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Abstract. Profiling side-channel analysis, recognized for its robust attack performance
in worst-case scenarios, necessitates adversaries to have a cloned device for profiling
measurements and secret information for data labeling. On the other hand, non-
profiling attacks eschew these requirements by trying all key guesses. Although
more suitable for real-world attack scenarios, they may suffer from mediocre attack
performance due to the lack of leakage insight.
This paper introduces a novel weakly profiling side-channel analysis method that
bridges classical profiling and non-profiling analyses. Our method operates within a
profiling framework yet discards the necessity for a cloned device, which relies on the
fact that there is (commonly) a bijective relationship between known information,
such as plaintext and ciphertext, and secret information. This relationship allows an
adversary to label leakage measurements using known information and then profile
leakages directly on the attacked device. The empirical results show that the proposed
approach reaches at least 3× better attack performance with negligible computational
effort than existing non-profiling methods. Moreover, it can rival the performance of
state-of-the-art profiling attacks.
Keywords: Weakly profiling side-channel analysis · Profiling side-channel analysis ·
Non-profiling side-channel analysis · Plaintext · Ciphertext.

1 Introduction
Side-channel analysis (SCA) on symmetric-key cryptography is commonly divided into
profiling and non-profiling attacks, following different attack strategies. Profiling attacks
assume the adversary has complete control of a device clone to be attacked. With that
clone, the adversary characterizes the side-channel behavior and then uses this knowledge
to reveal secret information from the device under attack. Non-profiling attacks work
directly on the target device without this assumption. The adversary obtains secret
information leakages and runs a statistical analysis to obtain the best guess. Under a
restricted attack assumption, profiling SCA is often considered one of the strongest SCA
methods [PPM+23]. Recent years have witnessed tremendous progress with machine (deep)
learning-based profiling attacks (DLSCA) [MPP16, ZBHV19, PWP22]. Non-profiling SCA
received less attention compared with its counterpart. A recent milestone in non-profiling
DLSCA is the approach called Differential Deep Learning Analysis (DDLA) [Tim19].
While the author reported successful attacks on several targets, the attack approach is
fundamentally the same as other classical non-profiling attacks such as differential power
analysis (DPA) [KJJ99] and correlation power analysis (CPA) [BCO04]. Thus, it inherits
their limitations and introduces new challenges, such as low attack performance, restricted
leakage functions, and substantial computational complexity. In the last few years, there
has been some progress to fix these issues, see, e.g., [DLH+22, HDD22]. However, the
reported results are far from state-of-the-art profiling SCA.

Licensed under Creative Commons License CC-BY 4.0.

https://doi.org/XXXXXXXX
http://creativecommons.org/licenses/by/4.0/


Despite these limitations on attack performance, one should not ignore the unique
advantage of non-profiling SCA. Its weaker attack assumption makes it more suitable
for real-world attacks. For instance, CPA, a classical non-profiling SCA proposed two
decades ago, remains the workhorse of practical side-channel evaluations [Ris23, Bri23].
Besides, recent work used CPA to recover the iPhone’s hardware fused GID and UID
keys, which is used to brute-force the iPhone PIN code offline [Tih22]. Profiling SCA
is not feasible for this attack as the underlying hardware is not configurable by a user.
Indeed, the availability of a fully controlled cloned device could be met with a white-box
evaluation (e.g., in an evaluation lab) under the worst-case attack assumption. However,
it would hardly meet a practical black-box attack with a closed device. Non-profiling SCA,
although weaker than profiling SCA due to the lack of a profiling device, can be directly
applied to the target device (device to be attacked).

The difference in attack assumptions and strategy between the profiling and non-
profiling SCA makes them suitable for different attack scenarios. Naturally, an ideal
SCA would have the attack capability of a profiling SCA while following the weaker
attack assumption of a non-profiling SCA. Our work proposes a novel SCA that fulfills
these two requirements. The proposed attack follows profiling SCA’s two-step approach,
namely profiling and attack. Since it profiles with known information but not key-related
intermediate data that is only accessible from a cloned device, we refer to it as weakly
profiling SCA1. In this study, we employ the term weak to emphasize the absence of
dedicated profiling devices. Weakly profiling SCA leverages the bijective relationship
between plaintexts/ciphertexts and the key-related intermediate data. Concretely, an
adversary can directly profile the leakage measurements with plaintext/ciphertext on the
target device and then leverage the key dependency of the plaintext probability vector
output by the profiling model to recover the secret information. Weakly profiling SCA
provides superior attack performance compared to classical and recent deep learning-
based non-profiling attacks. Besides, it reaches comparable attack performance to the
state-of-the-art profiling SCA.

Our main contributions are:
1. We propose a novel weakly profiling SCA approach distinct from classical profiling

and non-profiling SCA, allowing an attacker to profile directly on the target device.2
2. Our novel approach can be easily used with different profiling approaches, which we

showcase with template attack and deep learning (convolutional neural networks).
3. Through comprehensive theoretical and experimental analysis, we demonstrate the

construction of our method and its superior performance compared to classical and
state-of-the-art non-profiling SCAs. Besides, a comparison with classical and latest
profiling SCAs reveals comparable performance.

4. We provide an experimental evaluation of several relevant factors for our attack:
data augmentation, the number of measurements, and the number of training epochs.
The results suggest that the proposed technique is robust to diverse settings, and
data augmentation is crucial in mounting a powerful weakly profiling SCA.

The rest of this paper is organized as follows. In Section 2, we provide the necessary
background information. Section 3 details the threat model, our labeling procedure, and
the attack scheme. Section 4 compares the proposed attack with state-of-the-art and then
discusses necessary preprocessing techniques. In Section 5, we provide experimental results.
In Section 6, we conclude the paper and discuss potential future research directions.

1Although sharing a similar name, weakly profiling SCA is fundamentally distinct from weakly supervised
learning — a machine learning paradigm in which machine learning models are trained using instances
that are only partially annotated or labeled [Zho18].

2The source code is available in the Github https://github.com/lichao-wu9/Weakly-profiling-SCA.
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2 Preliminaries
This section introduces the notation we follow. Afterward, we provide relevant information
about side-channel analysis, leakage model, and evaluation metrics.

2.1 Notation
We use calligraphic letters like X to denote sets and the corresponding upper-case letters X
to denote random variables and random vectors X over X . The corresponding lower-case
letters x and x denote realizations of X and X, respectively. We use a sans serif font for
functions (e.g., f).

The term k represents a key byte candidate that takes its value from the key space K.
k∗ is the correct key byte or the key byte assumed to be correct by the adversary.3

A dataset T is a collection of traces ti, with each ti associated with a label yi. A
complete set of labels with c classes is denoted by Y = {y1, y2, · · · , yc}. In a dataset T,
each trace ti is associated with a plaintext/ciphertext di ∈ D and a key ki, or ki,j and
di,j when considering a partial key recovery on byte j. In this work, we consider attacking
only a single key byte and, thus, omit the byte vector notation in equations. We divide
the dataset T into the profiling set of size N and the attack set of size Q. θ denotes the
vector of parameters to be learned in a profiling model.

2.2 Side-channel Analysis
2.2.1 Profiling SCA

Profiling SCAs rely on building a profiling model to recover the secret. A profiling model
is a predictive model constructed to characterize the relationship between the measurable
side-channel information emitted by a cryptographic device and the device’s internal state
or key-dependent operations. Profiling side-channel attacks run in two phases:

1. Profiling phase. The adversely builds a profiling model fM
θ , parameterized by a

leakage model M and a set of learning parameters θ, to map the input ti to the output
yi on a set of N profiling traces. We use the notions fM

θ and fθ interchangeably.
2. Attack phase. The profiling model processes each attack trace ti, outputting a

vector of probabilities representing the probability of the associated leakage value.
Based on this vector of probabilities, the adversary decides on the best key candidate,
as discussed in Section 2.4.

