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Abstract
Multi-signatures have been drawing lots of attention in recent years, due to their applications in

cryptocurrencies. Most early constructions require three-round signing, and recent constructions have
managed to reduce the round complexity to two. However, their security proofs are mostly based on
non-standard, interactive assumptions (e.g. one-more assumptions) and come with a huge security
loss, due to multiple uses of rewinding (aka the Forking Lemma). This renders the quantitative
guarantees given by the security proof useless.

In this work, we improve the state of the art by proposing two efficient two-round multi-signature
schemes from the (standard, non-interactive) Decisional Diffie-Hellman (DDH) assumption. Both
schemes are proven secure in the random oracle model without rewinding. We do not require any
pairing either. Our first scheme supports key aggregation but has a security loss linear in the number
of signing queries, and our second scheme is the first tightly secure construction.

A key ingredient in our constructions is a new homomorphic dual-mode commitment scheme
for group elements, that allows to equivocate for messages of a certain structure. The definition and
efficient construction of this commitment scheme is of independent interest.

Keywords: Multi-Signatures, Tightness, Forking Lemma, Commitment Scheme, Round Com-
plexity

1 Introduction
A multi-signature scheme [IN83, BN06] allows N parties to jointly sign a message, where each party i holds
an independent key pair (pki, ski). Recently, multi-signature schemes have been drawing new attention
due to their applications in cryptocurrencies. In this setting, multiple parties share ownership of funds,
and can use multi-signatures to sign transactions spending these funds. For details, we refer to [BDN18].
A trivial construction is that each signer i computes a signature σi using ski, and the final signature is
(σ1, . . . , σN ). Yet, this trivial approach leads to large signature size. Motivated by this, cryptographers
are proposing more sophisticated multi-signature schemes with interactive signing protocols to compress
the signature size. In this work, we focus on concrete security of two-round multi-signature schemes.
Security Models. There are different models in which multi-signatures have been proposed and
analyzed. Namely, schemes may require interactive key generation [MOR01], or require that keys are
verified and include a proof of possesion of the secret key [DEF+19, CKM21]. Other schemes require to
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use a knowledge of secret key assumption [Bol03, LOS+06]. Besides these models, the widely accepted
model for multi-signatures nowadays is the so called plain public key model, introduced by Bellare and
Neven in their seminal work [BN06]. In this model, each signer generates her key pair independently, and
no knowledge assumption or proof of possession is needed. In this paper, we are interested in the plain
public key model.
Concrete Security and Tightness. Cryptographic schemes are proven secure using reductions. To
prove security of a scheme S, we transform any adversary AS against the security of S with success
probability εS into a solver AΠ for some underlying hard problem Π with success probability εΠ. Thereby,
we establish a bound εS ≤ L · εΠ. We call L the security loss. Ideally, we want the underlying hardness
assumption to be as standard as possible, since a more standard assumption gives us more confidence on
the scheme’s security. We also want the security loss as small as possible, since it relates the concrete
security of our scheme to the hardness of the underlying computational problem. This is reflected when
we use the security proof as a quantitative statement to derive concrete parameters for scheme S based
on cryptanalytic results for the well-studied problem Π. Roughly speaking, to get κ bits of security for S,
we have to guarantee κ+ logL bits of security for Π. If L is large, or depends on choices of the adversary
unknown at deployment time, instantiating the scheme in this way leads to prohibitively large parameters,
or is not even possible. This motivates striving for a tight reduction, i.e. a reduction where L is a small
constant. Tightness has been studied for many primitives, including standard digital signatures and
related primitives, e.g., [KW03, BKP14, LP20, HJK+21]. Unfortunately, most of existing multi-signature
schemes are non-tight. Even worse, existing two-round multi-signature schemes have only non-tight
reductions based on strong, non-standard assumptions.
Limitations of Existing Constructions. An overview of existing schemes (based on assumptions in
cyclic groups) and their properties and security loss can be found in Table 1. In the plain public key
model, Bellare and Neven [BN06] constructed a three-round multi-signature scheme (BN) based on the
Discrete Logarithm Assumption (DLOG). Proving the security of this scheme relies on rewinding and uses
the (general) Forking Lemma [BN06], which leads to a highly non-tight security bound. To improve this,
Bellare and Neven introduced a second three-round construction (BN+) tightly based on the Decisional
Diffie-Hellman (DDH) Assumption. Further works focus on key aggregation [MPSW19, BDN18, FH21].
This feature allows to publicly compute a single aggregated key from a given list of public keys, which
can later be used for verification. The key aggregation property saves bandwidth and is desirable in
many applications. Notably, the three-round scheme Musig [MPSW19, BDN18] can be seen as a variant
of BN that supports key aggregation. The scheme is based on DLOG and a double forking technique
is introduced for its analysis. This leads to a security bound of the form ε4S ≤ L · εΠ, which is useless
in terms of concrete security. Using the Decisional Diffie-Hellman (DDH) assumption, a tightly secure
variant Musig+ of Musig has been proposed in [FH21].

To further reduce round complexity, recent works focused on two-round constructions [NRS21, BD21,
AB21, CKM21, DOTT21]. However, while achieving certain desirable properties (e.g. deterministic signing
[NRSW20]) the proposed schemes have their drawbacks in terms of assumptions and concrete security. The
scheme [NRSW20] makes use of heavy cryptographic machinery and is not comparable with others in terms
of efficiency. Further, even in the more idealized models such as the algebraic group model, security proofs
of most two-round schemes rely on non-standard interactive assumptions [NRS21, CKM21, BD21, AB21].
The only exceptions are [DOTT21, BD21, BTT22]. A second drawback is the apparent need for
(double) rewinding in the random oracle model [DEF+19, NRS21, DOTT21, BD21, BTT22]. While such
security proofs show the absence of major structural attacks, concrete parameters are not supported by
cryptanalytic evidence.
Our Goal. Motivated by the state of the art, we study whether interactive assumptions and rewinding
techniques are necessary for two-round multi-signatures. If not, we want to construct a scheme without
either of them. Ideally, our scheme comes with additional features such as key aggregation or a fully tight
security proof. We summarize our central question as follows, which is of both practical and theoretical
interest.

Can we construct two-round multi-signatures
from non-interactive pairing-free assumptions without the use of rewinding?
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1.1 Our Contribution
Our work answers the above question in the affirmative. Our contributions are the first two multi-signature
schemes that are two-round from a non-interactive assumption without using the Forking Lemma. Both
of our schemes are proven secure in the random oracle model based on the DDH assumption. Concretely,
we construct

1. a two-round multi-signature scheme with a security loss O(QS) and key aggregation, where QS is
the number of signing queries, and

2. the first two-round multi-signature scheme with a fully tight security proof

We compare our schemes with existing schemes in Table 11. For roughly 128 bit security, our second
scheme can be instantiated with standardized 128 bit secure curves, in contrast to all previous two-round
schemes. For our first scheme, its proof is non-tight, but it does not rely on rewinding and has tighter
security based on standard, non-interactive assumptions than other non-tight schemes (such as HBMS
and Musig2). Hence, as long as the number of signing queries QS is less than 2192−128 = 264, we can
implement our first scheme with a standardized 192-bit secure curve to achieve 128-bit security, while this
is not the case for HBMS and Musig2. We note that our schemes do not have some additional beneficial
properties (e.g. having Schnorr-compatible signatures or supporting preprocessing) as in Musig2 [NRS21].
We leave achieving these properties without rewinding as an interesting open problem.

Scheme Assumption Rounds Key Aggregation Loss
BN [BN06] DLOG 3 7 O(QH/ε)
BN+ [BN06] DDH 3 7 O(1)
Musig [MPSW19, BDN18] DLOG 3 3 O(Q3

H/ε
3)

Musig+ [FH21] DDH 3 3 O(1)
Musig2 [NRS21] AOMDL 2 3 O(Q3

H/ε
3)

HBMS [BD21] DLOG 2 3 O(Q4
SQ

3
H/ε

3)
Ours (Section 3.2) DDH 2 3 O(QS)
Ours (Section 3.3) DDH 2 7 O(1)

Table 1: Comparison of existing multi-signature schemes (top) in the random oracle model with our
schemes (bottom). Here, QH , QS denote the number of random oracle and signing queries, respectively, ε
denotes the advantage of an adversary against the scheme. The algebraic one-more discrete logarithm
(AOMDL) assumption is a (stronger) interactive variant of DLOG.

A crucial building block for our construction is a special kind of DDH-based commitment scheme
without pairings. Concretely, our commitment scheme has the following properties.

• It commits to pairs of group elements in a homomorphic way.
• It has a dual-mode property, i.e. indistinguishable keys in statistically hiding and statistically

binding mode, with tight multi-key indistinguishability.
• The hiding mode offers a special form of equivocation trapdoor, which allows to open commitments

to group elements output by the Honest-Verifier Zero-Knowledge (HVZK) simulator of Schnorr-like
identification protocols.

Such a commitment scheme can be useful to construct other interactive signature variants, and we believe
that this is of independent interest. In this paper, we construct the first commitment scheme satisfying
the above properties simultaneously without using pairings. Our commitment scheme can be seen as an
extension of the commitment scheme in [BCJ08]2. Contrary to our scheme, the commitment scheme in
[BCJ08] commits to single group elements and no statistically binding mode is shown, which makes it
less desirable for our multi-signature constructions. Other previous commitment schemes either have no

1We do not consider proofs in the (idealized) algebraic group model and do not list schemes that are not in the plain
public key model.

2Drijvers et al. [DEF+19] showed a flaw in the proof of the multi-signature scheme presented in [BCJ08], but it does not
affect their commitment scheme.
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trapdoor property [GOS06, GS08], or homomorphically commit to ring or field elements [GQ88, Ped92].
To the best of our knowledge, there is only a solution using pairings [Gro09].

1.2 Concurrent Work
In a concurrent work (also at Eurocrypt 2023), Tessaro and Zhu [TZ23] also presented (among other
contributions) a new two-round multi-signature scheme. Both our work and theirs focus on avoiding
interactive assumptions. However, while we additionally remove the security loss, Tessaro and Zhu
concentrate on having a partially non-interactive scheme. That is, the first round of the signing protocol is
independent of the message being signed. In a nutshell, they generalize Musig2 to linear function families.
Then, under a suitable instantiation, the interactive assumption for Musig2 can be avoided. Similar to
Musig2, the resulting scheme is partially non-interactive. Still, their scheme inherits the security loss of
Musig2 due to (double) rewinding.

1.3 Technical Overview
We give an intuitive overview of our constructions and the challenges we solve.
Schnorr-Based Multi-Signatures. We start by recalling the basic template for multi-signatures based
on the Schnorr identification scheme [Sch91]. Let G be a group of prime order p with generator g. We
explain the template using the vector space homomorphism F : x 7→ gx mapping from Zp to G, and
write both domain and range additively. In a first approach to get a multi-signature scheme, we let each
signer i with secret key ski sample a random ri ∈ Zp, and send Ri := F(ri) to all other signers. Then, an
aggregated R is computed as R =

∑
iRi. From this R, signers derive challenges ci using a random oracle.

Then, each signer computes a response si = ciski + ri and sends this response. Finally, the signature
contains R and the aggregated response s =

∑
i si. Verification is very similar to the verification of

Schnorr signatures. As each signer in this simple two-round scheme is almost identical to the prover
algorithm of the Schnorr identification scheme, one may hope that this scheme is secure. However, early
works already noted that it is not [BN06].

While there are concrete attacks against the scheme, for our purposes it is more important to
understand where the security proof fails. The proof fails when we try to simulate honest signer without
knowing its secret key sk1. Following Schnorr signatures and identification, this would be done by
sampling R1 := F(s1)− c1pk1 for random c1 an s1, and then programming the random oracle accordingly
at position R. The problem in the multi-signature setting is that we first have to output R1, and then
the adversary can output the remaining Ri, such that he has full control over the aggregate R. Thus,
the random oracle may already be defined. Previous works [BN06, MPSW19, BDN18] solve this issue by
introducing an additional round, in which all signers commit to their Ri using a random oracle. This
allows us to extract all Ri from these commitments in the reduction, and therefore R has enough entropy
to program the random oracle.

A second problem that we encounter in the above approach is the extraction of a solution from the
forgery. Namely, to extract a discrete logarithm of pk1, we need to rely on rewinding. Some of the
well-known schemes [MPSW19, BDN18] even use rewinding multiple times. This leads to security bounds
with essentially no useful quantitative guarantee for concrete security.
Towards A Scheme without Rewinding. To avoid rewinding, our first idea is to rely on a different
homomorphism F. Namely, we borrow techniques from lossy identification [KW03, AFLT12, KMP16]
and use F : x 7→ (gx, hx) for a second generator h ∈ G. We can then give a non-rewinding security
proof for the three-round schemes in [BN06, MPSW19, BDN18]. Concretely, we first switch pk1 from the
range of F to a random element in G2, using the DDH assumption. Then, we can argue that a forgery is
hard to compute using a statistical argument. We note that this idea is (implicitly) already present in
[BN06, FH21]. As we will see, combining it with techniques to avoid the extra round is challenging.
Towards Two-Round Schemes. To go from a three-round scheme as above to a two-round scheme,
our goal is to avoid the first round. Recall that this round was needed to simulate R1 using random
oracle programming. Our idea to tackle the simulation problem is a bit different. Namely, going back to
the (insecure) two-round scheme, our goal is to send R1 after we learn c1. If we manage to do that, we
can simulate by setting it as R1 := F(s1)− c1pk1 for random s1. Of course, just sending R1 after learning
c1 should only be possible for the reduction. Following Damgård [Dam00], this high-level strategy can be
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implemented using a trapdoor commitment scheme Com, and sending com1 = Com(ck, R1) as the first
message. The challenges ci are then derived from an aggregated commitment com using the random oracle.
Later, the reduction can open this commitment to F(s1)− c1pk1 using the trapdoor for commitment key
ck. To support aggregation, the commitment scheme should have homomorphic properties. Note that this
approach has been used in the lattice setting in a recent work [DOTT21]. However, implementing such a
commitment scheme for (pairs of) group elements is highly non-trivial, as we will see. Also, as already
pointed out in [DOTT21], it is hard to make this two-round approach work while avoiding rewinding at
the same time. The reason is that a trapdoor commitment scheme can not be statistically binding. But if
we want to make use of the statistical argument from lossy identification discussed above, we need that R
is fixed before the ci are sampled, which requires statistical binding. With a computationally binding
commitment scheme, we end up in a rewinding reduction (to binding) again. Our first technical main
contribution is to overcome this issue.
Chopstick One: Our Scheme Without Rewinding. Our idea to overcome the above problem
is to demand a dual-mode property from the commitment scheme Com. Namely, there should be an
indistinguishable second way to set up the commitment key ck, such that for such a key the scheme
is statistically binding. This does not solve the problem yet, because we require ck to be in trapdoor
mode for simulation, and in binding mode for the final forgery. The solution is to sample ck in a
message-dependent way using another random oracle, which is (for other reasons) already done in earlier
works [DEF+19, DOTT21]. In this way, we can embed a binding commitment key in some randomly
guessed random oracle queries, and a trapdoor key in others. Note that this requires a tight multi-key
indistinguishability of the commitment scheme. Assuming we have such a commitment scheme, we end
up with our first construction, which is presented formally in Section 3.2. Of course, this strategy still
has a security loss linear in the number of signing queries due to the guessing argument, but it avoids
rewinding, leading to an acceptable security bound. In addition, we can implement the approach in a
way that supports key aggregation.
Chopstick Two: Our Fully Tight Scheme. The security loss in our first scheme results from
partitioning random oracle queries into two classes, namely queries returning binding keys, and queries
returning trapdoor keys. To do such a partitioning in a tight way, we may try to use a Katz-Wang random
bit approach [GJKW07]. This simple approach can be used in standard digital signatures. However, it
turns out that it does not work for our case. To see this, recall that following this approach, we would
compute two message-dependent commitment keys

ck0 := H(0,m), ck1 := H(1,m).

