
Keeping Up with the KEMs:

Stronger Security Notions for KEMs

and automated analysis of KEM-based protocols

Version 1.0.4, February 23, 2024∗

Cas Cremers, Alexander Dax, and Niklas Medinger

CISPA Helmholtz Center for Information Security
{cremers,alexander.dax,niklas.medinger}@cispa.de

Abstract

Key Encapsulation Mechanisms (KEMs) are a critical building block for hybrid encryption and
modern security protocols, notably in the post-quantum setting. Given the asymmetric public key of
a recipient, the primitive establishes a shared secret key between sender and recipient. In recent years,
a large number of abstract designs and concrete implementations of KEMs have been proposed, e.g.,
in the context of the NIST process for post-quantum primitives.

In this work, we (i) establish stronger security notions for KEMs, and (ii) develop a symbolic
analysis method to analyze security protocols that use KEMs. First, we generalize existing security
notions for KEMs in the computational setting, introduce several stronger security notions and prove
their relations. Our new properties formalize in which sense outputs of the KEM uniquely determine,
i.e., bind, other values. Our new binding properties can be used, e.g., to prove the absence of attacks
that were not captured by prior security notions, such as re-encapsulation attacks.

Second, we develop a family of fine-grained symbolic models that correspond to our hierarchy of
computational security notions, and are suitable for the automated analysis of KEM-based security
protocols. We encode our models as a library in the framework of the Tamarin prover. Given a
KEM-based protocol, our approach can automatically derive the minimal binding properties required
from the KEM; or, if also given a concrete KEM, can analyze if the protocol meets its security goals.
In case studies, Tamarin automatically discovers, e.g., that the key exchange protocol proposed in
the original Kyber paper [11] requires stronger properties from the KEM than were proven in [11].

1 Introduction

A Key Encapsulation Mechanism (KEM) [18] is a common building block in security protocols and
cryptographic primitives such as hybrid encryption. Intuitively, a KEM can be seen as a specialized
version of Public Key Encryption (PKE) that, instead of encrypting a payload message, specifically serves
to generate and share a symmetric key between sender and recipient. During the last decade, many
post-quantum secure KEMs have been proposed, see e.g., [2, 3,5, 6,10,11,25,32,37,39]. This has made
KEMs a prime candidate to replace Diffie-Hellman constructions, for which no practical post-quantum
secure scheme is currently available.

The traditional security notion for a KEM is a version of IND-CCA that is directly inherited from
its related Public Key Encryption (PKE) notion. Intuitively, a KEM is (IND-CCA) secure if, given
a ciphertext, an adversary that does not have the corresponding private key cannot tell the difference
between a random key and the encapsulated key. Additionally, robustness-like properties have been
proposed for KEMs in [30], which similarly inherit from their PKE counterparts. Initially, “robustness” [1]
was defined in the PKE setting as the difficulty of finding a ciphertext valid under two different encryption
keys. Phrased differently, a PKE is robust if a ciphertext “binds to” (only decrypts under) one key.

In this work, we set out to enable automated analysis of KEM-based security protocols that can
take the differences between concrete KEMs into account. We first systematically explore the possible

∗We provide a list of main changes in Appendix E.

1



binding properties of KEMs. Our work is similar in spirit to explorations in the space of digital
signatures [13, 22,34, 41] and authenticated encryption [19,24, 29, 36], where recent works have identified
many desirable binding properties for these primitives that could have prevented real-world attacks.

Our systematic analysis leads to the formulation of several core binding properties for KEMs, with
multiple variants. Whereas traditional KEM robustness properties only considered binding values to
a specific ciphertext, we propose variants that bind values to a specific output key. We argue this is
much more in line with viewing a KEM as a one-pass key exchange. Similarly, implicitly rejecting KEMs
resemble implicitly authenticated key exchanges, where correct binding properties of the established
key prevent classes of unknown key share attacks [8]. We relate our properties to properties previously
reported in the literature, as well as related notions such as contributory behavior. We provide a full
hierarchy for our properties with implications and separating examples.

We use our new hierarchy to develop novel symbolic analysis models that reflect the binding differences
between concrete KEMs. We implement our models in the framework of the Tamarin prover and apply
the methodology to several case studies.

Notably, our automated analysis uncovers an attack on an example key exchange protocol in the Kyber
documentation when instantiated with another KEM, which proves that the protocol design in fact relies
on properties of the used KEM beyond just IND-CCA. We coin this type of attack a “re-encapsulation
attack”, as it relies on the adversary encapsulating keying material that it previously obtained from
decapsulation, causing two ciphertexts to decapsulate to the same key. We also show how our novel
properties can prove the absence of such attacks.

Our main contributions are the following:
1. We introduce a novel hierarchy of computational binding properties for KEMs. We position existing

notions within our hierarchy and introduce several new properties. KEMs that satisfy our key-binding
properties will leave fewer pitfalls for protocol designers.

2. We develop a symbolic analysis methodology to automatically analyze the security of KEM-based
protocols, using fine-grained models of their KEMs, and implement them in the Tamarin prover.
Our methodology can also be used to automatically establish the KEM binding properties that are
needed for a protocol to be secure. In case studies, our automated analysis automatically finds new
attacks and missed proof obligations.

Our findings include a new type of protocol attack we coin a “re-encapsulation attack”.1 Notably, such
attacks can occur even with robust IND-CCA secure KEMs but not with KEMs that satisfy our stronger
key-binding properties.

Reproducibility and artifacts Our symbolic KEM model library, case studies, and execution instruc-
tions are available for inspection and reproducibility at [20].

Outline We provide background and further related work in the computational setting in Section 2. We
then motivate our binding properties by the example of the re-encapsulation attack in Section 3, before
developing our family of new security notions in Section 4. We then turn to developing our automated
symbolic analysis in Section 5 and report on case studies in Section 6. We conclude in Section 7.

Appendices We present proofs establishing the relationship between our KEM properties in Appen-
dices A and B. In Appendix C, we establish connections between our results and implicitly-rejecting KEMs.
Appendix D provides details on our symbolic KEM implementation.

2 Background

We now give the necessary background knowledge on KEMs and their main security notions.

KEMs and IND-CCA security

A key encapsulation scheme [18] KEM consists of three algorithms (KeyGen, Encaps, Decaps). It is
associated with a key space K and a ciphertext space C. The probabilistic key-generation algorithm
KeyGen creates a key pair (pk, sk) where pk is the public key and sk is the secret key. Given a public key

1Tamarin discovered this attack and we coined the term already in September 2022. We communicated this to one of the
authors of [7], who later found an attack from this class in their work on PQ-X3DH and also used our terminology in [7] but
could not yet refer to published work.

2



IND-CCAKEM
A :

(sk, pk)←$ KeyGen()

(c0, k0)←$ Encaps(pk)

k1 ←$ K
b←$ {0, 1}

b′ ←$AD(sk,pk,·)(c0, kb, pk)

return b = b′

D(sk, pk, c):

if c ̸= c0 then

k ← Decaps(ct, sk)

return k

Figure 1: IND-CCA experiment for KEMs. Originally introduced in [18], we re-use syntax from [11].

pk as input, the probabilistic encapsulation algorithm Encaps returns a ciphertext c ∈ C and a key k ∈ K.
In this paper, we sometimes want to view Encaps as a deterministic algorithm with explicit randomness r,
in which case we write Encaps(pk; r). To avoid ambiguity, we refer to k as the output key or the shared
secret. The deterministic decapsulation algorithm Decaps uses a public key pk, a secret key sk, and a
ciphertext c ∈ C to compute an output key k ∈ K or the error symbol ⊥ that represents rejection. If
decapsulation never returns ⊥, we call KEM an implicitly rejecting KEM. Otherwise, we call it an explicitly
rejecting KEM. We say that a KEM is ϵ-correct if for all (sk, pk)←$ KeyGen() and (c, k)←$ Encaps(pk),
it holds that Pr[Decaps(sk, c) ̸= k] ≤ ϵ.

The security of a KEM is defined through indistinguishability of the output key k ∈ K computed by
Encaps against different adversaries. The standard security notion is resistance against a chosen-ciphertext
attack (IND-CCA) [11,45]. We recall the formal definition of the IND-CCA experiment shown in Figure 1.

First, the experiment creates a key pair (sk, pk) and encapsulates against the public key, returning
(c0, k0). Next, it samples a random key k1 from the key space and a random bit b. Then, the adversary A
is given c0, the key corresponding to the bit b, and pk, and outputs its guess b′. Finally, the adversary
wins if they correctly guessed b, i.e., b = b′. During the experiment, the adversary has access to the
decapsulation oracle Decaps(sk, ·), which returns the decapsulation of any ciphertext c except for the
challenge ciphertext c0.

Further security notions

While IND-CCA is still the main security notion for KEMs, additional security notions have been proposed.
The term “robustness” was initially coined by Abdalla, Bellare, and Neven in [1] in the context of

PKE schemes. In a nutshell, robustness means it is hard to produce a ciphertext that is valid for two
different key pairs (or users). They introduce both weak (WROB) and strong (SROB) robustness. In the
weak robustness game, an adversary has to find a message m and two distinct public keys pk0 and pk1
such that encrypting m with pk0 results in a valid ciphertext when decrypted with sk1, pk1’s secret key.
In the strong robustness game, the adversary has to find a ciphertext c and two distinct public keys such
that c decrypts under both corresponding secret keys. This strengthens the adversary since c does not
have to be the result of an honest encryption but could have been specifically created by the adversary.

In [26], the authors make a case for new, stronger robustness notions by showing how the notions of [1]
fail to prevent attacks in certain applications such as fair auction protocols. First, they observe that the
original strong robustness definition does not allow the adversary to query their oracle with the secret
keys of the public keys they are challenged with; removing this restriction leads to an intermediate notion
that they call unrestricted strong robustness (USROB). Then, they go on to remove the restriction that
the adversary is challenged with honestly generated public keys. Instead, the adversary is given complete
control over the key generation, and it is up to the decryption algorithm to reject invalid key pairs, which
leads to their full robustness (FROB) notion. The USROB and FROB notions define robustness via
the decryption routine of a PKE, implicitly assuming that robustness “carries” over to the encryption
algorithm since encryption and decryption are related through correctness. However, in a setting where
the adversary can freely choose key pairs and ciphertexts, correctness may no longer hold, since the
adversary can feed values from outside the key- and ciphertext-space into the PKE algorithms. Thus, it is
necessary that the whole cryptosystem satisfies a robustness notion. To capture this, [26] defines complete
robustness (CROB), which challenges the adversary to find a ciphertext that decrypts under different key
pairs for any combination of encryption and decryption calls.

In [30], Grubbs, Maram, and Paterson define anonymity, robustness, and so-called collision freeness
for KEMs, building upon Mohassel’s work [38] that studied these notions for KEMs built from PKEs and

3



A

(sskA, spkA)←$ Kyber.KeyGen()

B

(sskB , spkB )←$ Kyber.KeyGen()

r←$ {0, 1}n
(eskA, epkA)←$ Kyber.KeyGen()
(cspkB , kspkB )← Kyber.Encaps(spkB ; r)

epkA, cspkB

r ′←$ {0, 1}n
r ′′←$ {0, 1}n

(cepkA , k
′
epkA

)← Kyber.Encaps(epkA; r
′)

(cspkA , k
′
spkA

)← Kyber.Encaps(spkA; r
′′)

k ′
spkB
← Kyber.Decaps(sskB , cspkB )

cepkA , cspkA

kepkA← Kyber.Decaps(eskA, cepkA)
kspkB ← Kyber.Decaps(sskA, cspkA)

key← KDF(kepkA , kspkA , kspkB )
key← KDF(k ′

epkA
, k ′

spkA
, k ′

spkB
)

Figure 2: The authenticated key exchange described in the original Kyber paper [11].

only defined these properties for PKEs. They investigate whether a PKE constructed via the KEM-DEM
paradigm inherits anonymity and robustness from the underlying KEM. They show that this is indeed the
case for explicitly rejecting KEMs. However, for implicitly rejecting KEMs, this is not the case in general.
Since all NIST PQC finalist KEMs are implicitly rejecting KEMs constructed via variants of the FO
transform [28], they then go on to analyze how the FO transform lifts robustness and anonymity properties
from a PKE scheme, first to the KEM built via the FO transform and then to the hybrid PKE scheme
obtained via the KEM-DEM paradigm. They apply their generic analysis of the FO transform to the NIST
PQC finalists Saber [25], Kyber [11], and Classic McEliece [6] as well as the NIST alternate candidate
FrodoKEM [10]. Another finding of [30] regarding the IND-CCA secure Classic McEliece scheme will be
relevant for our work: for any plaintext m, they find that it is possible to construct a single ciphertext c
that always decrypts to m under any Classic McEliece private key.

Fujisaki-Okamoto (FO) transform

A common construction for KEMs is the FO transform [28]. The FO transform can be used to turn
any weakly secure (i.e., IND-CPA) public-key encryption scheme into a strongly (i.e., IND-CCA) secure
KEM scheme by hashing a random message (and optionally other values) into an output key. Since the
FO transform gives cryptographers a straightforward way to create a post-quantum secure KEM from a
post-quantum secure PKE, these KEMs have surged in popularity and are now the de-facto standard
post-quantum secure KEMs. All the finalists of the KEM NIST PQC [39] process are FO-KEMs.

3 Re-encapsulation attacks

Our initial motivation for this work was to uncover the subtle difference in guarantees offered by different
KEM designs and to analyze their impact on protocols. As we will see later, this leads to a hierarchy of new
binding properties, which we used to build an automated analysis that discovered new attacks. Notably,
Tamarin found instances of a class of attacks that we call re-encapsulation attacks. While re-encapsulation
attacks were not our original motivation, they clearly illustrate important binding properties that were
not captured by previous security notions.

Intuitively, re-encapsulation attacks exploit the fact that for some KEMs, it is possible to decapsulate
a ciphertext to an output key k and then produce a second ciphertext for a different public key that
decapsulates to the same k. This can be possible even for robust IND-CCA KEMs since neither IND-
CCA nor robustness prescribe that the output key binds a unique public key. At the protocol level, a

4



re-encapsulation attack can typically manifest as an unknown-key-share attack, where two parties compute
the same key despite disagreeing on their respective partners.

