
Barrett Multiplication for Dilithium on Embedded
Devices

Studies on the impact of available multiplication instructions

Vincent Hwang1, YoungBeom Kim2 and Seog Chung Seo2

1 Max Planck Institute for Security and Privacy, Bochum, Germany
vincentvbh7@gmail.com

2 Kookmin University, Seoul, Korea

Abstract. We optimize the number-theoretic transforms (NTTs) in Dilithium — a
digital signature scheme recently standardized by the National Institute of Standards
and Technology (NIST) — on Cortex-M3 and 8-bit AVR. The core novelty is the
exploration of micro-architectural insights for modular multiplications. Recent work
[Becker, Hwang, Kannwischer, Yang and Yang, Volume 2022 (1), Transactions on
Cryptographic Hardware and Embedded Systems, 2022] found a correspondence
between Montgomery and Barrett multiplications by relating modular reductions
to integer approximations and demonstrated that Barrett multiplication is more
favorable than Montgomery multiplication by absorbing the subtraction to the low
multiplication. We first point out the benefit of Barrett multiplication when long
and high multiplication instructions are unavailable, unusable, or slow. We then
generalize the notion of integer approximations and improve the emulation of high
multiplications used in Barrett multiplication.
Compared to the state-of-the-art assembly-optimized implementations on Cortex-
M3, our constant-time NTT/iNTT are 1.38−1.51 times faster and our variable-time
NTT/iNTT are 1.10−1.21 times faster. On our 8-bit AVR, we outperform Montgomery-
based C implementations of NTT/iNTT by 6.37−7.27 times by simply switching to the
proposed Barrett-based implementation. We additionally implement Barrett-based
NTT/iNTT in assembly and obtain 14.10− 14.42 times faster code.
For the overall scheme, we provide speed-optimized implementations for Dilithium
parameter sets dilithium2 and dilithium3 on Cortex-M3, and stack-optimized
implementations for all parameter sets on Cortex-M3 and 8-bit AVR. We briefly
compare the performance of speed-optimized dilithium3. Compared to the state-
of-the-art assembly implementation on Cortex-M3, our assembly implementation
reduces the key generation, signature generation, and signature verification cycles
by 2.30%, 23.29%, and 0.69%. In the 8-bit AVR environment, our Barrett-based
C implementation reduces the key generation, signature generation, and signature
verification cycles by 45.09%, 56.80%, and 50.40%, respectively, and our assembly-
optimized implementation reduces the cycles of each operation by 48.85%, 61.70%,
and 55.08%, respectively.
Keywords: Modular multiplication · Barrett multiplication · Lattice-based cryp-
tography · Dilithium · Microcontroller · Cortex-M3 · 8-bit AVR

1 Introduction
We optimize the number-theoretic transforms (NTTs) in the digital signature scheme
Dilithium, recently standardized by the Nation Institute of Standards and Technology
on embedded systems. Our core novelty boils down to efficient instantiations of modular

mailto:vincentvbh7@gmail.com

2 Barrett Multiplication for Dilithium on Embedded Devices

multiplications. Let q be an odd positive integer and R be a power of two, with exponent
a power of two. In cryptography, modular multiplication modulo q is one of the core
computations. For efficiency reasons, people commonly instantiate arithmetic modulo q
with arithmetic modulo R. In this paper, we focus on the signed arithmetic and define Zn :=
[− n

2 ,
n
2) ∩ Z for a positive integer n. Furthermore, we denote mod±n the function sending

an integer a to the unique integer a mod ±n in Zn satisfying a ≡ a mod ±n (mod n)1. We
call a multiplication instruction a multiply-low instruction if it multiplies two numbers a, b
drawn from ZR and computes a value sufficiently close to ab mod ±R. Similarly, we call a
multiplication instruction a multiply-high instruction if it computes a value sufficiently
close to the upper log2 R bits of ab, and a multiply-long instruction if the result is sufficiently
close to ab. For simplicity, we also call the corresponding accumulative/subtractive variants
multiply-low, multiply-high, or multiply-long instructions.

For two integers a, b ∈ ZR, Montgomery multiplication (accumulative variant) computes
ab with a multiply-long and finds a (2 log2 R)-bit integer c with c ≡ 0 (mod R) and c ≡ ab
(mod q) via the Chinese remainder theorem, which can be implemented by one multiply-low
and one multiply-long by applying the divided difference form. Since c is a multiple of R,
we compute c

R by extracting the upper log2 R bits and find c
R ≡ abR−1 (mod q). If b is a

constant known beforehand, we replace b with bR mod ±q and compute a representative
of ab mod ±q [Mon85]. Recently, [Sei18] proposed a subtractive variant of Montgomery
multiplication and replaced the multiply-longs by multiply-highs. Barrett multiplication is
an alternative approach. Essentially, we compute a “quotient” q̃ with a multiply-high such
that ab− q̃q falls into ZB for q ≤ B ≤ R. We then compute the products ab and q̃q by two
multiply-lows and subtract them. In summary, we need two multiply-high/longs and one
multiply-low for Montgomery multiplication, and one multiply-high and two multiply-lows
for Barrett multiplication. See Table 1 for an overview.

Table 1: Overview of the number of multiplication instructions for each type used in
Montgomery and Barrett multiplications. Montgomery multiplication (acc.) stands for
the accumulative variant and similarly for the subtractive variant.

Multiply-low Multiply-high Multiply-long
Montgomery multiplication (acc.) 1 0 2
Montgomery multiplication (sub.) 1 2 0
Barrett multiplication 2 1 0

From the micro-architectural point of view, multiply-low instructions are fairly common,
but multiply-high and multiply-long instructions might be unavailable, incomplete, or
unusable on some platforms. For example, on an ARM Cortex-M3 processor implementing
Armv7-M, multiply-long instructions take 3−7 cycles, depending on the magnitude of
the result [ARM10, Table 18-1] and cannot be used in computing secret data. In this
case, one usually emulates multiply-high and multiply-long instructions with multiply-low,
incurring a significant performance penalty. See Table 2 for the available instructions in
the instruction set architecture (ISA) Armv7E-M where Armv7E-M stands for Armv7-M
with the DSP extension, and See Table 3 for an overview of the timing of multiplication
instructions on Cortex-M3 and Cortex-M4. Additionally, in the AVR environment with an
8-bit register size, our signed implementation of 16-bit multiply-long takes 18 cycles, while
our emulation of signed 32-bit multiply-long (using 8 accumulator registers) takes 102 cycles.
Therefore, when implementing modular multiplications, avoiding 32-bit multiply-long can
lead to significant performance improvements. In other words, Barrett multiplication is
obviously more favorable than Montgomery multiplication in both the Cortex-M3 and
8-bit AVR.

1The notation mod± specifies that signed representation is used for defining Zn.

Vincent Hwang, YoungBeom Kim and Seog Chung Seo 3

Table 2: Summary of multiplication instructions for R = 232 in Armv7E-M. Instructions
followed by (E) are part of the DSP extension and do not exist in Armv7-M.

Multiply-low Multiply-high Multiply-long
mul, mla, mla smmul (E), smmulr (E) smull, smlal, umull, umlal

Table 3: Summary of multiplication instruction timings on Cortex-M3 (Armv7-M) and
Cortex-M4 (Armv7E-M).

