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Abstract. Preimage Sampling is a fundamental process in lattice-based
cryptography whose performance directly affects the one of the crypto-
graphic mechanisms that rely on it. In 2012, Micciancio and Peikert
proposed a new way of generating trapdoors (and an associated preim-
age sampling procedure) with very interesting features. Unfortunately,
in some applications such as digital signatures, the performance may not
be as competitive as other approaches like Fiat-Shamir with Aborts.
In this work we revisit the preimage sampling algorithm proposed by
Micciancio and Peikert with different contributions. We first propose a
finer analysis of this procedure which results in drastic efficiency gains of
up to 50% on the preimage sizes without affecting security. It can thus be
used as a drop-in replacement in every construction resorting to it. We
then propose a new preimage sampling method which still relies on the
trapdoors of Micciancio and Peikert, but that also bridges to the Fiat-
Shamir with Aborts signature paradigm by leveraging rejection sampling.
It again leads to dramatic gains of up to 75% compared to the original
sampling technique. This opens promising perspectives for the efficiency
of advanced lattice-based constructions relying on such mechanisms.
As an application of our new procedure, we give the first lattice-based
aggregate signature supporting public aggregation and that achieves rel-
evant compression compared to the concatenation of individual signa-
tures. Our scheme is proven secure in the aggregate chosen-key model
coined by Boneh et al. in 2003, based on the well-studied assumptions
Module Learning With Errors and Module Short Integer Solution.

Keywords: Lattice-Based Cryptography · Trapdoors · Preimage Sam-
pling · Aggregate Signature

1 Introduction

Lattice-based cryptography has proven to be a relatively stable and exten-
sively studied candidate to provide post-quantum secure primitives, and has
now shifted towards proposing concretely efficient constructions. The NIST stan-
dardization [NIS] perfectly reflects this trend as they recently announced the
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first round of future standards, which is dominated by lattice-based construc-
tions [BDK+18,DKL+18,PFH+20], and are moving to practical deployment dis-
cussions. The versatility of lattice-based cryptography has also given rise to more
advanced constructions, but that are not yet represented in standardization ef-
forts due to their remaining efficiency gap compared to currently deployed pre-
quantum4 solutions. Typically, despite very recent results, e.g., [dPK22,LNP22a],
lattice-based blind signatures and group signatures still yield signatures that are
about 1000 times larger than their pre-quantum counterparts and are thus un-
likely to be included the corresponding ISO/IEC standards [ISO13,ISO16] at
this stage. Improving the performance of such primitives is therefore paramount
before considering standardization and integration. For that, it seems necessary
to propose new techniques and to reassess some widely adopted techniques in
order to identify their limitations and possibly some margin for optimization.

This work is mostly directed at the realm of lattice-based signatures, but it
may find applications in other areas of lattice cryptography. Lattice-based sig-
nature schemes are usually designed by following one of two main paradigms.
The first one, called the hash-and-sign paradigm, was instantiated by Gentry
et al. [GPV08] with lattice preimage sampleable trapdoor functions. In such
schemes, the signing key consists of a trapdoor for a publicly computable function
which allows to efficiently find short preimages. Signatures are then preimages of
seemingly random (and possibly message-dependent) syndromes. Only the signer
is able to compute such preimages, but everyone is able to compute the image
to ensure they represent valid signatures. Several schemes rely on variants of the
above, e.g., [GPV08,MP12,DM14,DLP14], and were successfully pushed towards
concrete practicality [PFH+20,EFG+22] using an additional assumption. Trap-
door preimage sampleable functions also represent the most widely used building
block in the design of more advanced forms of signatures such as group signa-
tures [dPLS18,LNPS21], blind signatures [AKSY22,dPK22], signatures with ef-
ficient protocols [LLM+16,JRS22], etc. In their general use, trapdoor preimage
sampling can however be quite computationally intensive and most preimage
sampling algorithms are designed to only support Gaussian-distributed preim-
ages.

An alternative, called the Fiat-Shamir with Aborts (FSwA) paradigm, was
proposed by Lyubashevsky [Lyu12], building signatures on Schnorr-like proofs
made non-interactive with the Fiat-Shamir transform. This framework avoids
the use of trapdoors, and uses rejection sampling to control the distribution
of signatures while making them independent of the signing key. Even though
most applications yield Gaussian-distributed signatures, it is possible to tweak
the rejection sampling step to get other distributions that can be more suitable
depending on the context. Efficient instantiations of this signature paradigm
were proposed, such as qTESLA [ABB+20] and Dilithium [DKL+18].

4 We use pre-quantum to refer to cryptography that does not withstand the power of
quantum computing.
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Reexamining the cleavage between these two paradigms may lead to effi-
ciency gains in the design of lattice signatures, and even unlock new solutions
for advanced signature constructions.

1.1 Our Contributions

We focus on improving the preimage sampling procedure of the trapdoor func-
tions from [MP12], which is the core of many advanced lattice constructions,
e.g., [DM14,BFRS18,dPLS18,BEP+21,PPS21,LNPS21,LNP22a,dPK22,JRS22].
Informally, we first propose a finer analysis of the existing procedure resulting in
drastic gains without affecting its security. On the contrary, it leads to slightly
enhanced security guarantees and can thus be used as a drop-in replacement
for every lattice constructions using preimage sampling based on the trapdoor
functions of [MP12]. We then rethink the separation between the two lattice
signature paradigms in order to provide a new preimage sampling algorithm
that leverages the use of both trapdoors and rejection sampling. It again entails
dramatic gains in several constructions. However, as it departs from the origi-
nal method, replacing the latter with our new solution in lattice primitives may
require a new security analysis and parameter evaluation. We note that these
contributions apply to constructions on both standard and structured lattices.
Finally, we show that our new preimage sampling procedure unlocks the design
of new constructions on lattices that only existed in the pre-quantum world prior
to our work. More specifically, we propose the first lattice-based aggregate signa-
ture scheme that supports public aggregation and that has relevant compression
rates with respect to simply concatenating individual signatures.

In [MP12], Micciancio and Peikert propose a preimage sampling algorithm for
matrices AH = [A|HG−AR], where R constitutes the trapdoor. More precisely,
A is uniform matrix in Zd×2d

q , H is a tag matrix in GLd(Zq), G ∈ Zd×kd (with
k = log2 q) is the base-2 gadget matrix introduced in [MP12], and R is a short
matrix, typically in {−1, 0, 1}2d×kd. Their algorithm uses the knowledge of R to
sample v ∈ Z(2+k)d according to a spherical discrete Gaussian of parameter σ
such that AHv = u mod q for an input syndrome u. The technique first relies
on the observation that if z is a Gaussian with width σG such that HGz = u,
then the vector v′ = [(Rz)T |zT ]T is a valid candidate. This naive approach
leaks information on the trapdoor R, which is why the authors perturb this
solution v′ into v = p + v′ while adjusting z to verify HGz = u − AHp.
By carefully choosing the covariance of the Gaussian p, one can ensure that v
follows a spherical Gaussian distribution of width σ, which in turn does not leak
information on the trapdoor.