If a profiling model maps input traces to output data with high confidence, only a few
measurements from the device under attack could suffice to retrieve the secret data.
Examples of attacks are the template attack [CRR02], stochastic models [SLP05], and
machine learning-based attacks [HGM+11, MPP16]. Typically, machine learning-based
attacks follow the supervised learning scheme [ZBHV19, WAGP20, PCP20, RWPP21,
WPP22b] that trains a machine learning model f to predict labels on previously unseen
data. It follows the Empirical Risk Minimization (ERM) framework, where the machine
learning model parameters θ are obtained by solving the optimization problem with the
loss function L:

arg min
θ

1
N

N∑
i

L(fθ(ti), yi). (1)

The loss function quantifies the difference between the predicted output of the machine
learning model and the actual target data. During the training process, the objective is
to minimize the value of the loss function. This process is achieved through optimization

3The subkey candidates can have any number of bits being guessed. Here, we assume the AES cipher
scenario, but the concept is algorithm-independent.
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techniques like gradient descent, where the model parameters (like weights in a neural
network) are adjusted based on the gradient of the loss function.

2.2.2 Non-profiling SCA

Non-profiling side-channel analysis leverages the correlation between key-related interme-
diate values and leakage measurements. To perform such attacks, the adversary gathers a
collection of traces through a series of encryptions/decryptions of different plaintexts. If
the selected intermediate value is sufficiently correlated with leakage measurements, the
adversary can use these measurements to verify guesses for a small part of the key. In
particular, for each possible value of the relevant part of the key (or the key itself), the
adversary will follow a “divide-and-conquer” strategy:

1. Divide/Partition. The adversary divides the traces into groups according to the
intermediate value predicted by the current key guess.

2. Attack. If each group differs noticeably from the others (the definition of ’difference’
is based on the attack methods), the current key guess is likely correct.

Non-profiling attacks assume less powerful adversaries with no access to a clone of a device
to be attacked. Typical examples of such attacks are Correlation Power Analysis [BCO04],
Mutual Information Analysis [GBTP08], Differential Deep Learning Analysis [Tim19], and
Multi-output regression DLSCA [DLH+22].

Correlation Power Analysis (CPA) and Mutual Information Analysis (MIA) are two
classical non-profiling SCA techniques. They are based on the Pearson correlation or mutual
information measuring the relationships between the leakage features and hypothetical
labels. Using CPA as an example, we calculate the correlation coefficient vector r by
testing all key candidates in K with Eq. (2).

rk =
∑N

i=1(tk
i − tk)(yk

i − yk)√∑N
i=1(tk

i − tk)2 ∑N
i=1(yk

i − yk)2
, k ∈ K, (2)

where tk
i and yk

i are the leakage trace and the corresponding hypothetical label based on
k, respectively. The averaged leakage traces and labels are represented by tk and yk. The
most likely key k∗ can be obtained by:

k∗ = arg max r. (3)

Differential Deep Learning Analysis (DDLA) can be considered as a deep learning (DL)
version of CPA, as they both label the leakage traces based on different key guesses and
then “correlate” these hypothetical labels with leakage traces. While the adversary uses
Pearson correlation in CPA, DDLA relies on the empirical risk shown in Eq. (1). Using a
non-bijective partition function, the adversary first repeats Eq. (1) for each key candidate
k to estimate θk; yi in Eq. (1) equals to yk

i , which is calculated with the current key guess.
Then, the most likely key (the key assumed to be correct) k∗ can be distinguished by finding
the one that generates the least empirical risk measured by the negative log-likelihood
(NLL) loss:

k∗ = arg min
k

− 1
N

N∑
i

log(fθ(ti)), k ∈ K, (4)

where fθ(ti) represents the conditional probability of yk
i given an input ti and DL model

parameters θk, denoted as p(yk
i |ti; θk). Given the same training effort, only yk∗

i can lead to
fast convergence of the empirical risk due to its correlation with leakage traces. Compared
to CPA, thanks to the employment of deep learning, DDLA can break SCA countermeasures
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such as Boolean masking.4 Meanwhile, it is more robust to noise introduced by, for instance,
time jitters and random delay interrupts [Tim19].

Multi-output regression DLSCA (MOR) is introduced to reduce the computation efforts
of DDLA. Instead of training 256 DL models (for the AES S-box case) with each model
trying to correctly classify the hypothetical labels with probabilities, MOR employs the
idea of multi-output regression, which aims to regress the prediction outputs to the actual
label values. Specifically, a DL model is trained by mapping the input leakage traces to
the actual values of all possible yk

i . Like DDLA, the most likely key k∗ is revealed by
finding the smallest loss measured by mean squared error (MSE).

k∗ = arg min
k

1
N

N∑
i

(yk
i − fk

θ (ti))2, k ∈ K, (5)

where fk
θ (ti) denotes the prediction value of DL model to approximate yk

i . Compared
with DDLA, the computation effort is reduced as the adversary only trains one model.
Multiple attacks have been developed following this work, we refer interested readers
to [KFYF21, APB+20, KHK22].

2.3 Leakage Models
The leakage model, also known as partition functions, simulates the hypothetical physical
leakages to process one byte (as we attack the AES cipher that is byte-oriented). Different
leakage models can be adopted in practice, and their results may vary depending on the
target device. One simple option is to consider the most significant bit (MSB) or the least
significant bit (LSB) of a byte (we use LSB in this work). This leakage model results in
two classes. For the HW leakage model, the adversary assumes the leakage is proportional
to the intermediate value’s Hamming weight. This leakage model results in nine classes for
a single intermediate byte for the AES cipher. Another type of leakage model results from
the xor between two values. Commonly, the Hamming Weight of this xor is calculated
and is referred to as the Hamming Distance. A typical approach for AES is to compute
the xor (or HW of the xor, i.e., HD) between the final output and the Sbox input of the
last round [KPH+19]. Like the HW leakage model, the HD leakage model results in nine
classes for a single intermediate byte for the AES cipher. For the Identity (ID) leakage
model, an adversary considers the leakage as an intermediate cipher value. This leakage
model results in 256 classes for a single intermediate byte for the AES cipher.

2.4 Attack Performance Evaluation
Since the goal of an adversary is to guess the correct key k∗, the adversary calculates a key
guessing vector g, which is a vector representing the likelihood of each key candidate k:

g = sort (L(k)) , k ∈ K, (6)

where L(k) varies for each attack method. As mentioned in Section 2.2.2, CPA and MIA
rely on the correlation coefficient and mutual information, respectively; MOR and DDLA
use loss value; profiling attacks are based on likelihood. sort is the function sorting array
elements in order of decreasing values of their probabilities. The elements in g represent
the likelihood of the corresponding key candidate being the correct key candidate. g0 and
g|K|−1 are the first (best) and last (worst) element of g, respectively.

In a known-key setting, the key rank is the number of (most likely) keys an adversary
needs to brute force until recovering the correct key. Among various key enumeration

4With recombination of leakage features, high-order CPA can also break the Boolean masking counter-
measure.
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techniques [PSG16], one of the most straightforward methods is to try every key given
its likelihood after generating a key guessing vector. In this scenario, the key rank is the
position of the correct key in g. If an attack method reaches the key rank of zero (meaning
that the correct key ranks first), we calculate the required number of attack traces for this
key rank.

