
Hiding in Plain Sight: Non-profiling Deep
Learning-based Side-channel Analysis with

Plaintext/Ciphertext

Lichao Wu1, Guilherme Perin2, and Stjepan Picek3

1 Delft University of Technology, The Netherlands
2 Leiden University, The Netherlands

3 Radboud University, The Netherlands

Abstract. Deep learning-based profiling side-channel analysis is widely
adopted in academia and industry thanks to the ability to reveal secrets
protected with countermeasures. To leverage its capability, the adversary
needs to have access to a clone of an attack device to obtain the profiling
measurements. Moreover, the adversary needs to know secret informa-
tion to label these measurements. Non-profiling attacks avoid those con-
straints by not relying on secret information to label data but rather by
trying all key guesses and taking the most successful one. Deep learning
approaches also form the basis of several non-profiling attacks. Unfortu-
nately, such approaches suffer from high computational complexity and
low generality when applied in practice.
This paper proposes a novel non-profiling deep learning-based side-channel
analysis technique. Our approach relies on the fact that there is (com-
monly) a bijective relationship between known information, such as plain-
text and ciphertext, and secret information. We use this fact to label
the leakage measurement with the known information and then mount
attacks. Our results show that we reach at least 3× better attack perfor-
mance with negligible computational effort than existing non-profiling
methods. Moreover, our non-profiling approach rivals the performance
of state-of-the-art deep learning-based profiling attacks.

Keywords: Non-profiling side-channel analysis · Deep learning · Data
augmentation · Plaintext · Ciphertext.

1 Introduction

Side-channel analysis (SCA) on symmetric-key cryptography is commonly di-
vided into non-profiling and profiling attacks. Non-profiling attacks assume the
adversary has no access to a clone of a device to be attacked. The adversary
obtains measurements containing secret information processing and runs a sta-
tistical analysis to obtain the best guess. On the other hand, profiling attacks
assume the adversary has full control of a device clone to be attacked. With
that clone, the adversary characterizes the side-channel behavior and then uses
this knowledge to reveal secret information from the device under attack. Recent

2

years witnessed tremendous progress with profiling attacks where deep learning
plays the main role. Indeed, already the first paper using convolutional neural
networks for SCA in 2016 reported an “overwhelming advantage” [28]. Seven
years and more than 200 papers later, the advantage is even clearer as we can
break various protected targets with only a single measurement [31]. Unfortu-
nately, deep learning in the context of non-profiling SCA received much less
attention, and the current results are not impressive. In the rest of the paper,
for brevity, we will use the acronym DLSCA for deep learning-based profiling
SCA and NP-DLSCA for deep learning-based non-profiling SCA.

B. Timon proposed the first deep learning-based NP-DLSCA in 2019, called
Differential Deep Learning Algorithm (DDLA). While the author reported suc-
cessful attacks on several targets, there were also some considerable issues. First,
the attack has huge computational complexity, necessitating a neural network
for every possible key guess. Attacking even a single key byte of AES results in
256 neural networks. Second, similar to other partition-based attacks [20,5], the
leakage function should be carefully selected to break the bijectivity between
key guesses and labels, making the performance less attractive than DLSCA,
where the Identity leakage model represents a common choice. Third, the neu-
ral networks used in the attack still require tuning, making the computational
effort even more significant. Naturally, there has been some progress in the last
few years, but NP-DLSCAs commonly aim to fix the above-mentioned issues
with DDLA, with the reported results far from excellent (and not even close to
DLSCA).

The ability to run powerful side-channel analysis is extremely relevant as this
is the common way to assess the security of an implementation and gain certi-
fication, making it important for the industry. While we discussed that DLSCA
achieves excellent attack performance and is well-explored in academia, the in-
dustry perspective is somewhat different. There are still no official standards
on what kind of DLSCA to run, making non-profiling attacks the core tool. In-
deed, correlation power analysis is still the workhorse of practical side-channel
evaluations [14,9].

After the first work on NP-DLSCA, several more works explore that di-
rection.4 As already indicated, most of those works consider improving DDLA
concerning one or more issues discussed above. Furthermore, while the reported
results are commonly good, the resulting algorithms cannot be considered prac-
tical or approach the performance of DLSCA. More recently, in 2022, several
authors proposed radically different approaches for NP-DLSCA [13,17]. Those
approaches are based on multi-output classification and multi-output regression
(MOR). While further improving over the state-of-the-art DDLA variants, the
proposed approaches still have significant computational complexity, and more
importantly, the attack performance is not promising.

In this paper, we address the issues with the NP-DLSCA and propose a
new approach that outperforms previously discussed non-profiling attacks (deep

4 More precisely, we found 14 papers. While not negligible, it is far from more than
200 papers on DLSCA.

3

learning-based ones and “classical” correlation power analysis (CPA)). The core
of our approach lies in realizing it is possible to profile in non-profiling SCA by
removing the need for key-related intermediate data. Commonly, an adversary
only knows plaintexts or ciphertexts. Researchers tend to believe they are not
ideal profiling targets as 1) plaintexts/ciphertexts leakages do not exist in en-
cryption or decryption of critical assets, e.g., hardware root key. Otherwise, an
adversary could reveal these data by profiling them, and 2) knowing plaintexts/-
ciphertexts does not contribute to retrieving the secret key. However, one should
note that the secret key is commonly fixed in a non-profiling attack setting.
Therefore, using a proper labeling function, the plaintexts/ciphertexts and the
key-related intermediate data form a bijective relationship. By leveraging this
bijectivity, we can characterize the leakage measurements with plaintext/cipher-
text and then use the characterization results to retrieve the key. Our approach,
named Plaintext Labeling Deep Learning (PLDL), is easy to tune and train
and provides superior attack performance even compared to DLSCA. Our main
contributions are:
1. We propose a novel approach for NP-DLSCA. We showcase that PLDL works

well even if there is no specific tuning of the deep learning architecture.
2. We provide theoretical explanations of how our attack is built and why it

works.
3. We provide a detailed experimental analysis showing PLDL outperforming

three non-profiling SCAs: CPA, DDLA, and MOR. Moreover, we provide re-
sults comparing our results with DLSCA and exhibiting similar performance,
a result not previously reported in the literature.

4. We showcase a new variant of NP-DLSCA where we consider the portability
factor [4]. We train our deep learning model with one set of traces, showing
we can easily obtain the secret information for other traces coming from the
same distribution (device).

5. We provide an ablation study where we investigate several relevant factors
for our attack: data augmentation, the number of measurements, and the
number of training epochs. Our results suggest PLDL is robust to diverse
settings, and data augmentation is a crucial factor in mounting powerful
NP-DLSCA.

The source code is available in the anonymous Github https://anonymous.

4open.science/r/PLDL-91F3/.
The rest of this paper is organized as follows. In Section 2, we provide the

necessary background information. Section 3 discussed related works. Section 4
provides details about the threat model, our labeling procedure, and the attack
scheme. In Section 5, we provide experimental results. Finally, in Section 6, we
conclude the paper and discuss potential future research directions.

2 Preliminaries

This section introduces the notation we follow. Afterward, we provide relevant
information about side-channel analysis and machine learning.

https://anonymous.4open.science/r/PLDL-91F3/
https://anonymous.4open.science/r/PLDL-91F3/

4

2.1 Notation

We use calligraphic letters like X to denote sets and the corresponding upper-
case letters X to denote random variables and random vectors X over X . The
corresponding lower-case letters x and x denote realizations of X and X, respec-
tively. We use a sans serif font for functions (e.g., f).

The term k represents a key byte candidate that takes its value from the key
space K. k∗ is the correct key byte or the key byte assumed to be correct by the
adversary.5

A dataset T is a collection of traces ti, with each trace ti associated with a
label yi. A complete set of labels with c classes is denoted by Y = {y1, y2, · · · , yc}.
In a dataset T, each trace ti is associated with a plaintext/ciphertext di ∈ D
and a key ki, or ki,j and di,j when considering a partial key recovery on byte j.
In this work, we consider attacking only a single key byte and, thus, omit the
byte vector notation in equations. We will divide the dataset T into the profiling
set of size N and the attack set of size Q. θ denotes the vector of parameters to
be learned in a profiling model.

2.2 Side-channel Analysis

Based on the availability of a fully-controlled cloned device, side-channel analy-
sis (SCA) can be generally categorized into two types: profiling SCA and non-
profiling SCA. Non-profiling side-channel analysis leverages the correlation be-
tween some key-related intermediate values and leakage measurements. To per-
form such attacks, the adversary gathers a collection of traces throughout a series
of encryptions of different plaintexts. If the selected intermediate value is suffi-
ciently correlated with leakage measurements, he can use these measurements to
verify guesses for a small part of the key. In particular, for each possible value
of the relevant part of the key (or the key itself), the adversary will follow a
“divide-and-conquer” strategy:

1. Divide/Partition. The adversary divides the traces into groups according
to the intermediate value predicted by the current key guess.