1.1.1 Contribution 1: From Spherical to Elliptical. Our first contri-
bution consists in a finer analysis of the approach above. We observe that be-
fore adding the perturbation, only v′1 = Rz leaks information on R. However,
this information is drowned by p symmetrically in both v′1 and v′2 = z to
obtain a spherical distribution. This results in a Gaussian v with parameter
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σ = Θ(σG · ∥R∥2). A first attempt to break the symmetry could be to only per-
turb the first part v1 but the result is insecure, as we explain in Section 3.1. We
then consider different widths σ1 and σ2 for v1 = p1+v′1 and v2 = p2+v′2 with
the goal of decreasing σ2 as much as possible while retaining the same security
level. This approach is indeed particularly relevant when recalling that v′2 does
not depend on R and therefore does not need to be perturbed as much as v′1.
More concretely, we show that we can use σ1 = Θ(σG · ∥R∥2) with the same
constant up to a

√
2 factor, but σ2 = σ1/∥R∥2. It thus allows us to keep v1

(almost) as before while dramatically reducing the size of v2.
This modification alone reduces the bit-size of v up to 50%. Additionally,

because v1 has roughly the same size, it also improves the expected Euclidean
norm ∥v∥2 which usually leads to increased security. We thus gain on all metrics
and are conceptually close to the original method, meaning our result can be
used as a drop-in replacement in every primitive using such preimage sampling.

We note that this approach is different from the recent technique proposed by
Espitau et al. [ETWY22] in the context of compressing hash-and-sign signatures.
Indeed, when moving from spherical to elliptical Gaussians, they shrink the part
of the preimage that corresponds to the outputted signature, but expand by the
same factor the part of the preimage that is recovered during verification. Their
optimization applies to hash-and-sign signatures that rely on different preimage
sampling procedures, such as [PFH+20,EFG+22], which are not gadget-based as
that of [MP12].

1.1.2 Contribution 2: A New Preimage Sampling Method. Although
we managed to improve for free the efficiency of preimage sampling, it remains
quite rigid as it requires sampling perturbations p from highly non-spherical
Gaussian, and is limited to Gaussian preimages. Our second contribution is thus
to propose a new method to further break the symmetry between v1 and v2.

At a high level, we set p2 = 0 and set z = G−1(u −Ap1) where G−1(·) is
the binary decomposition. Unfortunately, directly outputting v1 = p1+Rz and
v2 = z again leaks information on R because of v1 and we thus need to adjust
this approach. Actually, by identifying Ap1, z and v1 with (respectively) the
commitment, the challenge and the answer of a zero-knowledge proof of knowl-
edge of R, we note that our problem is very similar to the one of Fiat-Shamir
signature in [Lyu12]. We then resort to the same workaround, namely rejection
sampling: before outputting v1 = p1 + Rz and v2 = z, we perform rejection
sampling on v1 to make its distribution independent of R and z. Thence, our
method leads to minimizing the size of v2. It is also more general in the sense
that the distribution on p1 and v1 can be tweaked to obtain new preimage
distributions other than Gaussians, which was not known prior to our work.

We give a comparison with the results of the first contribution by forcing
a Gaussian distribution on v1. In this case, p1 must be drawn from a wide
enough Gaussian with parameter σ = Θ(∥Rz∥2). Because z is the output of
G−1(·), it is a binary vector, which yields σ = Θ(∥R∥2

√
kd). As opposed to

the previous improvement, the size of v1 increases compared to [MP12], but
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v2 is now binary and thus minimal. For a GPV signature [GPV08] using the
trapdoors from [MP12], our new method decreases the bit-size of the overall
signature, i.e., the total bit-size of v, by 50% compared to Contribution 1 and
thus by 75% compared to the original sampling method. The overall bit-size of
said signatures drops below 10 KB, which shows promising perspectives for the
efficieny of advanced lattice-based signatures using the trapdoors from [MP12].
It is also more flexible as the perturbation can now be drawn from a wider
range of distributions, although we only give concrete instantiations for spherical
Gaussian perturbations.

1.1.3 Contribution 3: Application to Aggregate Signatures. As an
example application of our new preimage sampling procedure, we propose an
aggregate signature scheme based on structured lattices that fully leverages the
asymmetry between v1 and v2. An aggregate signature is a regular signature
scheme completed by a mechanism AggSign taking the public keys pki of N users
as well as pairs of message-signature (mi, sigi) from each user, and compresses all
the sigi into a single signature sigagg. A second mechanism AggVerify is appended
to verify that sigagg is a valid aggregate signature on the messages mi under the
keys pki, but without requiring the individual sigi. One of the key features is
that the aggregation is public and non-interactive, meaning it does not require
the signers’ secret keys nor does it need them to interact to produce sigagg.
A basic efficiency requirement is that the size of sigagg should be lower than
the concatenation of the sigi, the latter being the simplest form of aggregate
signature.

Such primitives were first introduced by Boneh et al. [BGLS03], which has
led to several efficient constructions on classical groups, such as for example
the works in [BGLS03,BNN07,RS13,HKW15,HW18]. Post-quantum construc-
tions were however unknown until the first attempt of Döroz et al. [DHSS20].
This lattice-based proposal turned out to be either less efficient than the trivial
concatenation of signatures, or prone to attacks due to their compression tech-
nique as pointed out by Boudgoust and Roux-Langlois [BR21]. Additionally,
their construction was based on a non-standard assumption called the Partial
Fourier Recovery problem for which the hardness confidence is limited due to
recent results by Boudgoust, Gachon and Pellet-Mary [BGP22]. Boudgoust and
Roux-Langlois also proposed in [BR21] an aggregate signature based on module
lattices following the FSwA signature paradigm. Again, it turned out that the
peculiarities of aggregate signature security led to sigagg being larger than the
concatenation.

