where𝑤 for the statement 𝑆 , 𝑠𝑘 𝐽
for the knowledge of Judge’s private key, and𝑤𝑃 for the statement

𝑃 whereas𝑤𝑃 for ¬𝑃 .
Avow(𝑃,𝑊𝑃) generates the avowal proof 𝜋 ′ by (dis)proving an

auxiliary statement 𝑃 for telling which clause in 𝑆 was proved. The

witness𝑊𝑃 can either be𝑤𝑝 to avow 𝑆 was satisfied via 𝑆 or 𝑤𝑃 to

avow 𝑆 was satisfied via the knowledge of 𝑠𝑘 𝐽 .

Verify(𝜋, 𝑆) asserts that an ADV proof 𝜋 is a valid proof for an

accompanying ADV statement 𝑆 .

Judge(𝜋 ′, 𝑃) verifies the avowal proof 𝜋 ′ and asserts the validity

of the avowal claim.

3.3.2 Constructing ADV Proofs

Discrete-log ADV construction: For Σ-protocols, a compelling

choice for 𝑃 is knowledge of the discrete log 𝑥 of a value 𝑦 = 𝑔𝑥

(in an appropriate group). There is a classic Schnorr Σ-protocol for
proving knowledge of this discrete-log relationship [64] that one

can combine with Σ-OR proofs [26] to create an efficient proof of

𝑆 ′. The Schnorr protocol does not permit us to directly prove ¬𝑃 in

a cyclic group: given the construction of 𝑦 (raising the base 𝑔 to the

power of 𝑥) it is clear that group element 𝑦 has a unique discrete

log to the base 𝑔. Instead, we utilize another generator ℎ sampled

independently, ensuring that nobody knows the discrete log rela-

tionship between 𝑔 and ℎ.2 Proving knowledge of the discrete log

of 𝑦 to the base ℎ suffices to show that the discrete log of 𝑦 to the

base 𝑔 is unknown. If the discrete log of 𝑦 was known to both bases

𝑔 and ℎ, this would enable easily computing the discrete log of 𝑔 to

the base. This yields an efficient candidate for 𝑃 when constructing

Σ-protocols: proof of knowledge of an element 𝑦 to either the base

𝑔 (equivalent to proving 𝑃) or to the base ℎ (equivalent to proving

¬𝑃).
Alternately, if 𝑔 and ℎ are known to generate subgroups of a

group 𝐺 which are disjoint modulo the identity element, and the

subgroup membership problem is assumed to be hard, then proving

knowledge of the discrete log of𝑦 to the base𝑔 is an unconditionally

sound proof that the discrete log of 𝑦 to the base ℎ is unknown

(since it will not exist). However, the discrete log assumption is still

required for privacy.

Hash-based ADV construction: An alternative, simple construc-

tion that might offer efficiency benefits in some circuit-based proof

systems utilized preimages of a collision-resistant hash function.

Specifically, 𝑃 might state that given a value 𝑏, there exists a pre-

image 𝑏 = 𝐻 (𝑎) under hash function 𝐻 such that 𝑎 has odd parity.

The corresponding ¬𝑃 simply states that 𝑎 has even parity. This

statement can be proven true or false by revealing 𝑎 (or if nec-

essary this could be proved in zero-knowledge). Note that if two

values 𝑎 and 𝑎′ are known such that 𝑏 = 𝐻 (𝑎) = 𝐻 (𝑎′) (possibly
with differing parity), this would be a hash collision. Thus, only

one of 𝑃,¬𝑃 will be provable assuming the hash function remains

collision-resistant.

3.4 Mutual ADVs
Finally, the full NOTRY protocol requires an extension to ADV

proofs which enablesmutual avowal, in which both Alice and Bob’s

cooperation is needed to avow the proof. We term such a proof a

mutual-ADV proof or MADV.

The security goal of MADV avowal proof is to convince the

Judge that Alice and Bob together do have the witness 𝑤 to an

ADV statement 𝑆 while revealing no more information to the Judge.
This means that MADV proof avowal is a zero-knowledge proof

2
Given a hash function 𝐻 which outputs pseudorandom generators of a group G, 𝑔
and ℎ can be chosen as 𝑔 = 𝐻 (0), ℎ = 𝐻 (1) , for example.

4

NOTRY: Deniable messaging with retroactive avowal Proceedings on Privacy Enhancing Technologies 2024(2)

of knowledge (ZKPoK). Since this paper centers on avowal proofs,

security definitions and corresponding proofs of ADV proofs are

deferred to appendix A.

Definition: Formally, a secure MADV avowal proof 𝜋 ′ against
the MADV proof 𝜋 and statement 𝑆 consists of a triple of algorithms

(Setup, Avow, Judge) with the following properties:

(1) Completeness: Any prover who generated an MADV proof

𝜋 can construct the corresponding MADV proof avowal 𝜋 ′

such that:

Pr

[
1← Judge(𝜋, 𝑆)

��𝜋 ′ ← Avow(𝑃,𝑊𝑃)
]
= 1 (3.4)

Completeness indicates that Judge always accepts theMADV

avowal proof 𝜋 ′ from an honest prover.

(2) Knowledge Soundness: There exists a PPT extractor E which,

given two transcripts of avowal proof generation T1 and T2,
can extract a valid witness:

Pr

[
1← Judge(𝜋 ′, 𝑃) | 𝑊

′
𝑃
← E(1_,T1,T2)

𝜋 ′ ← 𝐴𝑣𝑜𝑤 (𝑃,𝑊 ′
𝑃
)

]
= 1 (3.5)

where𝑊 ′
𝑃
is the extracted witness. Special soundness implies

that any party who generates a valid ADV proof 𝜋 must gain

the knowledge of𝑊𝑃 to 𝑃 .

(3) Avowal Soundness: For any PPT adversary A, given a MADV

proof 𝜋 , it is unable to produce a valid avowal proof:

Pr

[
1← Judge(˜̄𝜋 ′, 𝑃) | ˜̄𝜋 ′ ← A(1_, 𝜋)

]
≤ negl(_) (3.6)

where negl is a negligible function.
(4) Honest Verifier Zero-Knowledge: There exists a 𝑃𝑃𝑇 simulator

S that generates an MADV avowal proof 𝜋 ′
S
without knowl-

edge of the witness 𝑤 such that 1 ← Judge(𝜋 ′
S
). 𝜋 ′
S
holds

that:

𝜋 ′S ≈𝑐 𝜋
′

(3.7)

After defining a secure MADV avowal, we proceed to provide an

MADV construction. Based on our discrete-log ADV construction,

our construction of MADV begins with Alice and Bob generating

a value 𝐴𝐵 = ℎ𝛾+𝛿 . The value 𝛾 + 𝛿 is a shared secret between

Alice and Bob; let 𝛾 and 𝛿 be individual secrets belonging to Alice

and Bob respectively. Generating the shared secret is easy: Alice

generates 𝛾 randomly and sends 𝐴 = ℎ𝛾 to Bob, who generates 𝛿

randomly and sends 𝐵 = ℎ𝛿 back to Alice. Both sides can compute

𝐴𝐵 = 𝐴 · 𝐵 = ℎ𝛾 · ℎ𝛿 = ℎ𝛾+𝛿

Recall that proving non-knowledge of a discrete log to base 𝑔

is achieved by demonstrating knowledge of the discrete log of the

same value to another base ℎ where 𝑔 and ℎ are two independently

sampled generators of G. Let ℎ be the generator used to produce

the shared secret. Thus, Alice and Bob can use the mutually created

𝐴𝐵 as the value in our ADV construction, making it an MADV as

avowal will require both Alice and Bob’s participation to prove

knowledge of the discrete log of 𝐴𝐵 to the base.

Note that if either party is malicious, they can permanently

prevent future avowal. For example, Alice can choose 𝐴 = 𝑔𝛾 for a

random 𝛾 , which will prevent ever avowing that the discrete log of

𝐴𝐵 to the base ℎ is known. This simple attack could be prevented

if both sides include a zero-knowledge proof of 𝐴, 𝐵 respectively to

the base ℎ (possibly a designated verifier proof for the other party),

but this doesn’t prevent either party from deleting their avowal

share (𝛼 or 𝛽) immediately after the handshake completes.

We foreshadow that in NOTRY, Alice and Bob each generate

an MADV proof attesting to knowledge of their own secret key.

Specifically, Alice and Bob provide proof of the below statements,

respectively:

𝑆𝐴 ← [dlogℎ𝐴 ∨ dlogℎ𝐵] ∧ [dlog𝑔𝑝𝑘𝐴 ∨ dlog𝑔𝐴𝐵] (3.8)

𝑆𝐵 ← [dlogℎ𝐴 ∨ dlogℎ𝐵] ∧ [dlog𝑔𝑝𝑘𝐵 ∨ dlog𝑔𝐴𝐵] (3.9)

To see why this is convincing, take Alice’s statement (Equa-

tion 3.8). For an honest Bob, who has sampled 𝐵 = ℎ𝛿 , he can

be sure Alice could not prove dlogℎ𝐵, and hence Alice must know

dlogℎ𝐴. Thismeans that dlog𝑔𝐴𝐵 is unknown, and henceAlicemust

know both dlog𝑔𝑝𝑘𝐴 (authenticating her) and dlogℎ𝐴 (meaning her

contribution to the avowal secret is well-formed). A symmetric

argument applies to Alice’s reasoning about Bob’s proof.

Observe that this construction is still deniable—a forger can

first randomly generate 𝐴 = ℎ𝛾 , then 𝐴𝐵 = 𝑔𝜒 for a random 𝜒 and

derive 𝐵 = 𝐴𝐵/𝐴. This forger can then satisfy both Equation 3.8 and
Equation 3.9 by proving dlogℎ𝐴 on the left side (using knowledge

of 𝛾 and dlog𝑔𝐴𝐵 on the right side (using knowledge of 𝜒). Note

that this forger does not need to know either secret key.

Conversely, avowal works by the parties jointly proving knowl-

edge of dlogℎ𝐴𝐵, using the shared secret value 𝛾 + 𝛿 . This rules out
that the simulator was used, as the simulator (having chosen 𝐴𝐵

with a known discrete log to the base 𝑔), cannot prove knowledge

of dlogℎ𝐴𝐵.

There are two possible flavors of avowal: public and designated

verifier avowal. Depending on different applications, parties can

choose to avow to a designated Judege for partial deniability (avowed
transcripts are still deniable for anyone other than the Judge) or
publicly avow and completely give up deniability. Constructions

are similar for both types of avowal, using either an unconditional

proof-of-knowledge of dlogℎ𝐴𝐵 for public avowal or its correspond-

ing designated verifier version for designated-verifier avowal.

3.5 Signatures of Knowledge
Mutual ADVs alone are not sufficient to build an avowable key

exchange protocol, as they are vulnerable to meddler-in-the-middle

(MITM) attacks. A standard solution to address MITM attacks in

key exchange protocol is to ask parties to include signatures on

their messages. However, classic digital signatures will undermine

deniability as they provide non-repudiable evidence that a specific

private key was used to sign.

To build a deniable authenticated key exchange protocol with

retroactive avowal (DAKEA) defending against MITM attack, we

instead use signatures of knowledge [23]. Unlike classical digital

signature schemes which require a specific secret key, computing

a signature of knowledge (SoK) requires knowing a witness𝑤 for

some statement 𝑥 ∈ 𝐿 for an NP language 𝐿. Specifically, NOTRY
requires parties to compute a signature of knowledge using a wit-

ness for the MADV proof statement, like eq. (3.8), on a message

which commits to all the public information and the prefix of the

transcript.

5

Proceedings on Privacy Enhancing Technologies 2024(2) Faxing Wang, Shaanan Cohney, Riad Wahby, and Joseph Bonneau

Definition 1. A signature of knowledge scheme for message space

M and an NP language 𝐿 decided by a Turning Machine 𝑀𝐿 is

defined by three polynomial-time algorithms (Setup, Sign,Verify)
Setup(_) → pp: produces a set of public parameters pp.
Sign(𝑚,𝑤, 𝑥, 𝑠𝑘) → 𝜎 : generates a SoK 𝜎 on message 𝑚 by

(𝑝𝑝, 𝐿, 𝑥,𝑤) with 𝑠𝑘 if𝑀𝐿 decides𝑤 for statement 𝑥 ∈ 𝐿 such that

𝑀𝐿 (𝑥,𝑤) = 1, otherwise outputting ⊥.
Verify(𝑚, 𝑥, 𝜎, 𝑝𝑘) → Accept/Reject: verifies the signature 𝜎 on

message𝑚 for statement 𝑥 with 𝑝𝑘 .

A signature of knowledge has three following security proper-

ties:

Correctness: If a signature 𝜎 is produced using a valid witness, then

it should be accepted by a verifier with overwhelming probability.

Simulatability: By checking a signature, a verifier learns nothing

beyond that the message is signed properly and the statement is

true. This means that the signature of knowledge reveals nothing

about the witness which is utilized to generate the signature.

Extraction: guarantees that a party who can create a valid signa-

ture must “know” a witness𝑤 for the statement 𝑥 , in the sense that

an extractor exists which can output a witness given access to the

signer. In other words, a signature of knowledge is also a proof of

knowledge issued by a signer which indicates that she knows the

witness to the target statement.

We use this primitive by setting the message 𝑚 to be signed

as the corresponding key exchange protocol messages and letting

the statement 𝑃 be the ADV disjunction 𝑆 . Therefore, by using the

discrete-log ADV construction in Section 3.3.2, a concrete SoK can

be constructed. Each ADV prover generates a Schnorr Signature [64]
with its secret key and sets the message𝑚 to be an instantiation of

the ADV statement 𝑆 .

4 Design of NOTRY
Our NOTRY protocol consists of two sub-protocols: NOTRY-Kex

and NOTRY-Avow. Like other (D)AKEs, we design our NOTRY-Kex
around the Diffie-Hellman protocol with signatures for authentica-

tion.We also include a ratcheting scheme inNOTRY-Kex-Ratchet to
enable future secrecy in the context of ongoing messaging—typical

among secure messaging protocols [12].

4.1 NOTRY-Kex
Based on the above constructions and primitives we propose

our NOTRY DAKEA key exchange protocol NOTRY-Kex. Before
starting NOTRY-Kex, we assume that the authority properly sets

up public parameters and identity tokens. Initially, Alice and Bob

register their key pairs with a server (similar to Signal’s coordinat-

ing server or a CA). NOTRY-Kex depicted in Figure 1 proceeds as

follows:

First, Alice starts the protocol by randomly selecting an ephemeral

secret 𝛾 ∈ Z𝑞 . She sends Bob the public exponent 𝐴← ℎ𝛾 as with

DH protocol.

Second, Bob chooses his ephemeral secret 𝛿 ∈ Z𝑞 and computes

𝐵 ← ℎ𝛿 . He generates the ADV proof 𝜋 to the statement 𝑆𝐴 defined

in eq. (3.8) with the knowledge of ephemeral secret 𝛿 and his secret

key 𝑠𝑘𝐵 . Based on 𝜋 he generates a signature of knowledge, 𝜎𝐵 on

message𝑚 ← (𝐴, 𝐵). Bob sends 𝜎𝐵 and 𝐵 back to Alice.

Alice
(
pk𝐴, pk𝐵, sk𝐴

)
Bob

(
pk𝐴, pk𝐵, sk𝐵

)
𝛾

$← Z𝑞
𝐴← ℎ𝛾

𝐴

𝛿
$← Z𝑞

𝐵 ← ℎ𝛿

𝜎𝐵 ← SoK-Sign
(
(𝐴, 𝐵), 𝛿, 𝑆𝐵, sk𝐵

)
𝐵, 𝜎𝐵

Abort if ¬ SoK-Verify
(
(𝐴, 𝐵), 𝑆𝐵, 𝜎𝐵, pk𝐵

)
𝜎𝐴 ← SoK-Sign

(
(𝐴, 𝐵), 𝑆𝐴, 𝛾, sk𝐴

)
𝜎𝐴

Abort if ¬ SoK-Verify
(
(𝐴, 𝐵), 𝑆𝐴, 𝜎𝐴, pk𝐴

)
𝐾 ← 𝐵𝛾 𝐾 ← 𝐴𝛿

𝑘sess ← KDF (𝐴 | | 𝐵 | | 𝜎𝐴 | | 𝜎𝐵 | |𝐾)
𝜌 ← H𝑞 (𝑘sess | | ”avow”)

𝛼 ← 𝛾 + 𝜌
Shred 𝛾 , 𝜌

𝛽 ← 𝛿 − 𝜌
Shred 𝛿 , 𝜌

Figure 1:NOTRY-Kex. Alice and Bob follow the Key exchange
protocol and store the masked secrets 𝛼, 𝛽 for future avowal.

Third, Alice verifies the 𝜎𝐵 from Bob with his public key 𝑝𝑘𝐵
and 𝐵. She aborts if 𝜎𝐵 is invalid. Alice computes her signature of

knowledge 𝜎𝐴 on the statement 𝑆𝐵 in eq. (3.9), with knowledge of

her private key 𝑠𝑘𝐴 and 𝛾 on message𝑚 ← (𝐴, 𝐵, 𝜎𝐵). In parallel,

Alice is able to derive the DH key 𝐾 ← 𝐵𝛾 . Alice can now generate

the session key 𝐾𝑠𝑒𝑠𝑠 which is generated by a KDF that takes as

input: the two SoKs 𝜎𝐴, 𝜎𝐵 , the DH key 𝐾 , and DH transcripts 𝐴, 𝐵.

