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Abstract. Unconditionally secure broadcast is feasible among parties
connected by pairwise secure links only if there is a strict two-thirds
majority of honest parties when no additional resources are available.
This limitation may be circumvented when the parties have recourse
to additional resources such as correlated randomness. Fitzi, Wolf, and
Wullschleger (CRYPTO 2004) attempted to characterize the conditions
on correlated randomness shared among three parties which would en-
able them to realize broadcast. Due to a gap in their impossibility ar-
gument, it turns out that their characterization is incorrect. Using a
novel construction we show that broadcast is feasible under a consid-
erably larger class of correlations. In fact, we realize pseudo-signatures,
which are information theoretic counterparts of digital signatures using
which unconditionally secure broadcast may be obtained. We also obtain
a matching impossibility result thereby characterizing the class of corre-
lations on which three-party broadcast (and pseudo-signatures) can be
based. Our impossibility proof, which extends the well-know argument
of Fischer, Lynch and Merritt (Distr. Comp., 1986) to the case where
parties observe correlated randomness, maybe of independent interest.

Keywords: Unconditional security, broadcast, pseudo-signatures, infor-
mation theory.

1 Introduction

Broadcast is one of the more fundamental primitives in cryptography.
For instance, to realize unconditionally secure multiparty secure compu-
tation, a strict majority of honest parties suffices if broadcast is available,
while, in its absence, more than two-thirds (a supermajority) of the par-
ties must be honest. In fact, in a landmark paper, Lamport, Shostak, and
Pease [23] showed that unconditionally secure broadcast can be realized
if and only if there is an honest supermajority. Furthermore, they showed
that broadcast can be realized with any number of malicious parties if
digital signature is available among the parties.



Digital signatures based on public-key cryptography is necessarily only
computationally secure. Towards realizing unconditionally secure broad-
cast without an honest supermajority, Pfitzmann and Waidner [30] in-
troduced the concept of pseudo-signatures. Unlike digital signatures,
pseudo-signatures have a fixed transferability – the number of trans-
fers that can be made among the parties before they stop being secure.
Unconditionally secure broadcast protocols can be realized (without an
honest supermajority) if pseudo-signatures with sufficiently large trans-
ferability is available.

In the absence of an honest supermajority, pseudo-signatures (and broad-
cast) may be realized if the parties have access to correlated random
variables. Realizing cryptographic primitives based on such a model has
received considerable attention. For instance, secret key generation [1,24,
32], authentication [25–27,33], and oblivious transfer [2,8–10,12,22,29,34]
have all been studied in this model. For broadcast and pseudo-signatures,
such a study was initiated by Fitzi, Wolf, and Wullschleger [19]; see
also [14–17].

Pseudo-signature and broadcast protocols using correlated random vari-
ables available to the parties were presented in [19]. The necessary and
sufficient condition for the correlations for pseudo-signature (and broad-
cast) to be feasible was also claimed. However, there was a gap in the
proof of necessity. In fact, it turns out that the condition itself is not
necessary and there are counterexamples. In order to resolve this, novel
ideas for both the construction and impossibility are needed which we
present here.

There has been a renewed interest in the problem of broadcast (byzantine
agreement) because of its connections to blockchains; e.g., see [5] and ref-
erences therein. In this context, establishing the theoretical foundations
of broadcast and pseudo-signatures takes on added interest.

The focus of this paper is on three-party broadcast (and, hence, also
on three-party pseudo-signatures). However, there are implications for
more than three parties. For instance, it is known that for n parties, if
broadcast among every triple of them is available, then broadcast among
all n parties tolerating t < n/2 corrupted parties is feasible [18] (and
hence n-party MPC with unconditional security with the same thresh-
old for corruption is feasible [3, 31]). We leave the problem of establish-
ing the necessary and sufficient conditions on the correlations to realize
broadcast/pseudo-signature for more than three parties as a fascinating
open question.

1.1 Problem Formulation

We consider a network consisting of three parties, P1, P2, and P3. The
parties are connected by pairwise secure channels; we assume that the
network is synchronous, i.e., each party can recognize who should com-
municate next based on a common clock. As we mentioned, it is impos-
sible to realize broadcast or pseudo-signatures from scratch if one among
the three parties may be malicious. We assume that P1, P2, and P3 ob-
serve random variables (Xi)i∈[n], (Yi)i∈[n], (Zi)i∈[n], respectively, where



[n] = {1, 2, . . . , n}, such that the triples (Xi, Yi, Zi)i∈[n], are indepen-
dent and identically distributed (i.i.d.) according to a known distribution
PXY Z .

Broadcast. In a broadcast protocol, the sender P1 has a message
b ∈ {0, 1} it wants to convey to the other parties. The parties commu-
nicate interactively over the pairwise secure channels. In each round of
communication, the communicating party computes the message it sends
based on its observations (i.e., parts of the correlation it observes), its
transcript so far, and its private randomness. At the end of the protocol,
the receivers P2 and P3 output b2 ∈ {0, 1} and b3 ∈ {0, 1}, respectively.
We say that a protocol is an ε-secure implementation of broadcast if the
following two conditions are satisfied:

– Correctness: When the sender P1 is honest with input b ∈ {0, 1},
then all the honest receivers output b with probability at least 1− ε;

– Agreement: When both the receivers P2 and P3 are honest, they
output the same value b2 = b3 with probability at least 1− ε.

We are interested in the necessary and sufficient condition on the distri-
bution PXY Z of the correlation such that an ε-secure implementation of
broadcast exists for an arbitrary ε > 0 and sufficiently many copies n of
the correlation.

Pseudo-signature. In a pseudo-signature (PS) protocol with transfer
path P1 → P2 → P3, the sender P1 has an input message b ∈ {0, 1}, and
the protocol consists of two phases, the signing phase and the transfer
phase. In the signing phase, after some prescribed rounds of communica-
tion over the pairwise secure channels, the intermediate party P2 outputs
b2 ∈ {0, 1,⊥}, where the symbol ⊥ indicates that P2 rejects the message
sent by P1; the protocol proceeds to the transfer phase only when P2

does not reject in the signing phase. In the transfer phase, after some
prescribed rounds of communication over the pairwise secure channels,
the receiver P3 outputs b3 ∈ {0, 1,⊥}, where the symbol ⊥ indicates
that P3 rejects the message transferred by P2. We say that a protocol
is an ε-secure implementation of pseudo-signature with transfer path
P1 → P2 → P3 if the following four conditions are satisfied:

– Correctness: If P1 and P2 are honest, then b2 = b with probability
at least 1− ε;

– Unforgeability: If P1 and P3 are honest, then the probability of the
event b3 /∈ {b,⊥} is less than ε;

– Transferability: If P2 and P3 are honest, then the probability of the
event (b2 6= ⊥) ∧ (b3 6= b2) is less than ε;

– Secrecy: If P1 and P2 are honest, then the view of P3 in the signing
phase is almost independent of the message b, i.e., the conditional
distribution of P3’s view in the signing phase given b = 0 and b = 1
are close to each other in total variation distance4.

4 Our construction provides a protocol with perfect secrecy, while we prove our im-
possibility results without making use of the secrecy condition. Thus, the secrecy
condition does not affect the characterization.



We are interested in the necessary and sufficient condition on PXY Z
such that an ε-secure pseudo-signature protocol with transfer path P1 →
P2 → P3 exists for an arbitrary ε > 0 and sufficiently large n.

Relation between broadcast and pseudo-signature. Broad-
cast and pseudo-signature are closely related. If a pseudo-signature pro-
tocol with either transfer path P1 → P2 → P3 or P1 → P3 → P2 is
available, we can construct a secure implementation of broadcast with
sender P1; e.g., see [16, 30]5. For the reader’s convenience, this result
is presented in Appendix A.1. Thanks to this result, a construction for
pseudo-signature implies a construction for broadcast, and an impos-
sibility result for broadcast implies an impossibility result for pseudo-
signature. Thus, we focus on constructions of pseudo-signatures and im-
possibility results for broadcast in this paper. The conditions on corre-
lations under which pseudo-signature with transfer path P1 → P2 → P3

is feasible and broadcast with sender P1 is feasible turn out to be same
giving us a complete characterization.

1.2 Related Work

The problem of the broadcast was introduced in [23], where the neces-
sary and sufficient condition for feasibility of broadcast was established.
An alternative proof for the impossibility part was proposed in [13].
This argument has been widely used for proving impossibility results
in distributed computing; e.g., see [6, 15]. Many impossibility results on
distributed computing have been derived using variants of this argument.
The concept of the pseudo-signature was introduced in [30]; see also [4]
for an earlier attempt at introducing an information theoretic version of
digital signature. They proposed a pseudo-signature protocol for a one
bit message. More efficient constructions based on bivariate polynomials
were introduced in [20] (see also [21]).
The problem of implementing broadcast and pseudo-signature from cor-
related random variables was studied in [19]; this problem was moti-
vated by an implementation of broadcast from measurement outcomes
of quantum entanglement [14]. The minimum requirement for realizing
broadcast was studied in [15]; for instance, the global broadcast among
all the parties can be constructed from the three party broadcast as long
as honest majority is satisfied [18].

1.3 Main Contributions and Results

The main technical contributions of this paper are three-fold:
(i) We give a construction for pseudo-signature from correlations (Theo-

rem 5) which considerably expands the class of correlations for which
it was known to be feasible. As we show, this construction, when

5 On the other hand, if broadcast protocols with each party as sender is available, a
pseudo-signature protocol, also known as an information checking protocol, can be
constructed [7].



combined with (ii) below, fully characterizes the class of feasible
correlations.

(ii) Given a pseudo-signature protocol with transfer path P1 → P3 → P2,
we construct a pseudo-signature protocol with transfer path P1 →
P2 → P3 (Theorem 6); an observation which is new to the best of
our knowledge.

(iii) We prove an impossibility for broadcast (which implies tight results
for pseudo-signatures and broadcast) by generalizing the well-known
technique of Fischer, Lynch, and Merritt [13] to our case which has
a setup in the form of correlations at the parties (Theorem 7). We
believe this maybe of more general interest.

Using these we precisely characterize the class of correlations on which
pseudo-signatures (Theorem 8) and broadcast (Theorem 9) can be based.
As mentioned earlier, this class is the same for broadcast from sender
P1 and pseudo-signatures with either of the transfer paths which start
with P1. We also provide characterizations of the correlations under
which pseudo-signature can be obtained when there is limited connec-
tivity/directionality of links between the parties (Theorems 10-12)6

1.4 Technical Overview

Pseudo-signature from correlations. Attempts at altering a ran-
dom variable X may leave a statistical trace that a party who holds a
correlated random variable Y may be able to detect – this observation
forms the basis of building a pseudo-signature protocol from correlation.
The party with Y can only hope to detect anomalies in those parts of X
which non-trivially depend on Y . For instance, if two symbols x and x′

satisfy PY |X(·|x) = PY |X(·|x′), then a party observing Y cannot detect
the swapping of x and x′. To account for this, following [19], let us define
X % Y as the maximal part of X which non-trivially depends on Y (in
statistics, this is known as the minimal sufficient statistic for Y given
X).

Definition 1 (Minimal sufficient statistics). For a pair of random
variables X,Y with joint distribution PXY , consider the partition of the
alphabet X of X induced by the following equivalence relation:

x ∼ x′ if PY |X(y|x) = PY |X(y|x′), ∀y.

We define ψX%Y to be the function which maps the elements in X to their

cell (i.e., part) in the above partition, and we define X % Y def
= ψX%Y (X).

Notice that X % Y is a random variable which is a function of X alone,
where the function (ψX%Y ) is defined in terms of the distribution PXY .

Fitzi, Wolf, and Wullschleger [19] constructed a pseudo-signature proto-
col for transfer path P1 → P2 → P3 from n i.i.d. copies of a correlation
X,Y, Z observed at parties P1, P2, P3, respectively. The sender P1 at-
taches copies of X % Y as the signature (the first n/2 copies for message

6 A similar question for broadcast turns out to be trivial.



bit 0 and the second n/2 for message bit 1). As foreshadowed, P2, who
holds the copies of Y , may detect any significant anomalies in the signa-
ture (with high confidence for sufficiently large n; see Lemma 1). They
showed that their protocol is secure as long as the simulatability condi-
tion7

X % Y ←→ Y ←→ Z (1)

does not hold. Heuristically, (1) says that P2 can forge P1’s signature
X % Y using Y in a manner undetectable by P3 using its observations
Z.
Furthermore, it was claimed in [19] that when X % Y ←→ Y ←→ Z
and X % Z ←→ Z ←→ Y hold, then pseudo-signature with either
of the transfer paths in which P1 is the sender (i.e., P1 → P2 → P3

or P1 → P3 → P2) is impossible to build based on (X,Y, Z). However,
there is a gap in the proof of [19, Theorem 3]8, and a pseudo-signature
can be implemented even if both these Markov chains hold. In essence,
these simulatability conditions do not account for the fact that P2 and P3

may effectively “upgrade” their observations by communicating with the
other parties even if they do not trust the other parties. We demonstrate
different possible ways in which this can be accomplished using a few
examples; these examples also serve as counterexamples to [19, Theorem
3] and build up intuition for our construction.

Example 1 (Upgrading P3’s observation by communication from P1).
Let us consider a correlation induced by Rabin’s oblivious transfer. Sup-
pose that X is uniformly distributed on {0, 1}, and Y = Z such that it is
X with probability 1

2
and the erasure symbol e with probability 1

2
. Then,

since Y = Z, this correlation satisfies both X % Y ←→ Y ←→ Z and
X % Z ←→ Z ←→ Y . However, we can implement a pseudo-signature
protocol from this correlation as follows. Let (Xi, Yi, Zi)i∈[n] be i.i.d.
observations distributed according to PXY Z .

1. To send message b ∈ {0, 1}, P1 sends b and (X̃i)i∈Tb = (Xi)i∈Tb to

P2, where Tb = {i : bn
2

+ 1 ≤ i ≤ (b+1)n
2
}.

2. P2 rejects if Yi /∈ {Xi, e} for some i ∈ Tb. Otherwise, P2 accepts b.
3. P1 sends (X̂i)i∈[n] = (Xi)i∈[n] to P3.

4. To transfer a message b it accepted, P2 sends b̂ = b and (X̆i)i∈T
b̂

=

(X̃i)i∈Tb to P3.

5. P3 accepts b̂ if any one of the following holds: (i) Zi /∈ {X̂i, e} for
some i ∈ [n]; and (ii) |{i ∈ Tb̂ : X̆i 6= X̂i}| ≤ nδ for a parameter
δ > 0. Otherwise, P3 rejects.

Clearly, the above protocol is perfectly correct. To verify transferability
(security against P1), notice that, to be successful, a corrupt P1 must

7 We write “the Markov chain U ←→ V ←→ W holds,” or simply “U ←→ V ←→
W” to mean U and W are conditionally independent conditioned on V .

8 It turns out that by considering restricted connectivity, specifically, when there is
no link between P1 and P3 and the link from P2 to P3 is unidirectional, it can be
shown that pseudo-signature from (X,Y, Z) is possible (if and) only if X % Y ←→
Y ←→ Z is not a Markov chain (see Theorem 12).



convince P3 to reject in step 5 while ensuring that P2 accepts in step 2.
In order for this, P1’s transmissions (X̆i)i∈Tb and (X̂i)i∈Tb to P2 and P3,
respectively, must disagree in more than nδ locations. However, unless
the observations of P2 and P3 (i.e., Yi = Zi) are not e in all such locations,
the attack will not succeed (since either P2 will reject in step 2 or P3 will
accept the bit P2 transfers in step 5). Hence, the chance of success for
P1 is at most 2−δn. To see unforgeability (security against P2), notice
that a successful attack by P2 requires it to guess Xi for all i ∈ T1−b
where Yi = e such that the number of incorrect guesses is no more than
nδ. Since for each i ∈ T1−b, the probability of Yi = e is 1/2 and P2 has
even odds of guessing correctly, the probability of a successful attack is
2−Ω(n) for δ < 1/8 (see, e.g., [28, Theorem 4.5]). B

In the above example, P3’s observation is effectively upgraded from Z
to (X,Z) using communication from P1 in step 3. Note that (in step 5)
P3 verifies this communication from P1; if the verification fails, P3 ac-
cepts any message P2 transfers, and if the verification succeeds, with
overwhelming probability P1 has not lied on more than a small fraction
of locations. In general, P3 can only (statistically) verify the parts of X
which non-trivially depend on Z, namely X % Z (which happens to be X
in this example). Thus, following the intuition in the example, we may
build9 a pseudo-signature protocol from correlations (X,Y, Z) whenever
the following condition (which is stronger compared to (1)) does not
hold:

X % Y ←→ Y ←→ (Z,X % Z). (2)

It turns out that we may further expand the class of feasible correlations
by upgrading P3’s observation via communication from both P1 and P2

(also see Example 3 in Appendix A). Note that the communication from
P2 could be part of the transfer step (i.e., step 4 in the example), where
now, in addition to what was received from P1, party P2 may also send
its observation Y to P3. Assume that, as in the example, P1 sends its X
observations and P3 has verified the X % Z part of this (if the verification
fails, P3 accepts the message transferred by P2). Now, P3 may also verify
the part Y % Z of the Y observations sent by P3. If the verification fails,
P3 rejects the message P2 transfers. Otherwise, it may now upgrade its
observation to Z1 = (Z, (X % Z), (Y % Z)). Using this P3 is now able
to verify more parts of the X observations received from P1, specifically,
X % Z1, and similarly Y % Z1 of the Y received from P2. It is clear
that this procedure can be repeated. In each step, the upgrade operation
involves a verification step where, based on what is currently known, the
maximal dependent part of the observation being used to perform the
upgrade is verified. If the verification fails, P3 either accepts or rejects
the transferred message depending on who provided the observation. It
turns out that only a fixed number of such steps suffice to reach the best
possible upgraded observation. The number of steps needed depends on
the distribution of (X,Y, Z) and is at most |X ||Y|, the product of the

9 This needs a slightly more elaborate test from the one in the protocol in the example
which exploits the fact that Rabin OT has erasures and no “errors.”



alphabet sizes of X and Y ; see Definition 3, the discussion after that, and
Definition 4. We denote by X‡ (see Definition 4) the additional informa-
tion P3 acquires about X through this repeated upgradation procedure.
The above intuition allows building a pseudo-signature protocol when-
ever the following condition (which is stronger still compared to (2)) does
not hold:

X % Y ←→ Y ←→ (Z,X‡). (3)

In some cases it is also useful to upgrade P2’s observation partially so
that the party is able to verify P1’s signature, but is still unable to forge
the signature. The following example illustrates the idea.