3 Weakly Profiling Side-channel Analysis
This section presents the core idea of the paper. Instead of directly building the mapping
between the input leakages and intermediate data (profiling SCA), we weakly learn this
relationship via public knowledge, such as plaintext and ciphertext, then analyze the
output of the learning model to extract the secret information. This section first discusses
the threat model. Afterward, we provide information on plaintext/ciphertext labeling,
plaintext distribution, and our attack scheme. Finally, a case study is performed.

3.1 Threat Model
Our threat model is the same as that of non-profiling SCA. An adversary has a device
with a target cipher (white-box crypto implementation) and a fixed but unknown key.
The adversary could send commands to perform encryption/decryption operations. We
assume the adversary can only observe the used plaintext/ciphertext but cannot control
their values. To launch attacks, the adversary measures multiple side-channel leakages
with an oscilloscope and then analyzes leakage traces with plaintexts and/or ciphertexts.
The target leakage measurement should be preprocessed to exclude plaintext/ciphertext
leakage; a way to detect and remove them is discussed in Section 4.2.

3.2 From Intermediate Data to Plaintext and Ciphertext
In profiling SCA, the output variables are represented by sensitive operations, such as Sbox
input or output of the AES cipher. We denote the model trained with intermediate data as
intermediate data-based model. Recall that supervised learning learns a mapping between
input data X and labels: f : X → Y.5 If plaintexts or ciphertexts are also involved in
such operations, for simplicity, we specify the profiling objective in Eq. (7) with supervised
learning terms based on Eq. (1).

arg min
θ

1
N

N∑
i

L(fθ(ti), l(ki, di)), (7)

where l denotes the labeling function that returns the intermediate value according to a
known key candidate ki and a plaintext/ciphertext di. Then, the adversary calculates the
probability vector p(l(k, di)|ti; θ) given an attack trace ti. Since di and l are known, k
can be easily retrieved by picking the label value with the highest probability [WPP22a,
PWP22, ZBHV19].

However, in non-profiling SCA, since the adversary does not know the key being used,
the adversary cannot use l(ki, di) to estimate θ. Fortunately, the key is fixed (we denote
it as k) for all leakage traces following our threat model. Then, the label l(k, di) and di

would satisfy:
di 7−→ l(k, di). (8)

Eq. 8 shows that a plaintext or ciphertext di can uniquely identify the intermediate
value l(k, di). However, this bijectivity depends on selecting l. For instance, Sbox output is

5In practice, f outputs a probability vector representing the probability of all possible labels in Y.
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a common labeling function (and intermediate data) for AES attacks [ZBHV19, WPP22a].
di and Sbox(di ⊕ ki) are bijective given a fixed key ki. If Eq. (8) holds, di and l(k, di) can
be mapped to each other with mapping functions map parameterized by k.

l(k, di) = mapk(di). (9)
Since the adversary targets a known cipher, the mapping functions are known or can

be easily calculated with the (unknown) correct key k∗. Then, we can rewrite Eq. (7) as:

θ = arg min
θ

1
N

N∑
i

L(fθ(ti),mapk∗(di)). (10)

Indeed, due to the bijectivity between labels l(k, di) and di, the estimation of p(l(k, di)|ti; θ)
is equivalent to an estimation of p(di|ti; θ). From the perspective of model profiling, al-
though mapk∗ is unknown to the adversary, it is a deterministic function and thus does not
influence the optimization of θ. Therefore, we can remove the mapping function in Eq. (10)
and train a profiling model with dataset T labeled with plaintexts/ciphertexts:

θd = arg min
θ

1
N

N∑
i

L(fθ(ti), di). (11)

We denote the profiling model built with plaintext/ciphertext labels as a plaintext (or
ciphertext) -based model. For simplicity, we denote it as plaintext-based model. Following
the threat model, since there is no leakage from di in leakage traces, both fθd and fθ should
learn on the same leakage features that correspond to the processing of l(k, di). If fθd and
fθ generalize equally well on these features, they can be converted to each other with a
similar mapping function map′

k, where k equals k∗:

fθd(·) = map′
k(fθ(·)), (12)

where map′
k converts the probability of the input l(k, di) to its corresponding output di.

If the adversary correctly guesses the k as k∗, map′
k∗ can be easily calculated with the

knowledge of cipher implementation.
Eq. (12) represents the core idea of the proposed method, which is also visualized

in Figure 1. The goal of an adversary is to find a map′
k that maps fθ to fθd . If fθ is

known, k∗ can be brute-forced by trying all possible map′
k and finding the best match

to fθd . Although the adversary cannot learn fθ in a non-profiling setting due to the
lack of key-related intermediate data knowledge, in the next section, we propose an
estimation of map′

k(fθ(·)) by calculating the plaintext or ciphertext distribution for all
possible key candidates. Knowing this, an adversary can find the best key by brute-forcing
the key-related distributions.

Intermediate data-based model

Profiling model f𝜃𝜃

Leakage traces 
𝐓𝐓

Sensitive data 
l(𝑘𝑘∗,𝐝𝐝)

Bijective

Plaintext-based model

Profiling model f𝜃𝜃𝑑𝑑

Plaintext           
𝐝𝐝

Leakage traces 
𝐓𝐓

map𝑘𝑘∗
′

map𝑘𝑘∗
′ −1

Label Label

Figure 1: The relationship between intermediate data-based and plaintext-based models.
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3.3 Plaintext/Ciphertext Distribution
In profiling SCA, as introduced in Section 2.2, a profiling model fθ represents the relation
between the input leakage measurement and output intermediate data processed by a
leakage model M (discussed in Section 2.3). When inputting an attack trace to fθ, it
outputs a probability vector for all possible intermediate data:

Pri(y) = fθ(ti), (13)

where y = M(l(k, di)), k ∈ K. An adversary aims for the highest probability of the correct
intermediate data y∗, while the rest of the values’ probabilities are commonly considered
non-critical (e.g., NLL loss). However, we argue that these probabilities are far from
arbitrary. If a profiling model can map the input traces to the output labels with high
confidence, the prediction probability of the incorrect value is closely linked to y∗.

Following a common side-channel assumption [BCO04], let us consider a leaking device
with the physical leakage ti represented by the real (unknown) leakage function ψ and
some additive noise Z ∼ N (0, σ2).

ti = ψ(yi) + Z, yi ∈ Y. (14)

Then, the conditional probability of a label yj being selected given a correct label y∗

can be represented by a probability density function:

p(yi|y∗) = 1
σ

√
2π
e− 1

2 ( a∥ψ(y∗)−ψ(yi)∥
σ2 ), yi ∈ Y, (15)

where ∥·∥ represents the squared Euclidean distance6 between two variables, we denote it
as label distance; a denotes the linear correlation coefficient. A closer distance between
ψ(yi) and ψ(y∗) indicates that their physical leakage observations are more likely to be
similar. When yi equals y∗, p(yi|y∗) reaches maximum. In Eq. (15), since ψ is unknown, an
adversary estimates the actual value of ψ(yi) and ψ(y∗) with leakage assumption M: M(yi)
and M(y∗). This paper considers the commonly-used Hamming weight (HW) and Identity
(ID) leakage models. If the leakage model is ID, M(yi) = yi. Since yi is parameterized by
di and k, Eq. (15) can be easily updated to calculate a probability vector p(di|d∗) given a
correct key k∗:

p(di|d∗) = 1
σ

√
2π
e− 1

2 ( a∥M(l(k∗,d∗))−M(l(k∗,di))∥
σ2 ), di ∈ D. (16)

In a non-profiling context, an adversary cannot estimate σ as k∗ is unknown. Here,
we assume it is a constant as it only depends on the leakage measurements. Now, since
the label distance is the only variable of p(di|d∗), we simplify Eq. (16) to Eq. (17) by only
keeping the label distance and the negative sign:

PDM
k (d∗) = − ∥M(l(k, d∗)) − M(l(k, di))∥ , di ∈ D, k ∈ K. (17)

We denote the output vector of Eq. (17) as plaintext distribution (could also be called
ciphertext distribution, depending on the intermediate data), representing the likelihood
of di ∈ D being selected given a known d∗. Note that when it is clear from the context,
we use the notations PDM

k (·) and PDk interchangeably. Intuitively, given a key guess, the
plaintext distribution (prior) estimates the physical leakage likelihood of key-dependent
data with different plaintexts. If the key guess is correct, a high physical leakage likelihood
is expected with the same key-dependent data. Let us consider a plaintext-based model fθd .