We illustrate this on a concrete example, which was automatically found by Tamarin, on an authenti-
cated key exchange protocol from the Kyber paper [11] shown in Figure 2.

A
(assumes peer C)

(sskA, spkA)←$ KEM.KeyGen()

C
(adversary)

(sskB , spkB )←$ KEM.KeyGen()

B
(assumes peer A)

(sskC , spkC )←$ KEM.KeyGen()

r0 ←$ {0, 1}n
(eskA, epkA)←$ KEM.KeyGen()
(cspkB , kr0 )← KEM.Encaps(spkB ; r0 ) epkA, cspkB

(kr0 , r0 )← KEM.Decaps(sskB , cspkB )
(cspkC , kr0 )← KEM.Encaps(spkC ; r0 ) epkA, cspkC

r1 ←$ {0, 1}n
r2 ←$ {0, 1}n

(cepkA , kr1 )← KEM.Encaps(epkA; r1 )
(cspkA , kr2 )← KEM.Encaps(spkA; r2 )

kr0 ← KEM.Decaps(sskC , cspkC )
cepkA , cspkA

kr1 ← KEM.Decaps(eskA, cepkA)
kr2 ← KEM.Decaps(sskA, cspkA)

key← KDF(kr1 , kr2 , kr0 )
key← KDF(kr1 , kr2 , kr0 )

Figure 3: Re-encapsulation attack against the Authenticated Key Exchange (AKE) suggested for the
Kyber KEM [11] where the adversary C coerces honest A into unknowingly sharing the key with honest
B, who correctly thinks they are being contacted by honest A. This violates the implicit key agreement
guarantee for B, who expects to share a key with someone that assumes B is the peer. Note that this
attack is only possible when the AKE is instantiated with a KEM that does not bind the output key to
the public key, and is not possible when instantiated with Kyber.

We stress that when the key exchange protocol is instantiated with Kyber as intended by the paper,
the protocol seems secure. However, can Kyber be replaced by any other KEM? In the paper, Kyber is
only proven to be IND-CCA secure. Is IND-CCA sufficient for the protocol’s security? It turns out this is
not the case.

To show this, we consider the same key exchange protocol, but instantiated with KEM⊥
m from [31].

KEM⊥
m is an FO-KEM (cf. Section 2). In the context of our work, FO-KEMs are interesting because they

have a property that is not captured by the current syntax of KEMs: when a party A decapsulates a
ciphertext to learn k, they can also learn the message m that was used by the underlying PKE. This
is unavoidable for any PKE-based KEM because the ciphertext that contains m needs to be decrypted
before deriving k from m.

To simplify notation in this example, we assume that we can infer the randomness r from the message
m. This allows for a slightly more abstract description of the attack, but we can instantiate the attack for
any concrete FO-KEM without this assumption. We capture this by writing (k, r)← KEM.Decaps(sk, c)
in this example.

We now explain the re-encapsulation attack in Figure 3. In the attack, A and B are honest. The
adversary C wants to coerce B into establishing a key shared with A, where B mistakenly assumes
that A thinks they share the key with B; instead, A will think they share it with C. This is a so-called
unknown-key-share attack [8], which violates B’s implicit key agreement.

The attack proceeds as follows: A initiates communication with C, after which C decapsulates the
ciphertext cspkB to obtain kr0 and, more importantly, r0, which was used by A to create cspkB . Now, C
impersonates A towards B by encapsulating against B’s static public key with r0 and forwarding the
resulting ciphertext and epkA. B responds with the expected values to A, as B thinks A is communicating

5



with them. Finally, A decapsulates the ciphertexts received from B, and both A and B derive the final
key. Since we instantiated the protocol with KEM⊥

m, the keys obtained via Decaps only depend on the
randomness supplied by the encapsulating party. As a result, A and B derive the same key ; this is a
violation of implicit authentication since A thinks they now share a key with C, which does not match B’s
expectations.

One might wonder whether a KEM with strong robustness properties would prevent this attack.
Unfortunately, this is not the case: robustness properties reason about a single ciphertext c that should not
decapsulate to the same key under different key pairs. However, our re-encapsulation attack revolves around
two different ciphertexts: based on A’s ciphertext, the malicious C creates a different ciphertext cspkC
that decapsulates to the same key as cspkB by reusing the randomness r0. For more details, see Cons. B.2.

4 New security notions for KEMs

ID P Q Property Explanation Relation to existing notions

1 {k} {ct} X-BIND-K-CT Output key binds the ciphertext.

2 {k} {pk} X-BIND-K-PK Output key binds the public key.

3 {ct} {k} X-BIND-CT -K Ciphertext binds the output key.

4 {ct} {pk} X-BIND-CT -PK Ciphertext binds the public key. HON -BIND-CT -PK is equivalent to SROB [30].

5 {k, ct} {pk} X-BIND-K,CT -PK Together, the output key and ci-
phertext bind the public key.

HON -BIND-K,CT -PK is equivalent to SCFR [30].

6 {pk, k} {ct} X-BIND-PK,K-CT Together, the public key and the
output key bind the ciphertext.

LEAK -BIND-PK,K-CT is equivalent to CCR [4].

Table 1: The six core instantiations of our generic binding property X-BIND-P -Q before choosing
X ∈ {HON ,LEAK ,MAL}.

We now turn to our first main objective: to establish a generic family of binding properties of KEMs.
We first identify the elements that may be candidates for binding. The syntax of a KEM includes a
long-term key pair, a ciphertext, and an (output) key. In some formalizations, the randomness of the
KEM is made explicit, but we are looking for universal black-box notions that do not require us to know
the internals of a KEM. With respect to the long-term key pair, we note that we want the guarantees to
be relevant for both sender and recipient, which means we only consider the public key as the identifying
aspect of the key pair. This leaves us with pk, ct, and k: we expect that for each invocation of the KEM’s
encapsulation with the same pk, the outputs ct and k would be unique.

We can thus wonder: if we have a specific instance of one of these, does that mean the others are
uniquely determined? If we have a ciphertext, can it only be decapsulated by one key?

4.1 Design choices

To define our notions, we make the following design decisions:

1. We consider the set of potential binding elements BE = {pk, ct, k}.

2. We will consider if an instance of a set P ⊂ BE “binds” some instance of another set of elements
Q ⊂ BE with respect to decapsulation with the KEM. Thus, “P binds Q” if for fixed instances of P
there are no collisions in the instances of Q.

3. When using a KEM, pk is re-used in multiple encapsulations by design. Thus, pk does not bind any
values on its own, and we hence exclude it from occurring in P alone. However, ciphertexts or keys
might bind a public key pk, so it may occur in Q alone.

4. Adding multiple elements in the set Q corresponds to a logical “and” of the singleton versions, i.e.,
we have that P binds {q1, . . . , qn} iff for all i ∈ [n] . P binds {qi}. We therefore choose to focus on
the core properties, i.e., with |Q| = 1.

5. We require P and Q to be disjoint: elements that would occur on both sides are trivially bound.
Additionally, we require both P and Q to be non-empty.

6



Q ∈ Q =
{
{pk}, {k}, {ct}

}
P ∈ P =

{
{k}, {ct}, {k, ct}, {pk, k}, {pk, ct}

}
X ∈ {HON ,LEAK ,MAL}

X-BIND-P -Q

Figure 4: Design space and naming conventions for our security properties: For a KEM scheme that is X-
BIND-P -Q secure, we say that “P [honestly|leak|maliciously] binds Q”, using “honestly” when X = HON ,
“leak” when X = LEAK , and “maliciously” when X = MAL. We commonly omit set brackets in the
notation when clear from the context, and we use uppercase for all characters. For example, HON -BIND-
CT -PK corresponds to “ct honestly binds pk.”

6. For all of our properties, we will consider honest variants (i.e., the involved key pairs are output by
the key generation algorithm of the KEM), leakage variants (i.e., the involved key pairs are output by
the key generation algorithm of the KEM and then leaked to the adversary), and malicious variants
(i.e., the adversary can create the key pairs any way they like in addition to the key generation).

Based on the above choices, we have five choices for P . We refer to this set of choices as P ={
{k}, {ct}, {k, ct}, {pk, k}, {pk, ct}

}
. For Q, we can choose from the set Q =

{
{pk}, {k}, {ct}

}
. Without

disjointness this would yield 5× 3 options, but since we require the sets to be disjoint, this yields seven
combinations.

One of these seven cases is the case where P = {pk, ct} and Q = {k}. This property holds when the
public key pair and the ciphertext, which are the inputs to Decaps, bind the output key. If Decaps is
deterministic, this is trivially true. We will therefore not consider this case in the remainder of the paper,
leaving us with six combinations that we will investigate further, which we show in Table 1.

4.2 Naming conventions

Naming security notions is hard; once names are fixed, they tend to stick around for (too) long. We opt
here for clarity and being descriptive at the cost of some verbosity. In the literature, it is more common to
collapse all of these properties into “robustness” or “collision-freeness”, but this becomes very ambiguous
because one can imagine many subtle variants, depending on the exact robust/collision-free element in the
construction. This has lead to a long list of non-descriptive names in the literature, including: Robustness,
Fuller Robustness (FROB), even Fuller Robustness (eFROB), CROB, KROB, SROB, USROB, WROB,
XROB, SCFR, WCFR, CCR, etc. In contrast, we illustrate our descriptive naming scheme for our binding
properties in Figure 4.

4.3 Generic binding notions of KEMs

We now introduce the generic security notion for our class of binding properties. In Figure 5 we show the
generic game for X ∈ {HON ,LEAK}, and in Figure 6 we show the game when X = MAL.

Definition 4.1. Let KEM be a key encapsulation mechanism. Let X ∈ {HON , LEAK , MAL}, let P ∈ P
and Q ∈ Q such that P ∩Q = ∅. We say that KEM is X-BIND-P -Q-secure iff for any PPT adversary A,
the probability that X-BIND-P -QKEM

A returns 1 (true) is negligible.

In our definitions, X ∈ {HON ,LEAK ,MAL} indicates the adversary’s control over the considered key
pairs. In the honest case X = HON , two honestly generated key pairs are considered, and we give the
adversary access to a decapsulation oracle Db′(skb′ , ·), where b ∈ {0, 1}, that they can use to decapsulate
ciphertexts with either secret key. For the leak case X = LEAK , we also give the adversary access to
both secret keys. In the malicious case X = MAL, the adversary can choose or construct the key pairs in
any way they want. For X ̸= HON we do not need a decapsulation oracle since the adversary already has
the secret keys.

If X ∈ {HON ,LEAK}, we check whether pk ∈ P or pk ∈ Q and choose the key pairs for the second
call to Decaps accordingly. For X = MAL, the adversary chooses the key pairs.

The difference between X = LEAK and X = HON is whether the adversary only has access to a
decapsulation oracle or has access to the secret keys. Given the secret keys, the adversary can decapsulate
ciphertexts and learn intermediate values of the decapsulation. If they only have the oracle, they only
learn the output of decapsulation but no intermediate values.

7



X-BIND-P -QKEM
A :

sk0, pk0 ← KeyGen()

sk1, pk1 ← KeyGen()

if pk ∈ Q : b← 1

else if pk ∈ P : b← 0

else : b, st← A()

if X = HON : ct0, ct1 ← ADb′ (skb′ ,·)(pk0, pk1, st)

if X = LEAK : ct0, ct1 ← A(pk0, sk0, pk1, sk1, st)
k0 ← KEM.Decaps(sk0, pk0, ct0)

k1 ← KEM.Decaps(skb, pkb, ct1)

if k0 = ⊥ ∨ k1 = ⊥ : return 0

// A wins if ¬
(
(∀x ∈ P . x0 = x1) =⇒ (∀y ∈ Q . y0 = y1)

)
return ∀x ∈ P . x0 = x1 ∧ ∃y ∈ Q . y0 ̸= y1

Figure 5: Generic game for our new binding notions X-BIND-P -Q for X ∈ {HON ,LEAK}.

MAL-BIND-P -QKEM
A :

g, st← A(st)
if g = 1 :

(sk0, pk0), (sk1, pk1), ct0, ct1 ← A(st)
k0 ← KEM.Decaps(sk0, pk0, ct0)

k1 ← KEM.Decaps(sk1, pk1, ct1)

if g = 2 :

(sk0, pk0), (sk1, pk1), r0, ct1 ← A(st)
k0, ct0 ← KEM.Encaps(pk0; r0)

k1 ← KEM.Decaps(sk1, pk1, ct1)

if g ̸∈ {1, 2} :
(sk0, pk0), (sk1, pk1), r0, r1 ← A(st)
k0, ct0 ← KEM.Encaps(pk0; r0)

k1, ct1 ← KEM.Encaps(pk1; r1)

if k0 = ⊥ ∨ k1 = ⊥ : return 0

// A wins if ¬
(
(∀x ∈ P . x0 = x1) =⇒ (∀y ∈ Q . y0 = y1)

)
return ∀x ∈ P . x0 = x1 ∧ ∃y ∈ Q . y0 ̸= y1

Figure 6: Generic game for our new binding notions MAL-BIND-P -Q . The adversary can use g to choose
whether they want to find a collision between two calls to Encaps, Decaps or a single call to both, in line
with [26].

4.4 Relating binding to contributive behavior

In the context of other cryptographic primitives, the notion of contributive (or contributory) behavior
exists. Intuitively, in a two-party protocol that yields some randomized output, a protocol is contributive
if the output is not only determined by one of the parties, but both contribute to the results.

For example, in a standard FO-KEM such as KEM⊥
m from [31], the randomness sampled for encapsula-

tion is the direct (and only) input for the key derivation function (KDF). Thus, for KEM⊥
m, the only party

that contributes to the output key is the sender. We say that such KEMs are non-contributory and can
enable re-encapsulation attacks, as described in Section 3.