Example 2 (Partially upgrading P2’s observation using communication
from P3). Consider a function MAC that takes a message M and a key
K and computes an information theoretic message authentication code
(MAC) as MACK(M). MACs guarantee non-forgeability, i.e., a forger
(who may have access to a (message, MAC) pair) can succeed in pro-
ducing a valid MAC for a fresh message with negligible probability if
the key is unknown. Let MAC and MAC′ be two information theoretic
MACs such that MAC takes a message from U and a key uniformly at
random from V, and MAC′ takes a message from V and a key uniformly
at random from W. Consider the correlation (X,Y, Z) generated using
the following process:
1. Sample U, V,W uniformly and independently from U ,V,W, respec-

tively.
2. Define X = (U,MACV (U)), Y = W and Z = (V,MAC′W (V )).

For all i ∈ [m], j ∈ {0, 1}, suppose (Xi,j , Yi,j , Zi,j) are i.i.d. according to
the distribution of (X,Y, Z) described above. When P1, P2 and P3 have
(Xi,j), (Yi,j) and (Zi,j), respectively, for i ∈ [m], j ∈ {0, 1}, the following
protocol implements pseudo-signature with transfer path P1 → P2 → P3.

Signing Phase
1. P3 choose S ⊂ [m] uniformly at random conditioned on |S| = m

2
and

sends S and (Ẑi,j)i∈S,j∈{0,1} = (Zi,j)i∈S,j∈{0,1} to P2.

2. To send message b ∈ {0, 1}, P1 sends b and (X̃i,b)i∈[m] = (Xi,b)i∈[m]

to P2.
3. P2 accepts b unless for some i ∈ S, X̃i,b = (u, ū), Yi,b = w, Ẑi,b =

(v, v̄) such that ū 6= MACv(u) and v̄ = MAC′w(v).
Transfer Phase
4. To transfer a message b it accepted, P2 sends b̂ = b and (X̆i,b̂)i∈[m] =

(X̃i,b)i∈[m] to P3.

5. P3 rejects b̂ if there are more that m/4 distinct i ∈ [m] \S such that
ūi 6= MACvi(ui), where X̆i,b̂ = (ui, ūi) and Zi,b̂ = (vi, v̄i). Otherwise,

P3 accepts b̂.
To see security against P1 (transferability), notice that a corrupt P1 must

ensure that the (X̃i,b)i∈[m] = (ui, ūi)i∈[m] it sends to P2 is such that for
all i ∈ S, ūi = MACVi,b(ui) so that P2 accepts and for at least m/4 of
the remaining i ∈ [m] \ S, ūi 6= MACVi,b(ui) so that P3 rejects. Since



S is a set unknown to P1 of size m/2 chosen uniformly at random from
[m], the probability of success is negligible in m (i.e., 2−Ω(m)). Security
against P2 (unforgeability) follows from the security of MAC. To convince
P3 to accept b̂ = 1− b, the corrupt P2 needs to generate m/2 purported
(message, MAC) pairs corresponding to keys (Vi,1−b)i∈[m]\S (which it
does not know) such that at least m/4 of them are valid pairs. Using
a MAC with security parameter ε/m, we may ensure that only with
at most ε probability will even one of the pairs be valid. Unlike the
previous examples, P3 participates in the signing phase. Hence we also
need to consider security against P3 (correctness). This will follow from
the security of MAC′. A corrupt P3 (suppose it correctly guessed P1’s
b), who observes Zi,b = (Vi,b,MAC′Wi,b(Vi,b)), i ∈ [m], needs to generate

a valid (message, MAC) pair (v′i,b, v̄
′
i,b) corresponding to the (unknown)

key Wi,b such that v′i,b 6= Vi,b for at least one i ∈ [m] so that (with
S 3 i), P2 may reject b if MACVi,b(Ui,b) 6= MACv′

i,b
(Ui,b). If MAC′ has

security parameter ε/m, the probability that P3 succeeds is at most ε.
Hence, the protocol is ε-secure if m = O(log(1/ε)) and the MACs are
(ε/m)-secure. B

In the above example, by providing P3’s observation (i.e., Z) to P2 on a
random subset S of the instances, we achieved two things. Firstly, this
enabled P2 to verify the signature sent by P1 with the same confidence
as P3 would on these instances. Since S is unknown to P1, if P2 does not
detect an anomaly among these, with overwhelming probability, P1 has
not lied on more than a constant fraction of all the instances. Secondly,
by the independence of these instances, P2 is still as oblivious about P3’s
observation outside of S as before the upgrade. P3 checking the signature
only on [m] \ S denies P2 the possibility of a forging attack.
Note that a corrupt P3 could try to make P2 distrust an honest P1 by
giving out incorrect values of its observation (on a potentially cherry-
picked set S; in the above example there was no advantage in cherry
picking S). Hence, it is important that P2 uses only those parts of P3’s
observation it can verify to be correct, i.e., Z % Y (in the example, this
component turns out to be all of P3’s observation). If the verification
fails, P2 accepts P1’s message. In general, these verifications may require
a statistical test which may be reliable only when run over a long vector
of observations (in the example, MAC allowed this verification to be
done element-wise); the same is true for (the upgraded) P2 verifying
P1’s signature (which was again possible element-wise in the example).
Thus, in our construction, we consider two indices: i ∈ [m] which serves
the same purpose as in the above example and j ∈ [n] such that in step
2, for each i ∈ S, statistical tests can be carried out by P2 over a vector
indexed by j; such tests also takes away any advantage P3 can hope to
gain by picking S carefully. Similarly, in step 5, for each i ∈ [m] \ S, P3

conducts statistical tests over vectors indexed by j. With these we may
obtain a pseudo-signature protocol construction in which (the upgraded)
P2 can verify signatures X % Y ′, where Y ′ := (Y,Z % Y ). This pseudo-
signature protocol is secure as long as the following is not a Markov chain
(a stronger condition than (1)):

X % Y ′ ←→ Y ←→ Z.



Notice that only the first random variable has changed in the condition.
The middle random variable continues to be Y (and not Y ′). This is be-
cause the upgrade of P2’s observation to Y ′ is limited to a random subset
S, and, as we saw in the example, P3 verifies the signature transferred
by P2 in [m] \ S where P2 only holds Y .

Now suppose P2 has verified X % Y ′ as above and hence holds Y ′′ =
(Y ′, X % Y ′). Then, P2 may further upgrade its observation by verifying
more of the Z it received from P3. In particular, P2 may verify Z % Y ′′

and, if the verification passes (in case of failure P2 accepts P1’s message),
P2 may upgrade itself to Y ′′′ = (Y ′′, Z % Y ′′). With this additional
upgrade, P2 is equipped to verify a heftier signature (specifically X %
Y ′′′). It is clear that this procedure may be repeated, similar to the
repeated upgradation procedure we saw for P3. In each alternate step,
P2 verifies Z and X until no further upgradation is possible (this is
again attained in only a finite number of steps). We denote by X† (see
Definition 5) the part of X that the repeated upgradation procedure
allows P2 to verify and learn. We emphasize that P2 learns X† only on
a subset of instances which prevents it from using this information to
mount a successful forging attack. Thus, pseudo-signature is feasible if
the following Markov chain does not hold:

X† ←→ Y ←→ Z. (4)

Our construction for pseudo-signature in Section 3.1, which combines all
the ideas above and upgrades the observations of P3 and P2 (in a subset),
gives the following result (cf. (3)-(4)):

Theorem 1 (informal). Pseudo-signature with transfer path P1 →
P2 → P3 from correlation (X,Y, Z) is feasible if the following is not a
Markov chain

X† ←→ Y ←→ (Z,X‡). (5)

Characterization of correlations. We also observe that given a
pseudo-signature protocol with transfer path P1 → P3 → P2, we may
construct a pseudo-signature protocol with transfer path P1 → P2 → P3.
Our construction in Section 3.2 effectively samples a correlation using the
given pseudo-signature protocol and uses this correlation to implement
the protocol with the requisite altered transfer path. This observation,
when combined with Theorem 1, implies that pseudo-signature from a
correlation (X,Y, Z) is feasible if either (5) or its analog when the roles
of Y and Z are swapped does not hold. The latter Markov chain is in
fact X‡ ←→ Z ←→ (Y,X†), i.e., exchanging the roles of Y and Z also
exchanges the corresponding upgrades X† and X‡ as is evident from the
similarity of the repeated upgradation procedures at P2 and P3 (also
see Definitions 3-5). This gives the construction for our characterization
theorem for pseudo-signatures.

Theorem 2 (informal). If parties P1, P2, P3 observe independent copies
of correlation (X,Y, Z), a pseudo-signature protocol with transfer path



P1 → P2 → P3 exists if and only if at least one of the following Markov
chains does not hold:

X† ←→ Y ←→ (Z,X‡) (6)

X‡ ←→ Z ←→ (Y,X†) (7)

Impossibility. To show the impossibility part of the above theorem,
we leverage the connection between pseudo-signatures and broadcast.
As mentioned earlier, broadcast with sender P1 may be realized using a
pseudo-signature protocol with P1 as the signing party. We show that
broadcast from correlation (X,Y, Z) with sender P1 is impossible if both
Markov chains (6) and (7) hold. Our impossibility proof in Section 4 is
along the lines of the proof of impossibility of three-party broadcast from
scratch due to Fischer, Lynch, and Merritt (FLM) [13]. It may be thought
of as an extension of their argument to the case when correlations are
available to the parties. Similar to [13], we make two copies of the parties
(in fact, only copying party P1 suffices) and rewire the parties to create
a fictitious network. The parties in this network are fed observations
from a carefully chosen correlation so that we may give three different
interpretations which lead to a contradiction. Under each interpretation,
two of the parties are honest and the third dishonest party simulates
the remaining parties in the rewired network. Moreover, the choice of
correlation fed to the parties in the rewired network is such that in each
interpretation the correlations of the two honest parties and the one dis-
honest party are (X,Y, Z), and the dishonest party is able to sample the
correlations needed to perform the simulation. Like in [13], the interpre-
tations lead to a contradiction proving the impossibility. We note here
that the rewired network we use is identical to the one in the (flawed)
proof of [19, Theorem 7], however the rest of the proof including our use
of a carefully chosen distribution is different. To the best of our knowl-
edge this is the first instance where FLM’s argument has been extended
to a problem with setup where a carefully chosen setup is provided to the
parties in the fictitious network. In [6], the FLM argument was applied
to a case where parties may invoke partial broadcast (e.g., three party
broadcast); there, providing the parties in the fictitious network with
(the more obvious choice of) partial broadcast sufficed. Given the exten-
sive use of FLM argument in proving impossibility results in distributed
computing, our extension might be of independent interest. From the
above discussion it is clear that we also have a characterization theorem
for broadcast from correlations:

Theorem 3 (informal). If parties P1, P2, P3 observe independent copies
of correlation (X,Y, Z), broadcast with sender P1 is feasible if and only
if at least one of the following Markov chains does not hold:

X† ←→ Y ←→ (Z,X‡)

X‡ ←→ Z ←→ (Y,X†)

Pseudo-Signature under limited connectivity. Our construc-
tion only used the unidirectional links P1 ⇒ P2, P1 ⇒ P3, and the



bidirectional link P2 ⇔ P3, while the impossibility applies for proto-
cols which may use all pairwise links in either direction. We also study
pseudo-signature with transfer path P1 → P2 → P3, which necessarily
requires the P1 ⇒ P2 and P2 ⇒ P3 links, when one or both of P1 ⇒ P3

and P3 ⇒ P2 links that our construction additionally used are absent
and provide the characterizations.

2 Preliminaries

We use the method of types from information theory [11] to prove some
of the technical lemmas; see Appendix B.1 for a review. A sequence
(xi)i∈[n] is said to be typical with respect to a distribution PX when its
empirical probability is close to PX as below:

Definition 2 (γ-typical sequences). Let X be a random variable
defined on alphabet X with distribution PX . For a parameter γ > 0, a
sequence (xi)i∈[n], where xi ∈ X , i ∈ [n], is said to be (strongly) γ-typical

if for all a ∈ X and for N
(
a, (xi)i∈[n]

) def
= |{i : xi = a, i ∈ [n]}|,∣∣∣∣∣N

(
a, (xi)i∈[n]

)
n

− PX(a)

∣∣∣∣∣ ≤ γ

|X | .

The set of all γ-typical sequences is denoted by T nγ (PX).

The nomenclature is justified by the following theorem [11, Lemma 2.12]
which states that when (Xi)i∈[n] is drawn i.i.d. according to PX , with
overwhelming probability it will fall in T nγ (PX).

Theorem 4. Let (Xi)i∈[n] be a sequence of i.i.d. PX random variables,
then for any 0 < γ ≤ 1/2,

Pr
[
(Xi)i∈[n] /∈ T nγ (PX)

]
= 2−Ω(n). (8)

We now formalize the intuition we gave for minimal sufficient statistics
X % Y (see the discussion around Definition 1). The following lemma
states that if (Xi, Yi)i∈[n] is i.i.d. according to PXY and a party who
possesses (Xi)i∈[n], but crucially no additional side-information about
(Yi)i∈[n], attempts to tamper with (Xi)i∈[n] such that the ψX%Y parts
are significantly altered, with overwhelming probability this attempt can
be detected by a second party who possesses the correlated observations
(Yi)i∈[n]. Proofs of this and other lemmas not given here are available in
Appendix B.

Lemma 1. For any joint distribution PXY and γ > 0, there exists δ > 0
that approaches 0 as γ approaches 0 such that, when (Xi, Yi)j∈[n] are

i.i.d. according to PXY , and (X̂j)j∈[n] ←→ (Xj)j∈[n] ←→ (Yj)j∈[n] is
a Markov chain, then

Pr
[
(|{j : ψX%Y (X̂j) 6= ψX%Y (Xj)}| > nδ)

∧ ((X̂n, Y n) ∈ T nγ (PXY ))
]
≤ 2−Ω(n). (9)



The following lemma states two basic properties of minimal sufficient
statistics (Definition 1).

Lemma 2. (i) X ←→ (X % Y ) ←→ Y
(ii) Suppose Y1 is a function of Y2, then X % Y1 = (X % Y2) % Y1

and hence X % Y1 is a function of X % Y2. i.e., the partition of X
corresponding to X % Y2 is a refinement of the one corresponding to
X % Y1.

The following random variables play a role in the upgrade of P3’s obser-
vation.

Definition 3 (Upgraded random variables). For a triple of random
variables (X,Y, Z) with joint distribution PXY Z , we define:

Z(1) = (Z, (X % Z), (Y % Z))

Z(2) = (Z(1), (X % Z(1)), (Y % Z(1)))

...

Z(i+1) = (Z(i), (X % Z(i)), (Y % Z(i)))

...

For j > i, note that Z(i) is a function of Z(j). Hence, by Lemma 2(ii),
(X % Z(i)) (resp., (Y % Z(i))) is a function of (X % Z(j)) (resp., (Y %
Z(j))). In other words, as i increases, X % Z(i) and Y % Z(i) correspond
to finer and finer partitions of X and Y, respectively. Here X and Y
denote the alphabets of X and Y respectively. Clearly, if for some i,
((X % Z(i+1)), (Y % Z(i+1))) = ((X % Z(i)), (Y % Z(i))) a.s. (i.e., with
probability 1), then, for all j ≥ i, Z(j) = Z(i) a.s. and ((X % Z(j)), (Y %
Z(j))) = ((X % Z(i)), (Y % Z(i))) a.s. Hence, the finest partitions are
attained (at least) by index i = |X ||Y| and we denote these using the
following notation.

Definition 4 (Upgraded random variables cont.).

X‡ = X % Z(|X||Y|), Y ∗ = Y % Z(|X||Y|).

Analogously, for the upgrade of P2’s observations, we define:

Definition 5 (Upgraded random variables cont.). For a triple of
random variables (X,Y, Z) with joint distribution PXY Z , we recursively
define the following random variables:

Y (1) = (Y, (X % Y ), (Z % Y ))

Y (2) = (Y (1), (X % Y (1)), (Z % Y (1)))

...

Y (i+1) = (Y (i), (X % Y (i)), (Z % Y (i)))

...

X† = X % Y (|X||Z|), Z∗ = Z % Y (|X||Z|).



The following lemma follows from the definitions and Lemma 2(i):

Lemma 3.

(i) X ←→ X† ←→ (Y,Z∗)

(ii) Z ←→ Z∗ ←→ (Y,X†)

(iii) X ←→ X‡ ←→ (Z, Y ∗)

(iv) Y ←→ Y ∗ ←→ (Z,X‡)

3 Constructions

In this section we present our main constructions. In Section 3.1 we
show that pseudo-signature with transfer path P1 → P2 → P3 is fea-
sible if the parties P1, P2, P3 observe correlations X,Y, Z, respectively,
such that X† ←→ Y ←→ (Z,X‡) is not a Markov chain. In Sec-
tion 3.2 we argue that, given a pseudo-signature protocol with transfer
path P1 → P3 → P2, we can obtain a pseudo-signature protocol with
transfer path P1 → P2 → P3 (albeit with a weaker security parame-
ter). These two constructions together give us the feasibility direction of
the characterizations of correlations which allow pseudo-signatures (and
broadcast); see Section 5.

3.1 A Pseudo-Signature Protocol From Correlations

Theorem 5. Suppose PXY Z is a joint distribution such that the Markov
chain X† ←→ Y ←→ (Z,X‡) does not hold. Then, for any ε > 0, there
is an ε-secure pseudo-signature scheme with transfer path P1 → P2 →
P3 which uses N = O(log2( 1

ε
)) independent copies of the correlation

(X,Y, Z).

The construction we use to prove this theorem relies on a statistical
test which we describe first: Consider a joint distribution PUVW . Let
U (0) = U , and U (r) be recursively defined as (cf. Definitions 3 and 4)

U (r) = (U (r−1), V % U (r−1),W % U (r−1)), 1 ≤ r ≤ |V||W|.