6There are multiple methods to measure the label distance. Based on [WWK+23], squared Euclidean
distance offers the best attack performance.
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When classification is accurate, the highest probability is allocated to the corresponding
known plaintext byte value d∗. Although this information remains inconsequential to an
adversary, the subsequent highest probability typically corresponds to the intermediate
byte value that produces physical leakages akin to the known plaintext. An adversary can
exploit this secondary information to guess the secret key, a process detailed in the next
section.

3.4 Attack Scheme
The plaintext-based model fθd(T) outputs the probability vector of all possible plaintext,
including the correct one. Consider an ideal case where the leakage is only associated
with the intermediate data; the conditional probability p(di|d∗) would be Eq. (17). In
other words, even in an ideal case, p(di|d∗), d ̸= d∗ would be a non-zero value. Given a
plaintext-based model fθd , the output probability vector Pr(di) and PDk with k equal to
k∗ would have a higher correlation value compared to other key candidates. To retrieve
the correct key k∗, the adversary calculates PDk with all possible keys; the one leading to
the highest correlation with Pr(di) would be the most likely key (and assumed to be the
correct key):

k∗ = arg max
k

corr(PDM
k (d), fθd(T)), k ∈ K, (18)

where corr represents the Spearman correlation [HK11] that evaluates the monotonic
relationship with two inputs. The Spearman correlation offers more numerical stability
than the Pearson correlation, as it has a high tolerance when the labels and leakage features
are not linearly correlated. Since the adversary knows the plaintext d for all side-channel
measurements T, the brute force effort equals the key space size. For instance, if attacking
a subkey (a single byte), the adversary must calculate PDk 256 times to find the correct
key.

Eq. (18) represents the basis of the proposed attack method. Several practical consider-
ations must be made when performing actual attacks. First, similar to other SCA methods,
the preprocessing of leakage measurements is mandatory for an efficient attack [WAGP20].
Besides normalizing the data, data augmentation [SK19], a technique to increase the
diversity and quantity of training data by modifying the existing data, is the key part that
makes the proposed attack successful. Indeed, data augmentation, as a regularization
technique, can prevent the profiling model from focusing on specific features and better
focus on global features. In the SCA context, since the data leakages only exist in a few
features, such techniques can prevent the model from overfitting on non-relevant features.
We realize it by randomly shifting the leakage measurement with an augmentation thresh-
old γ. An investigation on data augmentation is presented in Section 5.4.1. An alternative
could be to measure and train with more leakage traces. In the same section, we tune the
number of training traces and observe its effect on the attack performance.

Second, our attack methodology utilizes plaintext/ciphertext pairs as labels during
the training phase. This approach is equivalent to learning the Identity (ID) leakage of
key-related intermediate data. However, selecting an appropriate leakage model for labeling
the intermediate data is crucial. This ensures that the PDk can accurately estimate the
probability vector Pr(di) generated by a plaintext-based model. For example, in cases
where an implementation is prone to leaking Hamming Weight (HW), intermediate data
with identical HW values will produce similar physical leakages. A classifier designed to
profile based on ID will differentiate between intermediate data only when their HW values
vary. Consequently, intermediate data with the same HW values will yield analogous
probability estimates, as indicated by PDk, when using a leakage model M set to HW. In
Section 5, multiple leakage models are tested, and one can observe significant differences in
attack performance. Considering the above discussions, we formulate the proposed attack
scheme in Algorithm 1.
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Algorithm 1 Weakly profiling side-channel analysis.
Input: traces T, plain/ciphertext bytes d, leakage model M, augmentation threshold γ
Output: most-likely key k∗

1: fθd = train(T, d, γ)
2: Pr = fθd(T)
3: for k in K do
4: corrk = corr(Pr,PDM

k (d))
5: end for
6: k∗ = arg max corr

3.5 Case Study

To demonstrate the effectiveness of the weakly profiling SCA, we present results when
attacking a simulated dataset comprising leakages from Sbox outputs. Each trace denoted
as ti has 32 features, with two features containing leakage information at fixed locations.

ti[j] = Sbox(di ⊕ k∗), di ∈ D, (19)

where di and k∗ denote random plaintexts and a fixed key, respectively; j denotes the
index of the leaking feature. All 32 features are infused with Gaussian noise with a mean
of zero and a variance of 0.01. A total of 30 000 traces were simulated for each dataset.
Weakly profiling SCA is compatible with all types of classifiers. We use the Gaussian
template due to its simplicity and interpretability in this case study.

(a) With correct key assumption. (b) With wrong key assumption.

Figure 2: Predicted plaintext rank vs. PDk with different key assumptions.

The comparison between the predicted plaintext rank provided by a plaintext-based
model and the estimate produced by PDID

k , using different key assumptions, is given
in Figure 2. When the correct key is used to compute PDk, the plaintext rank aligns
perfectly with the predicted key rank. On the contrary, no correlation can be seen when an
incorrect key is used. The minor divergence between the predicted plaintext probability vs.
PDk∗ can be attributed to the noise present in the traces. This deviation is particularly
noticeable in plaintexts with a high rank (low probability to be selected, see top-right of
the figure), implying they are less likely to be chosen. If the number of attack traces would
be further increased, one could anticipate a further reduction in this difference. When the
attack traces were increased tenfold from 30 000 to 300 000, the correlation between the
predicted plaintext rank and PDk∗ increased from 0.985 to 0.999, signifying a closer match.
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4 Discussion
This section initially delves into state-of-the-art attacks, providing a comparative analysis
with weakly profiling SCA. Subsequently, we propose leakage preprocessing techniques
tailored to various attack settings, with the primary objective of mitigating plaintext/ci-
phertext leakages.

4.1 Comparison with the State-of-the-art
Figure 3 demonstrates the attack procedure employed in non-profiling SCA, weakly
profiling SCA, and profiling SCA. Positioned between non-profiling and profiling SCAs,
the weakly profiling SCA integrates an intermediary layer akin to that of profiling SCAs.
This layer is represented by a classifier, fθd , that processes leakage traces. Including this
classifier bolsters the robustness of weakly profiling SCA against leakage noise and potential
countermeasures. On the other hand, a unique characteristic of weakly profiling SCA
distinguishes it from profiling attacks: it profiles and targets the same trace sets, a feature
associated with non-profiling SCA. Benefit from it, weakly profiling SCA immune from
portability problem, one of the main challenges of profiling SCA [BCH+20, WWJ+23].
Considering the close connection between the weakly profiling SCA and different types
of SCA, we briefly introduce the related and state-of-the-art attacks and discuss the
similarities and differences with our work.