Cortex-M3 Cortex-M4
mul 1 1
mla/mls 2 1
{s, u}{mul, mla, mls }l 3−7 1

Our second observation relies on the approximation nature of Barrett multiplication.
Recall that Barrett multiplication computes ab− q̃q ∈ ZB. In the literature, people chose

q̃ =
⌊

a⌊ bR
q ⌉

R

⌉
implementing B = 2q and q̃ =

⌊
a
⌊

2kbR
q

⌉
2kR

⌉
for sufficiently large k implementing

B = q. We instead relax the bound B and relate the degree relaxation to the quality of
approximation implemented by q̃. Conceptually, we throw away the lower-limb computation
while computing q̃ by emulating multiply-high and show that the resulting bound B is still
good enough for our use case.

Contributions. We summarize our contributions as follows.

• We show that Barrett multiplication is more favorable than Montgomery multiplica-
tion when multiply-high and multiply-long instructions are unavailable or unusable.

• We generalize the notion of integer approximations and show that the approximation
nature of Barrett multiplication enables efficient emulation of multiply-highs. Along
with this generalization, we find that Barrett multiplication performs the same as
a long multiplication on Cortex-M3. This shows that any modular multiplication
calling at least one long multiplication with non-zero preprocessing/postprocessing
cost performs worse than our Barrett multiplication on Cortex-M3.

• We apply our ideas to the post-quantum digital signature Dilithium [ABD+20]
recently standardized by NIST [NIS] on Cortex-M3 and 8-bit AVR. Compared to the
state-of-the-art optimized Cortex-M3 implementation by [GKS21], our constant-time
Barrett-based NTT/iNTT is 1.38−1.51 times faster than their Montgomery-based
implementation, and our variable-time Barrett-based NTT/iNTT is 1.10−1.21 times
faster than their variable-time Montgomery-based implementations. In an 8-bit AVR
environment, our C implementation of Barrett-based NTT/iNTT are 6.37−7.27 times
faster than the reference implementation [ABD+20] using Montgomery arithmetic.
Additionally, our assembly implementation maximizes performance improvements
(14.10−14.42 times faster).

• For the overall scheme, we provide speed-optimized implementations for Dilithium
parameter sets dilithium2 and dilithium3 on Cortex-M3, and stack-optimized
implementations for all parameter sets on Cortex-M3 and 8-bit AVR. We briefly
compare the performance of dilithium3. Compared to the state-of-the-art assembly
implementation on Cortex-M3 by [GKS21], our speed-optimized assembly implemen-
tation reduces the key generation, signature generation, and signature verification
cycles by 2.30%, 23.29%, and 0.69%. As for the stack-optimized implementation, we
compare our C and assembly implementations since there are no publicly available

4 Barrett Multiplication for Dilithium on Embedded Devices

implementations. Our assembly-optimized implementation reduces the cycles of key
generation, signature generation, and signature verification of our C implementation
by 12.96%, 27.00%, and 22.72%, respectively. For the 8-bit AVR environment, we
compare our implementations with the reference C Montgomery-based implementa-
tion, since there are no prior works. Our Barrett-based dilithium3 C implementation
reduces the cycles of key generation, signature generation, and signature verification
by 45.09%, 56.80%, and 50.40%, respectively, and our assembly-optimized Barrett-
based implementation reduces the cycles of key generation, signature generation, and
signature verification by 48.85%, 61.70%, and 55.08%, respectively.

Source code. Our source code will be publicly available at https://github.com/
vincentvbh/Barrett_Dilithium_Embedded.

Structure of this paper. This paper is structured as follows. Section 2 goes through
the preliminaries, Section 3 describes our insights on modular multiplications, and Section 4
details our implementations of NTT/iNTT on Cortex-M3 and 8-bit AVR. Finally, Section 5
shows the performance numbers of NTT/iNTT and the overall impact on Dilithium.

2 Preliminiaries
Section 2.1 describes Dilithium [ABD+20], Section 2.2 reviews number-theoretic transform,
Section 2.3 reviews integer approximations from [BHK+22], Section 2.4 reviews modular
multiplications. Section 2.5 describes Cortex-M3, and Section 2.6 describes 8-bit AVR.

2.1 Dilithium
Dilithium [ABD+20] is a digital signature recently standardized by NIST [NIS]. It is based
on the Module Small Integer Solutions (M-SIS) and the Module Learning With Errors (M-
LWE) problems. The module is a k × ℓ matrix over the polynomial ring Zq[x]

/〈
x256 + 1

〉
where q = 223 −213 +1 is a prime and (k, ℓ) = (4, 5), (6, 5), (8, 7), depending on the security
level. Please see Table 4 for an overview of parameter sets and [ABD+20] for algorithm
description.

Table 4: Dilithium parameter sets.
Parameter set NIST security level (k, ℓ)
dilithium2 II (4, 4)
dilithium3 III (6, 5)
dilithium5 V (8, 7)

The core operation of key generation, signature generation, and signature verification
is the (k × ℓ) × (ℓ× 1) matrix-to-vector multiplications. Dilithium builds NTT into the
specification – the matrix is sampled as if all the entries are ready in the domain of NTT.

2.2 Number Theoretic Transform
Let R be a commutative ring with identity. For an n-th root of unity ωn ∈ R, we call it
principal if ∀j = 1, . . . , n− 1,

∑n−1
i=0 ω

ij
n = 0. For an invertible element ζ ∈ R, we have the

following isomorphism by the Chinese remainder theorem for polynomial rings:

R[x]
⟨xn − ζn⟩

∼=
∏

i

R[x]
⟨x− ζωi

n⟩
.

https://github.com/vincentvbh/Barrett_Dilithium_Embedded
https://github.com/vincentvbh/Barrett_Dilithium_Embedded

Vincent Hwang, YoungBeom Kim and Seog Chung Seo 5

If n = 2h is a power of two, we have

R[x]
⟨xn − ζn⟩

∼=
∏ R[x]〈

x
n
2 ± ζ

n
2

〉 ∼= · · · ∼=
∏

i0,...,ih−1=0,1

R[x]〈
x− ζω

∑
j

ij2j

n

〉 .
This is the radix-2 Cooley–Tukey FFT for a discrete weighted transform [CT65, CF94]. In
this paper, we specialize it to ζ = ω2n so ζn = −1.

We give an example for n = 2. Let’s define CT(−,−, ζ) as the function (a0, a1) 7→
(a0 + ζa1, a0 − ζa1). Clearly, we can implement the isomorphism R[x]

/〈
x2 − ζ2〉 ∼=∏

R[x]/⟨x± ζ⟩ as a0 +a1x 7→ CT(a0, a1, ζ). If we further define GS(−,−, ζ) := (â0, â1) 7→
(â0 + â1, (â0 − â1) ζ), then GS(−,−, ζ−1) ◦ CT(−,−, ζ) = CT(−,−, ζ) ◦ GS(−,−, ζ−1) =
(a0, a1) 7→ 2(a0, a1) where ◦ stands for function composition. Generally, we call CT(−,−,−)
a Cooley-Tukey butterfly (CT butterfly) and GS(−,−,−) a Gentleman-Sande butterfly
(GS butterfly). See Figure 1 for illustrations.

a0 + ζa1

a0 − ζa1a1

a0

(a) Cooley–Tukey butterfly CT(a0, a1, ζ).

â0 + â1

(â0 − â1) ζ−1â1

â0

(b) Gentleman–Sande butterfly GS(â0, â1, ζ−1).

Figure 1: Radix-2 butterflies, adapted from [AHY22].