For parameters γ1, . . . , γ|V||W| > 0 (to be decided; see Lemma 4), the
statistical test ΣUVW takes as input (uj , vj , wj)j∈[n] and proceeds as
follows:

1. Set u
(0)
j = uj for each j ∈ [n] and set r = 1.

2. If (u
(r−1)
j , vj)j∈[n] /∈ T nγr (PU(r−1),V ), report failure w.r.t. V and ter-

minate.

3. If (u
(r−1)
j , wj)j∈[n] /∈ T nγr (PU(r−1),W ), report failure w.r.t. W and

terminate.

4. Set u
(r)
j = (u

(r−1)
j , ψV %U(r−1)(vj), ψW%U(r−1)(wj)) for each j ∈ [n],

and set r = r+ 1. If r ≤ |V||W|, go to step 2; else report success and
terminate.



For r = 1 to |V||W|, the test attempts to recursively “upgrade” (u
(r−1)
j )j∈[n]

by attaching to it (f (r)(vj), g
(r)(wj))j∈[n]. Before doing so, the test must

verify if these attachments are valid. The intuition here is that the
function ψV %U(r−1) of (vj)j∈[n] (resp. ψW%U(r−1) of (wj)j∈[n]) is indeed
something a statistical test can be used to test the validity of based
on (u

(r−1)
j )j∈[n] (see Definition 1). Step 2 (resp., 3) performs this va-

lidity check by testing whether (vj)j∈[n] (resp., (wj)j∈[n]) is “typical”

with the current u
(r−1)
j according to the joint distribution PU(r−1),V

(resp., PU(r−1),W ). If not, the test terminates at this step with failure
w.r.t. V (resp. W ). The test terminates with success if none of the va-
lidity tests fail. When this happens, the test has verified the validity of
(ψV %U(|V||W|)(vj), ψW%U(|V||W|)(wj))j∈[n].
The following lemma formalizes the intuition. It states that while the
test will report failure with negligible property when run with inputs
(Uj , Vj ,Wj)j∈[n] generated PUVW i.i.d., it is also robust to maliciously

generated inputs. Specifically, if (Wj)j∈[n] is replaced with a (Ŵj)j∈[n]

generated conditionally independent of (Uj , Vj)j∈[n] conditioned on (Wj)j∈[n],
then only with negligible probability will the test (a) report failure w.r.t.
V , or (b) report success when for more than a small fraction of j’s, Ŵj

and Wj map to different values under ψW%U(|V||W|) (or ψW%U(r) for any
r as r = |V||W| corresponds to the finest partition). The lemma gives
similar guarantees when (Vj)j∈[n] is replaced with a (V̂j)j∈[n].

Lemma 4. Suppose (Uj , Vj ,Wj) are i.i.d. according to PUVW for all
j ∈ [n]. For any δ > 0, there exist parameters γ1, . . . , γ|V||W| > 0 such
that
(i) ΣUVW succeeds with probability 1−2−Ω(n) on input (Uj , Vj ,Wj)j∈[n].

(ii) Suppose (Ŵj)j∈[n] ←→ (Wj)j∈[n] ←→ (Uj , Vj)j∈[n] is a Markov

chain. On input (Uj , Vj , Ŵj)j∈[n],

(a) ΣUVW reports failure w.r.t. V with probability 2−Ω(n).
(b) When ` = |V||W|,

Pr
[
(|{j : ψW%U(`)(Ŵj) 6= ψW%U(`)(Wj)}| > nδ)

∧ (ΣUVW reports success)
]
≤ 2−Ω(n).

(iii) Suppose (V̂j)j∈[n] ←→ (Vj)j∈[n] ←→ (Uj ,Wj)j∈[n] is a Markov

chain. On input (Uj , V̂j ,Wj)j∈[n],

(a) ΣUVW reports failure w.r.t. W with probability 2−Ω(n).
(b) When ` = |V||W|,

Pr
[
(|{j : ψV %U(`)(V̂j) 6= ψV %U(`)(Vj)}| > nδ)

∧ (ΣUVW reports success)
]
≤ 2−Ω(n).

We prove the above lemma in Appendix C.1 making repeated uses of
Lemma 1.
We will show that the following protocol implements pseudo-signature
with transfer path P1 → P2 → P3 using the correlation (X,Y, Z).



Parties P1, P2 and P3 receive inputs (Xi,j)i∈[m],j∈[n], (Yi,j)i∈[m],j∈[n],
and (Zi,j)i∈[m],j∈[n], respectively, such that, for all i ∈ [m], j ∈ [n],
(Xi,j , Yi,j , Zi,j) are i.i.d. according to PXY Z . The parameters m,n, and
γ > 0 in the protocol will be specified during the security analysis.

Signing Phase
1. P3 uniformly samples S ⊂ [m] conditioned on |S| = m/2 and sends

S, (Ẑi,j)i∈S,j∈[n] = (Zi,j)i∈S,j∈[n] to P2.

2. To send message b ∈ {0, 1}, P1 sends b and (X̃i,j)i∈[m],j∈Tb =

(Xi,j)i∈[m],j∈Tb to P2, where Tb = {i : bn
2

+ 1 ≤ i ≤ (b+1)n
2
}.

3. P2 accepts b unless for some i ∈ S (S of size m/2) the statistical test

ΣY ZX with input (Yi,j , Ẑi,j , X̃i,j)j∈Tb fails w.r.t. X. In the latter
case P2 rejects b.

Transfer Phase
4. To transfer a message b it accepted, P2 sends b̂ = b and

(X̆i,j , Y̆i,j)i∈[m],j∈T
b̂

= (X̃i,j , Yi,j)i∈[m],j∈Tb to P3.

5. P1 sends (X̂i,j)i∈[m],j∈[n] = (Xi,j)i∈[m],j∈[n] to P3.

6. For each i ∈ [m] \ S, P3 runs ΣZXY with input (Zi,j , X̂i,j , Y̆i,j)j∈T
b̂
.

If for some i ∈ [m] \ S, ΣZXY fails w.r.t. X, P3 accepts b̂, else if
ΣZXY fails w.r.t. Y for some i ∈ [m]\S, P3 rejects. If ΣZXY reports
success for all i ∈ [m] \ S, go to the next step.

7. Denote ψX%Y (|X||Z|) by f† and ψX%Z(|X||Y|) by f‡. P3 rejects b̂ if
there are more than m/4 distinct i ∈ [m] \ S such that

(f†(X̆i,j), Zi,j , f
‡(X̂i,j))j∈T

b̂
/∈ T n/2γ (PX†ZX‡).

P3 accepts b̂ otherwise.

Proof (Theorem 5). Let δ, γ > 0 (to be decided) and set the parameters
for the statistical tests ΣY ZX and ΣZXY in the protocol from Lemma 4.
We first argue the correctness of the protocol. Lemma 4(i) guarantees
that when all parties behave honestly, each invocation of the tests ΣY ZX
and ΣZXY in the protocol reports success with probability 1 − 2−Ω(n).
Furthermore, since γ > 0, each typicality check made by P3 in step 7
succeeds with probability 1 − 2−Ω(n) by Theorem 4. Thus, by a union
bound, P2 and P3 together accept P1’s message with probability 1 −
m2−Ω(n).
We will separately consider the cases where P1, P2, and P3 are corrupt.

Security against P3 (Correctness). Suppose P3 sends S ⊂ [m] and

(Ẑi,j)i∈S,j∈[n] to P2 in step 1. To prove security against P3, it suffices to

show that, for all i ∈ S, when P2 runsΣY ZX with input (Yi,j , Ẑi,j , Xi,j)j∈Tb
in step 3, it reports failure w.r.t. X with only a negligible probability.
Notice that (S, (Ẑi,j)i∈S,j∈[n]) satisfies the Markov chain

S, (Ẑi,j)i∈S,j∈[n] ←→ (Zi,j)i∈[m],j∈[n] ←→ (Xi,j , Yi,j)i∈[m],j∈[n]. (10)

Let us define

(Ẑi,j)i∈[m]\S,j∈Tb = (Zi,j)i∈[m]\S,j∈Tb . (11)



Then

Pr
[
∃i ∈ S s.t. ΣY ZX fails w.r.t. X on input (Yi,j , Ẑi,j , Xi,j)j∈Tb

]
≤ Pr

[
∃i ∈ [m] s.t. ΣY ZX fails w.r.t. X on input (Yi,j , Ẑi,j , Xi,j)j∈Tb

]
≤

m∑
i=1

Pr
[
ΣY ZX fails w.r.t. X on input (Yi,j , Ẑi,j , Xi,j)j∈Tb

]
,

where the last step is a union bound. To bound each of these probabilities,
we notice that by (10)-(11) and the fact that (Xi,j , Yi,j , Zi,j) are i.i.d.
over i ∈ [m], j ∈ [n], the following Markov chain holds for each i ∈ [m]:

(Ẑi,j)j∈[n] ←→ (Zi,j)j∈[n] ←→ (Xi,j , Yi,j)j∈[n] (12)

Hence, by Lemma 4(iii)(a), for i ∈ [m],

Pr
[
ΣY ZX fails w.r.t. X on input (Yi,j , Ẑi,j , Xi,j)j∈Tb

]
= 2−Ω(|Tb|) = 2−Ω(n).

Thus, P2 accepts P1’s message with probability 1−m2−Ω(n).

Security against P1 (Transferability). To prove security against P1, it
is sufficient to show that, if P2 accepts, then P3 also accepts with over-
whelming probability. Fix b ∈ {0, 1}. Suppose P1 sends (b, (X̃i,j)i∈[m],j∈Tb)

to P2 in step 2 and (X̂i,j)i∈[m],j∈[n] to P3 in step 5. Then,(
(X̂i,j)i∈[m],j∈[n], (X̃i,j)i∈[m],j∈Tb

)
←→ (Xi,j)i∈[m],j∈[n]

←→
(
S, (Yi,j , Zi,j)i∈[m],j∈[n]

)
. (13)

Formally, we need to show that the event E = (E1∨E2)∧(E3∨(E4∧E5))
occurs with negligible probability, where
1. E1 is the event “ΣY ZX succeeds on input (Yi,j , Zi,j , X̃i,j)j∈Tb in step

3 for each i ∈ S”.
2. E2 is the event “ΣY ZX fails w.r.t. Z on input (Yi,j , Zi,j , X̃i,j)j∈Tb in

step 3 for some i ∈ S”.
3. E3 is the event “ΣZXY fails w.r.t. Y on input (Zi,j , X̂i,j , Yi,j)j∈Tb

in step 6 for some i ∈ [m] \ S”.
4. E4 is the event “ΣZXY succeeds on input (Zi,j , X̂i,j , Yi,j)j∈Tb in step

6 for each i ∈ [m] \ S”.

5. E5 is the event “in step 7, (f†(X̃i,j), Zi,j , f
‡(X̂i,j))j∈Tb /∈ T

n
2
γ (PX†ZX‡)

for at least m
4

distinct values of i ∈ [m] \ S.”
Note that, here E1 ∨ E2 is the event in which P2 accepts the signature,
and E3 ∨ (E4 ∧E5) is the event in which P3 rejects the signature. Since
(E1 ∨ E2) ∧ (E3 ∨ (E4 ∧ E5)) ⊂ E2 ∨ E3 ∨ (E1 ∧ E4 ∧ E5),

Pr[E] = Pr[(E1 ∨ E2) ∧ (E3 ∨ (E4 ∧ E5))]

≤ Pr[E2] + Pr[E3] + Pr[E1 ∧ E4 ∧ E5]. (14)

We now bound each of these probabilities. We have

Pr[E2] =
∑

Ŝ⊂[m]:|Ŝ|=m
2

Pr[S = Ŝ] · Pr[E2|S = Ŝ].



Since S is chosen independent of (X̃i,j , Yi,j , Zi,j)i∈[m],j∈Tb ,

Pr[E2|S = Ŝ] = Pr
[
∃i ∈ Ŝ s.t. ΣY ZX fails w.r.t. Z for (Yi,j , Zi,j , X̃i,j)j∈Tb

]
≤
∑
i∈Ŝ

Pr
[
ΣY ZX fails w.r.t. Z on (Yi,j , Zi,j , X̃i,j)j∈Tb

]
= |Ŝ|2−Ω(|Tb|) = m2−Ω(n),

where the bound on the probabilities in the last step follows from Lemma 4(ii)(a)
since, by (13) and the fact that (Xi,j , Yi,j , Zi,j) are i.i.d. over i ∈ [m], j ∈
[n], the following Markov chain holds for each i ∈ [m]:

(X̃i,j)j∈Tb ←→ (Xi,j)j∈Tb ←→ (Yi,j , Zi,j)j∈Tb . (15)

Hence,

Pr[E2] ≤
∑

Ŝ⊂[m]:|Ŝ|=m
2

Pr[S = Ŝ] m2−Ω(n) = m2−Ω(n). (16)

To bound Pr[E3], using the fact that

(X̂i,j)j∈Tb ←→ (Xi,j)j∈Tb ←→ (Yi,j , Zi,j)j∈Tb (17)

is a Markov chain for each i ∈ [m] and that (X̂i,j , Yi,j , Zi,j)i∈[m],j∈Tb is in-
dependent of S, following similar steps as above (invoking Lemma 4(iii)(a)
along the way) we have

Pr[E3] = Pr
[
∃i ∈ [m] \ S s.t. ΣZXY fails w.r.t. Y for (Zi,j , X̂i,j , Yi,j)j∈Tb

]
= m2−Ω(n). (18)

We now bound Pr[E1∧E4∧E5]. Recall that we denote f† = ψX%Y (|X||Z|)

and f‡ = ψX%Z(|X||Y|) . Let us define the events

B =
(
|{i ∈ [m] \ S : |{j ∈ Tb : f†(X̃i,j) 6= f†(Xi,j)}| > nδ)}| ≥ m

8

)
,

C =
(
∃i ∈ [m] \ S such that |{j ∈ Tb : f‡(X̂i,j) 6= f‡(Xi,j)}| > nδ

)
.

Since E1 ∧ E4 ∧ E5 ⊂ (E1 ∧B) ∨ (E4 ∧ C) ∨ (E5 ∧Bc ∧ Cc),

Pr[E1 ∧ E4 ∧ E5] ≤ Pr[E1 ∧B] + Pr[E4 ∧ C] + Pr[E5 ∧Bc ∧ Cc]. (19)

We proceed to bound each of these probabilities.

Pr[E1 ∧B] ≤ Pr[B ∧D] + Pr[E1 ∧Dc],

where D =
∧
i∈S(|{j ∈ Tb : f†(X̃i,j) 6= f†(Xi,j)}| ≤ nδ). For i ∈ [m],

if we define Fi as the indicator random variable of the event (|{j ∈ Tb :
f†(X̃i,j) 6= f†(Xi,j)}| > nδ), then

B =

(
m∑
i=1

Fi ≥
m

8

)
, D =

(∑
i∈S

Fi = 0

)
.



Since S is a random subset of size m/2 uniformly chosen from [m] inde-
pendent of (X̃i,j , Xi,j)i∈[m],j∈Tb (and therefore independent of (Fi)i∈[m]),

Pr[B ∧D] = 2−Ω(m).

Now, to bound Pr[E1 ∧Dc], for i ∈ [m], let

E1,i =
(

(ΣY ZX succeeds for (Yi,j , Zi,j , X̃i,j)j∈Tb)

∧ (|{j ∈ Tb : f†(X̃i,j) 6= f†(Xi,j)}| > nδ)
)
.

Then

E1 ∧Dc =
(

(ΣY ZX succeeds for (Yi,j , Zi,j , X̃i,j)j∈Tb ,∀i ∈ S)

∧ (∃i ∈ S s.t. |{j ∈ Tb : f†(X̃i,j) 6= f†(Xi,j)}| > nδ)
)

⊂
∨
i∈S

E1,i.

Hence,

Pr[E1 ∧Dc] ≤ Pr

[∨
i∈S

E1,i

]
≤

∑
Ŝ⊂[m]:|Ŝ|=m

2

Pr[S = Ŝ]
∑
i∈Ŝ

Pr[E1,i|S = Ŝ],

where the last inequality is a union bound. By the independence of S
and (X̃i,j , Yi,j , Zi,j)i∈[m],j∈Tb ,

Pr[E1,i|S = Ŝ]

= Pr
[
(ΣY ZX succeeds for (Yi,j , Zi,j , X̃i,j)j∈Tb)

∧ (|{j ∈ Tb : f†(X̃i,j) 6= f†(Xi,j)}| > nδ)
]

= 2−Ω(n),

where the last step follows from Lemma 4(ii)(b) since the Markov chain
(15) holds for each i ∈ [m] and f† = ψX%Y (|X||Z|) . Thus, Pr[E1 ∧ B] =

2−Ω(m) +m2−Ω(n).
To bound the term Pr[E4 ∧ C] in (19), let us define, for i ∈ [m],

E4,i =
(

(ΣZXY succeeds for (Zi,j , X̂i,j , Yi,j)j∈Tb)

∧ (|{j ∈ Tb : f‡(X̂i,j) 6= f‡(Xi,j)}| > nδ)
)
.

Since (E4 ∧ C) ⊂
∨
i∈[m]\S E4,i,

Pr [E4 ∧ C] ≤ Pr

 ∨
i∈[m]\S

E4,i





≤
∑

Ŝ⊂[m]:|Ŝ|=m
2

Pr[S = Ŝ]
∑

i∈[m]\Ŝ

Pr[E4,i|S = Ŝ].

We may bound Pr[E4,i|S = Ŝ] using the Markov chain (17) and the
independence of (X̂i,j , Yi,j , Zi,j)i∈[m],j∈Tb and S following similar steps

as in the bound for Pr[E1,i|S = Ŝ] above (now invoking Lemma 4(iii)(b))
to obtain Pr[E4 ∧ C] ≤ m2−Ω(n).
To bound the term Pr[E5 ∧ Bc ∧ Cc] in (19), we will make use of the
following lemma:

Lemma 5. For any distribution PUV and δ > 0, there exists γ > 0
that approaches 0 as δ approaches 0 such that, for random variables
(Uj , Vj , Ûj , V̂j)j∈[n] with (Uj , Vj)j∈[n] i.i.d. according to PUV ,

Pr
[
(|{j : Ûj 6= Uj}| ≤ nδ) ∧ (|{j : V̂j 6= Vj}| ≤ nδ)

∧ ((Ûj , V̂j)j∈[n] /∈ T nγ (PUV ))
]
≤ 2−Ω(n). (20)

For i ∈ [m], define the events

E5,i =
(

((f†(X̃i,j), Zi,j , f
‡(X̂i,j))j∈Tb /∈ T

n
2
γ (PX†ZX‡))

∧ (|{j ∈ Tb : f†(X̃i,j) 6= f†(Xi,j)}| ≤ nδ)

∧ (|{j ∈ Tb : f‡(X̂i,j) 6= f‡(Xi,j)}| ≤ nδ)
)
.