Finally, Alice masks her ephemeral secret with the digest 𝜌 of the

session key concatenated with the message “avow” to produce her

avowal witness 𝛼 . (Alice now erases 𝛾 and 𝜌). To finishNOTRY-Kex,
Alice sends her SoK, 𝜎𝐴 , to Bob.

At last, Bob verifies 𝜎𝐴 from Alice and aborts if the verification

fails. Next, Bob computes his DH key 𝐾 ← 𝐴𝛿 . Bob generates an

identical session key to Alice, 𝐾𝑠𝑒𝑠𝑠 , following the same process.

Bob gets his avowal witness 𝛽 in such a way that 𝛼 + 𝛽 equals the

addition of two ephemeral secrets𝛾 +𝛿 . Finally, Bob securely deletes
temporary secrets 𝛿, 𝜌 .

Note that the SoK statement inNOTRY-Kex is actually consistent
with Equation 3.8. TakeAlice as an example—she demonstrably does

not know 𝑑𝑙𝑜𝑔ℎ𝐵. Therefore, she is unable to prove both clauses

involving 𝐵 but to prove knowledge of her own ephemeral secret

𝛾 ← 𝑑𝑙𝑜𝑔ℎ𝐴 and her private key 𝑠𝑘𝐴 ← 𝑑𝑙𝑜𝑔𝑔𝑝𝑘𝐴 .

Forging key exchange transcripts. Using the simulator algorithm

NOTRY-Kex-Sim, defined in Figure 3, anyone, including Alice and

Bob, is able to generate indistinguishable NOTRY-Kex transcripts,
which are 𝐴, 𝐵, 𝜎𝐴, 𝜎𝐵 . The core idea of constructing the simulator

is to generate 𝐴,𝐴𝐵 ← ℎ𝛾 , 𝑔𝑥 where 𝛾, 𝑥 is sampled from Z𝑞 . The

6

NOTRY: Deniable messaging with retroactive avowal Proceedings on Privacy Enhancing Technologies 2024(2)

simulator generates 𝐵 ← 𝐴𝐵/𝐴. Therefore, the simulator is able

to produce a valid ADV-based SoK by proving clauses 𝑑𝑙𝑜𝑔𝑔𝐴𝐵 ∧
𝑑𝑙𝑜𝑔ℎ𝐴.

NOTRY-Kex-Ratchet. In most cases, a conversation between

Alice and Bob consists of multiple messages. Therefore, a stream

of keys is needed to secure a complete conversation consisting of

a stream of messages between the two parties. To ensure future

secrecy across an ongoing conversation we therefore introduce a

ratcheted [59] version of our protocol, NOTRY-Kex-Ratchet. By
sending a new SoK each time Alice and Bob update a key, we can

extend NOTRY-Kex. As shown in Figure 2, NOTRY-Kex-Ratchet
works as follows:

• For their first session key 𝐾0,0, parties follow NOTRY-Kex
as expected.

• For a message key 𝐾𝑖, 𝑗 (𝑖 > 0 𝑜𝑟 𝑗 > 0) indexed with 𝑖, 𝑗 as

𝑖-th contribution from Alice and 𝑗-th contribution from Bob,

first Alice samples a random ephemeral secret 𝛾𝑖
$← Z𝑞 and

setups the DH key 𝐾𝑖, 𝑗 ← 𝐵
𝛾𝑖
𝑗
. The message key 𝐾𝑠𝑒𝑠𝑠𝑖,𝑗 is

the output of the KDF with (𝐴𝑖 | |𝐵 𝑗 | |𝜎𝐴𝑖
| |𝜎𝐵 𝑗
| |𝐾𝑖, 𝑗) as input.

We instantiated the statement 𝑆
𝑖, 𝑗

𝐴
(and 𝑆

𝑖, 𝑗

𝐵
accordingly) with 𝐴𝑖 ,

𝐵 𝑗 , and 𝑝𝑘𝐴 (𝑝𝑘𝐵), where all of them are group elements.

4.2 NOTRY-Avow
Up to this point, our protocol allows Alice and Bob to estab-

lish a secure channel with NOTRY-Kex protocol and to deny a

transcript using NOTRY-Kex-Sim. We now introduce the retroac-

tive avowal routine within NOTRY protocol to support retroactive

avowal. Recall that to avow, Alice and Bob aim to ‘revoke’ deniabil-

ity. Deniability arises from the first AND clause in Equation 3.8 and

3.9, which proves knowledge of dlogℎ𝐵 𝑜𝑟 dlogℎ𝐴 and dlog𝑔 (𝐴𝐵).
The avowal procedure works by proving that the proof statement

was generated through the second clause (involving the private

key), i.e. by giving evidence that the first clause is false.

In a genuine conversation, Alice and Bob are incapable of prov-

ing knowledge of dlog𝑔𝐴𝐵 but can prove knowledge of dlogℎ (𝐴𝐵)
— noting that this relies on the absence of a known relationship

between 𝑔 and ℎ. The Judge can therefore be persuaded that the

first clause is false by receiving dlogℎ (𝐴𝐵). Note that Equation 3.8

and 3.9 both contain dlog𝑔𝐴𝐵, proving non-knowledge of dlog𝑔𝐴𝐵

indicating both statements are proven via their second clauses.

That shows the two SoK signatures 𝜎𝐴, 𝜎𝐵 were generated with

knowledge of sk𝐴, sk𝐵 .

Recall that two styles of avowal are possible, here we choose to

give a construction for the designated verifier avowal where public

avowal can be trivially derived by excluding the designated clause.

Essentially, the designated verifier avowal proves non-knowledge

of the discrete log to the designated verifier Judge. Therefore, the
final avowal statement to be proven is:

[dlogℎ (𝐴𝐵)] ∨ [Know(𝑠𝑘J)] (4.1)

As the dlog𝑔𝐴𝐵 is separately held by Alice (𝛼) and Bob (𝛽), we,

therefore, devise a two-party Σ proof generation by asking the two

to generate their corresponding proof-of-knowledge of their secrets

with Σ-OR Schnorr and exchange their proofs. The ultimate ADV

avowal proof is an aggregation of the two proofs. Note that the

statement 𝑃 (¬𝑃) in eq. (3.3) is instantiated with dlog𝑔𝐴𝐵 (dlogℎ𝐴𝐵).

Alice
(
pk𝐴, pk𝐵, sk𝐴

)
Bob

(
pk𝐴, pk𝐵, sk𝐵

)
𝛾0

$← Z𝑞
𝐴0 ← ℎ𝛾0

𝐴0

𝛿0

$← Z𝑞
𝐵0 ← ℎ𝛿0

𝜎𝐵0
← SoK-Sign

(
(𝐴0, 𝐵0), 𝛿0, 𝑆

0,0
𝐵
, sk𝐵

)
𝐵0, 𝜎𝐵0

Abort if ¬ SoK-Verify
(
(𝐴0, 𝐵0), 𝑆0,0

𝐵
, 𝜎𝐵0

, pk𝐵

)
𝛾1

$← Z𝑞
𝐴1 ← ℎ𝛾1

𝜎𝐴1
← SoK-Sign

(
(𝐴1, 𝐵0), 𝛾1, 𝑆

1,0
𝐴
, sk𝐴

)
𝐴1, 𝜎𝐴1

Abort if ¬ SoK-Verify
(
(𝐴1, 𝐵0), 𝑆1,0

𝐴
, 𝜎𝐴1

, pk𝐴

)
𝐾10 ← 𝐵

𝛾1

0
𝐾10 ← 𝐴

𝛿0

1

𝑘sess10
← KDF

(
𝐴1 | | 𝐵0 | | 𝜎𝐴1

| | 𝜎𝐵0
| |𝐾10

)
Alice now encrypts with hash-ratcheted 𝑘sess10

𝛿1

$← Z𝑞
𝐵1 ← ℎ𝛿1

𝜎𝐵1
← SoK-Sign

(
(𝐴1, 𝐵1), 𝛿1, 𝑆

1,1
𝐵
, sk𝐵

)
𝐵1, 𝜎𝐵1

Abort if ¬ SoK-Verify
(
(𝐴1, 𝐵1), 𝑆1,1

𝐵
, 𝜎𝐵1

, pk𝐵

)
𝐾11 ← 𝐵

𝛾1

1
𝐾11 ← 𝐴

𝛿1

1

𝑘sess11
← KDF

(
𝐴1 | | 𝐵1 | | 𝜎𝐴1

| | 𝜎𝐵1
| |𝐾11

)
Bob now encrypts with hash-ratcheted 𝑘sess11

𝛾2

$← Z𝑞
𝐴2 ← ℎ𝛾2

𝜎𝐴2
← SoK-Sign

(
(𝐴2, 𝐵1), 𝛾2, 𝑆

2,1
𝐴
, sk𝐴

)
𝐴2, 𝜎𝐴2

Abort if ¬ SoK-Verify
(
(𝐴2, 𝐵1), 𝑆2,1

𝐴
, 𝜎𝐴2

, pk𝐴

)
𝐾21 ← 𝐵

𝛾2

1
𝐾21 ← 𝐴

𝛿1

2

𝑘sess21
← KDF

(
𝐴2 | | 𝐵1 | | 𝜎𝐴2

| | 𝜎𝐵1
| |𝐾21

)
Alice now encrypts with hash-ratcheted 𝑘sess21

...

Figure 2: NOTRY-Kex-Ratchet. To shred, Alice and Bob com-
pute 𝜌 , 𝛼 , 𝛽 as in Figure 1. For every racheted resulting prekey
𝐾𝑥𝑦 , we have dlog𝐴𝑥

𝐾𝑥𝑦 = dlogℎ𝐵𝑦 or dlog𝐵𝑦
𝐾𝑥𝑦 = dlogℎ𝐴𝑥 .

7

Proceedings on Privacy Enhancing Technologies 2024(2) Faxing Wang, Shaanan Cohney, Riad Wahby, and Joseph Bonneau

Simulator

𝛾, 𝑥
$← Z𝑞

𝐴← ℎ𝛾

𝐴𝐵 ← 𝑔𝑥

𝐵 ← 𝐴𝐵/𝐴

𝜎𝐴 ← SoK-Sign
(
(𝐴, 𝐵), 𝛾, 𝑆𝐴, 𝑥

)
// Using 𝛾 , 𝑥

𝜎𝐵 ← SoK-Sign
(
(𝐴, 𝐵), 𝛾, 𝑆𝐵, 𝑥

)
// Using 𝛾 , 𝑥

𝑘sess ← KDF (𝐴 | | 𝐵 | | 𝜎𝐴 | | 𝜎𝐵 | | 𝐵𝛾)
𝜌 ← H𝑞 (𝑘sess | | “avow”)
𝛼 ← 𝛾 + 𝜌
Shred 𝛾 , 𝜌

Output 𝐴, 𝐵, 𝜎𝐴 , 𝜎𝐵 , 𝛼 , 𝑘sess

Figure 3: NOTRY-Kex-Sim. Anyone can run the simulator to
generate an indistinguishable transcript to deny.

As shown in Figure 4, NOTRY-Avow works as follows:

(1) NOTRY-Avow begins by both parties executing NOTRY-Kex
to get a session 𝑘rel to communicate securely for the course

of the avowal protocol. Note that a simpler deniable key

exchange could also be used here to produce a session key

for the avowal protocol, for simplicity, we assume we reuse

NOTRY-Kex.
(2) Either Alice or Bob can request an avowal. Their counter-

party approves this request by joining NOTRY-Avow. For
convenience, we start NOTRY-Avow with Alice as the ini-

tiator. Alice samples random 𝑐𝐴, 𝑧𝐴, 𝑟𝐴 for the ADV proof

avowal, and samples another random value 𝑠𝐴 to prevent

message replay. Alice computes 𝐸𝐴 as 𝑔𝑐𝐴ℎ𝑧𝐴 ℓ𝑠𝐴 and 𝑅𝐴 ←
ℎ𝑟𝐴 and sends them to Bob. Note that 𝐸𝐴 is necessary to

prohibit Alice from illegitimately generating a valid ADV

proof that passes verification. We mitigate Alice’s advantage

(wherein she receives secrets first) by asking her to commit

to all the secrets. Note that 𝐸𝐴 is a natural adaptation of a

Pedersen Commitment [58], where 𝑠𝐴 is the random value

to complete a Pedersen Commitment.

(3) Bob receives messages from Alice and randomly generates

𝑐𝐵, 𝑧𝐵, and 𝑟𝐵 as his proof of the ADV proof avowal. Bob pro-

ceeds with getting 𝑅𝐵 ← ℎ𝑟𝐵 and sending it with encrypted

𝑐𝐵, 𝑧𝐵 .

(4) Alice first decrypts the ciphertext to get Bob’s partial proof

and sends her partial proof 𝑐𝐴, 𝑧𝐴 with fresh secret 𝑠𝐴 se-

cretly to Bob.

(5) After decrypting the ciphertext from Alice, Bob first checks

message freshness by computing 𝐸𝐴
?

= 𝑔𝑐𝐴ℎ𝑧𝐴 ℓ𝑠𝐴 . Observe

that after three-more message exchanges both Alice and Bob

will have acquired all of 𝑐s, 𝑧s, and 𝑅s. Both Alice and Bob

are then capable of generating the next stage of the avowal

proof by setting 𝑐 𝐽 ← 𝑐𝐴 ⊕ 𝑐𝐵, 𝑧 𝑗 ← 𝑧𝐴 +𝑧𝐵, 𝑅𝐴𝐵 ← 𝑅𝐴𝑅𝐵 .

After that, the simulated proof of 𝑠𝑘 𝐽 is 𝑅𝐽 ← 𝑔𝑧 𝐽 /𝑝𝑘𝑐 𝐽
𝐽
. The

Alice
(
pk𝐴, pk𝐵, pk𝐽 , sk𝐴, 𝛼

)
Bob

(
pk𝐴, pk𝐵, pk𝐽 , sk𝐵, 𝛽

)
Execute NOTRY-Kex to produce 𝑘

rel
,

discarding the resulting release secrets.

𝑐𝐴
$← {0, 1}_

𝑧𝐴, 𝑠𝐴, 𝑟𝐴
$← Z𝑞

𝐸𝐴 ← 𝑔𝑐𝐴ℎ𝑧𝐴 ℓ𝑠𝐴

𝑅𝐴 ← ℎ𝑟𝐴
𝐸𝐴, 𝑅𝐴

𝑐𝐵
$← {0, 1}_

𝑧𝐵, 𝑟𝐵
$← Z𝑞

𝑅𝐵 ← ℎ𝑟𝐵
𝑅𝐵, Enc (𝑘rel

, (𝑐𝐵, 𝑧𝐵))

Enc (𝑘
rel
, (𝑐𝐴, 𝑧𝐴, 𝑠𝐴))

Abort if 𝐸𝐴 ≠ 𝑔𝑐𝐴ℎ𝑧𝐴 ℓ𝑠𝐴

𝑐 𝐽 ← 𝑐𝐴 ⊕ 𝑐𝐵
𝑧 𝐽 ← 𝑧𝐴 + 𝑧𝐵
𝑅𝐽 ← 𝑔𝑧 𝐽 /pk

𝑐 𝐽
𝐽

𝑅𝐴𝐵 ← 𝑅𝐴𝑅𝐵

𝑐 ← H
(
𝑅𝐴𝐵 | | 𝑅𝐽 | | · · ·

)
𝑐𝐴𝐵 ← 𝑐 ⊕ 𝑐 𝐽

𝑧𝛼 ← 𝑐𝐴𝐵𝛼 + 𝑟𝐴
Output 𝑧𝛼

𝑧𝛽 ← 𝑐𝐴𝐵𝛽 + 𝑟𝐵
Output 𝑧𝛽

𝑧𝐴𝐵 ← 𝑧𝛼 + 𝑧𝛽
Output

(
𝑐𝐴𝐵, 𝑧𝐴𝐵, 𝑐 𝐽 , 𝑧 𝐽

)
Figure 4: NOTRY-Avow

Fiat-Shamir-based random challenge 𝑐 of the disjunction

proof is generated by hashing the message 𝑅𝐴𝐵 | |𝑅𝐽 . The
final challenge 𝑐𝐴𝐵 , required to prove dlogℎ𝐴𝐵 (which is

jointly generated Alice and Bob) is 𝑐𝐴𝐵 ← 𝑐 ⊕ 𝑐 𝐽 .
(6) Respectively, Alice and Bob generate the last piece of the

avowal proof 𝑧𝑤 ← 𝑐𝐴𝐵𝑤 + 𝑟𝑤 with their partial witness

𝑤 ∈ [𝛼, 𝛽]. They complete NOTRY-Avow by exchanging 𝑧𝑤
to get 𝑧𝐴𝐵 ← 𝑧𝛼 + 𝑧𝛽 and output the avowal proof 𝜋 ←
(𝑐𝐴𝐵, 𝑧𝐴𝐵, 𝑐 𝐽 , 𝑧 𝑗).

The designated Judge verifies 𝜋 by checking whether it proves

the knowledge dlogℎ𝐴𝐵 or not. As shown in Figure 5, after parsing

the 𝜋 from parties Judge recovers 𝑅𝐴𝐵 ← ℎ𝑧𝐴𝐵 /(𝐴𝐵)𝑐𝐴𝐵
and 𝑅𝐽 ←

𝑔𝑧 𝐽 /𝑝𝑘𝑐 𝐽
𝐽
. Judge declares a successful avowal if and only if 𝑐𝐴𝐵⊕𝑐 𝐽 =

𝐻 (𝑅𝐴𝐵 | |𝑅𝐽). If the formula does not hold, Judge announced that

the avowal failed.