In contrast, if the KEM’s key binds the public key (e.g., by including the public key in the KDF), then
the KEM satisfies MAL-BIND-K-PK, and we say that the KEM is contributory because the recipients’
key contributes to the output key.

8



If the KEM’s key binds the ciphertext (MAL-BIND-K-CT ), it is not immediately clear whether this
is enough to make the KEM contributory, and it depends on the collision freeness [30] (SCFR) of the
underlying PKE. If the underlying PKE is not SCFR, i.e., it is possible to decrypt a single ciphertext to
the same message with different secret keys, then the KEM is not contributory. The reason for that is that
a single ciphertext is valid for multiple public keys, and thus the identity of the receiver is not bound by
including the ciphertext in the output key of the KEM. On the other hand, if the PKE is strongly collision
free (or even robust) then including the ciphertext makes the KEM contributory. See Corollary 4.9
and Section 4.7 for more details.

4.5 Relationship to other Properties

Our generic security notions cover a wide array of different properties and generalize existing security
properties in the literature. In this section, we give a short overview of other properties that can be
expressed using our generic notions.

When P = {ct} and Q = {pk}, our generic games resemble different robustness notions. For example,
HON -BIND-CT -PK corresponds to strong robustness (SROB) from [30] and HON -BIND-K,CT -PK
corresponds to strong collision freeness from [30]. Interestingly, the strong robustness notion from [1],
which coined the term in the context of PKEs, is weaker than both our HON -BIND-CT -PK notion and
the strong robustness notion from [30], since they both allow the adversary to query an oracle; this was
not possible in the original definition. As an example, we compare our notions to the SROB and SCFR
notions from [30] in Figure 7.

The properties introduced for PKEs in [26] are formulated analogously to ours: complete robustness
(CROB) resembles MAL-BIND-CT -PK, and their intermediate notion unrestricted strong robustness
(USROB) resembles our HON -BIND-CT -PK notion.

Our HON -BIND-K,CT -PK is equivalent to the strong collision freeness property from [30]; it is a
weaker version of SROB, where an adversary has to decapsulate a single ciphertext to the same output
key for distinct public keys.

LEAK -BIND-PK,K-CT matches the ciphertext collision resistance (CCR) property for KEMs
from [4].

4.6 Relations and implications

In this section, we show the relations between our various binding notions. We provide the proofs and
separating examples in Appendix B and Appendix A and only show the main results here, resulting in the
hierarchy in Figure 8. We show that our properties are largely orthogonal for different choices of P and
Q : there exist KEMs that have a certain property but do not meet the other properties in our hierarchy.
We summarize these results in Table 4.

We first formalize the ordering of our threat models.

Lemma 4.2. Let KEM = (KeyGen,Encaps,Decaps) be a key encapsulation mechanism. If KEM is MAL-
BIND-P-Q-secure, then KEM is also LEAK-BIND-P-Q-secure.

Lemma 4.3. Let KEM = (KeyGen,Encaps,Decaps) be a key encapsulation mechanism. If KEM is LEAK-
BIND-P-Q-secure, then KEM is also HON -BIND-P-Q-secure.

The next lemma states that adding elements to P or removing elements from Q weakens a property.
Intuitively, if, e.g., k binds pk , then k and ct also bind pk (since it is already bound by k).

Lemma 4.4. Let KEM = (KeyGen,Encaps,Decaps) be a key encapsulation mechanism. For X ∈
{MAL,LEAK ,HON }, if KEM is X-BIND-P-Q ′-secure and P ⊆ P ′ ∧ Q ⊆ Q ′, then KEM is also
X-BIND-P ′-Q-secure.

Theorem 4.5. Let KEM = (KeyGen,Encaps,Decaps) be a key encapsulation mechanism. For X ∈
{MAL,LEAK ,HON }, if KEM is X-BIND-P-Q ′-secure, X-BIND-Q-R′-secure and P ⊆ P ′, Q ⊆ Q ′∪P ′,
and R ⊆ R′, then KEM is also X-BIND-P ′-R-secure.

In the following, we will investigate the relation between X-BIND-CT -PK and X-BIND-CT -K more
closely. First, we will prove that the former implies the latter when X = HON or X = LEAK . Then, we
will show that this is not the case when X = MAL.

Lemma 4.6. Let KEM be a KEM that is HON -BIND-CT -PK secure. Then KEM is also HON -BIND-
CT -K secure.

9



SROB-CCAKEM
A :

(sk0, pk0)← KeyGen()

(sk1, pk1)← KeyGen()

ct← AD(·,·)(pk0, pk1)

k0 ← KEM.Decaps(sk0, pk0, ct)

k1 ← KEM.Decaps(sk1, pk1, ct)

return k0 ̸= ⊥ ∧ k0 ̸= ⊥

SCFR-CCAKEM
A :

(sk0, pk0)← KeyGen()

(sk1, pk1)← KeyGen()

ct← AD(·,·)(pk0, pk1)

k0 ← KEM.Decaps(sk0, pk0, ct)

k1 ← KEM.Decaps(sk1, pk1, ct)

return k0 = k0 ̸= ⊥

HON -BIND-CT -PKKEM
A :

sk0, pk0 ← KeyGen()

sk1, pk1 ← KeyGen()

ct← ADb′ (skb′ ,·)(pk0, pk1)

k0 ← KEM.Decaps(sk0, pk0, ct)

k1 ← KEM.Decaps(sk1, pk1, ct)

if k0 = ⊥ ∨ k1 = ⊥
return 0

return pk0 ̸= pk1

HON -BIND-K,CT -PKKEM
A :

sk0, pk0 ← KeyGen()

sk1, pk1 ← KeyGen()

ct← ADb′ (skb′ ,·)(pk0, pk1)

k0 ← KEM.Decaps(sk0, pk0, ct)

k1 ← KEM.Decaps(sk1, pk1, ct)

if k0 = ⊥ ∨ k1 = ⊥
return 0

return k0 = k1 ∧ pk0 ̸= pk1

LEAK -BIND-CT -PKKEM
A :

sk0, pk0 ← KeyGen()

sk1, pk1 ← KeyGen()

ct← A(pk0, sk0, pk1, sk1)
k0 ← KEM.Decaps(sk0, pk0, ct)

k1 ← KEM.Decaps(sk1, pk1, ct)

if k0 = ⊥ ∨ k1 = ⊥
return 0

return pk0 ̸= pk1

LEAK -BIND-K,CT -PKKEM
A :

sk0, pk0 ← KeyGen()

sk1, pk1 ← KeyGen()

ct← A(pk0, sk0, pk1, sk1)
k0 ← KEM.Decaps(sk0, pk0, ct)

k1 ← KEM.Decaps(sk1, pk1, ct)

if k0 = ⊥ ∨ k1 = ⊥
return 0

return k0 = k1 ∧ pk0 ̸= pk1

Figure 7: At the top, the strong robustness and strong collision freeness definitions from [30].In the middle,
our HON -BIND-CT -PK and HON -BIND-K,CT -PK definitions which correspond to SROB and SCFR
respectively. At the bottom, our LEAK -BIND-CT -PK and LEAK -BIND-K,CT -PK definitions which
give the adversary access to the secret keys.

Lemma 4.7. Let KEM be a KEM that is LEAK-BIND-CT -PK secure. Then KEM is also LEAK-BIND-
CT -K secure.

Proposition 4.8. There exists a KEM scheme KEM that is MAL-BIND-CT -PK but not MAL-BIND-
CT -K.

These results give rise to a hierarchy for our properties, which we visualize in Figure 8. We want to
highlight that for so-called implicitly rejecting KEMs, i.e., KEMs whose Decaps algorithm never returns
⊥, we establish a reduced hierarchy in Appendix C by showing that they cannot independently bind
ciphertext to other values. As a result, implicitly rejecting KEMs cannot meet properties like HON -
BIND-CT -PK, i.e., be robust.

4.7 Ensuring strong binding properties

In nearly all KEM designs, the last step of encapsulation and decapsulation is to produce the output key
by using a KDF (Key Derivation Function); if not, such a step can be added. In order to ensure that the
key binds another element, we can simply add this element to the KDF inputs. Thus, to achieve MAL-
BIND-K-CT and MAL-BIND-K-PK, we can simply add CT and PK to the input of the key derivation
function. Of course, this is not the only way to achieve such binding properties: Leaving out either CT
or PK does not mean that the corresponding property does not hold; it simply means there is a proof
obligation to show that a KEM meets such a binding property without this construction.

10



MAL-BIND-P -Q

LEAK -BIND-P -Q

HON -BIND-P -Q

×

X-BIND-K-CT

X-BIND-PK,K-CT

X-BIND-K-PK X-BIND-CT -PK

X-BIND-CT -KX-BIND-K,CT -PK

Lemmas 4.6 and 4.7

(X ∈ {HON ,LEAK})

Lemma 4.4

Lemma 4.4 Lemma 4.4

Lemma 4.2

Lemma 4.3

Figure 8: General hierarchy of binding properties for KEMs. An edge from A to B indicates that any
KEM that is A-binding is also B-binding. Missing edges represent the existence of separating examples,
which we show in Table 4. The hierarchy left of the × denotes the implications between the different
attacker capabilities {MAL, LEAK, HON}. The hierarchy on the right of the × represents the implications
between our binding properties, independent of the attacker capabilities. We can combine both hierarchies
by choosing a node from the left and instantiating P and Q according to a node from the right, resulting
in, for instance, an implication between MAL-BIND-CT -PK and HON -BIND-K,CT -PK. For X =
MAL, X-BIND-CT -PK and X-BIND-CT -K are incomparable. The orange edge indicates that for X ∈
{HON, LEAK}, X-BIND-CT -PK implies X-BIND-CT -K.

In practice, and in particular for post-quantum KEMs, the public key can be substantially larger
than the ciphertext. It may therefore be desirable to avoid directly including the public key in the key
derivation. For this case, we give Corollary 4.9 below. It implies that KEM designers who want to achieve
X-BIND-K-PK but want to avoid using the public key in the KDF can instead use a robust PKE and
include the ciphertext in the KDF, which will yield the desired binding to the public key.

Corollary 4.9. Let KEM = (KeyGen,Encaps,Decaps) be a key encapsulation mechanism. For all X ∈
{MAL,HON } we have that if KEM is X-BIND-K-CT -secure and X-BIND-K,CT -PK-secure, then KEM
is also X-BIND-K-PK-secure.

We provide the proof in A.9 in the appendix.

5 Symbolic Analysis of KEMs

We now turn to our second main objective: to develop a formal analysis framework for automatically
analyzing security protocols that use KEMs. Our framework is rooted in the symbolic model of cryptography.
In this model, cryptographic messages are represented as abstract terms from a fixed algebra, such as
sign(m, sk) for message m signed with secret key sk. Equational theories over terms are used to encode
properties of cryptographic primitives, like the signature verification equation verify(sign(m, sk),m, pk(sk))
= true.

The symbolic model gained prominence, especially with the advent of tools like the Tamarin Prover [42]
and ProVerif [9] enabling automated security analysis of complex security protocols.

We start by examining existing symbolic models of KEMs, used in the analysis of security protocols
with tools such as Tamarin Prover and ProVerif, exploring the extent to which they satisfy our specified
properties. We then introduce Tamarin in more detail, as we will use it to implement our framework.
Tamarin is one of the state-of-the-art analysis tools, which has demonstrated its efficacy with similar
approaches [17, 34]. Lastly, we create new fine-grained symbolic models for KEMs that allow us to
configure which cryptographic properties they have, allowing us to precisely model real KEM schemes in
the symbolic model.

5.1 Previous Symbolic KEM Models

We are not the first to model KEMs in the symbolic model. Some KEM-based protocols, e.g., KEMTLS [16,
43, 44], post-quantum Wireguard [33], and PQXDH [7], were recently analyzed in the symbolic model.
In this section, we investigate how these case studies model KEMs, which of our binding properties
these models achieve, and why a class of symbolic models for KEMs implicitly assumes certain binding

11



properties, highlighting the need for a new symbolic model that can model any combination of our binding
properties.

In [16], the authors create and analyze two Tamarin models of KEMTLS, a variant of TLS that uses
KEMs to achieve post-quantum security. Similarly, [33] uses Tamarin to analyze a KEM-based variant of
Wireguard. The authors of [7] use another tool, ProVerif, to analyze the PQXDH protocol. In all of these
case studies, function symbols and equational theories are used to model the behavior of KEMs. In fact,
all but one model from [16] use the built-in equational theories for public key encryption to model KEMs.
Concretely, they use the function symbols aenc/2, denoting encryption, and adec/2, denoting decryption.
The function symbols are related through the equation adec(sk, aenc(pk(sk),msg)) = msg and mapped
to the standard KEM API in the following way:

Encaps(pk(sk), r) = aenc(pk(sk), r)

Decaps(sk, ct) = adec(sk, ct)

Note that Encaps does not return a tuple of ciphertext and key but only the ciphertext. Instead, r directly
serves as the output key. One model from [16] uses a slightly different approach: instead of using r directly
as the output key, they incoporate the receiver’s public key and model the output key as a function
kdf(r , pk). These models for KEMs are not surprising, since PKEs and KEMs are also strongly related in
the computational model.

However, unlike the computational model, the above symbolic models encode much stronger assumptions
on KEMs than just IND-CCA. Because the output key and the ciphertext are deterministic functions of
pk and r , they bind these values by construction. That is, given an output key (or a ciphertext), the
corresponding public key and randomness are uniquely determined. In fact, the reverse is also true. Thus,
any symbolic model that computes, for instance, the ciphertext as ct = Encaps(pk , r) is MAL-BIND-
CT -PK, MAL-BIND-CT -K (assuming k is also a function of pk and r), and MAL-BIND-PK,K-CT by
construction.

As a result, the second KEM model from [16] implicitly assumes that the KEM satisfies all of our
MAL binding properties. This means they cannot detect, e.g., re-encapsulation attacks. On the other
hand, the first model from [16] and the models from [7,33] do not assume HON -BIND-K-PK or HON -
BIND-K-CT , because the output key is independent of the public key. Consequently, this model might
detect some of our re-encapsulation attacks, which the findings of [7] confirm.