Since E5 ∧Bc ∧ Cc ⊂
∨
i∈[m]\S E5,i,

Pr [E5 ∧Bc ∧ Cc] ≤ Pr

 ∨
i∈[m]\S

E5,i


≤

∑
Ŝ⊂[m]:|Ŝ|=m

2

Pr[S = Ŝ]
∑

i∈[m]\Ŝ

Pr[E5,i|S = Ŝ].

Once again, since (X̃i,j , X̂i,j , Yi,j , Zi,j)i∈[m],j∈Tb is independent of S,

Pr[E5,i|S = Ŝ]

≤ Pr
[
((f†(X̃i,j), Zi,j , f

‡(X̂i,j))j∈Tb /∈ T
n
2
γ (PX†ZX‡))

∧ (|{j ∈ [n] : f‡(X̂i,j) 6= f‡(Xi,j)}| ≤ nδ)

∧
(
|{j ∈ Tb : f†(X̃i,j) 6= f†(Xi,j)}| ≤ nδ)

)]
= 2−Ω(n),

where the bound in the last step follows from Lemma 5 (take PUV as
PX†(ZX‡), i.e., U = X† and V = (Z,X‡)) as long as δ > 0 is sufficiently
small for a given choice of γ > 0 (we ensure that this is the case at the
end of this proof). Hence, Pr [E5 ∧Bc ∧ Cc] = m2−Ω(n). Gathering the
bounds for all terms in (19), we have shown that Pr[E1 ∧ E4 ∧ E5] =
m2−Ω(n) + 2−Ω(m). Together with (14),(16),(18), this proves security
against a corrupt P1 if we choose m = n (as we will do at the end of the
proof).



Security against P2 (Unforgeability). To prove security against P2,
it is sufficient to show that, when P1’s message is b and P2 claims in
step 4 that it received 1− b from P1, party P3 rejects with overwhelming
probability. Suppose P2 sends (1−b, (X̆i,j , Y̆i,j)i∈[m],j∈T1−b) to P3 in step
4. Then, these random variables satisfy the following Markov chain

(X̆i,j , Y̆i,j)i∈[m],j∈T1−b

←→
(
S, (Yi,j)i∈[m],j∈[n], (Xi,j)i∈[m],j∈Tb , (Zi,j)i∈S,j∈[n]

)
←→

(
(Xi,j)i∈[m],j∈T1−b , (Zi,j)i∈[m]\S,j∈[n]

)
. (21)

P3 accepts 1− b from P2 only if event E′ = E′1 ∨ E′2 occurs, where
1. E′1 is the event “ΣZXY fails w.r.t. X on input (Zi,j , Xi,j , Y̆i,j)j∈T1−b

in step 6 for some i ∈ [m] \ S”.
2. E′2 is the event “(f†(X̆i,j), Zi,j , f

‡(Xi,j))j∈T1−b is a γ-typical se-
quence w.r.t. PX†ZX‡ for at least m

4
instances of i ∈ [m] \ S”.

Pr[E′] = Pr[E′1 ∨ E′2] ≤ Pr[E′1] + Pr[E′2]. (22)

We will show that these events occur with negligible probability. For
i ∈ [m], let

E′1,i = (ΣZXY fails w.r.t. X for (Zi,j , Xi,j , Y̆i,j)j∈T1−b).

Then

Pr[E′1] = Pr

 ∨
i∈[m]\S

E′1,i


≤

∑
Ŝ⊂[m]:|Ŝ|=m

2

Pr[S = Ŝ]
∑

i∈[m]\Ŝ

Pr[E′1,i|S = Ŝ].

And for each Ŝ ⊂ [m] of size m/2 and i ∈ [m] \ Ŝ,

Pr[E′1,i|S = Ŝ]

= Pr
[
ΣZXY fails w.r.t. X for (Zi,j , Xi,j , Y̆i,j)j∈T1−b

∣∣∣S = Ŝ
]

= 2−Ω(|Tb|) = 2−Ω(n),

where the last step follows from Lemma 4(ii)(a) since, conditioned on
S = Ŝ,
(i) (Xi,j , Yi,j , Zi,j)i∈[m],j∈[n] is distributed PXY Z i.i.d. (since S is inde-

pendent of (Xi,j , Yi,j , Zi,j)i∈[m],j∈[n]), and

(ii) by (21) and (i) above, for i ∈ [m] \ Ŝ,

(Y̆i,j)j∈T1−b ←→ (Yi,j)j∈T1−b ←→ (Xi,j , Zi,j)j∈T1−b (23)

is a Markov chain.
Hence,

Pr[E′1] = m2−Ω(n). (24)

Finally, to bound Pr[E′2], we need the following lemma:



Lemma 6. Suppose the Markov chain X† ←→ Y ←→ (Z,X‡) does
not hold for the joint distribution PXY Z . Let (Xj , Yj , Zj)j∈[n] be i.i.d.

according to PXY Z . For any (X̂j)j∈[n] satisfying the Markov chain

(X̂j)j∈[n] ←→ (Yj)j∈[n] ←→ (Zj , Xj)j∈[n],

and all sufficiently small γ > 0,

Pr

[(
f†(X̂j), Zj , f

‡(Xj)
)
j∈[n]

∈ T nγ (PX†ZX‡)

]
≤ 2−Ω(n), (25)

where f† = ψX%Y (|X||Z|) and f‡ = ψX%Z(|X||Y|) .

For i ∈ [m], let

E′2,i = ((f†(X̆i,j), Zi,j , f
‡(Xi,j))j∈T1−b ∈ T

n/2
γ (PX†ZX‡)).

Clearly, E′2 ⊂
∨
i∈[m]\S E

′
2,i (in fact, E′2 requires at least m/4 instances

of E′2,i’s to occur for i ∈ [m] \ S). Hence,

Pr[E′2] = Pr

 ∨
i∈[m]\S

E′2,i


≤

∑
Ŝ⊂[m]:|Ŝ|=m

2

Pr[S = Ŝ]
∑

i∈[m]\Ŝ

Pr[E′2,i|S = Ŝ].

As seen in the analysis of Pr[E′1] above, conditioned on S = Ŝ, the
random variables (Xi,j , Yi,j , Zi,j)i∈[m],j∈[n] are distributed PXY Z i.i.d.

Together with (21), this implies that, conditioned on S = Ŝ, for all
i ∈ [m] \ Ŝ,

(Y̆i,j)j∈T1−b ←→ (Yi,j)j∈T1−b ←→ (Xi,j , Zi,j)j∈T1−b (26)

is a Markov chain. Further, by the hypothesis of the theorem, PXY Z is
such that X† ←→ Y ←→ (Z,X‡) is not a Markov chain. Hence, for
sufficiently small γ > 0, by Lemma 6, Pr[E′2,i|S = Ŝ] ≤ 2−Ω(n) for all

i ∈ [m] \ Ŝ. Thus, Pr[E′2] = m2−Ω(n) which together with (22) and (24)
gives Pr[E′] = m2−Ω(n). The proof of security against P2 follows.

At different points in the proof we made the following assumptions about
the parameters γ > 0, δ > 0: the parameter γ > 0 should be sufficiently
small as required by Lemma 6 in the proof of security against P2, and,
for a given γ > 0, the parameter δ > 0 should be sufficiently small as
required by Lemma 5 in the proof of security against P1. Clearly, we may
simultaneously choose these parameters to satisfy these assumptions.
Further, we set m = n so that the number of samples of the correlation
used is N = nm = n2 and the security parameter, as calculated above,

is ε = 2−Ω(n) = 2−Ω(
√
N), i.e., N = O(log2( 1

ε
)) as desired.



3.2 Altering the Transfer Path of a Pseudo-Signature
Protocol

Theorem 6. A pseudo-signature protocol with transfer path P1 → P3 →
P2 implies the existence of a pseudo-signature protocol with transfer path
P1 → P2 → P3.

Proof. Let Π be an ε-secure pseudo-signature protocol for the transfer
path P1 → P3 → P2. We build an η-secure pseudo-signature protocol
with transfer path P1 → P2 → P3, where η = O

(
ε log

(
1
ε

))
. Fix a number

n = Θ
(
log
(

1
ε

))
. This protocol makes n independent invocations Πi, i ∈

[n] of the given protocol.
Setup phase (Establishing a new correlation).

1. P1 samples uniformly random bits U1, . . . , Un. For i ∈ [n], P1 signs
Ui and sends to P3 using the signing phase of Πi.

2. If P3 rejects any of these n messages at the end of the respective
signature phases, it aborts the setup phase after informing P2.

3. P2 picks S0 ⊂ [n/2], S1 ⊂ [n]\[n/2] with |S0| = |S1| = n/4 uniformly
at random and sends S0 ∪ S1 to P3.

4. If P3 has not aborted the setup phase in step 2, for each i ∈ S0 ∪S1,
P3 sends Ũi = Ui to P2 using the transfer phase of Πi.

5. If for any i ∈ S0 ∪ S1, P2 rejects Ũi at the end of transfer phase of
Πi, then P2 flags P3 as corrupt.

Signing phase P1 → P2.

6. To send message b ∈ {0, 1}, P1 sends b and (Ûi)i∈Tb = (Ui)i∈Tb to

P2 where Tb = {i : bn
2

+ 1 ≤ i ≤ (b+1)n
2
}.

7. If P2 flagged P3 as corrupt in step 5, or P2 was informed by P3 in
step 2 that it is aborting the setup phase, then P2 accepts b. Else,
P2 accepts if Ûi = Ũi for each i ∈ Sb, and rejects otherwise.

Transfer phase P2 → P3.

8. To transfer an accepted b, P2 sends
(
b̂, (Ŭi)i∈T

b̂

)
=
(
b, (Ûi)i∈Tb

)
to

P3.

9. P3 accepts b̂ if it aborted the setup phase in step 2. Else, if Ŭi = Ui
for at least n/6 distinct i ∈ Tb̂ \ Sb̂, P3 accepts b̂, and rejects other-
wise.

Security against P1 (Transferability). We will show that if P2 accepts b in
the signing phase, then P3 rejects b in the transfer phase with a negligible
probability. Examining steps 7 and 9, this event happens only if (i) P2

flagged honest P3 as corrupt in step 5 (in this case P2 accepts any sig-
nature that P1 sends in the signing phase), or (ii) (Ui)i∈Tb and (Ûi)i∈Tb
sent by P1 in steps 1 and 6, respectively, are such that Ûi = Ui for all
i ∈ Sb and Ûi 6= Ui for more than n/4− n/6 = n/12 distinct i ∈ Tb \ Sb.
By ε-security of Π, if P3 accepts a message in the signing phase of Π,
then P2 rejects it in the transfer phase with probability ε. Hence, by a
union bound, (i) occurs with at most nε/2 probability. Since Sb is chosen
uniformly at random independent of (Ui, Ûi)i∈Tb (as Sb is unknown to
P1), by Chernoff’s bound, (ii) occurs with probability 2−Ω(n).



Security against P2 (Unforgeability). Suppose P1’s message is b, but in
the transfer phase, P2 sends (1− b, (Ŭi)i∈T1−b) to P3. Examining step 9,
P3 accepts 1 − b only if (i) P3 aborted the setup phase in step 2, or (ii)
Ŭi = Ui for at least n/6 distinct i ∈ T1−b \S1−b. By ε-security of Π, if P1

is honest, then P3 rejects the message in the signing phase with probabil-
ity ε. Hence, by a union bound, (i) occurs with at most nε/2 probability.
Each Ui, i ∈ T1−b \ S1−b is chosen uniformly and independently from
{0, 1} (unknown to P2), hence Pr[Ŭi = Ui] = 1/2 for i ∈ T1−b \ S1−b.
Hence, by Chernoff’s bound, (ii) occurs with probability 2−Ω(n).

Security against P3 (Correctness). This amounts to showing that P2 re-
jects the message from P1 in the signing phase with a negligible prob-
ability. Examining step 7, this occurs only if P2 has not flagged P3 as
corrupt in step 5, P3 did not report abort in step 2, and Ûi 6= Ũi for
some i ∈ Sb. Noting that Ûi = Ui for all i ∈ [n], this occurs only if, for
some i ∈ Sb, P2 accepts Ũi = 1− Ui at the end of the transfer phase of
Πi when P1’s input is Ui. By ε-security of Π, for any i ∈ [n], this occurs
with probability ε. Hence, we may bound the probability of this event
(over any arbitrary choice of Sb) by nε/2.
For n = Θ

(
log 1

ε

)
, these error probabilities compound to O

(
ε log

(
1
ε

))
.

Hence, the above protocol is η-secure.

4 Impossibility

Theorem 7. Let (X1, Y1, Z1), (X2, Y2, Z2), . . ., (Xn, Yn, Zn) be inde-
pendent and identically distributed (i.i.d.) triples with distribution PXY Z .
Suppose parties P1, P2, P3 have access to correlations (Xi)i∈[n], (Yi)i∈[n],
(Zi)i∈[n], respectively, and are connected pairwise by secure channels.
For any n, ε < 1/3, there is no ε-secure broadcast protocol for the three
parties with sender P1 if the following Markov chain holds:10

X† ←→ Y ←→ Z ←→ X‡. (27)

We prove Theorem 7 in two steps. We first generalize the technique of
Fischer, Lynch, and Merritt [13] to our setting with correlations. As
in [13], we consider a new system with copies of the parties (in fact, only
making two copies of party P1 suffices) and the connections rewired.
The key step is in identifying a judiciously chosen correlation (Q

¯
XY ZX̄

in the lemma below) to feed the parties in the new network. Lemma 7
below gives the conditions on this correlation Q

¯
XY ZX̄ under which an

impossibility can be shown. We then establish Theorem 7 by showing
that such a Q

¯
XY ZX̄ exists when (27) holds.

Lemma 7. Consider the setup of Theorem 7. For any n, ε < 1/3, there
is no ε-secure broadcast protocol for the three parties with sender P1 if
there is a distribution Q

¯
XY ZX̄ such that Q

¯
XY = PXY , QY Z = PY Z ,

QZX̄ = PZX , and
(i) ∃ QZ̃|

¯
XY ZX̄ s.t. QZ̃|

¯
XY = PZ|XY and (

¯
X,Y ) ←→ Z̃ ←→ (Z, X̄),

10 We write “T←→U←→V ←→W” to mean PTUVW = PTPU|TPV |UPW |V .



(ii) ∃ QỸ |
¯
XY ZX̄ s.t. QỸ |ZX̄ = PY |ZX and (Z, X̄) ←→ Ỹ ←→ (

¯
X,Y ),

(iii) ∃ QX̃|
¯
XY ZX̄ s.t. QX̃|Y Z = PX|Y Z and (Y,Z) ←→ X̃ ←→ (

¯
X, X̄).

P1 P ′1

P2 P3

(
¯
Xi)i∈[n] (X̄i)i∈[n]

m m′

(Yi)i∈[n] (Zi)i∈[n]

Fig. 1: A wiring diagram. Parties P1, P2, P3 and P ′1 observe correlations (X
¯ i

)i∈[n], (Yi)i∈[n],

(Zi)i∈[n], and (X̄i)i∈[n], respectively, i.i.d. according to QX
¯
Y ZX̄ . Party P1 with input m, and

P ′1 with input m′ 6= m are identical copies of the sender. All parties run the protocol honestly.

Proof (Lemma 7). Suppose there is a (for now, a perfectly secure) broad-
cast protocol with sender P1 . Consider the wiring diagram11 in Figure 1
where the correlations (

¯
Xi)i∈[n], (Yi)i∈[n], (Zi)i∈[n], (X̄i)i∈[n] of the par-

ties P1, P2, P3, P
′
1, respectively, are i.i.d. according to Q

¯
XY ZX̄ . Note that

P1 and P ′1 are identical copies of the sender with the only difference be-
ing the correlated observations they use ((

¯
Xi)i∈[n] for P1 and (X̄i)i∈[n]

for P ′1) and their messages (m for P1 and m′ 6= m for P ′1).
– P1 is connected to P2, but it is disconnected from P3. Its messages

to P3 are lost and it receives no messages from P3.
– P2 is connected to P1 and P3.
– P3 is connected to P2 and P ′1 (instead of P1).
– P ′1 is connected to P3 and disconnected from P2.

Note that all parties here are honest. We will give three different interpre-
tations of the new system in the diagram as instantiations of the original
system (where the correlations are PXY Z i.i.d.); in each interpretation,
two of the parties are honest and the third party, who is dishonest, sim-
ulates the remaining two nodes in the new system. This will lead us to
a contradiction establishing the impossibility of broadcast.
First interpretation: malicious P3. Since Q

¯
XY = PXY , the joint distri-

bution of the correlated observations (
¯
Xi)i∈[n] and (Yi)i∈[n] of P1 and

P2 are as in the original system. We will argue that the joint view of
P1 and P2 in the new system is identical to that in the original system
where P1 (with input m) and P2 are honest and P3 is corrupt as follows:
corrupt P3 in the original system simulates P3 and P ′1 in the new sys-
tem. The corrupt P3 is able to do this since the observations it receives

11 The wiring diagram is similar to the one described in [19, proof of Theorem 7], but
the rest of the argument (including the identification of a correlation Q

¯
XY ZX̄ to

establish an impossibility) is different potentially avoiding gaps which might have
led to the flaw there.



is jointly distributed with the observations (
¯
Xi)i∈[n] and (Yi)i∈[n] of P1

and P2 according to PXY Z i.i.d. and, since (by the lemma’s hypothe-
sis (i)) Q

¯
XYQZ̃|

¯
XY = PXY PZ|XY = PXY Z , we may treat the observa-

tions received by P3 as (Z̃i)i∈[n]. Then, by virtue of the Markov chain

(
¯
X,Y ) ←→ Z̃ ←→ (Z, X̄) (of lemma’s hypothesis (i)), the corrupt P3

may sample (Zi)i∈[n], (X̄i)i∈[n] to simulate P3 and P ′1. Hence, the joint
view of P1 and P2 in the new system is identical to that in the original
system where P1 (with input m) and P2 are honest and P3 is corrupt.
Therefore, P2 in the new system must output m.
Second interpretation: malicious P2. Arguing similarly using QZX̄ =
PZX and hypothesis (ii) of the lemma, we may conclude that P3 in the
new system must output m′.
Third interpretation: malicious P1. Similarly, using QY Z = PY Z and
hypothesis (iii), we may conclude that the joint view of P2 and P3 in
the new system is identical to that in the original system where P2 and
P3 are honest and P1 is corrupt. Hence the outputs of P2 and P3 must
agree, a contradiction.
The above discussion assumed a perfectly secure broadcast. For an ε-
secure broadcast, the conclusions in each interpretation are guaranteed
to hold with probability 1− ε. So, we arrive at contradiction if ε < 1/3.