In this work, we construct the first lattice-based aggregate signature with
public aggregation that achieves relevant compression compared to the con-
catenation of individual signatures. Our scheme stems from the GPV signa-
ture [GPV08] instantiated with MP trapdoors [MP12] with our new preimage
sampling procedure as a key element. At a high-level, each users has a key pair
(ski, pki) = (Ri,Bi = ARi), where the matrix A is common to every signer. To
sign a message mi, user i samples a short preimage vi = [vT

1,i|vT
2,i]

T of H(mi)
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using our new method, where H is modeled as a random oracle. At this stage,
it is tempting to simply add the first components v1,i of each signature and
concatenate the (very short) second ones v2,i. This would be correct, but the
resulting scheme is completely insecure as we will explain. We then resort to a
technique generally used to circumvent rogue-key attacks to ensure security, but
with some necessary tweaks.

Concretely, to aggregate the vi, one first obtains small random weights ei
and computes sigagg = (v1 =

∑
i eiv1,i, (v2,i)i). To obtain the weights, we resort

to two random oracles Hf ,He. We first compute f = Hf ({Bj ,v2,j ,mj}1≤j≤N ),
and then ei = He(f, i) ∈ C for all i, where C is the set of ternary polynomials
with fixed Hamming weight. To verify, one can then recompute the weights
ei and check that Av1 +

∑
i ei(G − Bi)v2,i =

∑
i eiH(mi). Thanks to these

random weights we can prevent an attack where some signer would use its own
trapdoor to compensate other signatures. We are indeed able to prove security
under a standard assumption. Surprisingly, our proof relies on the fact that the
weights ei are generated through two successive queries to random oracles due
to peculiarities of the forking lemma, although we do not know if this is just an
artifact of the proof or if this is really necessary.

We only achieve partial aggregation because of the fact that v2,i faces the
matrix Bi which differs for every user. As a result, we need to transmit all
the individual v2,i, thus yielding a size linear in N . However, because our new
preimage sampling algorithm minimizes the size of the v2,i’s, it amortizes this
linear dependency, enough to have relevant compression compared to the naive
concatenation. In particular, we obtain aggregate signatures that are 15% to
30% smaller than the concatenation for N ranging from 10 to 1000 which is a
range coherent with real-life applications, such as certificate chains, blockchains
or batch software updates for example.

1.2 Organization

We start by recalling some notations and standard notions in Section 2. Then,
we provide our new preimage sampling results in Section 3, which we apply to
the construction of our lattice-based aggregate signature in Section 4.

2 Preliminaries

In this paper, for two integers a ≤ b, we define [a, b] = {k ∈ Z : a ≤ k ≤ b}. When
a = 1, we simply use [b] instead of [1, b]. Further, q is a positive integer, and
we define Zq = Z/qZ. We may identify the latter with the set of representatives
(−q/2, q/2] ∩ Z. Vectors are written in bold lowercase letters a and matrices
in bold uppercase letters A. The transpose of a matrix A is denoted by AT .
The identity matrix of dimension d is denoted by Id. We use ∥·∥p to denote
the ℓp norm of Rd, i.e., ∥a∥p = (

∑
i∈[d]|ai|

p
)1/p for any positive integer p, and

∥a∥∞ = maxi∈[d]|ai|. We also define the spectral norm of a matrix A by ∥A∥2 =
maxx̸=0∥Ax∥2/∥x∥2. For a finite set S, we define |S| to be its cardinality, and
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U(S) to be the uniform probability distribution over S. We use x ←↩ P to
describe the action of sampling x ∈ S according to the probability distribution
P . In contrast, we use x ∼ P to mean that the random variable x follows P . The
statistical distance between two discrete distributions P,Q over a countable set
S is defined as ∆(P,Q) = 1

2

∑
x∈S |P (x)−Q(x)|. Later, Ds,Dt denote arbitrary

distributions called source and target distributions respectively.

2.1 Lattices

A full-rank lattice L of rank d is a discrete additive subgroup of Rd. The dual
lattice of L is defined by L∗ = {x ∈ SpanR(L) : ∀y ∈ L,xTy ∈ Z}. We call Vol L
the volume of a lattice L. For d,m, q positive integers, we consider the family of
lattices {L⊥q (A);A ∈ Zd×m

q }, where L⊥q (A) = {x ∈ Zm : Ax = 0 mod qZ}. For
any A ∈ Zd×m

q and u ∈ Zd
q , we define Lu

q (A) = {x ∈ Zm : Ax = u mod qZ}
which is a coset of L⊥q (A).

2.2 Probabilities

For x a discrete random variable over a set S, we define its min-entropy as
H∞(x) = − log2(maxx′∈S Px[x = x′]). We give here the leftover hash lemma
from [DORS08] for which we write to match our context and notations.

Lemma 2.1 (Adapted from [DORS08]). Let d,m1, q be positive integers
such that q is an odd prime. For A ∼ U(Zd×m1

q ), x a random variable over Zm1 ,
and u ∼ U(Zd

q), it holds that ∆((A,Ax), (A,u)) ≤ 1
2

√
qd2−H∞(x). In particular,

whenever H∞(x) ≥ d log2 q+ω(log2 λ), the statistical distance is negligible in λ.

For a center c ∈ Rd and positive definite Σ ∈ Rd×d, we define the Gaussian
function ρ√Σ,c : x ∈ Rd 7→ exp(−π(x−c)TΣ−1(x−c)). For a countable set S ⊆
Rd, we define the discrete Gaussian distribution DS,

√
Σ,c of support S, covariance

Σ and center c by its density DS,
√
Σ,c : x ∈ S 7→ ρ√Σ,c(x)/ρ

√
Σ,c(S), where

ρ√Σ,c(S) =
∑

x∈S ρ√Σ,c(x). When c = 0, we omit it from the notations. When
Σ = σ2Id, we use σ as subscript instead of

√
Σ. As coined by Micciancio and

Regev [MR07], we define the smoothing parameter of a lattice L, parameterized
by ε > 0, by ηε(L) = inf{σ > 0 : ρ1/σ(L∗) = 1+ε}. We recall the following result
stating that DL,σ,c carries a good amount of entropy when σ is sufficiently large.
A similar result is given in [PR06, Lem. 2.10], but we give a tighter bound directly
resulting from Poisson’s summation formula. We give the proof for completeness.

Lemma 2.2. Let L ⊂ Rd be a lattice of rank d. For any ε > 0, σ ≥ ηε(L),
and c ∈ Rd, it holds that H∞(DL,σ,c) ≥ d log2 σ − log2(Vol L) + log2(1− ε). In
particular, when L = Zd and ε ≤ 1/2, it yields H∞(DZd,σ) ≥ d log2 σ − 1.