Since a size-n Cooley–Tukey FFT can be implemented entirely with CT butterflies,
we can invert the computation by replacing all CT butterflies with GS butterflies and
canceling out the scaling at the end. Gentleman–Sande FFT [GS66] proceeds in a different
way – we first convert R[x]/⟨xm − ψm⟩ into R[y]/⟨ym − 1⟩ whenever ψm ̸= 1 and split
with R[y]/⟨ym − 1⟩ ∼=

∏
R[y]

/〈
y

m
2 ± 1

〉
. Since the result of Cooley-Tukey FFT for

R[x]/⟨xn − ζn⟩ can be implemented entirely with GS butterflies, we can also invert it
with CT butterflies. The benefit for inverting with CT butterflies instead of GS butterflies
when ζn ̸= 1 is that while multiplying by n−1 for canceling out the scaling, we can merge
n− 1 of them with multiplications by ζ−i if we implement with CT butterflies whereas
implementing with GS butterflies only allow us to merge n

2 of them with ζ−i. We refer
to [ACC+22, Figure 1] for illustrations.

2.3 Integer Approximation
For a function JK : R → Z, [BHK+22] call it an integer approximation if

∀r ∈ R, |r − JrK| ≤ 1.

Common examples are the floor function ⌊⌋, ceiling function ⌈⌉, and rounding-half-up
function ⌊⌉. [BHK+22] chose ⌊⌉2 := r 7→ 2

⌊
r
2
⌉

and demonstrated its benefit for the
vector instruction set Neon in Armv8-A. It is easily seen that ⌊⌋ , ⌈⌉ , ⌊⌉ , ⌊⌉2 are all integer
approximations.

2.4 Modular Multiplications
Throughout this paper, we consider R = 232 and q < R

2 an odd number, and focus on
signed arithmetic. For an integer approximation JK, we define the corresponding modular
reduction modJKq : Z → Z as

modJKq := z 7→ z −
s
z

q

{
q.

6 Barrett Multiplication for Dilithium on Embedded Devices

Furthermore, we define
∣∣modJKq

∣∣ := maxz∈Z
∣∣z mod JKq

∣∣. If JK = ⌊⌉, we denote mod⌊⌉ as
mod±.

Montgomery multiplication. Let a, b ∈
[
− R

2 ,
R
2
)

be two integers. Montgomery multi-
plication [Mon85, Sei18] computes a representative of abR−1 mod q as

ab+
(
ab(−q−1) mod ±R

)
q

R
≡ abR−1 (mod q).

If b is known in prior, we replace b with bR mod ±q and compute

a (bR mod ±q) +
(
a (bR mod ±q) (−q−1) mod ±R

)
q

R
≡ ab (mod q).

Since
∣∣∣∣ a(bR mod ±q)+(a(bR mod ±q)(−q−1) mod ±R)q

R

∣∣∣∣ ≤ |a|| mod ±q|+| mod ±R|q
R = q

2

(
1 + |a|

R

)
,

the result is a 32-bit value.
In [Sei18], they proposed the following subtractive variant for vector arithmetic:⌊

ab

R

⌋
−

⌊(
abq−1 mod ±R

)
q

R

⌋
.

This sometimes improves the overall performance since we don’t need to keep track of the
lower log2 R bits of the products.

Barrett multiplication. Barrett multiplication was first introduced only for the reduc-
tion form [Bar86, Sei18] – For reducing a value a, we compute with

a−

a
⌊

R
q

⌉
R

 q.
[Sho] proposed the multiplicative form for unsigned arithmetic, and [BHK+22] proposed the
signed multiplication with integer approximations. [BHK+22] computed a representative
of ab mod q as

ab−

a
⌊

bR
q

⌉
R

 q.
[BHK+22] showed that the result is a 32-bit value by establishing a correspondence between
Barrett and Montgomery multiplications.

A correspondence between Barrett and Montgomery multiplications. [BHK+22]
showed that for an integer approximation JK, we have

ab−

a
r

bR
q

z

R

 q =
a

(
bR mod JKq

)
+

(
a

(
bR mod JKq

)
(−q−1) mod ±R

)
q

R
.

Their proof clearly transfers to the following generalization: For integer approximations
JK0 , JK1, we have

ab−

u

v
a

r
bR
q

z

0
R

}

~

1

q =
a

(
bR mod JK0q

)
+

(
a

(
bR mod JK0q

)
(−q−1) mod JK1R

)
q

R
.

Vincent Hwang, YoungBeom Kim and Seog Chung Seo 7

We leave the justification to readers since it is completely routine by unfolding the
definitions. The correspondence allows us to argue the output range as follows:∣∣∣∣∣∣ab−

u

v
a

r
bR
q

z

0
R

}

~

1

q

∣∣∣∣∣∣ ≤
|a|

∣∣modJK0q
∣∣ +

∣∣modJK1R
∣∣ q

R
.

If JK0 = JK1 = ⌊⌉, we have
∣∣∣∣ab−

s
aJ bR

q K0
R

{

1
q

∣∣∣∣ ≤ q
2

(
1 + |a|

R

)
.

2.5 Cortex-M3
Cortex-M3 implements the instruction set architecture Armv7-M. We briefly describe
relevant instructions in Armv7-M [ARM21] and their timing on Cortex-M3 [ARM10]. add
adds up two 32-bit values and sub subtracts them. adc and sbc add and subtract the
values with carry. lsl and lsr logically shift a 32-bit value left and right by the specified
constant/register value. asr performs an arithmetic right-shift. ubfx extracts certain
consecutive bits and unsigned-extends the result to a 32-bit value. sbfx signed-extends
the result to a 32-bit value. Each of the above instructions takes one cycle (we exclude
the instruction timing involving PC operands). mul multiplies two 32-bit values, mla
accumulates the product to the accumulator, and mls subtracts the product from the
accumulator. mul takes one cycle and mla/mls takes two cycles. {u, s}mull computes
the 64-bit unsigned/signed product of two 32-bit values, and {u, s}mlal accumulates
the product to an accumulator. {u, s}{mul, mla}l takes 3 to 7 cycles and is input-
dependent [ARM10, Table 18-1].

2.6 8-Bit AVR
The 8-bit AVR microcontroller architecture employs a straightforward two-stage pipeline.
Most of its instructions execute in a single cycle. Internally, it is equipped with 32
general-purpose 8-bit registers, designated as [r0:r31]. Due to this, basic arithmetic
operations, including bit operations, are performed on 8-bit units. We briefly describe
relevant instructions in 8-bit AVR environment [Atm16]. Analogous to the fundamental
Cortex-M3, it supports 8-bit unit operations like add, sub, adc, and sbc. lsl and lsr
logically shift an 8-bit value one bit to the left and right, respectively. asr performs an
arithmetic 1-bit right-shift. Each of the above instructions takes one cycle. Excluding
the early AVR architectures like the ATtiny series, which possess byte-sized Static RAM
(SRAM), the AVR microcontrollers primarily accommodate multiplication instructions
via a dedicated hardware multiplication unit. The product of the multiplication is always
returned in [r0:r1]. mul multiplies two unsigned 8-bit values, while muls multiplies two
signed 8-bit values. mulsu multiplies 8-bit signed and unsigned value. These multiplication
instructions take two cycles. Unlike mul, which allows all registers as operands, both muls
and mulsu mandate the use of registers within the [r16:r31] range as operands.

3 Barrett Multiplication: Revisited
3.1 Integer Approximation: Revisited
We generalize the notion of integer approximations. For a function JK : R → Z, we call it
an integer approximation if

∃δ ∈ R>0,∀r ∈ R, |r − JrK| ≤ δ.