Theorem 7 now follows from the lemma below which is proved in Ap-
pendix D.

Lemma 8. If PXY Z is such that the Markov chain of (27) holds, the
distribution Q

¯
XY ZX̄ defined below satisfies Q

¯
XY = PXY , QY Z = PY Z ,

QZX̄ = PZX , and conditions (i)-(iii) in the hypothesis of Lemma 7.

Q
¯
XY ZX̄(

¯
x, y, z, x̄)

def
= PY Z(y, z)PX|Y (

¯
x|y)PX|Z(x̄|z), ∀

¯
x, y, z, x̄. (28)

5 Characterizations

In Theorem 5, we have shown that pseudo-signature with transfer path
P1 → P2 → P3 is feasible from correlation (X,Y, Z) if the Markov chain
X† ←→ Y ←→ (Z,X‡) does not hold; by symmetry, we can show that
pseudo-signature with transfer path P1 → P3 → P2 is feasible from cor-
relation (X,Y, Z) if the Markov chain X‡ ←→ Z ←→ (Y,X†) does not
hold. Furthermore, in Theorem 6, we have shown that pseudo-signature
with transfer path P1 → P2 → P3 is feasible if pseudo-signature with
transfer path P1 → P3 → P2 is, and vice versa. Thus, we can conclude
that pseudo-signatures with both transfer paths P1 → P2 → P3 and
P1 → P3 → P2 are feasible if at least one of the following Markov chains
do not hold.

X† ←→ Y ←→ (Z,X‡) (29)

X‡ ←→ Z ←→ (Y,X†) (30)

On the other hand, in Theorem 7, we have shown that broadcast with
sender P1 is infeasible if the following Markov chain holds.

X† ←→ Y ←→ Z ←→ X‡. (31)



In fact, the Markov chain condition (31) and the pair of Markov chain
conditions (29) and (30) are equivalent: clearly (31) implies (29) and
(30); to verify the opposite implication, note that (29) implies that

PX†Y ZX‡ = PX†PY |X†PZX‡|Y = PX†PY |X†PZ|Y PX‡|ZY .

Now, (30) implies that X‡ ←→ Z ←→ Y , i.e., PX‡|ZY = PX‡|Z . Hence,
(29) and (30) together imply that PX†Y ZX‡ = PX†PY |X†PZ|Y PX‡|Z ,
which is (31). Using this observation, we can provide a complete charac-
terization of feasibility of pseudo-signature and broadcast. Even though
the conditions on the correlation are the same for pseudo-signature and
broadcast, we state them separately to clarify the logical difference of
the derivations.

Theorem 8 (Characterization of pseudo-signature). Pseudo-signature
with transfer path P1 → P2 → P3 is feasible from correlation (X,Y, Z)
if and only if the Markov chain (31) does not hold. The same statement
holds for pseudo-signature with transfer path P1 → P3 → P2.

Proof. The “if” part follows from Theorem 5 and Theorem 6. On the
other hand, the “only if” part follows from the fact that pseudo-signature
with either transfer implies broadcast with sender P1 and Theorem 7.

Theorem 9 (Characterization of broadcast). Broadcast with sender
P1 is feasible from correlation (X,Y, Z) if and only if the Markov chain
(31) does not hold.

Proof. The “if” part follows from Theorem 5 (invoked for either transfer
path with signer P1) and the fact that the pseudo-signature with signer
P1 implies broadcast with sender P1. On the other hand, the “only if”
part follows from Theorem 7.

6 Characterizations for Pseudo-Signatures with
Limited Connectivity

Notice that the construction in Section 3.1 only used the unidirectional
links P1 ⇒ P2, P1 ⇒ P3, and the bidirectional link P2 ⇔ P3, while
the impossibility in Section 4 (via the fact that pseudo-signature with
transfer path P1 → P2 → P3 implies broadcast with sender P1) applies
for pseudo-signature protocols which may use all pairwise links in either
direction. In this section we consider networks with more limited con-
nectivity than what the construction in Section 3.1 demands and give
characterizations. Note that a similar question is uninteresting for broad-
cast with sender P1 as it is easy to argue that broadcast is impossible
without all the links demanded by our construction present.
For pseudo-signature protocols with transfer path P1 → P2 → P3, since
the links P1 ⇒ P2 and P2 ⇒ P3 are needed, we consider cases where
one or both of the links P1 ⇒ P3 and P3 ⇒ P2 that our construction
additionally needed are absent.



Pseudo-signatures with connectivity P1 ⇔ P2 ⇔ P3. This
network does not have the P1 ⇒ P3 link our construction needs. This
prevents P3 from being upgraded. However, the partial upgrade of P2

may still be implemented. Straightforward modifications of the construc-
tion (to only use P1 ⇒ P2 and P2 ⇔ P3 links) show that a pseudo-
signature protocol with transfer path P1 → P2 → P3 is feasible as long
as X† ←→ Y ←→ Z does not hold. This turns out to be the charac-
terizing condition as we show in Appendix E.1

Theorem 10. Pseudo-signature with transfer path P1 → P2 → P3 is
feasible from correlation (X,Y, Z) when secure links P1 ⇔ P2 and P2 ⇔
P3 are available if and only if the following Markov chain does not hold

X† ←→ Y ←→ Z. (32)

Pseudo-signatures with no P3 ⇒ P2 link. Here the link between
P2 to P3 is unidirectional. This prevents P2 from being upgraded, but
P3 may still be upgraded. With straightforward changes to use only
P1 ⇒ P2, P1 ⇒ P3, and P2 ⇒ P3 links, our construction gives a pseudo-
signature protocol if (X % Y ) ←→ Y ←→ (Z,X‡) does not hold. This
turns out to be the characterizing condition (see Appendix E.2).

Theorem 11. Pseudo-signature with transfer path P1 → P2 → P3 is
feasible from correlation (X,Y, Z) when secure links P1 ⇔ P2, P1 ⇔ P3,
and P2 ⇒ P3 are available if and only if the following Markov chain does
not hold

(X % Y ) ←→ Y ←→ (Z,X‡). (33)

Pseudo-signatures with connectivity P1 ⇔ P2 ⇒ P3. In this
third case both P1 ⇒ P3 and P3 ⇒ P2 links are absent. This prevents
both P2 and P3 from being upgraded. The pseudo-signature protocol
in [19] (or by altering our construction) which uses only the P1 ⇒ P2

and P2 ⇒ P3 links is secure as long as X % Y ←→ Y ←→ Z is not true.
This is also the characterizing condition for this case (see Appendix E.3)

Theorem 12. Pseudo-signature with transfer path P1 → P2 → P3 is
feasible from correlation (X,Y, Z) when secure links P1 ⇔ P2 and P2 ⇒
P3 are available if and only if the following Markov chain does not hold

X % Y ←→ Y ←→ Z. (34)
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Appendices

A Details Omitted from Section 1

A.1 Construction of Broadcast Using Pseudo-Signature

The following protocol is an ε-secure implementation of broadcast using
an ε-secure implementation of pseudo-signature with transfer path P1 →
P2 → P3.
1. P1 sends Π1→2 = b to P2 by invoking the signing phase of the

pseudo-signature, and Π1→3 = b to P3 without signature via the
corresponding pairwise channels;

2. P2 executes the following steps:
– If Π1→2 6= ⊥, then P2 sets b2 = Π1→2 and forwards Π1→2 by

invoking the transfer phase of the pseudo-signature; P3 receives
Π2→3;

– If Π1→2 = ⊥, then P2 sends Π2→3 = ⊥ to P3 via the pairwise
channel;

3. P3 conducts the following:
– If Π2→3 6= ⊥, then P3 sets b3 = Π2→3;
– If Π2→3 = ⊥, then P3 sets b3 = Π1→3, and sends Π3→2 = Π1→3

to P2 via the pairwise channel;
4. If Π1→2 = ⊥, then P2 sets b2 = Π3→2.

When P1 is malicious, we need to verify if the agreement is satisfied,
i.e., P2 and P3 output the same value. If Π1→2 = Π2→3 6= ⊥, then both
P2 and P3 output b2 = b3 = Π2→3. On the other hand, if Π1→2 = ⊥,
both P2 and P3 output b2 = b3 = Π1→3. Thus, the transferability of
the pseudo-signature implies that P2 and P3 output the same value with
probability 1− ε.
When P2 is malicious, we need to verify if P3 outputs P1’s input b. Since
P1 is honest, note that P1 sends Π1→2 = b to P2 and Π1→3 = b to P3. If
Π2→3 6= ⊥, then P3 outputs b3 = Π2→3; on the other hand, if Π2→3 = ⊥,
then P3 outputs b3 = Π1→3. Thus, the unforgeability of pseudo-signature
implies that P3 outputs P1’s input with probability 1− ε.
When P3 is malicious, we need to verify if P2 outputs P1’s input b. Since
P1 and P2 are honest, P1 sends b to P2, and P2 outputs b2 = Π1→2.
Thus, the correctness of pseudo-signature implies that P2 outputs b2 = b
with probability 1− ε.

Remark 1. As we can see from the above protocol, the secrecy property
of pseudo-signatures is not necessary to realize secure broadcast.

A.2 An Example Where P3’s Observation Is Upgraded
with Help from P1 and P2

Since it is cumbersome to explain the upgrading procedure for sequence
of observations, we explain it for a single observation. Furthermore,
we will use correlations induced by the randomized oblivious transfer
(ROT), ((K0,K1), (B,KB)), instead of Rabin’s OT. Recall that (K0,K1)



and (B,KB) are observed by the sender and the receiver of ROT, respec-
tively; and the value of B and KB are concealed from the sender and
the receiver, respectively, where B = B ⊕ 1. In a similar manner as the
tests in Example 1, substitution can be detected as follows: if (K0,K1)
is substituted to (K̃0, K̃1) 6= (K0,K1), then a party observing (B,KB)
can detect the substitution by testing if K̃B = KB .

Example 3 (Upgrading P3’s observation by communication from P1 and
P2).
Suppose that

X = (K0,2,K1,2),

Y = ((K0,1,K1,1), (B2,KB2,2)),

Z = ((B1,KB1,1), (B2,KB2,2 ⊕KB1,1
)).

In words, X is an instance of the sender’s part of ROT, Y is an in-
stance of the sender’s part of ROT and an instance of the receiver’s part
of ROT, and Z is two instances of the receiver’s part of ROT but the
second instance is “locked” by the unavailable key of the first instance
of ROT. It can be verified that the conditions X % Y ←→ Y ←→ Z
and X % Z ←→ Z ←→ Y are satisfied for this correlation (X,Y, Z).
Since KB2,2 is locked, we cannot upgrade P3’s observation in the same
manner as in the protocol of Example 1; P3 cannot detect P1’s misbe-
havior without knowing KB2,2. To circumvent this obstacle, we can let
P2 send (K0,1,K1,1) to P3 so that Z is first upgraded to (Z, (K0,1,K1,1));
even if dishonest P2 does not cooperate, his misbehavior can be detected
by using (B1,KB1,1). Then, since KB2,2 can be unlocked, we can up-
grade P3’s observation to append (K0,2,K1,2); the resulting observations
violates the simulatability condition, and we can implement the pseudo-
signature using a protocol similar to the one in Example 1.
In fact, we can iterate the upgrading procedure r times, and we can
implement the pseudo-signature from the correlation given by

X = ((K0,2,K1,2), . . . , (K0,r,K1,r)),

Y = ((K0,1,K1,1), . . . , (Br,KBr,r)),

Z = ((B1,KB1,1), (B2,KB2,2 ⊕KB1,1
), . . . , (Br,KBr,r ⊕KBr−1,r−1)).

B

B Details Omitted from Section 2

B.1 Method of Types: A Review

We start with a brief review of the method of types [11] from informa-
tion theory which we use to prove some of the key technical lemmas
(Lemmas 1, 5, and 6). In these lemmas, we need to handle malicious
behavior which involves substituting a sequence by another sequence in
an arbitrary manner. In our proofs we apply a random permutation to
the sequences which will then allow us to assume that the substitution



is symmetric in the sense that it depends only on the frequency distri-
bution of the sequences. The method of types turns out to be a suitable
technique for analyzing such a situation. We introduce some notation
and review a few technical results; for details, see [11].
For a pair of sequences xn = (x1, . . . , xn), x̂n = (x̂1, . . . , x̂n) ∈ Xn, we
define the Hamming distance between them as dH(xn, x̂n) = |{i ∈ [n] :
xi 6= x̂i}|. Given a sequence xn = (x1, . . . , xn) ∈ Xn, let

N(a|xn) = |{i : xi = a}|

be the number of occurrence of a ∈ X in xn. Then, the probability
distribution defined by

Pxn(a) =
1

n
N(a|xn), a ∈ X

is called the type of sequence xn. If a distribution P̄ is such that nP (a)
is an integer for every a ∈ X , then we say that P̄ is a type on X .
The set of all types on X corresponding to sequences xn of length n is
denoted by Pn(X ). By a simple counting argument, we can verify that
|Pn(X )| ≤ (n+ 1)|X|; see [11, Lemma 2.2].
For a given type P̄ , the type class

T nP̄ = {xn ∈ Xn : Pxn = P̄}

is defined as the set of all sequences having type P̄ . One of useful obser-
vations in the type method is that, when sequences are generated from
an i.i.d. source PnX , every sequence in a type class T nP̄ have the same
probability. Moreover, the probability of the type class can be evaluated
as [11, Lemma 2.6]

1

(n+ 1)|X|
2−nD(P̄‖PX ) ≤ PnX(T nP̄ ) ≤ 2−nD(P̄‖PX ). (35)

Particularly, when PX = P̄ , we have the following lower bound:

P̄n(T nP̄ ) ≥ 1

(n+ 1)|X|
. (36)

In fact, T nP̄ is the type class that is most likely to occur from the source
having distribution P̄n; see the proof of [11, Lemma 2.3]. Since the prob-
ability of a sequence xn ∈ T nP̄ can be written as P̄n(xn) = P̄n(T nP̄ ) 1

|T n
P̄
| ,

we have

1

(n+ 1)|X|
1

|T n
P̄
| ≤ P̄

n(xn) ≤ 1

|T n
P̄
| , (37)

i.e., the probability P̄n(xn) is close to the uniform distribution on the
type class T nP̄ up to a polynomial factor.
For a pair of sequences (xn, yn) = ((x1, y1), . . . , (xn, yn)), the number of
occurrence N(a, b|xn, yn) of a pair (a, b) in (xn, yn) is defined similarly,

and the joint type is defined as Pxnyn(a, b) = N(a,b|xn,yn)
n

.
For a given type P̄ ∈ Pn(X ), a stochastic matrix W̄ from X to Y is
called a conditional type for P̄ if nP̄ (a)W̄ (b|a) is an integer for every



(a, b) ∈ X × Y. Also, we say that a sequence yn has conditional type
W̄ given xn if Pxnyn(a, b) = P̄ (a)W̄ (b|a) for every (a, b). For a type
P̄ ∈ Pn(X ), let Wn(Y|P̄ ) be the set of all conditional type W̄ for P̄ . For
a conditional type W̄ ∈ W(Y|P̄ ) and a sequence xn ∈ T nP̄ , let

T nW̄ (xn) = {yn ∈ Yn : Pxnyn(a, b) = P̄ (a)W̄ (b|a), ∀(a, b) ∈ X × Y}

be the set of all sequences having the conditional type W̄ given xn, which
is termed the conditional type class of W̄ given xn. By a conditional
version of the arguments in (35)-(36) (cf. [11, (2.8)]), we can derive a
conditional version of (37),

1

(n+ 1)|X||Y|
1

|T n
W̄

(xn)| ≤ W̄
n(T nW̄ (xn)|xn) ≤ 1

|T n
W̄

(xn)| (38)

for xn ∈ T nP̄ and W̄ ∈ Wn(Y|P̄ ).
By denoting

PnPX ,γ = {P̄ ∈ Pn(X ) : |P̄ (a)− PX(a)| ≤ γ, ∀a ∈ X},

the PX -typical set T nγ (PX) can be written as

T nγ (PX) =
⋃

P̄∈Pn
PX,γ

T nP̄ .

Since Pxn(a) = 1
n

∑n
i=1 1[xi = a] can be regarded as an arithmetic mean

and its expectation is PX(a), by applying the Hoeffding inequality, we
can derive

PnX(T nγ (PX)c) ≤ 2|X |e−2γ2n, (39)

i.e., the probability of false positive (falsely claiming that there is an
adversary) in the typicality test is 2−Ω(n).
In order to consider the probability of mis-detection (falsely claiming
that there is no adversary) in the typicality test, for a subset Q ⊂ (X ) of
distributions such that the closure Q in P(X ) satisfies PX /∈ Q, suppose
that an adversary’s misbehavior induces a product distribution QnX for
some QX ∈ Q.

Lemma 9. Suppose that the closure Q in P(X ) satisfies PX /∈ Q. Then,
there exists γ > 0 such that

QnX(T nγ (PX)) ≤ 2|X |e−2γ2n.

for every QX ∈ Q.

Proof. Since PX /∈ Q, there exists γ > 0 such that , for every QX ∈ Q,

|PX(a)−QX(a)| > 2γ for some a ∈ X .

