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Abstract. Private Stream Aggregation (PSA) schemes are efficient pro-
tocols for distributed data analytics. In a PSA scheme, a set of data pro-
ducers can encrypt data for a central party so that it learns the sum of
all encrypted values, but nothing about each individual value. Thus, a
trusted aggregator is avoided. However, all known PSA schemes still re-
quire a trusted party for key generation. In this paper we propose the first
PSA scheme that does not rely on a trusted party. We argue its security
against static and mobile malicious adversaries, and show its efficiency
by implementing both our scheme and the previous state-of-the-art on
realistic IoT devices, and compare their performance. Our security and
efficiency evaluations show that it is indeed possible to construct an ef-
ficient PSA scheme without a trusted central party. Surprisingly, our re-
sults also show that, as side effect, our method for distributing the setup
procedure also makes the encryption procedure more efficient than the
state of the art PSA schemes which rely on trusted parties.

Keywords: Private Stream Aggregation · IoT · Privacy.

1 Introduction

Internet of Things (IoT) data analytics enable central parties to learn statistics
derived from device data. This data is often privacy sensitive, and thus sys-
tems must be designed with privacy in mind. Consider for example the concept
of smart metering [27] where a central party calculates the sum of readings of
household electricity meters in real-time. Disclosing individual readings in real-
time reveals a surprisingly high amount of privacy sensitive data about a house-
hold [34]. Thus an untrusted central party should not have access to individual
data readings. There exist works studying how to centrally derive statistics with-
out revealing individual data points for the case of smart meters [28,31,23]. We
are however interested in developing general techniques for IoT data analytics.

A known technique for data analytics is Functional Encryption (FE) [8],
where knowledge of a functional decryption key allows function evaluation on
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encrypted data. For IoT data analytics on privacy sensitive data, the FE sub-
class of (Decentralized) Multi Client Functional Encryption ((D)MCFE) is par-
ticularly interesting, since it defines FE for multiple parties contributing en-
crypted data for a centralized evaluator. However, IoT devices are often con-
strained [9], i.e. they have low computational power and memory, operate over
low throughput lossy networks or are battery powered. Even the most efficient
DMCFE schemes [18,2,19], which evaluate inner products of encrypted data, are
too costly for constrained environments since they rely on bilinear parings or
have ciphertext sizes proportional to the number of data producers.

When the evaluated function is specifically a sum, one can instead consider
Secure Aggregation (SA) [7] and Private Stream Aggregation (PSA) [39].

SA schemes, which are proposed in the context of federated learning, compute
the plaintext sum of a set of encrypted vectors, with a focus on robustness
against frequent client drop-outs (e.g. 6-10% drop-outs per summation [6]). The
robustness is achieved by introducing multiple rounds of client interaction and
computation per summation, making SA schemes unfit for constrained devices.

PSA schemes have instead been suggested for IoT data analytics applications
which involve constrained devices. PSA schemes also compute the plaintext sum
of encrypted values, but instead focus on efficiency. As such, they use efficient
primitives and avoid client interaction. However, to the best of our knowledge,
all known PSA schemes rely upon a trusted party during the setup procedure,
which includes key generation [39,15,26,30,5,21,3,42,22,44,41].

We argue that since the purpose of a PSA scheme is to allow an untrusted
party to derive statistics without learning anything about individual data points,
relying on a trusted party is not in line with the goals of PSA. Such a design
erodes trust in a privacy enhancing technology and is particularly engraving
for PSA schemes, since their purpose is to avoid a central party with access to
individual data. We therefore propose DIPSAUCE, a PSA scheme which does not
rely on trusted parties, and which is suitable for constrained devices.

1.1 Contributions

In this paper we (1) introduce a definition for distributed setup PSA and its cor-
responding security model, (2) present DIPSAUCE, the first PSA scheme which
does not rely on a trusted party, (3) prove this scheme secure under static cor-
ruptions, (4) describe modifications for security under mobile corruptions, (5)
demonstrate its efficiency by implementing it on realistic, off-the-shelf devices
advertised as being suitable for e.g. smart-metering. Since no other PSA scheme
is evaluated on realistic devices, we also (6) implement two state-of-the-art PSA
schemes [22,44] on the same devices and compare the performance to our scheme.
All code and raw data are made publicly available [12,13].

Looking ahead, DIPSAUCE shows a speedup of 78x and 49x respectively
compared with the suggestions for a distributed setup in KH-PRF-PSA [22] and
LaSS-PSA [44] for 10000 parties. For the encryption procedure our results show
a speedup of 22x compared to KH-PRF-PSA and 50x compared to LaSS-PSA.
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1.2 Our Techniques

It is known how to distribute the setup procedure between all n parties (see
Section 1.3 for details). This is however too costly for constrained devices. Our
key innovation is a mechanism which reduces the number of key agreements to
k << n, while still tolerating a high degree (>> k) of corruptions among the
parties, and without introducing network overhead. We do this by leveraging
a k-regular graph of order n where each vertex represents a party in the sys-
tem. The graph is randomly permuted, and each party is assigned a committee,
consisting of the parties represented by its k neighbouring vertices in the ran-
domly permuted graph. Each party then engages in non-interactive pairwise key
exchange, but only has to do so for its committee of the k random neighbours.

By using a random permutation of a k-regular graph, we guarantee a random
committee of the correct size for each user. This further enables us to let the graph
structure (but not the random permutation of it) be known in advance and stored
locally with the parties. Each party can then, instead of expensively obtaining a
large random graph over the network, locally derive a random permutation of the
graph defined by a single shared randomness seed from an external distributed
randomness beacon service [17,20], This results in minimal network overhead
which enables a distributed setup on constrained devices.

1.3 Related Work

The current state-of-the-art for PSA schemes are the KH-PRF-PSA [22] and
LaSS-PSA [44] schemes. While TERSE [41] measures faster encryption times,
these results are not directly comparable with KH-PRF-PSA and LaSS-PSA since
they are based on precomputations and only measure the "on-line" time. Similar
precomputations can be done for LaSS-PSA and KH-PRF-PSA as well, and the
resulting "on-line" stages then consists of a single modular addition, while the
TERSE "on-line" stage uses more complex operations. A direct comparison is
therefore needed before it can challenge the state-of-the-art.

Notably, both KH-PRF-PSA and LaSS-PSA briefly discuss how to avoid a
trusted party by using a distributed setup. Both works propose to adopt the
methods of the DMCFE scheme by Chotard et al. [19], where centrally generated
keys are replaced with pairwise agreed upon keys between all n parties. These
methods are secure under adaptive corruptions. However, neither KH-PRF-PSA
nor LaSS-PSA have any formal protocol description, security evaluation or effi-
ciency evaluation of the proposal for a distriburted setup. As we show in Sec-
tion 4, these methods are too inefficient for constrained environments.

We also note that the approach of securing a distributed setup by pairwise
user key agreement is present in SA schemes [7], and that Bell et al. [4] propose
a version of the technique which lessens the CPU load by establishing smaller
random committees. However, in contrast to our non-interactively generated
random permutation of a k-regular graph, Bell et al. resort to users interactively
generating a directed random graph over the network to provide security against
static malicious adversaries. Therefore, their approach does not transfer to PSA
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schemes, which need to work with constrained network resources. Bell et al. do
also propose a version with non-interactive graph generation, but which can only
achieve security against a semi-honest static adversary.