When δ is known, we call JK a δ-integer-approximation. The generalizations of modJK and∣∣modJKq
∣∣ are defined in the same way.

8 Barrett Multiplication for Dilithium on Embedded Devices

3.2 Barrett Multiplication with Approximated High Products
Let a ∈

[
− R

2 ,
R
2
)
, b ∈

[
− q

2 ,
q
2
)

be integers. Recall that Barrett multiplication computes a
representative of ab mod q as

ab−

u

v
a

r
bR
q

z

0
R

}

~

1

q

for integer approximations JK0 , JK1. We choose JK0 = ⌊⌉ and JK1 the following integer
approximation:

∀r ∈ R, JrK1 :=
⌊
albh√

R

⌋
+

⌊
ahbl√

R

⌋
+ ahbh

where al + ah

√
R = rR

J bR
q K0

, bl + bh

√
R =

r
bR
q

z

0
and al, bl ∈ [0,

√
R). Observe that

∀r ∈ R, |JrK1 − ⌊r⌉| ≤ 3,

we have ∣∣∣∣∣∣ab−

u

v
a

r
bR
q

z

0
R

}

~

1

q

∣∣∣∣∣∣ ≤

∣∣∣∣∣∣ab−

a
r

bR
q

z

0
R

 q
∣∣∣∣∣∣ + 3q ≤ q

2

(
7 + |a|

R

)
.

Therefore, computing with ab −
s

aJ bR
q K0
R

{

1
q is tolerable as long as q

2

(
7 + |a|

R

)
< R

2 . In

Dilithium, this is the case since q = 223 − 213 + 1 and R = 232. The benefit is that
JK1 is faster than ⌊⌉ if we have to emulate them with log2 R

2 = log2 R
2 × log2 R

2 multiply-low
instructions. The same argument holds if we only have log2 R

4 = log2 R
4 × log2 R

4 multiply-low
instructions.

4 Implementations
Section 4.1 details our implementations of modular multiplications and Section 4.2 describes
our layer-merging strategies.

4.1 Modular Multiplications
We first describe our implementations of modular multiplications. Section 4.1.1 describes
our Cortex-M3 implementations and Section 4.1.2 describes our AVR implementations.

4.1.1 Cortex-M3

For our Armv7-M implementation on Cortex-M3, we detail our variable-time and constant-
time Barrett multiplications and compare them with the state-of-the-art Montgomery
multiplications by [GKS21]. Table 5 summarizes the performance cycles of various multi-
plication operations. Since our Barrett multiplication, along with our observation of the
approximation nature, performs the same as the emulated long multiplication, we find that:
Our Barrett multiplication outperforms any modular multiplication algorithm
calling an emulated long multiplication followed by a reduction subroutine
with non-zero cost on Cortex-M3.

Vincent Hwang, YoungBeom Kim and Seog Chung Seo 9

Table 5: Overview of multiplication operations on Cortex-M3. All implementations are
constant-time unless stated otherwise. We assume that inputs are 32-bit register values.
Further optimizations may be applied by merging the decomposition with the memory
operations. However, this complicates the comparisons when the layer-merging technique
is applied on Cortex-M3.

Multiplication operation Work Cycle
Long (variable-time) [ARM10] 3−5
Long (constant-time) [GKS21] 12
Montgomery multiplication (variable-time) [GKS21] 7−11
Montgomery multiplication (constant-time) [GKS21] 23
Barrett multiplication (variable-time) This work 6−8
Barrett multiplication (constant-time) This work 12

Variable-time Barrett multiplication. For 32-bit values a, b with b ∈
{

− q
2 , . . . ,

q
2
}

known, we precompute
⌊

232b
q

⌉
and compute

ab−

a
⌊

232b
q

⌉
232

 q
as a representative of ab mod q. This is our variable-time Barrett multiplication and
Algorithm 1 is an illustration. Since the images of ⌊⌋ and ⌊⌉ differ by at most 1, we have∣∣∣∣∣∣ab−

a
⌊

232b
q

⌉
232

 q
∣∣∣∣∣∣ ≤

∣∣∣∣∣∣ab−

a
⌊

232b
q

⌉
232

 q
∣∣∣∣∣∣ + q ≤ q

2

(
3 + |a|

232

)
.

Comparing to the state-of-the-art variable-time Montgomery multiplication [GKS21,
ACC+21] (cf. Algorithm 2), Barrett multiplication turns the smlal into an mls. Since
smlal takes 3 to 7 cycles and mls takes only two cycles, Barrett multiplication is obviously
faster.

Algorithm 1 Variable-time Barrett multiplication on Cortex-M3.

Inputs: a = a, b = b, bhi =
⌊

232b
q

⌉
.

Outputs: c = ab−
⌊

a
⌊

232b
q

⌉
232

⌋
q.

1: smull lo, hi, a, bhi ▷ lo + hi · 232 = a
⌊

232b
q

⌉
.

2: mul c, a, b ▷ c = ab mod ±232.
3: mls c, hi, q, c ▷ c = ab−

⌊
a
⌊

232b
q

⌉
232

⌋
q.

Algorithm 2 Variable-time Montgomery multiplication on Cortex-M3 [GKS21, ACC+21].
Inputs: a = a, b = b.
Outputs: hi = ab+(−abq−1 mod ±232)q

232 .
1: smull lo, hi, a, b ▷ lo + hi · 232 = ab.
2: mul lo, lo, −q−1 mod ±232 ▷ lo = −abq−1 mod ±232.
3: smlal lo, hi, lo, q ▷ hi = ab+(−abq−1 mod ±232)q

232 .

10 Barrett Multiplication for Dilithium on Embedded Devices

Constant-time Barrett multiplication. For the constant-time Barrett multiplication,
we again precompute

⌊
232b

q

⌉
if b is known. Then, we compute

ab−

u

v
a

⌊
232b

q

⌉
232

}

~

1

q

as a representative of ab mod q. Algorithm 3 is an illustration. For computing
s

a
⌊

232b
q

⌉
232

{

1
,

we implement the macro mulhi_split as shown in Algorithm 7. In summary, our constant-
time Barrett multiplication takes 10 cycles whereas constant-time Montgomery multiplica-
tion takes 19 cycles (cf. Algorithm 4).

Algorithm 3 Constant-time Barrett multiplication on Cortex-M3.

Inputs: a = a, b = b, blo + bhi · 216 =
⌊

232b
q

⌉
.

Outputs: t3 = ab−
s

a
⌊

232b
q

⌉
232

{

1
q.

1: mul t3, a, b ▷ t3 = ab mod ±232.
2: ubfx t0, a, #0, #16
3: asr a, a, #16 ▷ t0 + a · 216 = a.
4: mulhi_split t1, a, bhi, t0, blo, t2 ▷ t1 =

s
a
⌊

232b
q

⌉
232

{

1
.

5: mls t3, t1, q, t3 ▷ t3 = ab−
s

a
⌊

232b
q

⌉
232

{

1
q.

Algorithm 4 Constant-time Montgomery multiplication on Cortex-M3 [GKS21].
Inputs: al + ah · 216 = a, bl + bh · 216 = b.
Outputs: res = ab+(−abq−1 mod ±232)q

232 .
1: sbsmull al, res, al, ah, bl, bh, tmp0

▷ al + res · 232 = ab, 7 cycles [GKS21, Listing 5].
2: mul bh, al, −q−1 mod ±232 ▷ bh = −abq−1 mod ±232.
3: ubfx bl, bh, #0, #16
4: asr bh, bh, #16 ▷ bl + bh · 216 = −abq−1 mod ±232.
5: sbsmlal al, res, bl, bh, ql, qh, tmp0

▷ res = ab+(−abq−1 mod ±232)q

232 , 9 cycles [GKS21, Listing 6].