Then, for each message, we would embed a binding key in one branch, and a trapdoor key in the other
branch, e.g. ck0 binding and ck1 with trapdoor. In the signing protocol, we would abort one of the
branches pseudorandomly based on the message. Then we could use the trapdoor branch in the signing,
and hope that the forgery uses the binding branch. However, this strategy crucially relies on the fact that
the aborting happens in a way that is pseudorandom to the adversary. Otherwise the adversary could
always choose the trapdoor branch for his forgery. While we can implement this in a signature scheme, in
our multi-signature scheme this fails, because all signers must use the same commitment key to make
aggregation possible. At the same time, the aborted branch must depend on secret data of the simulated
signer to remain pseudorandom.

To solve this problem, we observe that the above approach uses a pseudorandom “branch selection”
and aborts the other branch. Our solution can be phrased as a pseudorandom “branch-to-key matching”.
Namely, we give each signer two public keys (pki,0, pki,1). The signing protocol is run in two instances in
parallel. One instance uses ck0, and one uses ck1 as above. More precisely, we commit to R0 via ck0 and
to R1 via ck1. Then we aggregate and determine the challenges ci,0 and ci,1. However, before sending
the response si = (si,0, si,1), each signer separately determines which key to use in which instance, i.e. it
computes

si,0 = ci,0 · xi,bi + ri,0, si,1 = ci,1 · xi,1−bi + ri,1,

where bi is a pseudorandom bit that each signer i computes independently, and that will be included in
the final signature to make verification possible. This decouples the public key that is used from the
commitment key that is used. Now we are ready to discuss the implication of this change. Namely, our
reduction chooses pk1,0 honestly and pk1,1 as a lossy key, i.e. random instead of in the range of F. Then,
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in each signing interaction, the reduction can match the honest public key with the binding commitment
key and the lossy public key with the trapdoor commitment key by setting b1 accordingly. In this way, we
can simulate one branch using the actual secret key, and the other branch using the commitment trapdoor.
For the forgery, we hope that the matching is the other way around, such that binding commitment
key and lossy public key match, which makes the statistical argument from lossy identification possible.
Overall, this approach leads to our fully tight scheme, presented in Section 3.3.
The Challenge of Instantiating the Commitment. One may observe that we shifted a lot of the
challenges that we encountered into properties of the underlying commitment scheme. This naturally
raises the question if such a commitment scheme can be found. In fact, constructing this commitment
scheme can be understood as our second technical main contribution.

Let us first explain why it is non-trivial to construct such a scheme. The main barrier results from
the algebraic structure that we demand. Namely, we need to commit to group elements3 R ∈ G. A naive
idea would be to use any trapdoor commitment scheme, e.g. Pedersen commitments, by first encoding R
in the appropriate message space. However, this would destroy all homomorphic properties that we need,
and we should not forget that we need a dual-mode property. This brings us to Groth-Sahai commitments
[GS08], which can commit to group elements. Indeed, these commitments are homomorphic, and have
(indistinguishable from) random keys, such that we can sample them using a random oracle. They are
also dual-mode based on DDH, which allows us to use the random self-reducibility of DDH to show tight
multi-key indistinguishability. However, the trapdoor property turns out to be the main challenge. To
see why this is problematic, note that the opening information of these commitments typically contains
elements from Zp that are somehow used as exponents. There are exceptions to this rule, like [Gro09], but
they use pairings and the DLIN assumption, which we aim to avoid. This means that the trapdoor should
allow us to sample exponents, given a group element R to which we want to open the commitment. This
naturally corresponds to having a trapdoor for the discrete logarithm problem, which we do not have.
Our Solution: Weakly Equivocable Commitments. Our starting point is the commitment scheme for
group elements given in [GS08]. Namely, commitment keys correspond to matrices A = (Ai,j)i,j ∈ G2×2,
and to commit to a message R = gr ∈ G with randomness (α, β) ∈ Zp, one computes

com := (C0, C1)t :=
(
Aα1,1 ·A

β
1,2, R ·Aα2,1 ·A

β
2,2

)t
.

That is, setting E = (Ei,j)i,j ∈ Zp such that gEi,j = Ai,j , we can write the discrete logarithm of com as
(0, r)t + E · (α, β)t. In binding mode, matrix E is a matrix of rank 1, while E has full rank in hiding mode.
It is easy to see that this commitment scheme to group elements is homomorphic. However, we stress that
there is no simple solution to implement a trapdoor for equivocation. To see this, note that if we want to
open a commitment com to a message R′ ∈ G, we need to output a suitable tuple (α, β). If we knew the
discrete logarithm of com, then we still would need to know the discrete logarithm of R′ to find such a
tuple. The key insight of our trapdoor construction is that we do not need to be able to open com to any
message R′. Instead, it will be sufficient if we can open it to messages of the form R′ = gs · pkc, where we
do not know c when we fix the commitment com, but we know pk when setting up A. To explain why
this helps, assume we want to find a valid opening (α, β) in this case. Then we need to satisfy

com =
(
C0
C1

)
=
(

0
gspkc

)
· gE·(α,β)t

.

It seems like we did not make progress, because even if we know the discrete logarithms of C0, C1, the
term pkc is not known in the exponent. Now, our key idea to solve this is to write and generate A with
respect to basis pk in the second row. Namely, we generate A as

A =
(
A1,1 A1,2
A2,1 A2,2

)
:=
(
gd1,1 gd1,2

pkd2,1 pkd2,2

)
.

In this way, the equation that we need to satisfy becomes(
C0
C1

)
=
(

gd1,1α+d1,2β

gspkc+d2,1α+d2,2β

)
.

3In the actual construction, we need to commit to pairs of group elements, but we consider the simpler setting of one
group element in this overview.
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Next, we get rid of the term gs by shifting C1 accordingly. Namely, recall that we can sample s at random
long before we learn c. Setting C0 = gτ and C1 = gspkρ for random τ, ρ, we obtain the equation(

gτ

pkρ
)

=
(

gd1,1α+d1,2β

pkc+d2,1α+d2,2β

)
.

Given the trapdoor D = (di,j)i,j , this can easily be solved for (α, β) by solving (τ, ρ− c)t = D · (α, β)t.
We are confident that such a weak and structured equivocation property can be used in other applications
as well, and formally define this type of commitment scheme in Section 3.1.

2 Preliminaries
We denote the security parameter by λ ∈ N, and all algorithms get 1λ implicitly as input. We write
x $← S if x is sampled uniformly at random from a finite set S, and we write x ← D if x is sampled
according to a distribution D. We write y ← A(x), if y is output from (probabilistic) algorithm A on
input x with uniform coins. To make the coins explicit, we use the notation y = A(x; ρ). The notation
y ∈ A(x) indicates that y is a possible output of A(x). We use standard asymptotic notation, and the
notions of negligible functions, and PPT algorithms. If G is a security game, we write G⇒ b to state
that G outputs b. In all our games, numerical variables are implicitly initialized with 0, and lists and sets
are initialized with ∅. We define [K] := {1, . . . ,K}, and denote the Bernoulli distribution with parameter
γ ∈ [0, 1] by Bγ .

Multi-Signatures. We introduce syntax and security for multi-signatures, following the established
security notions in the plain public key model [BN06]. We will assume that there is an canonical ordering
of given multi-sets, e.g. lexicographically, that allows us to uniquely encode multi-sets P = {pk1, . . . , pkN}.
For this encoding, we write 〈P〉 throughout the paper. Further, for simplicity of notation, we assume
that the honest public key in our security definition is the entry pk1 in this multi-set.

Alg MS.Exec(P,S,m)
01 let P = {pk1, . . . , pkN}, S = {sk1, . . . , skN}
02 for i ∈ [N ] : (pm1,i, St1,i)← Sig0(P, sk,m)
03 M1 := (pm1,1, . . . , pm1,N )
04 for i ∈ [N ] : (pm2,i, St2,i)← Sig1(St1,i,M1)
05 M2 := (pm2,1, . . . , pm2,N )
06 for i ∈ [N ] : σi ← Sig2(St2,i,M2)
07 if ∃i 6= j ∈ [N ] s.t. σi 6= σj : return ⊥
08 return σ := σ1

Figure 1: The algorithm MS.Exec for a (two-round) multi-signature scheme MS = (Setup,Gen,Sig,Ver),
representing an honest execution of the signing protocol Sig.

Definition 1 (Multi-Signature Scheme). A (two-round) multi-signature scheme is a tuple of PPT
algorithms MS = (Setup,Gen,Sig,Ver) with the following syntax:

• Setup(1λ)→ par takes as input the security parameter 1λ and outputs global system parameters
par. We assume that par implicitly defines sets of public keys, secret keys, messages and signatures,
respectively. All algorithms related to SIG take at least implicitly par as input.

• Gen(par)→ (pk, sk) takes as input system parameters par, and outputs a public key pk and a secret
key sk.

• Sig = (Sig0,Sig1,Sig2) is split into three algorithms:
– Sig0(P, sk,m) → (pm1, St1) takes as input a multi-set P = {pk1, . . . , pkN} of public keys, a

secret key sk, and a message m, and outputs a protocol message pm1 and a state St1.
– Sig1(St1,M1)→ (pm2, St2) takes as input a state St1 and a tupleM1 = (pm1,1, . . . , pm1,N )

of protocol messages, and outputs a protocol message pm2 and a state St2.
– Sig2(St2,M2)→ σi takes as input a state St2 and a tupleM2 = (pm2,1, . . . , pm2,N ) of protocol

messages, and outputs a signature σ.
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• Ver(P,m, σ)→ b is deterministic, takes as input a multi-set P = {pk1, . . . , pkN} of public keys, a
message m, and a signature σ, and outputs a bit b ∈ {0, 1}.

We require that MS is complete, i.e. for all par ∈ Setup(1λ), all N = poly(λ), all (pkj , skj) ∈ Gen(par) for
j ∈ [N ], and all messages m, we have

Pr
[
Ver(P,m, σ) = 1

∣∣∣∣ P = {pk1, . . . , pkN},S = {sk1, . . . , skN},
σ ← MS.Exec(P,S,m)

]
= 1,

where algorithm MS.Exec is defined in Figure 1.

Definition 2 (Key Aggregation). A multi-signature scheme MS = (Setup,Gen,Sig,Ver) is said to support
key aggregation, if the algorithm Ver can be split into two deterministic polynomial time algorithms
Agg,VerAgg with the following syntax:

• Agg(P)→ p̃k takes as input a multi-set P = {pk1, . . . , pkN} of public keys and outputs an aggregated
key p̃k.

• VerAgg(p̃k,m, σ) → b is deterministic, takes as input an aggregated key p̃k, a message m, and a
signature σ, and outputs a bit b ∈ {0, 1}.

Precisely, algorithm Ver(P,m, σ) can be written as VerAgg(Agg(P),m, σ).

Definition 3 (MS-EUF-CMA Security). Let MS = (Setup,Gen,Sig,Ver) be a multi-signature scheme and
consider the game MS-EUF-CMA defined in Figure 2. We say that MS is MS-EUF-CMA secure, if for
all PPT adversaries A, the following advantage is negligible:

AdvMS-EUF-CMA
A,MS (λ) := Pr

[
MS-EUF-CMAAMS(λ)⇒ 1

]
.

Game MS-EUF-CMAAMS(λ)
01 par← Setup(1λ)
02 (pk, sk)← Gen(par)
03 Sig := (Sig0,Sig1,Sig2)
04 (P∗,m∗, σ∗)← ASig(par, pk)
05 if pk /∈ P∗ ∨ (P∗,m∗) ∈ L :
06 return 0
07 return Ver(P∗,m∗, σ∗)

Oracle Sig0(P,m)
08 let P = {pk1, . . . , pkN}
09 if pk1 6= pk : return ⊥
10 L := L ∪ {(P,m)}
11 sid := sid+ 1, ctr[sid] := 1
12 (pm1, St1)← Sig0(P, sk,m)
13 (pm1[sid], St1[sid]) := (pm1, St1)
14 return (pm1[sid], sid)

Oracle Sig1(sid,M1)
15 if ctr[sid] 6= 1 : return ⊥
16 let M1 = (pm1,1, . . . , pm1,N )
17 if pm1[sid] 6= pm1,1 : return ⊥
18 ctr[sid] := ctr[sid] + 1
19 (pm2, St2)← Sig1(St1[sid],M1)
20 (pm2[sid], St2[sid]) := (pm2, St2)
21 return pm2[sid]

Oracle Sig2(sid,M2)
22 if ctr[sid] 6= 2 : return ⊥
23 let M2 = (pm2,1, . . . , pm2,N )
24 if pm2[sid] 6= pm2,1 : return ⊥
25 ctr[sid] := ctr[sid] + 1
26 σ ← Sig2(St2[sid],M2)
27 return σ

Figure 2: The game MS-EUF-CMA for a (two-round) multi-signature scheme MS and an adversary A.
For simplicity of exposition, we assume that the canonical ordering of multi-sets is chosen such that pk is
always at the first position if it is included.

Linear Function Families. To present our constructions in a modular way, we make use of the abstraction
of linear function families. Our definition is close to previous definitions [HKL19, KLR21, CAHL+22]. As
it is not needed for our instantiations, we restrict our setting to vector spaces instead of pseudo modules.

Definition 4 (Linear Function Family). A linear function family (LFF) is a tuple of PPT algorithms
LF = (Gen,F) with the following syntax:

• Gen(1λ)→ par takes as input the security parameter 1λ and outputs parameters par. We assume
that par implicitly defines the following sets:
– A set of scalars Spar, which forms a field.
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– A domain Dpar, which forms a vector space over Spar.
– A range Rpar, which forms vector space over Spar.

We omit the subscript par if it is clear from the context, and naturally denote the operations of
these fields and vector spaces by + and ·.

• F(par, x)→ X is deterministic, takes as input parameters par, an element x ∈ D, and outputs an
element X ∈ R. For all parameters par, F(par, ·) realizes a homomorphism, i.e.

∀s ∈ S, x, y ∈ D : F(par, s · x+ y) = s · F(par, x) + F(par, y).

We omit the input par if it is clear from the context.

We formalize necessary conditions under which a linear function family can be used to construct so
called lossy identification [AFLT12]. Our constructions will rely on such linear function families. We also
give a similar definition that captures a similar property in the context of key aggregation.