Then, xn ∈ T nγ (PX) implies that the type Pxn satisfies

|Pxn(a)−QX(a)| ≥ |PX(a)−QX(a)| − |Pxn(a)− PX(a)| > γ

for some a ∈ X , which further implies T nγ (PX) ⊆ T nγ (QX)c. Thus, by
applying (39) for QX -typical set, we have

QnX(T nγ (PX)) ≤ QnX(T nγ (QX)c)

≤ 2|X |e−2γ2n.



B.2 Proof of Lemma 1

This proof uses some notation and results reviewed in Appendix B.1 on
the method of types. In order to prove Lemma 1, we use the following
lemma [19, Lemma 2].

Lemma 10. For U = ψX%Y (X) and any random variable Û satisfying
Û ←→ X ←→ Y and PY U = PY Û , we have Û = U with probability 1.

For the time being, let us assume that the substituted sequence Ûn =
ψX%Y (X̂n) is generated from Xn via a memoryless channel that is chosen
from the following class:

W(δ) =

{
W ∈ P(U|X ) :

∑
û,s

PX(x)W (û|x)1[û 6= ψX%Y (x)] ≥ δ
}
,

where P(U|X ) is the set of all channels from X to U (i.e., the set of
all conditional distributions of the form QU|X) and 1 is the indicator
function. Note that the constraint in W(δ) describes the case when an
adversary substitute sufficient portions of the observation Xn. The mem-
oryless assumption will be removed later. Let P(δ) be the set of all joint
distributions on Y × U that is induced from PXY and W ∈ W(δ). Since
the constraint of P(δ) is linear, it is a closed set. Furthermore, if a chan-
nel W is such that the induced joint distribution PY Û coincides with

PY U , then Lemma 10 implies that Û = U must hold with probability 1,
i.e., ∑

û,s

PX(x)W (û|x)1[û 6= ψX%Y (x)] = 0.

Thus, for any δ > 0, PY U is not included in the set P(δ). Thus, by
Lemma 9, there exists γ > 0 such that

βγ,δ := sup
P
Y Û
∈P(δ)

PY Û (T nγ (PY U )) ≤ 2|Y||U|e−2γ2n. (40)

Thus, when the adversary generates Ûn from Xn via memoryless chan-
nel in W(δ), then the probability of passing the typicality test is expo-
nentially small; if the adversary uses a memoryless channel that is not
included in W(δ), then Ûn satisfies dH(Un, Ûn) < nδ with high proba-
bility.
Now, let us consider an arbitrary channel Wn that generates Ûn from
Xn, and may not be memoryless. We prove the following claim that
relates the probability of successful cheating of a general Wn with that
of memoryless channels.

Lemma 11. For given δ, γ > 0 and any channel Wn, we have

Pr
(
dH(Ûn, Un) ≥ nδ′, (Y n, Ûn) ∈ T nγ (PY U )

)
≤ (n+ 1)2|Y||U|βγ,δ,

where δ′ = δ/(mins PX(x)).

By combining Lemma 11 and (40), we have the claim of Lemma 1.



Proof of Lemma 11 The proof proceeds almost in parallel with
that of Lemma 12. For a permutation π ∈ Πn on [n], let π(xn) =
(xπ(1), . . . , xπ(n)). By noting that PnXY (xn, yn), 1[(yn, ûn) ∈ T nγ (PY U )],
and dH(ûn, un) are invariant under the permutation, we have

Pr
(
dH(Ûn, Un) ≥ nδ′, (Y n, Ûn) ∈ T nγ (PY U )

)
=
∑
xn,yn

PnXY (xn, yn)
∑
ûn

Wn(ûn|xn)1[dH(ûn, un) ≥ nδ′, (yn, ûn) ∈ T nγ (PY U )]

=
∑
π∈Πn

1

|Πn|
∑
xn,yn

PnXY (π(xn), π(yn))
∑
ûn

Wn(π(ûn)|π(xn))

× 1[dH(π(ûn), π(un)) ≥ nδ′, (π(yn), π(ûn)) ∈ T nγ (PY U )]

=
∑
π∈Πn

1

|Πn|
∑
xn,yn

PnXY (xn, yn)
∑
ûn

Wn(π(ûn)|π(xn))

× 1[dH(ûn, un) ≥ nδ′, (yn, ûn) ∈ T nγ (PY U )]

=
∑
xn,yn

PnXY (xn, yn)
∑
ûn

W sym
n (ûn|xn)

× 1[dH(ûn, un) ≥ nδ′, (yn, ûn) ∈ T nγ (PY U )], (41)

where

W sym
n (ûn|xn) =

∑
π∈Πn

1

|Πn|
Wn(π(ûn)|π(xn)).

Note that the symmetrized channel W sym
n only depends on the joint type

of (xn, ûn). Furthermore, when xn has type PX̄ and ûn ∈ T nW̄ (xn) for
conditional type W̄ , the condition dH(ûn, un) ≥ nδ′ can be written as∑

s,û

PX̄(x)W̄ (û|x)1[û 6= ψX%Y (x)] ≥ δ′.

This inequality implies that at least one symbol x satisfies
∑
û W̄ (û|x)1[û 6=

ψX%Y (x)] ≥ δ′, which further implies W̄ ∈ W(δ). By noting these facts
and by classifying Xn × Yn into type class T nX̄Ȳ of jointly type PX̄Ȳ on
X × Y, we can further upper bound (41) by∑

PX̄Ȳ ∈Pn(X×Y)

∑
(xn,yn)∈T n

X̄Ȳ

PnXY (xn, yn)

×
∑

W̄∈Wn(U|PX̄ )∩W(δ)

∑
ûn∈T n

W̄
(xn)

W sym
n (T nW̄ (xn)|xn)

× 1

|T n
W̄

(xn)|1[dH(ûn, un) ≥ nδ′, (yn, ûn) ∈ T nγ (PY U )]. (42)

By using (the left inequality of) (38), we have

1

|T n
W̄

(xn)| ≤ (n+ 1)|X||U|W̄n(ûn|xn)

for ûn ∈ T nW̄ (xn). Thus, we can upper bound (42) by

(n+ 1)|X||U|
∑

PX̄Ȳ ∈Pn(X×Y)

∑
(xn,yn)∈T n

X̄Ȳ

PnXY (xn, yn)



×
∑

W̄∈Wn(U|PX̄ )∩W(δ)

∑
ûn∈T n

W̄
(xn)

W̄n(ûn|xn)

× 1[dH(ûn, un) ≥ nδ′, (yn, ûn) ∈ T nγ (PY U )]

≤ (n+ 1)|X||U|
∑

W̄∈Wn(U|X )∩W(δ)

∑
PX̄Ȳ ∈Pn(X×Y)

∑
(xn,yn)∈T n

X̄Ȳ

PnXY (xn, yn)

×
∑
ûn

W̄n(ûn|xn)1[dH(ûn, un) ≥ nδ′, (yn, ûn) ∈ T nγ (PY U )]

≤ (n+ 1)2|X||U| max
W̄∈Wn(U|X )∩W(δ)

∑
PX̄Ȳ ∈Pn(X×Y)

∑
(xn,yn)∈T n

X̄Ȳ

PnXY (xn, yn)

×
∑
ûn

W̄n(ûn|xn)1[dH(ûn, un) ≥ nδ′, (yn, ûn) ∈ T nγ (PY U )]

≤ (n+ 1)2|X||U| sup
W̄∈W(δ)

∑
xn,yn

PnXY (xn, yn)

×
∑
ûn

W̄n(ûn|xn)1[dH(ûn, un) ≥ nδ′, (yn, ûn) ∈ T nγ (PY U )]

= (n+ 1)2|X||U|βγ,δ, (43)

where Wn(U|X ) = ∪PX̄∈Pn(X )Wn(U|PX̄). This completes the proof of
the lemma.

B.3 Proofs of Lemmas 2 and 3

Proof (Lemma 2).

Let U = X % Y := ψX%Y (X). Note that PU,X(u, x) > 0 only if u =
ψX%Y (x). Fix a pair (y, u). Since U is a function ofX, we have PY |X,U (y|x, u) =
PY |X(y|x) for all x such that ψX%Y (x) = u. However, for all such x (cor-
responding to the fixed u), by Definition 1, the conditional distribution
PY |X(.|x) is the same. Hence, PY |X,U (y|x, u) is the same for all such x.
Thus, PY |X,U (y|x, u) only depends on (y, u) (whenever PU,X(u, x) > 0).
i.e., X ←→ U ←→ Y .

To show part (ii), it suffices to show that if ψX%Y2(x) = ψX%Y2(x′),
then ψX%Y1(x) = ψX%Y1(x′). Recall from Definition 1 that ψX%Y2(x) =
ψX%Y2(x′) if and only if PY2|X(.|x) = PY2|X(.|x′). Since Y1 is a function
of Y2, if PY2|X(.|x) = PY2|X(.|x′), then PY1|X(.|x) = PY1|X(.|x′) and the
result follows.

Proof (Lemma 3).

Using Lemma 2 (i) on X† = (X % Y (|X||Z|)), we obtain X ←→ X† ←→
Y (|X||Z|). Since (Y,Z∗) is a function of Y (|X||Z|), we have Lemma 3 (i).
Properties (ii)-(iv) are symmetric and can be obtained by similar argu-
ments.

C Details Omitted from Section 3



C.1 Proof of Lemma 4

For brevity, we will denote ψV %U(r−1) by fr and ψW%U(r−1) by gr for
each 1 ≤ r ≤ |V||W|. In ΣUVW , for any (u, v, w),

u(r) = (u, f1(v), . . . , fr(v), g1(w), . . . , gr(w)), 1 ≤ r ≤ |V||W|.

But, fr(v) is a function of fr′(v) when r′ ≥ r. Hence, (u(r), fr+1(v)) is
determined by (u, fr+1(v), gr(w)); similarly, (u(r), gr+1(w)) is determined
by (u, fr(v), gr+1(w)).
Let f0 and g0 be constant functions evaluating to 0 and let ` = |V||W|.
Suppose (Uj , Vj ,Wj) are i.i.d. according to PUVW for all j ∈ [n]. Let
(V̂j)j∈[n] be any sequence satisfying (V̂j)j∈[n] ←→ (Vj)j∈[n] ←→ (Uj ,Wj)j∈[n],

and (Ŵj)j∈[n] be any sequence satisfying (Ŵj)j∈[n] ←→ (Wj)j∈[n] ←→
(Uj , Vj)j∈[n].

Claim. For any r ∈ [`], and γ > 0, we can choose δ > 0 which vanishes
with γ such that

Pr
[
(Uj , gr−1(Wj), V̂j)j∈[n] ∈ T nγ (PU,gr−1(W ),V ),

|{j : fr(V̂j) 6= fr(Vj)}| > nδ
]
≤ 2−Ω(n), (44)

Pr
[
(Uj , fr−1(Vj), Ŵj)j∈[n] ∈ T nγ (PU,fr−1(V ),W ),

|{j : gr(Ŵj) 6= gr(Wj)}| > nδ
]
≤ 2−Ω(n). (45)

Proof. Fix r ∈ [`] and γ > 0. Invoking Lemma 1 after identifying Y with
(U, gr−1(W )) and X with V , we can choose δ′ > 0 which vanishes with
γ such that Eq. (44) is satisfied.
Similarly, invoking Lemma 1, after identifying Y with (U, fr−1(V )) and
X withW , we can choose δ′′ > 0 which vanishes with γ such that Eq. (45)
is satisfied. The claim is satisfied for δ = max(δ′, δ′′).

Furthermore,

Claim. For r ∈ [`− 1] and δ > 0 there exists γ that vanishes with δ such
that,

Pr
[
(Uj , gr(Wj), fr+1(V̂j))j∈[n] /∈ T nγ (PU,gr(W ),fr+1(V )),

|{j : fr(V̂j) 6= fr(Vj)}| ≤ nδ
]
≤ 2−Ω(n), (46)

Pr
[
(Uj , fr(Vj), gr+1(Ŵj))j∈[n] /∈ T nγ (PU,fr(V ),gr+1(V )),

|{j : gr(Ŵj) 6= gr(Wj)}| ≤ nδ
]
≤ 2−Ω(n). (47)

Proof. Fix r ∈ [`] and γ > 0. Invoking Lemma 5 after identifying U with
(U, gr(W )) and V with fr+1(V ), we can choose γ′ which vanishes with
δ such that Eq. (46) is satisfied.
Similarly, invoking Lemma 5, after identifying U with (U, fr(V )) and V
with gr+1(W ), we can choose γ′′ which vanishes with δ such that Eq. (47)
is satisfied. The claim is satisfied for γ = max(γ′, γ′′).



Starting with sufficiently small γ1 > 0, appealing to the first claim (with
r = 1) choose the smallest δ1 > 0 such that Eqs. (44) to (45) are satisfied
for (γ1, δ1); Then, appealing to the second claim (with r = 1) choose the
smallest γ2 > 0 such that Eqs. (46) to (47) are satisfied for (γ2, δ1); then,
appealing to the first claim (with r = 2) choose the smallest δ2 > 0 such
that Eqs. (44) to (45) are satisfied for (γ2, δ2); proceed in this manner
until the last step in which, appealing to the first claim (with r = `)
choose the smallest δ` > 0 such that Eqs. (44) to (45) are satisfied for
(γ`, δ`). By the guarantees in both claims, starting with a sufficiently
small γ1 > 0, we can ensure that δ` ≤ δ.
We have established that, for any δ > 0, there exist γ1, γ2, . . . , γ` > 0
and δ1, . . . , δ` > 0 where δ` ≤ δ such that Eqs. (44) to (47) are satisfied
for 1 ≤ r ≤ `.
Since γr > 0 for each 1 ≤ r ≤ `, by the property of typical sets,

Pr
[
(Uj , gr−1(Wj), fr(Vj))j∈[n] /∈ T nγr (PU,gr−1(W ),fr(V ))

]
≤ 2−Ω(n), (48)

Pr
[
(Uj , fr−1(Vj), gr(Wj)i∈[n] /∈ T nγr (PU,fr−1(V ),gr(W ))

]
≤ 2−Ω(n). (49)

Thus, by a union bound,ΣUVW reports success on input (Uj , Vj ,Wj)j∈[n]

with 2−Ω(n) probability satisfying (i) in the lemma.
We will prove (ii)(a)-(b); (iii)(a)-(b) can be shown analogously. Suppose
the test is invoked with input (Uj , V̂j ,Wj)j∈[n]. Since γ1 > 0, by Eq. (49),
the test fails w.r.t. W in the iteration r = 1 with negligible probability.
In iteration 2 ≤ r ≤ `, the probability with which the test reports failure
w.r.t. W is given by

Pr
[
(Uj , gr−2(Wj), fr−1(V̂j))j∈[n] ∈ T nγr−1

(PU,gr−2(W ),fr−1(V )),

(Uj , fr−1(V̂j), gr(Wj))j∈[n] /∈ T nγr (PU,fr−1(V ),gr(W ))
]

≤ Pr
[
|{j : fr−1(V̂j) 6= fr−1(Vj)}| > nδr−1,

(Uj , gr−2(Wj), V̂j)j∈[n] ∈ T nγr−1
(PU,gr−2(W ),V )

]
+ Pr

[
|{j : fr−1(V̂j) 6= fr−1(Vj)}| ≤ nδr−1

(Uj , fr−1(V̂j), gr(Wj))j∈[n] /∈ T nγr (PU,fr−1(V ),gr(W ))
]

≤ 2−Ω(n).

The last inequality follows from Eq. (44) and Eq. (47). Taking a union
bound over distinct values of r, we conclude that the test reports failure
w.r.t. W with negligible probability. Finally, (ii)(b) follows directly from
Eq. (44) by taking r = `. This concludes the proof.

C.2 Proof of Lemma 5

This proof uses some notation and results reviewed in Appendix B.1 on
the method of types. Suppose that dH(ûn, un) ≤ nδ, dH(v̂n, vn) ≤ nδ,



and (ûn, v̂n) /∈ T nγ (PUV ). First, (ûn, v̂n) /∈ T nγ (PUV ) implies that the
joint type Pûnv̂n satisfies

|Pûnv̂n(a, b)− PUV (a, b)| > γ for some (a, b).

This condition together with dH(ûn, un) ≤ nδ and dH(v̂n, vn) ≤ nδ lead
to

|Punvn(a, b)− PUV (a, b)|
≥ |Pûnv̂n(a, b)− PUV (a, b)| − |Pûnv̂n(a, b)− Pûnvn(a, b)| − |Pûnvn(a, b)− Punvn(a, b)|
> γ − 2δ,

i.e., (un, vn) /∈ T nγ−2δ(PUV ). Thus, by applying (39), we have

Pr
[
|{i : Ûi 6= Ui}| ≤ nδ, |{i : V̂i 6= Vi}| ≤ nδ, (Ûi, V̂i)i∈[n] /∈ T nγ (PUV )

]
= Pr

[
|{i : Ûi 6= Ui}| ≤ nδ, |{i : V̂i 6= Vi}| ≤ nδ, (Ûi, V̂i)i∈[n] /∈ T nγ (PUV ), (Ui, Vi)i∈[n] /∈ T nγ−2δ(PUV )

]
≤ Pr

[
(Ui, Vi)i∈[n] /∈ T nγ−2δ(PUV )

]
≤ 2|U||V|e−2(γ−2δ)2n.

C.3 Proof of Lemma 6

This proof uses some notation and results reviewed in Appendix B.1 on
the method of types. For the time being, let us assume that the substi-
tuted sequence Ûn = f†(X̂n) is generated from Y n via a memoryless
channel Wn for some channel W ∈ P(U|Y) from Y to U = X †. Let

Q =
{
PÛZf‡(X) : PÛZf‡(X) is induced from PXY Z for some W ∈ P(U|Y)

}
.

We can verify that Q is a closed set. Furthermore, note that the as-
sumption of Lemma 6 that X† ←→ Y ←→ (Z,X‡) does not hold is
equivalent to the condition Pf†(X)Zf‡(X) /∈ Q. Thus, by Lemma 9, there
exists γ > 0 such that

βγ := sup
P
ÛZf‡(X)

∈Q
PnÛZf‡(X)(T

n
γ (Pf†(X)Zf‡(X))) ≤ 2|U||Z||X ‡|e−2γ2n.