5.2 The Tamarin prover

Tamarin [42] is a tool for the automated analysis of protocols in the symbolic setting. It takes a protocol
description in a custom modeling language and security properties specified in a fragment of first-order
logic as input. The modeling language allows a user to specify the protocol rules and the adversary’s
capabilities via multiset rewriting rules. These rules induce a labeled transition system. Tamarin then
tries to verify whether the given security properties hold for all traces of the transition system. We will
now give more background on some features of the Tamarin prover that are necessary to understand the
remainder of the paper.

A multiset of facts serves as the state of the labeled transition system. The rewriting rules manipulate
this state by adding and removing facts. Facts are special user-defined symbols that contain terms and
represent the state of the protocol. The state of the adversary (i.e., their knowledge) is modeled by a
distinct set of facts. An example of a fact would be Alice(pk, sk), which models Alice who is in possession
of some key pair (pk, sk).

A labeled multiset rewriting rule looks as follows:

[Alice(pk, sk, ct), !KeyValues(k)] (1)

−[Decaps(k, ct, pk, sk)]→ (2)

[Out(k)] (3)

The lines (1), (2), and (3) contain multisets of facts called premises, actions, and conclusions, respectively.
Facts annotated with a ! are called persistent and are not removed from the multiset when a rule is
executed. A rule can be executed in a given state if the premises are a subset of the current state. To
execute the rule, Tamarin removes the premises from the state and adds the conclusions to it.

The execution of the protocol starts with the empty multiset as state and uses the rules to transition
from one state to another. Rules can be used any number of times. The resulting sequence of actions is
called a trace.

12



The user can specify formulas in a fragment of first-order logic that features quantification over terms
and timepoints. In these formulas, the user can refer to the actions of the protocol and specify security
properties. We write an action F at a timepoint #t as F(terms)@#t . The first-order logic fragment
features the usual boolean connectives, ordering and equality of timepoints.

For our work, we also make use of Tamarin’s restrictions. Restrictions are formulas like the security
properties, but they are used to constrain the execution of the protocol: if a trace violates any restriction,
Tamarin immediately discards it. Commonly, restrictions are used to model the conditional execution of
rules based on the equality of terms or to ensure that certain rules are executed only once. However, recent
work [17,34] has used restrictions to create event-based models of cryptography that directly encode the
properties of cryptographic primitives as defined by their security definitions, only disallowing behavior
that is explicitly forbidden by the security notion. We will follow a similar approach to create our own
symbolic models for KEMs.

5.3 Improved Symbolic Model for KEMs

In Section 5.1, we investigated which of our binding properties are met by existing symbolic models for
KEMs, which properties are not met, and which properties are always implicitly assumed by function-
symbol based models. While the approaches used in [7,33,43,44] can capture some specific KEM properties,
they can not model most combinations of our binding properties.

In this section, we rectify this by developing a new symbolic model for KEMs that allows the user to
specify exactly which binding properties the model gives. Like the Symbolic Verification of Signatures model
from [34], our model achieves this by only relying on the implications that the standard computational
security definitions, e.g, IND-CCA, and our binding properties give, which makes it perfectly suited for
verification.

Specification We observe that the definitions of correctness and IND-CCA only hold when the key
pair that is used is honestly generated. When this is not the case, no guarantees are given. Correctness
requires that the decapsulation of a ciphertext created by encapsulating against an honest public key
returns the same output key for both algorithms. IND-CCA requires that the output key, created by a
encapsulating against an honest public key, is indistinguishable from true randomness (even when the
adversary has access to a decryption oracle). Additionally, we note that Encaps can be a probabilistic
algorithm, while Decaps is deterministic.

We now build a symbolic model that follows these constraints but allows for any other behavior. To
do so, we model the key- and ciphertext space of a KEM and allow the adversary to choose arbitrary
values from them as the result of Encaps and Decaps, as long as they respect the following constraints:

1. If the public key was honestly generated, an Encaps computation must return a fresh key different
from any other Encaps computation.

2. If the public key was honestly generated, Encaps and Decaps computations using the same ciphertext
and public key pair must return the same output key.

3. Given X-BIND-P -Q , any pair of calls to Decaps (and/or Encaps if X = MAL) must agree on Q if
the parameters in P are equal.

4. Multiple computations of Decaps with the same inputs give the same result.

5. Any Encaps computation by the adversary only results in fresh keys or known values from the key
space.

Constraints 1) and 2) model correctness and IND-CCA respectively, 3) ensures that the relevant
binding properties are met, 4) makes Decaps deterministic, and 5) models the adversary computing a
derandomized Encaps as seen in Section 3. We overapproximate this by allowing the adversary to let
Encaps result in any element of the key space if they were already aware of this value, as letting the
adversary choose any value would break IND-CCA.

Additionally, we add an option that, when enabled, specifies that Encaps and Decaps only work on
honestly generated key pairs, rejecting any other values. This allows us to prevent the adversary from
breaking IND-CCA and correctness by feeding bogus values into Encaps and Decaps. To achieve this, we
require that a user of our library annotates rules in which the protocol honestly generates a public key pk
with an action GoodKey(pk).

13



Due to space limitations, we only give a brief example of how our KEM model works. Recall the
previous multiset rewriting rule. It shows how Alice, who posses a public key pk, a secret key sk, and a
ciphertext ct, decapsulates with these values to obtain key k. As long as the semantic constraints of our
KEM model are fulfilled, the key can be an arbitrary value from the key space, represented by !KeyValues.
Note that the key space only contains atomic values, which allows our KEM model to avoid achieving
certain binding properties, e.g., MAL-BIND-CT -PK, by construction, which was not possible for previous
symbolic models (see Section 5.1).

Definition 5.1. HON-BIND-K-PK restriction

∀ k ct1 ct2 pk1 pk2 sk1 sk2 #i #j #l #m .

Decaps(k , ct1 , pk1 , sk1 )@#i ∧ Decaps(k , ct2 , pk2 , sk2 )@#j

∧ GoodKey(pk1 )@#l ∧ GoodKey(pk2 )@#m

⇒ (pk1 = pk2 )

In Definition 5.1, we show an example of how we formulate our binding properties as restrictions
in Tamarin. For a more detailed description of our implementation in Tamarin, we refer the reader
to Appendix D.

6 Case Studies

#Lemmas KEM-Binding Dependent Runtime for
Model Secrecy Auth. Auxiliary #Tamarin calls Protocol Properties Initial Configurations

Onepass AKE 5 4 3 48 Implicit Key Authentication (Init.) ∼ 1m
Σ′

0-protocol 3 6 0 36 Implicit Key Authentication (Init.), SK-security ∼ 6m
PQ-SPDM 6 12 8 104 ∼ 38m
Kyber-AKE 4 2 7 52 Implicit Key Authentication (Init., Resp.) ∼ 4h10m

Table 2: Summary of the analysis for our initial configurations. For the listed protocol properties, Tamarin
returns different verification results in our initial configurations. For the minimal binding properties
required to prove them, we refer to Table 3.

This section showcases the practicality of our approach through case studies. We begin with a brief
overview of the evaluation methodology applied to evaluate the various Authenticated Key Exchange
(AKE) protocols we modelled as case studies. In Section 6.2, we summarize the outcome of the chosen
case studies. As case studies, we cover diverse post-quantum AKE protocols from the literature like the
Kyber-AKE [11] or PQ-SPDM [46,47], detailed in Sections 6.3 to 6.6.

6.1 Methodology

Our novel KEM model allows us to reason about both (i) an adversary that is restricted to use honestly
generated, valid public key pairs as required by the KEM scheme and (ii) arbitrary, potentially malicious
keys. Together with the option to use any combination of our specified binding properties from Section 4,
this leads to a high number of configurations. Thus, it is infeasible to analyze each security property of
every case study with every configuration of our KEM model. To analyze the influence of our binding
notions on a protocol’s security properties, we develop a methodology that allows us to discover the
minimal requirements on a KEM that are needed to prove the property, while pruning the search space.

Initial Configuration Testing First, we analyze each statement of a protocol with the following initial
configurations:

1. Only keys from KeyGen and no binding properties

2. Only keys from KeyGen and all leak binding properties

3. Any keys and no binding properties

4. Any keys and all malicious binding properties

If, for a specific property of a protocol, Tamarin terminates with the same result in each of these
configurations, we conclude that the protocol gives this property independent of any binding properties of
the KEM or maliciously generated key pairs.

14



Model Protocol Property Minimal Binding Properties

One-pass AKE Implicit Key Authentication (Init.) X-BIND-K-PK { X-BIND-K-CT , X-BIND-K,CT -PK }
Σ′

0-protocol Implicit Key Authentication (Init.) X-BIND-K-PK { X-BIND-K-CT , X-BIND-K,CT -PK }
SK-Security HON -BIND-CT -K

MAL-BIND-CT -K MAL-BIND-PK-K
Kyber-AKE Implicit Key Authentication (Init.) X-BIND-K-PK { X-BIND-K-CT , X-BIND-K,CT -PK }

Implicit Key Authentication (Resp.) X-BIND-K-PK { X-BIND-K-CT , X-BIND-K,CT -PK }

Table 3: Minimal binding properties required by Tamarin to prove the property of an AKE
model. We omit the set brackets for singleton sets like HON -BIND-CT -K. We write X-BIND-
P-Q without specifying X to indicate that this set of properties is a solution for X = MAL
when all keys are allowed and for X = HON when only honestly generated keys are allowed.

Key-Based Inference If Tamarin falsifies a property when we allow malicious keys, we infer that the
protocol indeed relies on honestly generated key pairs to give the property.

Binding Property Analysis In the event that Tamarin gives different results when we change the
binding property, we proceed with a more in-depth analysis:

1. For both the LEAK and MAL setting, we construct a directed acyclic graph whose nodes correspond
to the possible combinations of our binding properties. We add an edge from node u to node v iff
the properties that correspond to u imply the properties that correspond to v .

2. To efficiently compute for which combinations of properties a given statement is valid, we explore the
graph as follows: We pick an unexplored node randomly and try to verify the statement using the
corresponding binding properties. If Tamarin proves the statement, we mark the node as proven
and recursively mark all of its parent nodes as proven too. We know that Tamarin will also prove
the statement for the parent nodes since their corresponding properties imply the properties that
were sufficient for a proof. If Tamarin falsifies the statement we mark the node as falsified, and
recursively mark all of its child nodes as falsified too. This result is also valid for the child nodes
because the corresponding binding properties of these nodes are weaker, removing fewer traces from
the model and thus allowing for the same counterexample. In the event of a timeout, we mark the
node as timed out and continue.

3. Once all nodes are marked, we extract the nodes for which Tamarin could still verify the statement
but for whose direct child nodes Tamarin cannot verify the statement. The properties corresponding
to these nodes are the minimal binding properties Tamarin needs to verify the statement.

6.2 Discussion of Results

We ran our models on an Intel(R) Xeon(R) CPU E5-4650L 2.60GHz machine with 1TB of RAM and 4
threads per Tamarin call. The execution time of our full methodology was approximately ∼16h30m.

We summarize the results of our initial configuration (see Section 6.1) in Table 2. We can observe that
the specified security properties of the one-pass AKE, Kyber-AKE, and Σ′

0-protocol do not solely rely on
IND-CCA but also on other binding properties of the KEM. Details regarding this can be found in the
corresponding sections 6.3, 6.4, and 6.6.

In Table 3 we show the concrete binding properties the aforementioned protocols require of their KEMs
to achieve the desired security properties.

Challenges The newly introduced symbolic definitions of Encaps and Decaps can now result in arbitrary
values from the key- and ciphertext space instead of only compound terms built from their inputs–vastly
increasing the size of the search space. As the default heuristics of Tamarin do not prioritize solving,
e.g., Encaps goals, when exploring the search space, we additionally develop proof tactics, tailored towards
our KEM model. These tactics are prioritizing goals related to the output key, the KEM secret keys, and
key-derivation functions, as well as deprioritizing goals related to ciphertexts.

15



6.3 One-Pass AKE

As a starting point, we model a one-pass AKE based on the SIKE protocol from [31], which we show
in Figure 9. Note that in this protocol the Recipient does not receive standard mutual authentication
guarantees since it cannot verify any information from the Initiator. Thus, we focus on the properties the
Initiator can achieve.

I

knows IDR

R

(ltkR, IDR)←$ KeyGen()

(c, k)← Encaps(IDR) c

k ← Decaps(ltkR, c)

Figure 9: Simplified one-pass AKE.

In particular, we are interested in authentication properties like Implicit Key Authentication (as defined
in Definition 6.1). However, in this protocol, neither the Initiator nor the Recipient can achieve it, since
only one party contributes to the final key. Thus, we focus on a weaker, unilateral version, where only the
identity of the Recipient has to match in both sessions, i.e., both Initiator and Recipient agree on the
Recipient’s identity when they derive the same shared key.

We find that the Initiator can achieve this weaker property when the protocol uses a KEM that is
at least X-BIND-K-PK-secure. When the KEM does not have this binding property, the adversary
can mount a re-encapsulation attack against the Initiator by leaking ltkR of the Recipient and then
re-encapsulating towards another Recipient, resulting in two Recipient sessions with the same key.

Definition 6.1. Implicit Key Authentication Initiator

∀ id1 id2 pkI1 pkI2 pkR1 pkR2 k ct1 ct2 #i #j .

FinishInitiator(id1 , pkI1 , pkR1 , k , ct1 )@#i

∧ FinishResponder(id2 , pkI2 , pkR2 , k , ct2 )@#j

⇒ (pkI1 = pkI2 ∧ pkR1 = pkR2)

6.4 Σ′
0-protocol

The Σ′
0-protocol is introduced by [40] as a KEM-based variation of the Σ0-protocol [15]. The original

Σ0-protocol is a component of the Internet Key Exchange (IKE) protocols [35], and Σ′
0 was suggested as

a post-quantum replacement. We provide a description of the Σ′
0-protocol in Figure 10. [40] claims that

the Σ′
0-protocol is SK-secure in the post-specified peer model [15] for any IND-CCA KEM. We analyze

whether Σ′
0 achieves SK-security (Definition 6.3) and Implicit Key Authentication and Final Key Secrecy

(Definition 6.2).