Definition 5 (Lossiness Admitting LFF). We say that a linear function family LF = (Gen,F) is εl-lossiness
admitting, if the following properties hold:

• Key Indistinguishability. For any PPT algorithm A, the following advantage is negligible:

Advkeydist
A,LF (λ) := |Pr

[
A(par, X) = 1

∣∣ par← Gen(1λ), x $← D, X := F(x)
]

−Pr
[
A(par, X) = 1

∣∣ par← Gen(1λ), X $← R
]
|.

• Lossy Soundness. For any unbounded algorithm A, the following probability is at most εl:

Pr

F(s)− c ·X = R

∣∣∣∣∣∣
par← Gen(1λ), X $← R,
(St,R)← A(par, X),
c $← S, s← A(St, c)

 .
Definition 6 (Aggregation Lossy Soundness). We say that a linear function family LF = (Gen,F) satisfies
εal-aggregation lossy soundness, if for any unbounded algorithm A, the following probability is at most
εal:

Pr

F(s)− c ·
N∑
i=1

aiXi = R

∣∣∣∣∣∣∣∣
par← Gen(1λ), X1

$← R,
(St, (X2, a2), . . . , (XN , aN ))← A(par, X1),
a1

$← S, (St′, R)← A(St, a1),
c $← S, s← A(St′, c)

 .
Assumptions. We recall the computational assumptions that we need.

Definition 7 (DDH Assumption). Let GGen be an algorithm that on input 1λ outputs the description of
a prime order group G of order p with generator g. We say that the DDH assumption holds relative to
GGen, if for all PPT algorithms A, the following advantage is negligible:

AdvDDH
A,GGen(λ) := |Pr

[
A(G, p, g, h, ga, ha) = 1

∣∣∣∣ (G, g, p)← GGen(1λ),
h $← G, a $← Zp

]
−Pr

[
A(G, p, g, h, ga, gb) = 1

∣∣∣∣ (G, g, p)← GGen(1λ),
h $← G, a, b $← Zp

]
|.

In the following, we define an equivalent variant of the DDH assumption, uDDH3. uDDH3 is the 2-fold
U3,1-Matrix-DDH (MDDH) assumption (with terminology in [EHK+13]). By its random self-reducibility
[EHK+13, Lemma 1], the 2-fold U3,1-Matrix-DDH (MDDH) assumption (namely, the uDDH3 assumption)
is tightly equivalent to the U3,1-MDDH assumption. By Lemma 1 in [LP20], U3,1-MDDH is tightly
equivalent to U1-MDDH that is the DDH assumption. Hence, the DDH and uDDH3 assumptions are
tightly equivalent.

Definition 8 (uDDH3 Assumption). Let GGen be an algorithm that on input 1λ outputs the description
of a prime order group G of order p with generator g. We say that the uDDH3 assumption holds relative
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to GGen, if for all PPT algorithms A, the following advantage is negligible:

AdvuDDH3
A,GGen(λ) := |Pr

A(G, p, g, (hi,j)i,j∈[3]) = 1

∣∣∣∣∣∣∣∣∣∣∣∣

(G, g, p)← GGen(1λ),
a, b $← Zp,
h1,1, h2,1, h3,1

$← G
h1,2 := ha1,1, h1,3 := hb1,1
h2,2 := ha2,1, h2,3 := hb2,1
h3,2 := ha3,1, h3,3 := hb3,1


−Pr

[
A(G, p, g, (hi,j)i,j∈[3]) = 1

∣∣∣∣ (G, g, p)← GGen(1λ),
∀(i, j) ∈ [3]× [3] : hi,j $← G

]
|.

3 Constructions
In this section, we present our construction of two-round multi-signatures. First, we give a definition of a
special commitment scheme that will be used in both constructions. Then, we present the constructions
in an abstract way. For the instantiation, we refer to Section 4.

3.1 Preparation: Special Commitments
In this section we define a special kind of commitment scheme. We will make use of such a scheme in
our constructions of multi-signatures. Before we give the definition, we explain the desired properties
at a high level. First of all, we want to be able to commit to elements R ∈ R in the range of a given
linear function family. Second, we need the commitment scheme to be homomorphic in both messages
and randomness, allowing us to aggregate commitments during the signing protocol. Third, we need a
certain dual mode property, ensuring that we can set up keys either in a perfectly hiding or in a perfectly
binding mode. This will allow us to make the commitment key for the forgery binding, while associating
a equivocation trapdoor to the keys used to answer signing queries. We emphasize that we do not need a
full-fledged equivocation feature. This is because we already know parts of the structure of messages
to which we want to open the commitment. Looking ahead, this is the reason we can instantiate the
commitment in the DDH setting.

Game Q-KEYDISTA0,CMT(λ)
01 par← LF.Gen(1λ), x $← D
02 if (par, x) /∈ Good : return 0
03 for i ∈ [Q] : cki ← BGen(par)
04 β ← A(par, x, (cki)i∈[Q])
05 return β

Game Q-KEYDISTA1,CMT(λ)
06 par← LF.Gen(1λ), x $← D
07 if (par, x) /∈ Good : return 0
08 for i ∈ [Q] : cki $← Kpar
09 β ← A(par, x, (cki)i∈[Q])
10 return β

Figure 3: The games KEYDIST0,KEYDIST1 for a special commitment scheme CMT and an adversary
A.

Definition 9 (Special Commitment Scheme). Let LF = (LF.Gen,F) be a linear function family and
G = {Gpar},H = {Hpar} be families of subsets of abelian groups with efficiently computable group
operations ⊕ and ⊗, respectively. Let K = {Kpar} be a family of sets. An (εb, εg, εt)-special commitment
scheme for LF with key space K, randomness space G and commitment space H is a tuple of PPT
algorithms CMT = (BGen,TGen,Com,TCom,TCol) with the following syntax:

• BGen(par)→ ck takes as input parameters par, and outputs a key ck ∈ Kpar.
• TGen(par, X)→ (ck, td) takes as input parameters par, and an element X ∈ R, and outputs a key

ck ∈ Kpar and a trapdoor td.
• Com(ck, R;ϕ)→ com takes as input a key ck, an element R ∈ R, and a randomness ϕ ∈ Gpar, and

outputs a commitment com ∈ Hpar.
• TCom(ck, td)→ (com, St) takes as input a key ck and a trapdoor td, and outputs a commitment

com ∈ Hpar and a state St.
• TCol(St, c)→ (ϕ,R, s) takes as input a state St, and an element c ∈ S, and outputs randomness
ϕ ∈ Gpar, and elements R ∈ R, s ∈ D.
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We omit the subscript par if it is clear from the context.
Further, the algorithms are required to satisfy the following properties:
• Homomorphism. For all par ∈ LF.Gen(1λ), ck ∈ Kpar, R0, R1 ∈ R and ϕ0, ϕ1 ∈ G, the following

holds:
Com(ck, R0;ϕ0)⊗ Com(ck, R1;ϕ1) = Com(ck, R0 +R1;ϕ0 ⊕ ϕ1).

• Good Parameters. There is a set Good, such that membership to Good can be decided in
polynomial time, and

Pr
[
(par, x) /∈ Good | par← LF.Gen(1λ), x $← D

]
≤ εg,

• Uniform Keys. For all (par, x) ∈ Good, the following distributions are identical:

{(par, x, ck) | ck $← Kpar} and {(par, x, ck) | (ck, td)← TGen(par, X)}.

• Special Trapdoor Property. For all (par, x) ∈ Good, and all c $← S, the following distributions
T0 and T1 have statistical distance at most εt:

T0 :=

(par, ck, td, x, c, com, tr)

∣∣∣∣∣∣
(ck, td)← TGen(par,F(x))
(com, St)← TCom(ck, td),
tr← TCol(St, c)


T1 :=

(par, ck, td, x, c, com, tr)

∣∣∣∣∣∣∣∣
(ck, td)← TGen(par,F(x))
r $← D, R := F(r), ϕ $← G,
com := Com(ck, R;ϕ),
s := c · x+ r, tr := (ϕ,R, s)


• Multi-Key Indistinguishability. For every Q = poly(λ) and any PPT algorithm A, the following

advantage is negligible:

AdvQ-keydist
A,CMT (λ) := |Pr

[
Q-KEYDISTA0,CMT(λ)⇒ 1

]
−Pr

[
Q-KEYDISTA1,CMT(λ)⇒ 1

]
|,

where games KEYDIST0,KEYDIST1 are defined in Figure 3.
• Statistically Binding. There exists some (unbounded) algorithm Ext, such that for every

(unbounded) algorithm A the following probability is at most εb:

Pr

 Com(ck, R′;ϕ′) = com
∧ R 6= R′

∣∣∣∣∣∣
par← LF.Gen(1λ),
ck← BGen(par), (com, St)← A(ck),
R← Ext(ck, com), (R′, ϕ′)← A(St)

 .
3.2 Our Construction with Key Aggregation
In this section, we construct a two-round multi-signature scheme with key aggregation. Although the
scheme will not be tight, the security proof will not use rewinding, leading to an acceptable security
loss. For our scheme, we need a lossiness admitting linear function family LF = (LF.Gen,F). It should
also satisfy aggregation lossy soundness. Further, let CMT = (BGen,TGen,Com,TCom,TCol) be an
(εb, εg, εt)-special commitment scheme for LF with key space K randomness space G and commitment
space H. We make use of random oracles H : {0, 1}∗ → K, Ha : {0, 1}∗ → S, and Hc : {0, 1}∗ → S. We
give a verbal description of our scheme MSa[LF,CMT]. Formally, the scheme is presented in Figure 9.
Setup and Key Generation. The public parameters of the scheme are par← LF.Gen(1λ) defining the
linear function F = F(par, ·). To generate a key (algorithm Gen), a user samples sk := x $← D. The public
key is pk := X := F(x).
Key Aggregation. For N users with public keys P = {pk1, . . . , pkN}, the aggregated public key p̃k is
computed (by algorithm Agg) as

p̃k := X̃ :=
N∑
i=1

ai ·Xi,
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where pki = Xi and ai := Ha(〈P〉, pki) for each i ∈ [N ].
Signing Protocol. Suppose N users with public keys P = {pk1, . . . , pkN} want to sign a message
m ∈ {0, 1}∗. We describe the signing protocol (algorithms Sig0,Sig1,Sig2) from the perspective of the
first user, which holds a secret key sk1 = x1 for public key pk1 = X1.

1. Commitment Phase. The user derives the aggregated public key p̃k as described above. Then,
it derives a commitment key ck := H(p̃k,m) depending on the message. The user samples an
element r1

$← D and sets R1 := F(r1). Next, it commits to R1 by sampling ϕ1
$← G and setting

com1 := Com(ck, R1;ϕ1). Finally, it sends pm1,1 := com1 to all users.

2. Response Phase. LetM1 = (pm1,1, . . . , pm1,N ) be the list of messages output in the commitment
phase. Here, message pm1,i is sent by user i and has the form pm1,i = comi. With this notation,
the user aggregates the commitments via com :=

⊗
i∈[N ] comi. It computes the challenge c and

coefficient a1 via c := Hc(p̃k, com,m) and a1 := Ha(〈P〉, pk1). Then, it computes the response s1 as
s1 := c · a1 · x1 + r1.
Finally, the user sends pm2,1 := (s1, ϕ1) to all users.

3. Aggregation Phase. LetM2 = (pm2,1, . . . , pm2,N ) be the list of messages output in the response
phase. Here, message pm2,i is sent by user i and has the form pm2,i = (si, ϕi). To compute the
final signature, users aggregate the responses and commitment randomness as follows:

s :=
∑
i∈[N ]

si, ϕ :=
⊕
i∈[N ]

ϕi.

They output the final signature σ := (com, s, ϕ).

Verification. For verification (algorithm Ver), let P = {pk1, . . . , pkN} be a multi-set of public keys,
m ∈ {0, 1}∗ be a message, and σ = (com, s, ϕ) be a signature. To verify σ, we determine the aggregated
public key p̃k = X̃ as above. We reconstruct the commitment key ck := H(p̃k,m), and the challenge
c := Hc(p̃k, com,m). Then, we output 1 if and only if the following equation holds:

com = Com
(
ck,F(s)− c · X̃;ϕ

)
.

Completeness easily follows from the homomorphic properties of CMT and F. For a similar calculation,
we refer to the proof of Lemma 2.

Lemma 1. Let LF be a linear function family. Let CMT be a (εb, εg, εt)-special commitment scheme for
LF. Then MSa[LF,CMT] is complete.

Theorem 1. Let LF be a εl-lossiness admitting linear function family with εal-aggregation lossy soundness.
Let CMT be a (εb, εg, εt)-special commitment scheme for LF. Further, let H : {0, 1}∗ → K,Ha : {0, 1}∗ → S,
and Hc : {0, 1}∗ → S be random oracles. Then MSa[LF,CMT] is MS-EUF-CMA secure.

Concretely, for any PPT algorithm A that makes at most QH, QHa
, QHc

, QS queries to oracles
H,Ha,Hc,Sig0, respectively, there are PPT algorithms B,B′ with T(B) ≈ T(A),T(B′) ≈ T(A) and

AdvMS-EUF-CMA
A,MSa[LF,CMT](λ) ≤ εg + 4Q2

Sεt + 4QSεg + 4QSQHQHc
εb

+ 4QS
|R|

+ 4QSQHaQHc

|S|
+ 4QSQHa

QHc
εal

+ 4QS
(

AdvQH-keydist
B,CMT (λ) + Advkeydist

B′,LF (λ)
)
.

We postpone the proof to Supplementary Material Section A.
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3.3 Our Tight Construction
In this section, we present a tightly secure two-round multi-signature scheme MSt[LF,CMT] = (Setup,
Gen,Sig,Ver). Let us first describe the building blocks that we need. We make use of a lossiness
admitting linear function family LF = (LF.Gen,F). Also, let CMT = (BGen,TGen,Com,TCom,TCol) be
an (εb, εg, εt)-special commitment scheme for LF with key space K randomness space G and commitment
space H. We make use of random oracles H : {0, 1}∗ → K, Hb : {0, 1}∗ → {0, 1}, and Hc : {0, 1}∗ → S.
We give a verbal description of the scheme. Formally, the scheme is presented in Figure 10.
Setup and Key Generation. The public parameters of the scheme are par← LF.Gen(1λ). They define
the linear function F = F(par, ·). To generate a key (algorithm Gen), a user samples x0, x1

$← D and a
seed seed $← {0, 1}λ. Then, it sets

sk := (x0, x1, seed), pk := (X0, X1) := (F(x0),F(x1)).

Signing Protocol. Suppose N users with public keys P = {pk1, . . . , pkN} want to sign a message
m ∈ {0, 1}∗. We describe the signing protocol (algorithms Sig0,Sig1,Sig2) from the perspective of the
first user, which holds a secret key sk1 = (x1,0, x1,1, seed1) for public key pk1 = (X1,0, X1,1).

1. Commitment Phase. The user derives commitment keys ck0 := H(0, 〈P〉,m), ck1 := H(1, 〈P〉,m)
depending on the message. Then, the user computes a bit b1 := Hb(seed1, 〈P〉,m). It samples two
elements r1,0, r1,1

$← D and sets

R1,0 := F(r1,0), R1,1 := F(r1,1).