Proof. Let L ⊂ Rd be a lattice of rank d, ε > 0, σ ≥ ηε(L) and c ∈ Rd. We look
at ρσ,c(L). By the Poisson summation formula, it holds that

ρσ,c(L) = σd(Vol L)−1
∑
x∈L∗

e−i·2πx
T cρ1/σ(x).
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Yet, it holds that
∣∣∣∑x∈L∗ e−i·2πx

T cρ1/σ(x)− 1
∣∣∣ ≤ ρ1/σ(L∗ \ {0}) ≤ ε, as σ ≥

ηε(L). Since the sum is a positive real, it yields that the latter is bounded below
by 1− ε. Thence,

ρσ,c(L) ≥ σd(Vol L)−1(1− ε).

Since ρσ,c(x) ≤ 1 for all x ∈ L, we have that H∞(DL,σ,c) ≥ log2 ρσ,c(L), which
gives the desired inequality. When L = Zd and ε ≤ 1/2, we have Vol L = 1 and
log2(1− ε) ≥ −1, which yields the claim.

We also give the standard tail bounds for the discrete Gaussian distribution
from [Ban93,Lyu12]. Notice that when c = 0, the usual requirement σ ≥ ηε(L)
in the following results is not needed.

Lemma 2.3. Let L ⊂ Rd be a lattice of rank d. Let σ > 0 and v ∈ Rd. Then,
for all t > 0, it holds that

1. Px∼DL,σ

[
∥x∥2 > σ

√
d
]
< 2−2d, [Ban93, Lem. 1.5]

2. Px∼DL,σ
[|⟨x,v⟩| > σt∥v∥2] ≤ 2e−πt

2

. [Lyu12, Lem 4.3]

Based on probabilistic bounds on the spectral norm of sub-Gaussian matrices
and on tail bounds of sub-exponential random vectors, we have the following
result, proven in e.g. [JRS22].

Lemma 2.4 (Adapted from [JRS22]). Let m1,m2, η be three positive inte-
gers and x, t > 0. We assume that m1 > x · 10/ log2 e. Let x ∈ Zm2 such that
∥x∥∞ ≤ η. We have

PR←↩U([−1,1]m1×m2 )[∥Rx∥2 ≥ η
√
m2 min(2

√
m1,
√
m1+

√
m2+t)] ≤ 2−x+2e−πt

2

,

Finally, we give the rejection sampling results from [Lyu12, Thm. 4.6, Lem.
4.7], which were slightly adapted in [JRS22].

Lemma 2.5 (Adapted from [Lyu12, Thm. 4.6, Lem. 4.7]). Let d be a
positive integer, and V,X two countable set of Rd. Let T be a positive real, and
we define VT = {v ∈ V : ∥v∥2 ≤ T}. Let h be a probability distributions on V
such that Pv∼h[v /∈ VT ] ≤ ε′ for some ε′ ≥ 0. Let Dt be a probability distribution
on X, and (D

(v)
s )v∈V a family of probability distributions on X such that

∃M > 0,∀v ∈ VT ,Px∼Dt
[M ·D (v)

s (x) ≥ Dt(x)] ≥ 1− ε′′,

for some ε′′ ≥ 0. We then define two distributions

P1: Sample v←↩ h, x←↩ D
(v)
s . Output (v,x) with probability min(1, Dt(x)

MD
(v)
s (x)

).

P2: Sample v←↩ h, x←↩ Dt. Output (v,x) with probability 1/M .

The outputs of P1 and P2 conditioned on not aborting are within statistical
distance ε′′

M + ε′(M+1)
2M .
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2.3 General Forking Lemma

We give here the general forking lemma from Bellare and Neven [BN06] in
Lemma 2.6 and the forking algorithm FB in Algorithm 2.1. We later need this
result to prove the security of our aggregate signature scheme in Section 4.3.

Lemma 2.6 ([BN06, Lem. 1]). Let Qe be a positive integer and C a set of size
at least 2. Let B be a randomized algorithm that on input x, h1, . . . , hQe returns
a pair consisting of an integer in {0, . . . , Qe} and a second element referred to
as a side output. Let IG be a randomized algorithm that we call input generator.
We define the accepting probability as

acc = P[j ≥ 1 : x← IG;h1, . . . , hQe ←↩ U(C); (j, out)← B(x, h1, . . . , hQe)].

The forking algorithm FB associated to B takes as input x and is described in
Algorithm 2.1. We define the probability

frk = P[b = 1 : x← IG; (b, out, out′)← FB(x)].

Then, it holds that acc ≤ Qe/|C|+
√
Qe · frk

Algorithm 2.1: Forking FB

On input x, proceed as follows.
1. Pick random coins ρ for B
2. h1, . . . , hQe ←↩ U(C)
3. (j, out)← B(x, h1, . . . , hQe ; ρ)
4. if j = 0, return (0,⊥,⊥)
5. h′

j , . . . , h
′
Qe
←↩ U(C)

6. (j′, out′)← B(x, h1, . . . , hj−1, h
′
j , . . . , h

′
Qe

; ρ)
7. if (j = j′) ∧ (hj ̸= h′

j), return (1, out, out′)
8. else return (0,⊥,⊥).

2.4 Module Short Integer Solution

Our aggregate signature scheme of Section 4 is presented over a more algebraic
setting. We briefly recall the necessary background in algebraic number theory.
In Section 4, we take n a power of two and R the 2n-th cyclotomic ring, i.e.,
R = Z[X]/⟨Xn+1⟩. We also define Rq = Zq[X]/⟨Xn+1⟩ for any modulus q ≥ 2.
For a matrix A ∈ Rd×m

q , we define L⊥q (A) = {x ∈ Rm : Ax = 0 mod qR}.
We call τ the coefficient embedding of R, i.e., for all r =

∑
i∈[0,n−1] riX

i ∈ R,
τ(r) = [r0 . . . rn−1]

T . Using this embedding, L⊥q (A) embeds into a lattice of Rnm

called module lattice. For an integer η, we define Sη = τ−1([−η, η]n) and Tη =
τ−1([0, η− 1]n). We also define the usual norms ∥·∥p over R by ∥r∥p := ∥τ(r)∥p.
Finally, we define the discrete Gaussian distribution over R by τ−1(Dτ(R),σ),
which we denote by DR,σ. For any e ∈ R and v ∈ Rm, it holds that ∥ev∥2 ≤
∥e∥1∥v∥2, and ∥ev∥∞ ≤ ∥e∥1∥v∥∞.

The security of our aggregate signature scheme is based on the Module Short
Integer Solution (M-SIS) and Module Learning With Errors (M-LWE) prob-
lems [LS15], which we now recall.
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Definition 2.1 (M-SIS). Let n be a power-of-two and R = Z[X]/⟨Xn + 1⟩.
Let d,m, q be positive integers and β > 0. The Module Short Integer Solution
problem M-SISn,d,m,q,β asks to find x ∈ L⊥q (A) \ {0} such that ∥x∥2 ≤ β, given
A←↩ U(Rd×m

q ).