Avowing Multiple Messages. Alice and Bob may wish to simul-

taneously avow multiple messages, claiming ownership of an ex-

tended conversation. We can extend NOTRY-Avow to support this

capability. Suppose Alice with Γ ← [𝛾1, · · · , 𝛾𝑛] and Bob with

Δ ← [𝛿, · · · , 𝛿𝑛] intend to avow 𝑛 messages. Parties roughly fol-

low the originalNOTRY-Avow protocol while integrating all avowal

8

NOTRY: Deniable messaging with retroactive avowal Proceedings on Privacy Enhancing Technologies 2024(2)

Judge
(
𝜋 ′,

(
dlogℎ𝐴𝐵 ∨ dlog𝑔pk𝐽

))(
𝑐𝐴𝐵, 𝑧𝐴𝐵, 𝑐 𝐽 , 𝑧 𝐽

)
← 𝜋 ′

𝑅𝐴𝐵 ← ℎ𝑧𝐴𝐵 /(𝐴𝐵)𝑐𝐴𝐵

𝑅𝐽 ← 𝑔𝑧 𝐽 /pk

𝑐 𝐽
𝐽

Accept if 𝑐𝐴𝐵 ⊕ 𝑐 𝐽 = H
(
𝑅𝐴𝐵 | | 𝑅𝐽 | | · · ·

)
, else Reject

Figure 5: NOTRY-Judge. Verifying an avowal proof 𝜋 ′to the
statement (dlogℎ𝐴𝐵 ∨ dlog𝑔pk𝐽)

evidence Γ(Δ) into their partial proof 𝑧𝑤 respectively. Specifi-

cally, 𝑧𝑤 ← 𝑐𝐴𝐵Γ + 𝑟𝑤 for Alice. As the Judge now receives ag-

gregated avowal proofs 𝜋 and [𝐴𝐵1, · · · , 𝐴𝐵𝑛] as inputs, we ad-

just the Judge’s verification procedure: Judge computes 𝑅𝐴𝐵 ←
ℎ𝑧𝐴𝐵 /∏𝑛

𝑖=0
(𝐴𝐵𝑖)𝑐𝐴𝐵

. The rest of the verification follows as per

NOTRY-Judge.

5 Security
We will analyze three algorithms of NOTRY for our security

proof. NOTRY-Kex is an authenticated key exchange (AKE) proto-

col. Parties in NOTRY-Kex, named Alice and Bob, after finishing

NOTRY-Kex, generate a shared secret key and learn each other’s

identity. A secure AKE protocol ensures that they established the

key with their intended partner and the key is a fresh secret. The

key exchange protocol’s transcript, T𝑟𝑒𝑎𝑙 , is the concatenation of

all the messages exchanged between the two. The simulator algo-

rithm NOTRY-Kex-Sim, depicted in Figure 3, produces a transcript

T𝑠𝑖𝑚 without any secret keys to establish plausible deniability as

anyone running the simulator could output a transcript T which is

indistinguishable from the genuine transcript T . For a UC-secure
NOTRY, we are going to prove that continuous key agreement

NOTRY-Kex-Ratchet preserves AKE and deniability under that UC

framework.

NOTRY-Avow, our construction of MADV avowal proof needs to

be a ZKPoK protocol. Second, for the interactive avowal generation,

a UC-secure NOTRY requires a UC-secure NOTRY-Avow.
The remainder of this section is organized as follows: Section 5.1

overviews proof techniques that will be used for our proof, Sec-

tion 5.2 defines desired security properties of NOTRY, and Sec-

tion 5.3 demonstrates the functionality of NOTRY in our proof,

Section 5.4 overviews our UC-secure proof of NOTRY. We defer

the remainder of the proofs to appendices.

5.1 NOTRY Proof Overview
We proved the security of NOTRY with the Universally Compos-

able Security (UC-secure) [16] framework. A UC-secure protocol

is guaranteed to maintain security in an environment where dif-

ferent protocol instances run concurrently, even if the protocol is

composed with arbitrary protocols.

Following [33, 66–68], we prove NOTRY is UC-secure under the

external-subroutine universal composability framework (EUC) [33].

EUC is an extended generalized universal composability (GUC)

framework [3, 17]. The GUC framework grants every entity in the

model access to all the functionalities across composited protocol

sessions. Therefore, it is regarded as a more convincing and accurate

model of real-world settings. In addition, the GUC framework more

naturally allows us to express the deniability property. GUC-based

proofs can be simplified by constraining shared functionalities to

a single common functionality G, in the EUC model. Canetti et al.

[17] proved that security under the EUC model is equivalent to

proving it under the GUC model.

The key observation of our proof strategy is that NOTRY-Kex
and NOTRY-Avow are not necessarily sequential. Parties can start

avowal even if they haven’t exchanged any keys. Of course, this

attempt will either fail (generate an invalid proof) or be unconvinc-

ing (by not having any corresponding transcript to be avowed).

Therefore, after defining ideal functionalities for NOTRY-Kex and
NOTRY-Avow separately, proving NOTRY is secure requires prov-

ingNOTRY-Kex andNOTRY-Avow are UC-secure respectively. This

special flavor of UC is called multi-protocol UC[15].

5.2 NOTRY Security Goals
NOTRY has the following security properties. We note that the

first four are standard security notions for secure messaging and

key exchange, whereas the fifth (mutually-agreed avowal) is novel

to our setting:

(1) Universally composable AKE [22]: NOTRY-Kex-Ratchet re-
alizes the ideal AKE functionality F𝑘𝑒𝑥 in the Ideal World in

the UC framework [16]. UC-secure NOTRY-Kex-Ratchet en-
ables the protocol to acquire arbitrary composability beyond

the standard notions of an AKE protocol, which are mutual

authentication, key privacy and freshness [7, 22].

(2) Deniability [30, 33, 39]: Transcripts in NOTRY-Kex can be

efficiently forged with access only to the public parameters.

Obviously, this deniability property demolishes the depend-

ability of transcripts as proof of genuine key exchange pro-

tocol executions. A stronger notion of deniability, online

deniability [33] guarantees that even a corrupted protocol

participant (sometimes called an informant) cannot convince
others of the authenticity of a transcript. NOTRY provides

online deniability since NOTRY-Kex-Sim works without us-

ing Alice or Bob’s long-term secret key.

(3) Future secrecy and post-compromise secrecy [6]: The expo-

sure of long-term secret key(s) cannot undermine the confi-

dentiality of past or future session key(s) respectively (fol-

lowing recovery by the protocol). We achieve future secrecy

through ratcheting withNOTRY-Kex-Ratchet, in which both

parties update their contribution to 𝑘𝑠𝑒𝑠𝑠 generation. The

secrecy of ratcheted key generation mechanisms is studied

extensively by Alwen et al. [1] and Bienstock et al. [10].

(4) Post-specified peer [21]: Instead of specifying the identity of

the intended peer when initiating NOTRY-Kex, parties learn
the identity of their peers during protocol execution. The

key observation is that Alice starts the protocol without in-

volving any identity information about Bob. Bob’s response

is not related to 𝑝𝑘𝐴 either. Instead, Alice learns she was

talking to Bob after she got the SoK of Bob.

(5) Mutually-agreed avowal: Transcripts based on session keys

from NOTRY-Kex-Ratchet can be avowed by the two parties

using NOTRY-Avow. Specifically, NOTRY-Avow is a two-

party secure computation protocol that outputs a MADV

avowal as a designated verifier (Judge) proof.

9

Proceedings on Privacy Enhancing Technologies 2024(2) Faxing Wang, Shaanan Cohney, Riad Wahby, and Joseph Bonneau

NOTRY-Avow-SimJudge

(
(dlogℎ𝐴𝐵 ∨ dlog𝑔pk𝐽), 𝑠𝑘 𝐽

)
𝑐𝐴𝐵

$← {0, 1}_

𝑧𝛼 , 𝑧𝐴𝐵
$← Z𝑞

𝑧𝛽 ← 𝑧𝐴𝐵 − 𝑧𝛼
𝑅𝐴𝐵 ← ℎ𝑧𝐴𝐵 /(𝐴𝐵)𝑐𝐴𝐵

𝑟𝐴
$← G, 𝑅𝐴 ← ℎ𝑟𝐴

𝑅𝐵 ← 𝑅𝐴𝐵/𝑅𝐴
𝑟 𝐽

$← Z𝑞
𝑅𝐽 ← 𝑔𝑟 𝐽

𝑐 ← H
(
𝑅𝐴𝐵 | | 𝑅𝐽 | | · · ·

)
𝑐 𝐽 ← 𝑐 ⊕ 𝑐𝐴𝐵
𝑧 𝐽 ← 𝑐 𝐽 sk𝐽 + 𝑟 𝐽
𝑐𝐴

$← {0, 1}_
𝑐𝐵 ← 𝑐 𝐽 ⊕ 𝑐𝐴
𝑧𝐴, 𝑠𝐴

$← Z𝑞
𝑧𝐵 ← 𝑧 𝐽 − 𝑧𝐴
𝐸𝐴 ← 𝑔𝑐𝐴ℎ𝑧𝐴 ℓ𝑠𝐴

Execute NOTRY-Kex-Sim to produce 𝑘
rel
.

Output

(
𝑐𝐴𝐵, 𝑧𝐴𝐵, 𝑐 𝐽 , 𝑧 𝐽

)
, 𝐸𝐴, 𝑅𝐴, 𝑅𝐵, 𝑘rel

,

NOTRY-Kex-Sim transcript,

Enc (𝑘
rel
, (𝑐𝐴, 𝑧𝐴, 𝑠𝐴)) , Enc (𝑘rel

, (𝑐𝐵, 𝑧𝐵)).

Figure 6: NOTRY-Avow-SimJudge

5.3 UC Security functionalities
In this section we outline our UC security functionalities, de-

ferring full specifications to Appendix B. Our proof involves three

ideal functionalities:

• F𝑘𝑒𝑥 , which runs key exchange in the absence of avowal.

The twomajor functions of F𝑘𝑒𝑥 are to deliver shared session
keys and to emulate multiple rounds of a continuous key

agreement protocol.

• Favow . For clarity and simplicity, we separate Favow into two

major functions, an ideal functionality for avowal proof gen-

eration and another one for avowal proof verification.

• G𝜑,𝑛,G,𝑞,ℎ,𝑔
𝑘𝑟𝑘𝑟𝑜

, which models miscellaneous key registeration

with knowledge (krk) PKI and random oracles (ro). It’s param-

eterized by a set of protocols interacting with P, a number

of random oracles 𝑛, a group G of order 𝑞 with two indepen-

dently sampled generators ℎ,𝑔. This is closely based on the

global shared functionality defined in [68].

Ideal Functionality F𝑘𝑒𝑥 To prove NOTRY is UC-secure within

the EUC-framework, we compile an ideal functionality F𝑘𝑒𝑥 to emu-

late NOTRY-Kex-Ratchet which captures all the security properties

and features of this protocol. In addition to F𝑘𝑒𝑥 , shown in Algo-

rithm 1, in the EUC-framework, there is an external environment

Z, intended to distinguish between a simulator S in the Ideal World
attacking the F𝑘𝑒𝑥 and a Real World adversary A attacking the

real protocol. We denote dummy parties in the Ideal World as P,

the corresponding real parties in the Real World as
¯P, and parties

simulated by S for A as PS.
Interactions between different entities in the context of EUC-

framework are summarized as follows. First, Z is allowed to com-

municate with
¯P (or P) and to write the inputs to every party P (in

the Ideal World) or ¯P (in the Real World) and read their outputs.

Likewise, A controls all the communication between every party

¯P (or PS), whereas S is permitted to interact with F𝑘𝑒𝑥 under pre-

scribed rules. Third, S and A are allowed to corrupt parties while

Z will be immediately notified of this corruption. Finally, the ideal

functionality F𝑘𝑒𝑥 , S, A, ¯P, P are able to interact with global shared

functionality G𝜑,𝑛,G,𝑞,ℎ,𝑔
𝑘𝑟𝑘𝑟𝑜

.

We model ratcheting by additionally introducing a round id 𝑟𝑖𝑑 .

NOTRY-Kex-Ratchet is guaranteed to execute in rounds even in

the general concurrent operation since NOTRY-Avow checks the

consistency of 𝑟𝑖𝑑 before setting the shared key.

Ideal functionality Favow For clarity and simplicity, taking advan-

tage of the composability theorem, we defined a separate modular

ideal functionality of avow Favow . Favow consists of two major func-

tions: Avow and Judge. Note that, since Judge can be anyone to

whom parties intend to avow, we therefore, consider Judge as part
of Favow . So the primary task to initialize Favow is to register a Judge

and then publish her public key. This models that parties know the

identity of the Judge in the Real World. Naturally, as Favow plays

as Judge, it runs NOTRY-Avow-SimJudge to produce transcripts for

the simulator S in the Ideal World.
Ideal functionality G𝜑,𝑛,G,𝑞,ℎ,𝑔

𝑘𝑟𝑘𝑟𝑜
, depicted inAlgorithm 4, is defined

to model publicly accessible features/functions like PKI or CA. The

Share functionality models three primary cross-session states. First

is PKI since we assume that each party learns the other’s long-term

public key, as well as the key of the designated verifier judge 𝑝𝑘 𝐽 .

Second, a random oracle is needed for KDF functions, signatures-of-

knowledge, avowal, and secret sharing in NOTRY-Kex. Essentially,

G𝜑,𝑛,G,𝑞,ℎ,𝑔
𝑘𝑟𝑘𝑟𝑜

combines the idea of G𝑘𝑟𝑘 key registration of knowledge,
from Dodis et al. [33] to distribute public keys and reveal private

keys to corresponding corrupted party. In addition, we also inte-

grated the shared random oracle G𝑟𝑜 defined in Walfish [69] into

G𝜑,𝑛,G,𝑞,ℎ,𝑔
𝑘𝑟𝑘𝑟𝑜

for our proof working on EUC-framework.

The non-information oracle functionality is defined to ensure

our ideal F𝑘𝑒𝑥 is relizeable. Since F𝑘𝑒𝑥 outputs a random key in

the Ideal World, even classic DH key exchange does not securely

realize F𝑘𝑒𝑥 under an adaptive attacker. Z can easily distinguish

when a corrupted party’s secret state is leaked to Z because there is

no way for S to generate the counterpart’s transcript to match the

random output key and leaked secret. To handle adaptive adver-

sarial corruptions, Canetti and Krawczyk [22] proposed a special

non-information oracle. N as part of F𝑘𝑒𝑥 . N emulates a round of

key exchange and exposes the secret state of the uncorrupted party

to S once corruption happens. This helps S properly simulate a

consistent key exchange under an adaptive adversary.

To capture online-deniability, Dodis et al. [33] observed that by

relaxing the notion of fully adaptive adversaries to semi-adaptive

adversaries we can achieve an online-deniable authentication given

the PKI model. Semi-adaptive adversaries are restricted to corrupt-

ing a party only at the beginning of a protocol or at the end of

it, but they can arbitrarily abort the protocol. After aborting, S

10

NOTRY: Deniable messaging with retroactive avowal Proceedings on Privacy Enhancing Technologies 2024(2)

gets the corresponding un-simulatable information from an incrim-
inate procedure. This notion of deniability is known as key exchange
with incrimination abort (KEIA), which assures deniability once the

protocol is terminated by outputting a shared key. Note that if a

protocol is executed without abort, it also implies perfect forward

secrecy. This is because the session key is chosen randomly and it is

independent of any information, including the protocol transcript.

5.4 UC-security proof sketch
Finally, we state our main security theorems and a proof sketch,

deferring full details to Appendix C and Appendix D. We show a

key lemma, that NOTRY-Avow is a ZKPoK scheme, in Section 5.4.1.

Upon all the functionalities discussed above, we define UC-secure

NOTRY-Kex and UC-secure NOTRY-Avow as following.

Theorem 2. NOTRY-Kex-Ratchet EUC-realizes F𝑘𝑒𝑥 under the era-
sure G𝜑,𝑛,G,𝑞,ℎ,𝑔

𝑘𝑟𝑘𝑟𝑜
-hybrid model with adaptive security, given the DDH

assumption and access to a non-information oracle NonInfoNOTRY.
Theorem 3. NOTRY-Avow EUC-realizes Favow under the erasure
G𝜑,𝑛,G,𝑞,ℎ,𝑔
𝑘𝑟𝑘𝑟𝑜

-hybrid model with adaptive security given the DDH as-
sumption.

Proof sketch To show that NOTRY-Kex-Ratchet actually EUC-

realizes the F𝑘𝑒𝑥 is to show that for any PPT A attacking NOTRY
in the Real World, there exists a corresponding PPT S in the Ideal
World attacking F𝑘𝑒𝑥 such that the environment Z under the hybrid

G𝜑,𝑛,G,𝑞,ℎ,𝑔
𝑘𝑟𝑘𝑟𝑜

model is unable to distinguish whether it’s in the Real
World or Ideal World (Theorem 2, proof in Appendix C). The secu-

rity proof (Appendix B) of Theorem 3 follows the same paradigm

described above.

5.4.1 NOTRY-Avow is a secure MADV avowalWe now present our

proof that our NOTRY-Avow is a ZKPoK scheme, a key component

of proving Theorem 3.

Lemma 1. NOTRY-Avow is a secure avowal of MADV proofs under

Decisional Diffie–Hellman (DDH) in the random oracle model.