2. Attack. If each group differs noticeably from the others (the definition of
’difference’ is based on the attack methods), the current key guess is likely
correct.

Non-profiling attacks assume less powerful adversaries with no access to a clone
of a device to be attacked, so they might require millions of measurements to
obtain secret information. Common examples of such attacks are simple power
analysis (SPA) and differential power analysis (DPA) [21].

Profiling side-channel attack maps a set of inputs (e.g., side-channel traces)
to a set of outputs (e.g., probability vector of key hypotheses). Profiling side-
channel attacks run in two phases:

5 Note that the subkey candidates can have any number of bits being guessed. While
here we assume the AES cipher scenario, the concept is algorithm-independent.

5

1. Profiling phase. The adversely builds a profiling model fMθ , parameterized
by a leakage model M and a set of learning parameters θ, to map the inputs
(side-channel measurements) to the outputs (classes as obtained by evalu-
ating the leakage model on the sensitive operation) on a set of N profiling
traces. We use the notions fMθ and fθ interchangeably.

2. Attack phase. The trained model processes each attack trace ti, outputting
a vector of probabilities pj , representing the probability of the associated
leakage value or label j. Based on this vector of probabilities, the adversary
decides on the best key candidate, as discussed in Section 2.6.

If the adversary builds a good model, only a few measurements from the device
under attack could suffice to break it. Examples of attacks are the template
attack [7], stochastic models [36], and machine learning-based attacks [18,28].

2.3 Machine Learning

The capability of a system to acquire its knowledge by extracting patterns from
raw data is known as machine learning [15]. Commonly, it is used to extract
knowledge from given data and learn how to perform complicated tasks that con-
ventional algorithms have difficulty handling, such as medical applications [34],
email spam filtering [11], speech recognition [29], and computer vision [37]. Ma-
chine learning algorithms can be divided into several categories based on their
learning style.

Supervised learning algorithms have access to labeled training data. Based
on the data and labeling, such algorithms train a model f to predict labels on
previously unseen data. Most of the supervised learning methods follow the
Empirical Risk Minimization (ERM) framework, where the model parameters θ
are obtained by solving the optimization problem:

argmin
θ

1

N

N∑
i

L(fθ(ti), yi), (1)

where L is the loss function. Supervised machine learning happens in two phases:
training and testing. Commonly considered problems are classification (where
the output is discrete) and regression (where the output is continuous).
Semi-supervised learning follows a similar paradigm as supervised learning,
but we assume that the number of labeled examples is limited.
Unsupervised learning works under a setup with no access to labeled data.
Then, a model is prepared by deducing structures in the input data. Common
problems include clustering and dimensionality reduction.

2.4 Machine Learning in the Context of SCA

There is an intuitive mapping between machine learning algorithms based on
the learning style and side-channel analysis. Still, some subtleties necessitate
the need for precise definitions, especially in the context of non-profiling attacks.

6

Note that the discussion given next considers SCA on symmetric key cryptogra-
phy only.6 Moreover, we limit our attention to SCA on block ciphers (AES) in
this work.

Definition 1. Profiling attacks rely on a labeling function that uses the secret
information from a device controlled by the adversary. The adversary leverages
the measurements from the controlled device to build a model and uses that model
to guess the key for measurements that are not labeled due to not knowing the
secret information.

Remark 1. Since there is a labeling function with secret information, supervised
machine learning belongs to the profiling attack setting. This category also in-
cludes semi-supervised learning, as there are no differences in how the attack
is done but only on the assumption of how many labeled measurements can be
acquired. Such attacks happen in two phases, also called two-stage attacks.

Definition 2. Non-profiling attacks rely on a labeling function without knowl-
edge of the secret information. The adversary uses the measurements from the
attacked device to obtain the secret information.

Remark 2. Since there is still a labeling function (while not using secret infor-
mation), supervised machine learning (as well as semi-supervised) also belongs
to the non-profiling attack setting.

Remark 3. If the labeling function is used on the measurements to be attacked,
we consider this a “standard” non-profiling attack. It is also possible to use the
labeling function on one set of data and attack another set of data, a setting
we call a portability non-profiling attack. Non-profiling attacks have one or two
phases.

Remark 4. Unsupervised machine learning can be used in profiling and non-
profiling attacks for feature engineering. Still, this does not change the nature
of the attacks discussed above, as the attack happens after feature engineering.

2.5 Non-profiling SCA Techniques

Correlation Power Analysis – CPA. Correlation power analysis is one of
the most classical non-profiling SCA techniques [5]. It is based on the Pearson
correlation that measures the linear relationships between the leakage features
and hypothetical labels. More specifically, we calculate the correlation coefficient
vector r by testing all key candidates in K with Equation 2.

rk =

∑N
i=1(ti

k − tk)(yki − yk)√∑N
i=1(ti

k − tk)2
∑N

i=1(y
k
i − yk)2

, k ∈ K, (2)

6 SCA on public-key cryptography also uses unsupervised learning.

7

where ti
k and yki are the leakage trace and the corresponding hypothetical label

based on k, respectively. The averaged leakage traces and labels are represented
by tk and yk. The most likely key k∗ can be obtained by:

k∗ = argmax r. (3)

Differential Deep Learning Analysis – DDLA. DDLA is a non-profiling
SCA method based on deep learning, thus NP-DLSCA [38]. Generally speaking,
one can consider DDLA as a deep learning version of CPA, as they both label the
leakage traces based on different key guesses, then “correlate” these hypothetical
labels with leakage traces. While the adversary uses Pearson correlation in CPA,
DDLA relies on the empirical risk measured by a loss function L.

To perform DDLA, the adversary first repeats Equation 1 for each key can-
didate k to estimate θk; yi in Equation 1 equals to yki , which is calculated with
the current key guess. Then, the most likely key (the key assumed to be correct)
k∗ can be distinguished by finding the one that generates the least empirical risk
measured by the negative log-likelihood (NLL) loss:

k∗ = argmin
k

− 1

N

N∑
i

log(fθ(ti)), k ∈ K, (4)

where fθ(ti) represents the conditional probability of yki given a input ti and
model parameters θk, denoted as p(yki |ti;θk).

Given the same training effort, only yk
∗

i can lead to fast convergence of the
empirical risk due to its correlation with leakage traces. Compared to CPA,
thanks to the employment of deep learning, DDLA can break the SCA coun-
termeasures such as Boolean masking. Meanwhile, it is more robust to noise
introduced by, for instance, time jitters and random delay interrupts.

Multi-output DLSCA – MOR. Do et al. developed a new method called
Multi-output regression DLSCA (MOR) [13] to reduce the computation efforts
of DDLA. Instead of training 256 models with each model trying to correctly
classify the hypothetical labels with probabilities, MOR employs the idea of
multi-output regression, which aims to regress the prediction outputs to the
actual label values. Specifically, a model is trained by mapping the input leakage
traces to the actual values of all possible yki . Like DDLA, the most likely key k∗

is revealed by finding the smallest loss measured by mean squared error (MSE).

k∗ = argmin
k

1

N

N∑
i

(yki − fkθ (ti))
2, k ∈ K, (5)

where fkθ (ti) denotes the prediction value of model to approximate yki . Compared
with DDLA, the computation effort is reduced as the adversary only trains one
model.

8

2.6 Attack Performance Evaluation

Since the goal of an adversary is to guess the correct key k∗, he calculates a
key guessing vector g, which is a vector representing the likelihood of each key
candidate k:

g = sort (L(k)) , k ∈ K, (6)

where L(k) varies for each attack method. As mentioned in Sections 2.2 and 2.5,
CPA relies on the correlation coefficient; MOR and DDLA use loss value; profil-
ing attack is based on probability. sort is the function sorting array elements in
order of decreasing values of their probabilities. The elements in g represent the
likelihood of the corresponding key candidate being the correct key candidate.
g0 and g|K|−1 are the first (best) and last (worst) element of g, respectively.

In a known-key setting, the key rank is the number of (most likely) keys an
adversary needs to brute force until recovering the correct key. Among various
key enumeration techniques [33], one of the most straightforward methods is
to try every key given its likelihood after generating a key guessing vector. In
this scenario, the key rank is the position of the correct key in g. If an attack
method reaches the key rank of zero (meaning that the correct key ranks first),
we calculate the required number of attack traces for this key rank.