Next, it commits to the resulting elements by sampling ϕ1,0, ϕ1,1
$← G and setting

com1,0 := Com(ck0, R1,0;ϕ1,0), com1,1 := Com(ck1, R1,1;ϕ1,1).

Finally, it sends pm1,1 := (b1, com1,0, com1,1) to all users.

2. Response Phase. LetM1 = (pm1,1, . . . , pm1,N ) be the list of messages output in the commitment
phase. Here, message pm1,i is sent by user i and has the form pm1,i = (bi, comi,0, comi,1). With
this notation, the user sets B := b1 . . . bN ∈ {0, 1}N . Then, it aggregates the commitments via

com0 :=
⊗
i∈[N ]

comi,0, com1 :=
⊗
i∈[N ]

comi,1.

It computes user specific challenges via

c1,0 := Hc(pk1, com0,m, 〈P〉, B, 0), c1,1 := Hc(pk1, com1,m, 〈P〉, B, 1),

and the responses as

s1,0 := c1,0 · x1,b1 + r1,0, s1,1 := c1,1 · x1,1−b1 + r1,1.

Observe that the bit b1 determines the link between the responses, challenges, and public keys.
Finally, the user sends pm2,1 := (s1,0, s1,1, ϕ1,0, ϕ1,1) to all users.

3. Aggregation Phase. LetM2 = (pm2,1, . . . , pm2,N ) be the list of messages output in the response
phase. Here, message pm2,i is sent by user i and has the form pm2,i = (si,0, si,1, ϕi,0, ϕi,1). To
compute the final signature, users aggregate the responses and commitment randomness as follows:

s0 :=
∑
i∈[N ]

si,0, s1 :=
∑
i∈[N ]

si,1, ϕ0 :=
⊕
i∈[N ]

ϕi,0, ϕ1 :=
⊕
i∈[N ]

ϕi,1.

They define σ0 := (com0, ϕ0, s0), σ1 := (com1, ϕ1, s1) and output the final signature σ := (σ0, σ1, B).
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Verification. For verification (algorithm Ver), let P = {pk1, . . . , pkN} be a multi-set of public keys,
m ∈ {0, 1}∗ be a message, and σ = (σ0, σ1, B) be a signature. To verify σ, we write B = b1 . . . bN ,
σ0 = (com0, ϕ0, s0) and σ1 = (com1, ϕ1, s1). Further, we write the public keys pki as pki = (Xi,0, Xi,1).
We reconstruct the commitment keys ck0 := H(0, 〈P〉,m), ck1 := H(1, 〈P〉,m), and the user specific
challenges

ci,0 := Hc(pki, com0,m, 〈P〉, B, 0), ci,1 := Hc(pki, com1,m, 〈P〉, B, 1).

Then, we output 1 if and only if the following two equations hold:

com0 = Com
(

ck0,F(s0)−
N∑
i=1

ci,0 ·Xi,bi ;ϕ0

)

com1 = Com
(

ck1,F(s1)−
N∑
i=1

ci,1 ·Xi,1−bi ;ϕ1

)
.

Lemma 2. Let LF be a linear function family. Let CMT be a (εb, εg, εt)-special commitment scheme for
LF. Then MSt[LF,CMT] is complete.

The proof is an easy calculation and is given in Supplementary Material Section B.

Theorem 2. Let LF be a εl-lossiness admitting linear function family. Let CMT be a (εb, εg, εt)-special
commitment scheme for LF. Further, let H : {0, 1}∗ → K,Hb : {0, 1}∗ → {0, 1},Hc : {0, 1}∗ → S be random
oracles. Then MSt[LF,CMT] is MS-EUF-CMA secure.

Concretely, for any PPT algorithm A that makes at most QH, QHb
, QHc , QS queries to oracles

H,Hb,Hc,Sig0, respectively, there are PPT algorithms B,B′ with T(B) ≈ T(A),T(B′) ≈ T(A) and

AdvMS-EUF-CMA
A,MSt[LF,CMT](λ) ≤ QHb

2λ + 4εg + 2QSεt + 2QHQHcεb + 2QHcεl

+ 2 · AdvQH-keydist
B,CMT (λ) + 2 · Advkeydist

B′,LF (λ).

Proof. Set MS := MSt[LF,CMT]. Let A be a PPT algorithm as in the statement. We prove the claim via
a sequence of games G0-G8. The games are formally presented in Figures 6 to 8, and we describe and
analyze them verbally. For each game Gi, i ∈ [8], we define

Advi := Pr [Gi ⇒ 1].

Game G0: We define G0 to be exactly as MS-EUF-CMAAMS, with the following modification: The
adversary A does not get access to oracle Sig2. Note that in MS, algorithm Sig2 does not make any use
of the secret key or a secret state and can be publicly run using the messages output in Sig0 and Sig1.
Therefore, for any adversary in the original game, there is an adversary in game G0 that simulates oracle
Sig2 and has the same advantage.

Before we proceed, let us describe game G0 in more detail to fix some notation. In the beginning,
the game samples parameters par ← LF.Gen(1λ). It also samples a public key pk∗ = (X1,0, X1,1)
= (F(x1,0),F(x1,1)) for a secret key sk∗ = (x1,0, x1,1, seed1) with x1,0, x1,1

$← D, seed1
$← {0, 1}λ. Then, it

runs A on input par, pk∗ with access to the following oracles:
• Signing oracles Sig0,Sig1: The oracles simulate algorithms Sig0 and Sig1 on secret key sk∗, respec-

tively. Here, A can submit a query Sig0(P,m) to start a new interaction in which message m is
signed for public keys P = {pk1, . . . , pkN}. We assume that pk∗ = pk1, and the oracle adds (P,m)
to a list L.

• Random oracles H,Hb,Hc: The random oracles H,Hc are simulated honestly via lazy sampling. To
this end, the game holds maps h, hc that map the inputs of the respective random oracles to their
outputs. Random oracle Hb, however, is simulated by forwarding the query to an internal oracle H̄b
with the same interface. This oracle holds a similar map ĥb, is kept internally by the game, and is
not provided to the adversary. Looking ahead, this indirection allows us to distinguish queries to
Hb that some of the following games issue from the queries that the adversary issues.
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In the end, A outputs a forgery (P∗,m∗, σ∗). The game outputs 1 if and only if pk∗ ∈ P∗,(P∗,m∗) /∈ L,
and Ver(P∗,m∗, σ∗) = 1. Without loss of generality, we assume that the public key pk∗ is equal to
pk1 for P∗ = {pk1, . . . , pkN}. To fix notation, write σ∗ = (σ∗0 , σ∗1 , B∗), B∗ = b∗1 . . . b

∗
N and σ∗0 =

(com∗0, ϕ∗0, s∗0), σ∗1 = (com∗1, ϕ∗1, s∗1). Clearly, we have

Adv0 = AdvMS-EUF-CMA
A,MSt[LF,CMT](λ).

Game G1: In game G1, we add an abort. Namely, the game sets bad := 1, and aborts, if the adversary
makes a random oracle query Hb(seed1, ·). Note that this does not include the queries that are made by
the game itself, as these are done using oracle H̄b directly. As the only information about seed1 that A
gets are the values of Hb(seed1, ·), and seed1 is sampled uniformly at random from {0, 1}λ, we can upper
bound the probability of bad by QHb

/2λ. Therefore, we have

|Adv0 − Adv1| ≤ Pr [bad] ≤ QHb

2λ .

Game G2: In game G2, we restrict the winning condition. Namely, the game outputs 0, if the forgery
(P∗,m∗, σ∗) output by A satisfies b∗1 6= 1 − H̄b(seed1, 〈P∗〉,m∗). Recall that b∗1 is the bit related to
pk1 = pk∗ that is included in the signature σ∗. Assuming G1 outputs 1, we know that (P∗,m∗) /∈ L.
Therefore, A can only get information about the bit H̄b(seed1, 〈P∗〉,m∗), if it queries the wrapper random
oracle Hb at this position. However, in this case G1 would set bad := 1 and abort. Thus, the view of A is
independent of bit H̄b(seed1, 〈P∗〉,m∗). We obtain

Adv2 = Pr [G2 ⇒ 1] = Pr
[
G1 ⇒ 1 ∧ b∗1 = 1− H̄b(seed1, 〈P∗〉,m∗)

]
= 1

2Adv1.

Game G3: In game G3, the game aborts if (par, x1,1) /∈ Good, where Good is as in the definition of a
special commitment scheme. It is clear that

|Adv2 − Adv3| ≤ Pr [(par, x1,1) /∈ Good] ≤ εg.

Game G4: In game G4, we change the behavior of random oracle H. Recall that before, to answer a
query H(b, 〈P〉,m) for which the hash value has not been defined, a key ck $← K was sampled and returned.
In this game, the oracle instead distinguishes two cases. In the first case, if b = 1− H̄b(seed1, 〈P〉,m), the
game samples (ck, td)← TGen(par, X1,1). It also stores tr[〈P〉,m] := td, where tr is a map. In the second
case, if b = H̄b(seed1, 〈P〉,m), it samples ck← BGen(par). In both cases, ck is returned as before. To see
that G3 and G4 are indistinguishable, we first note that for the first case, the distribution of ck stays the
same. This is because we can assume (par, x1,1) ∈ Good due to the previous change. The keys returned
in the second case are indistinguishable by the multi-key indistinguishability of CMT. More precisely, we
give a reduction B against the multi-key indistinguishability of CMT that interpolates between G3 and
G4. The reduction gets as input par, x1,1 and QH commitment keys ck1, . . . , ckQH . It simulates G3 for A
with par while embedding the commitment keys in random oracle responses for queries H(b, 〈P〉,m) with
b = 1− H̄b(seed1, 〈P〉,m). In the end, it outputs whatever the game outputs4 . We have

|Adv3 − Adv4| ≤ AdvQH-keydist
B,CMT (λ).

Game G5: In game G5, we change the signing oracles Sig0,Sig1. Our goal is to eliminate the use of the
secret key component x1,1. Recall that in previous games, oracle Sig0 derived a bit b1 := H̄b(seed1, 〈P〉,m)
and sampled random r1,0, r1,1 and ϕ1,0, ϕ1,1. Then, these were used with to compute commitments
com1,0, com1,1, which where then output together with b1. Then, in oracle Sig1 the values s1,0, s1,1 were
computed using the secret keys x1,b1 , x1,1−b1 , respectively.

In this game, we change how the commitment ϕ1,1−b1 and the value s1,1−b1 is computed to eliminate
the dependency on x1,1. Namely, in oracle Sig0, we do not compute r1,1−b1 , ϕ1,1−b1 and R1,1−b1 anymore.
Instead, we compute the commitment com1,1−b1 via

td := tr[〈P〉, ,m], (com1,1−b1 , St)← TCom(ck1−b1 , td).
4Note that at this point, it was important that we introduced the oracle H̄b. This is because otherwise, if we queried

Hb(seed1, ·) in oracle H, game G3 would always output 0 and the games would not be indistinguishable.
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Note that ck1−b1 = H(1− b1, 〈P〉,m), and therefore ck1−b1 and td were generated using TGen(par, X1,1)
due to the change in G4. Later, in oracle Sig1, we derive

(ϕ1,1−b1 , R1−b1 , s1,1−b1)← TCol(St, c1,1−b1).

Then, message pm2,1 := (s1,0, s1,1, ϕ1,0, ϕ1,1) is output as before.
We can easily argue indistinguishability by using the special trapdoor property of CMT QS0 many

times and get
|Adv4 − Adv5| ≤ QSεt.

Game G6: Here we do not abort if (par, x1,1) /∈ Good anymore. That is, we revert the change introduced
in G3. It is clear that

|Adv5 − Adv6| ≤ Pr [(par, x1,1) /∈ Good] ≤ εg.

Game G7: In game G7, we change how the public key component X1,1 is computed. Recall that before,
X1,1 is computed as X1,1 := F(x1,1) for x1,1

$← x1,1
$← D. Also, note that due to the previous changes,

the value x1,1 is not used anymore. In G7, we sample X1,1
$← R. A direct reduction B′ against the

key indistinguishability of the lossiness admitting linear function family LF shows indistinguishability of
G6 and G7. Concretely, B′ gets par and X1,1 as input, and simulates G6 for A. In the end, it outputs
whatever the game outputs. We have

|Adv6 − Adv7| ≤ Advkeydist
B′,LF (λ).

Game G8: In gameG8, we change how Hc is executed. Concretely, consider a query Hc(pk, com,m, 〈P〉, B, b)
with pk = pk∗ and b = H̄b(seed1, 〈P〉,m). For these queries, the game now runs R← Ext(H(b, 〈P〉,m), com)
and stores r[com,m, 〈P〉, B] := R, where r is another map. Here, Ext is the (unbounded) extractor for
the statistical binding property of CMT. The rest of the oracle does not change. Note that for b
of this form, the value ck = H(b, 〈P〉,m) is sampled as ck ← BGen(par) (cf. G4). We also slightly
change the winning condition of the game. Namely, in G8, consider the forgery (P∗,m∗, σ∗) with
σ∗ = (σ∗0 , σ∗1 , B∗), B∗ = b∗1 . . . b

∗
N , and let R∗0, R∗1 ∈ R be the values that are computed during the

execution of Ver(P∗,m∗, σ∗). The game returns 0 if R∗1−b∗1 6= r[com∗1−b∗1 ,m
∗, 〈P∗〉, B∗].

We claim that indistinguishability of G7 and G8 can be argued using the statistical binding property
of CMT. To see this, assume that G7 outputs 1. Then, due to the change in G2, we know that
1− b∗1 = H̄b(seed1, 〈P∗〉,m∗). Therefore, in the corresponding query Hc(pk1, com∗1−b∗1 ,m

∗, 〈P∗〉, B∗, 1− b∗1)
algorithm Ext was run and the value r[com∗1−b∗1 ,m

∗, 〈P∗〉, B∗] is defined. Next, by definition of Ver, we
have Com(ck1−b∗1 , R

∗
1−b∗1

;ϕ∗1−b∗1 ) = com∗1−b∗1 . Therefore, if R∗1−b∗1 6= r[com∗1−b∗1 ,m
∗, 〈P∗〉, B∗], we have a

contradiction to the statistical binding property of CMT. More precisely, we sketch an (unbounded)
reduction from the statistical binding property. Namely, this reduction gets as input par and a commitment
key ck∗. Then, the reduction guesses iH $← [QH] and iHc

$← [QHc
]. It simulates game G8 honestly, except

for query iH to random oracle H and query iHc
to random oracle Hc. If it had to sample a ck← BGen(par) in

the former query, it instead responds with ck∗. Similarly, if it had to run Ext in the latter query, it outputs
com to the binding experiment. If these queries are the queries of interest (i.e. query iH was used to derive
ck1−b∗1 and query iHc

was used to derive c∗1,1−b∗1 ) for the forgery, and R∗1−b∗1 6= r[com∗1−b∗1 ,m
∗, 〈P∗〉, B∗],

then the reduction outputs R∗1−b∗1 ;ϕ∗1−b∗1 . Otherwise, it outputs ⊥. It is easy to see that if the reduction
guesses the correct queries and the bad event separating G7 and G8 occurs, then it breaks the statistical
binding property. As the view of A is as in G8, and independent of (iH, iHc

), we obtain

|Adv7 − Adv8| ≤ QHQHcεb.