Let us summarize. State-of-the-art PSA schemes [44,22] sketch distributed
setup procedures for PSA schemes, which are possible to prove secure under
adaptive corruptions, but which are infeasibly inefficient due to high CPU over-
head. The state-of-the-art SA scheme [7] also provides a distributed setup, proved
secure under static malicious corruptions, but which is infeasible for constrained
devices due to high network overhead.

Related Concurrent Work Concurrently to our work, the FLAMINGO SA
scheme [32] has proposed to rely on a similar mechanism for non-interactively es-
tablishing small random committees. Let us elaborate on the differences between
DIPSAUCE and FLAMINGO. DIPSAUCE is a PSA scheme focused on efficiency
and suitable for constrained devices. FLAMINGO is an SA scheme focused on
dropout resilience and not suitable for constrained devices. Both works rely on a
novel strategy where a randomness beacon is used to non-interactively construct
a graph with small random committees of neighbours. FLAMINGO establishes
a graph by joining 2 of the n vertices with an edge if a random value is below a
threshold. DIPSAUCE establishes a graph by permuting a k-regular graph based
on a random input. In FLAMINGO, the number of neighbours to a vertex is
probabilistic, while in DIPSAUCE each vertex always has k neighbours, which
allows a simpler security proof. Our work first appeared on ePrint at the 17:th
of February 2023 and [32] later appeared on the 4:th of March 2023. Although
we published our work first, to the best of the author’s knowledge both works
were developed unaware of each other.

2 Preliminaries

Notation: λ ∈ N denotes the computational security parameter which controls
the security level of cryptographic components. A specific party in a scheme is
denoted Pi. We use the notation a⃗[i] to denote the i’th element of the vector a⃗.
We use [n] as a short hand notation for {1, . . . , n}. Let Perm(n) be the lexico-
graphically ordered set of permutations of [n]. We denote the k:th permutation
of this set as Permk(n). For any permutation of [n], ρk = Permk(n), we denote
the value of i:th element in ρk as ρk(i). We denote a graph as G = (V,E), where
V is the set of vertices in the graph and E the set of edges. The set of neigh-
bouring vertices of vi ∈ V is denoted N(vi), and J⃗i denotes the set of all indices
of vertices in N(vi). We denote the floor function of x, i.e. the greatest integer
less than or equal to x, as ⌊x⌋. As a shorthand we sometimes write (−1)(i<j).
In this notation (i < j) is the boolean function so that (−1)(i<j) = (−1) when
i < j and (−1)(i<j) = 1 when i > j. The function is undefined for i = j.

Private Stream Aggregation: We here give an informal definition of standard
PSA. A formal definition is available in the full version of this paper [11]. Our
notion of distributed setup PSA is given in Section 3.
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In a Private Stream Aggregation scheme PSA = (Setup,Enc,Aggr) an ag-
gregator can learn the sum of the inputs {m1, . . . ,mn}, from a set of parties
{P1, . . . ,Pn} without learning the individual inputs. The Setup procedure is ex-
ecuted by a trusted party and generates an encryption key for each party, and
the aggregation key for the aggregator. The Enc procedure is executed by party
Pi, and encrypts input mi. Then, the aggregator can execute Aggr which outputs
the sum of all user inputs. Informally, a PSA scheme is correct if the output of
Aggr will always be equal to the sum of the inputs, and secure if nothing but
the sum of the inputs of honest users is learned by an adversary.

k-Regular Graphs: A k-regular graph is a graph in which each vertex has exactly
k neighbours. It is well known how to efficiently generate regular graphs [33].

Distributed Randomness Beacons: In a Distributed Randomness Beacon (DRB)
protocol [17], a set of entropy providers jointly compute publicly verifiable ran-
domness. The beacon function, r = Beacon(t), returns an m-bit near-uniformly
random value r at each epoch e. Any party can obtain and verify this random-
ness, i.e. also external parties not part of the randomness generation.

Informally, a secure DRB should be unpredictable, i.e. the advantage for an
adversary predicting r before the epoch e begins should be negligible, unbiased,
i.e. r must be statistically close to an m-bit uniformly random string, and live,
i.e. the probability of no output during each epoch should be negligible. These
properties should hold also when a fraction of the entropy providers are corrupt.

Non-Interactive Key Exchange: A NIKE scheme, defined in Definition 1, is cor-
rect if Pr[SharedKey(pp, pki, skj) = SharedKey(pp, pkj , ski)] = 1. A NIKE scheme
is secure against a computationally bounded adversary given (pp, pki, pkj) if it
cannot distinguish the output of SharedKey(pp, pki, skj) from a random string
of the same length. We refer to [19] for a full definition of the security game.

Definition 1 (NIKE). A Non-Interactive Key Exchange scheme establishes a
shared key between two parties and consists of the following algorithms:
Setup(λ): On input a security parameter λ, output public parameters pp.
KeyGen(pp): On input the public parameters pp, output a keypair (pki, ski).
SharedKey(pp, pki, skj): On input the public parameters pp, a public key pki and
secret key skj, deterministically output a shared key K.

Pseudo-Random Functions: Let F denote a family of efficiently-computable
functions Fk : X → Y indexed by k ∈ K. The family F is said to be a (t, ϵ)
strong PRF if for every k ∈ K, no adversary A running in time t can distinguish
Fk from a random function f : X → Y . We will denote such a function Fk as
PRFk. Further, F is additively key-homomorphic if ∀Fki

, Fkj
∈ F , the condition

Fki
(x) + Fkj

(x) = Fki+kj
(x) holds. We denote such a function as KH-PRFk.
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Sum-of-PRFs: The sum-of-PRFs technique, first introduced in [16], allows par-
ties {P1, . . . ,Pn} to derive the sum of their inputs {m1, . . . ,mn} without re-
vealing the individual mi:s from honest users. An adversary who corrupts the
aggregator and m < n−2 parties can then only learn the sum of the inputs of the
honest users. The technique assumes that each pair of users, Pi,Pj has a shared
secret Ki,j . To mask its message mi, Pi derives ci ← mi +

∑
j∈[n]\{i}(−1)i<j ·

PRFKi,j (x) (note the (−1)i<j notation). Then, the sum of all mi can be calcu-
lated as

∑n
i=1 ci =

∑n
i=1 mi. Summing any set smaller than n of ci containing

at least 2 ciphertexts from honest users will result in a random output.

3 DIPSAUCE

As we show in Section 4, the suggestions for distributing the setup in state-of-
the-art PSA schemes [44,22] are too inefficient for use on constrained devices. To
address this, we now present our protocol for DIstributed setup PSA for Use in
Constrained Environments (DIPSAUCE). It takes inspiration from the LaSS-PSA
scheme [44, Section 4], but crucially differs by not relying on a trusted party.

Approach: The suggestions for distributing the setup procedures of LaSS-PSA
and KH-PRF-PSA use the sum-of-PRFs technique, which works by each party
evaluating a PRF once for each party in its committee. This committee consists
of all other parties, and thus its size is n− 1. In these schemes, a party is secure
against an adaptive adversary which corrupts up to n − 2 of the committee
parties (but not the targeted party itself). While this is a very strong security
guarantee, the resulting protocol is rendered too inefficient for practical use (see
Section 4). The main bottleneck for this inefficiency is the committee size.