3 Related Work

The SCA community has maintained research for more than 20 years in the con-
text of profiling attacks. The first work on profiling attacks is done by Chari et
al., where the authors proposed the template attack [8]. This attack is the most
powerful one from the information-theoretic perspective, but it relies on assump-
tions that are difficult to fulfill (unbounded number of profiling traces and noise
following the Gaussian distribution) [26]. Another “classic” example of profiling
attacks is the stochastic model [36]. Finally, a very active direction for profiling
attacks considers machine learning techniques. The first works used simpler tech-
niques like random forest [24] and support vector machines [18]. The results with
those techniques already indicated performance surpassing the template attack
or stochastic models. During the same period, there appeared examples of semi-
supervised machine learning-based [25,32] and unsupervised machine learning [2]
for SCA.

From 2016 and seminal work on machine learning-based SCA by Maghrebi et
al. [28], the attention of a large part of the SCA community has shifted toward
deep learning, especially multilayer perceptron (MLP) and convolutional neural
networks (CNNs). Indeed, while simpler machine learning techniques rivaled the
performance of the template attack, they still struggled in the presence of coun-
termeasures and required significant effort in the feature engineering part. With
deep learning, such issues became less important but at the cost of difficulties
tuning the deep learning algorithms. Early works by Cagli et al. [6], and Kim et
al. [19] demonstrated how convolutional neural networks can break protected

9

targets rather efficiently and how various regularization techniques further im-
prove the attack performance. Zaid et al. [42] and Wouters et al. [39] pro-
posed methodologies to design convolutional neural networks and demonstrated
previously unseen attack performance on datasets protected with masking and
hiding countermeasures. The attacks were further improved by Perin et al. by
demonstrating how ensembles of neural networks can achieve much better at-
tack performance than a single neural network [30]. Furthermore, the authors
showed that even a random search of neural network architectures could provide
excellent results. Wu et al. and Rijsdijk et al. approached the problem of neu-
ral network tuning from a different perspective and explored automated tuning
techniques. Rijsdijk et al. used reinforcement learning to find well-performing
and small neural network architectures [35]. While the authors reported excel-
lent attack performance, the computational complexity of their approach is high,
making it less usable in practice. To remedy this, Wu et al. used Bayesian opti-
mization to tune neural networks [41]. They managed to achieve similar results
but with much less computational effort.

More recently, Lu et al. showed how working with raw traces instead of
intervals of features provides even better attack performance [27]. Still, the cost
to work with such large measurements was to use big neural networks that are
not trivial to tune. Finally, Perin et al. used resampled raw traces and small
neural networks and still obtained outstanding attack performance [31]. The
authors reported multiple scenarios where only a single attack trace was needed
to break the target.

Already from this brief overview, it is clear that profiling attacks are actively
researched and achieve excellent performance for various targets. What about
NP-DLSCA?

B. Timon was the first to propose using deep learning in the non-profiling
SCA context [38]. The approach (DDLA) consisted of training as many neural
networks as there are key guesses and taking the one with the best result as the
correct key guess. While the approach works, it is computationally expensive
and requires the leakage function not to be bijective. Kuroda et al. conducted
a follow-up investigation on DDLA considering the structure of neural networks
and attack points, concluding it is better to use simple architectures and a wide
range of points of interest [22]. Alipour et al. explored the performance of DDLA
against a hiding-based AES countermeasure that utilizes correlated noise gen-
eration [1]. The authors concluded that the DDLA is less powerful than CPA
in such a setting. Kwon et al. proposed several improvements for DDLA to 1)
make the process faster and 2) change the used neural network architectures to
be more performant [23]. Do et al. analyzed DDLA in more detail to understand
how the technique behaves in more complex scenarios and how to improve the
performance with different data preparation techniques and neural network ar-
chitectures [12]. Hoang et al. introduced a non-profiling SCA technique using
multi-output classification that achieved up to 30 times faster and 20% bet-
ter results than DDLA [17]. Finally, Do et al. investigated multi-output clas-
sification (MOC) and multi-output regression (MOR) models for non-profiling

10

SCA [13]. The authors concluded that MOC reduces the execution time com-
pared to DDLA. Furthermore, they showed that MOR, while slower than MOC,
also works for the Identity leakage model. Both MOC and MOR outperformed
DDLA by at least 25%.

Non-profiling efforts mainly went toward improving the efficiency of B. Ti-
mon’s work. While the issues with the bijective leakage model and training com-
plexity are mostly resolved, the performance improvement over the original DDLA
approach is less evident, especially for complex datasets with countermeasures.

4 Plaintext/Ciphertext-based Non-profiling SCA

This section discussed the threat model we follow. Afterward, we provide in-
formation on plaintext/ciphertext labeling, plaintext distribution, our attack
scheme, and differences between it and profiling attacks.

4.1 Threat Model

Our threat model is the same as conventional non-profiling SCA. An adversary
has a device with a target cipher (white-box implementation) and a fixed but
unknown key. The adversary could send commands to perform encryption/de-
cryption operations. We assume the adversary can only observe the used plain-
text/ciphertext but cannot control their values. The adversary has no informa-
tion about the hardware implementation, the countermeasures settings, or the
source code. To launch attacks, the adversary measures multiple side-channel
leakages with a high-speed oscilloscope and then analyzes leakage traces with
plaintexts and/or ciphertexts.

4.2 From Intermediate data to Plaintext and Ciphertext

Recall that supervised learning learns a mapping f : X → Y. In profiling SCA,
the output variables are represented by sensitive operations, such as Sbox input
or output of AES cipher. We denote the model trained with intermediate data
as intermediate data-based model. If plaintexts or ciphertexts are also involved
in such operations, based on Equation 1, we can specify the learning objective
in Equation 7.

θ = argmin
θ

1

N

N∑
i

L(fθ(ti), l(ki, di)), (7)

where l denotes the labeling function that returns the leakage value according
to a known key candidate ki and a plaintext/ciphertext di. Then, the adver-
sary estimates the conditional probability p(l(k, di)|ti;θ) given a leakage trace
with the unknown key k. With the knowledge of di and l, the adversary se-
lects the label value with the highest probability, and the k value can be easily
retrieved [40,31,42].

11

However, in non-profiling SCA, since the adversary does not know the key
being used, he cannot use l(ki, di) to estimate θ. Fortunately, the key is fixed
(we denote it as k) for all leakage traces following our threat model. Then, the
label l(k, di) and di would satisfy:

di 7−→ l(k, di). (8)

The bijectivity of the label l(k, di) and di depends on the selection of l. For
instance, Sbox output is a common label function (and intermediate data) for
AES attacks. In this case, di and Sbox(di⊕ ki) are bijective given a fixed key ki.
If Equation 8 holds, di and l(k, di) can be mapped to each other with mapping
functions map parameterized by k.

l(k, di) = mapk(di), (9)

Since the adversary targets a known cipher, the mapping functions are known
or can be easily calculated by knowing the correct key k∗. Then, we can rewrite
Equation 7 as:

θ = argmin
θ

1

N

N∑
i

L(fθ(ti),mapk∗(di)), (10)

where k∗ denotes the (unknown) correct key. Indeed, due to the bijectivity be-
tween labels l(k, di) and di, the estimation of p(l(k, di)|ti;θ) is equivalent to an
estimation of p(di|ti;θ). From the perspective of model training, although mapk∗

is unknown to the adversary, it is a deterministic function and thus does not in-
fluence the optimization of θ. Therefore, we can remove the mapping function
in Equation 10 and train a model with dataset T labeled with plaintexts/cipher-
texts only:

θd = argmin
θ

1

N

N∑
i

L(fθ(ti), di). (11)

We denote the model trained with plaintexts/ciphertexts labels as plaintext
(or ciphertext) -based model.7 Since there is no leakage on di on leakage traces,
both fθd

and fθ should focus on the same features that correspond to the pro-
cessing of l(k, di). If fθd

and fθ generalize equally well on these features, they
can be converted to each other with a similar mapping function map′k where k
equals to k∗:

fθd
(·) = map′k(fθ(·)), (12)

where map′k converts the probability of the input l(k, di) to its corresponding
output di. If the adversary correctly guesses the k as k∗, map′k∗ can be easily
calculated with the knowledge of cipher implementation.

Equation 12 represents the core idea of the proposed method, which is also
visualized in Figure 1. The goal of an adversary is to find a map′k that maps fθ to
fθd

in the best way. If fθ is known, k∗ can be brute-forced by trying all possible

7 For simplicity, we denote it as plaintext-based model.

12

map′k and finding the best match to fθd
. Although the adversary cannot learn

fθ in a non-profiling setting due to the lack of intermediate data knowledge, in
the next subsection, we propose an estimation of map′k(fθ(·)) by calculating the
plaintext or ciphertext distribution for all possible key candidates. Knowing this,
an adversary can find the best key by brute-forcing the key-related distributions.