4.1.2 8-Bit AVR

Since there is no research for Dilithium in an 8-bit AVR environment, we directly implement
and compare Montgomery and Barrett multiplications. Specifically, our work encompasses
the full range of 16/32-bit multiply-low/high/long macros operating at the granular level
of 8-bit words. In summary, our constant-time Barrett multiplication takes 129 cycles,
whereas constant-time Montgomery multiplication takes 184 cycles on an 8-bit AVR
environment. Table 6 gives an overview of the multiplication operations.

Vincent Hwang, YoungBeom Kim and Seog Chung Seo 11

Table 6: Overview of multiplication operations on 8-bit AVR.
Multiplication operation Work Cycle
mulsu_16x16_32 [Ret21] 17
muls_16x16_32 [Ret21] 18
muls32xQ_lo32 This work 23
muls32x32_lo32 [Ret21] 36
muls32xQinv_lo32 This work 27
muls32xQ_hi32 This work 51
muls32x32_64 [Ret21] 102
Montgomery multiplication This work 184
Barrett multiplication This work 129

For the Barrett multiplication (cf. Algorithm 5), we implement two 16-bit multiply-
long macros (muls16x16_32 and mulsu16x16_32) and two 32-bit multiply-low macros
(muls32xQ_lo32 and muls32x32_lo32). We implement the multiply instructions by lever-
aging the “Move-and-Add” (MA) technique, as proposed in [LSSR+15] and referenced
in [Ret21]. The macro muls16x16_32 multiplies two signed 16-bit values, and macro
mulsu16x16_32 multiplies 16-bit signed and unsigned value. If one of the operands of
16-bit multiply-long is unsigned, we can save one sbc instruction. Thus, mulsu_16x16_32
(17 cycles) is 1 cycle faster than muls16x16_32 (18 cycles). We further optimize the 32-bit
multiply-low when q is one of the operands by observing that the least significant 8-bit of
q are 1’s. Since the least significant word is 1, there’s no need to operate carry propagation
due to the signed representation. As a result, we implement solely using the mul commands
(no muls and mulsu). Please see Algorithm 8 for an illustration. Our muls32xQ_lo32 (23
cycles) is 13 cycles faster than the generic muls32x32_lo32 (36 cycles).

Algorithm 5 Constant-time Barrett multiplication on 8-bit AVR.

Inputs: (a3∥ · · · ∥a0) = a, (b3∥ · · · ∥b0) = b, (bp3∥ · · · ∥bp0) =
⌊

232b
q

⌉
.

((a3∥a2)= ah, (a1∥a0)= al, (bp3∥bp2)= bh, (bp1∥bp0)= bl)

Outputs: (c3∥ · · · ∥c0) = c = ab−
s

a
⌊

232b
q

⌉
232

{

1
q.

1: muls16x16_32 a2, a3, bp2, bp3, c0, · · · , c3 ▷ c = ahbh.
2: mulsu16x16_32 bp2, bp3, a0, a1, t0, · · · , t3 ▷ t = albh.
3: mov r0, t3 lsl r0 sbc r0, r0 ▷ r0 = SignExtend(t3[7 : 7]).
4: add c0, t2 adc c1, t3 adc c2, r0 adc c3, r0 ▷ c = ahbh +

⌊
albh

216

⌋
.

5: mulsu16x16_32 a2, a3, bp0, bp1, t0, · · · , t3 ▷ t = ahbl.
6: mov r0, t3 lsl r0 sbc r0, r0 ▷ r0 = SignExtend(t3[7 : 7]).
7: add c0, t2 adc c1, t3 adc c2, r0 adc c3, r0

▷ c = ahbh +
⌊

albh

216

⌋
+

⌊
ahbl

216

⌋
=

s
a
⌊

232b

q

⌉
232

{

1
.

8: muls32xQ_lo32 c0, · · · , c3, qimm, t0, · · · , t3 ▷ t =
s

a
⌊

232b
q

⌉
232

{

1
q, 23 cycles

9: muls32x32_lo32 a0,· · · ,a3, b0,· · · ,b3, c0,· · · ,c3 ▷ r = ab mod ±232.
10: sub c0, t0 sbc c1, t1 sbc c2, t2 sbc c3, t3

▷ (c3∥ · · · ∥c0) = c = ab−
s

a
⌊

232b
q

⌉
232

{

1
q.

Conversely, Montgomery multiplication based on [Sei18] (cf. Algorithm 6) requires
one 32-bit multiply-low, one 32-bit multiply-high, and one 32-bit multiply-long macros.
Since the least significant word of q and q−1 mod ±232 in Dilithium is 1, we implement the

12 Barrett Multiplication for Dilithium on Embedded Devices

32-bit multiply-low/high instructions (muls32xQinv_lo32 and muls32xQ_hi32) similarly
to Algorithm 8. Macros muls32xQinv_lo32 and muls32xQ_hi32 take 27 and 51 cycles,
respectively. As the 64-bit ab needs to hold be in the register, we use row-wise multiplica-
tion [GPW+04] technique for 32-bit multiply-long instructions. The macro muls32x32_64
takes 102 cycles.

Algorithm 6 Our constant-time Montgomery multiplication on 8-bit AVR adapted
from [Sei18].
Inputs: (a3∥ · · · ∥a0) = a, (b3∥ · · · ∥b0) = b

Outputs: (r7∥ · · · ∥r4) = ab−(abq−1 mod ±232)q

232 .
1: muls32x32_64 a0, · · · , a3, b0, · · · , b3, r0, · · · , r8 ▷ r = ab.
2: muls32xQinv_lo32 r0, · · · , r3, qiimm, t0, · · · , t3

▷ t = abq−1 mod ±232, 27 cycles.
3: muls32xQ_hi32 t0, · · · , t3, qimm, t4, · · · , t7

▷ t = (abq−1 mod ±232)q

232 , 51 cycles.
4: sub r4, t4 sbc r5, t5 sbc r6, t6 sbc r7, t7

▷ (r7∥ · · · ∥r4) = ab−(abq−1 mod ±232)q

232 .

4.2 Number Theoretic Transforms

Section 4.2.1 describes our Cortex-M3 NTT/iNTT implementations and Section 4.2.2
describes our AVR NTT/iNTT implementations.

4.2.1 Cortex-M3

We employ the same 2-2-2-2 layer merging strategy for variable-time NTT/iNTT as [GKS21].
As for the constant-time NTT, we compute one layer at a time due to the high register
pressure. For the constant-time iNTT, the first three layers are merged as follows: we
load four coefficients, apply all butterflies, load the other four coefficients, and apply all
butterflies with twiddle factors 1 or ω4. The butterflies with twiddle factors ω8 and ω3

8 are
computed separately. For the remaining layers, we compute one layer at a time.

4.2.2 8-Bit AVR

Unlike the ARM architecture, in the 8-bit AVR environment, the displacement of the load
indirect (ldd) instruction is limited to [0, 63]. Thus, one can access data up to 64 bytes
from a base address. Accessing addresses beyond this range requires an additional 2 cycles
(adiw). Furthermore, given the 32 registers, excluding the address register, there isn’t
sufficient space to store 4 coefficients and temporary values for merging 2 layers. As a
result, in the AVR implementation, we do not employ a merging strategy and compute
one layer at a time. For both NTT and iNTT, we utilize the CT butterfly. The Twiddle
factors required for NTT, iNTT, and twisting are all stored in the flash memory.