Remark 1. For simplicity, here we discuss single-message avowal

rather than multi-message avowal. But our argument still holds in

the latter case.

We divide proof of Lemma 1 into the following three lemmas:

Lemma 2. NOTRY-Avow MADV avowal proof is complete.

Proof. We argue the correctness of MADV avowal by examin-

ing the verification process. Since𝑅𝐽 is the simulator’s output, Judge
can simply recompute it again to get the identical value. For 𝑅𝐴𝐵 ,

first observe that ℎ𝑧𝐴𝐵
can be expanded to ℎ𝑐𝐴𝐵 (𝛾+𝜎)+𝑟𝐴+𝑟𝐵

and

𝐴𝐵𝑐𝐴𝐵
equals to ℎ (𝛾+𝜎)𝑐𝐴𝐵

. After dividing ℎ𝑧𝐴𝐵
with 𝐴𝐵𝑐𝐴𝐵

, Judge
gets ℎ𝑟𝐴+𝑟𝐵 , which is identical to 𝑅𝐴×𝑅𝐵 , for 𝑅𝐴 ← ℎ𝑟𝐴 , 𝑅𝐵 ← ℎ𝑟𝐵 .

The random oracle will output an equivalent value as Judge and
provers request with the same values. Therefore, verification will

always pass for correctly generated proofs. □

Lemma 3. There exists a PPT extractor E for NOTRY-AvowMADV

avowal can extract a valid witness while A is unable to get the

witness from a genuine ADV proof 𝜋 .

Proof. We construct a knowledge extractor to demonstrate how

to get secrets 𝛼, 𝛽 with the forking lemma[60]. Note that E works

the same way to extract both secrets. Suppose that E can rewind a

verifier in the NOTRY-Avow to have the challenge 𝑐 in two proofs.

The extractor E will run NOTRY-Avow twice to extract 𝛼 . In the

first round, upon observing that Alice outputs her partial proof 𝑧𝛼 ,

the E records the partial proof 𝑧𝛽 and rewinds Bob to compel him

to output the same 𝑐 . In this case, Alice will generate two proofs for

the same challenge 𝑐 . With two partial proofs 𝑧𝛼 , 𝑧𝛼 received from

Alice, to get secret 𝛼 , E first collects two common challenge values

running NOTRY-Avow 𝑐𝐴𝐵, 𝑐𝐴𝐵 . Now E can derive 𝛼 by dividing

𝑧𝛼 − 𝑧𝛼 with 𝑐𝐴𝐵 − 𝑐𝐴𝐵 . Observe that 𝑧𝛼 − 𝑧𝛼 = (𝑐𝐴𝐵𝛼 + 𝑟𝐴) −
(𝑐𝐴𝐵𝛼 +𝑟𝐴) equals to 𝑐𝐴𝐵𝛼 −𝑐𝐴𝐵𝛼 . So 𝛼 ← (𝑧𝛼 −𝑧𝛼)/(𝑐𝐴𝐵 −𝑐𝐴𝐵).

Avowal soundness can be trivially satisfied for NOTRY-Avow.
Even though the witness of avowal proof serves as a partial witness

to the ADV proof, A learns nothing about the ADV witness from a

zero-knowledge ADV proof 𝜋 . □

Remark 2. To illustrate the idea, we follow the classical way of

constructing the extractor E with the rewinding technique. How-

ever, since rewinding is impermissible in the UCmodel, straight-line
compilers, which are extensively studied in the literature[37, 40, 45,

54, 62], can be directly applied to NOTRY-Avow to transform this

special Σ-OR proof to a UC-secure one.

Remark 3. A global random oracle is not enough to enable a

straight-line compiler in the UC model[18]. To extract the witness,

a knowledge extractor E without rewinding gets a special power:

oberserving all requests to the random oracle and their responses.

We, therefore, adopt restricted observable global random oracles[19].
Also, note that since we apply the Fiat-Shamir transform to get a

non-interactive protocol, this special flavor of random oracle is also
needed for special-soundness for both 𝜋 and 𝜋 ′.
Lemma 4. NOTRY-Avow MADV avowal is zero-knowledge under

DDH/RO and a semantic-secure encryption scheme.

Proof. Since it is a designated verifier proof, Judge can easily

simulate a correct transcript. Note that this doesn’t damage gen-

eralization because anyone can serve as a Judge. Therefore, we
can construct a simulator NOTRY-Avow-SimJudge (abbreviate it to

S𝐽 𝑢𝑑𝑔𝑒), shown in Figure 6, that outputs indistinguishable tran-

scripts of NOTRY-Avow. The information that the simulator takes

advantage of is 𝐴𝐵 and 𝑝𝑘 𝐽 . Basically, the idea used to construct

S𝐽 𝑢𝑑𝑔𝑒 is to prove the second clause of the statement Equation (4.1)

and then generate the proof. First, S𝐽 𝑢𝑑𝑔𝑒 picks 𝑐𝐴𝐵 and samples

𝑧𝐴 , 𝑧𝐴𝐵 from Z𝑞 . Set 𝑧𝛽 ← 𝑧𝐴𝐵 −𝑧𝐴 , 𝑅𝐴𝐵 ← ℎ𝑧𝐴𝐵 /(𝐴𝐵)𝑐𝐴𝐵
. Select

a random 𝑅𝐴 and set 𝑅𝐵 ← 𝑅𝐴𝐵/𝑅𝐴 . In this way, 𝑅𝐴𝐵 will always

be coherent to the verification of NOTRY-Judge. Second, S𝐽 𝑢𝑑𝑔𝑒
moves to prove knowledge of sk𝐽 . Getting a random pair (𝑟 𝐽 , 𝑅𝐽) for

computing the Fiat-Shamir challenge value 𝑐 . Set 𝑐 𝐽 ← 𝑐 ⊕ 𝑐𝐴𝐵 and

the response value 𝑧 𝐽 ← 𝑐 𝐽 sk𝐽 + 𝑟 𝐽 . Third, S𝐽 𝑢𝑑𝑔𝑒 secretly shares

𝑐 𝐽 and 𝑧 𝐽 to simulate the way they are generated in NOTRY-Avow.
Finally, after simulating a correct ADV proof, S𝐽 𝑢𝑑𝑔𝑒 emulates

the rest of the communication by running NOTRY-Kex-Sim, se-

lecting a random 𝑠𝐴 to set up 𝐸𝐴 , and compiling two ciphertexts

(𝑐1, 𝑐2) ← (Enc(𝑘rel
, (𝑐𝐴, 𝑧𝐴, 𝑠𝐴)), Enc(𝑘rel

, (𝑐𝐵, 𝑧𝐵))).
It’s trivial to test the correctness of the simulated proof. As

𝑔𝑧 𝐽 = 𝑔𝑐 𝐽 sk𝐽 +𝑟 𝐽
, when it divides pk

𝑐 𝐽
𝐽

we get 𝑔𝑟 𝐽 , which matches

the check.

To show indistinguishability between the simulated transcript

and the original transcript, we first observe the output of the simula-

tor is (𝜋 , 𝐸𝐴 , 𝑅𝐴 , 𝑅𝐵 , 𝑐1, 𝑐2). The partial simulated proof (𝑐 𝐽 , 𝑧𝐴𝐵) ∈
𝜋 is randomly sampled, while 𝑧 𝐽 ∈ 𝜋 is masked by random values

𝑟 𝐽 , and 𝑅𝐽 is shadowed by a random oracle output 𝑐 and random

11

Proceedings on Privacy Enhancing Technologies 2024(2) Faxing Wang, Shaanan Cohney, Riad Wahby, and Joseph Bonneau

value 𝑐𝐴𝐵 . Thus, as each proof element of 𝜋 = (𝑧 𝐽 , 𝑧𝐴𝐵, 𝑐 𝐽 , 𝑐𝐴𝐵) is
either random or masked with a random value, we conclude that

𝜋 is indistinguishable from random. The same argument can also

be applied to prove that 𝜋 is also indistinguishable from random.

Therefore a simulated proof 𝜋 is indistinguishable from 𝜋 .

Two ciphertexts 𝑐1, 𝑐2 are indistinguishable from 𝑐1, 𝑐2 inNOTRY-
Avow since the encryption scheme is semantic secure. The 𝐸𝐴 , 𝑅𝐴
both are generated from random values while 𝑅𝐵 is masked by 𝑅𝐴 ,

which implies all three values share the identical distribution to

their counterparts in NOTRY-Avow. □

6 Real World Evaluation
We designed our protocol for use in real-world systems and

accordingly developed a proof-of-concept implementation, which

we evaluate here. An anonymized review-ready copy of our code is

available at https://github.com/xxsqwe/notry.

Our NOTRY implementation is based on the official Rust imple-

mentation of Signal[53] and is designed to achieve an equivalent

security level (128 bits). In particular, we use the same Curve 25519

[9] as Signal. Our implementation extends the Signal implementa-

tion to support both single- andmultiple-message transcript avowal.

All experiments were performed on an Intel 12th generation core

i7-12700K pinned to 3.6GHz with 32GB RAM.

Our goal in evaluation is to determine the performance penalty

incurred by implementing NOTRY over a non-avowable secure

messaging protocol. We, therefore, compare it against Signal, which

represents the best-in-class for secure messaging with deniability.

Additional overhead is paid for a UC-secure Signal [10]. Therefore,

we implement NOTRY without a straight-line compiler for a fair

comparison.

6.1 Results
First, we profile the computation and communication overhead

in the key exchange stage. This gives an indication of the overhead

that NOTRY would exhibit in regular use.

As session keys in Signal are generated by the X3DH proto-

col, which employs double ratcheting with its accompanying per-

formance costs, we implement a similarly ratcheted NOTRY key

exchange. We collected our performance results from 10,000 ex-

perimental evaluations on our NOTRY-Kex implementation and

Signal benchmarks, summarized in Table 1. While NOTRY incurs

an approximately 4× communication and 8× computational over-

head as compared with the Signal protocol, the absolute time taken

per key exchange (∼ 1ms) is still negligible — demonstrating that

the protocol may be sufficiently performant for eventual use in

production systems.

We also evaluate the cost of performing avowal, both for the

communicating parties and for the Judge. Our protocol is designed
to allow any server to play the role of a Judge and the cost of

verification is therefore not a bottleneck for the protocol.

We measured the cost of running the avowal with 1, 10, 100, and

1000 transcripts respectively, and tabulate our results in Figure 7.

We find that the communication and performance costs to the

communicating parties are roughly constant, and scales linearly for

the Judge. While it is unsurprising that the computational burden

falls to the Judge the overall performance costs are both small and

linear in the number of transcripts to avow, and therefore pose a

lesser deployment concern.

Table 1: NOTRY and Signal performance evaluation for key
exchange

Signal NOTRY Ratio

Key Generation [ms] 0.011±0.001 0.044±0.002 4×
SoK Generations[ms] - 0.174±0.01 N/A

SoK Verify [ms] - 0.230±0.01 N/A

Key Exchange [ms] 0.151±0.03 1.21±0.05 8×
Rounds 2 2 1×
Public key [Bytes] 32 32 1×
Prekey [Bytes] 128 - N/A

SoK [Bytes] - 256 N/A

Key Exchange [B/key] 80 335 4×

1			 10		 100	 1000

Number	of	Transcripts

0

2

4

6

8

10

12

14

16

18

20

C
o
m
p
u
ta
ti
o
n
(m
s)

0

5

10

15

C
o
m
m
u
n
ic
at
io
n
	l
o
g
(B
y
te
s)

Party	Comptation

Judge	Computation

Party	Comm

Judge	Comm

Figure 7: Avowal Overhead of a Party and the Judge

7 Discussion and conclusions
We identified an interesting potential weakness with existing

deniable messaging applications: sometimes both participants in

a conversation initially meant to be deniable may genuinely wish

to remove deniability and avow the conversation at a later time.

To overcome this limitation, we developed a novel notion, ADV

proofs, and applied a practical ADV proof construction to construct

NOTRY. To the best of our knowledge, this is the first DAKEA

protocol that retains all the critical security properties of DAKE

protocols. Our evaluation shows that NOTRY protocol is also a

reasonably efficient DAKEA protocol in practice.

Some of the techniques in our work may be of interest to other

application areas. In particular, our construction of avowable des-

ignated verifier proofs may have other applications for systems

aiming to provide some flavor of revocable deniability. There also

may be other constructions possible for ADV proofs with efficiency

advantages in some settings, such as the hash-based constructions

12

https://github.com/xxsqwe/notry

NOTRY: Deniable messaging with retroactive avowal Proceedings on Privacy Enhancing Technologies 2024(2)

we suggested. Constructing efficient ADV proofs under different

security assumptions is an interesting research direction.

We would especially like to see the following work that con-

structs an efficient DAKEA protocol that is quantum-resistant. More

generally, this intuition might be extended or equivalent to a new

zero-knowledge paradigm, that is, can we prove not owning the

witness to an NP statement by proving knowing a witness to a

polynomial-time reduction to another statement? The two state-

ments are inverse to each other.

Finally, our work raises interesting questions for deniable mes-

saging. The real-world value of deniability remains an open ques-

tion, leaving the value of revocable deniability in question as well.

There are also many open questions about building NOTRY into

a practical system, in particular with handling revocation secrets

and providing an acceptable user interface for avowal.

Acknowledgments
We thank the anonymous reviewers of CCS and PETS for valu-

able suggestions. We also thank our PETs Shepherd for helpful

feedbacks. FaxingWang is supported by Melbourne Research Schol-

arship. Riad Wahby and Joseph Bonneau are supported by DARPA

under Agreement No. HR00112020022. Any opinions, findings and

conclusions or recommendations expressed in this material are

those of the authors and do not necessarily reflect the views of the

United States Government or DARPA.

References
[1] J. Alwen, S. Coretti, and Y. Dodis. The double ratchet: security

notions, proofs, and modularization for the signal protocol.

In Asiacrypt, 2019 (cited on pages 1, 9).

[2] J. Alwen, S. Coretti, Y. Dodis, and Y. Tselekounis. Security

analysis and improvements for the IETF MLS standard for

group messaging. In CRYPTO, 2020 (cited on page 1).

[3] C. Badertscher, R. Canetti, J. Hesse, B. Tackmann, and V.

Zikas. Universal composition with global subroutines: cap-

turing global setup within plain uc. In TCC, 2020 (cited on

page 9).

[4] R. Barnes, B. Beurdouche, R. Robert, J. Millican, E. Omara,

and K. Cohn-Gordon. The Messaging Layer Security (MLS)

Protocol. Internet-Draft draft-ietf-mls-protocol-12, Internet

Engineering Task Force, 2022. url: https://datatracker.ietf.

org/doc/draft-ietf-mls-protocol/. Work in Progress (cited on

page 1).

[5] M. Bellare and S. Micali. Non-interactive oblivious transfer

and applications. In CRYPTO, 2001 (cited on page 1).

[6] M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated

key exchange secure against dictionary attacks. In Eurocrypt,
2000 (cited on pages 3, 9).

[7] M. Bellare and P. Rogaway. Entity Authentication and Key

Distribution. In CRYPTO, 1994 (cited on pages 3, 9).

[8] M. Bellare and P. Rogaway. Provably secure session key

distribution: the three party case. In ACM STOC, 1995 (cited
on page 3).

[9] D. J. Bernstein. Curve25519: new diffie-hellman speed records.

In PKC, 2006 (cited on page 12).

[10] A. Bienstock, J. Fairoze, S. Garg, P. Mukherjee, and S. Raghu-

raman. Amore complete analysis of the signal double ratchet

algorithm. In IACR CRYPTO, 2022 (cited on pages 9, 12).

[11] D. Boneh and C. Komlo. Threshold signatures with private

accountability. In CRYPTO, 2022 (cited on page 3).

[12] N. Borisov, I. Goldberg, and E. Brewer. Off-the-record com-

munication, or, why not to use PGP. In ACM WPES, 2004
(cited on pages 1, 3, 6).

[13] C. Boyd, W. Mao, and K. G. Paterson. Key agreement us-

ing statically keyed authenticators. In ACNS, 2004 (cited on

page 3).

[14] C. Brzuska, M. Fischlin, B. Warinschi, and S. C. Williams.

Composability of bellare-rogaway key exchange protocols.

In ACM CCS, 2011 (cited on page 3).

[15] J. Camenisch, M. Drijvers, and B. Tackmann. Multi-protocol

uc and its use for building modular and efficient protocols.

Cryptology ePrint Archive, Paper 2019/065, 2019 (cited on

page 9).

[16] R. Canetti. Universally composable security: a new paradigm

for cryptographic protocols. In IEEE FOCS, 2001 (cited on

pages 2, 9).

[17] R. Canetti, Y. Dodis, R. P. Pass, and S. W. Walfish. Universally

composable security with global setup. In TCC, 2006 (cited
on page 9).

[18] R. Canetti and M. Fischlin. Universally composable commit-

ments. In CRYPTO, 2001 (cited on page 11).

[19] R. Canetti, A. Jain, and A. Scafuro. Practical uc security with

a global random oracle. In ACM CCS, 2014 (cited on page 11).

[20] R. Canetti and H. Krawczyk. Analysis of Key-Exchange Pro-

tocols and Their Use for Building Secure Channels. In Euro-
crypt, 2001 (cited on page 3).

[21] R. Canetti and H. Krawczyk. Security analysis of IKE’s signa-

ture -based key-exchange protocol. In CRYPTO, 2002 (cited
on page 9).

