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Abstract. Quantum Fourier Transformation (QFT) plays a key role in quantum com-
putation theory. But its transform size has never discussed. In practice, the Xilinx Logi-
CORE IP Fast Fourier Transform core has the maximum transform size N = 216. Taking
into account the Planck constant ~ = 6.62607015× 10−34 and the difficulty to physically

implement basic operator
[

1 0
0 exp(−2π i/N)

]
on some qubits, we think N = 2120 could

be an upper bound for the transform size of QFT.
Keywords: Quantum Fourier Transformation, transform size, depleted operator, Shor
algorithm, Planck constant.

1 Introduction

Quantum computer is viewed as the biggest threat to public key cryptography, due to Shor algorithms
[1]. Thirty years later, however, we are now facing the embarrassing situation. On the one hand,
there were many announcements of success in manufacturing quantum computers, including IBM
133 qubits on the Heron chip. On the other hand, there is no guarantee of success in running these
devices to solve an actual numerical computation problem. There must be some deep reasons for this
situation. The misunderstandings about quantum algorithms (Shor algorithms, Grover algorithm
[2], etc.), could be the main reason for the conflict between ideal and reality. The quantum Fourier
transformation plays a pivotal role in modern quantum computation theory. But we find its transform
size has never mentioned and discussed. In this note, we argue that N = 2120 could be a proper
upper bound for the transform size of QFT. To the best of our knowledge, it is the first time to get
such a result.

2 Preliminaries

The state of a qubit is mathematically described by a 2-dimensional vector

[
α
β

]
, where α and β

are complex numbers such that |α|2 + |β|2 = 1. The basic two quantum states corresponding to the
two states of a classical bit are defined by

bit 0↔ |0〉 =

[
1
0

]
, bit 1↔ |1〉 =

[
0
1

]
.
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The basic single-qubit operations include

H =
1√
2

[
1 1
1 −1

]
, T =

[
1 0

0 eiπ/4

]
, S =

[
1 0
0 i

]
,

X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
,

where X,Y, Z are called Pauli operators, and H is called Hadamard gate. Clearly,

H|0〉 =
1√
2

[
1
1

]
=

1√
2

(|0〉+ |1〉), H|1〉 =
1√
2

[
1
−1

]
=

1√
2

(|0〉 − |1〉).

Given two separate qubits, the corresponding two-qubit state is given by the tensor product of
vectors. For example, [

α
β

]
⊗
[
γ
δ

]
=

 α

[
γ
δ

]
β

[
γ
δ

]
 =


αγ
αδ
βγ
βδ

 .
The basis for two-qubit states consists of

string 00↔ |00〉 =

[
1
0

]
⊗
[

1
0

]
=


1
0
0
0

 , string 01↔ |01〉 =

[
1
0

]
⊗
[

0
1

]
=


0
1
0
0

 ,

string 10↔ |10〉 =

[
0
1

]
⊗
[

1
0

]
=


0
0
1
0

 , string 11↔ |11〉 =

[
0
1

]
⊗
[

0
1

]
=


0
0
0
1

 .
Any unitary transformation is a valid operation on qubits. A unitary transformation on n qubits

is a matrix U of size 2n× 2n. The CNOT (controlled-NOT) gate is a commonly used two-qubit gate

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

Sometimes, two-qubit gates can be described by the tensor product of some known single-qubit gates.
Not all two-qubit gates can be written as the tensor product of single-qubit gates. Such a gate is
called an entangling gate, for example, the CNOT gate. The gates H,T and CNOT form a universal
gate set on many qubits because any general unitary transformation can be broken into a series of
two qubit rotations.

The only way to change qubits without measuring is to apply a unitary operation. Quantum
computations can be created by designing unitary operations in sequence, each of which is composed
of smaller operations.
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3 Quantum Fourier Transformation

Let n be the number of qubits used for QFT, N = 2n, and ω = exp(−2π i/N). The QFT acting on
n-qubits is described by the matrix

QFTN =
1√
N


1 1 1 · · · 1
1 ω ω2 · · · ωN−1

1 ω2 ω4 · · · ω2(N−1)

...
...

... · · ·
...

1 ωN−1 ω2(N−1) · · · ω(N−1)(N−1)


Define Rn :=

[
1 0
0 exp(−2π i

2n )

]
. The QFTN circuit is depicted as follows (see Fig.1, Ref.[3])

Figure 1: The QFT circuit

4 The depleted operators

As we know, the Xilinx LogiCORE IP fast Fourier transform core designed for implementing the
Cooley-Tukey FFT algorithm, a computationally efficient method for calculating the Discrete Fourier
Transform (DFT), has only the maximum transform size N = 216. When using scaling, a scaling
schedule is used to divide by a factor of 1, 2, 4, or 8 in each stage. If scaling is insufficient, a butterfly
output might grow beyond the dynamic range and cause an overflow. As a result of the scaling
applied in the FFT implementation, the transform computed is a scaled transform [4]. The scale
factor s is defined as

s = 2
∑log(N−1)

i=0 bi

where bi is the scaling (specified in bits) applied in stage i. The scaling results in the final output
sequence being modified by the factor 1/s.

In contrast, the QFT needs a very large transform size N = 21024 if Shor algorithm is used to
fact RSA-1024. Is it possible to run QFT with such a colossal transform size? The answer could be
discouraging due to the difficulty to physically implement the basic operators. Actually, the Planck
constant is ~ = 6.62607015 × 10−34 joule second. The Planck length is 1.62 × 10−35 meters, the
smallest possible length. The Planck time is 5.391247 × 10−44 seconds, an incredibly small interval
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of time. But now, we have

R1024 =

[
1 0
0 exp(−2π i

21024
)

]
=

[
1 0
0 cos(π/21023)− i sin(π/21023)

]
,

where
sin(π/21023) ≈ 3.495137844× 10−308,

is an extremely tiny quantity. For convenience, we call such a transformation involving some ex-
tremely tiny quantities depleted operator. Apparently, the depleted operator acting on a qubit cannot
generate any physical quantity change, such as energy, frequency, momentum, etc. In view of this
fact, we think N = 2120 could be an upper bound for the transform size of QFT, due to that

~ = 6.62607015× 10−34 ≈ 880.756× 2−120

This means only the operators R2, R4, R8, · · · , R2120 , could be physically managed.

Can we adopt some schedule to scale the operators R1024, R1023, · · · , R121? In a classical algo-
rithm, each intermediate machine state is explicit and can be measured, recorded, and scaled. But
in a quantum algorithm, each intermediate quantum state is ambiguous and cannot be definitely
measured and recorded. The common scaling schedule makes no sense for QFT. Keep in mind, we
are now facing the depleted operators, instead of overflowed numbers. It is thorough erratic.

5 Conclusion

We investigate the transform size of Quantum Fourier Transformation, and remark that any depleted
operator cannot be physically applied to a qubit. The finding in this note could be a good explanation
for the conflict between ideal and reality of quantum computer manufacture.
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