Attack traces 
Plaintext 

Classifier Classifier 

Train

PredictPredict

Train

Profiling traces 
Sensitive data 

Non-profiling SCA Weakly profiling SCA Profiling SCA

corr PD𝑘𝑘𝑖𝑖 ,𝐩𝐩 𝑑𝑑0, …𝑑𝑑255|𝐓𝐓  𝐩𝐩 l 𝑘𝑘𝑖𝑖 ,𝐝𝐝 |𝐓𝐓corr l 𝑘𝑘𝑖𝑖 ,𝐝𝐝 ,𝐓𝐓

Figure 3: A demonstration of non-profiling SCA, weakly profiling SCA, and profiling SCA.

• Regression-based attacks, also known as stochastic attacks, use a parametric
model to estimate physical leakage. These were first introduced by Schindler et al. in
2005 [SLP05] and later demonstrated in Doget et al.’s 2011 study [DPRS11]. Various
improvements have been made, such as using stepwise regression [WOS14], lasso
regression [WYL+15], ridge regression [WYL+15], to enhance attack robustness,
especially in high-noise conditions. However, these attacks face the challenge of
learning 256 estimators for each key byte. With millions of traces and a huge number
of features within one trace, these methods could become computationally intensive
than, e.g., attacks that only need a single estimator. Besides, their adaptability could
be challenged when dealing with protected implementation with noisy side-channel
leakages. The latest expectation-maximization (EM) attack [BCGR22] requires the
point-of-interest (POI) selection, but no POI selection method is given. Knowing
that POI selection is challenging in a non-profiling context (except with simple
power analysis), its practical application is questionable. Recently proposed EVIL
Machine attack addresses the computation complexity issue by reducing the number
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of estimations to just one [CLM23a], achieved by combining a neural network with
a mutual information neural estimator. Nonetheless, this method’s reliance on
the simplest leakage model representation for leakage estimation could potentially
become problematic in the presence of noisy physical leakages, such as those from
hardware crypto engines. Moreover, these attacks might be ineffective against
masked implementations without certain techniques (i.e., joint moment estimation)
to expose higher-order leakages. On the other hand, the weakly profiling SCA has
less constraints: one model is enough to recover the key, leakages are extracted
automatically.
Despite these differences, weakly profiling SCA emerges as a versatile SCA method-
ology compatible with diverse estimators. Specifically, regression models can be
applied within the framework of weakly profiling SCA, utilizing plaintext as a label.
The inherent bijectivity between plaintext and intermediate data facilitates the
regression model’s convergence to the physical leakages of intermediate data. While
the experimental study of these methods and their adaptability to weakly profiling
SCA remains unexplored in the current study, we perceive it as a compelling avenue
for future research.

• Leakage model-based attacks use models to estimate the physical leakage of
targeted data. Prime examples of this approach are CPA, DDLA, and MOR. These
attacks are connected to weakly profiling SCA, which also depends on a pre-defined
leakage model. Bevan et al.’s work notably improved CPA efficiency by leveraging
insights from incorrect key guesses [BK02], a concept similar to this study. Weakly
profiling SCA stands out by combining the advantages of powerful leakage extraction
and limited computation overhead. Another well-known leakage model-based attack
is Mutual Information Analysis (MIA) [GBTP08, CLM23b]. Compared to weakly
profiling SCA, the key limitation of MIA is that it only works effectively with more
straightforward, non-injective leakage models. This often necessitates weakening the
model, such as by disregarding certain bits. Weakly profiling SCA does not have
such restrictions. Besides, unlike MIA, weakly profiling SCA is compatible with all
types of estimators, allowing a better characterization of the leakage data.

• Non-profiled attacks on asymmetric crypto. The idea of profiling and attacking
on the same device can also applied in attacking asymmetric crypto. For instance,
online template attacks can be applied to recover the private key of asymmetric
cryptos, such as ECC [BCP+19]. Concretely, with the same device, an attacker
obtains template traces with chosen public input and then performs pattern matching
on the attack trace to recover each bit separately. Besides focusing on different crypto
targets, the main difference with weakly profiling SCA is that the online template
attack is based on (segmented) pattern matching (more similar to the side-channel
collision attack [SWP03]), while this work directly maps the leakages with labels.

4.2 Leakage Preprocessing
As mentioned in Section 3.4, leakage preprocessing is critical for weakly profiling SCA.
In weakly profiling SCA, identifying target cryptographic operations and preprocessing
the associated leakages are not the only prerequisites. Recall that the efficacy of weakly
profiling SCA is based on the bijective relationship between the plaintext/ciphertext
and the key-related intermediate data. If plaintext/ciphertext leakages persist, they can
reduce the performance of the plaintext-based model since it is primarily trained using
plaintext/ciphertext. This diversion compromises the plaintext-based model’s efficacy
in drawing a clear link between plaintext and intermediate data. Hence, as emphasized
in Section 3.1, a fundamental assumption underpinning the weakly profiling SCA is the
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absence of leakages in side-channel traces originating from plaintext/ciphertext. If the
assumption does not hold, leakage preprocessing is necessary to guarantee this assumption.

Recall that we assume an adversary knows the plaintexts/ciphertexts (refer to Sec-
tion 3.1). If the plaintext is masked, we expect no plaintext leakages on the microcontrollers.
Simple power/EM analysis (SPA/SEMA) would be required to remove the leakages cor-
responding to the plaintext loading, ensuring that the plaintext-based model does not
combine plaintext shares.. For the more naive implementations, e.g., low-security assurance
devices with direct plaintext loading, a simple yet effective solution might be to conduct a
preliminary leakage analysis on the plaintext and eliminate or mask the relevant leaking
features.

If the crypto algorithm is mask-protected. When performing leakage analysis, the de-
tected leakages would only indicate the plaintext processing (if it is unmasked), as
intermediate data, such as Sbox output, would not have first-order leakages. Note
that most of the datasets considered in this paper are mask-protected.

If the crypto algorithm is not protected (rarely seen in real world). An adversary would
first perform SPA/SEMA to identify the cryptographic operations (e.g., 10 AES
rounds for AES-128), then perform leakage segmentation and side-channel attacks
only on the identified part.

If SPA/SEMA does not work due to, for instance, hardware crypto implementations or
leakage traces being too noisy. Then, since the data loading operations would happen
before the actual cryptographic operations, an adversary performs leakage analysis
and removes the first detected leakages.

In summary, an adversary would perform plaintext leakage analysis and SPA/SEMA
to determine where the plaintext leakage is and where the actual cryptographic operation
happens. Then, the adversary can determine how to remove the plaintext leakage based
on the scenarios discussed above.

5 Experimental Results
In this section, we benchmark the attack performance of different attack methods. Besides
comparing with various non-profiling SCA methods, including Correlation Power Analysis
(CPA), Mutual Information Analysis (MIA), Multi-output DLSCA (MOR), and Differential
Deep Learning Analysis (DDLA), we also benchmark with template attack and DLSCA
to demonstrate the attack capability of weakly profiling SCA. Since non-profiling and
profiling attacks follow different attack strategies, the benchmarks are performed with two
different settings. In Section 5.4 (hyperparameter evaluation of weakly profiling SCA),
only the first setting is considered.

Comparison with non-profiling attacks. The same leakage traces are used for training/-
partitioning and attack (they are just drawn from the same set). The number of
traces for each dataset is detailed in Table 2.

Comparison with profiling attack. The profiling uses a set of leakage traces; the numbers
follow Table 2. Then, a new set of traces is used for the key recovery (attack); the
corresponding data sizes are detailed in Table 1. Note that weakly profiling SCA
can attack different data with the same secret key.