5 Results
We present the performance numbers in this section. Section 5.1 describes our bench-
marking environment, Section 5.2 shows the performance of NTTs/iNTTs, and Section 5.3
summarizes the overall performance of Dilithium.

Vincent Hwang, YoungBeom Kim and Seog Chung Seo 13

5.1 Benchmarking Environment
Cortex-M3. We benchmark our Armv7-M implementations on a nucleo-f207zg board
containing a stm32f207zg core with 128 KiB of SRAM and 1 MB of flash memory.
According to [STM20, Sections 3.2 and 3.6], stm32f207zg provides accesses to SRAM and
flash memory with 0 wait state up to the frequency 120 MHz. Nevetheless, we follow the
literature [ACC+22] and benchmark at frequency 30 MHz for consistency. We compile our
code with the cross-compiler arm-none-eabi-gcc version 10.3.1.

8-bit AVR. We benchmark our 8-bit AVR implementation using the IAR Embedded
Workbench. We simulate them on the Generic Devices -v6 option with Max 16 MB of
SRAM and 8 MB of flash memory. We compile our AVR codes with the compiler of IAR
Embedded Workbench version 8.10.1 using High(speed) level optimization option. Since
8-bit AVR comprise the single-pipeline structure, our simulations provide cycle counts
equivalent to the benchmarks. To measure the stack size, we use the linker option (Enable
stack usage analysis) of IAR Embedded Workbench, and the code size is measured
through the information in the .map file.

5.2 Performance of Number Theoretic Transform
We first describe the performance of NTT/iNTT.

5.2.1 Cortex-M3

For Cortex-M3 implementations, we compare to the state-of-the-art assembly-optimized
implementations by [GKS21]. Table 7 summarizes the performance of NTT/iNTT on
Cortex-M3. We compare our negacyclic NTT to for the NTT by [GKS21], and the sum of
cyclic iNTT and twisting to the iNTT by [GKS21]. Table 7 summarizes the numbers.

Our variable-time NTT and iNTT are 19347
15985 ≈ 1.21× and 21006

14117+4950 = 21006
19067 ≈ 1.10×

faster than [GKS21], respectively. For constant-time implementations, our NTT and iNTT
are 33025

21876 ≈ 1.51× and 36609
19782+6742 = 36609

26524 ≈ 1.38× faster than [GKS21], respectively.

Table 7: Performance numbers of NTT/iNTT on Cortex-M3.

Function [GKS21] This work
NTT

Variable-time Constant-time Variable-time Constant-time
NTT (negacyclic) 19 347 33 025 15 985 21 876

iNTT
Variable-time Constant-time Variable-time Constant-time

iNTT (negacyclic) 21 006 36 609 - -
iNTT (cyclic) - - 14 117 19 782
Point mul. - - 4 950 6 742

5.2.2 8-Bit AVR

Since our implementation is the first work of Dilithium in the AVR environment, we compare
it with the NIST reference implementation [ABD+20]. Table 8 shows the comparison
of the reference implementation using Montgomery arithmetic and our implementation
using Barrett arithmetic. The results for our iNTT include ring twisting cycles. Our AVR
Assembly implementation is a Constant-time implementation.

14 Barrett Multiplication for Dilithium on Embedded Devices

Our C-based NTT and iNTT are 2860881
449457 ≈ 6.37× and 3402491

468207 ≈ 7.27× faster than
[ABD+20], respectively. For our hand-written assembly implementation, our NTT and
iNTT are 2860881

202917 ≈ 14.10× and 3402491
236028 ≈ 14.42× faster than [ABD+20].

Table 8: Performance numbers of NTT/iNTT on 8-bit AVR.

Function [ABD+20] This work
NTT

C ASM C ASM
NTT (negacyclic) 2 860 881 - 449 457 202 917

iNTT
C ASM C ASM

iNTT (negacyclic) 3 402 491 - - -
iNTT (cyclic+Point mul.) - - 468 207 236 028

5.3 Performance of Scheme

This section describes the overall performance of Dilithium on Cortex-M3 and 8-bit AVR.

5.3.1 Cortex-M3

We compare the overall Cortex-M3 performance of Dilithium to existing works [GKS21,
BRS22]. For dilithium2 and dilithium3, we provide three implementations: (i) a speed-
optimized implementation using assembly Barrett-based NTTs/iNTT, (ii) a stack-optimized
C implementation partially based on the stack optimizations proposed by [BRS22], and
(iii) a stack-optimized implementation using assembly Barrett-based NTTs/iNTTs. For the
speed-optimized implementations, we simply replace the assembly-optimized Montgomery-
based NTTs/iNTTs by [GKS21] with our assembly Barrett-based NTTs/iNTTs. As for
the stack-optimized implementations, we gradually apply memory optimization techniques
from [BRS22] to the reference implementation until we can run the implementations on
our platform. We then deploy our assembly Barrett-based NTTs/iNTTs. For dilithium5,
we only provide stack-optimized implementations due to the large stack usage.

We first compare our speed-optimized assembly implementations to [GKS21]. For
dilithium2, we reduce the key generation, signature generation, and signature verification
cycles by 3.61%, 7.42%, and 1.5%, respectively. For dilithium3, we reduce the key
generation, signature generation, and signature verification cycles by 2.3%, 23.29%, and
0.69%, respectively.

Next, we compare the performance of stack-optimized implementations. The most
stack-optimized implementation is by [BRS22]. However, we cannot find publicly available
source code. So, we start by applying memory optimization from [BRS22] to the C reference
implementation until we can run the parameter set dilithium5. Therefore, comparisons
to [BRS22] will be unfair, and we compare our own stack-optimized C and assembly
implementations. For dilithium2, our assembly-optimized reduces the key generation,
signature generation, and signature verification cycles by 14.74%, 27.45%, and 24.68%,
respectively. For dilithium3, our assembly-optimized reduces the key generation, signature
generation, and signature verification cycles by 12.96%, 27.00%, and 22.72%, respectively.
For dilithium5, our assembly-optimized reduces the key generation, signature generation,
and signature verification cycles by 11.71%, 23.75%, and 19.69%, respectively.

Vincent Hwang, YoungBeom Kim and Seog Chung Seo 15

Table 9: Performance of Dilithium on Cortex-M3. K stands for key generation, S stands
for signature generation, and V stands for signature verification.

Security
Work

Operation
Level K S V

Cycles Stack Cycles Stack Cycles Stack

II

Ref 2 164k 38 452 9 193k 52 076 2 377k 36 364
[GKS21] 1 913k 38 484 6 603k 52 116 1 805k 36 404
[BRS22]∗ 2 927k 4.9 KiB 18 470k 5.0 KiB 4 036k 2.7 KiB
Stack (C) 2 354k 7 700 17 538k 9 068 2 593k 9 756
Stack (ASM) 2 007k 7 692 12 723k 9 052 1 953k 9 748
Speed (ASM) 1 844k 38 444 6 113k 52 068 1 778k 36 356

III

Ref 3 712k 60 972 13 114k 79 716 3 895k 57 860
[GKS21] 3 309k 60 876 11 681k 79 620 3 026k 57 772
[BRS22]∗ 5 112k 6.4 KiB 36 303k 6.5 KiB 7 249k 2.7 KiB
Stack (C) 3 757k 9 748 25 415k 11 108 3 957k 10 772
Stack (ASM) 3 270k 9 740 18 554k 11 092 3 058k 10 764
Speed (ASM) 3 233k 60 964 8 961k 79 708 3 005k 57 852

V
[BRS22]∗ 8 609k 7.9 KiB 44 332k 8.1 KiB 12 616k 2.7 KiB
Stack (C) 6 199k 11 796 36 133k 13 148 6 501k 13 076
Stack (ASM) 5 473k 11 788 27 553k 13 140 5 221k 13 068

∗ We cannot find a publicly available implementation for the work [BRS22] and the stack consumption is
reported with unit KiB.