[22] R. Canetti and H. Krawczyk. Universally composable notions

of key exchange and secure channels. In Eurocrypt, 2002
(cited on pages 9, 10, 17).

[23] M. Chase and A. Lysyanskaya. On signatures of knowledge.

In CRYPTO, 2006 (cited on page 5).

[24] D. Chaum. Zero-knowledge undeniable signatures. In Euro-
crypt, 1990 (cited on page 2).

[25] D. Chaum and H. V. Antwerpen. Undeniable Signatures. In

CRYPTO, 1989 (cited on page 3).

[26] R. Cramer, I. Damgård, and B. Schoenmakers. Proofs of Par-

tial Knowledge and Simplified Design of Witness Hiding

Protocols. In CRYPTO, 1994 (cited on page 4).

[27] C. Cremers and M. Feltz. Beyond eck: perfect forward se-

crecy under actor compromise and ephemeral-key reveal. In

ESORICS, 2012 (cited on page 3).

[28] I. Damgård. On sigma protocol. https://www.cs.au.dk/~ivan/

Sigma.pdf (cited on page 16).

[29] C. D. de Saint Guilhem, M. Fischlin, and B. Warinschi. Au-

thentication in Key-Exchange: Definitions, Relations and

Composition. In IEEE CSF, 2020 (cited on page 3).

[30] M. Di Raimondo, R. Gennaro, and H. Krawczyk. Deniable

authentication and key exchange. In ACM CCS, 2006 (cited
on pages 3, 9).

13

https://datatracker.ietf.org/doc/draft-ietf-mls-protocol/
https://datatracker.ietf.org/doc/draft-ietf-mls-protocol/
https://www.cs.au.dk/~ivan/Sigma.pdf
https://www.cs.au.dk/~ivan/Sigma.pdf

Proceedings on Privacy Enhancing Technologies 2024(2) Faxing Wang, Shaanan Cohney, Riad Wahby, and Joseph Bonneau

[31] W. Diffie, P. C. Van Oorschot, and M. J. Wiener. Authentica-

tion and authenticated key exchanges. Designs, Codes, and
Cryptography, 1992 (cited on page 3).

[32] W. Diffie and M. Hellman. New directions in cryptogra-

phy. IEEE Transactions on Information Theory, 1976 (cited on

page 3).

[33] Y. Dodis, J. Katz, A. Smith, and S. Walfish. Composability

and on-line deniability of authentication. In TCC, 2009 (cited
on pages 2, 3, 9, 10).

[34] D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptogra-

phy. In ACM STOC, 1991 (cited on page 3).

[35] C. Dwork,M. Naor, andA. Sahai. Concurrent zero-knowledge.

JACM, 2004 (cited on page 3).

[36] S. Even, O. Goldreich, and A. Lempel. A randomized protocol

for signing contracts. Communications of the ACM, 1985

(cited on page 1).

[37] M. Fischlin. Communication-efficient non-interactive proofs

of knowledge with online extractors. In CRYPTO, 2005 (cited
on page 11).

[38] M. Fischlin, F. Günther, B. Schmidt, and B. Warinschi. Key

confirmation in key exchange: a formal treatment and impli-

cations for tls 1.3. In IEEE Security & Privacy, 2016 (cited on

page 3).

[39] M. Fischlin and S. Mazaheri. Notions of deniable message

authentication. In ACM WPES, 2015 (cited on page 9).

[40] C. Ganesh, Y. Kondi, C. Orlandi, M. Pancholi, A. Takahashi,

and D. Tschudi. Witness-succinct universally-composable

snarks. In Eurocrypt, 2023 (cited on page 11).

[41] P. Grubbs, J. Lu, and T. Ristenpart. Message Franking via

Committing Authenticated Encryption. In CRYPTO, 2017
(cited on page 2).

[42] M. Jakobsson, K. Sako, and R. Impagliazzo. Designated Veri-

fier Proofs and their Applications. In Eurocrypt, 1996 (cited
on page 3).

[43] S. Jiang and R. Safavi-Naini. An efficient deniable key ex-

change protocol. In FC, 2008 (cited on page 3).

[44] J. Katz. Efficient and non-malleable proofs of plaintext knowl-

edge and applications. In Eurocrypt, 2003 (cited on page 3).

[45] Y. Kondi and A. Shelat. Improved straight-line extraction

in the random oracle model with applications to signature

aggregation. In Asiacrypt, 2022 (cited on page 11).

[46] H. Krawczyk. Hmqv: a high-performance secure diffie-hellman

protocol. In CRYPTO, 2005 (cited on page 3).

[47] H. Krawczyk. Sigma: the ‘sign-and-mac’approach to authen-

ticated diffie-hellman and its use in the ike protocols. In

CRYPTO, 2003 (cited on page 3).

[48] H. Krawczyk. Skeme: a versatile secure key exchange mech-

anism for internet. In NDSS, 1996 (cited on page 3).

[49] H. Krawczyk and T. Rabin. Chameleon Signatures. In NDSS,
2000 (cited on page 3).

[50] B. LaMacchia, K. Lauter, and A. Mityagin. Stro-nger security

of authenticated key exchange. In ProvSec, 2007 (cited on

page 3).

[51] L. Law, A. Menezes, M. Qu, J. Solinas, and S. Vanstone. An

efficient protocol for authenticated key agreement. Designs,
Codes, and Cryptography, 2003 (cited on page 3).

[52] Y. Li and S. Schäge. No-match attacks and robust partnering

definitions: defining trivial attacks for security protocols is

not trivial. In ACM CCS, 2017 (cited on page 3).

[53] libsignal. Signal Foundation. https://github.com/signalapp/

libsignal (cited on page 12).

[54] A. Lysyanskaya and L. N. Rosenbloom. Universally compos-

able sigma-protocols in the global random-oracle model. In

TCC, 2022 (cited on page 11).

[55] M. Marlinspike and T. Perrin. The X3DH Key Agreement

Protocol. Signal Foundation, 2016. https://signal.org/docs/

specifications/x3dh/x3dh.pdf (cited on pages 1–3).

[56] M. Naor and B. Pinkas. Efficient oblivious transfer protocols.

In SODA, 2001 (cited on page 1).

[57] S. Park and A. Sealfon. It Wasn’t Me! Repudiability and

Claimability of Ring Signatures. In CRYPTO, 2019 (cited on

page 3).

[58] T. P. Pedersen. Non-interactive and information-theoretic

secure verifiable secret sharing. In CRYPTO, 1991 (cited on

page 8).

[59] T. Perrin and M. Marlinspike. The double ratchet algorithm.

Signal Foundation, 2016. https://signal.org/docs/specifications/

doubleratchet/doubleratchet.pdf (cited on pages 2, 7).

[60] D. Pointcheval and J. Stern. Security arguments for digital

signatures and blind signatures. Journal of Cryptology:361–
396, 2000 (cited on pages 11, 16).

[61] M. O. Rabin. How to exchange secrets with oblivious transfer.

CRYPTOl. ePrint Arch., 1985 (cited on page 1).

[62] A. Sahai. Non-malleable non-interactive zero knowledge and

adaptive chosen-ciphertext security. In Annual Symposium
on Foundations of Computer Science FOCS, 1999 (cited on

page 11).

[63] S. Schäge. Topas: 2-pass key exchange with full perfect for-

ward secrecy and optimal communication complexity. In

ACM CCS, 2015 (cited on page 3).

[64] C.-P. Schnorr. Efficient signature generation by smart cards.

In CRYPTO, 1989 (cited on pages 4, 6, 15).

[65] N. Tyagi, P. Grubbs, J. Len, I. Miers, and T. Ristenpart. Asym-

metric Message Franking: Content Moderation for Metadata-

Private End-to-End Encryption. In CRYPTO, 2019 (cited on

page 2).

[66] N. Unger. End-to-End Encrypted GroupMessaging with Insider
Security. PhD thesis, University of Waterloo, 2021 (cited on

pages 2, 3, 9).

[67] N. Unger, S. Dechand, J. Bonneau, S. Fahl, H. Perl, I. Goldberg,

and M. Smith. Sok: secure messaging. In IEEE Security &
Privacy, 2015 (cited on page 9).

[68] N. Unger and I. Goldberg. Improved strongly deniable au-

thenticated key exchanges for secure messaging. In PETS,
volume 2018 of number 1, 2018 (cited on pages 2, 9, 10).

[69] S. Walfish. Enhanced Security Models for Network Protocols.
PhD thesis, New York University, 2008 (cited on pages 3, 10).

[70] A. C.-C. Yao and Y. Zhao. Oake: a new family of implicitly

authenticated diffie-hellman protocols. In ACM CCS, 2013
(cited on page 3).

14

https://github.com/signalapp/libsignal
https://github.com/signalapp/libsignal
https://signal.org/docs/specifications/x3dh/x3dh.pdf
https://signal.org/docs/specifications/x3dh/x3dh.pdf
https://signal.org/docs/specifications/doubleratchet/doubleratchet.pdf
https://signal.org/docs/specifications/doubleratchet/doubleratchet.pdf

NOTRY: Deniable messaging with retroactive avowal Proceedings on Privacy Enhancing Technologies 2024(2)

[71] T.-Y. Youn, C. Lee, and Y.-H. Park. An efficient non-interactive

deniable authentication scheme based on trapdoor commit-

ment schemes. Computer Communications, 2011 (cited on

page 3).

A MADV proofs 𝜋

A.1 Secure MADV proofs 𝜋
Definition 4. A secure MADV proof 𝜋 consists of a triple of

algorithms (Setup, Avow, Judge) with the following properties:

(1) Completeness: Any prover who generated an MADV proof 𝜋

with knowledge of �̄� satisfies:

Pr

[
1← Verify(𝜋, 𝑆)

��𝜋 ← Gen(𝑆,�̄�)
]
= 1 (A.1)

Completeness indicates that Judge always accepts theMADV

avowal proof 𝜋 ′ from an honest prover.

(2) Special Knowledge Soundness: There exists a PPT extractor E
which, given two transcripts of avowal proof T1 and T2, can
extract a valid witness:

Pr

[
1← Verify(𝜋, 𝑃) | �̄�

′ ← E(1_,T1,T2)
𝜋 ← 𝐺𝑒𝑛(𝑆,�̄� ′)

]
= 1 − negl(_)

(A.2)

where𝑊 ′
𝑃
is the extracted witness. Special soundness implies

that any party who generates a valid ADV proof 𝜋 must gain

the knowledge of the witness𝑊𝑃 to the statement 𝑃 .

(3) Honest Verifier Zero-Knowledge: There exists a 𝑃𝑃𝑇 simulator

S that generates an MADV proof 𝜋S without knowledge of

the witness𝑤 such that 1← Judge(𝜋S). 𝜋S holds that:
𝜋S ≈𝑐 𝜋 (A.3)

A.2 Construction of MADV proofs
Here, we detail the proof generation and verification protocol.

Note that MADV proofs are designed under the context of Signature
of Knowledge in NOTRY-Kex, so we instantiate the Signature of

Knowledge with the Schnorr identification scheme and the Schnorr

signature scheme.

Classical Schnorr Identification Scheme: [64] for example, target-

ing on proving knowledge of 𝛾 ← dlogℎ𝐴, given global parameters

G, 𝑞, 𝑔, ℎ, Alice first samples 𝑟
$← Z𝑞 and computes 𝑎 = 𝑔𝑟 𝑚𝑜𝑑 𝑃 .

Next, she applies the Fiat-Shamir transform to get a non-interactive

proof, setting 𝑐 = 𝐻 (𝑎 | |𝐴| |ℎ). Last, she sends the proof (𝑎, 𝑧 = 𝑟 +𝑐𝛾)
to Bob. Bob verifies the proof by first reconstructing the random

challenge 𝑐 ′ = 𝐻 (𝑎 | |𝐴| |ℎ), then checking if ℎ𝑧
?

= 𝑎 · 𝐴𝑐′ .
Remark 4. Challenge 𝑐 will be generated in another way when

applying a straight-line compiler to bootstrap the protocol to a UC-

secure one. Briefly, given a hash function 𝐻𝑠𝑙 , Bob only accepts a

proof iff the 𝐻𝑠𝑙 (𝑎 | |𝑐 | |𝑧 | |𝐴| |ℎ) starts with 𝑥 bits long leading zeros

and passes verification. In this case, given a commitment 𝑎, Alice is

supposed to try multiple potential challenges until she gets a valid

challenge 𝑐 . Also, since 𝐻𝑠𝑙 outputs 𝑥 long digest, where 𝑥 · 𝑦 = _,

so to achieve the _-bit level of security, Alice has to generate 𝑦

proof transcripts {(𝑎𝑖 , 𝑧𝑖)}𝑖∈[𝑦] and ensure that the corresponding

hash of every proof 𝐻𝑠𝑙 (a| |𝑐𝑖 | |𝑧𝑖 | |𝐴| |ℎ) has 𝑥 leading zeros, where

a = (𝑎1, · · · , 𝑎𝑖). Alice wraps (𝑎, 𝑐, 𝑧) up as the Schnorr proof under
the straight-line compiler.

Schnorr AND Proof: proving an AND clause via Schnorr proto-

col is to generate two proofs for the two clauses respectively. For

example, to prove dlogℎ𝐴 ∧ dlog𝑔𝑝𝑘𝐴 , Alice generates the Schnorr

proof to dlogℎ𝐴 as we discussed before. Second, in the same way,

Alice generates the Schnorr proof (𝑎, 𝑧) to dlog𝑔𝑝𝑘𝐴 . Alice sends

15

Proceedings on Privacy Enhancing Technologies 2024(2) Faxing Wang, Shaanan Cohney, Riad Wahby, and Joseph Bonneau

two proofs ((𝑎, 𝑧),(𝑎, 𝑧)) to Bob who verifies two proofs individually
as the basic scheme.

Schnorr OR Proof: [28] for the OR clause, i.e. dlogℎ𝐴 ∨ dlogℎ𝐵,

since Alice has non-knowledge of dlogℎ𝐵, she will simulate a proof

for dlogℎ𝐵. To get a simulated proof, Alice first samples 𝑐𝐵, 𝑧𝐵
$←

Z𝑞 , then she finalizes simulation with 𝑎𝐵 ← 𝑔𝑧𝐵 /𝐵𝑐𝐵 . For the proof
to dlogℎ𝐴, Alice generates 𝑟𝐴, 𝑎𝐴 as the basic Schnorr scheme.

Second, she gets the challenge value 𝑐 ← 𝐻 (𝑎𝐴 | |𝑎𝐵 | |𝐴| |𝐵 | |ℎ),
computes her really challenge 𝑐𝐴 ← 𝑐 ⊕ 𝑐𝐵 and completes the

proof with 𝑧𝐴 ← 𝑟 + 𝑐𝐴𝛾 as the basic scheme. Alice sends two

proofs (𝑟𝐴, 𝑧𝐴),(𝑟𝐵, 𝑧𝐵) to Bob. The verifier Bob first reconstructs

𝑎′
𝐴
← 𝑔𝑧𝐴/𝐴𝑐𝐴 , 𝑎′

𝐵
← 𝑔𝑧𝐵 /𝐵𝑐𝐵 . Bob accepted a proof if 𝑐𝐴 ⊕ 𝑐𝐵 =

𝐻 (𝑎′
𝐴
| |𝑎′
𝐵
| |𝐴| |𝐵 | |ℎ), otherwise rejects it.

A.3 MADV proofs in NOTRY are ZKPoK
Lemma 5. The instantiation of the MADV proof in NOTRY-Kex
is complete, special sound, and zero-knowledge under DDH/RO

assumption.

Remark 5. Every security property of an SoK scheme is captured

by its corresponding property of MADV proofs defined in Appen-

dix A. Correcteness is defined via Completeness, Simulatability is

defined by Zero-knowledge, and Extraction is defined via Special
Knowledge Soundness.

Proof. Completeness: The MADV proof in NOTRY-Kex consists
of four individual Schnorr proofs with respect to four clauses of

the 𝑆𝐴 in Equation (3.8). Specifically, Alice generates the MADV

proof (also signature of knowledge) 𝜋 with 𝛾 ← dlogℎ𝐴 and her

private key 𝑠𝑘𝐴 where

𝜋 = {(𝑎𝐴, 𝑐𝐴, 𝑧𝐴)︸ ︷︷ ︸
𝜋𝐴

, (𝑎𝐵, 𝑐𝐵, 𝑧𝐵)︸ ︷︷ ︸
𝜋𝐵

, (𝑎 𝐽 , 𝑐 𝐽 , 𝑧 𝐽)︸ ︷︷ ︸
𝜋 𝐽

, (𝑎𝐴𝐵, 𝑐𝐴𝐵, 𝑧𝐴𝐵)︸ ︷︷ ︸
𝜋𝐴𝐵

} (A.4)

𝜋𝐵 and 𝜋𝐴𝐵 are simulated proofs. It’s trivial to tell that all four

proofs will pass verification as each proof is a Schnorr proof.

Special soundness: Two accepting proofs with the same first com-

mitment are enough to retrieve the knowledge under the Schnorr

protocol. With rewinding, the knowledge extractor E works simi-

larly as the E in NOTRY-Avow. The only distinction in Schnorr-OR

proofs is that E is supposed to output an additional bit to indi-

cate which clause was proved. Taking dlogℎ𝐴 ∨ dlogℎ𝐵 as an ex-

ample, E rewinds Alice to the point where she asks the random

oracle to generate two accepting proofs: (𝑎𝐴, 𝑐𝐴, 𝑧𝐴), (𝑎𝐵, 𝑐𝐵, 𝑧𝐵)
and (𝑎𝐴, 𝑐 ′𝐴, 𝑧

′
𝐴
), (𝑎𝐵, 𝑐 ′𝐵, 𝑧

′
𝐵
). If 𝑐𝐴 ≠ 𝑐 ′

𝐴
, E outputs 0 to indicate

that dlogℎ𝐴 is proved and derives 𝛾 from 𝜋𝐴, 𝜋
′
𝐴
the same way as

the E in Lemma 3.