Intermediate data-based model

Profiling model f𝜃𝜃

Leakage traces
T

Sensitive data
l(𝑘𝑘∗,𝒅𝒅)

Bijective

Plaintext-based model

Profiling model f𝜃𝜃𝑑𝑑

Plaintext
𝒅𝒅

Leakage traces
T

map𝑘𝑘∗
′

map𝑘𝑘∗
′ −1

Label Label

Fig. 1: The relationship between intermediate data-based model and plaintext-
based model.

4.3 Plaintext/Ciphertext Distribution

In profiling SCA, as introduced in Section 2.2, a profiling model fθ represents
the relation between the input leakage measurement and output intermediate
data processed by a leakage model M. When inputting an attack trace to fθ, it
outputs a probability vector for all possible intermediate data:

Pri(y) = fθ(ti), (13)

where y = M(l(k, di)), k ∈ K. An adversary aims for the highest probability of the
correct intermediate data y∗, while the rest of the values’ probabilities and dis-
tributions are commonly ignored (e.g., NLL loss). However, we argue that these
probabilities are far from arbitrary. If a profiling model is generalized well on the
leakage traces, the probability of the incorrect value is closely correlated with
y∗. To explain it, let us assume a dataset where the leakage features follow the
Gaussian distribution with the mean value for each class linearly correlated with
its actual labels. Then, the conditional probability of a label yj being selected
given a correct label y∗ can be represented by a probability density function.

p(yi|y∗) =
1

σ
√
2π

e−
1
2 (

a∥y∗−yi∥
σ2), yi ∈ Y, (14)

where ∥·∥ represents the squared Euclidean distance between two variables, we
denote it as label distance; a denotes the linear correlation coefficient; and σ
denotes the variance of the leakage features corresponding to y∗. Since yi is

13

parameterized by di and k, Equation 14 can be easily extended to calculate
p(di|d∗) given a correct key k∗:

p(di|d∗) =
1

σ
√
2π

e−
1
2 (

a∥M(l(k∗,d∗))−M(l(k∗,di))∥
σ2), di ∈ D. (15)

In a non-profiling context, an adversary cannot estimate σ as he does not
know k. Here, we assume it is a constant. Now, since the label distance is the
only variable of p(di|d∗), we simplify Equation 15 to Equation 16 by only keeping
the label distance and the negative sign:

PDM
k (d

∗) = −∥M(l(k, d∗))−M(l(k, di))∥ , di ∈ D, k ∈ K. (16)

We denote the output vector of Equation 16 as plaintext distribution (could
be also called ciphertext distribution), representing the likelihood of di ∈ D
being selected given a d∗. Note that when it is clear from the context, we use
the notations PDM

k (·) and PDk interchangeably.

4.4 Attack Scheme

Section 4.3 introduces plaintext distribution PDk, an approximation of the like-
lihood of each value being selected as the correct plaintext/ciphertext. Now,
if the adversary builds a profiling model fθd

by fitting the leakage traces with
plaintexts/ciphertexts, the output probability vector Pr(di) and PDk with k
equals to k∗ would have a higher correlation value compared with other key
candidates. Following this, to retrieve the correct key k∗, the adversary would
calculate PDk with all possible keys; the one leading to the highest correlation
with the prediction vector would be the most likely key (and assumed to be the
correct key):

k∗ = argmax
k

corr(PDM
k (d), fθd

(T)), k ∈ K, (17)

where corr represents the Spearman correlation 8 [16] that evaluates the mono-
tonic relationship with two inputs. Since the adversary knows d, the brute force
effort equals the key space size. For instance, if attacking a subkey (a single
byte), the adversary must calculate PDk 256 times to find the correct key. The
entire process is illustrated in Figure 2.

Equation 17 represents the basis of the proposed attack method. However,
several practical considerations must be made when performing actual attacks.
First, similar to conventional DLSCA, the pre-processing of leakage measure-
ments is mandatory to have an efficient attack. Besides normalizing the data, we
notice that data augmentation is the key part that makes the proposed attack
successful. Indeed, data augmentation, as a regularization technique, can pre-
vent the profiling model from focusing on specific features and better focus on

8 The Spearman correlation offers more numerical stability than the Pearson correla-
tion, as it has high tolerance when the labels and leakage features are not linearly
correlated.

14

1. Train with plaintexts

Profiling model f𝜃𝜃𝑑𝑑

Plaintext
𝒅𝒅

Leakage traces
T

Label

Leakage traces
T arg max corr

PD𝑘𝑘=1, … PD𝑘𝑘=256

2. Attack with PD𝑘𝑘

Fig. 2: Attack scheme of the Plaintext Labeling Deep Learning (PLDL).

global features. In the SCA context, since the data leakages only exist in a few
features, such techniques can prevent the model from overfitting on non-relevant
features. An ablation study on data augmentation is presented in Section 5.4. An
alternative could be to measure and train with more leakage traces. In the same
section, we tune the number of training traces and observe its effect on the attack
performance. Second, although our attack method uses the plaintext/ciphertext
as labels during the training phase, in the key recovery phase, the leakage model
is involved in labeling the intermediate data and calculating PDk (Equation 16).
Like other SCA attacks, a precise estimation of the leakage model could signif-
icantly increase the attack performance. In Section 5, multiple leakage modes
are tested, and one can observe significant differences in attack performance.
Considering the above discussions, we formulate the proposed attack scheme in
Algorithm 1.

Algorithm 1 Plaintext/Ciphertext-based NP-DLSCA

Input: traces T, plaintext/ciphertext bytes d, leakage model M, augmentation level
γ

Output: most-likely key k∗

1: fθd = train(T, d, γ)
2: Pr = fθd(T)
3: for k in K do
4: corrk = corr(Pr,PDM

k (d))
5: end for
6: k∗ = argmax corr

4.5 Profiling Attacks vs. Our Method

From Algorithm 1, our attack method follows a similar strategy as the profiling
attack, which first trains a model by mapping the input leakage measurements
with output labels, then performs key recovery based on the output probability
and key guesses. Based on Equation 12, to estimate fθ, we introduce label dis-
tance to approximate the likelihood of each label being selected as the correct

15

label, then extend it to the plaintext/ciphertext distribution PDk to estimate
map′k(fθ). Finally, given a correct key k∗, the following approximation is satis-
fied:

PDM
k∗(d) ≈ fθd

(T). (18)

However, PDk(d) is not perfect from the practical point of view: the leakage
features do not necessarily follow a linear relationship with the intermediate
label. We introduce a function C that evaluates the capability of the model
mapping its input leakage traces to output labels:

C(PDM
k∗(d)) ≲ C(fθd

(T)). (19)

Then, extending to the profiling attack, we have:

C(PDM
k∗(d)) ≲ C(fθd

(T)) = C(fθ(T)). (20)

Therefore, when evaluating the key recovery efficiency with a function E, the
following inequality is satisfied:

E(corr(PDM
k (d), fθd

(T))) ≤ E(corr(map′k∗(fθ(T), fθd
(T))) = E(fθ(T)). (21)

Equation 21 represents the relationship between our method and profiling at-
tacks. Assuming fθd

and fθ generalize equally well to the leakage measurements,
the attack performance of profiling attack (E(fθ(T))) is the upper bond of our
attack method (E(corr(PDM

k (d), fθd
(T)))). Indeed, fθ maps the leakage traces

directly to the intermediate data. Although our method learns from plaintexts/-
ciphertexts that are bijective to the intermediate data, it requires an extra step
to correlate with imperfect PDk to find out the real mapping function map′k∗ ,
thus leading to a degraded attack performance. In Section 5.3, we empirically
validate this assumption.

5 Experimental Results

In this section, we benchmark the attack performance of different attack meth-
ods. Besides comparing with various non-profiling SCA methods, including cor-
relation power analysis (CPA) [5], Multi-output DLSCA (MOR) [13], and Differ-
ential Deep Learning Analysis (DDLA) [38], we also benchmark with DLSCA to
demonstrate the attack capability of PLDL. Since non-profiling and profiling at-
tacks follow different attack strategies, the benchmarks are performed with two
different settings. When performing hyperparameter evaluation in Section 5.4,
we consider the first setting.

Benchmark with non-profiling attacks. The same leakage traces are used
for training/partitioning and attack. The number of traces for each dataset
is detailed in Table 2.