(50)

Now, let us consider arbitrary channel Wn that generates Ûn from Y n,
and may not be memoryless. We prove the following claim that relates
the probability of passing the typicality test for a general Wn with that
of memoryless channel.

Lemma 12. For given γ > 0 and any channel Wn, we have

Pr
(
(Ûn, Zn, f‡(Xn)) ∈ T nγ (Pf†(X)Zf‡(X))

)
≤ (n+ 1)2|U||Y|βγ .

By combining Lemma 12 and (50), we have the claim of Lemma 6. It
only remains to prove Lemma 12.



Proof (Lemma 12). Throughout the proof, we abbreviate T nγ (Pf†(X)Zf‡(X))
as T nγ . For a permutation π ∈ Πn on [n], let π(ûn) = (ûπ(1), . . . , ûπ(n)).
By noting that PnXY Z(xn, yn, zn) and 1[(ûn, zn, f‡(xn)) ∈ T nγ ] are in-
variant under the permutation, we have

Pr
(
(Ûn, Zn, f‡(Xn)) ∈ T nγ

)
=

∑
xn,yn,zn

PnXY Z(xn, yn, zn)
∑
ûn

Wn(ûn|yn)1[(ûn, zn, f‡(xn)) ∈ T nγ ]

=
∑
π∈Πn

1

|Πn|
∑

xn,yn,zn

PnXY Z(π(xn), π(yn), π(zn))

×
∑
ûn

Wn(π(ûn)|π(yn))1[(π(ûn), π(zn), f‡(π(xn))) ∈ T nγ ]

=
∑
π∈Πn

1

|Πn|
∑

xn,yn,zn

PnXY Z(xn, yn, zn)

×
∑
ûn

Wn(π(ûn)|π(yn))1[(ûn, zn, f‡(xn)) ∈ T nγ ]

=
∑

xn,yn,zn

PnXY Z(xn, yn, zn)
∑
ûn

W sym
n (ûn|yn)1[(ûn, zn, f‡(xn)) ∈ T nγ ],

(51)

where

W sym
n (ûn|yn) =

∑
π∈Πn

1

|Πn|
Wn(π(ûn)|π(yn)).

Note that the symmetrized channel W sym
n only depends on the joint type

of (ûn, yn). By classifying Xn × Yn × Zn into type class T nX̄Ȳ Z̄ of joint
type PX̄Ȳ Z̄ on X × Y × Z, we can further upper bound (51) by∑

PX̄Ȳ Z̄∈Pn(X×Y×Z)

∑
(xn,yn,zn)∈T n

X̄Ȳ Z̄

PnXY Z(xn, yn, zn)

×
∑

W̄∈Wn(U|PX̄ )

∑
ûn∈T n

W̄
(yn)

W sym
n (T nW̄ (yn)|yn)

× 1

|T n
W̄

(yn)|1[(ûn, zn, f‡(xn)) ∈ T nγ ]. (52)

By using (the left inequality of) (38), we have

1

|T n
W̄

(yn)| ≤ (n+ 1)|U||Y|W̄n(ûn|yn)

for ûn ∈ T nW̄ (yn). Thus, we can upper bound (52) by

(n+ 1)|U||Y|
∑

PX̄Ȳ Z̄∈Pn(X×Y×Z)

∑
(xn,yn,zn)∈T n

X̄Ȳ Z̄

PnXY Z(xn, yn, zn)

×
∑

W̄∈Wn(U|PX̄ )

∑
ûn∈T n

W̄
(yn)

× W̄n(ûn|yn)1[(ûn, zn, f‡(xn)) ∈ T nγ ]



≤ (n+ 1)|U||Y|
∑

W̄∈Wn(U|Y)

∑
PX̄Ȳ Z̄∈Pn(X×Y×Z)

∑
(xn,yn,zn)∈T n

X̄Ȳ Z̄

× PnXY Z(xn, yn, zn)
∑
ûn

W̄ (ûn|yn)1[(ûn, zn, f‡(xn)) ∈ T nγ ]

≤ (n+ 1)2|U||Y| max
W̄∈Wn(U|Y)

∑
PX̄Ȳ Z̄∈Pn(X×Y×Z)

∑
(xn,yn,zn)∈T n

X̄Ȳ Z̄

× PnXY Z(xn, yn, zn)
∑
ûn

W̄ (ûn|yn)1[(ûn, zn, f‡(xn)) ∈ T nγ ]

≤ (n+ 1)2|U||Y| sup
W̄∈P(U|Y)

∑
xn,yn,zn

PnXY Z(xn, yn, zn)

×
∑
ûn

W̄n(ûn|yn)1[(ûn, zn, f‡(xn)) ∈ T nγ ]

= (n+ 1)2|U||Y|βγ ,

where Wn(U|Y) = ∪PȲ ∈Pn(Y)Wn(U|PȲ ). This completes the proof of
the lemma.

D Details Omitted from Section 4

D.1 Proof of Lemma 8

For the purpose of this proof, let us denote ψX%Y (|X||Z|) by f†, ψX%Z(|X||Y|)

by f‡ and ψZ%Y (|X||Z|) by h∗. It is clear from (28) that Q
¯
XY = PXY ,

QY Z = PY Z , and QZX̄ = PZX . To show that ∃ QZ̃|
¯
XY ZX̄ s.t. QZ̃|

¯
XY =

PZ|XY and (
¯
X,Y ) ←→ Z̃ ←→ (Z, X̄) (condition (i)), consider

Q̃
¯
XY ZX̄Z̃(

¯
x, y, z, x̄, z̃)

def
= PXY Z(

¯
x, y, z̃)PZ|Z∗(z|h∗(z̃))PX|Z(x̄|z), ∀

¯
x, y, z, x̄, z̃,

where Z∗ is defined in Definition 5. Since Q̃
¯
XY Z̃ = PXY Z and the Markov

chain (
¯
X,Y ) ←→ Z̃ ←→ (Z, X̄) holds for Q̃

¯
XY ZX̄Z̃ , it suffices to show

that Q̃
¯
XY ZX̄ = Q

¯
XY ZX̄ . Recall from the definition of Z∗ that it is a

function of Z and hence PZ|Z∗(z|h∗(z̃)) is zero unless h∗(z) = h∗(z̃).
Using this (in the third equality below),

Q̃
¯
XY ZX̄(

¯
x, y, z, x̄)

=
∑
h∗(z̃)

Q̃
¯
XY ZX̄(h∗(Z̃))(¯

x, y, z, x̄, h∗(z̃))

=
∑
h∗(z̃)

PXY Z∗(
¯
x, y, h∗(z̃))PZ|Z∗(z|h∗(z̃))PX|Z(x̄|z)

= PXY Z∗(
¯
x, y, h∗(z))PZ|Z∗(z|h∗(z))PX|Z(x̄|z)

= PY (y)PX|Y (
¯
x|y)PZ∗|XY (h∗(z)|

¯
x, y)PZ|Z∗(z|h∗(z))PX|Z(x̄|z)

= PY (y)PX|Y (
¯
x|y)PZ∗|X†Y (h∗(z)|f†(

¯
x), y)PZ|Z∗(z|h∗(z))PX|Z(x̄|z)

(53)

= PY (y)PX|Y (
¯
x|y)PZ|X†Y (z|f†(

¯
x), y)PX|Z(x̄|z) (54)



= PY (y)PX|Y (
¯
x|y)PZ|Y (z|y)PX|Z(x̄|z) (55)

= PY Z(y, z)PX|Y (
¯
x|y)PX|Z(x̄|z) = Q

¯
XY ZX̄(

¯
x, y, z, x̄), (56)

where (53) follows from recalling that X† is a function of X such that
X ←→ X† ←→ (Y,Z∗) (see Lemma 3(i)) and hence PZ∗|XY (h∗(z)|

¯
x, y) =

PZ∗|X†Y (h∗(z)|f†(
¯
x), y); (54) follows from (X†, Y ) ←→ Z∗ ←→ Z

(Lemma 3(ii)) and the fact that Z∗ is a function of Z; (55) follows from
the hypothesis of the theorem (see (27)), specifically, X† ←→ Y ←→ Z;
and (56) follows from (28).
A similar argument shows that ∃ QỸ |

¯
XY ZX̄ s.t. QỸ |ZX̄ = PY |ZX and

(Z, X̄) ←→ Ỹ ←→ (
¯
X,Y ) (condition (ii)).

To show that ∃ QX̃|
¯
XY ZX̄ s.t. QX̃|Y Z = PX|Y Z and (Y,Z) ←→ X̃ ←→

(
¯
X, X̄) (condition (iii)), let

Q̆
¯
XY ZX̄X̃(

¯
x, y, z, x̄, x̃)

def
= PXY Z(x̃, y, z)PX|X†(¯

x|f†(x̃))PX|X‡(x̄|f
‡(x̃)), ∀

¯
x, y, z, x̄, z̃,

where we recall that X† and X‡ are functions of X (see Definitions 5
and 4). It follows from the definition of q̆ that Q̆X̃|Y Z = PX|Y Z and

(Y,Z) ←→ X̃ ←→ (
¯
X, X̄). Hence it suffices to show that Q̆

¯
XY ZX̄ =

Q
¯
XY ZX̄ . Using the fact that PX|X†(¯

x|f†(x̃)) and PX|X‡(x̄|f‡(x̃)) are

both non-zero only if f†(
¯
x) = f†(x̃) and f‡(x̄) = f‡(x̃),

Q̆
¯
XY ZX̄(

¯
x, y, z, x̄)

= PX†X‡Y Z(f†(
¯
x), f‡(x̄), y, z)PX|X†(¯

x|f†(
¯
x))PX|X‡(x̄|f

‡(x̄))

= PY Z(y, z)PX†|Y (f†(
¯
x)|y)PX‡|Z(f‡(x̄)|z)PX|X†(¯x|f

†(
¯
x))PX|X‡(x̄|f

‡(x̄))

(57)

= PY Z(y, z)
(
PX†|Y (f†(

¯
x)|y)PX|X†(¯

x|f†(
¯
x))
)(

PX‡|Z(f‡(x̄)|z)PX|X‡(x̄|f
‡(x̄))

)
= PY Z(y, z)

(
PX|Y (

¯
x|y)

) (
PX‡|Z(f‡(x̄)|z)PX|X‡(x̄|f

‡(x̄))
)

(58)

= PY Z(y, z)
(
PX|Y (

¯
x|y)

) (
PX|Z(x̄|z)

)
(59)

= Q
¯
XY ZX̄(

¯
x, y, z, x̄), (60)

where (57) follows from the hypothesis X† ←→ Y ←→ Z ←→ X‡ (see
(27)) holds for PXY Z ; (58) follows from the fact that X† is a function of
X such that X ←→ X† ←→ Y (Lemma 3(i)); similarly (59) from X‡

being a function of X such that X ←→ X‡ ←→ Z (Lemma 3(iii)); and
(60) from (28).

E Details Omitted from Section 6

E.1 Pseudo-Signature Protocols with Connectivity
P1 ⇔ P2 ⇔ P3

Theorem 13. Let (X1, Y1, Z1), (X2, Y2, Z2), . . ., (Xn, Yn, Zn) be inde-
pendent and identically distributed (i.i.d.) triples with distribution PXY Z .



Suppose parties P1, P2, P3 have access to (Xi)i∈[n], (Yi)i∈[n], (Zi)i∈[n], re-
spectively. In addition, the pairs of parties (P1, P2) and (P2, P3) are also
connected by secure bidirectional links. For any n, there is no pseudo-
signature protocol with transfer path P1 → P2 → P3, if the following
Markov chain holds

X† ←→ Y ←→ Z. (61)

Proof. Similar to the proof of Theorem 7, this proof is in two steps. In the
first step, we will prove Lemma 13 which states that there is no pseudo-
signature protocol using PXY Z if there exists another distribution QXY Z
satisfying certain properties. The second step will show the existence of
such a QXY Z whenever PXY Z satisfies (61).

Lemma 13. For a given distribution PXY Z and the setup in Theo-
rem 13, there is no pseudo-signature protocol if there exists a distribution
QXY Z satisfying QXY = PXY , QY Z = PY Z , and
(i) ∃ QZ̃|XY Z s.t. QZ̃|XY = PZ|XY and (X,Y ) ←→ Z̃ ←→ Z,

(ii) ∃ QX̃|XY Z s.t. QX̃|Y Z = PX|Y Z and (Y,Z) ←→ X̃ ←→ X,

(iii) ∃ QỸ |XY Z s.t. QỸ |Z = PY |Z and Z ←→ Ỹ ←→ (X,Y ).

Proof. Consider running the pseudo-signature protocol with (honest)
parties P1, P2, P3 using correlated observations (Xi)i∈[n], (Yi)i∈[n], (Zi)i∈[n],
respectively, drawn i.i.d. according to QXY Z (instead of PXY Z) and P1’s
input message is m, say. We will give three different interpretations of
this arrangement as instantiations of the original system (where corre-
lations are drawn PXY Z i.i.d.) such that, in each interpretation, one of
the three parties is dishonest. These interpretations will lead us to a
contradiction:
First interpretation: malicious P3. Since QXY = PXY , the correlated
observations (Xi)i∈[n] of P1 and (Yi)i∈[n] of P2 are according to PXY
i.i.d. We will now argue that the malicious P3, who receives an obser-
vation jointly distributed with those of P1, P2 according to PXY Z i.i.d.,
can nevertheless sample a (Zi)i∈[n] which is jointly distributed with the
observations of P1, P2 according to QXY Z i.i.d. and use it to simulate the
P3 of the run with QXY Z . The malicious P3 is able to do this sampling
by virtue of condition (i). Specifically, since QZ̃|XY = PZ|XY , we may

treat the observations P3 receives as (Z̃i)i∈[n], and the Markov chain

(X,Y ) ←→ Z̃ ←→ Z (in condition (i) of the lemma’s hypothesis)
implies that the malicious P3 may sample (Zi)i∈[n] which is jointly dis-
tributed with the observations of P1, P2 according to QXY Z i.i.d. Hence,
as P1 and P2 are honest, P2 must accept P1’s signature and message m.
Second interpretation: malicious P1. Since QY Z = PY Z , the correla-
tions (Yi)i∈[n] and (Zi)i∈[n] of parties P2 and P3 respectively, are dis-

tributed PY Z = QY Z i.i.d. The malicious P1, receives (X̃)i∈[n] jointly
distributed with (Yi, Zi)i∈[n] according to PXY Z i.i.d. and uses this to
produce samples (Xi)i∈[n] which are distributed with samples of P2 and
P3 according to QXY Z i.i.d.. This is possible because of the Markov chain
(Y,Z) ←→ X̃ ←→ X in condition (ii) of the lemma’s hypothesis. Since
both P2 and P3 are honest and, since we already argued that P2 must



accept m, by the transferability property of pseudo-signature protocols,
P3 must accept the message m sent by P2 in the transfer phase.
Third interpretation: malicious P2. In this interpretation P3 is honest
receiving observations (Zi)i∈[n] according to PZ = QZ i.i.d. P2 is mali-
cious and will simulate the P1 and P2 in the run with observations dis-
tributed QXY Z i.i.d. The malicious P2 receives (Ỹi)i∈[n] which is jointly
distributed with (Zi)i∈[n] according to PY Z i.i.d. Using this, by virtue of

the Markov chain Z ←→ Ỹ ←→ (X,Y ) in condition (iii), the malicious
P2 can sample (Xi, Yi)i∈[n] which are jointly distributed with (Zi)i∈[n]

according to QXY Z i.i.d. and simulate P1 and P2 in the run with cor-
relations QXY Z i.i.d. We already argued in the steps above that P3 will
accept the message m. Thus, in effect, P2 can successfully forge any mes-
sage m of its choosing, a contradiction to the unforgeability property of
the pseudo-signature protocol.

Lemma 14. If PXY Z satisfies (61), the distribution QXY Z below satis-
fies QXY = PXY , QY Z = PY Z and conditions (i)-(iii) in the hypothesis
of Lemma 13.

QXY Z(x, y, z)
def
= PY (y)PX|Y (x|y)PZ|Y (z|y), ∀ x, y, z.

Proof. It is clear that QXY = PXY and QY Z = PY Z . Let us denote
ψX%Y (|X||Z|) by f† and ψZ%Y (|X||Z|) by h∗. In order to show condition (i),

let q̃XY Z̃Z(x, y, z̃, z)
def
= PXY Z(x, y, z̃)PZ|Z∗(z|h∗(z̃)) for all x, y, z̃, z. Note

that q̃XY Z̃ = PXY Z and the Markov chain (X,Y ) ←→ Z̃ ←→ Z for
q̃XY Z̃Z . It therefore suffices to show that q̃XY Z = QXY Z .

q̃XY Z(x, y, z) = PXY Z∗(x, y, h
∗(z̃))PZ|Z∗(z|h∗(z̃))

= PXY Z∗(x, y, h
∗(z))PZ|Z∗(z|h∗(z)) (62)

= PXY (x, y)PZ∗|XY (h∗(z)|x, y)PZ|Z∗(z|h∗(z))

= PXY (x, y)PZ∗|X†Y (h∗(z)|f†(x), y)PZ|Z∗(z|h∗(z)) (63)

= PXY (x, y)PZ∗|Y (h∗(z)|y)PZ|Z∗(z|h∗(z)) (64)

= PXY (x, y)PZ,Z∗|Y (z, h∗(z)|y) (65)

= PXY (x, y)PZ|Y (z|y)

= QXY Z(x, y, z),

where (62) follows by noting that PZ|Z∗(z|h∗(z̃)) is non-zero only if
h∗(z̃) = h∗(z), (63) follows fromX ←→ X† ←→ (Y,Z∗) (see Lemma 3(i)),
(64) follows from X† ←→ Y ←→ Z (see (61)), and (65) from Z ←→
Z∗ ←→ Y (see Lemma 3(ii)).