Simply shrinking the committee size would make the protocol more efficient,
but simultaneously lower the corruption tolerance, sacrificing security. How then
to shrink the committee size without also lowering the corruption tolerance?
A key insight is that a static or mobile adversary cannot target devices in a
committee for corruption (within an epoch) if it cannot predict what devices
constitutes the committee. Using an unpredictable committee of size k << n we
can create a more efficient construction, secure in the presence of a static or a
mobile adversary capable of corrupting up to t devices, where k < t < n.

The technical novelty of our protocol lays in how it uses a k-regular graph
and a randomness beacon to non-interactively and efficiently establish unpre-
dictable committees. The protocol defines each committee using the output of
an external distributed public randomness beacon. However, an efficient protocol
cannot directly use the beacon output to determine the committees. Sampling
n committees of size k and sending this data to the devices would mean send-
ing O(nk) group elements to each device, which is not feasible for constrained
devices or networks. Instead, we first let each device be represented as a vertex
in a k-regular graph which is part of the system configuration. Then, a single
output of the beacon is used to determine a pseudorandom permutation of this
graph. The committee of each party is then determined by the k neighbours
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in the randomly permuted graph. This committee is then used in a threshold
sum-of-PRFs where each party evaluates a PRF for only k other parties.

Aggregation output: In line with previous PSA schemes, we consider a definition
for PSA which outputs the sum of all plaintexts to the aggregator, i.e. we do not
strive to achieve differential privacy. In contrast to existing definitions of PSA,
no secret key is needed to aggregate the sum of plaintexts. This is a more general
definition. If it is a desired system property to allow only one specific party to
aggregate, then this property can be obtained by sending the ciphertexts over an
encrypted channel to the aggregator, or by including the aggregator among the
encrypting parties and letting it encrypt zero without publishing the ciphertext.

3.1 Syntax and Security Model

Assumptions: We assume that all parties have access to a distributed random-
ness beacon and a Public Key Infrastructure (PKI) assumed to behave correctly,
e.g. not accepting duplicate keys and verifying knowledge of private keys, etc.
While such a PKI is a standard assumption, we note that it is possible to dis-
tributively audit a PKI for correct behaviour [29]. We also assume that each
vertex in G has been assigned an index.

Corruptions: We consider an adversary A capable of corrupting any party Pi,
up to a threshold of t parties. Once a party is corrupt, A takes control of the
execution of that party, meaning that it controls the actions and learns the
internal state throughout the execution. The set of corrupt parties is denoted C.

Definition 2 (Distributed Setup Private Stream Aggregation). A Dis-
tributed Setup Private Stream Aggregation (DS-PSA) scheme over ZR, where
R ∈ N, is defined for a set of parties P = {P1, . . . ,Pn} and a special party called
the evaluator E, and consists of the following procedures:

– Setup(λ, conf): On input a security parameter λ and optional configuration
parameters conf , the procedure outputs the system parameters pp.

– KeyGen(pp, i) On input the system parameters pp and the users index in the
system, i, output an encryption key eki.

– Enc(pp, eki,mi, l): On input the system parameters pp, an encryption key
eki, a message mi and a label l, output an encryption ci of mi under eki.

– Aggr(pp, {ci}i∈[n], l): On input the system parameters pp, a set of n cipher-
texts {ci}i∈[n] and a label l, output the sum of all plaintexts, M (mod R).

Note that, as is often the case in PSA, our scheme returns the sum of the
encrypted values modulo R, where R is a system parameter.

We say that a Distributed Setup PSA scheme is correct if for all pp ←
Setup(λ, conf), mi, l, {eki ← KeyGen(pp, i)}i∈[n], we have:

Pr

[
Aggr

(
{Enc(pp, eki,mi, l)}i∈[n]

)
=

n∑
i=1

mi

]
= 1
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AOb(λ, n, conf,A)

L← ∅
C ← A, s.t.|C| ≤ t
pp← Setup(λ, conf)
for i where Pi ∈ P \ C do

eki ← KeyGen(pp, i)
end for
γ ← AQEnc,QLeftRight

return γ
?
= b

Fig. 1: The AO experiment defining security for a distributed setup PSA scheme.

A DS-PSA scheme is secure if an adversary has a negligible probability of
winning the game for Aggregator Obliviousness (AO) in Definition 3.

Definition 3 (Aggregator Obliviousness (AO)). Security is defined via the
game of Aggregator Obliviousness AOb(λ, n,A), b ∈ {0, 1} in Figure 1. A denotes
the adversary with access to the following oracles:

– QEnc(i,mi, l
∗): Given a user index i, a message mi and a label l∗, if (i, l∗) /∈

L and Pi /∈ C then it lets L← L∪ {(i, l∗)} and returns ci = Enc(eki,mi, l
∗).

– QLeftRight(U , {m0
i }i∈U , {m1

i }i∈U , l
∗): Given a set U of user indices, two sets

{m0
i }i∈U and {m1

i }i∈U , and a label l∗, it checks if ∀i ∈ U : (i, l∗) /∈ L
and {Pi}i∈U ∩ C = ∅ and no previous calls has been made to QLeftRight. If
further {Pi}i∈U ∪ C = {Pi}i∈[n] it also checks if

∑
i∈U m0

i =
∑

i∈U m1
i . If all

checks return true, it lets L ← L ∪ {(i, l∗)}i∈U and returns {ci}i∈U , where
ci = Enc(eki,m

b
i , l

∗).

At the end of the game, A outputs a guess, γ, of whether b equals 0 or 1.

Static corruptions is modeled by the adversary picking the set C of at most
t corrupt parties at the start of the game. We model encrypt-once security, i.e.
restricting each party to only encrypt a single message per label (which is the
natural usage of the scheme), by both QEnc and QLeftRight maintaining the set
L, where they store which label has been used for each user and ignoring any re-
quests which reuse labels. Further, since any party has the ability to aggregate in
Definition 2, the QLeftRight enforces that

∑
i∈U m0

i =
∑

i∈U m1
i when all honest

users are part of the QLeftRight call. This prevents A from trivially winning the
game by receiving a ciphertext for each honest user and then checking whether
the output of Aggr contains {m0

i }i∈U or {m1
i }i∈U .

This AO-game is similar to the AO-games for LaSS-PSA and KH-PRF-PSA.
The main differences are the modeling of corruptions as full party takeovers
rather than a key leaking oracle, and the lack of a dedicated aggregator key.
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Protocol 1 – DIPSAUCE

Setup(λ, conf = {n, k, time,R}):

1: Generate a k-regular graph G = (V,E) where |G| = n
2: npp← NIKE.Setup(λ)
3: return pp = {npp, n, k,G, time,R}

KeyGen(pp, i):

1: (pki, ski)← NIKE.KeyGen(npp)
2: Post (Pi, pki) to the PKI
3: r ← Beacon(time)
4: ρ← Permr(n)
5: Let J⃗i be the vector s.t ∀J⃗i[ℓ] = j : vj ∈ N(vρ(i)), (i.e. the indices of Pi:s neighbors

in the permuted graph)
6: for ℓ ∈ {1, . . . , k} do
7: ℓ′ = J⃗i[ℓ]
8: Wait until the PKI returns an entry pkℓ′ for Pℓ′

9: K⃗i[ℓ
′]← NIKE.SharedKey(pkℓ′ , ski)

10: end for
11: return eki = (K⃗i, J⃗i)

Enc(pp, eki = (K⃗i, J⃗i),mi, l):

1: ti ←
∑k

ℓ=1(−1)
i<J⃗i[ℓ] · PRFK⃗i[ℓ]

(l)
2: return ci = (ti +mi) (mod R)

Aggr(pp, {ci}i∈[n]):

1: return M =
∑

i∈n ci (mod R)

3.2 Construction

The protocol is defined in Protocol 1. It is run with n parties, assigned indexes
from 1 to n in an arbitrary fashion (e.g. based on network addresses).