Benchmark with profiling attack. A set of leakage traces is used for model
training, and the numbers follow Table 2. Then, a new set of traces is used
for the key recovery; the corresponding data sizes are detailed in Table 1.

16

Table 1: The number of attack traces for the profiling setting.

ASCAD F ASCAD R CHES CTF AES RD AES HD

Trace num. 30 000 30 000 5 000 20 000 20 000

The deep learning model and hyperparameters are the same for all attack
methods. 9 Consequently, we employ a convolution neural network (CNN) from [31]
due to its excellent performance in various attack settings.10 The network con-
sists of a convolution block with a convolution layer (kernel number: 4; size: 40;
stride: 20), an average pooling layer (size: 2; stride: 2), and a batch normaliza-
tion layer, followed by two dense layers with 400 neurons and an output layer
with 256 neurons. Selu is used for the layer activation except for the last layer
that uses Softmax; the batch size is 800. Regarding training epochs, the DL
model for DDLA has trained for 50 epochs for each key guess [38] 11; the rest
of the models are trained for 250 epochs. An evaluation of training epochs can
be found in Section 5.4. Data augmentation is applied to all DL-based attack
methods for a fair comparison, which is realized by randomly shifting the leakage
measurement within a pre-defined augmentation level equal to 10. A study of
data augmentation is given in Section 5.4.

The rest of the attack settings follow Table 2. For DDLA, following the
original paper, the selected leakage models are HW and LSB; for the rest, we
consider HW and ID leakage models in our benchmarks. Note that AES HD
leaks in the Hamming distance on the last round of AES. Thus, we employ the
Hamming distance labeling for all attack methods except ours, as our method
only requires ciphertext information. As mentioned in Section 2.6, key rank is
used to assess the attack performance of each method. When an attack cannot
break the target with the given number of attack traces, its performance is
measured by its final key rank value (such as KR10, meaning the key rank of
the correct key is 10). Otherwise, it is evaluated by calculating the required
number of attack traces to reach the key rank of zero. To reduce the effect of
random factors (e.g., random weight initialization) on the attack performance,
each attack method (except CPA) is executed ten times independently. The

9 We acknowledge that the customization of deep learning models for each dataset
and method would potentially lead to better attack performance. However, it also
introduces more variables, such as model complexity and training effort, making
our benchmark extremely complex. Additionally, benchmarking with customized
DL could introduce more uncertainty, as one cannot guarantee that it is optimal for
a specific setting.

10 The deep learning models were implemented in Python version 3.6, using Tensor-
Flow library version 2.6.0. The model training algorithms were run on an Nvidia
GTX 1080TI graphics processing unit (GPU), managed by Slurm workload man-
ager version 19.05.4.

11 We have also tried with 100 epochs but notice that it performs worse than the model
trained with 50 epochs.

17

attack results are averaged to represent the general attack performance of an
attack method.

5.1 Datasets

Our experiments consider the following five datasets. Four are software targets,
and one is a hardware target. All software targets are protected - three with
masking and one with a hiding countermeasure.

ASCAD F. The ASCAD datasets contain the measurements from an 8-bit
AVR microcontroller running a masked AES-128 implementation [3].

ASCAD R. This dataset uses the same measurement setup as ASCAD F [3].
The difference is that ASCAD R also provides traces with random keys. We
only use the leakage traces with a fixed key (thus, the dataset part commonly
used for testing with DLSCA).

AES RD. For this dataset, the target smartcard is an 8-bit Atmel AVR micro-
controller. The protection uses random delay countermeasures described by
Coron and Kizhvatov [10]. Adding random delays to the normal operation
of a cryptographic algorithm affects the misalignment of important features,
making the attack more difficult to conduct.

CHES CTF 12. This dataset refers to the CHES Capture-the-flag (CTF) AES-
128 measurements released in 2018 for the Conference on Cryptographic
Hardware and Embedded Systems (CHES). The traces consist of masked
AES-128 encryption running on a 32-bit STM microcontroller.

AES HD 13. This dataset is first introduced in [19], targeting an unprotected
hardware implementation of AES-128 written in VHDL in a round-based
architecture. Side-channel traces were measured using a high sensitivity near-
field EM probe, placed over a decoupling capacitor on the power line on
Xilinx Virtex-5 FPGA of a SASEBO GII evaluation board.

The detailed attack settings of these datasets are presented in Table 2. The
last two columns list the intermediate data considered in the literature and our
work, accompanied by the corresponding maximum Pearson correlation values
(calculated by correlating labels with each leakage feature for all traces, then
selecting the maximum correlation coefficient). The considered datasets contain
almost no leakages on the targeted intermediate data. Note that for the AES HD
dataset, we attack the last round of AES with the knowledge of ciphertexts c;
for the rest, we attack the first round of AES with plaintexts p.

5.2 Leakage Models

The leakage model simulates the hypothetical power consumption to process
one byte (as we attack the AES cipher that is byte-oriented). Different leakage
models can be adopted in practice, and their results may vary depending on
the target device. In total, we consider four leakage models in this work. One
simple option is to consider the most significant bit (MSB) or the least significant

18

Table 2: Summary of the tested datasets.

Dataset Traces/Samples Protection Literature/Corr. This work/Corr.

ASCAD F 30 000/1 400 Boolean mask Sbox(p2 ⊕ k2)/0.018 p2/0.023

ASCAD R 30 000/5 000 Boolean mask Sbox(p2 ⊕ k2)/0.026 p2/0.035

CHES CTF 40 000/2 200 Boolean mask Sbox(p0 ⊕ k0)/0.013 p0/0.033

AES RD 30 000/3 500 Random delay Sbox(p0 ⊕ k0)/0.019 p0/0.016

AES HD 30 000/1 250 None Sbox−1(c7 ⊕ k7)⊕ c11/0.069 c7/0.018

bit (LSB) of a byte (we use LSB in this work). This leakage model results in
two classes. For the HW leakage model, the adversary assumes the leakage is
proportional to the sensitive variable’s Hamming weight. This leakage model
results in nine classes for a single intermediate byte for the AES cipher. Another
type of leakage model results from the XOR between two values. Commonly, the
Hamming Weight of this XOR is calculated and is referred to as the Hamming
Distance. A typical approach for AES is to compute the XOR (or HW of the
XOR, i.e., HD) between the final output and the S-box input of the last round.
Like the HW leakage model, the HD leakage model results in nine classes or a
single intermediate byte for the AES cipher. For the Identity (ID) leakage model,
an adversary considers the leakage as an intermediate cipher value. This leakage
model results in 256 classes for a single intermediate byte for the AES cipher.

5.3 Performance Evaluation

Attack Performance. In this section, we evaluate the attack performance of
different attack methods. The benchmark results are shown in Table 3 and Ta-
ble 4. Results for different leakage models (HW/HD and ID/LSB) are separated
by ’/’. As mentioned, our method has been benchmarked with non-profiling
and profiling attacks. The best results obtained in the non-profiling settings are
marked in bold. For profiling settings, they are marked in bold italic.

Table 3: Performance benchmark with non-profiling attacks.

Dataset CPA MOR DDLA PLDL

ASCAD F KR161/KR47 1 957/638 KR7/309 8/111

ASCAD R KR64/KR8 KR28/KR9 27 266/KR48 20/19

CHES CTF KR139/KR220 KR6/KR31 KR54/KR85 6 121/KR2

AES RD KR2/KR31 KR33/3 112 2 541/KR2 1/57

AES HD KR19/KR145 5 593/KR10 KR26/KR20 60/KR6

19

PLDL performs significantly better in all test cases when benchmarking with
non-profiling attack methods, as shown in Table 3. For instance, when attacking
the AES RD dataset with the HW leakage model, PLDL only requires a single
trace to reveal the key, while the second best, DDLA, requires more than 2 500
traces. Although DDLA may perform better by optimizing model hyperparam-
eters and training settings, it always suffers from significant training effort (10
hours per leakage model). MOR is considered an improved version of DDLA,
as an adversary only needs to train one model instead of 256 models for a sub-
key byte. However, from the attack performance perspective, MOR improves
marginally compared to DDLA. Indeed, both methods rely on the model to dif-
ferentiate the correct label guess from the wrong guesses. Although MOR only
requires training a single model, the learning objective of the model could be
rather vague, as only one of the 256 outputs corresponds to the predicted label
associated with the correct key k∗. When training, the model would try to fit on
each label; the 255 wrong labels would negatively contribute to the model’s gen-
eralization to the dataset, thus degrading the attack performance. Finally, CPA
failed to reveal the correct key in all settings. We have also tested second-order
CPA with feature recombination on the masked datasets. Although it leads to
a faster convergence of key rank, the number of leakage traces used for bench-
marking is insufficient to reveal the correct key. The evolution of the key rank
for each method is shown in Figure 3 and Figure 4. PLDL leads to the fastest
key rank convergence, indicating its strong attack capability in various attack
settings.