5.3.2 8-Bit AVR

Table 10: Performance of Dilithium on 8-bit AVR.

Security
Work

Operation
Level K S V

Cycles Stack Cycles Stack Cycles Stack

II
Ref ∗∗ (C) 73 556k 9 282 166 961k 12 059 86 860k 12 751
Stack (C) 47 732k 9 282 72 731k 12 059 49 138k 12 751
Stack (ASM) 44 181k 9 282 62 414k 12 059 44 081k 12 751

III
Ref ∗∗ (C) 154 028k 11 330 491 601k 14 107 169 770k 13 775
Stack (C) 84 579k 11 330 212 376k 14 107 84 213k 13 775
Stack (ASM) 78 786k 11 330 188 290k 14 107 76 267k 13 775

V
Ref ∗∗ (C) 255 058k 13 378 1 091 977k 16 155 276 570k 16 079
Stack (C) 144 925k 13 378 521 106k 16 155 146 478k 16 079
Stack (ASM) 135 525k 13 378 471 359k 16 155 134 076k 16 079

∗∗ Our stack-optimized implementation based on reference code [ABD+20].

The pure reference code, as seen in Table 9, consumes a significant amount of SRAM in the
8-bit AVR environment and cannot be simulated. Thus, we implement a stack-optimized
version based on the reference code [ABD+20] and designate it as comparison code (denoted
as Ref ∗∗). Table 5.3.2 compares our implementation utilizing Barrett arithmetic with Ref ∗∗

of all security levels of Dilithium. Given the limited stack space in the AVR environment,
unlike Cortex-M3, we only consider the stack-optimized implementation. First, we compare
the Ref ∗∗ that uses Montgomery multiplication with our implementation using Barrett

16 Barrett Multiplication for Dilithium on Embedded Devices

multiplication. Both implementations are coded in the C language. For dilithium2,
we reduce the key generation, signature generation, and signature verification cycles by
35.11%, 56.44%, and 43.43%, respectively. For dilithium3, we reduce the key generation,
signature generation, and signature verification cycles by 45.09%, 56.80%, and 50.40%,
respectively. For dilithium5, we reduce the key generation, signature generation, and
signature verification cycles by 43.18%, 52.28%, and 47.04%, respectively.

Subsequently, we compare our hand-written assembly implementation with C-based
Ref ∗∗. Compared with the Ref ∗∗ for all security levels of Dilithium, our assembly imple-
mentation reduces the clock cycles by nearly half. For dilithium2, we reduce the key
generation, signature generation, and signature verification cycles by 39.94%, 62.62%, and
49.25%, respectively. For dilithium3, we reduce the key generation, signature genera-
tion, and signature verification cycles by 48.85%, 61.70%, and 55.08%, respectively. For
dilithium5, we reduce the key generation, signature generation, and signature verification
cycles by 46.86%, 56.83%, and 51.52%, respectively.

All implementations (Ref ∗∗ (C), Stack (C), and Stack (ASM)) of each Dilithium opera-
tion consume the same stack size, and the code size is about 50 KiB in all implementations.
As can be seen from the comparison between C implementations, the 32-bit multiply-long
instruction is one of the most significant bottlenecks in the 8-bit AVR environment. Es-
pecially, the significant performance improvement in the Dilithium signature generation,
dominated by the rejection loop, clearly highlights the benefits of Barrett multiplication.

A Detailed Implementations

Algorithm 7 Implementation of mulhi_split on Cortex-M3.
Inputs: alo = al, ahi = ah, blo = bl, bhi = bh.
Outputs: acchi = ahbh +

⌊
albh

216

⌋
+

⌊
ahbl

216

⌋
.

1: mul acchi, ahi, bhi ▷ acchi = ahbh.
2: mul accmid, alo, bhi ▷ accmid = albh.
3: add acchi, acchi, accmid, asr #16 ▷ acchi = ahbh +

⌊
albh

216

⌋
.

4: mul accmid, ahi, blo ▷ accmid = ahbl.
5: add acchi, acchi, accmid, asr #16 ▷ acchi = ahbh +

⌊
albh

216

⌋
+

⌊
ahbl

216

⌋
.

Algorithm 8 Implementation of muls32xQ_lo32 on 8-bit AVR.
Inputs: (a3∥ · · · ∥a0) = a
Outputs: (c3∥ · · · ∥c0) = aq mod ±232

1: movw c0, a0 movw c2, a2 ldi q, 0xE0 mul a0, q
2: add c1, r0 adc c2, r1 adc c3, zero mul a2, q
3: add c3, r0 mul a1, q add c2, r0 adc c3, r1
4: ldi q, 0x7F mul a0, q add c2, r0 adc c3, r1
5: mul a1, q add c3, r0

References
[ABD+20] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim

Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien
Stehlé. CRYSTALS–Dilithium. Submission to the NIST Post-Quantum Cryp-
tography Standardization Project [NIS], 2020. https://pq-crystals.org/
dilithium/. 3, 4, 13, 14, 15

https://pq-crystals.org/dilithium/
https://pq-crystals.org/dilithium/

Vincent Hwang, YoungBeom Kim and Seog Chung Seo 17

[ACC+21] Erdem Alkim, Dean Yun-Li Cheng, Chi-Ming Marvin Chung, Hülya Evkan,
Leo Wei-Lun Huang, Vincent Hwang, Ching-Lin Trista Li, Ruben Niederhagen,
Cheng-Jhih Shih, Julian Wälde, and Bo-Yin Yang. Polynomial Multiplication
in NTRU Prime Comparison of Optimization Strategies on Cortex-M4. IACR
Transactions on Cryptographic Hardware and Embedded Systems, 2021(1):217–
238, 2021. https://tches.iacr.org/index.php/TCHES/article/view/8733.
9

[ACC+22] Amin Abdulrahman, Jiun-Peng Chen, Yu-Jia Chen, Vincent Hwang, Matthias J.
Kannwischer, and Bo-Yin Yang. Multi-moduli NTTs for Saber on Cortex-M3
and Cortex-M4. IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2022(1):127–151, 2022. https://tches.iacr.org/index.php/TCHES/
article/view/9292. 5, 13

[AHY22] Erdem Alkim, Vincent Hwang, and Bo-Yin Yang. Multi-Parameter Support
with NTTs for NTRU and NTRU Prime on Cortex-M4. IACR Transactions
on Cryptographic Hardware and Embedded Systems, 2022(4):349–371, 2022.
https://tches.iacr.org/index.php/TCHES/article/view/9823. 5

[ARM10] ARM. Cortex-M3 Technical Reference Manual, 2010. https://developer.arm.
com/documentation/ddi0337/h. 2, 7, 9

[ARM21] ARM. Armv7-M Architecture Refernce Manual, 2021. https://developer.arm.
com/documentation/ddi0403/ed. 7

[Atm16] Atmel. AVR Instruction Set Manual, 2016. https://ww1.microchip.com/
downloads/en/devicedoc/atmel-0856-avr-instruction-set-manual.pdf.
7