Definition 6.2. Final Key Secrecy Initiator

∀ id pkI pkR k ct #i #j .

FinishInitiator(id , pkI , pkR, k , ct )@#i ∧ GoodKey(pkR)@#j

⇒ (∃ #x .K(k)@#x ) ∨ (∃ #x .RevealLTK(pkR)@#x )

Definition 6.3. SK-Security

∀ sid pkI pkR k k2 #i #j .

FinishInit(sid , pkI , pkR, k)@#i ∧ FinishResp(sid , pkI , pkR, k2 )@#j

∧ not(∃ #y .RevealLTK(pkR)@#y) ∧ not(∃ #x .RevealLTK(pkI )@#x )

⇒ (k = k2 ) ∧ not(∃ #z .K(k)@#z )

When modeling Σ′
0, we noticed two issues with the protocol description in [40]. First, the authors

assume that the Responder can store an unlimited number of session identifiers it receives from the

16



Initiator and that it only accepts sessions that use a new, unused identifier, which is notoriously hard to
achieve. Second, after replying to the Initiator, the Responder should erase pkI from its state. However,
when the Responder receives the final message, it has to verify σI –which contains pkI . It is unclear how
the Responder can verify this signature after erasing pkI .

I

(ltkI , IDI )←$ KeyGen()

R

(ltkR, IDR)←$ KeyGen()

sid←$ {0, 1}n
(pkI , skI )←$ KeyGen()

sid , pkI

(c, k)← Encaps(pkI )
k0 = Fk(0)
k1 = Fk(1)
σR = sign ltkR

(1, sid , pkI , c)
tagR = mack1(1, sid , IDR)sid , c, IDR, σR, tagR

k← Decaps(skI , c)
k0 = Fk(0)
k1 = Fk(1)

verifyIDR
(σR)

verifyk1
(tagR)

σI = sign ltkR
(0, sid , c, pkI)

tagI = mack1
(0, sid , IDI)

sid , IDI , σI , tagI

verifyIDI
(σI)

verifyk1
(tagI)

Figure 10: The Σ′
0-protocol introduced by [40].

To address these issues, we create two Σ′
0 models. In the first model, Σ′

0-perfect, the Responder
keeps pkI in its state and verifies σI correctly, as well as only accepting the first message when it sees a
new, fresh session identifier. The second model, Σ′

0, does not keep pkI in the Responder’s state, and the
verification of σI = (0, sid , c, pk) succeeds for any KEM public key pk as long as 0, sid , and c are correctly
signed. In this model, the Responder always replies to the first message, even if session identifiers repeat.

We find that Σ′
0 and Σ′

0-perfect achieve Implicit Key Authentication and Final Key Secrecy for the
Responder in all of our initial configurations. Additionally, we prove Full Key Confirmation for the
Responder, which we define in Definition 6.4.

Definition 6.4. Full Key Confirmation Responder

∀ sid pkI pkR k epkI #i #j .

FinishResponder(sid , pkI , pkR, k , epkI )@#i ∧ GoodKey(epkI )@#j

⇒ (∃ pkI2 pkR2 epkI2 #x .FinishInitiator(sid , pkI2 , pkR2 , k , epkI2 )@#x )

As is the case for Kyber-AKE (Section 6.6), both Σ′
0 and Σ′

0-perfect do not achieve Implicit Key
Authentication for the Initiator for any IND-CCA-secure KEM. This is because the adversary can switch
pkI for their own ephemeral key and reveal ltkR of the Responder. Let A and B be honest agents. The
attack then proceeds as follows: the adversary waits until A initiates a session as initiator with peer B
and starts another session impersonating as C towards B in the Responder role. After replacing pkA with
their own ephemeral KEM key pkC and revealing ltkB , the adversary forwards sid , pkC to B, who acts
according to the protocol. Then, the adversary decapsulates c to learn k, k0, and k1. Next, the adversary
mounts a re-encapsulation attack against A’s actual ephemeral key pkA, resulting in a ciphertext c′ that
also decapsulates to key k. Since the adversary knows both lktB and k1, they can forge B’s signature
on c′ and create a valid tagB , which they both forward to A, completing A’s run. Finally, the adversary
creates a valid signature and tag for B, who thinks they are communicating with the adversary. At the
end of their respective runs, A and B agree on key k but not on their peers’ identities.

17



We find that the protocol gives Implicit Key Authentication for the Initiator when the KEM satisfies
at least HON -BIND-K-PK or both HON -BIND-K-CT and HON -BIND-K,CT -PK. Note that the
later two, together, imply HON -BIND-K-PK by Corollary 4.9. Thus, HON -BIND-K-PK really is the
property that prevents the attack: I and R deriving the same key k implies that they agree on pkI .
This stops the adversary from switching out pkI for their own ephemeral key, which prevents them from
learning the key k. However, knowledge of k is necessary to create a valid tagI for R in the last message.
Thus, the above attack is prevented.

We observe that Σ′
0 does not achieve SK-security for any IND-CCA-secure KEM when the Responder

erases pkI from its state and accepts duplicate session identifiers. To understand this attack, we want
to highlight that the signatures σI and σR only include c; they do not include the actual output key
k. Thus, the adversary can choose c such that it decapsulate to different keys for the Initiator and the
Responder. This behaviour is not excluded by correctness of the KEM since SK security does not enforce
that Initiator and Responder agree on the ephemeral key pkI ; they only need to agree on their respective
identities. Thus, the adversary can force a session between A and B where they agree on their identities
but disagree on the ephemeral key pkB . Together with the deficiencies of Σ′

0, this allows for an attack on
SK security which can be prevented by using a, for instance, MAL-BIND-CT -PK-secure KEM.

The adversary starts a session between Initiator A and Responder B where they agree on their identities
and pkA. After receiving the first message, B computes σB and tagB , which the adversary intercepts.
Then, impersonating A, the adversary starts another session with B, where they switch out pkA for
another KEM public key but reuse the session identifier sid . Recall that the Responder only accepts this
session in the Σ′

0 protocol where we do not assume infinite, persistent storage at the Responder side. The
Responder B again acts according to the protocol and computes (c, k) ← Encaps(pkA). The adversary
then forwards σB and tagB to A, who computes σA, tagA, and finishes their session with B decapsulating
k′ from c because of the lack of binding properties of KEM. The adversary then forwards these values to
B in the session where they disagree on pkA. Since B accepts any σB as long as c and sid match, they
also finish their session with A computing k. As these sessions agree on the identities but disagree on the
final shared key, SK security does not hold.

When honestly generated keys are used, the KEM must at least satisfy HON -BIND-CT -K, and, in
the presence of maliciously generated keys, the KEM must at least satisfy MAL-BIND-CT -PK or MAL-
BIND-CT -K to prevent this attack. These properties prevent Initiator and Responder from opening the
same ciphertext to different output keys.

To summarize, we find that Σ′
0 does not achieve Implicit Key Authentication for the Initiator when

used with any IND-CCA-secure KEM due to a re-encapsulation attack, and that SK security does not
hold when the Responder misbehaves as described previously. A KEM with additional binding properties,
e.g., HON -BIND-K-PK and HON -BIND-CT -K, could have prevented these attacks.

6.5 PQ-SPDM

The Security Protocol and Data Model (SPDM) [23] is an emerging industry standard aimed at ensuring
end-to-end trust in infrastructure, focusing on hardware and chip-to-chip communication. Although the
standard is being developed by major industry players, there has been limited cryptographic analysis.
Recent efforts using the Tamarin tool [21] have initiated formal analysis, but no formal cryptographic
proof of its session establishment protocol has been conducted yet. Additionally, to address post-quantum
security concerns, post-quantum versions of SPDM’s session establishment have been proposed by [46, 47].
We model this proposed post-quantum variant and analyze for both Initiator and Responder whether
the protocol achieves Final Key Secrecy, Implicit Key Authentication, and Full Key Confirmation. A
detailed description of the (post-quantum) SPDM protocol is out of scope for this paper; we refer the
reader to [21,46,47].

We find that, for the Initiator, Final Key Secrecy holds as long as neither the ephemeral KEM key
pair nor the long-term key of the Responder is revealed. For the Responder, we find that Final Key
Secrecy holds even when the ephemeral KEM key pair is revealed. The Initiator obtains Implicit Key
Authentication only if the ephemeral KEM key pair is not revealed, and the Responder as long as either
the long-term key of the Initiator or the ephemeral KEM key pair is not revealed.

Full Key Confirmation does not hold for the Initiator if either key pair is revealed. For the Responder,
we find that the property holds as long as at least one key pair is not revealed.

We find these results across all initial configurations and conclude that PQ-SPDM provides these
guarantees independently of any KEM binding properties or maliciously generated keys.

18



6.6 Kyber-AKE

We model the Kyber-AKE (see Figure 2) in Tamarin and analyze the protocol, both in terms of secrecy
and authentication properties.

The secrecy of the final key of the Kyber-AKE is guaranteed for both Initiator and Responder as long
as the long-term secrets are not revealed. The property is defined analogously to Definition 6.2.

We also analyze Implicit Key Authentication for both the Initiator and Responder analogously to
Definition 6.1. Without any additional binding properties, even when we restrict the adversary to only use
honest keys out of KeyGen, Tamarin is able to produce a counterexample violating the defined property.
We call this attack re-encapsulation attack, as described in Section 3.

We show that, in the setting where we do not allow keys outside of KeyGen, the used KEM in the
Kyber-AKE additionally needs to provide HON -BIND-K-PK or both HON -BIND-K-CT and HON -
BIND-K,CT -PK to guarantee implicit authentication for both parties. Analogously, in the stronger
adversary model, the used KEM needs to provide MAL-BIND-K-PK or both MAL-BIND-K-CT and
MAL-BIND-K,CT -PK to guarantee implicit authentication. Note that we could show with Corollary 4.9
that X-BIND-K-CT and X-BIND-K,CT -PK imply X-BIND-K-PK, confirming that one can prevent
that attack by binding the public key to the final key.

This observation also confirms why we do not see this kind of attack in the original Kyber-AKE, as
the Kyber KEM is conjectured to fulfill these properties (see Cons. B.1).

Note that [11] claims the Kyber-AKE is secure in the Canetti-Krawczyk (CK) model with weak forward
secrecy [14]. However, they state no explicit proof and claim that this “follows directly from the generic
security bounds of [12,27]”. Our results show that this statement is incorrect if the KEM is only IND-CCA
secure. In particular, in the CK model with weak PFS, the re-encapsulation attack would imply that the
sessions are not matching, and this would allow the adversary to reveal the session key at A’s session.

7 Conclusion

We introduced a new family of security notions for KEMs, that capture relevant binding properties, and
we establish a hierachy within them. We show how our notions capture existing binding properties like
Robustness. KEM schemes that meet our binding properties are harder to misuse, as they leave fewer
pitfalls for protocol designers.

We develop a novel symbolic KEM model for the Tamarin prover and an analysis methodology that
allows us to automatically find the minimum binding properties a protocol requires of a KEM to meet its
security properties. We evaluate our KEM model in case studies and find several new attacks and missed
proof obligations. Notably, we find a new type of attack, which we call “re-encapsulation attack”.

Our work is in line with a wider trend of constructing cryptographic primitives that are harder to misuse
and offer cleaner behavior with fewer side-cases. In particular, the guarantees offered by our properties
perform a similar role as exclusive ownership and message-binding properties of digital signatures and
the various robustness notions defined for authenticated encryption schemes and public key encryption
schemes.

As migration to post-quantum secure protocols progresses in the next years, we expect many existing
protocol designs to be adapted to use KEMs. Our symbolic protocol analysis approach supports this
transition by attack finding, verification, and requirement discovery.

Acknowledgements The authors would like to thank Deirdre Connolly for input and discussion.

References

[1] Michel Abdalla, Mihir Bellare, and Gregory Neven. Robust Encryption. Cryptology ePrint Archive,
Paper 2008/440, 2008. https://eprint.iacr.org/2008/440.

[2] Martin Albrecht, Carlos Cid, Kenneth G Paterson, Cen Jung Tjhai, and Martin Tomlinson. NTS-KEM.
NIST PQC Second Round, 2, 2019. https://nts-kem.io/ (Accessed December 2023).

[3] Nicolas Aragon, Paulo SLM Barreto, Slim Bettaieb, Loic Bidoux, Olivier Blazy, Jean-Christophe
Deneuville, Philippe Gaborit, Shay Gueron, Tim Guneysu, Carlos Aguilar Melchor, et al. BIKE: bit
flipping key encapsulation. 2017.

19

https://eprint.iacr.org/2008/440
https://nts-kem.io/


[4] Manuel Barbosa, Deirdre Connolly, João Diogo Duarte, Aaron Kaiser, Peter Schwabe, Karoline
Varner, and Bas Westerbaan. X-Wing: The Hybrid KEM You’ve Been Looking For. Cryptology
ePrint Archive, Paper 2024/039, 2024. https://eprint.iacr.org/2024/039.

[5] Mihir Bellare, Hannah Davis, and Felix Günther. Separate Your Domains: NIST PQC KEMs, Oracle
Cloning and Read-Only Indifferentiability. In Anne Canteaut and Yuval Ishai, editors, Advances in
Cryptology – EUROCRYPT 2020, pages 3–32, Cham, 2020. Springer International Publishing.

[6] Daniel J Bernstein, Tung Chou, Tanja Lange, Ingo von Maurich, Rafael Misoczki, Ruben Niederhagen,
Edoardo Persichetti, Christiane Peters, Peter Schwabe, Nicolas Sendrier, et al. Classic McEliece:
conservative code-based cryptography. NIST submissions, 2017.