On the other hand, consider applying the straight-line compiler
to MADV avowal proofs in Remark 4, E will get to search all the

queries that Alice made to the random oracle. Since rewinding is

not allowed in the UC model. observerable random oracle, defined
in Algorithm 4, exposes an additional interface observer-RO to E
for extracting the witness. After receiving {𝜋𝑖 }𝑖∈[𝑦] from Alice, E
first parses (𝑎𝑖 , 𝑐𝑖 , 𝑧𝑖)𝑖∈[𝑦] ← 𝜋 and sets a = (𝑎𝑖)𝑖∈[𝑦] . Second, E
sends observe-RO(Alice) to the random oracle and gets back all the

requests Alice made. Finally, E finds two requests 𝑖, 𝑗 that share the

a but 𝑐 𝑗 ≠ 𝑐𝑖 and 𝑧 𝑗 ≠ 𝑧𝑖 and pass Schnorr-OR verification. By the

forking lemma[60], E extracts the witness 𝛾 from (𝑧 𝑗 −𝑧𝑖)/(𝑐 𝑗 −𝑐𝑖).

Honest verifier zero-knowledge: we give a simulator S𝑂𝑅 that

simulates indistingsuiable proofs from really proof 𝜋 . For 𝑠𝐴 , note

that the Schnorr proof is just a concatenation of two Schnorr-OR

proofs. Therefore, we briefly describe the simulator for Schnor-

OR proof. Given 𝐴, 𝛿 ← dlogℎ𝐵, Simulator S𝑂𝑅 first samples

𝑐𝐴,S, 𝑧𝐴,S, 𝑟𝐵,S
$← Z𝑞 , sets 𝑎𝐵,S ← ℎ𝑟𝐵,S , 𝑎𝐴,S ← ℎ𝑧𝐴,S/𝐴𝑐𝐴,S

. Now

S𝑂𝑅 derives 𝑐S ← 𝐻 (𝑎𝐴,S | |𝑎𝐵,S | |𝐴| |𝐵,ℎ), so 𝑐𝐵,S ← 𝑐S ⊕ 𝑐𝐴,S, fi-
nally generates 𝑧𝐵,S ← 𝑟𝐵,S +𝑐𝐵,S𝛿 . It’s trivial to tell that simulated

proof shall pass the verification. Note that the special power the

S𝑂𝑅 gets is knowledge of dlogℎ𝐵 which is unknown to Alice.

We proceed with showing that the simulated proof 𝜋S is indis-

tinguishable from the MADV proof 𝜋 , 𝜋S ≈𝑐 𝜋 .
Hybrid 0 : startingwith𝜋S =

(
(𝑎𝐴,S, 𝑐𝐴,S, 𝑧𝐴,S), (𝑎𝐵,S, 𝑐𝐵,S, 𝑧𝐵,S)

)
.

Hybrid 1 : consider a proof 𝜋1

S
=
(
(𝑎𝐴, 𝑐𝐴, 𝑧𝐴), (𝑎𝐵,S, 𝑐𝐵,S, 𝑧𝐵,S)

)
.

It is easy to see that the simulated proof 𝜋𝐴,S is distributed identi-

cally to the real 𝜋𝐴 . On the one hand 𝑎𝐴,S depends on 𝑧𝐴,S and 𝑐𝐴,S
where both 𝑎𝐴,S and 𝑐𝐴,S are uniform in Z𝑞 . On the other hand,

since 𝛾 is uniform so does 𝑎𝐴 because 𝑎𝐴 ← ℎ𝛾 . So any PPT A
will be unable to distinguish the uniform 𝑎𝐴,S from the uniform 𝑎𝐴 .

Also, as 𝑐𝐴,S is uniform in Z𝑞 , 𝑐 is indistinguishable from a random

value under a random oracle model, 𝑐𝐴,S wil lbe indistinguishable

from 𝑐𝐴 which is masked by the random 𝑐 . Finally, because 𝑧𝐴
depends on 𝑟, 𝛾, 𝑐 , where 𝑟, 𝑐 are uniform, it will hold that 𝑧𝐴 is

uniform as well. Therefore, given 𝑧𝐴,S is sampled from Z𝑞 , A is

incapable of distinguishing two uniform values 𝑧𝐴, 𝑧𝐴,S from each

other. In conclusion, we have 𝜋1

S
≈𝑐 𝜋S.

Hybrid 2 : consider a proof 𝜋2

S
=

(
(𝑎𝐴, 𝑐𝐴, 𝑧𝐴), (𝑎𝐵, 𝑐𝐵,, 𝑧𝐵)

)
.

With 𝑎𝐵,S depends on 𝑟𝐵,S, where 𝑟𝐵,S is sampled from Z𝑞 , so 𝑎𝐵,S
is uniform. Applying the same argument to 𝑎𝐵 , we know that the

uniform 𝑎𝐵 is indistinguishable from 𝑎𝐵,S. 𝑐, 𝑐S is uniform because

they are outputs of the random oracle. Therefore, 𝑐𝐵 , which is

masked by 𝑐 , is indistinguishable from 𝑐𝐵,S, which is masked by

𝑐S. 𝑧𝐵 , sampled from Z𝑞 , has identical distribution with 𝑧𝐵,S which

masked a uniform value 𝑟𝐵,S. Therefore, we finalize hybrid 2 with

𝜋2

S
≈𝑐 𝜋1

S
.

With hybrid proof 𝜋S1 and 𝜋2

S
, we conclude that 𝜋S ≈𝐶 𝜋 because

𝜋S ≈𝑐 𝜋1

S
≈𝑐 𝜋2

S
= 𝜋 . □

B Functionalities
To prove our NOTRY in the UC model is to construct a simulator

S that emulates all the possible transcript a Real World adversary

A can produce. Note that S executes A internally. Therefore, any

message exchanged between A and Z is through a communication

channel by S. Also, messages S received from Z are copied toA. For

a party P in the Ideal World, S simulates a corresponding party PS in
the Ideal World for A. A is a fully adaptive adversary with arbitrary

behaviors. S will compromise P accordingly after A corrupts a

simulated party PS.
Algorithm 1 shows the Ideal functionality constructed forNOTRY-

Kex-Ratchet. Parties join the NOTRY-Kex-Ratchet by Z sending

them init or responde message. A party with init message is called

initiator 𝐼 and the one repondes is the responder 𝑅. Before joining
NOTRY-Kex-Ratchet protocol, all parties are expected to get them-

selves registered to the G𝜑,𝑛,G,𝑞,ℎ,𝑔
𝑘𝑟𝑘𝑟𝑜

with their identity key pairs,

16

NOTRY: Deniable messaging with retroactive avowal Proceedings on Privacy Enhancing Technologies 2024(2)

𝑝𝑘 , and 𝑠𝑘 . To simplify simulator construction, F𝑘𝑒𝑥 guarantees

that the responder message from 𝑅 will not be handled until S sees
a init message. S controls delivery of the final shared secret key

via an ok request. S later individually delivers the key to parties in

the Ideal World. We model post-specified peers by allowing parties

joining NOTRY without declaring their intended partners and S
specifying the remote identity when delivering the shared secret.

S can arbitrarily deliver the secret if the corresponding party is

corrupted.

We model constructiveness by decoupling a non-information
part from S. The initial analysis on universally composable key

exchange protocol [22] observes that the ideal functionality F𝑘𝑒𝑥
that simply outputs a random key cannot be realized in DH family

protocols. This is because an adaptive adversary can corrupt one of

two participants before the final message flow to get its ephemeral

states. Based on that Z can distinguish the protocol in the Ideal
World from the Real World.NonInfoNOTRY, depicted in Algorithm 5,

is defined to be part of the ideal functionality F𝑘𝑒𝑥 to capture the

notion of AKE under the Universal Composability Model.

The idea of NonInfoNOTRY is to provide S with a secret inter-

nal state to simulate a real protocol. The idea of constructing this

functionality is to generate both secret components and then send

their corresponding public components to theNonInfoNOTRY caller

M. M is the F𝑘𝑒𝑥 when it is asked to hand a key to a pair of

parties.M can accept or reject(by sending ok messege through

F𝑘𝑒𝑥) the proposed keys. IfM agrees, NonInfoNOTRY completes

the key exchange process and locally outputs the final shared key.

NonInfoNOTRY discards them whenM rejects and acts as a respon-

der to finish the key exchange by accepting one public component

proposed by M. It’s necessary to achieve initiator resilience for
S still to be capable of finalizing the protocol on behalf of the re-

maining honest party. In addition, NonInfoNOTRY also maintains

an interface for S to generate SoK messages since internal secret

data are all coming from IncProcNOTRY-Kex.
According to the composability property, we divided our security

proof of NOTRY into two parts: proof of NOTRY-Kex-Ratchet
and proof of NOTRY-Avow. We argue that by proving NOTRY-
Kex-Ratchet and NOTRY-Avow are UC-secure respectively we can

conclude that NOTRY is UC-secure.

C Proof of NOTRY-Kex-Ratchet

C.1 Simulator construction
We denote three messages in a round NOTRY-Kex-Ratchet as:

𝑚𝑘𝑒𝑥
1

,𝑚𝑘𝑒𝑥
𝐵

,𝑚𝑘𝑒𝑥
𝐴

. Other than the initial round, only𝑚𝐵 or𝑚𝐴 is

needed. If any messages sent fromA in the context of the simulated

environment are unrelated to NOTRY-Kex-Ratchet, they will be

discarded by S. If messages are delayed delivery by A, then S just
waits until messages are delivered. NOTRY-Kex-Ratchet is secure
against fully adaptive corruptions.A is allowed to corrupt any party

arbitrarily.

S begins simulation by initializing the protocol via a

message (setup,G, 𝑞, 𝑔, ℎ) to NonInfoNOTRY through F𝑘𝑒𝑥 .
NonInfoNOTRY generates messages for S to simulate and sends

back (𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒,𝐴, 𝐵) to S. S stores the ephemeral values 𝐴, 𝐵 for

future use.

S holds until being activated by an (𝑖𝑛𝑖𝑡, 𝑠𝑖𝑑, 𝐼 ,Φ) from F𝑘𝑒𝑥 . After
that, S compiles a𝑚𝑘𝑒𝑥

1
for 𝐼S with the material 𝐴 received from

NonInfoNOTRY. S broadcasts𝑚𝑘𝑒𝑥1
throughA as if it was amessages

sent by 𝐼S.

After getting a (responded, 𝑠𝑖𝑑, 𝑟𝑖𝑑, 𝑅,Φ) from F𝑘𝑒𝑥 , S first checks
the transmission status of𝑚𝑘𝑒𝑥

1
. Since F𝑘𝑒𝑥 only sends a responded

message after it has already gotten a init message,𝑚𝑘𝑒𝑥
1

must have

been sent and delivered in the simulated environment. S aborts the
protocol once𝑚𝑘𝑒𝑥

1
is not in its format or invalid and marks 𝑅 as

aborted at once. If𝑚𝑘𝑒𝑥
1

is valid then S constructs the corresponding

message𝑚𝑘𝑒𝑥
𝐵

for 𝑅 in response to𝑚𝑘𝑒𝑥
1

:

• If 𝑚𝑘𝑒𝑥
1

was created by S before or was from a cor-

rupted party 𝐼S, then based on the messages got from

NonInfoNOTRY S constructs the message𝑚𝑘𝑒𝑥
𝐵

. S sends a

proof request with the identifier of 𝑅 to NonInfoNOTRY. It’s
NonInfoNOTRY that generates the corresponding signature

of knowledge 𝛿𝐵 by 𝛾, 𝑥 , then S setup the message𝑚𝑘𝑒𝑥
𝐵

as

(𝐵, 𝛿𝐵). Note that in the case of corruption, Swill send a (com-
plete, false,𝐴) toNonInfoNOTRY to indicate that its transcript

has been rejected. F𝑘𝑒𝑥 immediately sends internal states of

NonInfoNOTRY to S. S sends (𝑜𝑘, 𝑠𝑖𝑑, 𝑟𝑖𝑑, 0) to F𝑘𝑒𝑥 , causing
it record the output from NonInfoNOTRY as the shared key.

• If the received message 𝐴′ is not identical to the mes-

sage 𝑚𝑘𝑒𝑥
1

created by S before, 𝐴′ ≠ 𝐴, trivially we

can see that 𝑚𝑘𝑒𝑥
1

must have been altered by A during

transmission. Therefore, 𝑚𝑘𝑒𝑥
𝐵

will be constructed from

IncProcNOTRY-Kex. S sends (𝑎𝑏𝑜𝑟𝑡, 𝑟𝑖𝑑, 𝑠𝑖𝑑) to F𝑘𝑒𝑥 while

withhold delivery of the abort message to both 𝐼 and 𝑅.

Next, S sends (𝑖𝑛𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑒, 𝑠𝑖𝑑, 𝑟𝑖𝑑, 𝑠𝑖𝑑) to F𝑘𝑒𝑥 to invoke

IncProcNOTRY-Kex. Based on𝑚𝑘𝑒𝑥1
, S sends (𝑖𝑛𝑐, 𝑠𝑖𝑑, 𝑅,𝐴′) to

the IncProcNOTRY-Kex
process and waits response (𝑖𝑛𝑐, 𝑠𝑖𝑑, 𝐵, 𝛿). According to the

response from NonInfoNOTRY S complies𝑚𝑘𝑒𝑥
𝐵

as (𝐵, 𝛿).

S sends 𝑚𝑘𝑒𝑥
𝐵

through A as if 𝑅S responses to 𝐼S and sends

(𝑑𝑒𝑙𝑖𝑣𝑒𝑟, 𝑠𝑖𝑑, 𝑟𝑖𝑑, 𝐼 , 𝑃) to F𝑘𝑒𝑥 to indicate that I generated the shared

key.

After receiving message𝑚𝑘𝑒𝑥
𝐵

from P, S first checks that if 𝐼S has

previously broadcast the message𝑚𝑘𝑒𝑥
1

. The coming message𝑚𝑘𝑒𝑥
𝐵

will be ignored if no matching𝑚𝑘𝑒𝑥
1

is found. If a corresponding

record of 𝑚𝑘𝑒𝑥
1

found, S parses 𝑚𝑘𝑒𝑥
𝐵

to get (𝐵, 𝜎𝐵). S will abort
the protocol by sending (𝑎𝑏𝑜𝑟𝑡, 𝑠𝑖𝑑) to F𝑘𝑒𝑥 if 𝑚𝑘𝑒𝑥

𝐵
is not in an

expected form, or𝑚𝑘𝑒𝑥
𝐵

is not matching the previous message𝑚𝑘𝑒𝑥
1

.

Meanwhile, S delivers the abort message to 𝐼 and withholds abort
message to 𝑅.

Otherwise, S constructs𝑚𝑘𝑒𝑥
𝐴

, which is 𝜎𝐴 , to emulate the mes-

sage from 𝐼 to 𝑅. In addition, S will set up the shared secret key.

Depending on the situation of protocol emulation, S constructs

𝑚𝑘𝑒𝑥
𝐴

and outputs a shared key in the following way:

• If A has already corrupted 𝑅, then the corresponding party

𝑅S must have been corrupted by S as well. S simply gets 𝑠𝑘𝑅

from G𝜑,𝑛,G,𝑞,ℎ,𝑔
𝑘𝑟𝑘𝑟𝑜

with a retrivesecret request. Next, 𝜎𝐴 is re-

turned from NonInfoNOTRY by requesting it with (𝑝𝑟𝑜𝑣𝑒, 𝐼).

Finally, 𝐼 is supposed to output a session key with respect

17

Proceedings on Privacy Enhancing Technologies 2024(2) Faxing Wang, Shaanan Cohney, Riad Wahby, and Joseph Bonneau

Algorithm 1 Ideal Functionality of NOTRY F𝑘𝑒𝑥
F𝑘𝑒𝑥 proceeds with security parameter _ in the G𝜑,𝑛,G,𝑞,ℎ,𝑔

𝑘𝑟𝑘𝑟𝑜
-hybrid model with parties P and P’ and an ideal adversary S. When initializing,

F𝑘𝑒𝑥 calls NonInfoNOTRY N with fresh randomness.

1: On interaction with N :

2: Forward messages from S toN . If one of the two is corrupted

or 𝑅 is “aborted” while N has generated its output, reveal

the state of N to S. Session id is denoted as sid, round id is

denoted as rid, 𝜙 is session state.