Table 4: Performance benchmark with DLSCA.

Dataset DLSCA PLDL

ASCAD F 464/147 8/44

ASCAD R 458/62 30/214

CHES CTF 1 943/KR25 230/KR90

AES RD 530/163 22/136

AES HD 7077/KR21 3 173/KR4

When benchmarking with profiling attacks, as shown in Table 4, we see out-
standing performances for both PLDL and DLSCA. Surprisingly, our attack
outperforms the profiling attack in seven test cases. To our knowledge, this is
the first time a non-profiling SCA method outperforms the profiling attack. In-
deed, as discussed in subsection 4.5, profiling attack is theoretically the upper
bound of our methods. From a practical point of view, if fθd

generalized better
than fθ (C(fθd

) > C(fθ)) due to, for instance, traces pre-preprocessing and hy-
perparameter tuning, it is not a surprise that PLDL outperforms the profiling

20

(a) ASCAD F. (b) ASCAD R.

(c) CHES CTF. (d) AES RD.

(e) AES HD.

Fig. 3: Non-profiling attack benchmark with HW leakage model (ASCAD F, AS-
CAD R, CHES CTF, and AES RD) and HD leakage model (AES HD).

attack. Still, with sufficient training traces and tuning, we expect better attack
performance for DLSCA than PLDL.

Robustness to Noise. Two desynchronization levels, 50 and 100, are consid-
ered to simulate the time-jitter effect. CPA is removed from the benchmark due
to its poor attack performance in the first set of experiments. The results are

21

(a) ASCAD F. (b) ASCAD R.

(c) CHES CTF. (d) AES RD.

(e) AES HD.

Fig. 4: Non-profiling attack benchmark with the ID leakage model. Note that for
DDLA, since the ID leakage model cannot work, we use the LSB leakage model.

shown in Table 5 and Table 6. Again, the best results obtained for the non-
profiling and profiling settings are marked in bold and bold italic, respectively.

PLDL performs significantly better than its counterparts in non-profiling set-
tings. It performs the best in nine of ten attack scenarios; for the cases where
the key rank reaches zero (the correct key ranks the first), it performs at least
6× better than other methods. MOR outperforms our method in one test case.
Compared with its attack performance with no noise Table 3, MOR is slightly

22

Table 5: Performance benchmark with desynchronization 50.

Dataset MOR DDLA PLDL DLSCA PLDL

ASCAD F 2 910/KR34 KR152/KR118 10/112 985/280 14/531

ASCAD R KR12/KR62 KR69/KR156 54/17 KR9/223 22/942

CHES CTF KR5/KR120 KR124/KR123 KR4/KR116 KR41/KR56 KR14/KR135

AES RD KR21/3 200 2 517/KR7 1/555 429/97 21/95

AES HD 6098/KR8 KR94/KR116 951/KR14 14 127/KR27 KR2/KR13

influenced by added noise when attacking AES HD, while PLDL experiences a
considerable performance reduction. Indeed, when targeting the ciphertext with
PLDL, the deep learning model has to find the leakages related to the Sbox−1

output. However, this data has limited leakage on this intermediate data, thus
increasing the learning difficulties for PLDL. MOR, on the other hand, utilizes
the Hamming distance labeling directly. The stronger leakage could lead to ro-
bust performance. Moving to the profiling setting, DLSCA reaches a similar
attack performance compared with PLDL: out of ten test cases, DLSCA is bet-
ter in four cases, and PLDL is better in the rest of the cases. Compared with
the results in Table 3, DLSCA performs better in more test cases. Indeed, the
introduction of time randomness reduces both C(fθd

) and C(fθ), which could
potentially reduce the capability difference between these two models. Addition-
ally, one should note that PLDL is based on the correlation between PDk and
fθd

. A reduced C(fθd
) would require more leakage traces to compensate for the

performance loss of PLDL.

Similarly, PLDL performs the best in most scenarios in non-profiling settings
when increasing the desynchronization level from 50 to 100. As shown in Table 6,
with a single deep learning model, PLDL reaches a key rank of zero in seven out of
ten cases, and the attack performance is superior compared to its counterparts.
Compared with DLSCA, there are more cases (five) where DLSCA performs
better, which confirms our previous assumption.

Table 6: Performance benchmark with desynchronization 100.

Dataset MOR DDLA PLDL DLSCA PLDL

ASCAD F KR5/KR34 KR153/KR149 8/3 373 2 139/1 695 17/1 408

ASCAD R KR12/KR62 KR68/KR130 154/867 KR24/1 055 30/2 245

CHES CTF KR13/KR137 KR125/173 KR12/KR99 KR149/KR59 KR9/KR91

AES RD KR54/4 521 4876/KR4 1/561 732/198 22/KR2

AES HD 6077/KR9 KR131/KR142 166/KR10 10 691/KR8 19 146/KR16

23

5.4 Hyperparameter Evaluation

In this section, we explore the influence of various hyperparameters on the PLDL
attack performance.

Data Augmentation. As mentioned in Section 4.4, data augmentation is nec-
essary for PLDL. Next, we perform an ablation study on data augmentation and
investigate the augmentation level’s influence on the attack performance. The
results are shown in Table 7.

Table 7: Ablation study on data augmentation (DA).

Dataset DA-0 DA-5 DA-10 DA-20

ASCAD F KR10/KR46 8/118 8/111 8/429

ASCAD R KR64/KR143 19/13 20/19 2/12

CHES CTF 8 573/KR74 8 506/KR10 6 121/KR2 11 742/KR53

AES RD KR50/KR131 1/22 085 1/57 1/54

AES HD KR35/KR66 11 916/KR15 60/KR6 256/KR8

When setting the data augmentation level to zero, PLDL could only recover
the key in one test case. Then, one can observe a performance boost when
introducing random shifts to datasets. The ranges between DA-5 and DA-10 are
optimal for most test cases. When the augmentation level reaches 20, the attack
performance worsens in several settings. We can conclude the necessity of data
augmentation for PLDL. Still, a too-large data augmentation level would reduce
the attack performance, as it would increase the difficulties of the deep learning
model fitting the leakage, necessitating longer training and larger models.

Dataset Size. DL-based methods are known to be data-hungry. In the SCA
context, more leakage traces would be helpful to compensate for noise and reveal
the underlining distribution of leakage features. When looking at Table 8, as
expected, more training traces lead to better attack performance for PLDL.

One could observe that CHES CTF and AES HD require more traces than
the other datasets. For AES HD, as discussed before, the possible cause would
be the limited leakage on the Sbox output. On the other hand, the performance
for CHES CTF could be explained by its leakage type. According to the litera-
ture [41,35], the CHES CTF dataset mainly contains HW leakages, while when
attacking with the ID leakage model, it is less likely to reveal the key with
the same number of attack traces. Since the proposed method is trained with
plaintext/ciphertext values, the method’s efficiency intrinsically relies on the in-
termediate data’s ID leakages (HW of the intermediate data is not bijective to

24

Table 8: Study on the influence of the data size.

Dataset 5 000 10 000 20 000 30 000

ASCAD F KR3/KR46 202/KR37 7/848 8/111

ASCAD R KR4/KR40 56/KR2 45/60 20/19

CHES CTF KR212/KR187 KR72/KR121 KR36/KR114 KR10/KR52

AES RD 707/KR50 1/KR14 1/2 332 1/57

AES HD KR18/KR48 KR11/KR25 4 709/KR4 60/KR6

plaintexts/ciphertext). When a dataset mainly has HW leakages, the model fθd

would struggle in mapping the plaintext to the (HW) leakage features, finally
leading to a reduced attack performance.

Training Epochs. Unlike data size, more training epoch is unnecessary to
improve the mapping capability of a deep learning model from input to output.
In contrast, it could reduce the generalization ability of the deep learning model
on the unseen dataset, referred to as overfitting. Fortunately, in the non-profiling
context, the concerns about deep learning generalization and overfitting are less
important, as an adversary would use all leakage traces to launch attacks. Table 9
shows the performance variation of PLDL when training with different numbers
of epochs. Training with 50 epochs is insufficient for most of the settings; with
extra 100 epochs of training (150), eight out of ten attacks lead to successful key
recovery. For the CHES CTF dataset, one could observe a steady decrease in
key rank value, indicating that the deep learning model is gradually transferring
the HW-related feature and learning to connect with plaintext labels. Finally,
this observation confirms our assumption made in Section 5.4 about CHES CTF
performance and the limitation of PLDL.