First, the Setup procedure must be executed, and the public parameters
distributed to each party. Then, each party can compute its encryption key eki
in the KeyGen procedure. To do this, party Pi first generates a keypair and posts
the public key to a PKI (line 1-2). It then permutes the k-regular graph based
on random beacon output and defines its committee as all parties Pj where the
j:th vertex is a neighbour to the i:th vertex in G (line 3-5). Then, it computes
a shared key for each committee member and outputs the PSA encryption key,
consisting of the indexes and shared keys for the committee members (line 6-11).

To encrypt a message, Pi executes the Enc procedure, which outputs the
message masked with the value ti. ti is computed as a sum-of-PRFs for the i:th
committee. In more detail, for each Pj in the committee, compute the output
of the PRF indexed by the shared key between Pi and Pj , on input the current
label. If i < j, the output of the PRF is subtracted from the sum. Otherwise
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it is added. Thus, each time Pi adds a random value to its masking value, its
neighbour Pj , will subtract the same value from its masking value.

The Aggr procedure computes the sum of all plaintexts by summing all ci-
phertexts. This will only work if all ciphertexts are included, otherwise, the
masking values will not cancel out.

Correctness: Let us now prove correctness. By definition:

DIPSAUCE.Aggr ({ci}i∈n) =
∑
i∈n

ci =
∑
i∈n

mi +
∑
i∈n

ti.

Since G is k-regular and there exists a one-to-one mapping (bijection) between
every vertex vi and its neighbour set N(vi), there exist unique indices i1, . . . , ik
with ij ̸= i for j = 1 . . . , k, such that i ∈ J⃗ij for j = 1, . . . , k.

Let i′ denote any one of the indices ij . Since NIKE is correct – that is, since
NIKE.SharedKey(pki, ski′) = NIKE.SharedKey(pki′ , ski), we also have:

∀Ki[ℓ] : ∃Ki′ [ℓ
′] s.t. Ki[ℓ] = Ki′ [ℓ

′]

Thus DIPSAUCE is correct if NIKE is correct and G is k-regular, since then all
Ki[ℓ] cancels out during aggregation s.t.

∑
i∈n ti = 0.

3.3 Security Analysis

We use a similar proof strategy as LaSS-PSA, originating from Abdalla et al.
[1], where we form a hybrid argument from a series of games, where each game
changes the definition of the QLeftRight-oracle. Table 1 illustrates the strategy.

The first game, G0, corresponds to the AO0-game where QLeftRight queries
are answered with the encryption of m0

i . The last game, G3, corresponds to the
AO1-game where QLeftRight queries are answered with the encryption of m1

i .
Thus, if the security of the transitions between the games hold, the adversary
cannot tell the AO0-game from the AO1-game. The transition from G0 to G1

consists of adding a perfect secret sharing (denoted PSS in Table 1) of zero to the
threshold-sum-of-PRFs, so that all ti are perfectly random without destroying
the correctness of the scheme. This transition is justified if the threshold sum-of-
PRFs produces ti so that it is indistinguishable from randomness. Next, consider
the transition from G1 to G2, where ci now encrypts m1

i instead of m0
i . This

transition is justified since ti is now perfectly random, and thus an adversary
cannot distinguish whether ci is an encryption of m0

i or m1
i . Finally, the transition

from G2 to G3 consists of undoing the change made in G1 (with the same security
argument). We arrive at the following theorem.

Theorem 1. DIPSAUCE is AO-secure if ti is indistinguishable from randomness
for a computationally bounded adversary except with a negligible advantage.

Proving the threshold sum-of-PRFs technique We now prove that ti is
indistinguishable from randomness to a static malicious adversary.
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Game Definition of QLeftRight-oracle Argument

G0
ti ←

∑k
ℓ=1(−1)

i<J⃗i[ℓ] · PRFK⃗i[ℓ]
(l)

ci ← m0
i + ti

G1

t′i ←
∑k

ℓ=1(−1)
i<J⃗i[ℓ] · PRFK⃗i[ℓ]

(l) ti indisting.

ti ← t′i + PSS(0, i, n− |C|) from rand.
ci ← m0

i + ti

G2

t′i ←
∑k

ℓ=1(−1)
i<J⃗i[ℓ] · PRFK⃗i[ℓ]

(l) one-time-pad
ti ← t′i + PSS(0, i, n− |C|) info. theo.

ci ← m1
i +ti secure

G3
ti ←

∑k
ℓ=1(−1)

i<J⃗i[ℓ] · PRFK⃗i[ℓ]
(l) ti indisting.

ci ← m1
i + ti from rand.

Table 1: Strategy for proving AO-Security. A box marks the change in each
game.

Proof Outline: We first formalize the security of our building blocks NIKE and
sum-of-PRFs in the context of our scheme in Lemmas 1 and 2. Intuitively
Lemma 1 states that all NIKE derived keys are private to the negotiating parties,
and Lemma 2 states that the sum-of-PRF output, ti, is secret to an adversary
which corrupts all but one out of the parties in a sum-of-PRFs committee. We
then, in Theorem 2, consider the DIPSAUCE method, with k-sized committees
randomly selected from a population of n parties with a threshold t of corrupt
parties. Finally, we conclude with Theorem 3 which formalizes the indistinguish-
ably of ti as a consequence of the previous theorem and lemmas.

Proof Details: First, we restate the security of NIKE in the context of our scheme,
i.e. that NIKE keys derived for honest committee members do not leak anything
to the adversary. As a consequence of the security of NIKE, Lemma 1 is true.

Lemma 1 (Pseudo-Random Shared Keys). DIPSAUCE.KeyGen outputs en-
cryption keys eki = (K⃗i, J⃗i) s.t each key K⃗i[ℓ] is indistinguishable from ran-
domness to a computationally bounded adversary when Pi and the committee
counterparty PJ⃗[ℓ] (whose index is defined in J⃗ [ℓ]) are both honest.

We also restate the security of the sum-of-PRFs technique in our setting.
If a key K⃗i[ℓ] is (pseudo)-random (i.e. when PJ⃗[ℓ] is honest), the output of
PRFK⃗i[ℓ]

(l) is also (pseudo)-random. Then since ti is the sum of all such values,
a single honest Pj renders ti (pseudo)-random. Thus, an adversary must corrupt
all k parties in the committee to learn anything about ti. We get Lemma 2.