The deep learning (DL) model and hyperparameters are identical for all DL-based
attack methods, i.e., DDLA, MOR, weakly profiling DLSCA, and profiling DLSCA. We
acknowledge that tuning DL models for each dataset and method would potentially lead
to better attack performance. However, it also introduces more variables, such as DL
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Table 1: The number of attack traces for the profiling setting.
ASCAD_F ASCAD_R CHES_CTF AES_RD AES_HD

Trace num. 30 000 30 000 5 000 20 000 20 000

complexity and training effort, making our benchmark extremely complex. Additionally,
benchmarking with customized DL could introduce more uncertainty, as one cannot
guarantee that it is optimal for a specific setting. Consequently, we employ a convolution
neural network (CNN) from [PWP22] due to its excellent performance in various attack
settings.7 The network consists of a convolution block with a convolution layer (kernel
number: 4; size: 40; stride: 20), an average pooling layer (size: 2; stride: 2), and a batch
normalization layer, followed by two dense layers with 400 neurons and an output layer
with 256 neurons. Selu is used for the layer activation except for the last layer that uses
Softmax; the batch size is 800. Regarding training epochs (the number of iterations that
allow the model to learn and adjust its parameters based on the data), the DL model
for DDLA has trained for 50 epochs for each key guess [Tim19]8; the rest of the DL
models are trained for 250 epochs. An evaluation of training epochs can be found in
Section 5.4.3. Data augmentation is applied to all DL-based attack methods for a fair
comparison, which is realized by adding a layer, right after the input, that randomly shifts
the leakage measurement within a pre-defined augmentation threshold γ equal to 10. A
study of data augmentation is given in Section 5.4.1. In terms of template attack, we use
Principle Component Analysis [WEG87] to reduce the trace dimension to 20: the best
parameter ranging from 5 to 50 with a step of 5.

The rest of the attack settings follow Table 2. To reduce the effect of random factors
(e.g., random weight initialization) on the attack performance, each DL-based attack
method is executed ten times independently and the averaged results are presented9.
Indeed, compared with a single attack, the averaged results from multiple attacks better
represent the general attack performance of an attack method.

5.1 Datasets
Our experiments consider five datasets. Four are software targets, and one is a hardware
target. All software targets are protected - three with masking and one with a hiding
countermeasure. The detailed attack settings of these datasets are presented in Table 2.
The last columns list the targeted intermediate data. Based on our preliminary correlation
analysis, all tested datasets have none or very limited first-order leakage on the key-
dependent intermediate data (<0.03) and plaintexts/ciphertexts (<0.04).

Table 2: Summary of the tested datasets.
Dataset Traces/Samples Protection Target intermediate value

ASCAD_F 30 000/1 400 First-order boolean masking Sbox(p2 ⊕ k2)

ASCAD_R 30 000/5 000 First-order boolean masking Sbox(p2 ⊕ k2)

CHES_CTF 40 000/2 200 First-order boolean masking Sbox(p0 ⊕ k0)

AES_RD 30 000/3 500 Random delay Sbox(p0 ⊕ k0)

AES_HD 30 000/1 250 None Sbox−1(c7 ⊕ k7) ⊕ c11

7The DL models were implemented in Python version 3.6, using TensorFlow library version 2.6.0. The
model training algorithms were run on an Nvidia GTX 1080TI graphics processing unit (GPU), managed
by Slurm workload manager version 19.05.4.

8We have also tried with 100 epochs but noticed that it performs worse.
9Success rate is also a widely used metric to represent the attack performance. However, if both attacks

reach a 100% success rate, the attack performance difference is indistinguishable. Therefore, this paper
does not employ the success rate to interpret results.
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ASCAD_F. The ASCAD datasets contain the measurements from an 8-bit AVR micro-
controller running a masked AES-128 implementation [BPS+20].

ASCAD_R. The trace pattern of ASCAD_F is different (more noisy) from ASCAD_F
due to different measurement configurations10.. Besides, ASCAD_R also provides
traces with random keys. We only use the leakage traces with a fixed key (thus, the
dataset part that is commonly used for testing with DLSCA).

AES_RD. The target smartcard is an 8-bit Atmel AVR microcontroller. The protection
uses random delay countermeasures described by Coron and Kizhvatov [CK09].
Adding random delays to the normal operation of a cryptographic algorithm affects
the misalignment of important features, making the attack more difficult to conduct.

CHES_CTF. This dataset refers to the CHES Capture-the-flag (CTF) AES-128 measure-
ments released in 2018 for the Conference on Cryptographic Hardware and Embedded
Systems (CHES). The traces consist of masked AES-128 encryption running on a
32-bit STM microcontroller.11

AES_HD. This dataset is first introduced in [KPH+19], targeting an unprotected hardware
implementation of AES-128 written in VHDL in a round-based architecture. Side-
channel traces were measured using a high sensitivity near-field EM probe, placed
over a decoupling capacitor on the power line on Xilinx Virtex-5 FPGA of a SASEBO
GII evaluation board.12.

Note that for the AES_HD dataset, we attack the last round of AES with the knowledge
of ciphertexts c; for the rest, we attack the first round of AES with plaintexts d. As
mentioned, both plaintexts and ciphertexts are valid targets for weakly profiling SCA.

5.2 Attack Performance
In this section, we evaluate the attack performance of different attack methods. The
benchmark results are shown in Table 3 and Table 4. The results for different leakage
models are separated by ’/’. The HD leakage model is only used for the AES_HD dataset;
other datasets use the HW leakage model. Besides, since MIA and DDLA do not support
a bijective leakage model such as ID, LSB is used as a replacement, following the original
papers. Key rank (see Section 2.4) is used to assess the attack performance of each method.
As mentioned, all traces (the numbers are detailed in Table 2) are used for attacks. Aligned
with other non-profiling SCAs, weakly profiling SCA uses the same traces for training an
attack. The key recovery speed represents the attack performance given the same number
of attack traces, measured by the required number of attack traces to reach a certain key
rank, e.g., zero. If an attack cannot break the target with the given number of attack
traces, its performance is measured by its final key rank value (such as KR10, meaning
the key rank of the correct key is 10). Our method is benchmarked with non-profiling and
profiling attacks. The best results obtained in the non-profiling settings are marked in
bold. For profiling settings, they are marked in bold italic.

Weakly profiling SCA performs significantly better in all test cases when compared
to non-profiling attack methods, as shown in Table 3. For instance, when attacking the
AES_RD dataset with the HW leakage model, weakly profiling SCA only requires a
single trace to reveal the key, while the second best, DDLA, requires more than 2 500
traces. Although DDLA may perform better by optimizing DL model hyperparameters
and training settings, it always suffers from significant training effort (more than four hours

10https://github.com/ANSSI-FR/ASCAD/issues/13
11https://chesctf.riscure.com/2018/news
12http://aisylabdatasets.ewi.tudelft.nl/aes_hd.h5
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per leakage model). CPA reaches a low key rank with the AES_RD dataset. However,
DL is more resilient than CPA when facing the random delay countermeasure. MOR
is considered an improved version of DDLA regarding computation complexity, as an
adversary only needs to train one DL model instead of 256 for a subkey byte. However,
from the attack performance perspective, MOR improves marginally compared to DDLA.

Table 3: Performance benchmark with non-profiling attacks. The results for different
leakage models are separated by ’/’. Before ’/’: HW or HD (AES_HD only); after ’/’: ID
or LSB (MIA and DDLA only).