To show condition (ii), we use a similar approach. Let Q̆XX̃Y Z(x, x̃, y, z)
def
=

PXY Z(x̃, y, z)PX|X†(x|f†(x̃)). Since Q̆X̃Y Z = PXY Z and the Markov

chain (Y,Z) ←→ X̃ ←→ X holds for Q̆XX̃Y Z , it suffices to show that

Q̆XY Z = QXY Z . By noting that PX|X†(x|f†(x̃)) 6= 0 only if f†(x̃) =

f†(x),

Q̆XY Z(x, y, z) = PX†Y Z(f†(x), y, z)PX|X†(x|f
†(x))



= PY Z(y, z)PX†|Y Z(f†(x)|y, z)PX|X†(x|f
†(x))

= PY Z(y, z)PX†|Y Z∗(f
†(x)|y, h∗(z))PX|X†(x|f

†(x))

(66)

= PY Z(y, z)PX†|Y (f†(x)|y)PX|X†(x|f
†(x)) (67)

= PY Z(y, z)PXX†|Y (x, f†(x)|y) (68)

= PY Z(y, z)PX|Y (x|y)

= QXY Z(x, y, z),

where (66) follows from Z ←→ Z∗ ←→ (Y,X†) (see Lemma 3(ii)),
(67) follows from X† ←→ Y ←→ Z (see (61)), and (68) from X ←→
X† ←→ Y (see Lemma 3(i)).

Lastly, notice that QXY Z = PY PX|Y PZ|Y = PY ZPX|Y . Taking Ỹ = Y ,
we have condition (iii).

E.2 Pseudo-Signature Protocols with no P3 ⇒ P2 link

Theorem 14. Let (X1, Y1, Z1), (X2, Y2, Z2), . . ., (Xn, Yn, Zn) be inde-
pendent and identically distributed (i.i.d.) triples with distribution PXY Z .
Suppose parties P1, P2, P3 have access to (Xi)

n
i=1, (Yi)

n
i=1, (Zi)

n
i=1, respec-

tively. In addition, the pairs of parties (P1, P2) and (P1, P3) are connected
by secure bidirectional links, and there is a unidirectional link from P2 to
P3.
For any n, there is no pseudo-signature protocol with transfer path P1 →
P2 → P3 if the following Markov chain holds

(X % Y ) ←→ Y ←→ (Z,X‡). (69)

Proof. We will follow a recipe similar to the proof of Theorem 7. We will
first show that given PXY Z if there exists another distribution Q

¯
XY ZX̄

satisfying certain properties, then pseudo-signature with the transfer
path P1 → P2 → P3 is impossible. Next, we will show that for any
distribution PXY Z satisfying (69), there exists a Q

¯
XY ZX̄ .

Lemma 15. For a given distribution PXY Z and the setup in Theo-
rem 14, there is no pseudo-signature protocol with the transfer path P1 →
P2 → P3 if there exists a distribution Q

¯
XY ZX̄ satisfying Q

¯
XY = PXY ,

QY Z = PY Z , QX̄Z = PXZ and
(i) ∃ QX̃|

¯
XY ZX̄ s.t. QX̃|Y Z = PX|Y Z and (

¯
X, X̄) ←→ X̃ ←→ (Y,Z),

(ii) ∃ QỸ |
¯
XY ZX̄ s.t. QỸ |

¯
XZ = PY |XZ and (

¯
X,Y ) ←→ Ỹ ←→ (X̄, Z).

Proof. For a given joint distribution PXY Z , suppose there is a pseudo-
signature protocol with the transfer path P1 → P2 → P3. Consider a
wiring diagram where (honest) parties P1, P2, P3 and P ′1 receive sam-
ples (

¯
Xi)

n
i=1, (Yi)

n
i=1, (Zi)

n
i=1 and (X̄i)

n
i=1 respectively, i.i.d. according

to Q
¯
XY ZX̄ . The parties P1 and P ′1 are copies of the original P1 with the

only difference being that P1 receives samples (
¯
Xi)

n
i=1 and its message

is m, whereas P ′1 receives samples (X̄i)
n
i=1 and its message is m′ 6= m.

In the wiring diagram,



– P1 and P2 are connected by a bidirectional link,

– P ′1 and P3 are connected by a bidirectional link, and

– there is a unidirectional link from P2 to P3.

All parties in the wiring diagram are honest and run the protocol faith-
fully. Similar to the proof of Lemma 7, we will give three different inter-
pretations of the wiring diagram as instantiations of the original system
where two parties are honest and the third party is malicious. This will
lead to a contradiction.

First interpretation: malicious P3. Since Q
¯
XY = PXY , the samples of P1

and P2 are i.i.d. PXY as in the original system. This also implies that the
joint view of P1 and P2 is same as that in the original system as there
are no links from P ′1 and P3 to parties P1 and P2. Thus, P2 will accept
the message m.

Second interpretation: malicious P1. Since QY Z = PY Z , the samples
(Yi)

n
i=1 and (Zi)

n
i=1 received by P2 and P3 respectively are i.i.d. according

to PY Z , same as the original system. We will now argue that the view
of P2 and P3 is also the same as that in the original system. This is
because malicious P1, upon receiving samples (X̃i)

n
i=1 which are jointly

distributed with (Yi, Zi)
n
i=1 according to PXY Z i.i.d., can sample (

¯
Xi)

n
i=1

and (X̄i)
n
i=1 by virtue of the Markov chain (

¯
X, X̄) ←→ X̃ ←→ (Y,Z)

(in condition (i) of the lemma’s hypothesis). Thus, the wiring diagram
can be interpreted as a valid run of the protocol when P1 is malicious
but P2 and P3 are honest. As we argued above that P2 accepts m, this
implies that in the transfer phase, P3 will also accept the message m
sent by P2, a result of the transferability property of pseudo-signature
protocols.

Third interpretation: malicious P2. Since QX̄Z = PXZ , the samples
(X̄i)

n
i=1 and (Zi)

n
i=1 of P ′1 and P3 are i.i.d. according to PXZ . The party

P2 is malicious. The view of P1 and P2 can be simulated by the mali-
cious P2, who upon receiving (Ỹi)

n
i=1, i.i.d. with samples of P ′1 and P3

according to PXY Z , can sample (
¯
Xi, Yi)

n
i=1 by virtue of the Markov chain

(
¯
X,Y ) ←→ Ỹ ←→ (X̄, Z) (in condition (ii) of the lemma’s hypothesis).

Thus, by this interpretation, P ′1, whose message is m′, and P3 are honest.
Hence, by the unforgeability property of pseudo-signature protocols, P3

may either reject or accept message m′. However, we argued above that
P3 accepts message m 6= m′, a contradiction.

Lemma 16. For every PXY Z satisfying (69), the distribution Q
¯
XY ZX̄

defined below satisfies Q
¯
XY = PXY , QY Z = PY Z , QX̄Z = PXZ and

conditions (i)-(ii) in the hypothesis of Lemma 15.

Q
¯
XY ZX̄(

¯
x, y, z, x̄)

def
= PY Z(y, z)PX|Y (

¯
x|y)PX|Y ∗Z(x̄|g∗(y), z). (70)

Proof. For Q
¯
XY ZX̄(

¯
x, y, z, x̄) defined by (70), it is easy to see that the

marginals Q
¯
XY and QY Z are correct. Let us denote ψX%Z(|X||Y|) by f‡

and ψY %Z(|X||Y|) by g∗. Let us verify the marginal QX̄Z .

QX̄Z(x̄, z) =
∑
g∗(y)

PY ∗Z(g∗(y), z)PX|Y ∗Z(x̄|g∗(y), z)



=
∑
g∗(y)

PY ∗ZX(g∗(y), z, x̄)

= PXZ(x̄, z).

Now, in order to verify condition (i), consider Q̃Y ZX̃
¯
XX̄(y, z, x̃,

¯
x, x̄)

def
=

PY Z(y, z)PX|Y Z(x̃|y, z)PX|(X%Y )(
¯
x|ψX%Y (x̃))PX|X‡(x̄|f‡(x̃)). In order to

show (i), we only need to show Q̃Y Z
¯
XX̄(y, z,

¯
x, x̄) = QY Z

¯
XX̄(y, z,

¯
x, x̄).

Note that PX|(X%Y )(
¯
x|ψX%Y (x̃))PX|X‡(x̄|f‡(x̃)) 6= 0 only if ψX%Y (x̃) =

ψX%Y (
¯
x) and f‡(x̃) = f‡(x̄). Hence,

Q̃Y Z
¯
XX̄(y, z,

¯
x, x̄) = PY Z(y, z)P(X%Y ),X‡|Y Z(ψX%Y (

¯
x), f‡(x̄)|y, z)

PX|(X%Y )(
¯
x|ψX%Y (

¯
x))PX|X‡(x̄|f

‡(x̄))

= PY Z(y, z)
(
P(X%Y )|Y Z(ψX%Y (

¯
x)|y, z)PX|(X%Y )(

¯
x|ψX%Y (

¯
x))
)(

PX‡|(X%Y ),Y Z(f‡(x̄)|ψX%Y (
¯
x), y, z)PX|X‡(x̄|f

‡(x̄))
)

= PY Z(y, z)
(
P(X%Y )|Y (ψX%Y (

¯
x)|y)PX|(X%Y )(

¯
x|ψX%Y (

¯
x))
)(

PX‡|Y Z(f‡(x̄)|y, z)PX|X‡(x̄|f
‡(x̄))

)
(71)

= PY Z(y, z)PX|Y (
¯
x|y)

(
PX‡|Y ∗Z(f‡(x̄)|g∗(y), z)PX|X‡(x̄|f

‡(x̄))
)

(72)

= PY Z(y, z)PX|Y (
¯
x|y)PX|Y ∗Z(x̄|g∗(y), z) (73)

= QY Z
¯
XX̄(y, z,

¯
x, x̄),

where (71) follows from (X % Y ) ←→ Y ←→ (Z,X‡) (see (69)), (72)
follows from X ←→ (X % Y ) ←→ Y (see Lemma 2(i)) and noting
that X % Y is a functions of X, and Y ←→ Y ∗ ←→ (Z,X‡) (see
Lemma 3(iv)), and (73) follows from X ←→ X‡ ←→ (Z, Y ∗) (see
Lemma 3(iii)) and noting that X‡ is a function of X.

Next, we verify condition (ii). Let Q̆X̄ZỸ
¯
XY (x̄, z, ỹ,

¯
x, y)

def
= PXZ(x̄, z)PY |XZ(ỹ|x̄, z)

PY |Y ∗(y|g∗(ỹ))PX|Y (
¯
x|y). This satisfies all the properties in (ii). It only

remains to show that Q̆X̄Z
¯
XY (x̄, z,

¯
x, y) = QX̄Z

¯
XY (x̄, z,

¯
x, y). Using the

fact that PY |Y ∗(y|g∗(ỹ)) 6= 0 only if g∗(ỹ) = g∗(y),

Q̆X̄Z
¯
XY (x̄, z,

¯
x, y) = PXZ(x̄, z)PY ∗|XZ(g∗(y)|x̄, z)PY |Y ∗(y|g∗(y))PX|Y (

¯
x|y)

=
(
PZ(z)PX‡|Z(f‡(x̄)|z)PY ∗|X‡Z(g∗(y)|f‡(x̄), z)

)
PX|X‡Z(x̄|f‡(x̄), z)PY |Y ∗(y|g∗(y))PX|Y (

¯
x|y)

(74)

= PZX‡Y ∗(z, f
‡(x̄), g∗(y))PX|X‡(x̄|f

‡(x̄))PY |Y ∗(y|g∗(y))PX|Y (
¯
x|y)

(75)

=
(
PZY ∗(z, g

∗(y))PY |Y ∗(y|g∗(y))
)
PX|Y (

¯
x|y)(

PX‡|ZY ∗(f
‡(x̄)|z, g∗(y))PX|X‡(x̄|f

‡(x̄))
)

= PY Z(y, z)PX|Y (
¯
x|y)PX|ZY ∗(x̄|z, g∗(y)) (76)

= QY Z
¯
XX̄(y, z,

¯
x, x̄),



where (74) and (75) follow fromX ←→ X‡ ←→ (Z, Y ∗) (see Lemma 3(iii)),
and (76) follows from Y ←→ Y ∗ ←→ Z (see Lemma 3(iv)) and
X ←→ X‡ ←→ (Z, Y ∗) (see Lemma 3(iii)).

E.3 Pseudo-Signature Protocols with Connectivity
P1 ⇔ P2 ⇒ P3

Theorem 15. Let (X1, Y1, Z1), (X2, Y2, Z2), . . ., (Xn, Yn, Zn) be inde-
pendent and identically distributed (i.i.d.) triples with distribution PXY Z .
Suppose parties P1, P2, P3 have access to (Xi)i∈[n], (Yi)i∈[n], (Zi)i∈[n], re-
spectively. In addition, there is a secure unidirectional link from P2 to P3.
and a secure bidirectional link between P1 and P2.
For any n, there is no pseudo-signature protocol with transfer path P1 →
P2 → P3 if the following Markov chain holds

X % Y ←→ Y ←→ Z. (77)

Proof. Similar to the proof of Theorem 7, we prove this theorem in two
steps. In the first step, we will prove Lemma 17 which states that there is
no pseudo-signature protocol using samples from the distribution PXY Z
if there exists another distribution QXY Z satisfying certain properties.
The second step will show the existence of such a QXY Z whenever PXY Z
satisfies (77).

Lemma 17. For a given distribution PXY Z and the setup in Theo-
rem 15, there is no pseudo-signature protocol if there exists a distribution
QXY Z satisfying QXY = PXY , QY Z = PY Z , and
(i) ∃ QX̃|XY Z s.t. QX̃|Y Z = PX|Y Z and (Y,Z) ←→ X̃ ←→ X,

(ii) ∃ QỸ |XY Z s.t. QỸ |Z = PY |Z and Z ←→ Ỹ ←→ (X,Y ).

Proof. For a given joint distribution PXY Z , suppose there is a pseudo-
signature protocol with transfer path P1 → P2 → P3. Consider a run
of this pseudo-signature protocol with (honest) parties P1, P2, P3 using
correlated observations (Xi)i∈[n], (Yi)i∈[n], (Zi)i∈[n], respectively, drawn
i.i.d. according to QXY Z (instead of PXY Z) and P1’s input message is
m, say. We will give three different interpretations of the new system
as instantiations of the original system (where correlations are drawn
PXY Z i.i.d.) such that, in each interpretation, one of the three parties is
dishonest. These interpretations will lead us to a contradiction:
First interpretation: malicious P3. Parties P1 and P2 receive samples
(Xi)i∈[n] and (Yi)i∈[n], respectively, i.i.d. according to PXY (= QXY by
the lemma’s hypothesis). Since, there are no outgoing links from P3 to
P1 or P2, the joint view of parties P1 and P2 is the same as in the original
system where P1 (with input m) and P2 are honest. This implies that P2

will accept P1’s message m in the signing phase.
Second interpretation: malicious P1. In the original system, parties P1, P2

and P3 receive samples (X̃i)i∈[n], (Yi)i∈[n] and (Zi)i∈[n] i.i.d. according to
PXY Z , which corresponds to QX̃Y Z in the new system (by condition (i)
of the lemma’s hypothesis). In the new system, party P3, upon receiving

(X̃i)i∈[n], can sample (Xi)i∈[n] which is i.i.d. QXY Z with samples of



P2 and P3, by virtue of the Markov chain (Y,Z) ←→ X̃ ←→ X (in
condition (i) of the lemma’s hypothesis). Thus, the joint view of P2 and
P3 is the same as in the original system when they are honest and P1

is malicious. Hence, by the transferability property of pseudo-signatures,
P3 will accept the m sent by P2 in the transfer phase.
Third interpretation: malicious P2. Parties P2 and P3 receive samples
(Ỹi)i∈[n] and (Zi)i∈[n] i.i.d. according to PY Z , which corresponds to QỸ Z
in the new system (by condition (ii) of the lemma’s hypothesis). Party

P2, upon receiving (Ỹi)i∈[n] can sample (Xi, Yi)i∈[n], jointly i.i.d. with
(Zi)i∈[n] according to QXY Z , by virtue of the Markov chain Z ←→
Ỹ ←→ (X,Y ) (in condition (ii) of the lemma’s hypothesis). Hence, P2

can simulate P1 and P2 in the run of the new system (with correlation
QXY Z). We already argued in the steps above that P3 will accept the
message m under the run of the new system. Thus, in effect, P2 can
successfully forge any message m of its choosing, a contradiction to the
unforgeability property of the pseudo-signature protocol.

Lemma 18. If PXY Z satisfies (77), the distribution QXY Z below satis-
fies QXY = PXY , QY Z = PY Z and conditions (i)-(ii) in the hypothesis
of Lemma 17.

QXY Z(x, y, z)
def
= PY (y)PX|Y (x|y)PZ|Y (z|y), ∀ x, y, z.

Proof. It is clear that QXY = PXY and QY Z = PY Z . To show con-

dition (i), let Q̆XX̃Y Z(x, x̃, y, z)
def
= PXY Z(x̃, y, z)PX|(X%Y )(x|ψX%Y (x̃)).

Since Q̆X̃Y Z = PXY Z and the Markov chain (Y,Z) ←→ X̃ ←→ X

holds for Q̆XX̃Y Z , it suffices to show that Q̆XY Z = QXY Z .

Q̆XY Z(x, y, z) =
∑
x̃

PXY Z(x̃, y, z)PX|(X%Y )(x|ψX%Y (x̃))

= P(X%Y )Y Z(ψX%Y (x), y, z)PX|(X%Y )(x|ψX%Y (x)) (78)

= PY Z(y, z)P(X%Y )|Y Z(ψX%Y (x)|y, z)PX|(X%Y )(x|ψX%Y (x))

= PY Z(y, z)P(X%Y )|Y (ψX%Y (x)|y)PX|(X%Y )(x|ψX%Y (x))
(79)

= PY Z(y, z)PX,(X%Y )|Y (x, ψX%Y (x)|y) (80)

= PY Z(y, z)PX|Y (x|y)

= QXY Z(x, y, z),

where (78) follows by noting that PX|(X%Y )(x|ψX%Y (x̃)) 6= 0 only if
ψX%Y (x̃) = ψX%Y (x), (79) follows from X % Y ←→ Y ←→ Z (see
(77)) and (80) from X ←→ (X % Y ) ←→ Y (see Lemma 2(i)).

Lastly, notice that QXY Z = PY PX|Y PZ|Y = PY ZPX|Y . Taking Ỹ = Y ,
we have condition (ii).
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