Lemma 2 (Sum-of-PRFs). An adversary given l and up to k − 1 entries in
K⃗i has a negligible advantage in distinguishing ti =

∑k
ℓ=1(−1)i<J⃗i[ℓ] ·PRFK⃗i[ℓ]

(l)
from randomness.
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By relying on just Lemma 2, security can only hold against an adversary
corrupting up to t = k−1 parties. We therefore transfer from the standard sum-
of-PRFs technique to our threshold version. Theorem 2 states that for a random
committee, an adversary corrupting up to t parties has a negligible chance to
corrupt all k committee members of a user with these t corruptions.

In the proof, we first argue that the permutation of the graph is pseudo-
random. Then, as a stepping stone, we consider the advantage of an adversary
guessing the committee of a specific party. Intuitively, if each committee is ran-
dom, a static adversary’s best strategy is to randomly guess the k users in the
committee. Finally we put an upper bound on the advantage when attempting
to guess the committee of any honest user, and fully prove the security of the
scheme, by considerering an adversary which attempts to learn any ti.

Theorem 2 (Incorruptible Committee). DIPSAUCE.KeyGen outputs eki =

(·, J⃗i) s.t a static adversary allowed to corrupt up to t parties, k < t < n, has a
negligible probability in guessing J⃗ ′ s.t. |J⃗ ′| = k and ∀j ∈ J⃗ ′ : j ∈ J⃗i, for some i.

Proof. Graph pseudorandomness: The permutation ρ is determined by the
output r of the randomness beacon. Since r is thus unbiased and unpredictable
to a static A, it cannot predict anything about ρ except with the negligible
advantage Advbeacon. Then, since |G| = |ρ|, A has a negligible advantage in
determining which Pi is associated with which vj ∈ G.

Incorruptability of specific committees: Consider the number of possi-
ble k-sized committees and the number of k-sized committees an adversary can
form from t random corruptions. The number of unordered sets of size k within
the n parties is

(
n
k

)
. An adversary allowed to corrupt up to t out of n parties can

form
(
t
k

)
sets of k corrupt parties. Thus, the probability of obtaining a specific

k-sized committee of a specific party when corrupting t out of n parties is (t
k)
(nk)

.

Incorruptability of any committee: An upper bound on the capability to
corrupt all members in the committee of any honest party for a static adversary

allowed to corrupt up to t out of n parties can thus be calculated as n · (
t
k)
(nk)

.

Synthesis: In conclusion, the advantage to corrupt all committee members

of some party is at most Advbeacon+n · (
t
k)
(nk)

, which is negligible for realistic values

of n, t, k (see Appendix A for a discussion on the values of n, t, k).

Since a static adversary cannot corrupt all nodes in a committee (Theorem 2),
and the sum-of-PRFs technique is secure when at least one committee member
is honest (Lemma 2), ti is indistinguishable from randomness.

Theorem 3 (ti Indistinguishability). In DIPSAUCE.Enc, each ti is indis-
tinguishable from randomness to a static adversary allowed to corrupt up to t
parties except with a negligible advantage.

3.4 Security Against a Mobile Adversary

Let us sketch a version of DIPSAUCE which is secure against a mobile adversary.
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Modelling mobile security We model mobile security according to Ostrovsky
and Yung [36], allowing corruptions and uncorruptions as follows.

Epochs: Time is divided into consecutive epochs indexed by a counter.

Corruptions: A mobile adversary is allowed to corrupt any party Pi. The adver-
sary must make its selection of corrupt parties before an epoch is started, but
will gain no information from the corrupt parties until that epoch is started. An
adversary can additionally uncorrupt (leave) a corrupted party. When doing so,
the adversary retains all knowledge of secrets learned from that party, but has
no further control and learns no further secrets. The total number of corrupt
parties at the start of an epoch can never exceed t. In this model all parties can
be corrupt during some stage of the protocol execution, but the adversary learns
secrets from at most t parties during each epoch.

Mobile security with a PKI We can trivially achieve mobile security by dis-
carding all secrets and re-executing the Setup and KeyGen procedures at the start
of an epoch. Since the Setup and KeyGen procedures are efficient in DIPSAUCE,
this modification is feasible in practice. There is a caveat to this though. For
brevity we have so far omitted how the PKI trust relation is achieved, i.e. how
the PKI verifies that a public key actually belongs to the claimed identity. How-
ever, when secrets are deleted at the end of an epoch, any secret related to the
trust relation with the PKI will also be destroyed. This is necessary to prevent a
mobile adversary from using this secret to impersonate previously corrupt par-
ties. How then to maintain a relation with the PKI in between epoch changes?

Ostrovsy and Yung describes two methods of maintaining such trust rela-
tions. In the first method, the device is assumed to be able to store a secret
key that cannot be learned by an adversary corrupting the device. This can
be realized using a Trusted Platform Module (TPM) [43] or trusted execution
techniques that provide secure storage [37].

The second method consists of updating keys by generating a new key-pair
and posting the new public key signed with the previous secret key. While an
adversary can also post a new key signed with the previous key, the system
will notice that two such public keys have been published and thus consider the
device compromised. This assumes that the adversary cannot suppress messages.

We can thus obtain mobile security for DIPSAUCE as follows. Divide the
execution of the protocol into a setup phase comprised of the Setup and KeyGen
procedures, and an operational phase comprised of any number of Enc and Aggr
procedures. When an epoch ends, each party erases all secrets except the PKI
relation secret and then enters the setup phase once the next epoch begins. In
this phase, it awaits the system parameters output from the Setup procedure.
It then calls the KeyGen procedure (using one of the PKI relation maintaining
methods described above) to generate new secrets. This concludes the setup
phase, and initiates the operational phase. We arrive at the following.
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Theorem 4 (Informal). Let there be a scheme so that the PKI will not accept
more than one (Pi, pki) for each Pi. Further, let there be at least one fresh
output from the randomness beacon every epoch. Then the above transformation
of DIPSAUCE is secure against a mobile adversary, corrupting up to t parties.

4 Experimental Evaluation

In this section we evaluate the performance of DIPSAUCE by implementing it
on realistic hardware and measuring its performance. The current state-of-the-
art schemes KH-PRF-PSA and LaSS-PSA were only evaluated on Intel i5 CPUs
in [44,22], giving little insight into how these schemes perform on realistic hard-
ware. For a fair comparison, we have therefore also implemented these schemes
and their suggestions for distributing the setup on the same realistic hardware.
The code and raw data from our experiments are available at [12] and [13].

4.1 Scenario and Experiments

Scenario: n Clients measure a statistic, e.g. power, and wants to send the sum
of the measurements to a Server, without revealing individual measurements.

Setup: We have implemented the protocols on CC1352 devices with ARM Cortex
M4 processors, utilizinge their hardware acceleration of AES, ECC and SHA256.
These devices can be considered “mid-range" constrained devices, as they are
classified as C3 devices in [10], and are advertised as being suitable for smart-
metering. Further details on CC1325 is given in the full version of this paper [11].