[Bar86] Paul Barrett. Implementing the Rivest Shamir and Adleman Public Key En-
cryption Algorithm on a Standard Digital Signal Processor. In CRYPTO 1986,
LNCS, pages 311–323. SV, 1986. https://link.springer.com/chapter/10.
1007/3-540-47721-7_24. 6

[BHK+22] Hanno Becker, Vincent Hwang, Matthias J. Kannwischer, Bo-Yin Yang, and
Shang-Yi Yang. Neon NTT: Faster Dilithium, Kyber, and Saber on Cortex-A72
and Apple M1. IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2022(1):221–244, 2022. https://tches.iacr.org/index.php/TCHES/
article/view/9295. 4, 5, 6

[BRS22] Joppe W Bos, Joost Renes, and Amber Sprenkels. Dilithium for Memory
Constrained Devices. In International Conference on Cryptology in Africa, pages
217–235. Springer, 2022. 14, 15

[CF94] Richard Crandall and Barry Fagin. Discrete Weighted Transforms and
Large-integer Arithmetic. Mathematics of computation, 62(205):305–
324, 1994. https://www.ams.org/journals/mcom/1994-62-205/
S0025-5718-1994-1185244-1/?active=current. 5

[CT65] James W. Cooley and John W. Tukey. An Algorithm for the Ma-
chine Calculation of Complex Fourier Series. Mathematics of Computation,
19(90):297–301, 1965. https://www.ams.org/journals/mcom/1965-19-090/
S0025-5718-1965-0178586-1/. 5

[GKS21] Denisa O. C. Greconici, Matthias J. Kannwischer, and Daan Sprenkels. Compact
Dilithium Implementations on Cortex-M3 and Cortex-M4. IACR Transactions
on Cryptographic Hardware and Embedded Systems, 2021(1):1–24, 2021. https:

https://tches.iacr.org/index.php/TCHES/article/view/8733
https://tches.iacr.org/index.php/TCHES/article/view/9292
https://tches.iacr.org/index.php/TCHES/article/view/9292
https://tches.iacr.org/index.php/TCHES/article/view/9823
https://developer.arm.com/documentation/ddi0337/h
https://developer.arm.com/documentation/ddi0337/h
https://developer.arm.com/documentation/ddi0403/ed
https://developer.arm.com/documentation/ddi0403/ed
https://ww1.microchip.com/downloads/en/devicedoc/atmel-0856-avr-instruction-set-manual.pdf
https://ww1.microchip.com/downloads/en/devicedoc/atmel-0856-avr-instruction-set-manual.pdf
https://link.springer.com/chapter/10.1007/3-540-47721-7_24
https://link.springer.com/chapter/10.1007/3-540-47721-7_24
https://tches.iacr.org/index.php/TCHES/article/view/9295
https://tches.iacr.org/index.php/TCHES/article/view/9295
https://www.ams.org/journals/mcom/1994-62-205/S0025-5718-1994-1185244-1/?active=current
https://www.ams.org/journals/mcom/1994-62-205/S0025-5718-1994-1185244-1/?active=current
https://www.ams.org/journals/mcom/1965-19-090/S0025-5718-1965-0178586-1/
https://www.ams.org/journals/mcom/1965-19-090/S0025-5718-1965-0178586-1/
https://tches.iacr.org/index.php/TCHES/article/view/8725
https://tches.iacr.org/index.php/TCHES/article/view/8725

18 Barrett Multiplication for Dilithium on Embedded Devices

//tches.iacr.org/index.php/TCHES/article/view/8725. 3, 8, 9, 10, 12, 13,
14, 15

[GPW+04] Nils Gura, Arun Patel, Arvinderpal Wander, Hans Eberle, and Sheueling Chang
Shantz. Comparing elliptic curve cryptography and rsa on 8-bit cpus. In
Cryptographic Hardware and Embedded Systems-CHES 2004: 6th International
Workshop Cambridge, MA, USA, August 11-13, 2004. Proceedings 6, pages
119–132. Springer, 2004. 12

[GS66] W. M. Gentleman and G. Sande. Fast Fourier Transforms: For Fun and Profit.
In Proceedings of the November 7-10, 1966, Fall Joint Computer Conference,
AFIPS ’66 (Fall), pages 563–578. Association for Computing Machinery, 1966.
https://doi.org/10.1145/1464291.1464352. 5

[LSSR+15] Zhe Liu, Hwajeong Seo, Sujoy Sinha Roy, Johann Großschädl, Howon Kim,
and Ingrid Verbauwhede. Efficient ring-lwe encryption on 8-bit avr processors. In
Cryptographic Hardware and Embedded Systems–CHES 2015: 17th International
Workshop, Saint-Malo, France, September 13-16, 2015, Proceedings 17, pages
663–682. Springer, 2015. 11

[Mon85] Peter L. Montgomery. Modular Multiplication Without Trial Division. Mathemat-
ics of computation, 44(170):519–521, 1985. https://www.ams.org/journals/
mcom/1985-44-170/S0025-5718-1985-0777282-X/?active=current. 2, 6

[NIS] NIST, the US National Institute of Standards and Technology. Post-quantum
cryptography standardization project. https://csrc.nist.gov/Projects/
post-quantum-cryptography. 3, 4, 16

[Ret21] RetroDan. AVR Assembler Site, 2021. https://avr-asm.tripod.com/avr201.
html. 11

[Sei18] Gregor Seiler. Faster AVX2 optimized NTT multiplication for Ring-LWE lattice
cryptography. 2018. https://eprint.iacr.org/2018/039. 2, 6, 11, 12

[Sho] Victor Shoup. NTL: a Library for Doing Number Theory. http://www.shoup.
net/ntl/. 6

[STM20] STMicroelectronics. STM32F207ZG, 2020. https://www.st.com/en/
microcontrollers-microprocessors/stm32f207zg.html. 13

https://tches.iacr.org/index.php/TCHES/article/view/8725
https://tches.iacr.org/index.php/TCHES/article/view/8725
https://tches.iacr.org/index.php/TCHES/article/view/8725
https://doi.org/10.1145/1464291.1464352
https://www.ams.org/journals/mcom/1985-44-170/S0025-5718-1985-0777282-X/?active=current
https://www.ams.org/journals/mcom/1985-44-170/S0025-5718-1985-0777282-X/?active=current
https://csrc.nist.gov/Projects/post-quantum-cryptography
https://csrc.nist.gov/Projects/post-quantum-cryptography
https://avr-asm.tripod.com/avr201.html
https://avr-asm.tripod.com/avr201.html
https://eprint.iacr.org/2018/039
http://www.shoup.net/ntl/
http://www.shoup.net/ntl/
https://www.st.com/en/microcontrollers-microprocessors/stm32f207zg.html
https://www.st.com/en/microcontrollers-microprocessors/stm32f207zg.html

	Introduction
	Preliminiaries
	Dilithium
	Number Theoretic Transform
	Integer Approximation
	Modular Multiplications
	Cortex-M3
	8-Bit AVR

	Barrett Multiplication: Revisited
	Integer Approximation: Revisited
	Barrett Multiplication with Approximated High Products

	Implementations
	Modular Multiplications
	Cortex-M3
	8-Bit AVR

	Number Theoretic Transforms
	Cortex-M3
	8-Bit AVR

	Results
	Benchmarking Environment
	Performance of Number Theoretic Transform
	Cortex-M3
	8-Bit AVR

	Performance of Scheme
	Cortex-M3
	8-Bit AVR

	Detailed Implementations
	References