[7] Karthikeyan Bhargavan, Charlie Jacomme, Franziskus Kiefer, and Rolfe Schmidt. An Analysis of
Signal’s PQXDH, Oct 2023. https://cryspen.com/post/pqxdh/ (Accessed Jan 2024).

[8] Simon Blake-Wilson and Alfred Menezes. Unknown key-share attacks on the station-to-station (STS)
protocol. In Public Key Cryptography: Second International Workshop on Practice and Theory in
Public Key Cryptography, PKC’99 Kamakura, Japan, March 1–3, 1999 Proceedings 2, pages 154–170.
Springer, 1999.

[9] Bruno Blanchet et al. An efficient cryptographic protocol verifier based on prolog rules. In csfw,
volume 1, pages 82–96, 2001.

[10] Joppe Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig, Valeria Nikolaenko, Ananth
Raghunathan, and Douglas Stebila. Frodo: Take off the ring! practical, quantum-secure key exchange
from LWE. In Proceedings of the 2016 ACM SIGSAC conference on computer and communications
security, 2016.

[11] Joppe Bos, Leo Ducas, Eike Kiltz, T Lepoint, Vadim Lyubashevsky, John M. Schanck, Peter Schwabe,
Gregor Seiler, and Damien Stehle. CRYSTALS - Kyber: A CCA-Secure Module-Lattice-Based KEM.
In 2018 IEEE European Symposium on Security and Privacy (EuroS&P), 2018.

[12] Colin Boyd, Yvonne Cliff, Juan M. Gonzalez Nieto, and Kenneth G. Paterson. Efficient One-
round Key Exchange in the Standard Model. Cryptology ePrint Archive, Paper 2008/007, 2008.
https://eprint.iacr.org/2008/007.

[13] Jacqueline Brendel, Cas Cremers, Dennis Jackson, and Mang Zhao. The provable security of ed25519:
theory and practice. In 2021 IEEE Symposium on Security and Privacy (SP), pages 1659–1676.
IEEE, 2021.

[14] Ran Canetti and Hugo Krawczyk. Analysis of Key-Exchange Protocols and Their Use for Building
Secure Channels. Cryptology ePrint Archive, Paper 2001/040, 2001. https://eprint.iacr.org/
2001/040.

[15] Ran Canetti and Hugo Krawczyk. Security Analysis of IKE’s Signature-based Key-Exchange Protocol.
Cryptology ePrint Archive, Paper 2002/120, 2002. https://eprint.iacr.org/2002/120.

[16] Sof́ıa Celi, Jonathan Hoyland, Douglas Stebila, and Thom Wiggers. A tale of two models: formal
verification of kemtls via tamarin. Cryptology ePrint Archive, Paper 2022/1111, 2022. https:

//eprint.iacr.org/2022/1111.

[17] Vincent Cheval, Cas Cremers, Alexander Dax, Lucca Hirschi, Charlie Jacomme, and Steve Kremer.
Hash Gone Bad: Automated discovery of protocol attacks that exploit hash function weaknesses. In
USENIX 2023, 2023.

[18] Ronald Cramer and Victor Shoup. Design and Analysis of Practical Public-Key Encryption Schemes
Secure against Adaptive Chosen Ciphertext Attack. Cryptology ePrint Archive, Paper 2001/108,
2001. https://eprint.iacr.org/2001/108.

[19] Cas Cremers, Alexander Dax, Charlie Jacomme, and Mang Zhao. Automated Analysis of Protocols
that use Authenticated Encryption: Analysing the Impact of the Subtle Differences between AEADs
on Protocol Security. In USENIX 2023, 2023.

[20] Cas Cremers, Alexander Dax, and Niklas Medinger. KEM library and Case Studies. https:

//github.com/FormalKEM/Symbolic_KEM_Models, January 2024.

20

https://eprint.iacr.org/2024/039
https://cryspen.com/post/pqxdh/
https://eprint.iacr.org/2008/007
https://eprint.iacr.org/2001/040
https://eprint.iacr.org/2001/040
https://eprint.iacr.org/2002/120
https://eprint.iacr.org/2022/1111
https://eprint.iacr.org/2022/1111
https://eprint.iacr.org/2001/108
https://github.com/FormalKEM/Symbolic_KEM_Models
https://github.com/FormalKEM/Symbolic_KEM_Models


[21] Cas Cremers, Alexander Dax, and Aurora Naska. Formal Analysis of SPDM: Security Protocol and
Data Model version 1.2. In USENIX 2023, 2023.

[22] Cas Cremers, Samed Düzlü, Rune Fiedler, Marc Fischlin, and Christian Janson. BUFFing signature
schemes beyond unforgeability and the case of post-quantum signatures. In IEEE Symposium on
Security and Privacy (SP). IEEE, 2021.

[23] DMTF. DSP0274: Security Protocol and Data Model (SPDM) Specification, Version 1.3.0.
https://www.dmtf.org/sites/default/files/standards/documents/DSP0274_1.3.0.pdf, May
2023. accessed: 2024-01-26.

[24] Yevgeniy Dodis, Paul Grubbs, Thomas Ristenpart, and Joanne Woodage. Fast message franking:
From invisible salamanders to encryptment. In Advances in Cryptology–CRYPTO 2018: 38th Annual
International Cryptology Conference, 2018.

[25] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and Frederik Vercauteren. Saber:
Module-LWR based key exchange, CPA-secure encryption and CCA-secure KEM. In Progress in
Cryptology–AFRICACRYPT 2018: 10th International Conference on Cryptology in Africa, Marrakesh,
Morocco, May 7–9, 2018, Proceedings 10, pages 282–305. Springer, 2018.

[26] Pooya Farshim, Benôıt Libert, Kenneth G. Paterson, and Elizabeth A. Quaglia. Robust Encryption,
Revisited. Cryptology ePrint Archive, Paper 2012/673, 2012. https://eprint.iacr.org/2012/673.

[27] Atsushi Fujioka, Koutarou Suzuki, Keita Xagawa, and Kazuki Yoneyama. Strongly Secure Authenti-
cated Key Exchange from Factoring, Codes, and Lattices. Cryptology ePrint Archive, Paper 2012/211,
2012. https://eprint.iacr.org/2012/211.

[28] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric encryption
schemes. In Annual international cryptology conference, 1999.

[29] Paul Grubbs, Jiahui Lu, and Thomas Ristenpart. Message Franking via Committing Authenticated
Encryption. Cryptology ePrint Archive, Paper 2017/664, 2017. https://eprint.iacr.org/2017/
664.

[30] Paul Grubbs, Varun Maram, and Kenneth G. Paterson. Anonymous, Robust Post-Quantum Public
Key Encryption. Cryptology ePrint Archive, Paper 2021/708, 2021. https://eprint.iacr.org/

2021/708.

[31] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A Modular Analysis of the Fujisaki-Okamoto
Transformation. In Yael Kalai and Leonid Reyzin, editors, Theory of Cryptography, pages 341–371,
Cham, 2017. Springer International Publishing.

[32] Andreas Hülsing, Joost Rijneveld, John Schanck, and Peter Schwabe. High-speed key encapsulation
from NTRU. In International Conference on Cryptographic Hardware and Embedded Systems, pages
232–252. Springer, 2017.

[33] Andreas Hülsing, Kai-Chun Ning, Peter Schwabe, Florian Weber, and Philip R. Zimmermann. Post-
quantum WireGuard. Cryptology ePrint Archive, Paper 2020/379, 2020. https://eprint.iacr.

org/2020/379.

[34] Dennis Jackson, Cas Cremers, Katriel Cohn-Gordon, and Ralf Sasse. Seems legit: Automated
analysis of subtle attacks on protocols that use signatures. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, pages 2165–2180, 2019.

[35] Hugo Krawczyk. SIGMA: The ’SIGn-and-MAc’ Approach to Authenticated Diffie-Hellman and Its
Use in the IKE-Protocols. In Advances in Cryptology - CRYPTO 2003, 23rd Annual International
Cryptology Conference, Lecture Notes in Computer Science, 2003. Invited paper.

[36] Julia Len, Paul Grubbs, and Thomas Ristenpart. Authenticated Encryption with Key Identification.
Cryptology ePrint Archive, Paper 2022/1680, 2022. https://eprint.iacr.org/2022/1680.

[37] Carlos Aguilar Melchor, Nicolas Aragon, Slim Bettaieb, Loıc Bidoux, Olivier Blazy, Jean-Christophe
Deneuville, Philippe Gaborit, Edoardo Persichetti, Gilles Zémor, and IC Bourges. Hamming quasi-
cyclic (HQC). NIST PQC Round, 2018.

21

https://www.dmtf.org/sites/default/files/standards/documents/DSP0274_1.3.0.pdf
https://eprint.iacr.org/2012/673
https://eprint.iacr.org/2012/211
https://eprint.iacr.org/2017/664
https://eprint.iacr.org/2017/664
https://eprint.iacr.org/2021/708
https://eprint.iacr.org/2021/708
https://eprint.iacr.org/2020/379
https://eprint.iacr.org/2020/379
https://eprint.iacr.org/2022/1680


[38] Payman Mohassel. A Closer Look at Anonymity and Robustness in Encryption Schemes. In Advances
in Cryptology - ASIACRYPT 2010 - 16th International Conference on the Theory and Application
of Cryptology and Information Security, volume 6477 of Lecture Notes in Computer Science, pages
501–518. Springer, 2010.

[39] NIST. NIST Post-Quantum Cryptography. https://csrc.nist.gov/projects/

post-quantum-cryptography. Accessed: 2024-01-16.

[40] Chris Peikert. Lattice Cryptography for the Internet. Cryptology ePrint Archive, Paper 2014/070,
2014. https://eprint.iacr.org/2014/070.

[41] Thomas Pornin and Julien P Stern. Digital signatures do not guarantee exclusive ownership. In
Applied Cryptography and Network Security: Third International Conference, ACNS 2005, 2005.

[42] Benedikt Schmidt, Simon Meier, Cas Cremers, and David Basin. Automated analysis of Diffie-Hellman
protocols and advanced security properties. In 2012 IEEE 25th Computer Security Foundations
Symposium, pages 78–94. IEEE, 2012.

[43] Peter Schwabe, Douglas Stebila, and ThomWiggers. Post-quantum TLS without handshake signatures.
Cryptology ePrint Archive, Paper 2020/534, 2020. https://eprint.iacr.org/2020/534.

[44] Peter Schwabe, Douglas Stebila, and Thom Wiggers. More efficient post-quantum KEMTLS with
pre-distributed public keys. Cryptology ePrint Archive, Paper 2021/779, 2021. https://eprint.

iacr.org/2021/779.

[45] Victor Shoup. A Proposal for an ISO Standard for Public Key Encryption. IACR Cryptology ePrint
Archive, 2001:112, 2001.

[46] Jiewen Yao, Anas Hlayhel, and Krystian Matusiewicz. Post Quantum KEM authentication in SPDM
for secure session establishment. Design & Test, 2023.

[47] Jiewen Yao, Krystian Matusiewicz, and Vincent Zimmer. Post Quantum Design in SPDM for Device
Authentication and Key Establishment. Cryptography, 6(4):48, 2022.

22

https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
https://eprint.iacr.org/2014/070
https://eprint.iacr.org/2020/534
https://eprint.iacr.org/2021/779
https://eprint.iacr.org/2021/779


A Proofs for the Properties of Our Generic Binding Notions

Lemma A.1. Let KEM = (KeyGen,Encaps,Decaps) be a key encapsulation mechanism. If KEM is MAL-
BIND-P-Q-secure, then KEM is also LEAK-BIND-P-Q-secure.

Proof. We prove the contraposition. Let A be an adversary against LEAK -BIND-P -QKEM
A . We construct

an adversary B against MAL-BIND-P -QKEM
B . B generates two key pairs honestly, chooses g = 1, and then

calls A with these key pairs. B returns both key pairs and the ciphertext that A returned to win MAL-
BIND-P -QKEM

B with the same non-negligible probability that A wins LEAK -BIND-P -QKEM
A with.

Lemma A.2. Let KEM = (KeyGen,Encaps,Decaps) be a key encapsulation mechanism. If KEM is LEAK-
BIND-P-Q-secure, then KEM is also HON -BIND-P-Q-secure.

Proof. The proof is a straightforward reduction that is analogous to Lemma A.1.

Lemma A.3. Let KEM = (KeyGen,Encaps,Decaps) be a key encapsulation mechanism. For X ∈
{MAL,LEAK ,HON }, if KEM is X-BIND-P-Q ′-secure and P ⊆ P ′ ∧ Q ⊆ Q ′, then KEM is also
X-BIND-P ′-Q-secure.

Proof. Assume KEM is X-BIND-P -Q ′-secure and P ⊆ P ′ ∧Q ⊆ Q ′. Now assume towards contradiction
that KEM is not X-BIND-P ′-Q-secure. Thus, there exists an adversary A that wins the X-BIND-P ′-
QKEM

A game with non-negligible probability. From A, we now build an adversary B that wins the X-BIND-

P -Q ′KEM
B game with non-negligible probability. B simply calls A to win X-BIND-P -Q ′KEM

B with the same
probability that A wins X-BIND-P ′-QKEM

A . We now argue why the winning condition

∀x ∈ P ′ . x0 = x1 ∧ ∃y ∈ Q . y0 ̸= y1

of A in X-BIND-P ′-QKEM
A implies the winning condition

∀x ∈ P . x0 = x1 ∧ ∃y′ ∈ Q ′ . y′0 ̸= y′1

of B in X-BIND-P -Q ′KEM
B . Since P ⊆ P ′, each equality constraint in P is also present in P ′, and thus

satisfied. Since Q ⊆ Q′, we can we can use the witness y from Q as witness y′ for Q′ to satisfy the
existential constraint.

Theorem A.4. Let KEM = (KeyGen,Encaps,Decaps) be a key encapsulation mechanism. For X ∈
{MAL,LEAK ,HON }, if KEM is X-BIND-P-Q ′-secure, X-BIND-Q-R′-secure and P ⊆ P ′, Q ⊆ Q ′∪P ′,
and R ⊆ R′, then KEM is also X-BIND-P ′-R-secure.