Experiments: We evaluate the client side efficiency of LaSS-PSA, KH-PRF-PSA
and DIPSAUCE by measuring the execution time of the Enc and Setup+KeyGen
procedures. For Enc, time is measured from the start of the procedure until the
ciphertext is ready to be transmitted. No network overhead is measured for Enc,
since all schemes return ciphertexts as random numbers in ZR and thus have
equivalent network overhead. For Setup + KeyGen, time is measured from the
start of the process, including the time needed to transfer data, such as keys,
over the network. In the experiments in [44,22], the number of clients (i.e. n)
tested are groups of 1000 to 10000 clients in even increments of 1000. Our tests
are done for n = 1024, 2025, 3025, 4096, 5041, 6084, 7056, 8100, 9025 and 10000.
These sizes are selected to be comparable with previous work, while remaining
compatible with requirements in our specific implementation of the DIPSAUCE
protocol, which has additional requirements on the group sizes as explained
in Section 4.2. Each experiment was repeated 10 times for each group size. Our
results are the average of these runs.

4.2 Implementations

DIPSAUCE We have implemented the graph G as a rook’s graph. As a conse-
quence all n must be square numbers and k = 2

√
n− 1. We remark that this is
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an implementation property, and that regular graphs for other k, n can be effi-
ciently generated [33]. The KeyGen procedure is straightforwardly implemented
according to Protocol 1, using a Python based PKI with a CoAP [38] interface,
instantiating Beacon as the Drand service [20], and instantiating NIKE as ECDH
on the P-256 curve. The Enc instantiates the PRF using AES-128. Both AES-128
and ECDH P-256 utilizes the hardware acceleration of the CC1352 platform.

KH-PRF-PSA and LaSS-PSA We here give details on security parameters,
chosen instantiations of primitives, and hardware acceleration. For all details on
these schemes and our implementations, see the full version of this paper [11].

KH-PRF-PSA: We have implemented the KH-PRF-PSA scheme in [22, Sec. 4]
and their proposal for a distributed setup in [22, Sec. 5.1]. The implementation
uses security parameters λ = 2096, q = 2128 and p = 285. In [22], KH-PRF-PSA
uses a hash based KH-PRF, instantiated as SHA3-512. For a fair comparison,
we however select a more efficient hash function, SHA256, which is hardware
accelerated on the CC1352 platform.

LaSS-PSA We have implemented the LaSS-PSA scheme in [44, Sec. 4] and the
proposal for a distributed setup in [44, Sec. 7]. The implementation uses security
parameter λ = 128. We here implement the version which instantiates the PRF
using AES-128, since its the most efficient instantiation in the measurements
of [44], and is hardware accelerated on the CC1352 platform.

4.3 Results

Fig. 2: Setup/KeyGen execution time. Fig. 3: Encryption execution time.

Setup and KeyGen Our evaluation shows that DIPSAUCE significantly out-
performs the distributed setups proposed in KH-PRF-PSA and LaSS-PSA in
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terms of execution time for the setup (and keygen) procedure. We show the
execution times in Figure 2. The slope of the graph indicates that DIPSAUCE
will have the shortest execution time for all number of users in the system. The
execution time of DIPSAUCE grows with the number of users at rate of 3.2 ms
per user, a lower rate than KH-PRF-PSA which grows with 330 ms per user
and LaSS-PSA which grows with 210 ms per user. This is due to DIPSAUCE
only generating k = 2

√
n− 1 NIKE shared secrets for n users, rather than n

derived secrets as in LaSS-PSA, and LaSS-PSA in turn, being more efficient than
KH-PRF-PSA. Compared to LaSS-PSA, DIPSAUCE shows a speedup of 66x.

Encrypt Our evaluation of the Enc procedures shows that DIPSAUCE out-
perform KH-PRF-PSA and LaSS-PSA for all measured number of users in the
system. We show the measured execution times of the encrypt procedure in Fig-
ure 3. LaSS-PSA and DIPSAUCE have execution times linear in the number of
users. The execution time of the Enc procedure grows with 0.052 ms per user for
LaSS-PSA and with 0.00075 ms per user for DIPSAUCE. The speedup per user
of DIPSAUCE compared to LaSS-PSA is 69x.

KH-PRF-PSA shows a constant execution time of 230 ms for any number of
users in the system. Thus, it will outperform DIPSAUCE for large numbers of
users. Extrapolating from the measured times, this occurs when n ≈ 300000.

5 Conclusion

In this paper we have showed state-of-the-art PSA schemes and their proposals
for a ditributed setup, and found them practically infeasible due to computa-
tional complexity which grows with the number of users. To address this, we
have provided a formal definition of PSA with a distributed setup, suggested a
new PSA scheme adhering to this definition, proved it secure and implemented
it on realistic hardware. We found its performance sufficient to be deployed in
practice. Let us further elaborate on the following discussion point.

Client Failures In a secure PSA scheme, nothing is learned by the aggregator
unless all ciphertexts are included in an aggregation. Therefore, a dropped mes-
sage from an honest client will prevent the aggregator from learning anything.
We note that there is a general non-interactive mitigation to this practical prob-
lem [15] for dealing with client errors, which is applicable to all PSA schemes
including ours. This however increases computational and network costs. Since
the setup in DIPSAUCE is efficient, another alternative to deal with client fail-
ures can be to exclude failing clients from the protocol and re-execute the setup,
if the failures are fairly infrequent.
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Appendix

A Adversary Advantage

The adversary advantage (excluding the potential advantage resulting from the

beacon) is calculated as n · (
t
k)
(nk)

in Theorem 2. Table 2 shows this advantage for

realistic n, t and k, where t = n/2 and k = 2
√
n− 2) in a rook’s graph which is

the k-regular graph which was used in our implementation.
Code to calculate this advantage for different values is available below.

#rook’s graph adversary advantage
import math
from decimal import Decimal

for n in [1024, 2025, 3025, 4096, 5041, 6084, 7056, 8100, 9025, 10000]:
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n k t Advantage
1024 62 512 2−55

2025 88 1012 2−78

3025 108 1512 2−99

4096 126 2048 2−117

5041 140 2520 2−131

6084 154 3042 2−144

7056 166 3528 2−156

8100 178 4050 2−168

9025 188 4512 2−178

10000 198 5000 2−188

Table 2: Adversary advantage in DIPSAUCE with a rook’s graph given by n · (
t
k)
(nk)

for different values of n and a corruption ratio of 0.5.

# number of columns/rows
x=float(math.sqrt(n))
#corruption threshold
thresh = 0.5

k = 2*x-2
t = n*thresh

nc = Decimal(math.comb(int(t),int(k)))
npc = Decimal(math.comb(int(n),int(k)))

print("all: n =", int(n), ", k =", int(k), ", t =", int(t), ",
advantage =", Decimal(n) * nc/npc)

B Experimental Setup

B.1 CC1352R SimpleLink

The CC1352R SimpleLink [25] is a series of micro controllers (MCU) sold by
Texas Instruments. Its intended application areas include: building automation,
grid infrastructure, water meters, electricity meters, gas meters, and personal
electronics. It features a 48 MHz ARM Cortex-M4F CPU, with 88KB of RAM
and 602KB of ROM. It also features a wide variety of peripherals. Of special
interest in this work are the hardware accelerated cryptography peripherals for
AES-128, SHA256, Elliptic Curve Diffie-Hellman, and a TRNG. Elliptic Curves
on Short Weierstrass form are fully supported and include NIST-P224, NIST-
P256, NIST-P384, and NIST-P512, Brainpool-256R1, Brainpool-384RR1, and
Brainpool-512R1. Elliptic curves on Montgomery form such as Curve25519 have
limited hardware support. The built in TRNG has a self test required by FIPS
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140. CC1352R also has the capabilities to run the wireless protocol IEEE802.15.4
Low Power Personal Area Network (LoWPAN).