The advantage of a probabilistic polynomial-time (PPT) adversary A against
M-SISn,d,m,q,β is defined by

AdvM-SIS[A] = P [Ax = 0 mod qR ∧ 0 < ∥x∥2 ≤ β : x← A(A)] ,

where the probability is over the randomness of A and the random coins of A.
When the parameters are clear from the context, we define the hardness bound
as εM-SIS = supA PPT AdvM-SIS[A]. We now present the M-LWE problem in its
knapsack form with multiple secrets which we use throughout the paper. The
knapsack form is at least as hard as the standard formulation by the duality
results from [MM11, Lem. 4.8] (for LWE) generalized to M-LWE in [BJRW23,
Lem. 4.1].

Definition 2.2 (M-LWE). Let n be a power-of-two and R = Z[X]/⟨Xn +
1⟩. Let d,m, k, q be positive integers and Dr a distribution on R. The Module
Learning With Errors problem M-LWEk

n,d,m,q,Dr
asks to distinguish between the

following distributions: (1) (A,AR mod qR), where A ∼ U(Rd×m
q ) and R ∼

Dm×k
r , and (2) (A,B), where A ∼ U(Rd×m

q ) and B ∼ U(Rd×k
q ).

The advantage of a probabilistic polynomial-time (PPT) adversary A against
M-LWEk

n,d,m,q,Dr
is defined by

AdvM-LWE[A] = |P [A(A,AR) = 1]− P [A(A,B) = 1]|,

When the parameters are clear from the context, we define the hardness bound as
εM-LWE = supA PPT AdvM-LWE[A]. When n = 1, we use the notation LWEk

d,m,q,Dr

to denote the same problem over R = Z. Additionally, a standard hybrid argu-
ment shows that M-LWEk

n,d,m,q,Dr
is at least as hard as M-LWE1

n,d,m,q,Dr
at the

expense of a loss factor k in the reduction.

3 Revisiting Trapdoor Sampling

We first focus on the trapdoor preimage sampling procedure proposed by Mic-
ciancio and Peikert [MP12]. In Section 3.1, we show that a finer analysis of the
perturbation sampling step allows one to generate preimages that are approxi-
mately 25−50% smaller at absolutely no cost on the security. As a result, this can
be used as a drop-in replacement in every scheme using trapdoors from [MP12]
and preimage sampling. This relies on the observation that preimages v are
in two parts v1,v2 which have asymmetric roles but are treated symmetrically
in [MP12]. By slightly breaking this symmetry, we are able to significantly reduce
the size of v2, which leads to the gain mentioned above.

10



In a second step, we show in Section 3.2 that we can leverage further this
asymmetry by providing a new and more flexible preimage sampling procedure.
The latter combines the use of trapdoors and rejection sampling. It gives the
ability to tweak the distribution of v1, allowing non-Gaussian distributions, while
minimizing the size of v2. The immediate consequence is a larger reduction of the
preimage size, up to 75% compared to [MP12], which should benefit to a wide
spectrum of cryptographic constructions, such as GPV signatures [GPV08]. The
special features of the resulting preimages could also have other consequences
on some specific primitives. As an example, Section 4 presents the first lattice-
based aggregate signature scheme that supports public aggregation with relevant
compression.

3.1 Finer Analysis of Perturbation Sampling

The notion of trapdoors introduced by Micciancio and Peikert [MP12] (which we
later abbreviate MP trapdoors) is very versatile and has enabled more efficient
proposals for many advanced lattice-based primitives. In particular, it yields the
ability to naturally design tag-based constructions, a property leveraged in a
number of works such as group signatures [dPLS18,LNPS21] or signature with
efficient protocols [JRS22]. This new notion of trapdoors also allows for more
efficient preimage sampling due to the specific form of the trapdoor function.
More precisely, they generate matrices AH of the form

AH = [A|HG−AR] mod qZ ∈ Zd×(m1+m2)
q ,

where H ∈ Zd×d
q is an invertible tag matrix, G ∈ Zd×m2 a primitive gadget

matrix, and R ∈ Zm1×m2 a short matrix corresponding to the trapdoor. The
advantage of such a construction is that the same trapdoor information R can
be used for all tags H. The gadget G is chosen so that it is easy to compute short
preimages, and therefore, it becomes easy to compute preimages of AH with the
knowledge of R. In what follows, we consider the gadget matrix of [MP12] in
base b ≥ 2, i.e., G = Id ⊗ [1|b| . . . |b⌈logb q⌉−1] ∈ Zd×m2 where m2 = d⌈logb q⌉.

Preimage Sampling Procedure. The sampling algorithm relies on the link
between such matrices AH and the gadget matrix G, that is

AH

[
R
Im2

]
= HG mod qZ.

Thence, if z is a short vector in Lu
q (HG), then v = [(Rz)T |zT ]T is a short

vector in Lu
q (AH), i.e., verifying AHv = u mod qZ, that is v is a preimage

of u by AH. Unfortunately, v leaks information about the trapdoor R which
is undesirable in cryptographic applications as R usually corresponds to the
long-term secret key. To circumvent this issue, the authors use the Gaussian
convolution theorem [Pei10, Thm. 3.1] to perturb v in order to make the final
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samples independent of R. In more details, they sample a (highly) non-spherical
Gaussian perturbation p = [pT

1 |pT
2 ]

T ∼ DZm1+m2 ,
√
Σ with

Σ = σ2Im1+m2 − σ2
G

[
RRT R
RT Im2

]
,

and then compensate this perturbation by sampling z ∼ DLx
q (G),σG

with x =

H−1(u−Ap1+ARp2)−Gp2. The output sample is then v′ = [(p1+Rz)T |(p2+
z)T ]T . By the convolution theorem, v′ is statistically close to a Gaussian distri-
bution over Lu

q (AH) with parameter σ, which no longer depends on R.
Therefore, from the security standpoint, the approach above perfectly ad-

dresses the problem of preimage sampling for cryptographic applications. How-
ever, if we reconsider the unperturbed vector v = [(Rz)T |zT ]T , we note that
the convolution is now applied to both parts. This does not seem optimal as the
bottom section of v is independent of R. Unfortunately, this seems inherent to
the approach stated in [Pei10, Sec. 1.3] which only considers covariance matrices
of the form σ2I −Σ1 for some covariance matrix Σ1. Ideally, we would like to
select a perturbation that only affects the top component, typically:

p =

[
p1

0

]
∼ DZm1+m2 ,

√
Σ, with Σ =

[
σ2Im1 − σ2

GRRT 0
0 0

]
.