Proof. Assume KEM is X-BIND-P -Q ′-secure, X-BIND-Q-R′-secure as well as P ⊆ P ′, Q ⊆ Q ′ ∪ P ′,
and R ⊆ R′. Now assume towards contradiction that KEM is not X-BIND-P ′-R-secure. Therefore, there
exists an adversary A that wins the X-BIND-P ′-RKEM

A game with non-negligible probability. To win the
game, A produces parameter sets P ′ and R such that

∀p ∈ P ′ . p0 = p1 ∧ ∃r ∈ R . r0 ̸= r1.

Since KEM is X-BIND-P -Q ′-secure and P ⊆ P ′, it follows that ∀q ∈ Q ′ . q0 = q1. Since KEM is X-BIND-
Q-R′-secure and Q ⊆ Q ′ ∪ P ′, it follows that ∀r ∈ R′ . r0 = r1. This implies ∀r ∈ R . r0 = r1 as R ⊆ R′,
which contradicts the adversary producing R such that ∃r ∈ R . r0 ̸= r1. Therefore, KEM is X-BIND-P ′-
R-secure.

A.0.1 Relations between our Properties

Lemma A.5. Let KEM be a KEM that is HON -BIND-CT -PK secure. Then KEM is also HON -BIND-
CT -K secure.

Proof. (Sketch) We prove the contraposition. Let A be an adversary against HON -BIND-CT -KKEM
A . We

construct an adversary B against HON -BIND-CT -PK. B forwards the public keys it is challenged with
to A, and answers A’s oracle queries with its own oracle. A then returns a ciphertext ct that decapsulates
to the same output key k for the challenge public keys pk0 and pk1 . Note that these public keys must
be different with overwhelming probability since KEM is IND-CCA-secure. Thus, c is a ciphertext that
decapsulate under two different public keys, and B wins the HON -BIND-CT -PK game.

23



Lemma A.6. Let KEM be a KEM that is LEAK-BIND-CT -PK secure. Then KEM is also LEAK-
BIND-CT -K secure.

Proof. As the keypairs leaked to the adversary are still honestly generated, the proof is analogous to
Lemma A.5.

Proposition A.7. There exists a KEM scheme KEM that is MAL-BIND-CT -PK but not MAL-BIND-
CT -K.

Proof. (Sketch) Recall, that the robustness definition for PKEs from [30] corresponds to our HON -BIND-
CT -PK property for KEMs. Thus, we conjecture that a FO-KEM with a robust PKE, for instance
KEM⊥

m, can meet MAL-BIND-CT -PK, if there are no weak keys in the PKE scheme. However, proving
properties of a specific KEM is beyond the scope of this paper, and we leave it as future work.
To prove the statement, we create a variant of this KEM where we alter the decapsulation algorithm: For
two key pairs (sk, pk), (sk′, pk), which both cannot be created by the normal key generation algorithm,
decapsulation returns a fixed k ̸∈ K, which is needed for correctness. Note that this new variant is still
MAL-BIND-CT -PK since the public key of our added key pairs are the same. However, our variant is
not MAL-BIND-CT -K since we can use the two added key pairs to get the same key for any ciphertext.
This new variant is still IND-CCA-secure and correct since the added key pairs cannot be generated by
the normal key generation.

Corollary A.8. Let KEM = (KeyGen,Encaps,Decaps) be a key encapsulation mechanism. If KEM is MAL-
BIND-K-PK-secure and LEAK-BIND-K,PK-CT -secure then KEM is also LEAK-BIND-K-CT -secure.

Proof. By Lemma 4.2, KEM is LEAK -BIND-K-PK. Therefore, choosing P = P ′ = {K}, R = R′ = {CT},
Q = {K,PK}, and Q ′ = {PK}, KEM is also LEAK -BIND-K-CT by Theorem A.4.

Corollary A.9. Let KEM = (KeyGen,Encaps,Decaps) be a key encapsulation mechanism. For all X ∈
{MAL,HON } we have that if KEM is X-BIND-K-CT -secure and X-BIND-K,CT -PK-secure, then KEM
is also X-BIND-K-PK-secure

Proof. We choose P = P ′ = {K}, R = R′ = {PK}, Q = {K,CT}, and Q ′ = {CT}. Since Q ⊆ Q ′ ∪ P ′,
KEM is also X-BIND-K-PK by Theorem A.4.

B Constructions for our Separating Examples

B.1 Construction – Kyber

Properties: MAL-BIND-K-CT , MAL-BIND-PK,K-CT , MAL-BIND-K-PK, MAL-BIND-CT,K-PK
Vulnerabilities: HON -BIND-CT -K, HON -BIND-CT -PK
Description: We use the KEM Kyber from [11] without any modifications.
Proofs Sketches and Counterexamples:

• Since Kyber includes public key and ciphertext in the output key computation, it is both MAL-
BIND-K-PK and MAL-BIND-K-CT

• By Lemma 4.4, Kyber is also MAL-BIND-PK,K-CT and MAL-BIND-CT,K-PK.
• Since Kyber is implicitly rejecting, it cannot satisfy HON -BIND-CT -K or HON -BIND-CT -PK.

24



B.2 Construction – KEM⊥
m

Encapsm(pk; r)

m←r M
ct← Enc1(pk,m)

k ← H(m)

return (ct, k)

Decaps ̸⊥m(sk, ct)

Parse (sk′, s)← sk

m← Dec1(sk
′, ct)

if m ̸= ⊥ :

return k ← H(m)

else

return k ← H(s, ct)

Decaps⊥m(sk, ct)

m← Dec1(sk, ct)

if m = ⊥ : return ⊥
else return

k ← H(m)

Enc1(pk,m)

ct← Enc(pk,m;G(m))

return ct

Dec1(sk, ct)

m← Dec(sk, ct)

if m = ⊥ ∨ Enc(pk,m;G(m)) ̸= ct :

return ⊥
else return m

Properties: MAL-BIND-CT -PK,MAL-BIND-CT -K,MAL-BIND-PK,K-CT ,MAL-BIND-K,CT -PK
Vulnerabilities: HON -BIND-K-CT ,HON -BIND-K-PK
Description: We use KEM⊥

m from [31] without any modifications. Note that in contrast to our definition of
Encaps, Encaps is deterministic in this construction and uses an explicit source of entropy r to randomize
the encapsulation. KEM⊥

m uses Encapsm(pk; r) and Decaps⊥m(sk, ct) as shown above. Note that the
underlying PKE algorithm Enc1(pk,m) is deterministic as it uses G(m) as randomness. For more details,
we refer the reader to [31].
Proofs Sketches and Counterexamples:

• We conjecture that KEM⊥
m is MAL-BIND-CT -PK and MAL-BIND-CT -K if the underlying PKE

is robust. We leave a proof as future work.
• From Lemma 4.4 we also get that KEM is MAL-BIND-K,CT -PK.
• We prove that KEM⊥

m is MAL-BIND-PK,K-CT . Assume towards contradiction that KEM⊥
m is

not MAL-BIND-PK,K-CT . Thus, there exists an adversary A that wins the MAL-BIND-PK,K-

CT
KEM⊥

m

A game with non-negligible probability. A creates (sk0, pk0), (sk1, pk1), and (ct0, ct1) such
that pk0 = pk1, ct0 ̸= ct1, and KEM.Decaps(sk0, pk0, ct0) = k0 = k1 = KEM.Decaps(sk1, pk1, ct1).
Note that both decapsulation calls accepted, and, thus, we conclude that Dec1 must have accepted
both ciphertexts. In fact, both ciphertexts must contain the same message m because H(m0) = k0 =
k1 = H(m1), which implies that m0 = m1 if H is a collision-resistant hash function, or a random
oracle. Here, m0 and m1 are the messages that ct0 and ct1 decrypt to. Because decryption succeeded,
we know that the re-encryption check Enc(pki,m;G(m)) = cti of Dec1 succeeded for both ct0 and
ct1. However, because pk0 = pk1, it follows that ct0 = Enc(pk0,m;G(m)) = Enc(pk1,m;G(m)) = ct1,
which contradicts our assumption that ct0 ̸= ct1. Hence, KEM⊥

m is MAL-BIND-PK,K-CT -secure.
• Observe that KEM⊥

m derives output key k only from m; which only depends on r. Thus, we can
create multiple ciphertexts that decapsulate to the same output key k for honestly generated key
pairs by re-using r. For an example, see Figure 3. Therefore, KEM⊥

m is not HON -BIND-K-CT . In
fact, it is also not HON -BIND-K-PK.

B.3 Construction – KEM⊥
m Variant

Encaps(pk; r)

r′ ← r ≫ 1

k, ct← KEM⊥
m.Encaps(pk; r′)

k′ ← H(k||pk)
return (ct, k)

Decaps(sk, ct)

k ← KEM⊥
m.Decaps(sk, ct)

if m = ⊥ : return ⊥
else return

k ← H(k||pk)

Properties: MAL-BIND-K-PK, MAL-BIND-CT -PK, MAL-BIND-CT -K, MAL-BIND-K,CT -PK
Vulnerabilities: HON -BIND-K-CT , HON -BIND-PK,K-CT

25



Description: We propose a variant KEM of the KEM⊥
m scheme shown in Appendix B.2 where encapsulation

shortens the randomness r by one bit through a right-shift and hashes the public key into the final key.
To maintain correctness, we change the hashing of the decapsulation algorithm.
Proofs Sketches and Counterexamples:

• Note that KEM is MAL-BIND-K-PK because it hashes pk into the output key.
• If the underlying PKE of KEM⊥

m is robust, we conjecture that KEM is MAL-BIND-CT -PK. The
proof is a straightforward reduction where an adversary against KEM can also break MAL-BIND-
CT -PK of KEM⊥

m.
• By Lemma 4.2 and Lemma 4.7, KEM is also LEAK -BIND-CT -K. We conjecture that it also is
MAL-BIND-CT -K since we constructed the scheme with any backdoor values.

• By Lemma 4.4, KEM is also MAL-BIND-K,CT -PK.
• KEM is not HON -BIND-K-CT : encapsulating against the same public key with the two values
r1, r2, which only differ in the last bit results in the same ciphertext and the same output key.

• KEM is not HON -BIND-PK,K-CT since our attack against HON -BIND-K-CT works against a
single public key.

B.4 Construction – KEM ̸⊥
m

Encapsm(pk; r)

m←r M
ct← Enc1(pk,m)

k ← H(m)

return (ct, k)

Decaps ̸⊥m(sk, ct)

Parse (sk′, s)← sk

m← Dec1(sk
′, ct)

if m ̸= ⊥ :

return k ← H(m)

else

return k ← H(s, ct)

Decaps⊥m(sk, ct)

m← Dec1(sk, ct)

if m = ⊥ : return ⊥
else return

k ← H(m)

Enc1(pk,m)

ct← Enc(pk,m;G(m))

return ct

Dec1(sk, ct)

m← Dec(sk, ct)

if m = ⊥ ∨ Enc(pk,m;G(m)) ̸= ct :

return ⊥
else return m

Properties: MAL-BIND-PK,K-CT , MAL-BIND-K,CT -PK
Vulnerabilities: HON -BIND-K-CT , HON -BIND-K-PK, HON -BIND-CT -PK, HON -BIND-CT -K
Description: We use KEM ̸⊥

m from [31] without any modifications. KEM̸⊥
m uses Encapsm(pk; r) and

Decaps ̸⊥m(sk, ct) as shown above. Note that the underlying PKE algorithm Enc1(pk,m) is deterministic as
it uses G(m) as randomness. For more details, we refer the reader to [31].
Proofs Sketches and Counterexamples:

• Since the ouput key is only dervied from message m, KEM̸⊥
m is not HON -BIND-K-CT andnot

HON -BIND-K-PK. For more details see Appendix B.2.
• Because KEM ̸⊥

m is implicitly rejecting, it cannot satisfy HON -BIND-CT -PK and HON -BIND-CT -
K by Theorem C.2.

• Assume towards contradiction that KEM ̸⊥
m is not MAL-BIND-K,CT -PK. Thus, it exists A that

wins the MAL-BIND-K,CT -PK
KEM̸⊥

m

A game with non negligible probability. A creates a single
ciphertext ct such that k0 = Decaps(sk0, pk0, ct) = Decaps(sk1, pk1, ct) = k1 for different public
keys. We now argue why k0 = k1, for the same ciphertext and different public keys, implies that
both decapsulation calls must have accepted. From Lemma C.1 we know that the rejection key
computation must contain the ciphertext and a secret, random value that is different for each
key pair. Hence, k0 = k1 can only occur with negligible probability in the rejection case since it
constitutes a hash/random oracle collision. Thus, both decapsulation calls in the game must have
accepted with overwhelming probability. However, in this case, KEM ̸⊥

m behaves exactly like KEM⊥
m

(Appendix B.2). Therefore, we can use A to win the MAL-BIND-K,CT -PK
KEM⊥

m

A game with non

negligible probability, which contradicts KEM⊥
m’s MAL-BIND-K,CT -PK security.

• The prove for MAL-BIND-PK,K-CT security is analogous to the prove we give in Appendix B.2

26



¬(HON -BIND-K-CT ) ¬(HON -BIND-K-PK) ¬(HON -BIND-CT -PK) ¬(HON -BIND-CT -K) ¬ (HON -BIND-K,CT -PK) ¬ (HON -BIND-PK,K-CT )

MAL-BIND-K-CT X Cons. B.5 Cons. B.5 Cons. B.1 Cons. B.5 X Lemma 4.4

MAL-BIND-K-PK Cons. B.3 X Cons. B.1 Cons. B.1 X Lemma 4.4 Cons. B.3

MAL-BIND-CT -PK Cons. B.2 Cons. B.2 X X Lemma 4.6 X Lemma 4.4 Cons. B.3

MAL-BIND-CT -K Cons. B.2 Cons. B.2 Cons. B.6 X Cons. B.6 Cons. B.3

MAL-BIND-K,CT -PK Cons. B.2 Cons. B.2 Cons. B.4 Cons. B.4 X Cons. B.3

MAL-BIND-PK,K-CT Cons. B.2 Cons. B.2 Cons. B.4 Cons. B.4 Cons. B.5 X

Table 4: Summary of separating examples between our binding properties. A X means that a separating
example does not exists.

up to the argument why both decapsulation calls must have accepted. We now argue why both this
is also the case for KEM ̸⊥

m. Since k0 = k1 and the rejection key computation contains the ciphertexts
ct0 ̸= ct1, it is clear that both decapsulation cannot derive the same key when one of them rejects.
Thus, both must have accepted.