B.2 Operating System and Software

The experiments are implemented on the Contiki-NG operating system [35],
designed for constrained devices, with a its built in network stack. All hardware
accelerated cryptographic operations were performed using the default drivers
included in Contiki-NG. Furthermore we used the BigUint128 library [40] to
perform 128-bit arithmetics, and the libtprpg [14] library to generate the pseudo-
random permutation used in DIPSAUCE.

B.3 Communication

In our experiments we have used the IEEE 802.15.4 [24] physical layer operating
on the 2.4 GHz band. The network stack is the Contiki-NG networking stack with
IPv6, UDP and CoAP with default settings. An RPL-border-router is required,
since IEEE 802.15.4 is not supported on the laptop we used in the experiments.
The RPL-border-router was run on another CC1352R device with the standard
RPL-border-router application provided in Contiki-NG.

B.4 Experimental Setup

We executed the protocols on a CC1352R device, which we denote as the Client.
The Client communicates with a Server running on a laptop. The RPL-border-
router is connected to the laptop with a USB cable. The Client can then commu-
nicate with the Server running on the laptop via the border-router. The Client
and the RPL-border-router were placed close to each other, with the antennas
facing each other to minimize packet-loss. Figure 4 illustrates the setup.

Fig. 4: An illustration of the experimental setup.
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C Full Definitions of Existing Schemes

Private Stream Aggregation: We here recall the formal definition of PSA.

Definition 4 (Private Stream Aggregation). Let R ∈ N,M = ZR and L
be a set of labels. A PSA scheme is defined by the procedures:

– Setup(λ, n): On input the security parameter λ and the number of parties
n, output public parameters pp and n+ 1 secret symmetric encryption keys
{eki}i∈[n+1] (where ekn+1 is the aggregator key, sometimes alternatively de-
noted as eka).

– Enc(pp, eki,mi, l): On input the public parameters pp, an encryption key
eki, i ≤ n, a message mi ∈ M and a label l ∈ L, output the ciphertext
ci.

– Aggr(pp, eka, {ci}c∈[n], l): Given the public parameters pp, the aggregator key
eka, a set of n ciphertexts {ci}c∈[n], and a label l, it outputs the sum of all
plaintexts, M (mod R).

A PSA scheme must satisfy correctness. Correctness is satisfied if, for any
n, λ ∈ N,m1, . . . ,mn ∈ ZR and any label l ∈ L, so that (pp, {eki}i∈[n+1]) ←
Setup(λ, n), and ∀{ci}i∈[n] : ci = Enc(pp, eki, l,mi):

AggrDec(pp, eka, l, {ci}i∈[n]) =
∑
i∈[n]

mi (mod R)

Further, a secure PSA scheme must satisfy Aggregator Obliviousness (AO).
The below definition of AO regards encrypt-once security, where a client only
encrypt one value per label.

Definition 5 (Aggregator Obliviousness). Let PSA be a PSA scheme. Let
the experiment AOb in Figure 5 be defined with the following oracles:

– QCorrupt(i): The oracle outputs the encryption key eki of user i. For i =
n+ 1, it outputs the aggregator key eka.

– QEnc(i,mi, l
∗): The oracle outputs cti = Enc(eki,mi, l

∗) on a query.
– QChallenge(U , {m0

i }i∈U , {m1
i }i∈U , l

∗): The adversary specifies a set of user
indices U ⊆ [n], a label l∗ and two challenge messages for each user from U .
The oracle answers with encryptions of mb

i , that is {ci ← Enc(pp, eki,m
b
i , l

∗)}i∈U .
This oracle can only be queried once during the game. If the adversary does
not query this oracle, U = ∅.

At the end of the game, the adversary A outputs a guess α, whether b = 0
or b = 1. A PSA scheme is Aggregator Oblivious, if an adversary A for all
sufficiently large λ, has a negligible advantage in winning the game.

The adversary advantage is defined as:

AdvAO
A,PSA(λ, n) =| Pr[AOO(λ, n,A) = 1]− Pr[AO1(λ, n,A) = 1] |
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AOb(λ, n,A)

(pp, {eki}i∈[n+1])← Setup(λ, n)

α← AQCorrupt(·),QEnc(·),QChallenge(·,·,·,·)(pp)
if condition (∗) is satisfied then

Output α
?
= b

else
Output 0

end if

Fig. 5: The aggregator obliviousness game defining security for a PSA scheme.

Consider the following sets:

– Let E∗l ⊆ [n] be the set of all users for which A has asked an encryption
query on label l.

– Let CS ⊆ [n] be the set of users for which A has asked a corruption query.
Even if the aggregator is corrupted, this set only contains the corrupted users
and not the aggregator.

– Let Ql∗ := U ∪ El∗ be the set of users for which A asked a challenge or
encryption query on label l∗.

Condition (∗) is satisfied (as used in Figure 5), if all of the following condi-
tions are satisfied:

– U ∩ CS = ∅. This means that all users for which A received a challenge
ciphertext must stay uncorrupted during the entire game.

– A has not queried QEnc(i,mi, l
∗) twice for the same (i, l∗).

– U ∩ El∗ = ∅. This means that A is allowed to get a challenge ciphertext only
from users for which they ask an encryption query on the challenge label l∗.
Doing so would violate the encrypt-once restriction.

– If A has corrupted the aggregator and Ql∗ ∪CS = [n] the following equality
must hold in order to prevent trivial wins by using the knowledge of the
aggregators knowledge of the sum of all honest parties plaintexts.∑

i∈U

x0
i =

∑
i∈U

x1
i

This condition is called the balance-condition.

D Details on the Evaluation of the performance of
state-of-the-art PSA schemes

D.1 Protocol Definitions and Implementations

KH-PRF-PSA We recall the definition of the KH-PRF-PSA protocol from [22]
in Protocol 2.
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Protocol 2 – The KH-PRF-PSA scheme in [22].

Setup(λ, n):

1: ∀i ∈ [n] : eki
$←− Zλ

R

2: eka =
∑

i∈[n] eki
3: return eka, {eki}i∈[n]

Enc(eki,mi, l):

1: ti = KH-PRFeki(l)
2: ci = (ti +mi) (mod R)
3: return ci

Aggr(eka, {ci}i∈[n], l):

1: ma =
∑

i∈n ci − KH-PRFeka(l) (mod R)
2: return ma

We have implemented the KH-PRF-PSA realization in [22, Sec. 4], which uses
a hash based KH-PRF secure in the Random Oracle Model. The implementation
uses parameter R ∈ N and security parameters λ = 2096, q = 2128 and p = 285.
The encryption key ek is a vector of λ elements in Zq. Its size is thus λ·q = 33536
bytes.

The KH-PRF is defined as the inner product of the ek and the output of the
function H ′(l) (where l is the given label):

KH-PRFek(l) = ⌊⟨H ′(l), ek⟩⌋p

This definition uses the syntax of [22], where: ⌊x⌋p = ⌊x · p/q⌋. The function
H ′(l) is defined as a vector of λ hashes of the label concatenated with a counter,
and reduced modulo q:

H ′(l) =

H(l||””||”1”) (mod q)
...