Dataset CPA MIA MOR DDLA This work

ASCAD_F KR158/KR46 17 085/3 521 1 957/638 KR7/309 8/111

ASCAD_R KR64/KR7 KR192/4 616 KR28/KR9 27 266/KR48 20/19

CHES_CTF KR138/KR220 KR133/KR241 KR6/KR31 KR54/KR85 6 121/KR2

AES_RD KR11/KR45 KR3/9 320 KR33/3 112 2 541/KR2 1/57

AES_HD KR18/KR144 KR203/KR156 5 593/KR10 KR26/KR20 60/KR6

From Table 3, first-order CPA is not working on masked datasets, while a DL model
helps recombine physical leakages of mask shares, thus leading to successful key recovery.
The performance of MIA aligns with the observation report in [EST+22] that certain
second-order moments in the ASCAD dataset can be captured with classical attacks, but
more attack traces are required to recover the secret. Note that high-order CPA and
MIA might lead to faster key retrieval. However, given our specific threat model, where
the adversary is limited to observing only the cipher input and output, a substantial
investment of effort would be required to construct second-order features for all leakage
features with potential information loss [BGP+11]. For instance, given leakage traces with
n features, second-order CPA requires n2 times correlation analysis. This renders the
attack practically infeasible within the constraints of our threat model.

In comparisons with profiling attacks, as presented in Table 4, weakly profiling SCA
(more specifically, weakly profiling DLSCA), template attack, and profiling DLSCA exhibit
impressive results. Profiling DLSCA performs better than the template attack, indicating
its strong capability in handling and combining complex leakage features. As mentioned,
weakly profiling SCA is now working in the profiling setting: the profiling and attack traces
are different. Still, our method surpasses the performance of the profiling DLSCA in seven
out of ten test scenarios. One may be surprised that weakly profiling SCA can surpass
the effectiveness of traditional profiling SCA despite having weaker attack assumptions.
This phenomenon can be attributed to two key factors. First, unlike profiling SCA, which
typically concentrates on a single-label hypothesis, weakly profiling SCA engages with
probability vectors across all label hypotheses. This approach significantly enhances
attack performance in methods like [BK02] and profiling DLSCA [WWK+23]. Second,
if the plaintext-based model fθd demonstrates superior generalization capabilities over
intermediate data-based model fθ — possibly owing to advanced trace preprocessing or
refined hyperparameter optimization — the weakly profiling attack can indeed outperform
its profiling counterpart. However, it is critical to acknowledge that, in contrast to profiling
SCA, weakly profiling SCA cannot directly learn key-related intermediate data under a
weaker attack assumption. Assuming an extensive collection of training traces and optimal
adjustments to the profiling model, one would anticipate a more robust attack efficacy
from profiling SCA than its weakly profiling counterpart. As an example, the best profiling
attack can break some of the test datasets with a single trace [PWP22].

Based on the above results, weakly profiling DLSCA can overcome the protection
schemes in the tested datasets with only raw traces as inputs. However, higher-order
masking might compromise its efficacy, a limitation shared with other profiling and non-
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Table 4: Performance benchmark with Profiling DLSCA. The results for different leakage
models are separated by ’/’. Before ’/’: HW or HD (AES_HD only); after ’/’: ID.

Dataset Template attack Prof. DLSCA This work

ASCAD_F 300/712 464/147 8/44

ASCAD_R 244/888 458/62 30/214

CHES_CTF KR22/KR72 1 943/KR25 230/KR90

AES_RD KR36/KR96 530/163 22/136

AES_HD 15 195/KR131 7 077/KR21 3 173/KR4

profiling methods. We expect that specific leakage pre-processing techniques, such as
leakage recombination or access to design information such as mask shares, may become
essential. This need arises particularly when the classifier, such as a DL model, lacks the
capability to integrate the physical leakages originating from multiple mask shares.

5.3 Robustness to Desynchronization
Desynchronization, a.k.a. misalignment, is a frequent issue in side-channel traces, disrupting
the timing and alignment of key features. This misalignment causes informative points in
the trace to be out of place, complicating the process of extracting useful leakage features.
This section benchmarks the robustness of different attack methods under the influence of
desynchronization. Two desynchronization levels, 50 and 100, are considered to simulate
the time-jitter effect, realized by randomly shifting the traces within the desynchronization
level. Our preliminary analysis shows that CPA, MIA, and template attacks do not recover
the key when attacking the desynchronized traces. Therefore, the corresponding results are
discarded from the following tables. On the other hand, DL models, especially convolutional
neural networks (CNNs), are more resilient to masking and desynchronization due to
their shift-invariance property [KWPP23]. Consequently, DL-based attacks, including
weakly profiling DLSCA, would also benefit from this characteristic. The results are shown
in Table 5 and Table 6. Again, the best results obtained for the non-profiling and profiling
settings are marked in bold and bold italic, respectively.

Table 5: Performance benchmark with desynchronization 50. The results for different
leakage models are separated by ’/’. Before ’/’: HW or HD (AES_HD only); after ’/’: ID
or LSB (DDLA only).

Dataset MOR DDLA This work Prof. DLSCA This work

ASCAD_F 2 910/KR34 KR152/KR118 10/112 985/280 14/531

ASCAD_R KR12/KR62 KR69/KR156 54/17 KR9/223 22/942

CHES_CTF KR5/KR120 KR124/KR123 KR4/KR116 KR41/KR56 KR14/KR135

AES_RD KR21/3 200 2 517/KR7 1/555 429/97 21/95

AES_HD 6 098/KR8 KR94/KR116 951/KR14 14 127/KR27 KR2/KR13

Our method performs significantly better than its counterparts in non-profiling settings.
It performs the best in nine of ten attack scenarios; for the cases where the key rank
reaches zero (the correct key ranks the first), it performs at least 6× better than other
methods. MOR outperforms our method in one test case. Compared with the attack
performance with no noise (Table 3), MOR is slightly influenced by added noise when
attacking AES_HD, while weakly profiling SCA experiences a considerable performance
reduction. Indeed, when targeting the ciphertext with weakly profiling SCA, the classifier
has to find the leakages related to the Sbox−1 output. However, AES_HD has limited
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leakage on this intermediate data, thus increasing the learning difficulties for our method.
MOR, on the other hand, utilizes the Hamming distance labeling directly. The stronger
leakage could lead to robust performance.

Moving to the profiling setting, profiling DLSCA achieves a similar attack performance
to our method. Out of ten test cases, profiling DLSCA is better in four cases, and weakly
profiling DLSCA is better in the rest. Compared with the results in Table 3, profiling
DLSCA performs better in more test cases. Indeed, the introduction of time randomness
reduces the capability of both fθd and fθ, which could potentially reduce the capability
difference between these two DL models. Additionally, since our method is based on
the correlation between PDk and fθd , a reduced fθd would require more leakage traces
to compensate for the performance loss. We acknowledge that some attacks/profiling
models could perform better than presented results, i.e., attacking different intermediate
data [GJS19] or using fine-tuned mode [PWP22]. However, weakly profiling SCA could
also benefit from these approaches.

Similarly, our method performs the best in most scenarios in non-profiling settings when
increasing the desynchronization level from 50 to 100. As shown in Table 6, with a single
DL model, weakly profiling SCA reaches a key rank of zero in seven out of ten cases, and
the attack performance is superior to its counterparts. Compared with profiling DLSCA,
there are more cases (five) where profiling DLSCA performs better. This observation is
aligned with our underlying assumption between profiling DLSCA and our method. It
suggests that the potential of profiling DLSCA may be even greater than current results,
provided it undergoes further optimization and fine-tuning.