B.5 Construction – Classic McEliece

Properties: MAL-BIND-K-CT , MAL-BIND-PK,K-CT
Vulnerabilities: HON -BIND-K-PK, HON -BIND-CT -PK, HON -BIND-K,CT -PK
Description: We use the Classic McEliece scheme from [6] without any modifications. Classic McEliece
derives the output key as follows: k ← H(m||c||H ′(m)). Here, m is a message from the message space
of the underlying PKE, c is the ciphertext created by encapsulating m with a public key, and H,H ′ are
hash functions.
Proofs Sketches and Counterexamples:

• Since Classic McEliece hashes the ciphertext into the the output key it is MAL-BIND-K-CT .
• By Lemma 4.4 we also get that Classic McEliece is MAL-BIND-PK,K-CT .
• From [30], we know that it is possible to construct a single ciphertext c that decrypts to the same

message under any Classic McEliece private key. Therefore, Classic McEliece is not HON -BIND-K-
PK because we can use c to derive the same output key k under any key pair.

• We create a ciphertext c that decrypts to the same m for any key pair, as described in [30]. Since
Classic McEliece derives the output key only from the ciphertext c and the message m, c decapsulates
to the same output key for every secret key. Thus, Classic McEliece is not HON -BIND-K,CT -PK.

• Since Classic McEliece is an implicitly rejecting KEM, it is not HON -BIND-CT -PK.

B.6 Construction – Custom Scheme

Properties: MAL-BIND-CT -K
Vulnerabilities: HON -BIND-CT -PK, HON -BIND-K,CT -PK
Description: Let KEM = (KeyGen,Encaps,Decaps) be a MAL-BIND-CT -K KEM. We now construct a
new KEM KEM′ from KEM. Let KeyGen′ =

(sk, pk)← KeyGen; pk′ ← pk · 2 + b←$ {0, 1}; return (sk, pk′).

Decaps(sk, pk, ct)′ = Decaps(sk, pk div 2, ct).

Encaps(pk)′ = Encaps(pk div 2).

Additionally, we assume that the adversary can use a version of Encaps where it control the entropy of
the probabilistic algorithm and is able to choose the same entropy for multiple, distinct encapsulations.
KEM′ is still MAL-BIND-CT -K as we can use an adversary A′ against KEM′ to built an adversary A
against KEM.
Proofs Sketches and Counterexamples: KEM′ is not HON -BIND-CT -PK and HON -BIND-K,CT -
PK as we have two public keys for each ciphertext that yield the same output key if the entropy is chosen
by the adversary.

27



C Implicitly-rejecting KEMs

Figure 11. Many real-world KEMs are so-called implicitly rejecting: their decapsulation algorithm never
returns ⊥ for a valid ciphertext and any valid private key. However, only when decapsulating with the
correct private key (corresponding to the public key used for encapsulation), the correct key is output.
Intuitively, an implicitly rejecting KEM is similar to an implicitly authenticated key exchange: successfully
completing the protocol does not imply that someone else has the same key, or sent any message; instead,
the guarantee is that only the correct party can possibly compute the same secret key.
However, a trivial side effect of this is that for such KEMs the ciphertext alone cannot bind any other
value: any ciphertext will be accepted, and these will (with overwhelming probability) decapsulate to
different keys. A special case of this is the observation in [30] that an implicitly-rejecting KEM cannot
satisfy SROB, i.e., HON -BIND-CT -PK. To prove these statements, we first state a useful, informal
lemma that establishes how an implicitly rejecting KEM has to compute its rejection keys.

Lemma C.1. The rejection key computation of an implicitly-rejecting KEM KEM has to at least contain
a secret, random value, and the rejected ciphertext.

We do not give a formal proof of this statement. Instead, we argue informally why for any KEM that
does not compute its rejection keys in this manner, an adversary can actually distinguish the rejection
keys from a random key; turning them into an elaborate error symbol. Note that this does not indicate
a problem with IND-CCA as IND-CCA only requires “accepting” keys to be indistinguishable from a
random key.
Recall, that Decaps(sk , pk , ct) is a deterministic algorithm. Therefore, sk , pk , and ct are the only possible
inputs to the rejection key computation as Decaps cannot sample random values. Notice that, if the
computation only contains pk or ct , the adversary can easily compute the same rejection key since only
public values were used for the computation. Thus, a secret, random value z has to be part of the
computation. Due to Decaps deterministic nature, the secret key sk needs to contain z . Next, we point
out that ciphertext needs to be part of the rejection key computation as not doing so leads to collisions:
the rejection key would be the same for every ciphertext since sk and pk are static. One might wonder,
whether the statement is no longer true if we allow for a probabilistic Decaps. We argue that the statement
still holds. If Decaps were to sample random, instead of using static contained in the secret key, different
queries with the same secret key, public key, and ciphertext would result in different rejection keys.

MAL-BIND-P -Q

LEAK -BIND-P -Q

HON -BIND-P -Q

×

X-BIND-K-CT

X-BIND-PK,K-CT

X-BIND-K-PK

X-BIND-K,CT -PK

Lemma 4.4 Lemma 4.4

Lemma 4.2

Lemma 4.3

Figure 11: Restricted hierarchy of binding properties for implicitly-rejecting KEMs as X-BIND-CT -K
and X-BIND-CT -PK cannot be met by any implicitly-rejecting KEM

Theorem C.2. An implicitly-rejecting KEM KEM cannot satisfy X-BIND-CT -PK or X-BIND-CT -K
for X ∈ {HON ,LEAK ,MAL}.

Proof. We now show that:

1. KEM cannot be HON -BIND-CT -K-secure

2. KEM cannot be HON -BIND-CT -PK-secure

The analogous statements for the malicious case then follow by the contraposition of Lemma 4.3
and Lemma 4.2.

1. We construct an adversary A against HON -BIND-CT -K. On input (pk0, pk1), A creates a valid
ciphertext by encapsulating against one public key and returns this ciphertext. Thus, one decapsula-
tion call in the HON -BIND-CT -K game yields a key that is indistinguishable from true randomness

28



since KEM is IND-CCA-secure. With overwhelming probability, the other decapsulation call will
return a rejection key that is computed from a secret, random value and the ciphertext. Thus, if H
is a random oracle, we can use the generic birthday bound to bound the probability that the valid
key and the rejection key of the two decapsulation operations collide as negligible. Thus, k0 ̸= k1
with overwhelming probability, and A wins the HON -BIND-CT -K game; KEM is not HON -BIND-
CT -K-secure.

2. We construct an adversary A against HON -BIND-CT -PK. As KEM is implicitly rejecting, Decaps
will always return a key k ̸= ⊥. Hence A chooses two different public keys and an arbitrary value
for the ciphertext. Since Decaps returning a key that is not equal to ⊥ is all A needs to achieve, A
trivially wins the game HON -BIND-CT -PK.

Thus, for implicitly-rejecting KEMs, we have a reduced hierarchy of relevant properties. The separation
between honest and malicious variants persists, but only four core properties are relevant and distinct,
which are the key-binding properties. This leaves us with a simple hierarchy with only eight relevant
binding properties overall for implicitly-rejecting KEMs, which we visualize in Figure 11.

D Tamarin Implementation

To model the key generation of the KEM, the event GoodKey(pk) is introduced, indicating that pk was
generated honestly. Properties such as Correctness are later specified to apply only to keys that were
produced via honest key generation.
Users of the library can employ arbitrary values as secret keys, but they must use the function symbol
kem pk(· · · ) to generate the corresponding public key.
Encapsulation and decapsulation operations of KEMs are modeled with events Encaps(k, ct, pk) and
Decaps(vk, ct, pk, sk). The input is provided via the premises of the protocol rule annotated with the
event, while the output is delivered through persistent facts !KeyValues(k) and !CTValues(ct) in the rule’s
premises. These persistent facts come from our symbolic model of KEMs, and represent the key- and
ciphertext space, respectively. For instance, when modeling an encapsulation

[Alice(pk, sk), !KeyValues(k)!CTValues(ct)] (1)

−[Encaps(k, ct, pk)]→ (2)

[Out(ct)] (3)

!KeyValues(k) and !CTValues(ct) are needed to bind the output of the Encaps call on pk.
By default, no restriction is placed on these values, and arbitrary collisions in the key and ciphertext are
possible.
To restrict collisions in the key and ciphertext spaces, the computational properties such as Correctness,
HON -BIND-K-CT , and MAL-BIND-K-CT are encoded as logical formulas to ensure desired behavior,
including key equality and binding properties. Tamarin traces violating these properties are discarded
through imposed restrictions. For instance, we can encode the Correctness property using the following
formula:

Definition D.1. Correctness

∀ k1 k2 ct sk #i #j #k .

Encaps(k1 , ct , kem pk(sk))@#i ∧ Decaps(k2 , ct , kem pk(sk), sk)@#j

∧ GoodKey(kem pk(sk))@#k

⇒ (k1 = k2 )

The restriction encodes that an Encaps call and a Decaps call that use the same public key pair–produced
by the honest key generation algorithm–and the same ciphertext must also produce the same key.
In the same manner, we can encode our binding properties. For instance, HON -BIND-K-CT :

Definition D.2. HON-BIND-K-CT

∀ k ct1 ct2 pk1 pk2 sk1 sk2 #i #j #l #m .

Decaps(k , ct1 , pk1 , sk1 )@#i ∧ Decaps(k , ct2 , pk2 , sk2 )@#j

∧ GoodKey(pk1 )@#l ∧ GoodKey(pk2 )@#m

⇒ (ct1 = ct2 )

29



To encode MAL-BIND-K-CT , we drop the requirement that the public keys have to be good keys, and
add additional restrictions that enforce the same behavior for pairs of Encaps calls as well as pairs of
Encaps and Decaps.
For IND-CCA, it is required that the output key k of an Encaps call with a good key is distinct from any
other output key produced by Encaps. We model this as well using a restriction.
Additionally, in a classical symbolic model with function symbols, the adversary can freely use these
symbols as well. To also allow this behavior for our event-based computations, we provide protocol rules
in our model that allow the adversary to perform these computations. While this would encode the
adversary to emulate honest parties, we also give the adversary access to a modified Encaps computation
where they can force the output key to be any value they already know. This models the case where the
adversary does not use fresh randomness but reuses randomness to compute an output key of their choice.
Note, that this behavior is also why re-encapsulation attacks exist
Optional restrictions are provided to enforce the use of good keys in Encaps and Decaps computations,
allowing users to exclude traces where bad keys are used.
Finally, we want to explain why we only implement our properties for X = HON and X = MAL in the
symbolic setting. In Section 4.3, we note that LEAK and HON are indeed different in the computational
model since an adversary can learn intermediate values when computing Decaps themself, as is the case
in the LEAK setting. This is not the case in the HON setting, where they can only observe the result
of honest Decaps computations done by an oracle. Thus, LEAK and HON are not equivalent in the
computational model. In our KEM model, on the other hand, the output key is not computed from
intermediate values, but an atomic fresh value. Thus, an adversary cannot learn any additional information
by computing Decaps themself. As a result, HON and LEAK are equivalent for our KEM model. We
leave building a symbolic KEM model that allows for arbitrary combinations of our binding properties,
where LEAK is not equal to HON , as future work. This is challenging because modeling arbitrary partial
information leakage in the symbolic model is still an open problem, and modeling the output key as a
compound term built from other terms (which could be leaked) inherently satisfies some of our binding
properties (see Section 5.1).

E Changelog

• Version 0.1, December 20, 2023: Initial draft.

• Version 0.1.1, December 22, 2023:

– Fixed typos.

– Changed symbols for malicious and honest from M , and H to MAL, and HON .

– Renamed Alex, Blake, and Charlie to A, B, and C.

– Added Changelog.

• Version 1.0, January 30, 2024:

– Substantial reworking of the entire paper: updated notation and methodology throughout, and
added new content on symbolic analysis.

– Moved proofs and constructions to the appendices.

– Updated the generic binding game for the malicious (MAL) setting based on [26].

– Added a new LEAK -variant to the generic binding games.

– Expanded the comparison to existing binding notions.

– Introduced a symbolic approach for analyzing security protocols with respect to our binding
properties in the framework of the Tamarin prover.

– Analyzed several case studies using our symbolic approach.

• Version 1.0.1, January 31, 2024: Update Biblio

• Version 1.0.2, February 08, 2024: Update Biblio. Fix citation to wrong paper. Fix typo.

• Version 1.0.3, February 15, 2024: Fix typos and punctuation.

• Version 1.0.4, February 23, 2024: Update relations between our properties

30


	Introduction
	Background
	Re-encapsulation attacks
	New security notions for KEMs
	Design choices
	Naming conventions
	Generic binding notions of KEMs
	Relating binding to contributive behavior
	Relationship to other Properties
	Relations and implications
	Ensuring strong binding properties

	Symbolic Analysis of KEMs
	Previous Symbolic KEM Models
	The Tamarin prover
	Improved Symbolic Model for KEMs

	Case Studies
	Methodology
	Discussion of Results
	One-Pass AKE
	0'-protocol
	PQ-SPDM
	Kyber-AKE

	Conclusion
	Proofs for the Properties of Our Generic Binding Notions
	Relations between our Properties

	Constructions for our Separating Examples
	Construction – Kyber
	Construction – KEM m
	Construction – KEM m Variant
	Construction – KEM m
	Construction – Classic McEliece
	Construction – Custom Scheme

	Implicitly-rejecting KEMs
	Tamarin Implementation
	Changelog