H(l||””||”λ”) (mod q)


In the instantiation in [22] H is instantiated as SHA3-512. For a fair compari-

son, we however select a more efficient hash function, SHA256, which is hardware
accelerated on the CC1352 platform.

LaSS-PSA Let us also recall the LaSS-PSA scheme from [44], presented in Pro-
tocol 3. The LaSS-PSA realization is presented using the notation (−1)(i<j),
introduced in Section 2. The realization uses parameter R ∈ N and the security
parameter λ = 128. Note that Ki,i is left undefined.

LaSS-PSA uses LaSS to mask the message. We here implement the version
which instantiates the PRF using AES-128, since its the most efficient instanti-
ation of LaSS in the measurements of [44], and is hardware accelerated on the
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Protocol 3 – The LaSS-PSA scheme [44].

Setup(λ, n):

1: ∀i ∈ [n+ 1],∀j s.t. n ≤ j > i : Ki,j
$←− ZR

2: ∀i ∈ [n+ 1],∀j s.t. n ≤ j < i : Ki,j = Kj,i

3: let eki = K⃗i be the vector s.t. ∀j ∈ [n] : K⃗i[j] = Ki,j

4: return {eki}i∈[n+1]

Enc(eki = K⃗i,mi, l):

1: ti ←
∑

j∈[n+1]\{i}(−1)
i<j · PRFK⃗i[j]

(l)

2: ci = (ti +mi) (mod R)
3: return ci

Aggr(eka = K⃗n+1, {ci}i∈[n]):

1: ma =
∑

i∈n ci +
∑

j∈[n] PRFK⃗n+1[j]
(l) (mod R)

2: return ma

CC1352 platform. The encryption key ek consists of n elements from ZR, where
n is the number of users, and thus has size n · log2(R).

D.2 Results

The results of the experiments are available in Figure 6. The KH-PRF construc-
tion used in KH-PRF-PSA has an execution time independent of the number
of parties. Our measurements show this constant execution time to be 230 ms.
The execution time of LaSS-PSA is linear with a coefficient of 0.05 ms per party
in the system. The lines intersect at approximately 4200 users. These trends
correspond to the results from [22, Section 4.4], but the execution times for
both KH-PRF-PSA and LaSS-PSA are around 200x longer in our measurements
compared to the numbers presented in [22]. This is since our experiments are
executed on a constrained devices whereas the experiments in [22] are executed
on an Intel Core i5 CPU.

E Details on the Evaluation of the Existing Proposed
Methods for a Distributed Setup

Recall that all previous PSA schemes, including KH-PRF-PSA and LaSS-PSA, are
presented with a trusted party for key distribution. Both KH-PRF-PSA [22] and
LaSS-PSA [44], briefly discuss an approach to distribute the setup by negotiating
a key between each party in the scheme, but does not give details on how to do
this. We here give details on how a distributed setup procedure for KH-PRF-PSA
and LaSS-PSA can be constructed using the proposed method, implement the
resulting schemes on the CC1352 platform, and evaluate the performance of
the client side operations (i.e. both setup and encryption since the setup is now
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Fig. 6: Execution time in seconds of the Enc procedure in KH-PRF-PSA and
LaSS-PSA.

performed by the clients instead of by a trusted party). This gives us an estimate
for the performance of this approach. The code for our experiments and protocol
implementation, and the raw data of the results is available at [12]. The raw data
of the results are available at [13].

It is not our intent to prove the security of these distributed setups. We only
wish to show their (in)efficiency.

E.1 A Distributed Setup for KH-PRF-PSA

Ernst and Koch propose a decentralized setup protocol in [22, Section 5.1] based
on the sum-of-PRF technique.

Decentralizing the Protocol: Protocol 4 introduces a detailed realization
of the suggested approach to decentralize the KH-PRF-PSA protocol. Note that
in order for this distributed setup to be compatible with Protocol 2, the evaluator
must derive ka as the sum of all aksi, i.e. ka =

∑
i∈[n] aksi.

In our implementation of Protocol 4, we use a python based PKI with a
CoAP [38] interface where all keys of other parties are registered. We have instan-
tiated NIKE using ECDH P-256, which is hardware accelerated on the CC1352
platform. The PRF was instantiated using hardware accelerated AES-128.

E.2 A Distributed Setup for LaSS-PSA

Waldner et al. propose a decentralized setup protocol in [44, Sec. 7], which we
give details on how to construct in Protocol 5. Note that to make this setup
compatible with Protocol 3, the aggregator must also execute the setup protocol.

Our implementation of Protocol 5 uses a python based PKI with a CoAP [38]
interface where all public keys are registered. We have instantiated NIKE using
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Protocol 4 – Distributed Setup for KH-PRF-PSA

Setup(λ, n, i):

1: let E⃗i be a vector where ∀j ∈ {1, . . . , λ} : E⃗i[j]
$←− ZR

2: eki ← E⃗i[1]|| . . . ||E⃗i[λ]
3: npp← NIKE.Setup(λ)
4: (pki, ski)← NIKE.KeyGen(npp)
5: Post (Pi, pki) to the PKI
6: Wait until the PKI returns a pkj for each j ∈ [n]
7: for j ∈ [n] \ {i} do
8: Kj ← NIKE.SharedKey(pkj , ski)
9: end for

10: for ℓ ∈ {1, . . . , λ} do
11: bi,ℓ ←

∑
j∈[n]\{i}(−1)

i<j · PRFKj (ℓ)

12: A⃗i[ℓ] = E⃗i[ℓ] + bi,ℓ (mod R)
13: end for
14: aksi ← A⃗i[1]|| . . . ||A⃗i[λ]
15: return eki, aksi

Protocol 5 – Distributed Setup for LaSS-PSA.

Setup(λ, n, i):

1: npp← NIKE.Setup(λ)
2: (pki, ski)← NIKE.KeyGen(npp)
3: Post (Pi, pki) to the PKI
4: Wait until the PKI returns a pkj for each Pj ∈ P
5: for j ∈ [n] \ {i} do
6: Kj ← NIKE.SharedKey(pkj , ski)
7: end for
8: return eki = K⃗i

ECDH P-256. ECDH P-256 is hardware accelerated on the CC1352 platform.
The PRF was instantiated using hardware accelerated AES-128.

E.3 Experiments and Results

The setup and experiments described here are the same as those described in Sec-
tion 4.1 and Appendix B, however instead of measuring Enc, we measure the
Setup execution times. The results are available in Figure 7. The figure shows
that the execution times of the parts of KH-PRF-PSA and LaSS-PSA grow lin-
early with the number of users in the system. The coefficient for KH-PRF-PSA
is higher than that for LaSS-PSA. The reason for this difference in performance
is that KH-PRF-PSA, in addition to deriving pairwise shared keys for all users
(which is done in both Protocol 4 and Protocol 5), also generates a larger secret
key eki (steps 1-2 in Protocol 4) and masks eki before it is sent to the aggre-
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gator (steps 10-14 in Protocol 4). Thus LaSS-PSA outperforms KH-PRF-PSA for
all number of users in the system.

Fig. 7: Execution time in seconds of the Setup procedure in KH-PRF-PSA and
LaSS-PSA.
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