Table 9: Study on the influence of the training epoch.

Dataset 50 100 150 200

ASCAD F 34/451 8/237 8/112 8/81

ASCAD R KR3/KR6 54/19 18/13 19/14

CHES CTF KR22/KR162 KR9/KR160 28 065/KR73 6 855/KR17

AES RD 1/KR36 1/KR2 1/54 1/64

AES HD 77/KR6 74/KR6 19/KR5 58/KR4

25

6 Conclusions and Future Work

This paper introduces a novel plaintext/ciphertext-based non-profiling SCAmethod
called PLDL leveraging the bijectivity between plaintext/ciphertext and key-
related intermediate data. We define the plaintext distribution (PDk) to approx-
imate the likelihood of each plaintext being selected as the correct plaintext given
a key guess k and then use this approximation to correlate with the prediction
output of a profiling model trained with plaintext/ciphertext to retrieve the cor-
rect key. PLDL shows outstanding performance compared with state-of-the-art
non-profiling SCA methods, as depicted in Table 10. Moreover, the attack per-
formance of PLDL is comparable with DLSCA under a more restricted attack
assumption (the availability of a fully controlled cloned device).

Table 10: Comparison of non-profiling attacks. Since each attack scenario takes
a different amount of time, the time complexity is measured by averaging the
time consumption with all (ten) attack settings.

Method Time complexity Leakage model limitation Attack performance

CPA low (1 min) no low to moderate

DDLA high (246 min) yes (non-bijective only) moderate

MOR moderate (10 min) no moderate

This work moderate (6 min) no high

Several directions can be investigated following this work. First, knowing
that PDk is imperfect, one could investigate a better approximation of fθd

with,
for instance, stochastic models. Second, since the proposed method relies on the
intermediate data’s ID leakages, it would be interesting to investigate an ap-
proach that enables this method on datasets that only leaks HW values. Finally,
an interesting option to further improve attack performance could be to make
ensembles of neural networks to be used in NP-DLSCA.

References

1. Alipour, A., Papadimitriou, A., Beroulle, V., Aerabi, E., Hély, D.: On the perfor-
mance of non-profiled differential deep learning attacks against an aes encryption
algorithm protected using a correlated noise generation based hiding countermea-
sure. In: Proceedings of the 23rd Conference on Design, Automation and Test in
Europe. p. 614–617. DATE ’20, EDA Consortium, San Jose, CA, USA (2020)

2. Archambeau, C., Peeters, E., Standaert, F.X., Quisquater, J.J.: Template attacks
in principal subspaces. In: Lecture Notes in Computer Science, pp. 1–14. Springer
Berlin Heidelberg (2006). https://doi.org/10.1007/11894063 1, https://doi.org/
10.1007/11894063_1

https://doi.org/10.1007/11894063_1
https://doi.org/10.1007/11894063_1
https://doi.org/10.1007/11894063_1

26

3. Benadjila, R., Prouff, E., Strullu, R., Cagli, E., Dumas, C.: Deep learning for
side-channel analysis and introduction to ASCAD database. J. Cryptographic
Engineering 10(2), 163–188 (2020). https://doi.org/10.1007/s13389-019-00220-8,
https://doi.org/10.1007/s13389-019-00220-8

4. Bhasin, S., Chattopadhyay, A., Heuser, A., Jap, D., Picek, S., Shrivastwa,
R.R.: Mind the portability: A warriors guide through realistic profiled side-
channel analysis. In: 27th Annual Network and Distributed System Security
Symposium, NDSS 2020, San Diego, California, USA, February 23-26, 2020.
The Internet Society (2020), https://www.ndss-symposium.org/ndss-paper/

mind-the-portability-a-warriors-guide-through-realistic-profiled-side-channel-analysis/

5. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: International Workshop on Cryptographic Hardware and Embedded Systems.
pp. 16–29. Springer (2004)

6. Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data aug-
mentation against jitter-based countermeasures. In: Fischer, W., Homma, N.
(eds.) Cryptographic Hardware and Embedded Systems – CHES 2017. pp. 45–68.
Springer International Publishing, Cham (2017)

7. Chari, S., Rao, J.R., Rohatgi, P.: Template Attacks. In: CHES. LNCS, vol. 2523,
pp. 13–28. Springer (August 2002), San Francisco Bay (Redwood City), USA

8. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Jr., B.S.K., Koç, Ç.K.,
Paar, C. (eds.) Cryptographic Hardware and Embedded Systems - CHES 2002,
4th International Workshop, Redwood Shores, CA, USA, August 13-15, 2002,
Revised Papers. Lecture Notes in Computer Science, vol. 2523, pp. 13–28.
Springer (2002). https://doi.org/10.1007/3-540-36400-5 3, https://doi.org/10.
1007/3-540-36400-5_3

9. CommonCriteria: Common criteria v3.1 (2017).
https://www.commoncriteriaportal.org/cc/index.cfm?.

10. Coron, J.S., Kizhvatov, I.: An efficient method for random delay generation in
embedded software. In: Cryptographic Hardware and Embedded Systems-CHES
2009: 11th International Workshop Lausanne, Switzerland, September 6-9, 2009
Proceedings. pp. 156–170. Springer (2009)

11. Dada, E.G., Bassi, J.S., Chiroma, H., Adetunmbi, A.O., Ajibuwa, O.E., et al.:
Machine learning for email spam filtering: review, approaches and open research
problems. Heliyon 5(6), e01802 (2019)

12. Do, N.T., Hoang, V.P., Doan, V.S., Pham, C.K.: On the performance of non-
profiled side channel attacks based on deep learning techniques. IET Information
Security n/a(n/a). https://doi.org/https://doi.org/10.1049/ise2.12102, https://
ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/ise2.12102

13. Do, N.T., Le, P.C., Hoang, V.P., Doan, V.S., Nguyen, H.G., Pham,
C.K.: Mo-dlsca: Deep learning based non-profiled side channel analysis us-
ing multi-output neural networks. In: 2022 International Conference on
Advanced Technologies for Communications (ATC). pp. 245–250 (2022).
https://doi.org/10.1109/ATC55345.2022.9943024

14. EMVCo: Emv specifications (2001). https://www.emvco.com/

15. Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge,
MA, USA (2016), http://www.deeplearningbook.org

16. Hauke, J., Kossowski, T.: Comparison of values of pearson’s and spearman’s cor-
relation coefficients on the same sets of data. Quaestiones geographicae 30(2), 87
(2011)

https://doi.org/10.1007/s13389-019-00220-8
https://doi.org/10.1007/s13389-019-00220-8
https://www.ndss-symposium.org/ndss-paper/mind-the-portability-a-warriors-guide-through-realistic-profiled-side-channel-analysis/
https://www.ndss-symposium.org/ndss-paper/mind-the-portability-a-warriors-guide-through-realistic-profiled-side-channel-analysis/
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/https://doi.org/10.1049/ise2.12102
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/ise2.12102
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/ise2.12102
https://doi.org/10.1109/ATC55345.2022.9943024
http://www.deeplearningbook.org

27

17. Hoang, V.P., Do, N.T., Doan, V.S.: Efficient non-profiled side channel attack using
multi-output classification neural network. IEEE Embedded Systems Letters pp. 1–
1 (2022). https://doi.org/10.1109/LES.2022.3213443

18. Hospodar, G., Gierlichs, B., Mulder, E.D., Verbauwhede, I., Vandewalle, J.: Ma-
chine learning in side-channel analysis: a first study. J. Cryptogr. Eng. 1(4),
293–302 (2011). https://doi.org/10.1007/s13389-011-0023-x, https://doi.org/

10.1007/s13389-011-0023-x

19. Kim, J., Picek, S., Heuser, A., Bhasin, S., Hanjalic, A.: Make some noise. unleashing
the power of convolutional neural networks for profiled side-channel analysis. IACR
Transactions on Cryptographic Hardware and Embedded Systems pp. 148–179
(2019)

20. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Advances in Cryptol-
ogy—CRYPTO’99: 19th Annual International Cryptology Conference Santa Bar-
bara, California, USA, August 15–19, 1999 Proceedings 19. pp. 388–397. Springer
(1999)

21. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Proceedings of
the 19th Annual International Cryptology Conference on Advances in Cryptology.
pp. 388–397. CRYPTO ’99, Springer-Verlag, London, UK, UK (1999), http://dl.
acm.org/citation.cfm?id=646764.703989