Finally, we use lossy soundness of LF to bound the probability that G8 outputs 1. To do that, we
give an unbounded reduction from the lossy soundness experiment, which is as follows.

• The reduction gets par, X1,1 as input. It samples î $← [QHc
]. Then, it simulates G8 honestly until

A outputs a forgery, except for query î to oracle Hc.
• Consider this query Hc(pk, com,m, 〈P〉, B, b). The reduction aborts its execution, if the hash

value for this query is already defined, or if pk 6= pk∗ ∨ b 6= H̄b(seed1, 〈P〉,m). Otherwise, it runs
R̂ ← Ext(H(b, 〈P〉,m), com) as in G8. Then, it parses P = {pk1, . . . , pkN} and B = b1 . . . bN . It
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parses pki = (Xi,0, Xi,1) for each i ∈ [N ], and it sets ci,b = Hc(pki, com,m, 〈P〉, B, b) for each
i ∈ [N ] \ {1}. Next, it defines

R := R̂+
N∑
i=2

ci,b ·Xi,b̂i
,

where b̂i := (b + bi) mod 2. It outputs R to the lossy soundness game and obtains a value c in
return. Then, it sets hc[pk, com,m, 〈P〉, B, b] := c and continues the simulation as in G8.

• When the reduction gets the forgery (P∗,m∗, σ∗) from A, it runs all the verification steps in G8.
Additionally, it checks if the value Hc(pk1, com∗1−b∗1 ,m

∗, 〈P∗〉, B∗, 1− b∗1) was defined during query
î to Hc. If this is not the case, it aborts its execution. Otherwise, it returns s := s∗1−b∗1

to the lossy
soundness game.

It is clear that the view of A is independent of the index î until a potential abort of the reduction. Also,
if the reduction does not abort its execution, it perfectly simulates game G8 for A. Thus, it remains to
show that if G8 outputs 1, then the values output by the reduction satisfy F(s)− c ·X1,1 = R. Once we
have shown this, it follows that

Adv8 ≤ QHc
εl.

To show the desired property, assume that the reduction does not abort and G8 outputs 1. Then, define
b̂∗i = (1− b∗1 + bi) mod 2 for all i ∈ [N ]. Note that b̂∗i = 1. Due to the change in G2, we have

b = 1− b∗1 = H̄b(seed1, 〈P∗〉,m∗).

As the reduction guessed the right query and does not abort, we have

c∗1,1−b∗1 = Hc(pk1, com∗1−b∗1 ,m
∗, 〈P∗〉, B∗, 1− b∗1) = c.

Due to the change in G8, we have

F(s∗1−b∗1 )−
N∑
i=1

c∗i,1−b∗1 ·Xi,b̂∗
i

= R∗1−b∗1 = R̂.

Therefore, we have

F(s)− c ·X1,1 = F(s∗1−b∗1 )− c∗1,1−b∗1 ·X1,1

= F(s∗1−b∗1 )−
N∑
i=1

c∗i,1−b∗1 ·Xi,b̂∗
i

+
N∑
i=2

c∗i,1−b∗1 ·Xi,b̂∗
i

= R̂+
N∑
i=2

c∗i,1−b∗1 ·Xi,b̂∗
i

= R.

Concluded.

4 Instantiation
In this section, we show how to instantiate the building blocks that are needed for our constructions in
the previous section. Concretely, we give a linear function family and a commitment scheme based on the
DDH assumption. Then, we also discuss the efficiency of the resulting multi-signature schemes.

4.1 Linear Function Family
We make use of the well-known [KMP16] linear function family LFDDH = (Gen,F) based on the DDH
assumption. Precisely, let GGen be an algorithm that on input 1λ outputs the description of a prime
order group G of order p with generator g. Then, Gen runs GGen and outputs5 par := (g, h) ∈ G2 for
h $← G. Then, the set of scalars, domain, range, and function F(par, ·) are given as follows:

S := Zp, D := Zp, R := G×G, F(par, x) := (gx, hx).

It is easily verified that this constitutes a linear function family.
5We omit the description of G from par to make the presentation concise.
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Lemma 3. Assuming that the DDH assumption holds relative to GGen, the linear function family LFDDH
is εl-lossiness admitting, with εl ≤ 3/p. Concretely, for any PPT algorithm A there is a PPT algorithm
B with T(B) ≈ T(A) and

Advkeydist
A,LFDDH

(λ) ≤ AdvDDH
B,GGen(λ).

Proof. First, note that the definition of key indistinguishability matches exactly the DDH assumption
relative to GGen. Next, we argue that lossy soundness holds. We have to bound the probability

Pr

(gs ·X−c1 , hs ·X−c2 ) = (R1, R2)

∣∣∣∣∣∣
(g, h)← Gen(1λ), (X1, X2) $← G2,
(St, (R1, R2))← A((g, h), (X1, X2)),
c $← Zp, s← A(St, c)

 .
The probability that h = g0 is at most 1/p. Thus, we assume that h is a generator of G. Write

X1 = gx1 and X2 = hx2 . With probability at most 1/p we have x1 = x2. Assume that x1 6= x2. We
claim that with these assumptions, the probability that we have to bound is at most 1/p. To see this,
assume that there is some (R1, R2) such that there exist two different c 6= c′ in Zp, such that there exists
a s, s′ ∈ Zp with(

gs ·X−c1 , hs ·X−c2
)

= (R1, R2) and
(
gs
′
·X−c

′

1 , hs
′
·X−c

′

2

)
= (R1, R2).

Then, we can combine both equations and rearrange terms to get(
g(s−s′)/(c−c′), h(s−s′)/(c−c′)

)
= (X1, X2),

contradicting our assumption that x1 6= x2. The claim follows.

Lemma 4. Linear function family LFDDH satisfies εal-aggregation lossy soundness with εal ≤ 4/p.

Proof. Let A be any unbounded algorithm. We have to bound the probability that(
gs · X̃−c1 , hs · X̃−c2

)
= (R1, R2),

where we consider the following experiment. First, (g, h) ← Gen(1λ), (X1, X2) $← G2 is sampled and
g, h,X1, X2 are given to A. Then, A outputs pairs of group elements and exponents ((X2,1, X2,2), a2),
. . . , ((XN,1, XN,2), aN ). Next, exponent a1

$← Zp are sampled and X̃1, X̃2 are defined as

(
X̃1, X̃2

)
:=
(

N∏
i=1

Xai
i,1,

N∏
i=1

Xai
i,2

)
.

Then, A outputs (R1, R2) on input a1. A challenge c $← Zp is sampled and A outputs s on input c.
The probability that h = g0 is at most 1/p. Thus, we assume that h is a generator of G. Looking at

the proof of Lemma 3, we see that it is sufficient to argue that with high probability,
(
X̃1, X̃2

)
is not of

the form (gx̃, hx̃) for any x̃ ∈ Zp. In other words, we have to show that with high probability, the pair(
X̃1, X̃2

)
is not in the image of F. Conditioned on that, as in the proof of Lemma 3, the probability

above can be bounded by 1/p.
To show this, we fix the exponents xi,j ∈ Zp such that Xi,1 = gxi,1 and Xi,2 = hxi,2 . The probability

that x1,1 = x1,2 is at most 1/p. From now on, we condition on x1,1 6= x1,2. The pair
(
X̃1, X̃2

)
is not in

the image of F if and only if
N∑
i=1

aixi,1 =
N∑
i=1

aixi,2.

This is equivalent to

a1 =
∑N
i=2 aixi,2 −

∑N
i=2 aixi,2

x1,1 − x1,2
.

As a1 is sampled uniformly over Zp after A choses the xi,j and ai, i > 2, the above holds with probability
at most 1/p, and the claim follows.
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4.2 Commitment Scheme
We give a special trapdoor commitment scheme CMTDDH = (BGen,TGen,Com,TCom,TCol) for the linear
function family LFDDH. For given parameters of LFDDH, the commitment scheme has key space K := G3×3

and message space D = G×G. It has randomness space G = Z3
p and commitment space H = G3. Both

are associated with the natural componentwise group operations. We describe the algorithms of the
scheme verbally.

• BGen(par)→ ck: Sample g1, g2, g3
$← G, and a, b $← Zp, and set

ck := A :=

A1,1 A1,2 A1,3
A2,1 A2,2 A2,3
A3,1 A3,2 A3,3

 :=

g1 ga1 gb1
g2 ga2 gb2
g3 ga3 gb3

 ∈ G3×3.

• TGen(par, X = (X1, X2))→ (ck, td): Sample di,j $← Zp for all (i, j) ∈ [3]× [3] and set

ck := A :=

A1,1 A1,2 A1,3
A2,1 A2,2 A2,3
A3,1 A3,2 A3,3

 :=

 gd1,1 gd1,2 gd1,3

X
d2,1
1 X

d2,2
1 X

d2,3
1

X
d3,1
2 X

d3,2
2 X

d3,3
2

 ∈ G3×3.

Next, set

td := (D, X1, X2), for D :=

d1,1 d1,2 d1,3
d2,1 d2,2 d2,3
d3,1 d3,2 d3,3

 ∈ Z3×3
p .

• Com(ck, R = (R1, R2);ϕ)→ com: Let ϕ = (α, β, γ) ∈ Z3
p. Compute

com := (C0, C1, C2), for

C0
C1
C2

 :=

 Aα1,1 ·A
β
1,2 ·A

γ
1,3

R1· Aα2,1 ·A
β
2,2 ·A

γ
2,3

R2· Aα3,1 ·A
β
3,2 ·A

γ
3,3

 .

• TCom(ck, td)→ (com, St): Sample τ, ρ1, ρ2, s
$← Zp. Set St := (td, τ, ρ1, ρ2, s) and compute

com := (C0, C1, C2), for

C0
C1
C2

 :=

 gτ

Xρ1
1 · gs

Xρ2
2 · hs

 .

• TCol(St, c) → (ϕ,R, s): Set R := (R1, R2) :=
(
gs ·X−c1 , hs ·X−c2

)
. Then, if D is not invertible,

return ⊥. Otherwise, compute

ϕ := (α, β, γ), for

αβ
γ

 = D−1 ·

 τ
ρ1 + c
ρ2 + c

 .

Theorem 3. If the DDH assumption holds relative to GGen, then CMTDDH is a (εb, εg, εt)-special
commitment scheme for LFDDH, with

εb ≤ 1/p, εg ≤ 2/p, εt ≤ 6/p.

Concretely, for any PPT algorithm A, there is a PPT algorithm B with T(B) ≈ T(A) and

AdvQ-keydist
A,CMTDDH

(λ) ≤ AdvuDDH3
B,GGen(λ) + 6

p
.

The homomorphism property is trivial to check. Next, we define the set Good as in the definition of a
special commitment scheme. Namely, we define

Good = {((g, h), x) ∈ G2 × Zp | (g, h) ∈ LF.Gen(1λ) ∧ h 6= g0 ∧ x 6= 0}.

Clearly, for (g, h) ← LF.Gen(1λ) and x $← Zp, the probability that ((g, h), x) /∈ Good is at most 2/p.
Therefore, εg ≤ 2/p. In the following we also need the following observation: If ((g, h), x) ∈ Good, then
the elements g, h, gx, hx are all generators of G. The rest of proof of the theorem is given in separate
lemmas.
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Lemma 5. CMTDDH satisfies the uniform keys property of an (εb, εg, εt)-special commitment scheme for
LFDDH.

Proof. Let (par, x) ∈ Good for par = (g, h). Let (X1, X2) = F(x) = (gx, hx). Consider the distribution of
ck for (ck, td)← TGen(par, (X1, X2)). Then ck has the form gd1,1 gd1,2 gd1,3

X
d2,1
1 X

d2,2
1 X

d2,3
1

X
d3,1
2 X

d3,2
2 X

d3,3
2

 ∈ G3×3

for uniformly random and independent exponents di,j ∈ Zp (i, j ∈ [3]). As g,X1, X2 are generators, we
see that ck is uniform over G3×3, proving the claim.

Lemma 6. CMTDDH satisfies the special trapdoor property of an (εb, εg, εt)-special commitment scheme
for LFDDH, where εt ≤ 6/p.

Proof. Let ((g, h), x) ∈ Good and c ∈ Zp. Set (X1, X2) := (gx, hx). We have to show that the distributions
T0 and T1 of tuples

((g, h),A,D, X1, X2, x, c, (C0, C1, C2), α, β, γ,R1, R2, s)
are identical. Here, we have (A,D, X1, X2)← TGen(par, (X1, X2)). The remaining components in T0 are
generated via

((C0, C1, C2), St)← TCom(ck, td), ((α, β, γ), (R1, R2), s)← TCol(St, c),

and in T1 via

r $← Zp, R1 := gr, R2 := hr, s := c · x+ r

α, β, γ $← Zp, (C0, C1, C2) := Com(A, (R1, R2); (α, β, γ)).

First, we make the assumption that in both distributions, the matrix D has full rank. The probability
that this does not hold can easily be bounded by 3/p.

We can equivalently6 write T1 as

s $← Zp, R1 := gs ·X−c1 , R2 := hs ·X−c2 ,

α, β, γ $← Zp, (C0, C1, C2) := Com(A, (R1, R2); (α, β, γ)).

Using that D is full rank and g,X1, X2 are generators of G, we see that in this distribution, (C0, C1, C2)
is uniform over G3. Therefore, this is identically distributed to the distribution that we get from

s $← Zp, R1 := gs ·X−c1 , R2 := hs ·X−c2 ,

τ, ρ1, ρ2
$← Zp, (C0, C1, C2) := (gτ , Xρ1

1 gs, Xρ2
2 hs),

and then finding the unique values (α, β, γ) that satisfy (C0, C1, C2) = Com(A, (R1, R2); (α, β, γ)). We
claim that this can be done using (α, β, γ)t := D−1(τ, ρ1 + c, ρ2 + c)t, which is equivalent to distribution
T0.

To see this, note that (C0, C1, C2) = Com(A, (R1, R2); (α, β, γ)) is equivalent toC0
C1
C2

 =

 Aα1,1 ·A
β
1,2 ·A

γ
1,3

R1· Aα2,1 ·A
β
2,2 ·A

γ
2,3

R1· Aα3,1 ·A
β
3,2 ·A

γ
3,3

 =

 gd1,1α · gd1,2β · gd1,3γ

gs ·X−c1 · X
d2,1α
1 ·Xd2,2β

1 ·Xd2,3γ
1

hs ·X−c2 · X
d3,1α
2 ·Xd3,2β

2 ·Xd3,3γ
2

 .

Using the way we generate (C0, C1, C2), we see that the gs and hs terms cancel out, and this is equivalent
to  gτ

Xρ1
1

Xρ2
2

 =

 gd1,1α · gd1,2β · gd1,3γ

X
d2,1α
1 ·Xd2,2β

1 ·Xd2,3γ
1

X
d3,1α
2 ·Xd3,2β

2 ·Xd3,3γ
2

⇐⇒
 τ
ρ1 + c
ρ2 + c

 = D ·

αβ
γ

 .