However, when sampling z and outputting p + [RT |Im2
]T z, we end up with a

joint probability of covariance[
σ2Im1 − σ2

GRRT 0
0 0

]
+ σ2

G

[
RRT R
RT Im2

]
=

[
σ2Im1

σ2
GR

σ2
GRT σ2

GIm2

]
,

which again leaks information about R. We therefore need a middle way be-
tween this efficient, but insecure, approach and the one from [MP12] that seems
unnecessarily overstated, given the type of vectors we have to perturb.

Breaking the Symmetry of Preimages. Our solution is to break the symme-
try between the top and bottom parts in [MP12] by using different parameters
σ1 and σ2. More precisely, we sample a perturbation over Zm1+m2 of covariance

Σ =

[
σ2
1Im1

0
0 σ2

2Im2

]
− σ2

G

[
RRT R
RT Im2

]
,

where σ2 will hopefully be much smaller than σ1. The natural question is then
to determine how small it can be. At this stage we note that the reasoning in
[Pei10, Sec. 1.3] is of no help here as Σ is no longer of the form σ2I −Σ1. We
therefore need a new result tailored to our need so as to derive bounds on σ1

and σ2. More specifically, to continue using the convolution theorem in [Pei10],
we need Σ to be positive definite, leading to the following lemma.
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Lemma 3.1. Let m, ℓ be positive integers, R ∈ Rm×ℓ, and α, β, γ positive reals.
If α >

√
2 · γ∥R∥2 and β >

√
2γ, then the matrix

Σ =

[
α2Im 0
0 β2Iℓ

]
− γ2

[
R
Iℓ

] [
RT Iℓ

]
is positive definite.

Proof. We first consider the singular value decomposition of R as R = USVT ,
with U ∈ Rm×m unitary, V ∈ Rℓ×ℓ unitary, and S ∈ Rm×ℓ a diagonal ma-
trix with non-negative entries in decreasing order. Using the fact that U,V are
unitary, we have

Σ =

[
U 0
0 V

]([
α2Im 0
0 β2Iℓ

]
− γ2

[
SST S
ST Iℓ

])[
UT 0
0 VT

]
Let x = [xT

1 |xT
2 ]

T ∈ Rm+ℓ \ {0} with x1 ∈ Rm and x2 ∈ Rℓ. We then define
y1 = UTx1, y2 = VTx2 and y = [yT

1 |yT
2 ]

T ̸= 0. Now assume that m ≥ ℓ. We
thus have S = [D|0m−ℓ×ℓ]

T with D = diag(s1, . . . , sℓ) ∈ Rℓ×ℓ. Hence,

xTΣx = α2
m∑
i=1

y21,i + β2
ℓ∑

i=1

y22,i − γ2
ℓ∑

i=1

(siy1,i + y2,i)
2

≥ α2
m∑
i=1

y21,i + β2
ℓ∑

i=1

y22,i − γ2
ℓ∑

i=1

2
(
s2i y

2
1,i + y22,i

)
=

ℓ∑
i=1

(
(α2 − 2γ2s2i )y

2
1,i + (β2 − 2γ2)y22,i

)
+

m∑
i=ℓ+1

α2y21,i

> 0,

because α2 > 2γ2∥R∥22 = 2γ2 max1≤i≤ℓ s
2
i , and β2 > 2γ2. Next, assuming m ≤ ℓ,

we have S = [D|0m×ℓ−m] with D = diag(s1, . . . , sm) ∈ Rm×m. Similarly, it yields

xTΣx = α2
m∑
i=1

y21,i + β2
ℓ∑

i=1

y22,i − γ2
m∑
i=1

(siy1,i + y2,i)
2 − γ2

ℓ∑
i=m+1

y22,i

≥ α2
m∑
i=1

y21,i + β2
ℓ∑

i=1

y22,i − γ2
m∑
i=1

2
(
s2i y

2
1,i + y22,i

)
− γ2

ℓ∑
i=m+1

y22,i

≥ α2
m∑
i=1

y21,i + β2
ℓ∑

i=1

y22,i − γ2
m∑
i=1

2
(
s2i y

2
1,i + y22,i

)
− γ2

ℓ∑
i=m+1

2y22,i

=

m∑
i=1

(α2 − 2γ2s2i )y
2
1,i +

ℓ∑
i=1

(β2 − 2γ2)y22,i

> 0,

as desired.
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In the context of [MP12], we will have to use the previous lemma on the
matrices Σ − Im1+m2

and Σ − 2[RT |I]T [RT |I]. As a result, we must take σ1

and σ2 such that
√

σ2
1 − 1 >

√
2σG∥R∥2 and

√
σ2
2 − 1 >

√
2σG, as well as

σ1 >
√

2(σ2
G + 2)∥R∥2 and σ2 >

√
2(σ2

G + 2). The latter two conditions subsum
the former two. We recall that we also have to consider the randomized rounding
factor r ≥ ηε(Z), typically r ≈ 5.4. We can therefore set σ1 > r

√
2σ2

G + 4∥R∥2
and σ2 > r

√
2σ2

G + 4 with σG ≈
√
b2 + 1, and still inherit from the analysis

of [MP12]. This allows us to drastically reduce the size of the bottom part for
free, while keeping the size of the top part (almost) the same as before. Addi-
tionally, the overall norm of v is smaller which can result in slightly increased
concrete security. For example, in GPV signatures [GPV08], smaller preimages
leads to a smaller SIS bound and in turn better security. This modification can
thus be used as is in every scheme using MP trapdoor preimage sampling. We
give more details on the performance improvements entailed by our finer analysis
in Section 3.3. As a high-level takeaway, when instantiating GPV with compu-
tational MP trapdoors (based on LWE), we obtain a close to 50% improvement
on the signature size. We also take as example the more recent construction of
group signature from [LNP22a, Sec. 6.4] based on structured lattices, and show
that we gain around 30% on the size of preimages (which represent the group
users’ secret key).

Further Limitations. Although we improved the quality of the preimage sam-
pling procedure, it is still quite rigid. Namely, it still requires the sampling of
a perturbation vector p from a (highly) non-spherical Gaussian distribution.
Such a perturbation sampling is rather costly and represents the most part of
the computation time of preimage sampling. The gadget sampling step (sam-
pling z ←↩ DLx

q (G),σG
) which we here see as a black box, also requires the sam-

pling of non-spherical Gaussian perturbations when q is not a power of the gadget
base b. However, the latter has been analyzed in several works [GM18,ZY22] by
identifying structure in the basis of L⊥q (G) to enable more efficient sampling
over L⊥q (G). But for the perturbation p we consider, we cannot leverage a par-
ticular structure of the covariance matrix Σ as R is generated randomly.