Table 6: Performance benchmark with desynchronization 100. The results for different
leakage models are separated by ’/’. Before ’/’: HW or HD (AES_HD only); after ’/’: ID
or LSB (DDLA only).

Dataset MOR DDLA This work Prof. DLSCA This work

ASCAD_F KR5/KR34 KR153/KR149 8/3 373 2 139/1 695 17/1 408

ASCAD_R KR12/KR62 KR68/KR130 154/867 KR24/1 055 30/2 245

CHES_CTF KR13/KR137 KR125/173 KR12/KR99 KR149/KR59 KR9/KR91

AES_RD KR54/4 521 4876/KR4 1/561 732/198 22/KR2

AES_HD 6 077/KR9 KR131/KR142 166/KR10 10 691/KR8 19 146/KR16

5.4 Hyperparameter Evaluation
This section explores the influence of various hyperparameters connected with the training
process on the weakly profiling SCA’s attack performance. Indeed, since we are using a
neural network architecture from a related work [PWP22], it remains unclear how factors
not connected with the architecture influence the performance of our attack.

5.4.1 Data Augmentation

The processing of leakage measurements is crucial for executing an effective attack. In this
study, data augmentation significantly contributes to the success of the proposed attack.
Data augmentation is a regularization technique that prevents the profiling model from
becoming overly focused on specific features, enabling it to concentrate on global features.
In side-channel attacks, where data leakages are found in a limited number of features,
such techniques impede the profiling model from overfitting irrelevant features.13

13Various strategies can also be adopted to counteract overfitting. For instance, early stopping techniques
may be utilized, which terminate model training if a tracked metric does not improve after a specified
number of epochs.
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Table 7: Data augmentation (DA) analysis. The results for different leakage models are
separated by ’/’. Before ’/’: HW or HD (AES_HD only); after ’/’: ID.

Dataset DA-0 DA-5 DA-10 DA-20

ASCAD_F KR10/KR46 8/118 8/111 8/429

ASCAD_R KR64/KR143 19/13 20/19 2/12

CHES_CTF 8 573/KR74 8 506/KR10 6 121/KR2 11 742/KR53

AES_RD KR50/KR131 1/22 085 1/57 1/54

AES_HD KR35/KR66 11 916/KR15 60/KR6 256/KR8

Table 7 shows the augmentation threshold’s influence on the attack performance. When
setting the data augmentation threshold to zero, weakly profiling SCA could only recover
the key in one test case. Then, one can observe a performance boost when introducing
random shifts to datasets. The ranges between DA-5 and DA-10 are optimal for most test
cases. When the augmentation threshold reaches 20, the attack performance worsens in
several settings. We can conclude the necessity of data augmentation for weakly profiling
SCA. Recall that one of the fundamental assumptions for weakly profiling SCAis that the
side-channel traces do not have plaintext leakage. The random shifting of the leakage
traces would reduce the potential plaintext leakages (if any) and help the plaintext-based
model better focus on the intermediate data. Still, a too-large data augmentation threshold
would reduce the attack performance, as it would increase the difficulties of the DL model
fitting the leakage, necessitating longer training and larger DL models.

5.4.2 Dataset Size

DL-based methods are known to be data-hungry [A+18]. In the SCA context, more leakage
traces would be helpful to compensate for noise and reveal the underlying distribution
of leakage features. When looking at Table 8, as expected, more training traces lead to
better attack performance for weakly profiling SCA.

Table 8: Study on the influence of the data size. The results for different leakage models
are separated by ’/’. Before ’/’: HW or HD (AES_HD only); after ’/’: ID.

Dataset 5 000 10 000 20 000 30 000

ASCAD_F KR3/KR46 202/KR37 7/848 8/111

ASCAD_R KR4/KR40 56/KR2 45/60 20/19

CHES_CTF KR212/KR187 KR72/KR121 KR36/KR114 KR10/KR52

AES_RD 707/KR50 1/KR14 1/2 332 1/57

AES_HD KR18/KR48 KR11/KR25 4 709/KR4 60/KR6

One could observe that CHES_CTF and AES_HD require more traces than the other
datasets. For AES_HD, as discussed before, the possible cause would be the limited
leakage on the Sbox−1 output. On the other hand, the performance for CHES_CTF could
be explained by its leakage type. According to the literature [WPP22b, RWPP21], the
CHES_CTF dataset mainly contains HW leakages, while when attacking with the ID
leakage model, it is less likely to reveal the key with the same number of attack traces.
Since the proposed method is trained with plaintext/ciphertext values, the method’s
efficiency intrinsically relies on the intermediate data ID leakages (HW of the intermediate
data is injective to plaintexts/ciphertext). When a dataset mainly has HW leakages, the
plaintext-based model fθd would struggle in mapping the plaintext to the (HW) leakage
features, finally leading to a reduced attack performance.
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5.4.3 Training Epochs

The number of training epochs is not inherently tied to enhancing the capability of a
DL model to map inputs to outputs. In fact, excessive training epochs can diminish
the DL model’s generalization capacity when presented with previously unseen data, a
phenomenon known as overfitting. However, in the context of weakly profiling SCA, since
an adversary typically employs the same leakage traces for both profiling and attack phases,
concerns regarding deep learning generalization and overfitting become less significant.

Table 9: Study on the influence of the training epoch. The results for different leakage
models are separated by ’/’. Before ’/’: HW or HD (AES_HD only); after ’/’: ID.

Dataset 50 100 150 200

ASCAD_F 34/451 8/237 8/112 8/81

ASCAD_R KR3/KR6 54/19 18/13 19/14

CHES_CTF KR22/KR162 KR9/KR160 28 065/KR73 6 855/KR17

AES_RD 1/KR36 1/KR2 1/54 1/64

AES_HD 77/KR6 74/KR6 19/KR5 58/KR4

Table 9 shows the performance variation of weakly profiling SCA when training with
different numbers of epochs. Training with 50 epochs is insufficient for most settings;
with an extra 100 epochs of training (150), eight out of ten attacks lead to successful key
recovery. For the CHES_CTF dataset, one could observe a steady decrease in key rank
value, indicating that the DL model is gradually transferring the HW-related feature and
learning to connect with plaintext labels. This observation confirms our assumption in
Section 5.4.2 about CHES_CTF performance and the limitation of weakly profiling SCA.
Simultaneously, within the range of tested epochs, weakly profiling SCA is robust to the
overfitting effect.

6 Conclusions and Future Works

This paper introduces a novel weakly profiling SCA leveraging the bijectivity between
plaintext/ciphertext and key-related intermediate data. We define the plaintext distribution
(PDk) to approximate the likelihood of each plaintext being selected as the correct plaintext
given a key guess k, then use this approximation to correlate with the prediction output of a
plaintext-based model trained with plaintext/ciphertext to retrieve the correct key. Thanks
to this bijectivity, the weakly profiling SCA is performed in a profiling way, thus bypassing
a common prerequisite of non-profiling SCA: non-injectivity of the intermediate data or
leakage model. Our method shows outstanding performance compared with state-of-the-art
non-profiling methods. Besides, the attack performance of weakly profiling SCA with a
DL classifier is comparable with profiling DLSCA, which relies on a more restricted attack
assumption: the availability of a cloned device.

Several directions can be investigated following this work. First, knowing that PDk is
imperfect, one could investigate a better approximation of fθd with, for instance, stochastic
models. Second, since the proposed method relies on a priori leakage model, finding
a solution to select/estimate the leakage model will be valuable. Third, it would be
interesting to compare our method against other attack methods. Finally, exploring the
usage of weakly profiling SCA in other ciphers would be an exciting topic.
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