This concludes the proof.
6This corresponds to the HVZK property of linear identification protocols.
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Lemma 7. CMTDDH satisfies the statistically binding property of an (εb, εg, εt)-special commitment
scheme for LFDDH, with εb ≤ 1/p.

Proof. We describe an unbounded algorithm Ext, that takes as input a commitment key ck = A =
(Ai,j)i,j ∈ G3×3, and a commitment com = (C0, C1, C2) ∈ G3, and outputs a tuple R = (R1, R2) ∈ G×G.
It is given as follows:

1. Extract discrete logarithms c = (c0, c1, c2)t ∈ Z3
p and a = (a0, a1, a2)t ∈ Z3

p such thatC0
C1
C2

 =

gc0

gc1

gc2

 and

A1,1
A2,1
A3,1

 =

ga0

ga1

ga2

 .

2. If a0 = 0, return ⊥. Otherwise, let e2 = (0, 1, 0)t and e3 = (0, 0, 1)t. Note that a, e2, e3 form a
basis of Z3

p.
3. Write c as c = ta + r1e2 + r2e3 for t, r1, r2 ∈ Zp, and return (R1, R2) := (gr1 , gr2).

To finish the proof, let A be any algorithm. We have to bound the probability

Pr

 Com(A, (R′1, R′2);ϕ′) = (C0, C1, C2)
∧ (R1, R2) 6= (R′1, R′2)

∣∣∣∣∣∣∣∣∣∣
(g, h)← LF.Gen(1λ),
A← BGen(par),
((C0, C1, C2), St)← A(A),
(R1, R2)← Ext(A, (C0, C1, C2)),
(R1, R

′
2, ϕ
′)← A(St)

 .
Note that the probability that Ext outputs ⊥ in this experiment is 1/p, as A1,1 is uniform in G. We
assume that Ext does not output ⊥, and want to show that the above probability conditioned on this
event is zero. First, it is easy to see that we have Com(A, (R1, R2); (t, 0, 0)) = (C0, C1, C2). Further,
assume that A outputs (R′1, R′2) = (gr′1 , gr′2) and ϕ′ = (α, β, γ) such that

Com(A, (R′1, R′2);ϕ′) = (C0, C1, C2) = Com(A, (R1, R2); (t, 0, 0)).

Using the definition of Com and BGen, we see that this implies the vector (0, r1 − r′1, r2 − r′2)t is in the
span of a. As a0 6= 0 this implies that it is the zero vector, showing that R1 = R′1 and R2 = R′2.

Lemma 8. For any PPT algorithm A, there is a PPT algorithm B with T(B) ≈ T(A) and

AdvQ-keydist
A,CMTDDH

(λ) ≤ AdvuDDH3
B,GGen(λ) + 6

p
.

Proof. Let A be a PPT algorithm and Q = poly(λ). We have to bound

|Pr
[
Q-KEYDISTA0,CMTDDH

(λ)⇒ 1
]
− Pr

[
Q-KEYDISTA1,CMTDDH

(λ)⇒ 1
]
|.

Note that in game KEYDIST1,CMTDDH , all commitment keys Ai are sampled uniformly at random.
Therefore, looking at one fixed commitment key Ai, indistinguishability would directly follow from the
uDDH3 assumption. To give a tight reduction for any Q = poly(λ), we use the random self-reducibility of
uDDH3. Our reduction B is as follows:

1. B gets as input G, p, g and group elements (hi,j)i,j∈[3].

2. B samples h $← G, sets par := (g, h), and samples x $← Zp.

3. If (par, x) /∈ Good, B returns 0, as game KEYDISTb,CMTDDH does.

4. Otherwise, B prepares commitment keys cki := Ai ∈ G3×3 for all i ∈ [Q] as follows:

(a) For simplicity of notation, write hi,j := gHi,j , i.e. let H ∈ Z3×3
p denote the matrix of exponents

of hi,j . Partition H into H = [H0 | H1] for H0 ∈ Z3×1
p and H1 ∈ Z3×2

p .
(b) Reduction B samples Ti

$← Z3×3
p , and Si $← Z1×2

p . We define

Di := TiH + [0 | TiH0Si].
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(c) Reduction B computes Ai := gDi , which should be understood componentwise. It is easy to
see that B can efficiently compute Ai, given Ti, Si, and (hi,j)i,j∈[3].

5. B runs β ← A(par, x, (cki)i∈[Q]) and returns β.

Apart from the distribution of the commitment keys Ai, it is clear that B simulates the games perfectly
for A. We claim that if the hi,j are uniform and independent, then B provides a simulation statistically
close to KEYDIST1,CMTDDH , i.e. all Ai are uniform and independent. If on the other hand, there are
a, b such that hi,2 := hai,1, hi,3 := hbi,1 for all i ∈ [3], then B does the same for KEYDIST1,CMTDDH .

For the first claim, assume that the hi,j are uniform and independent, i.e. H is uniform over Z3×3
p .

Then with probability at least 1− 3/p it has full rank, i.e. is invertible. Assuming that it has full rank,
we see that even if we fix the matrix H, the matrix TiH is uniform over Z3×3

p . This implies that Di is
uniform, showing the first claim.

For the second claim, assume that there are a, b such that hi,2 := hai,1, hi,3 := hbi,1 for all i ∈ [3]. This
is equivalent to writing H = [H0 | H0R], where R = [a, b] ∈ Z1×2

p . With probability at least 1− 1/p3,
the matrix H0 ∈ Z3×1

p is full rank. We see that

Di = TiH + [0 | TiH0Si] = [TiH0 | TiH0(R + S)].

If H0 has full rank, we see that (even for fixed H of this form) the key Ai is distributed exactly as a
commitment key in KEYDIST0,CMTDDH , which finishes the proof.

4.3 Efficiency
We briefly discuss efficiency of our schemes MSt[LF,CMT] and MSa[LF,CMT] presented in Sections 3.2
and 3.3, when instantiated with the linear function family and commitment scheme presented here.
Asymptotics. Denote the size of an element in G by size(G), and the size of an element in Zp by
size(Zp). For our scheme with key aggregation MSa[LF,CMT] we get the following signature size |σ| and
communication |Comm| per signer.

|Comm| = 3size(G) + 4size(Zp), |σ| = 3size(G) + 4size(Zp).

For our tight scheme MSt[LF,CMT] we obtain the following sizes for N signers.

|Comm| = 1 + 6size(G) + 8size(Zp), |σ| = 6size(G) + 8size(Zp) +N.

For both schemes, we can further reduce the communication complexity. Namely, instead of sampling
the commitment randomness ϕi ∈ Z3

p directly, each signer i samples a short seed seedi $← {0, 1}λ and
defines ϕi = H(seedi), where H is a random oracle. Later, seedi is sent as an opening instead of ϕi. Our
security proofs still go through, using the entropy of seed1 and by programming H(seed1) after using the
equivocation trapdoor. This reduces the per-signer communication complexity to

MSa[LF,CMT] : |Comm| = 3size(G) + size(Zp) + λ,

MSt[LF,CMT] : |Comm| = 6size(G) + 2size(Zp) + λ+ 1.

Concrete Parameters. We estimate concrete sizes for keys, communication, and signatures for
existing two-round multi-signatures and our schemes. The results are computed using Python scripts
(cf. Supplementary Material Section D) and are presented in Table 2. Concretely, we assume 220 signing
queries and 230 hash queries. We compute (1) the security level that is provided for the schemes assuming
that the underlying assumption is 128 bit hard (see Table 2, Column “Security”), and (2) the sizes of
groups, keys, signatures, and per-signer communication if we want to achieve 128 bit security for the
scheme, and instantiate the underlying group based on the security loss (see Table 2, other columns).
For (1), the table shows that our schemes are the only ones providing meaningful security guarantees
when instantiated with standardized groups. In addition, note that Musig2 comes at the cost of relying
on a stronger one-more style assumption. For the setting in (2), our schemes have slightly worse concrete
parameter sizes. However, we argue that in practice, the setting in (1) is much more important than
(2), because schemes are mostly implemented using standardized groups. The approach in (2) should be
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Scheme Security size(G) |pk| |Comm| |σ|
Musig2 [NRS21] 9 1209 32.13 160.63 64.25
HBMS [BD21] -11 1369 32.13 96.38 96.37
Ours (Section 3.2) 106 301 64.25 144.50 224.88
Ours (Section 3.3) 126 261 128.50 273.13 481.88

Table 2: Comparison of concrete parameters for existing two-round multi-signature schemes (top) in the
random oracle model with our schemes (bottom) in terms. The column “Security” shows the security
level that is provided for the schemes assuming that the underlying assumption is 128 bit hard. Other
columns show sizes of keys, per-signer communication, and signatures in bytes assuming the schemes are
instantiated (using non-standard groups) to have 128 bit security based on the security loss.

avoided, since it leads to the use of groups that are not optimized for computation, and not well-studied
in terms of (concrete) security. In terms of computation, consider for example Musig2 compared to our
scheme from Section 3.2. Musig2 uses one multi-exponentiation of size two for verification. In our scheme,
signatures can be verified using one multi-exponentiation of size three, and two multi-exponentiations of
size five. Taking into account that Musig2 would have to use a 1209 bit size group, and our scheme can
use standardized groups for which multi-exponentiations are optimized, we expect that our scheme is
computationally equally or more efficient.

Acknowledgments. We thank the anonymous reviewers from Eurocrypt 2023 for their useful feedback
and suggestions. In particular, it was pointed out the similarity between the commitment scheme of
Bagherzandi, Cheon, and Jarecki in [BCJ08] and ours.
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Supplementary Material

A Omitted Proof from Section 3.2
Proof of Theorem 1. The proof can be understood as a simplified version of the proof of Theorem 2.
Set MS := MSa[LF,CMT], let A be a PPT algorithm. In the following, we present a sequence of games
G0-G8 proving the statement. The games are presented in Figures 4 and 5. We fix the notation

Advi := Pr [Gi ⇒ 1] for i ∈ {0} ∪ [8].

Game G0: Game G0 is defined as G0 := MS-EUF-CMAAMS. To fix notation, we recall this game.
First, the game samples par← LF.Gen(1λ) and a pair (pk, sk) with sk := x1

$← D and pk := X1 := F(x).
Then, A gets par, pk as input, and access to oracles Sig0,Sig1. We omit signing oracle Sig2. As in
the proof of Theorem 2 this does not change the advantage of A, as algorithm Sig2 does not make any
use of the secret key or a secret state and can be publicly run using the messages output in Sig0 and
Sig1. Further, A gets access to random oracles H,Ha,Hc, simulated by the game in a lazy manner, using
maps h, ha, hc, respectively. Finally, A outputs a forgery (P∗,m∗, σ∗). The game outputs 1 if and only
if pk∗ ∈ P∗,(P∗,m∗) /∈ L, and Ver(P∗,m∗, σ∗) = 1. We assume that the public key pk∗ is equal to
pk1 for P∗ = {pk1, . . . , pkN}. We write σ∗ = (com∗, s∗, ϕ∗), and denote the aggregated key for P∗ by
p̃k := X̃ := Agg(P∗). By definition, we have

Adv0 = AdvMS-EUF-CMA
A,MSt[LF,CMT](λ).

Game G1: In this game G1, we add a bad event and let the game abort if it occurs. Concretely,
consider par, x1 sampled by the game as described above, and let Good be as in the definition of a special
commitment scheme. The game aborts if (par, x1) /∈ Good. By definition of the special commitment
scheme, we have

|Adv0 − Adv1| ≤ Pr [(par, x1) /∈ Good] ≤ εg.

Game G2: In this game G2, we introduce a map b, that maps inputs to random oracle H to bits. For
each new input (p̃k,m) to H, the bit b[p̃k,m] is sampled from a Bernoulli distribution with parameters
γ := 1/(QS + 1). Further, the game aborts if any of the follow occurs:

• For a signing query Sig0(P,m) and p̃k := Agg(P), it holds that b[p̃k,m] = 1, or

• for the forgery (P∗,m∗, σ∗) and p̃k := Agg(P∗), it holds that b[p̃k,m∗] = 0.

Note that the view of A is independent of the map b until an abort occurs. If the game does not abort, it
is exactly like G1. Therefore, we can use the fact (1− 1/z)z ≥ 1/4 for all z ≥ 2 and get

Adv2 = γ (1− γ)QS · Adv1 = 1
QS + 1

(
1− 1

QS + 1

)QS

· Adv1

= 1
QS

(
1− 1

QS + 1

)QS+1
· Adv1 ≥

1
4QS

· Adv1.

Game G3: In gameG3, we change how random oracle H is executed. Consider a query H(p̃k,m) for which
the hash value is not yet defined. Recall that in this case, a bit b[p̃k,m] is sampled. Then, a commitment
key ck has to be returned. In previous games, ck was sampled uniformly via ck $← K. Now, depending
on this bit, we change how ck is computed. Namely, if b[p̃k,m] = 0, we sample (ck, td)← TGen(par, X1)
and store the trapdoor td in another map tr[p̃k,m] := td. On the other hand, if b[p̃k,m] = 1, we sample
ck← BGen(par).

We argue that games G2 and G3 are indistinguishable as follows. First, note that for case b[p̃k,m] = 0,
the distribution of ck stays the same, because we can assume (par, x1) ∈ Good due to previous changes.

For the case b[p̃k,m] = 1, we use a reduction B against the multi-key indistinguishability of CMT
interpolating betweenG2 andG3. Precisely, B gets as input par, x1 andQH commitment keys ck1, . . . , ckQH .
It simulates G2 for A with par while embedding the commitment keys in random oracle responses for
queries H(p̃k,m) with b[p̃k,m] = 1. In the end, it outputs whatever the game outputs. Clearly, we have

|Adv2 − Adv3| ≤ AdvQH-keydist
B,CMT (λ).
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Game G4: Game G4 is as G3, but we change the execution of oracles Sig0,Sig1. Concretely, after
this change, the secret key x1 is no longer needed. Consider a query Sig0(P,m). Recall that for
previous games, in such a query, a commitment key ck := H(p̃k,m) is computed. Then, values r1, ϕ1
are sampled, and R1 := F(r1) and a commitment com1 := Com(ck, R1;ϕ1) is computed. Later, in Sig1,
s1 is computed as s1 := c · a1 · x1 + r1, where c and a1 are output by Hc and Ha as in the scheme.
Assuming that the game does not abort in this query, we can assume that b[p̃k,m] = 0, due to the change
in G2. This means that the entry td := tr[p̃k,m] is defined, and was sampled together with ck using
TGen(par, X1). We use this in game G4 as follows: The game no longer samples r1 and ϕ1. Instead, the
commitment com1 is computed via (com1, St)← TCom(ck, td). Later, in Sig1, s1 and ϕ1 are computed
using (ϕ1, R1, s1)← TCol(St, c · a1). Applying the special trapdoor property of CMT QS many times we
obtain

|Adv4 − Adv5| ≤ QSεt.

Game G5: In game G5, we revert the change we introduced in G1. Concretely, the game no longer
aborts if (par, x1) /∈ Good. As before, we get

|Adv4 − Adv5| ≤ Pr [(par, x1) /∈ Good] ≤ εg.