3: On (init, 𝑠𝑖𝑑 , 𝐼 , aux, 𝜙) from P:
4: if 𝑠𝑖𝑑 is incriminated return
5: if (𝐼 ≠ P) return
6: if 𝑠𝑖𝑑 is in null

7: 𝑚𝑎𝑟𝑘 𝐼 as the initiator, "active"

8: 𝑚𝑎𝑟𝑘 𝑠𝑖𝑑 as initialized

9: 𝑟𝑒𝑐𝑜𝑟𝑑(𝑠𝑖𝑑, 𝐼) as I

10: 𝑆𝑒𝑛𝑑(init, 𝑠𝑖𝑑 , 𝐼 , 𝜙) to S

11: On (responde, 𝑠𝑖𝑑 , 𝑅, 𝜙) from P:
12: if (𝑠𝑖𝑑 is not in initialized) return
13: if (𝑅 ≠ P) return
14: if (the session is null) hold until being 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑑

15: if 𝑠𝑖𝑑 is initialized

16: 𝑚𝑎𝑟𝑘 𝑅 as responder

17: 𝑚𝑎𝑟𝑘 𝑠𝑖𝑑 as responded

18: init 𝑟𝑖𝑑 with a random value and𝑚𝑎𝑟𝑘 𝑠𝑖𝑑 as NULL
19: 𝑟𝑒𝑐𝑜𝑟𝑑(𝑠𝑖𝑑, 𝑟𝑖𝑑, 𝑅) as II

20: 𝑆𝑒𝑛𝑑(responded, 𝑠𝑖𝑑, 𝑟𝑖𝑑 , 𝑅, 𝜙) to S

21: On (ok, 𝑠𝑖𝑑 , 𝑟𝑖𝑑 , 𝑘) from S:
22: if (the record III of (𝑟𝑖𝑑 , 𝑠𝑖𝑑 , 𝐾) found) return
23: //Test the key of this round is ready or not, only allow to set

//it once.

24: if ((𝐼 ∧ 𝑅) are corrupted) return
25: //If both are corrupted, simulation is handled by the A
26: if (𝐼 ∧ 𝑅 are uncorrupted)

27: 𝐾
$← {0, 1}_

28: //If both are honest, they output a random key, this captures

//both PCS and forward secrecy

29: else if (𝑅 is corrupted)

30: {𝐾 be the local output of N }

31: //This captures initiator resilience, whereas the output key

//is random or the local output of N if 𝑅 is honest.

32: else {𝐾 ← 𝑘}

33: 𝑟𝑒𝑐𝑜𝑟𝑑 (𝑠𝑖𝑑, 𝑟𝑖𝑑, 𝐾) as III
34: On (deliver, 𝑠𝑖𝑑 , 𝑟𝑖𝑑 , P, P′) from S:
35: if (𝑠𝑖𝑑 is not "responded" ∨ no record III related to (P, P’)

return
36: if (a set-key message sent to P) return
37: if (𝑟𝑖𝑑 is "incriminated" ∨ "exchanged") return
38: if (P ∉ (𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟, 𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑟)) return
39: if ((P, P′) ≠ (𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟, 𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑟) ∧ (P is not corrupted))

return
40: 𝑆𝑒𝑛𝑑(set-key, 𝑠𝑖𝑑, 𝑟𝑖𝑑 , P, 𝐾) to P′

41: //This captures post-specified peer since the id of the peer is

//part of the output

42: if (two set-key have been sent)

43: 𝑚𝑎𝑟𝑘 𝑟𝑖𝑑 as "exchanged"

44: Switch roles (𝐼 , 𝑅) ← (P′, P)
45: Join records I, II, III as (𝑠𝑖𝑑, 𝑟𝑖𝑑, 𝐼 , 𝑅, 𝐾)

46: Inc round number 𝑟𝑖𝑑 ← 𝑟𝑖𝑑 + 1

47: //For multi-round key exchange

48: On (abort, 𝑟𝑖𝑑 , 𝑠𝑖𝑑) from S
49: 𝑆𝑒𝑛𝑑 delayed (abort, 𝑠𝑖𝑑 , 𝐼) to 𝐼
50: 𝑆𝑒𝑛𝑑 delayed (abort, 𝑠𝑖𝑑 , 𝑅) to 𝑅
51: On (incriminate, 𝑠𝑖𝑑 , 𝑟𝑖𝑑) from S
52: if (𝑟𝑖𝑑 is "incriminated" ∨ "exchanged") return
53: if ((𝑅 is "aborted") ∧ (𝐼 is "active") ∧ (𝑅 is uncorrupted))

54: 𝑆𝑒𝑛𝑑(retrieve-secret, 𝑅) to G𝜑,𝑛,G,𝑞,ℎ,𝑔
𝑘𝑟𝑘𝑟𝑜

55: 𝑠𝑘𝑅 ← G
𝜑,𝑛,G,𝑞,ℎ,𝑔
𝑘𝑟𝑘𝑟𝑜

.retrieve-secret(𝑅)

56: Execute IncProc(𝑠𝑖𝑑, 𝐼 , 𝑅, 𝑝𝑘𝐼 , 𝑝𝑘𝑅, 𝑠𝑘𝑅)

57: 𝑚𝑎𝑟𝑘 𝑠𝑖𝑑 as incriminated

to the one distributed between 𝐼S and 𝑃S. If S generated a

message𝑚𝑘𝑒𝑥
𝐵

for party 𝑅S but 𝑅S ≠ 𝑃S, S aborts the F𝑘𝑒𝑥
and withholds the abort message to parties. Otherwise, F𝑘𝑒𝑥
exposes the internal state of NonInfoNOTRY to S due to cor-

ruption, which is the secret component 𝛾 for generating 𝐴.

Based on 𝛾 , S computes the 𝐾 = 𝐵𝛾 . Combined with 𝐾 , gen-

erated 𝜎𝐴 , and received 𝜎𝐵 S derives the final session key

𝑘𝑠𝑒𝑠𝑠 and sets up protocol outputs as 𝐼 , 𝑃, 𝑘𝑠𝑒𝑠𝑠 by sending

(𝑜𝑘, 𝑠𝑖𝑑, 𝐾) to F𝑘𝑒𝑥 .
• Otherwise, SoK 𝜎𝐵 is valid iff it’s generated with the knowl-

edge of the corresponding secret key 𝑠𝑘𝑅 or discrete log of

𝐴𝐵 to the base 𝑔. Furthermore, 𝜎𝐵 is fully bounded to this

instance of NOTRY-Kex-Ratchet because it depends on the

exchanged message 𝐴, 𝐵. In this case, we can conclude that

S generated the message 𝑚𝑘𝑒𝑥
𝐵

and 𝑃 = 𝑅S. So S get the

simulated 𝜎𝐴 based on the requesting NonInfoNOTRY with

(𝑝𝑟𝑜𝑣𝑒, 𝑠𝑖𝑑, 𝐼). After that, S forces the protocol to output a

random shared key by sending (𝑜𝑘, 𝑠𝑖𝑑, 0) to F𝑘𝑒𝑥 .

S sends𝑚𝑘𝑒𝑥
𝐴

through A as if 𝐼S sent it to 𝐼S.

When 𝑅S gets back the SoK 𝜎𝐴 of 𝐼 , S examines that if 𝑅 has

already saw message𝑚𝑘𝑒𝑥
1

from 𝐼S and it has sent a corresponding

response𝑚𝑘𝑒𝑥
𝐵

.𝑚𝑘𝑒𝑥
𝐴

will be ignored if either of the above require-

ments failed. S validates 𝜎𝐴 and then outputs the distributed key.

• if 𝜎𝐴 fails verification, which implies the 𝜎𝐴 might be altered

by A or it does not match previous messages. In this case, S
sends (𝑎𝑏𝑜𝑟𝑡, 𝑠𝑖𝑑) to F𝑘𝑒𝑥 and delivers abort message to 𝑅 at

once while withholding the abort message to 𝐼 .

18

NOTRY: Deniable messaging with retroactive avowal Proceedings on Privacy Enhancing Technologies 2024(2)

Algorithm 2 Ideal Functionality of NOTRY-Avow Favow
Favow is parameterized with ADV proof 𝜋 , designated verifier Judge,
public component(s) to be avowed [AB], and the two parties cor-

responding secrets for the ADV proof. 𝐼𝑑𝑒𝑎𝑙𝐴𝑣𝑜𝑤 signals S the
validation of avowal by sending fail or proof message.

1: On (Setup,𝑠𝑖𝑑,G, 𝑞, ℎ, 𝑔, ℓ) from S:
2: if 𝑠𝑖𝑑 is already setup return
3: else Setup the group G with respect to its generators 𝑔, ℎ, ℓ

4: mark 𝑠𝑖𝑑 as setup
5: On (Avow, 𝑠𝑖𝑑 , 𝑝𝑘 𝑗 , [𝑠𝑒𝑐𝑟𝑒𝑡], [𝐴𝐵]) from P:
6: if (matched record of [𝐴𝐵] and 𝑠𝑖𝑑 found ∧ P ≠ P′)
7: //Mutually-agreed avowal is captured by holding the avowal

//until P and P’ both request to avow.

8: if (ℎ [𝑠𝑒𝑐𝑟𝑒𝑡P]+[𝑠𝑒𝑐𝑟𝑒𝑡P′] ≠ [𝐴𝐵])
9: 𝑆𝑒𝑛𝑑(fail, [𝐴𝐵], 𝑝𝑘 𝑗 , P, P′) to S
10: //Decides if it’s the witness to dlogℎ𝐴𝐵

11: else

12: 𝑠𝑘 𝑗 ← G𝜑,𝑛,G,𝑞,ℎ,𝑔𝑘𝑟𝑘𝑟𝑜
.retrieve-secret(𝑗)

13: 𝑆𝑒𝑛𝑑(proof, 𝐴𝐵, 𝑠𝑘 𝑗 , Output, P, P′) to S
14: //Indicating S the result of an (in)successful avow from P and

P′ and deliver the 𝑠𝑘 𝑗 to S for simulation.

15: else record(𝑠𝑖𝑑, 𝑝𝑘 𝑗 , [𝑠𝑒𝑐𝑟𝑒𝑡P′], [𝐴𝐵], P′ ← P) and hold

16: //To capture mutually-agreed avow, protocol proceeds only

//after accepting two avow requests from two different parties

//with the same AB’s. The party that starts avowal is recorded

//as P′.

17: On (Judge, 𝜋 , [AB], 𝑝𝑘 𝑗) from P:
18: 𝑏 ←NOTRY-Judge (𝜋, [𝐴𝐵], 𝑝𝑘 𝑗) // verify the proof

19: 𝑆𝑒𝑛𝑑(𝜋, [𝐴𝐵], 𝑝𝑘 𝑗 , 𝑏) to P.

Algorithm 3 Incriminate Procedure IncProcNOTRY-Kex
Subroutine IncProcNOTRY-Kex (𝑠𝑖𝑑, 𝐼 , 𝑅, 𝑠𝑘𝑅)
1: On (𝑖𝑛𝑐, 𝑠𝑖𝑑 , 𝐼 , 𝑅, G, 𝑞, 𝑔, ℎ, 𝐴) from S:
2: Generate 𝛿

$← Z𝑞 , 𝐵 ← ℎ𝛿

3: 𝜎𝑅 ← SoK-Sign((𝐴, 𝐵), 𝑆𝐵, 𝛿, 𝑠𝑘𝑅)
4: 𝑆𝑒𝑛𝑑(𝑖𝑛𝑐, 𝑠𝑖𝑑, 𝐵, 𝜎) to S
5: //Working as B as contributing his share to the exchanged

key

• if 𝜎𝐴 is valid, S outputs a key for 𝑅 as well. A secure valid

SoK indicates that𝑚𝑘𝑒𝑥
𝐴

is sent from a corrupted 𝐼 or pro-

tocol executed honestly. In both cases, S has already in-

structed F𝑘𝑒𝑥 to record a session key. S completes by sending

(𝑑𝑒𝑙𝑖𝑣𝑒𝑟, 𝑠𝑖𝑑, 𝑟𝑖𝑑, 𝑅, 𝐼) to F𝑘𝑒𝑥 to sends indicate that R gener-

ated the shared key.

When A instructs 𝐼S to broadcast 𝑚𝑘𝑒𝑥
1

, but S has not gotten
a init message from F𝑘𝑒𝑥 yet, then S awaits 𝐼 to be activated by

Z with (𝑖𝑛𝑖𝑡, 𝑠𝑖𝑑, 𝐼 ,⊥,⊥) to F𝑘𝑒𝑥 for simulation but discards any

init message from F𝑘𝑒𝑥 . When A instructs 𝑅S to issue message

𝑚𝑘𝑒𝑥
𝐵

while S has not get a responded message yet, then S awaits 𝑅
to be activated by Z with (𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒, 𝑠𝑖𝑑,⊥, 𝑅,⊥) and discards any

responded from F𝑘𝑒𝑥 .

Algorithm 4 Share Functionality G𝜑,𝑛,G,𝑞,ℎ,𝑔
𝑘𝑟𝑘𝑟𝑜

Subroutine G𝜑,𝑛,G,𝑞,ℎ,𝑔
𝑘𝑟𝑘𝑟𝑜

. Parameterized by an implicit security pa-

rameter _, a group G generated by 𝑔 with prime order q, and a

number of observable and programmable random oracles 𝑛

1: On (register, 𝑠𝑘) from P :
2: if (P is corrupted ∨ P is registered) return
3: if (𝑠𝑘 is null) 𝑠𝑘

$← Z𝑞
4: //Registration with or without sk

5: 𝑝𝑘 ← 𝑔𝑠𝑘

6: record("registered", P, 𝑝𝑘, 𝑠𝑘)
7: 𝑆𝑒𝑛𝑑(𝑝𝑘) to P

8: On (retrieve, P′) from P:
9: if (record tuple of P′ found)
10: //Registered public keys are available to anyone.

11: 𝑆𝑒𝑛𝑑(pub-key, P′, 𝑝𝑘P′) to P
12: else 𝑆𝑒𝑛𝑑(pub-key, P′, ⊥) to P
13: On (retrieve-secret, P′) from P
14: if (P ≠ P′) return
15: //Only allows the owner to get the corresponding secret key.

16: if (P is registered) 𝑆𝑒𝑛𝑑(sk-key, P′, 𝑝𝑘P′, 𝑠𝑘P′) to P
17: else 𝑆𝑒𝑛𝑑(sk-key, P′, ⊥, ⊥) to P
18: On (random-oracle, 𝑖 , 𝑥 , 𝑠𝑖𝑑) from P:
19: if (𝑖 ∉ [1, 𝑛]) return
20: //Reject an out of scope random oracle request .

21: if (record of 𝑥 found) //x is requested before

22: 𝑆𝑒𝑛𝑑(𝑑) to P

23: else 𝑑
$← {0, 1}_

24: record(𝑖, 𝑥, 𝑑, P)
25: 𝑆𝑒𝑛𝑑(𝑑) to P

26: On (observe-RO, 𝑖 , P) from S:
27: 𝑆𝑒𝑛𝑑(𝑥, 𝑑) of the corresponding P back to S
28: //S is allowed to inspect the request record of any P.

C.2 Indistinguishable realization
We prove that F𝑘𝑒𝑥 EUC-securely realized NOTRY-Kex-Ratchet

by proving that S interacting with F𝑘𝑒𝑥 is indistinguishable from

A interacting with NOTRY-Kex-Ratchet. We will show that for any

attacks A can do in the Real World there is a simulator S emulating

them in the Ideal World such that:

Lemma 6. 𝐼𝐷𝐸𝐴𝐿F𝑘𝑒𝑥 , S, Z
c≈ 𝑅𝐸𝐴𝐿NOTRY-Kex-Ratchet, A, Z

To prove Lemma 6 is to show that the simulator S we described
above computationally emulates an indistinguishable ideal execu-

tion view for all the possible execution views in the Real World. Our
proof proceeds with demonstrating emulation under the honest

case and the corruption case.

C.2.1 The honest case This happens when A does not alter any

message or corrupt any party until the session ends. Therefore,

three message flows were generated by S with the help of N . Note

that in this case the two SoKs were not generated by proving knowl-

edge of any secret keys. They were produced by the DL of 𝐴𝐵 to

the base 𝑔. We argue that Z is unable to distinguish a simulated SoK

from S between a real SoK in actual interactions. Z learns nothing

beyond the fact the two SoKs are both valid for the same statement.