Another limitation is that this convolution method is seemingly limited to
Gaussian distributions, which in turn limits the possible preimage distributions.

3.2 A New Preimage Sampling Procedure

We now present a new method to perform preimage sampling using MP trap-
doors that circumvents the aforementioned limitations, and that keeps on reduc-
ing the overall bit-size of preimages compared to Section 3.1. It indeed combines
three interesting features.

First, we break the symmetry even further between the top and bottom
parts to keep the latter as small as possible. This can have a positive impact on
the performance of primitives that are based on MP trapdoors, e.g., signature
schemes, as shown in Section 3.3. It also unlocks the possibility of designing new
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advanced primitives that may have been vacuous prior to our work. In particular,
in Section 4, we present an aggregate signature that leverages this new sampling
procedure. In this construction, we are only able to aggregate the top parts, and
we still have to transmit the individual bottom parts of each signature. Hence,
keeping the bottom parts as small as possible is crucial to avoid a blowup in the
size of our aggregate signatures.

Second, our method allows to tweak the distribution of the top part as it no
longer relies on a Gaussian-specific convolution theorem. More precisely, we use
rejection sampling to control the distribution of the top part and to ensure that
it does not depend on the secret key R.

Finally, albeit more general in terms of output distributions, our method can
still be used with a Gaussian distribution for the top part. As we use rejection
sampling, we do not have to sample non-spherical Gaussians which may improve
calculations. Additionally, we no longer use Gaussian gadget sampling which also
accounted for some of the inefficiencies of preimage sampling.

Trapdoor Preimage Sampling based on Rejection Sampling. Our ap-
proach can be seen as combining features of both signature paradigms by using
tag-friendly gadget-based preimage sampling, as well as rejection sampling that
is extensively used in Fiat-Shamir with Aborts (FSwA) signatures. We now
present the preimage sampling algorithm. We denote by G−1(·) the coefficient-
wise base-b decomposition of vectors of Zd

q , thus resulting in vectors of [0, b−1]m2 .
The intuition is to sample a perturbation p1 ∈ Zm1 from a source distribution
Ds. Further, instead of using Gaussian G-sampling, we simply use the base-
b decomposition and obtain v2 = G−1(H−1(u − Ap1)). Then, we can define
v1 = p1 + Rv2 so that the relation AHv = u is verified, and apply rejection
sampling to make v1 independent of Rv2 and in turn R. This setting is remi-
niscent of lattice-based zero-knowledge arguments or Lyubashevsky’s signature
scheme [Lyu12], where R is the witness, p1 is the mask, Ap1 is a commitment to
the mask, v2 is the challenge, and v1 is the response to the challenge. The choice
of parameters and suitable distributions Ds,Dt is conditioned by the simulation
result of Theorem 3.1.

Algorithm 3.1: SamplePre(R;A,H,u,Ds,Dt)

Input (offline phase): Matrix A ∈ Zd×m1
q , Source distribution Ds over Zm1 .

Input (online phase): Trapdoor R ∈ Zm1×m2 , Tag H ∈ GLd(Zq), Syndrome u ∈
Zd
q , Target distributions Dt over Zm1 such that rejection sampling can be performed

with respect to Ds.
Offline phase

1. p1 ←↩ Ds.
2. w← Ap1 mod qZ.

Online phase
3. x← H−1(u−w) mod qZ. ▷ Syndrome correction
4. v2 ← G−1(x) ∈ [0, b− 1]m2 . ▷ Deterministic. m2 = d⌈logb q⌉
5. v1 ← p1 +Rv2.
6. Sample a continuous u←↩ U([0, 1]).

15



7. if u > min
(
1, Dt(v1)

M·Ds(p1)

)
then go back to 1.

Output: v =

[
v1

v2

]
.

We now show that Algorithm 3.1 is correct, meaning that the output samples
are in the correct lattice. The analysis of the output distribution is dealt with a
simulation result in Theorem 3.1 which proves that the samples are independent
of the trapdoor R.

Lemma 3.2. For all matrices R ∈ Zm1×m2 , A ∈ Zd×m1
q , H ∈ GLd(Zq), u ∈

Zd
q , distributions Ds, Dt over Zm1 , and v ← SamplePre(R;A,H,u,Ds,Dt), it

holds that v ∈ Lu
q (AH), where AH = [A|HG−AR] mod qZ.

Proof. Let R,A,H,u,Ds,Dt,v be as in the lemma statement. Then, we can de-
compose v into [vT

1 |vT
2 ]

T , with v1 = p1+Rv2, p1 ←↩ Ds, and v2 = G−1(H−1(u−
Ap1) mod qZ). It thus holds that AHv = A(p1 + Rv2) + (HG − AR)v2 =
Ap1 +H(H−1(u−Ap1)) mod qZ = u mod qZ as desired.

The following theorem states that the pairs (v,u), with u uniform, can be
simulated without resorting to the trapdoor R. It therefore proves that the
preimages are statistically close to a distribution that does not depend on R,
and that they indeed do not leak information about R. This property is necessary
for cryptographic applications, e.g., signatures, as an adversary can usually have
access to many such pairs for a single key. To anticipate such uses, we present the
simulation of Qs preimages. Looking ahead, Qs would later denote the maximal
number of emitted signatures per key as in the GPV construction [GPV08].

Theorem 3.1. Let d, q, b,Qs be positive integers with q prime. Let m1 = 2d, k =
⌈logb q⌉ and m2 = dk. Let Dr,Ds,Dt be three distributions over Z, Zm1 and Zm1

respectively. We define by h the distribution obtained by sampling R←↩ Dm1×m2
r

and v2 ←↩ G−1(U(Zd
q)) and outputting Rv2. We denote by V = Supp(h). We

let T be a positive real and assume Py∼h[∥y∥2 > T ] ≤ ε′ for some ε′ ≥ 0.
We assume there exists M > 0 such that for all y ∈ V , if ∥y∥2 ≤ T , then
Pv1∼Dt [M(y + Ds)(v1) ≥ Dt(v1)] ≥ 1− ε′′ for some ε′′ ≥ 0.

Let A ∼ U(Zd×m1
q ), R ∼ Dm1×m2

r and H ∈ GLd(Zq). We define the follow-
ing distributions.

P1

1. u1, . . . ,uQs ←↩ U(Zd
q).