Game G6: In game G6, we change how the public key X1 is generated. Recall that it was generated as
F(x1) before, where x1

$← D. In this game, we sample X1
$← R instead. Note that due to the change in

G4, we do not need x1 anymore. We sketch a simple reduction B′ against the key indistinguishability of
the lossiness admitting linear function family LF to show indistinguishability of G5 and G6. Namely, B′
gets par and X1 as input, and simulates G5 for A. In the end, it outputs whatever the game outputs.
We have

|Adv5 − Adv6| ≤ Advkeydist
B′,LF (λ).

Game G7: In game G7, we want to use the binding property of CMT. To do that, we introduce
two changes. First, in oracle queries of the form Hc(p̃k, com,m) we first set ck := H(p̃k,m). Then, if
b[p̃k,m] = 0, we simulate Hc as before. If b[p̃k,m] = 1, we run the (unbounded) extraction algorithm Ext
that exists according to the statistical binding property of CMT. Concretely, we run R← Ext(ck, com)
and store r[p̃k, com,m] := R, where r is another map. Then, we continue the simulation of Hc as
before. Second, we change the winning condition of the game. Concretely, after A outputs forgery
(P∗,m∗, σ∗), we parse σ∗ = (com∗, s∗, ϕ∗) and compute the aggregated key p̃k := X̃ := Agg(P∗) as before.
In addition to the verification steps that we had before, we now also compute c∗ := Hc(p̃k, com∗,m∗) and
R∗ := F(s∗)− c∗ · X̃, and check if R∗ = r[p̃k, com∗,m∗]. If this does not hold, the game outputs 0.

Intuitively, these changes accomplish the following. The game extracts the values R from every
commitment that is given by A via random oracle Hc, for which the commitment key ck was generated
using algorithm BGen (cf. game G3). Then, we force the adversary into using the extracted value for its
forgery.

Formally, we argue indistinguishability of G6 and G7 using an unbounded reduction to the statistical
binding property of CMT. This reduction gets as input par and ck∗. It guesses iH $← [QH] and iHc

$← [QHc
].

The reduction simulates game G7 for A honestly, except for query iH to random oracle H and query iHc

to random oracle Hc. If it had to sample a ck← BGen(par) in the former query, it instead responds with
ck∗. If it had to run Ext in the latter query, it outputs com to the experiment. If query iH was used to
derive the commitment key used in the forgery and query iHc was used to derive the challenge c∗ for the
forgery, and R∗ 6= r[p̃k, com∗,m∗], then the reduction outputs R∗;ϕ∗. Otherwise, it outputs ⊥. Clearly, if
the reduction guesses the correct queries and the bad event separating G6 and G7 occurs, then it breaks
the statistical binding property. The view of A is as in G7, and independent of (iH, iHc

). Therefore, we
obtain

|Adv6 − Adv7| ≤ QHQHcεb.

Game G8: In game G8, we introduce another abort. Namely, the game aborts in a query Ha(〈P〉, pk),
for which pk = pk1 and the hash value is not yet defined, but for p̃k := Agg(P), there is some com,m
such that Hc(p̃k, com,m) is already defined. The probability of this bad event is easily bounded. First,
assume that pk1 = X1 is not the zero vector in R. The probability that X1 is the zero vector is at most
1/|R|. Then, fix such a query Ha(〈P〉, pk = X1), and any previous query to oracle Hc. The bad event can
only occur if the input of the latter query starts with X̃, where a1X1 =

∑N
i=2 aiXi − X̃. As X1 is not
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the zero vector, the value a1X1 is uniform over the span of X1. Further the values on the right-hand
side are fixed before a1 is sampled, assuming that the bad event occurs. Thus, the probability of the bad
event for this pair of queries is at most 1/|S|. We get

|Adv7 − Adv8| ≤
1
|R|

+ QHaQHc

|S|
.

Note that this change ensured that for the forgery output by A, the query defining coefficient a1 occurred
before the query defining the challenge c∗.

To bound the probability that G8 outputs 1, we give an unbounded reduction from the aggregation
lossy soundness of LF.

• The reduction gets as input parameters par and an element X1. It samples îHc

$← [QHc ] and
îHa

$← [QHa ]. Then, it simulates G8 honestly until A outputs a forgery, except for queries îHc to
oracle Hc and îHa

to oracle Ha.

• If the query îHc
to oracle Hc occurs before the query îHa

to oracle Ha, the reduction aborts its
execution.

• Consider the query îHa to oracle Ha. If the hash value is already defined, the reduction aborts its
execution. Else, let this query be Ha(〈P〉, pk). If pk 6= pk1, the reduction aborts. Otherwise, it first
parses P = {pk1, . . . , pkN} and queries ai := Ha(〈P〉, pki) for all 2 ≤ i ≤ N . Then it outputs the
pairs (pk2, a2), . . . , (pkN , aN ) to the aggregation lossy soundness experiment. It gets as input a1,
sets ha[〈P〉, pk] := a1, and continues the simulation as in G8.

• Consider the query îHc to oracle Hc. Let this query be Hc(p̃k, com,m). The reduction aborts its
execution, if the hash value for this query is already defined. Else, it queries ck := H(p̃k,m). If
b[p̃k,m] = 0, it aborts its execution. Otherwise, it runs R ← Ext(ck, com) as in G8. It outputs
R to the aggregation lossy soundness experiment and obtains a value c in return. Then, it sets
hc[p̃k, com,m] := c and continues the simulation as in G8.

• When A outputs the forgery (P∗,m∗, σ∗), the reduction runs all the verification steps in G8.
Additionally, it checks if the value Hc(p̃k, com∗,m∗) was defined during query îHc to Hc, and the
value Ha(〈P∗〉, pk1) was defined during îHa

to oracle Ha. If this is not the case, it aborts its execution.
Otherwise, it returns s := s∗ to the aggregation lossy soundness experiment.

Clearly, unless the reduction aborts due to wrong guessing of the indices îHa
, îHc

, the view of A is exactly
as in G8. Before any such abort, A’s view is independent of the indices îHa , îHc . Also, it is clear that if
the reduction does not abort, it outputs a valid solution to the aggregation lossy soundness experiment.
Therefore, we get

Adv8 ≤ QHa
QHc

εal,

and the statement is proven.
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Game G0-G8
01 par← LF.Gen(1λ)
02 sk := x1

$← D, pk := X1 := F(x) // G0-G5

03 pk1 := X1
$← R // G6-G8

04 if (par, x1) /∈ Good : abort // G1-G4

05 (P∗,m∗, σ∗)← ASig0,Sig1,H,Ha,Hc(par, pk1)
06 if pk /∈ P∗ ∨ (P∗,m∗) ∈ L : return 0
07 p̃k := Agg(P∗) // G2-G8

08 if b[p̃k,m∗] = 0 : return 0 // G2-G8

09 let p̃k = X̃, σ∗ = (com∗, s∗, ϕ∗) // G7-G8

10 c∗ := Hc(p̃k, com∗,m∗), R∗ := F(s∗)− c∗ · X̃ // G7-G8

11 if R∗ 6= r[p̃k, com∗,m∗] : return 0 // G7-G8

12 return Ver(P∗,m∗, σ∗)

Oracle Sig0(P,m)
13 let P = {pk1, . . . , pkN}
14 if pk1 6= pk : return ⊥
15 L := L ∪ {(P,m)}, sid := sid+ 1, ctr[sid] := 1
16 p̃k := Agg(P), ck := H(p̃k,m)
17 if b[p̃k,m] = 1 : abort // G2-G8

18 r1
$← D, R1 := F(r1), ϕ1

$← G // G0-G3

19 com1 := Com(ck, R1;ϕ1) // G0-G3

20 St1 := (p̃k, x1, r1, ϕ1) // G0-G3

21 (com1, St)← TCom(ck, tr[p̃k,m]) // G4-G8

22 St1 := St // G4-G8

23 (pm1[sid], St1[sid]) := (pm1,1 := com1, St1)
24 return (pm1[sid], sid)

Oracle Sig1(sid,M1)
25 if ctr[sid] 6= 1 : return ⊥
26 let M1 = (pm1,1, . . . , pm1,N )
27 if pm1[sid] 6= pm1,1 : return ⊥
28 ctr[sid] := ctr[sid] + 1
29 let St1 = (x1, r1, ϕ1) // G0-G3

30 let St1 = St // G4-G8

31 for i ∈ [N ] : let pm1,i = comi

32 com :=
⊗

i∈[N ] comi, c := Hc(p̃k, com,m), a1 := Ha(〈P〉, pk1)
33 s1 := c · a1 · x1 + r1 // G0-G3

34 (ϕ1, R1, s1)← TCol(St, c · a1) // G4-G8

35 (pm2[sid], St2[sid]) := (pm2,1 := (s1, ϕ1), St2 := com)
36 return pm2[sid]

Figure 4: The games G0-G8 used in the proof of Theorem 1. Lines with highlighted comments are only
executed in the respective games. The random oracles are defined in Figure 5.
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Oracle H(p̃k,m) // G0-G2

01 if h[p̃k,m] = ⊥ :
02 b[p̃k,m]← Bγ // G2

03 h[p̃k,m] $← K
04 return h[p̃k,m]

Oracle H(p̃k,m) // G3-G8

05 if h[p̃k,m] = ⊥ :
06 b[p̃k,m]← Bγ
07 if b[p̃k,m] = 0 :
08 (ck, td)← TGen(par, X1)
09 tr[p̃k,m] := td
10 if b[p̃k,m] = 1 :
11 ck← BGen(par)
12 h[p̃k,m] := ck
13 return h[p̃k,m]

Oracle Hc(p̃k, com,m)
14 if hc[p̃k, com,m] = ⊥ :
15 ck := H(p̃k,m) // G7-G8

16 if b[p̃k,m] = 1 : // G7-G8

17 R← Ext(ck, com) // G7-G8

18 r[p̃k, com,m] := R // G7-G8

19 hc[p̃k, com,m] $← S
20 return hc[p̃k, com,m]

Oracle Ha(〈P〉, pk)
21 if ha[〈P〉, pk] = ⊥ :
22 ha[〈P〉, pk] $← S
23 if pk = pk1 :
24 p̃k := Agg(P) // G8

25 if ∃(com,m) s.t. // G8

hc[p̃k, com,m] 6= ⊥ : abort // G8

26 return ha[〈P〉, pk]

Figure 5: The random oracles that are used in the proof of Theorem 1. Lines with highlighted comments
are only executed in the respective games. Algorithm Ext is the (unbounded) extractor for the statistical
binding property of CMT.
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B Omitted Proofs and Figures from Section 3.3
Proof of Lemma 2. Consider the variables given in verification and an honest execution of the protocol.
Concretely, let P = {pk1, . . . , pkN} be a multi-set of public keys, m ∈ {0, 1}∗ be a message, and
σ = (σ0, σ1, B) be a signature computed by an honest execution of the signing protocol specified by
algorithms Sig0,Sig1,Sig2. Write B = b1 . . . bN , σ0 = (com0, ϕ0, s0) and σ1 = (com1, ϕ1, s1). Write the
public keys pki as pki = (Xi,0, Xi,1). Then, we can use the homomorphic properties of F to obtain

F(s0)−
N∑
i=1

ci,0 ·Xi,bi = F
(

N∑
i=1

si,0

)
−

N∑
i=1

ci,0 ·Xi,bi

=
N∑
i=1

F(si,0)− ci,0 · F(xi,bi)

=
N∑
i=1

F(si,0 − ci,0 · xi,bi) =
N∑
i=1

F(ri,0) =
N∑
i=1

Ri,0.

Using this, the homomorphic properties of Com, and the definition of ϕ0, it follows that

Com
(

ck0,F(s0)−
N∑
i=1

ci,0 ·Xi,bi ;ϕ0

)
= Com

(
ck0,

N∑
i=1

Ri,0;
N⊕
i=1

ϕi,0

)

=
N⊗
i=1

Com (ck0, Ri,0;ϕi,0)

=
N⊗
i=1

comi,0 = com0.

This shows that the first verification equation holds. The proof for the second equation is similar.

Game G0-G8

01 par← LF.Gen(1λ), x1,0, x1,1
$← D, seed1

$← {0, 1}λ, X1,0 := F(x1,0)
02 if (par, x1,1) /∈ Good : abort // G3-G5

03 X1,1 := F(x1,1) // G0-G6

04 X1,1
$← R // G7-G8

05 pk∗ := (X1,0, X1,1)
06 (P∗,m∗, σ∗)← AH,Hb,Hc,Sig0,Sig1(par, pk∗)
07 if pk∗ /∈ P∗ ∨ (P∗,m∗) ∈ L : return 0
08 let σ∗ = (σ∗0 , σ∗1 , B∗), B∗ = b∗1 . . . b

∗
N ∈ {0, 1}

N

09 let σ∗0 = (com∗0, ϕ∗0, s∗0), σ∗1 = (com∗1, ϕ∗1, s∗1)
10 if bad = 1 : return 0 // G1-G8

11 if b∗1 6= 1− H̄b(seed1, 〈P∗〉,m∗) : return 0 // G2-G8

12 let P∗ = {pk1 = pk∗, . . . , pkN} // G8

13 for i ∈ [N ] : // G8

14 let pki = (Xi,0, Xi,1) // G8

15 c∗i,0 := Hc(pki, com∗0,m∗, 〈P∗〉, B∗, 0) // G8

16 c∗i,1 := Hc(pki, com∗1,m∗, 〈P∗〉, B∗, 1) // G8

17 R∗0 := F(s∗0)−
∑N
i=1 c

∗
i,0 ·Xi,b∗

i
, R∗1 := F(s∗1)−

∑N
i=1 c

∗
i,1 ·Xi,1−b∗

i
// G8

18 if R∗1−b∗1 6= r[com∗1−b∗1 ,m
∗, 〈P∗〉, B∗] : return 0 // G8

19 return Ver(P∗,m∗, σ∗)

Figure 6: The games G0-G8 used in the proof of Theorem 2. Lines with highlighted comments are only
executed in the respective games. The signing oracles are defined in Figure 7, and the random oracles are
defined in Figure 8.
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Oracle Sig0(P,m)
01 let P = {pk1, . . . , pkN}
02 if pk1 6= pk∗ : return ⊥
03 L := L ∪ {(P,m)}, sid := sid+ 1, ctr[sid] := 1
04 ck0 := H(0, 〈P〉,m), ck1 := H(1, 〈P〉,m)
05 b1 := H̄b(seed1, 〈P〉,m)
06 r1,b1

$← D, ϕ1,b1
$← G, R1,b1 := F(r1,b1)

07 com1,b1 := Com(ckb1 , R1,b1 ;ϕ1,b1)
08 r1,1−b1

$← D, ϕ1,1−b1
$← G, R1,1−b1 := F(r1,1−b1) // G0-G4

09 com1,1−b1 := Com(ck1−b1 , R1,1−b1 ;ϕ1,1−b1) // G0-G4

10 St1 := (r1,0, r1,1, ϕ1,0, ϕ1,1) // G0-G4

11 (com1,1−b1 , St)← TCom(ck1−b1 , tr[〈P〉,m]) // G5-G8

12 St1 := (r1,b1 , ϕ1,b1 , St) // G5-G8

13 (pm1[sid], St1[sid]) := (pm1,1 := (b1, com1,0, com1,1), St1)
14 return (pm1[sid], sid)