19

Proceedings on Privacy Enhancing Technologies 2024(2) Faxing Wang, Shaanan Cohney, Riad Wahby, and Joseph Bonneau

Algorithm 5 Non-Information Oracle NonInfoNOTRY N
Subroutine NonInfoNOTRY
1: On (setup, G, 𝑞, ℎ, 𝑔, 𝑙) fromM:

2: if (the first setup message)

3: parse G, 𝑞, ℎ, 𝑔, 𝑙 as group G, prime order 𝑞, and generator

ℎ, 𝑔, 𝑙

4: else discard parameters

5: generate (𝛾, ^) $← Z𝑞 , (𝐴,𝐴𝐵, 𝐵) = (ℎ𝛾 , 𝑔^ , 𝐴𝐵/𝐴)
6: record("setup", G, 𝑞, ℎ, 𝑔, 𝑙, 𝛾)
7: 𝑆𝑒𝑛𝑑(exchange, 𝐴, 𝐵,G, 𝑞, ℎ, 𝑔, 𝑙) toM
8: On (complete, ok, 𝐴, 𝜎𝐴, 𝜎𝐵) fromM:

9: if (not setup yet) return
10: if (ok is True ∧ 𝜎𝐴 ∧ 𝜎𝐵)

11: set 𝐾 = KDF (𝐴 | | 𝐵 | | 𝜎𝐴 | | 𝜎𝐵 | | 𝐵𝛾)
12: else if ((𝐴 ∉ G) ∨ (𝐴 is an identity element)) return
13: else

14: generate new ^
$← Z𝑞 , 𝐴𝐵 ← 𝑔^ , 𝐵 ← 𝐴𝐵/𝐴

15: generate 𝜎𝐴 and 𝜎𝐵 with (𝛾 , ^)

16: set 𝐾 = KDF(𝐴 | | 𝐵 | | 𝜎𝐴 | | 𝜎𝐵 | | 𝑔𝛾^/𝐴𝛾)
17: locally output 𝐾

18: On (prove, P, 𝑠𝑘P) fromM:

19: if (not setup) return
20: if (P ∉(initiator,responder)) return
21: if (𝑠𝑘𝐼𝑅) 𝜎 ← 𝑆𝑜𝐾 (𝐴, 𝐵, 𝑝𝑘P, 𝐴𝐵,𝛾, 𝑠𝑘P)
22: else generate 𝜎 ← 𝑆𝑜𝐾 (𝐴, 𝐵, 𝑝𝑘P, 𝐴𝐵,𝛾, ^)
23: 𝑆𝑒𝑛𝑑(proof, 𝜎) toM

The full transcript simulated by S is (𝐴S, 𝐵S ← (𝐴𝐵S)/𝐴S, 𝜎S
𝐴
,

𝜎S
𝐵
) and the real transcript is (𝐴, 𝐵, 𝜎𝐴, 𝜎𝐵). Note that 𝐼

S
will abort

after 𝑚𝑘𝑒𝑥
𝐵

is sent if Z tries to provide an inconsistent session

state(Φ𝐼 ≠ Φ𝑅). The output of the protocol will be identical to

the real one because 𝜎𝐵 will is invalid to 𝐼 in the Real World.
C.2.2 Dishonest cases

• Modified 𝑚𝑘𝑒𝑥
1

: this happens when 𝑚𝑘𝑒𝑥
1

from S is mod-

ified by A in transmission, but neither 𝐼S nor 𝑅S is cor-

rupted until𝑚𝑘𝑒𝑥
1

is delivered. In this case, S generates 𝜎S
𝐵

by IncProcNOTRY-Kex. IncProcNOTRY-Kex generates 𝜎S𝐵 as the

way 𝑅 generates it in the Real World.
• Modified𝑚𝑘𝑒𝑥

𝐵
: this happens when A modifies𝑚𝑘𝑒𝑥

𝐵
gener-

ated by S but both of them are not corrupted when 𝑚𝑘𝑒𝑥
𝐵

is transmitted. 𝐼S will immediately know the modification

after it checks 𝜎𝐵 ∈𝑚𝑘𝑒𝑥𝐵
since the verification will fail. This

is also identical to the case in Real World of 𝐼 .

• Modified𝑚𝑘𝑒𝑥
𝐴

: this happens when A modifies𝑚𝑘𝑒𝑥
𝐴

from S

while neither 𝐼S nor𝑅S are corruptedwhen𝑚𝑘𝑒𝑥
𝐵

is delivered.

S instructs 𝑅S to abort and 𝑅 in the Real World will abort too

since 𝜎𝐴 is unable to pass the verification.

So the transcript output by S in this case will be (𝐴S
1
, 𝐵S

1
, 𝜎𝐵1

S, 𝜎𝐴1

S
)

where only 𝜎𝐴1

S
is generated through proof simulation.

C.2.3 Corruption This is the case when one of the parties is cor-

rupted during times that are not covered in dishonest cases. In terms

of transcript, the advantage of corruption is access to the secret

key. Therefore, the corresponding SoK, say 𝜎𝐴 for 𝐼S, is generated

by taking the secret key as one of the two witnesses in the SoK

statement.

When both parties are corrupted, S does nothing but copy any

outputs from parties in the Ideal World to parties in the Real World.
So there is no simulation at all, for Z to distinguish.

The simulated transcript of S, in this case, is (𝐴S
2
, 𝐵S

2
, 𝜎𝐴2

S, 𝜎𝐵2

S
)

where one of two SoKs is generated with the secret key of the

corrupted party.

C.2.4 Hybrid ArgumentsWe start hybrid arguments with the tran-

script in the honest case.

Proof. (Hybrid 0) is the transcript T𝑘𝑒𝑥
0

= (𝐴S, 𝐵S ←
(𝐴𝐵S)/𝐴S, 𝜎S

𝐴
, 𝜎S
𝐵
). where both SoKs are simulated.

Hybrid 1: replace 𝜎S
𝐵
in T𝑘𝑒𝑥

0
with 𝜎𝐵1

S
to get T𝑘𝑒𝑥

1
. T𝑘𝑒𝑥

0
is

indistinguishable from T𝑘𝑒𝑥
1

because Z is unable to distinguish a

simulated valid SoK(without secret key) from a real SoK(with secret

key). This is what S simulated in the Dishonest cases

Hybrid 2: rather than replace 𝜎S
𝐵
in T𝑘𝑒𝑥

0
, replace 𝜎S

𝐴
with 𝜎𝐴1

S
,

generated with knowledge of the secret key, to get T𝑘𝑒𝑥
2

. The same

argument in T𝑘𝑒𝑥
1

can be applied to T𝑘𝑒𝑥
2

and T𝑘𝑒𝑥
0

. It’s obvious to

see that T𝑘𝑒𝑥
1

and T𝑘𝑒𝑥
2

capture the output of S in the corruption

case. That is, one of two SoKs is not simulated.

Hybrid 3: replace 𝜎S
𝐴
in T𝑘𝑒𝑥

1
with 𝜎𝐴2

S
, which is generated with

the knowledge of the secret key, to get T𝑘𝑒𝑥
3

. Note that the only

distinction between T𝑘𝑒𝑥
3

and T𝑘𝑒𝑥
1

is that 𝜎𝐴2

S
in T𝑘𝑒𝑥

3
is proven

by knowing the corresponding secret key whereas 𝜎S
𝐴
in T𝑘𝑒𝑥

1
is

simulated. Again, Z is unable to tell a simulated SoK from a real

SoK to the same statement. So T𝑘𝑒𝑥
3

is indistinguishable from T𝑘𝑒𝑥
1

.

Observe that this is exactly the case in the Real World execution.

All "𝐴"s and "𝐵"s in all the transcripts(T𝑘𝑒𝑥
0−3

) are just DH tu-

ples, since we assume DDH holds, all the "𝐴"s and "𝐵"s in all the

transcripts should be indistinguishable from each other. That, we

conclude that Z is unable to distinguish S in the Ideal World from

A in the Ideal World. □

D Proof of NOTRY-Avow

D.1 Simulator construction
Proof. For convenience, we denote the three messages in

NOTRY-Avow as (𝑚1, 𝑚2, 𝑚3). First, Z activates S to initialize the

NOTRY-Avow protocol by sending a setup to N through F𝑘𝑒𝑥 and

waits for an exchange response. After receiving an exchange mes-

sage fromN , S and A finish another round of NOTRY-Kex-Ratchet
to acquire a temporary session key for future use inNOTRY-Avow.Z
instructs parties to start avowal by sending Avow message to Favow .
Note here we assume the identity of Judge is common knowledge

since we modeled Judge as part of the NOTRY-Avow. The arbitrary
inputs of parties, [𝑠𝑒𝑐𝑟𝑒𝑡]s, and public components [𝐴𝐵]s are from
Z.

Favow holds until it gets another Avow message. Favow pro-

ceeds only after it receives two Avow messages with iden-

tical [𝐴𝐵]s, which captures that both parties mutually re-

quest to avow the same part of their conversation. After get-

ting the second Avow, Favow matches two records that share

20

NOTRY: Deniable messaging with retroactive avowal Proceedings on Privacy Enhancing Technologies 2024(2)

[𝐴𝐵] values and tests if the avowal is successful or not.

If this is a valid avowal, Favow simulates session key ex-

changed 𝑘
rel
, simulated transcripts of avowal 𝑚1 (𝐸𝐴, 𝑅𝐴),𝑚2 =

(𝑅𝐵, Enc(𝑘rel
, (𝑐𝐴, 𝑧𝐴, 𝑠𝐴))),𝑚3 (Enc(𝑘rel

, (𝑐𝐵, 𝑧𝐵))), and keep the

rest of 𝑂 as the ADV avowal proof 𝜋 . S receives all the simulated

materials from Favow and stores them for later emulation. If this is

a failed avowal, Favow sends fail message to S. Note that S knows
distributed session key in the Ideal World since it completes the

emulation. In that case, S simulates the critical part of avowal 𝑧𝐴
and 𝑧𝐵 by arbitrarily sampling the 𝑧𝐴 and 𝑧𝐵 which will lead to a

failed avowal.

Next, S honestly constructs𝑚1 in NOTRY-Avow with the materi-

als it gets from Favow when it observes the corresponding message

sent from 𝐼 to 𝑅. S sends (𝐸𝐴, 𝑅𝐴) to the simulate party in the

Real World, 𝑅S, through A to emulate this behavior. S constructs
𝑚2 = (𝑅𝐵, Enc(𝑘rel

, (𝑐𝐵, 𝑧𝐵))) for NOTRY-Avow in response to 𝐼

based on the message even if it’s different from the one it got from

N and sent it to 𝑅. S just forward𝑚2 from 𝑅S to 𝐼S as the internal

real-world 𝑃 replies 𝐼 with real𝑚2. To simulate𝑚3 message as 𝐼

sends it to 𝑅 in the Real World, S just passes message𝑚3 from 𝑅S

to 𝐼S. When S sees two parties’ final outputs in the Real World, S
forward the corresponding output, which is 𝑧𝛼 , 𝑧𝛽 , to two dummy

parties in the Ideal World. Note that𝑚1,𝑚2,𝑚3 can all be modified

by A.

D.2 Indistinguishable realization
Favow UC-realizes NOTRY-Avow iff S emulates an indistinguish-

able execution view in the Ideal World for any adversary A in the

Real World, such that:

Lemma 7. 𝐼𝐷𝐸𝐴𝐿Favow , S, Z
c≈ 𝑅𝐸𝐴𝐿NOTRY-Avow, A, Z

To formally prove Lemma 7, we will see how the constructed

S emulates a computationally indistinguishable view adaptively

according to the behavior of A. For an adversary A that can modify,

abort, and corrupt parties. If any of the three messages in the Real
World was modified by A, S replaces the corresponding message

with a random value. Note that under this circumstance with a

secure encryption scheme and the DLP assumption holds, the final

judgment from Favow on the proof 𝜋 will be false in both worlds.

For adaptive adversaries, S has to make subsequent messages

consistent with the previous messages even with arbitrary behav-

iors of A. When A corrupts a party
¯P in the Real World, Z and S

will immediately know that the
¯P is corrupted. S generates internal

states of the simulated party PS. If 𝐼 is corrupted,S asks Favow for

𝐼 ’s secret, 𝑐𝐴, 𝑧𝐴, 𝑠𝐴 . S will construct𝑚2 as usual since𝑚2 is com-

pletely independent of the𝑚1. S watches the behavior of
¯̄𝑅 in the

Real World, if ¯̄𝑅 aborts, then S just randomly picks a value at the

same length of ciphertext𝑚3. Otherwise, observing
¯̄𝑅 outputting

his part of the proof 𝑧𝛽 , S sends the message𝑚3 as it is in the honest

case.

If both parties were corrupted, by taking advantage of witnesses

of the ADV proof avowal, S simply run the protocol in the Real
World and get the execution log instead of interacting with Favow . S
simulates message exchanging of parties by running NOTRY-Avow
in the Real World internally. Note that Z is unable to distinguish S
from A since S works exactly as A in NOTRY-Avow.

D.2.1 Hybrid Arguments For the one-party corruption case, the Z
is unable to distinguishable its communication with A in the Real
World and S in the Ideal World because of the zero-knowledge

properties of ADV proof of avowal. As we’ve already proved

in the Lemma 4. For the honest case and two-party corrup-

tion case, we’re gonging to prove the transcripts between the

two worlds are indistinguishable. Recall the two transcripts are

TS = (𝐸 ′
𝐴
, 𝑅′
𝐴
, 𝑅′
𝐵
, ¯𝑐 ′1, ¯𝑐 ′2, 𝑧′𝛼 , 𝑧

′
𝛽
, 𝑐 ′
𝐽
, 𝑧′
𝐽
) in the Ideal World and

T = (𝐸𝐴, 𝑅𝐴, 𝑅𝐵, 𝑐1, 𝑐2, 𝑧𝛼 , 𝑧𝛽 , 𝑐 𝐽 , 𝑧 𝐽) in the Real World.
(Hybrid 0) is the genuine transcript TS.
(Hybrid 1) slightly changes TS to T1 = (𝐸 ′

𝐴
, 𝑅0, 𝑅1, ¯𝑐 ′1, ¯𝑐 ′2, 𝑧′𝛼 , 𝑧

′
𝛽

, 𝑐 ′
𝐽
, 𝑧′
𝐽
), where (𝑅0, 𝑅1)

$← Z𝑞 , suppose there exists a distinguisher
D with advantage 𝜖𝐷𝐷𝐻 to break DDH assumption, then the ad-

vantage of D to distinguish TS and T1 is bounded by 2𝜖𝐷𝐷𝐻 .

(Hybrid 2) T2 will be a single replacement of 𝐸 ′
𝐴
with the Peder-

sen Commitment 𝐸𝐴 in T1. As Pedersen Commitments are perfect

hiding, D is unable to distinguish 𝐸𝐴 between 𝐸 ′
𝐴
.

(Hybrid 3) the two ciphertexts 𝑐 ′
1
, 𝑐 ′

2
in T2 can be substituted the

𝑐1, 𝑐2 of T to constitute T3. Let’s say the advantage of D to break

the notion of semantic security is 𝜖𝑠𝑒 . Therefore, we can conclude

that D distinguishes T2 and T3 with 2𝜖𝑠𝑒 .

(Hybrid 4) T4 transfers 𝑐 ′
𝑗
, 𝑧′
𝑗
in T3 to the two random values

(𝑐 𝑗 , 𝑧 𝑗) inT3. Since (𝑐 ′𝑗 , 𝑧
′
𝑗
), (𝑐 𝑗 , 𝑧 𝑗) are all dependent on two random

numbers contributed by 𝐼 and 𝑅 respectively. Naturally, under the

one-time-pad, theD is not capable of distinguishing the pairs from

each other. That implies T3 and T4 are indistinguishable.

(Hybrid 5) observe that 𝑧′𝛼 is distinguishable from 𝑐𝐴𝐵𝛼 + 𝑟
because 𝑟, 𝑟𝐴 are randomly sampled from Z𝑞 . Assuming a ran-

dom oracle, it’s obvious that the output of the random oracle 𝑐

is indistinguishable from 𝑟 as well. As 𝑐𝐴𝐵 is masked by 𝑐 , ac-

cording to the one-time-pad, we can conclude that 𝑐𝐴𝐵 is indistin-

guishable from a random number. Therefore, 𝑧′𝛼 is indistinguish-

able from 𝑟1𝛼 + 𝑟0. Same arguments applies to 𝑧𝛼 and (𝑧′
𝛽
, 𝑧𝛽).

With 𝑧𝛼 and 𝑧′𝛼 both indistinguishable from 𝑟1𝛼 + 𝑟0, it’s trivial
to see 𝑧𝛼 (𝑧𝛽) is indistinguishable from 𝑧′𝛼 (𝑧′𝛽). This directly leads

T4 = (𝐸𝐴, 𝑅0, 𝑅1, 𝑐1, 𝑐2, 𝑧
′
𝛼 , 𝑧
′
𝛽
, 𝑐 𝐽 , 𝑧 𝐽) to be inherently distinguish-

able from T5 = (𝐸𝐴, 𝑅0, 𝑅1, 𝑐1, 𝑐2, 𝑧𝛼 , 𝑧𝛽 , 𝑐 𝐽 , 𝑧 𝐽).
(Hybrid 6) T6 is identical to T . follow the same arguments we

used in Hybrid 1, we can get that the advantage ofD to distinguish

T5 and T is less than 2𝜖𝐷𝐷𝐻 . Finally, for any 𝑃𝑃𝑇 distinguisher D,

we have

|𝑃𝑟 [D(T) = 1] − 𝑃𝑟 [D(TS)] | ≤ 4𝜖𝐷𝐷𝐻 + 2𝜖𝑠𝑒 (D.1)

with all DDH, semantic security, and random oracle holds, both

of 𝜖𝐷𝐷𝐻 , 𝜖𝑠𝑒 are negligible. In conclusion, D only has negligible

advantage to distinguish T from TS, which makes T is computa-

tionally indistinguishable from TS. This completes the proof. □

21

	Abstract
	1 Introduction
	1.1 Proofs of non-knowledge
	1.2 Contributions

	2 Related Work
	2.1 Avowal, Disavowal, and Franking
	2.2 Retroactivity in Signature Schemes
	2.3 Secure Messaging and Deniability

	3 Building blocks
	3.1 Notations
	3.2 Designated Verifier Proofs
	3.3 Avowable designated verifier proofs
	3.4 Mutual ADVs
	3.5 Signatures of Knowledge

	4 Design of NOTRY
	4.1 NOTRY-Kex
	4.2 NOTRY-Avow

	5 Security
	5.1 NOTRY Proof Overview
	5.2 NOTRY Security Goals
	5.3 UC Security functionalities
	5.4 UC-security proof sketch

	6 Real World Evaluation
	6.1 Results

	7 Discussion and conclusions
	A MADV proofs
	A.1 Secure MADV proofs
	A.2 Construction of MADV proofs
	A.3 MADV proofs in NOTRY are ZKPoK

	B Functionalities
	C Proof of NOTRY-Kex-Ratchet
	C.1 Simulator construction
	C.2 Indistinguishable realization

	D Proof of NOTRY-Avow
	D.1 Simulator construction
	D.2 Indistinguishable realization