22. Kuroda, K., Fukuda, Y., Yoshida, K., Fujino, T.: Practical aspects on non-
profiled deep-learning side-channel attacks against aes software implementa-
tion with two types of masking countermeasures including rsm. In: Pro-
ceedings of the 5th Workshop on Attacks and Solutions in Hardware Secu-
rity. p. 29–40. ASHES ’21, Association for Computing Machinery, New York,
NY, USA (2021). https://doi.org/10.1145/3474376.3487285, https://doi.org/

10.1145/3474376.3487285

23. Kwon, D., Hong, S., Kim, H.: Optimizing implementations of non-profiled
deep learning-based side-channel attacks. IEEE Access 10, 5957–5967 (2022).
https://doi.org/10.1109/ACCESS.2022.3140446

24. Lerman, L., Medeiros, S.F., Bontempi, G., Markowitch, O.: A Machine Learning
Approach Against a Masked AES. In: CARDIS. Lecture Notes in Computer Sci-
ence, Springer (November 2013), berlin, Germany

25. Lerman, L., Medeiros, S.F., Veshchikov, N., Meuter, C., Bontempi, G.,
Markowitch, O.: Semi-supervised template attack. In: Constructive Side-
Channel Analysis and Secure Design, pp. 184–199. Springer Berlin Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-40026-1 12, https://doi.org/10.
1007/978-3-642-40026-1_12

26. Lerman, L., Poussier, R., Bontempi, G., Markowitch, O., Standaert, F.X.: Tem-
plate attacks vs. machine learning revisited (and the curse of dimensionality in
side-channel analysis). In: International Workshop on Constructive Side-Channel
Analysis and Secure Design. pp. 20–33. Springer (2015)

27. Lu, X., Zhang, C., Cao, P., Gu, D., Lu, H.: Pay attention to raw traces: A deep
learning architecture for end-to-end profiling attacks. IACR Transactions on Cryp-
tographic Hardware and Embedded Systems pp. 235–274 (2021)

28. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations
using deep learning techniques. In: International Conference on Security, Privacy,
and Applied Cryptography Engineering. pp. 3–26. Springer (2016)

29. Nassif, A.B., Shahin, I., Attili, I., Azzeh, M., Shaalan, K.: Speech recognition using
deep neural networks: A systematic review. IEEE access 7, 19143–19165 (2019)

https://doi.org/10.1109/LES.2022.3213443
https://doi.org/10.1007/s13389-011-0023-x
https://doi.org/10.1007/s13389-011-0023-x
https://doi.org/10.1007/s13389-011-0023-x
http://dl.acm.org/citation.cfm?id=646764.703989
http://dl.acm.org/citation.cfm?id=646764.703989
https://doi.org/10.1145/3474376.3487285
https://doi.org/10.1145/3474376.3487285
https://doi.org/10.1145/3474376.3487285
https://doi.org/10.1109/ACCESS.2022.3140446
https://doi.org/10.1007/978-3-642-40026-1_12
https://doi.org/10.1007/978-3-642-40026-1_12
https://doi.org/10.1007/978-3-642-40026-1_12

28

30. Perin, G., Chmielewski, L., Picek, S.: Strength in numbers: Improving gener-
alization with ensembles in machine learning-based profiled side-channel anal-
ysis. IACR Transactions on Cryptographic Hardware and Embedded Systems
2020(4), 337–364 (Aug 2020). https://doi.org/10.13154/tches.v2020.i4.337-364,
https://tches.iacr.org/index.php/TCHES/article/view/8686

31. Perin, G., Wu, L., Picek, S.: Exploring feature selection scenarios for
deep learning-based side-channel analysis. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems 2022(4), 828–861 (Aug 2022).
https://doi.org/10.46586/tches.v2022.i4.828-861, https://tches.iacr.org/

index.php/TCHES/article/view/9842

32. Picek, S., Heuser, A., Jovic, A., Legay, A., Knezevic, K.: Profiled SCA with a
new twist: Semi-supervised learning. IACR Cryptol. ePrint Arch. p. 1085 (2017),
http://eprint.iacr.org/2017/1085

33. Poussier, R., Standaert, F.X., Grosso, V.: Simple key enumeration (and rank es-
timation) using histograms: An integrated approach. In: International Conference
on Cryptographic Hardware and Embedded Systems. pp. 61–81. Springer (2016)

34. Rajkomar, A., Dean, J., Kohane, I.: Machine learning in medicine. New England
Journal of Medicine 380(14), 1347–1358 (2019)

35. Rijsdijk, J., Wu, L., Perin, G., Picek, S.: Reinforcement learning for hyper-
parameter tuning in deep learning-based side-channel analysis. IACR Trans-
actions on Cryptographic Hardware and Embedded Systems 2021(3), 677–
707 (Jul 2021). https://doi.org/10.46586/tches.v2021.i3.677-707, https://tches.
iacr.org/index.php/TCHES/article/view/8989

36. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel
cryptanalysis. In: Cryptographic Hardware and Embedded Systems – CHES 2005,
pp. 30–46. Springer Berlin Heidelberg (2005). https://doi.org/10.1007/11545262 3,
https://doi.org/10.1007/11545262_3

37. Sebe, N., Cohen, I., Garg, A., Huang, T.S.: Machine learning in computer vision,
vol. 29. Springer Science & Business Media (2005)

38. Timon, B.: Non-profiled deep learning-based side-channel attacks with sensitivity
analysis. IACR Transactions on Cryptographic Hardware and Embedded Systems
pp. 107–131 (2019)

39. Wouters, L., Arribas, V., Gierlichs, B., Preneel, B.: Revisiting a method-
ology for efficient cnn architectures in profiling attacks. IACR Transac-
tions on Cryptographic Hardware and Embedded Systems 2020(3), 147–
168 (Jun 2020). https://doi.org/10.13154/tches.v2020.i3.147-168, https://tches.
iacr.org/index.php/TCHES/article/view/8586

40. Wu, L., Perin, G., Picek, S.: The best of two worlds: Deep learning-assisted tem-
plate attack. IACR Transactions on Cryptographic Hardware and Embedded Sys-
tems 2022(3), 413–437 (Jun 2022). https://doi.org/10.46586/tches.v2022.i3.413-
437, https://tches.iacr.org/index.php/TCHES/article/view/9707

41. Wu, L., Perin, G., Picek, S.: I choose you: Automated hyperparameter tuning for
deep learning-based side-channel analysis. IEEE Transactions on Emerging Topics
in Computing (2022)

42. Zaid, G., Bossuet, L., Habrard, A., Venelli, A.: Methodology for effi-
cient cnn architectures in profiling attacks. IACR Transactions on Cryp-
tographic Hardware and Embedded Systems 2020(1), 1–36 (Nov 2019).
https://doi.org/10.13154/tches.v2020.i1.1-36, https://tches.iacr.org/index.

php/TCHES/article/view/8391

https://doi.org/10.13154/tches.v2020.i4.337-364
https://tches.iacr.org/index.php/TCHES/article/view/8686
https://doi.org/10.46586/tches.v2022.i4.828-861
https://tches.iacr.org/index.php/TCHES/article/view/9842
https://tches.iacr.org/index.php/TCHES/article/view/9842
http://eprint.iacr.org/2017/1085
https://doi.org/10.46586/tches.v2021.i3.677-707
https://tches.iacr.org/index.php/TCHES/article/view/8989
https://tches.iacr.org/index.php/TCHES/article/view/8989
https://doi.org/10.1007/11545262_3
https://doi.org/10.1007/11545262_3
https://doi.org/10.13154/tches.v2020.i3.147-168
https://tches.iacr.org/index.php/TCHES/article/view/8586
https://tches.iacr.org/index.php/TCHES/article/view/8586
https://doi.org/10.46586/tches.v2022.i3.413-437
https://doi.org/10.46586/tches.v2022.i3.413-437
https://tches.iacr.org/index.php/TCHES/article/view/9707
https://doi.org/10.13154/tches.v2020.i1.1-36
https://tches.iacr.org/index.php/TCHES/article/view/8391
https://tches.iacr.org/index.php/TCHES/article/view/8391

	Hiding in Plain Sight: Non-profiling Deep Learning-based Side-channel Analysis with Plaintext/Ciphertext
	Introduction
	Preliminaries
	Notation
	Side-channel Analysis
	Machine Learning
	Machine Learning in the Context of SCA
	Non-profiling SCA Techniques
	Attack Performance Evaluation

	Related Work
	Plaintext/Ciphertext-based Non-profiling SCA
	Threat Model
	From Intermediate data to Plaintext and Ciphertext
	Plaintext/Ciphertext Distribution
	Attack Scheme
	Profiling Attacks vs. Our Method

	Experimental Results
	Datasets
	Leakage Models
	Performance Evaluation
	Hyperparameter Evaluation

	Conclusions and Future Work