Oracle Sig1(sid,M1)
15 if ctr[sid] 6= 1 : return ⊥
16 let M1 = (pm1,1, . . . , pm1,N )
17 if pm1[sid] 6= pm1,1 : return ⊥
18 ctr[sid] := ctr[sid] + 1, St1 := St1[sid]
19 let St1 = (r1,0, r1,1, ϕ1,0, ϕ1,1) // G0-G4

20 let St1 := (r1,b1 , ϕ1,b1 , St) // G5-G8

21 for i ∈ [N ] : let pm1,i = (bi, comi,0, comi,1)
22 B := b1 . . . bN ∈ {0, 1}N
23 com0 :=

⊗
i∈[N ] comi,0, com1 :=

⊗
i∈[N ] comi,1

24 c1,0 := Hc(pk1, com0,m, 〈P〉, B, 0), c1,1 := Hc(pk1, com1,m, 〈P〉, B, 1)
25 s1,b1 := c1,b1 · x1,0 + r1,b1

26 s1,1−b1 := c1,1−b1 · x1,1 + r1,1−b1 // G0-G4

27 (ϕ1,1−b1 , R1−b1 , s1,1−b1)← TCol(St, c1,1−b1) // G5-G8

28 St2 := (com0, com1)
29 (pm2[sid], St2[sid]) := (pm2,1 := (s1,0, s1,1, ϕ1,0, ϕ1,1), St2)
30 return pm2[sid]

Figure 7: The signing oracles that are used in the proof of Theorem 2. Lines with highlighted comments
are only executed in the respective games.
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Oracle H(b, 〈P〉,m) // G0-G3

01 if h[b, 〈P〉,m] = ⊥ :
02 h[b, 〈P〉,m] $← K
03 return h[b, 〈P〉,m]

Oracle H(b, 〈P〉,m) // G4-G8

04 if h[b, 〈P〉,m] = ⊥ :
05 if b = 1− H̄b(seed1, 〈P〉,m) :
06 (ck, td)← TGen(par, X1,1)
07 tr[〈P〉,m] := td
08 if b = H̄b(seed1, 〈P〉,m) :
09 ck← BGen(par)
10 h[b, 〈P〉,m] := ck
11 return h[b, 〈P〉,m]

Oracle H̄b(seed, 〈P〉,m)
12 if h̄b[seed, 〈P〉,m] = ⊥ :
13 h̄b[seed, 〈P〉,m] $← {0, 1}
14 return h̄b[seed, 〈P〉,m]

Oracle Hc(pk, com,m, 〈P〉, B, b) // G0-G7

15 if hc[pk, com,m, 〈P〉, B, b] = ⊥ :
16 hc[pk, com,m, 〈P〉, B, b] $← S
17 return hc[pk, com,m, 〈P〉, B, b]

Oracle Hc(pk, com,m, 〈P〉, B, b) // G8

18 if hc[pk, com,m, 〈P〉, B, b] = ⊥ :
19 if pk = pk∗ ∧ b = H̄b(seed1, 〈P〉,m) :
20 R← Ext(H(b, 〈P〉,m), com)
21 r[com,m, 〈P〉, B] := R
22 hc[pk, com,m, 〈P〉, B, b] $← S
23 return hc[pk, com,m, 〈P〉, B, b]

Oracle Hb(seed, 〈P〉,m)
24 if seed = seed1 : bad := 1 // G1-G8

25 return H̄b(seed, 〈P〉,m)

Figure 8: The random oracles that are used in the proof of Theorem 2. Lines with highlighted comments
are only executed in the respective games. Algorithm Ext is the (unbounded) extractor for the statistical
binding property of CMT.
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C Pseudocode for Our Schemes

Alg Setup(1λ)
01 return par← LF.Gen(1λ)

Alg Gen(par)
02 sk := x $← D, pk := X := F(x)
03 return (pk, sk)

Alg Agg(P)
04 let P = {pk1, . . . , pkN}
05 for i ∈ [N ] : let pki = Xi

06 for i ∈ [N ] : ai := Ha(〈P〉, pki)
07 return p̃k := X̃ :=

∑N
i=1 ai ·Xi

Alg VerAgg(p̃k,m, σ)
08 let p̃k = X̃, σ = (com, s, ϕ)
09 c := Hc(p̃k, com,m)
10 R := F(s)− c · X̃
11 ck := H(p̃k,m)
12 if com 6= Com(ck, R;ϕ) : return 0
13 return 1

Alg Ver(P,m, σ)
14 p̃k := Agg(P)
15 return VerAgg(p̃k,m, σ)

Alg Sig0(P, sk1,m)
16 let sk1 = x1
17 p̃k := Agg(P), ck := H(p̃k,m)
18 r1

$← D, R1 := F(r1), ϕ1
$← G

19 pm1,1 := com1 := Com(ck, R1;ϕ1)
20 St1 := (p̃k, x1, r1, ϕ1,m)
21 return (pm1,1, St1)

Alg Sig1(St1,M1)
22 let M1 = (pm1,1, . . . , pm1,N )
23 let St1 = (p̃k, x1, r1, ϕ1,m)
24 for i ∈ [N ] : let pm1,i = comi

25 com :=
⊗

i∈[N ] comi

26 c := Hc(p̃k, com,m)
27 a1 := Ha(〈P〉, pk1)
28 s1 := c · a1 · x1 + r1
29 pm2,1 := (s1, ϕ1)
30 return (pm2,1, St2 := com)

Alg Sig2(St2,M2)
31 let St2 = com
32 let M2 = (pm2,1, . . . , pm2,N )
33 for i ∈ [N ] : let pm2,i = (si, ϕi)
34 s :=

∑N
i=1 si, ϕ :=

⊕N
i=1 ϕi

35 return σ := (com, s, ϕ)

Figure 9: The multi-signature scheme MSa[LF,CMT] = (Setup,Gen,Sig,Ver) with key aggrega-
tion for a linear function family LF = (LF.Gen,F) and a special commitment scheme CMT =
(BGen,TGen,Com,TCom,TCol).
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Alg Setup(1λ)
01 return par← LF.Gen(1λ)

Alg Gen(par)
02 x0, x1

$← D, seed $← {0, 1}λ
03 X0 := F(x0), X1 := F(x1)
04 pk := (X0, X1), sk := (x0, x1, seed)
05 return (pk, sk)

Alg Ver(P,m, σ)
06 let P = {pk1, . . . , pkN}
07 let σ = (σ0, σ1, B)
08 let σ0 = (com0, s0, ϕ0)
09 let σ1 = (com1, s1, ϕ1)
10 let B = b1 . . . bN ∈ {0, 1}N
11 for i ∈ [N ] :
12 let pki = (Xi,0, Xi,1)
13 ci,0 := Hc(pki, com0,m, 〈P〉, B, 0)
14 ci,1 := Hc(pki, com1,m, 〈P〉, B, 1)
15 R0 := F(s0)−

∑N
i=1 ci,0 ·Xi,bi

16 R1 := F(s1)−
∑N
i=1 ci,1 ·Xi,1−bi

17 ck0 := H(0, 〈P〉,m)
18 ck1 := H(1, 〈P〉,m)
19 if com0 6= Com(ck0, R0;ϕ0) :
20 return 0
21 if com1 6= Com(ck1, R1;ϕ1) :
22 return 0
23 return 1

Alg Sig0(P, sk1,m)
24 let sk1 = (x1,0, x1,1, seed1)
25 ck0 := H(0, 〈P〉,m)
26 ck1 := H(1, 〈P〉,m)
27 b1 := Hb(seed1, 〈P〉,m)
28 r1,0, r1,1

$← D, ϕ1,0, ϕ1,1
$← G

29 R1,0 := F(r1,0), R1,1 := F(r1,1)
30 com1,0 := Com(ck0, R1,0;ϕ1,0)
31 com1,1 := Com(ck1, R1,1;ϕ1,1)
32 pm1,1 := (b1, com1,0, com1,1)
33 St1 := (sk1, r1,0, r1,1, ϕ1,0, ϕ1,1)
34 return (pm1,1, St1)

Alg Sig1(St1,M1)
35 let M1 = (pm1,1, . . . , pm1,N )
36 let St1 = (sk1, r1,0, r1,1, ϕ1,0, ϕ1,1)
37 for i ∈ [N ] :
38 let pm1,i = (bi, comi,0, comi,1)
39 B := b1 . . . bN ∈ {0, 1}N
40 com0 :=

⊗
i∈[N ] comi,0

41 com1 :=
⊗

i∈[N ] comi,1
42 c1,0 := Hc(pk1, com0,m, 〈P〉, B, 0)
43 c1,1 := Hc(pk1, com1,m, 〈P〉, B, 1)
44 s1,0 := c1,0 · x1,b1 + r1,0
45 s1,1 := c1,1 · x1,1−b1 + r1,1
46 pm2,1 := (s1,0, s1,1, ϕ1,0, ϕ1,1)
47 St2 := (com0, com1)
48 return (pm2,1, St2)

Alg Sig2(St2,M2)
49 let St2 = (com0, com1)
50 let M2 = (pm2,1, . . . , pm2,N )
51 for i ∈ [N ] :
52 let pm2,i = (si,0, si,1, ϕi,0, ϕi,1)
53 s0 :=

∑N
i=1 si,0, ϕ0 :=

⊕N
i=1 ϕi,0

54 s1 :=
∑N
i=1 si,1, ϕ1 :=

⊕N
i=1 ϕi,1

55 σ0 := (com0, ϕ0, s0)
56 σ1 := (com1, ϕ1, s1)
57 σ := (σ0, σ1, B)
58 return σ

Figure 10: The multi-signature scheme MSt[LF,CMT] = (Setup,Gen,Sig,Ver) for a linear function family
LF = (LF.Gen,F) and a special commitment scheme CMT = (TGen,Com,TCom,TCol).
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D Scripts for Parameter Computation

Listing 1: Python Script to compute security levels of two-round multi-signatures for a fixed group sizes.
A discussion is given in Section 4.3.
#!/ usr/bin/env python

# ############### PURPOSE #OF#THIS# SCRIPT ##################
# For each scheme , we estimate the security level #
# that is guaranteed by the security proof , assuming #
# a certain number of hash queries and signing queries #
# and given the hardness of the underlying problem #
# #######################################################

import math
from tabulate import tabulate

# number of hash queries and signing queries
log_q_h = 30
log_q_s = 20

# assumed hardness of the underlying assumption
sec_level_assumption = 128

# ################ Define Schemes #######################################
# Note: we estimate an upper bound on epsilon , assuming unit time #
# One can see that this favors schemes with rewinding due to the sqrt#
# #####################################################################

musigtwo = {
"name": " Musig2 ",
"loss": lambda kappa : 0.25 * (kappa -2 -3* log_q_h )

}

hbms = {
"name": "HBMS",
"loss": lambda kappa : 0.25 * (kappa -2 -3* log_q_h - 4* log_q_s )

}

oursone = {
"name": "Ours 1",
"loss": lambda kappa : kappa - 2 - log_q_s

}

ourstwo = {
"name": "Ours 2",
"loss": lambda kappa : kappa - 2

}

schemes = [musigtwo ,hbms ,oursone , ourstwo ]

# #################### Main Part ########################

print ("Q_H = 2^" +str( log_q_h ))
print ("Q_S = 2^" +str( log_q_s ))
print (" Security Level of Assumption = " + str( sec_level_assumption ))
print ("")

# tabulate preparation
data = [[" Scheme ", " Security "]]

for s in schemes :
name = s["name"]
sec_level = int(s["loss"]( sec_level_assumption ))
data. append ([ name , sec_level ])

# print ( tabulate (data , headers =’ firstrow ’,tablefmt =’ fancy_grid ’))
print ( tabulate (data , headers =’firstrow ’))

Listing 2: Python Script to compute sizes of groups, keys, signatures, and communcation of two-round
multi-signatures, assuming groups to be instantiated such that the scheme has a fixed security leve. A
discussion is given in Section 4.3.
#!/ usr/bin/env python

# ############### PURPOSE #OF#THIS# SCRIPT ####################
# For each scheme , we estimate the required group size #
# to guarantee 128 bit security for the scheme using the #
# bound of the reduction . Then , we compute the signature #
# and communication size #
# #########################################################

import math
from tabulate import tabulate
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# number of hash queries and signing queries
log_q_h = 30
log_q_s = 20

# target hardness for the scheme
sec_level = 128

# ################ Define Schemes #######################################
# Note: we estimate an upper bound on epsilon , assuming unit time #
# One can see that this favors schemes with rewinding due to the sqrt#
# #####################################################################

musigtwo = {
"name": " Musig2 ",
" inv_loss ": lambda kappa : 4* kappa + 2+3* log_q_h ,
" pk_size ": lambda kappa : 1*(2* kappa +1) ,
" com_size ": lambda kappa : 5*(2* kappa +1) ,
" sig_size ": lambda kappa : 2*(2* kappa +1)

}

hbms = {
"name": "HBMS",
" inv_loss ": lambda kappa : 4* kappa +2+3* log_q_h +4* log_q_s ,
" pk_size ": lambda kappa : 1*(2* kappa +1) ,
" com_size ": lambda kappa : 3*(2* kappa +1) ,
" sig_size ": lambda kappa : 3*(2* kappa +1)

}

oursone = {
"name": "Ours 1",
" inv_loss ": lambda kappa : kappa + 2 + log_q_s ,
" pk_size ": lambda kappa : 2*(2* kappa +1) ,
" com_size ": lambda kappa : 4*(2* kappa +1) +128 ,
" sig_size ": lambda kappa : 7*(2* kappa +1)

}

ourstwo = {
"name": "Ours 2",
" inv_loss ": lambda kappa : kappa + 2,
" pk_size ": lambda kappa : 4*(2* kappa +1) ,
" com_size ": lambda kappa : 8*(2* kappa +1) +128+1 ,
" sig_size ": lambda kappa : 15*(2* kappa +1) # assuming number of signers <= 2* kappa +1

}

schemes = [musigtwo ,hbms ,oursone , ourstwo ]

# #################### Main Part ########################

print ("Q_H = 2^" +str( log_q_h ))
print ("Q_S = 2^" +str( log_q_s ))
print (" Target Security Level For Scheme = " + str( sec_level ))
print ("")

data = [[" Scheme ", " Group [bits]", "Pk [ Bytes ]", "Comm. [ Bytes ]", "Sig [ Bytes ]"]]

for s in schemes :
name = s["name"]
assumption_sec_level = s[" inv_loss "]( sec_level )
group_size = 2* assumption_sec_level +1
size_pk = s[" pk_size "]( sec_level )
size_com = s[" com_size "]( sec_level )
size_sig = s[" sig_size "]( sec_level )
data. append ([ name , group_size , size_pk /8, size_com /8, size_sig /8])

# print ( tabulate (data , headers =’ firstrow ’,tablefmt =’ fancy_grid ’))
print ( tabulate (data , headers =’firstrow ’))
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