2. For all i ∈ [Qs], vi ← SamplePre(R;A,H,ui,Ds,Dt).
Output: ((vi)i∈[Qs], (ui)i∈[Qs]).

P2

For all i ∈ [Qs]
1. v1,i ←↩ Dt, v2,i ←↩ G−1(U(Zd

q)).
2. vi ← [vT

1,i|vT
2,i]

T .
3. ui ← [A|HG−AR]vi mod qZ.
4. With probability 1− 1/M go back to 1. for the same i

Output: ((vi)i∈[Qs], (ui)i∈[Qs]).
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Then, it holds that the advantage of any PPT distinguisher A between P1 and
P2 is at most

AdvP1,P2
[A] ≤ εLWE +Qs

(
2−

1
2H∞(Dt)−1 +

ε′′

M
+

ε′(M + 1)

2M

)
,

where εLWE is the hardness bound of LWEm2

d,m1,q,Dr
.

Proof. We first look at the first components vi. When ui ∼ U(Zd
q), then for

p1,i ∼ Ds independent of ui, it holds that xi = H−1(ui − Ap1,i) mod qZ is
also uniformly distributed in Zd

q . This is due to the fact that H−1 ∈ GLd(Zq)
and thus preserves the uniform distribution. Note that v2,i is not uniform in
[0, b− 1]m2 but in G−1(Zd

q) which is not the same unless q = bk. Hence, we have

∆((v2,i)P1
, (v2,i)P2

) = 0. (1)

It thus holds that in P1, yi = Rv2,i is distributed according to h, and p1,i + yi

according to Ds + yi. By our assumptions on h,Ds,Dt, the rejection sampling
result of Lemma 2.5 yields that

∆((Rv2,i,v1,i)P1
, (Rv2,i,v1,i)P2

) ≤ ε′′

M
+

ε′(M + 1)

2M
,

By the data processing inequality of the statistical distance, it holds

∆((v1,i)P1
, (v1,i)P2

) ≤ ε′′

M
+

ε′(M + 1)

2M
. (2)

Now let us look at the second components ui. Let A′ be a distinguisher
between ((ui)P1

)i and ([A|HG −AR](vi)P2
)i with advantage δ. We use it to

construct a distinguisher B for LWEm2

d,m1,q,Dr
. B takes as input (A,B) ∈ Zd×m1

q ×
Zd×m2
q with A ←↩ U(Zd×m1

q ). The distinguisher then samples the vi as in P2

and set ui = [A|HG−B]vi mod qZ. It then sends (ui)i to A′. If B = AR mod
qZ (LWE case), then the input to A′ follows the second distribution. If B is
uniform, then HG − B is also uniform. As a result, the leftover hash lemma
from Lemma 2.1 gives that ui is within statistical distance 1

2

√
qd2−H∞((vi)P2

)

of the uniform. It thus yields that

Adv[B] ≥ δ − Qs

2

√
qd2−H∞((vi)P2

)

In P2, v1,i and v2,i are sampled independently and therefore H∞((vi)P2
) =

H∞(Dt) + H∞(G−1(U(Zd
q))). By definition G−1(U(Zd

q)), its entropy is given
by H∞(G−1(U(Zd

q))) = d log2 q. This due to the fact that G−1(·) is a bijection
between Zd

q and G−1(Zd
q), and thus preserves the entropy of its input. Under

our LWE assumption, we then obtain

δ ≤ εLWE +
Qs

2
2−H∞(Dt)/2.
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Combined with Equations (1) and (2), we get

AdvP1,P2 [A] ≤ εLWE +Qs

(
2−

1
2H∞(Dt)−1 +

ε′′

M
+

ε′(M + 1)

2M

)
,

as claimed.

Theorem 3.1 proves that when Dt carries sufficient min-entropy, and that
ε, ε′, ε′′ are negligible, then the output v of SamplePre is independent of the
trapdoor R up to negligible statistical distance, albeit conditioned on [A|HG−
AR]v = u mod qZ. Since AR mod qZ is generally made public, P2 acts as a
simulator of P1 which does not require the trapdoor R, a property we desire
to have for trapdoor preimage sampling. We note that the result carry over to
an algebraic setting over number fields using [LW20, Cor. 5.9], at the expense
of requiring low-splitting of the unramified prime q. The low-splitting is used to
argue that v mod q carries enough entropy, where q|qR and q ̸= R. Typically,
v2 mod q carries at least df log2 q bits of entropy, where f = n/l and l the
number of prime ideal factors of qR. Later, we use a modulus q that splits into
2 prime ideal factors in the power-of-two cyclotomic field of degree n.

Gaussian Instantiation. We can instantiate Theorem 3.1 with a Gaussian
distribution on v1 for a fair comparison with previous results. We still insist on
the fact that it can be used with other distributions like uniform on hypercubes,
etc. We thus choose Dr = U([−1, 1]) for the trapdoor distribution, and we select
Ds = Dt = DZm1 ,σ for the source and target distributions. For convenience, we
write SamplePre(R;A,H,u(i), σ) instead of specifying Ds and Dt. In order to
set σ, we first derive the appropriate bound T on Rv2 with Lemma 2.4. Then,
we choose a repetition rate M > 1 which defines the minimal slack α > 0 so that
σ = αT . This leads to the following corollary, which will be more convenient to
use later.

Corollary 3.1. Let λ, d, q, b,Qs be positive integers with q prime. Let m1 = 2d,
k = ⌈logb q⌉, m2 = dk and assume that the hardness bound for LWEm2

d,m1,q,U([−1,1])
is εLWE ≤ 2−(λ+1), and that d ≥ 5(λ + 4 + log2 Qs)/ log2 e. We define t1 =√
(λ+ 4 + log2 Qs)/(π log2 e) and t2 =

√
(λ+ 3 + log2 Qs)/(π log2 e). We then

define the bound T = (b − 1)
√
m2 min(2

√
m1,
√
m1 +

√
m2 + t1). Let α > 0,

M = exp(π(α−2 + 2t2α
−1)), and finally σ = αT . Let A ∼ U(Zd×m1

q ), R ∼
U([−1, 1]m1×m2) and H ∈ GLd(Zq).

Then, it holds that the advantage of any PPT distinguisher A between P1

and P2 is at most AdvP1,P2 [A] ≤ 2−λ, where P1 and P2 are the same as in
Theorem 3.1 where Ds,Dt are replaced with DZm1 ,σ.

Proof. We simply have to verify that the conditions of Theorem 3.1 are met.
First, following the notations of Theorem 3.1, we define ε = 2−λ−1. Then, be-
cause m1 ≥ 10(λ+ 4+ log2 Qs)/ log2 e and the way we set t1, Lemma 2.4 yields

PR,v2
[∥Rv2∥2 > T ] ≤ 2−(λ+4+log2 Qs) + 2e−πt

2
1 = 2−(λ+3+log2 Qs) =: ε′.
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Additionally, for v1 ∼ DZm1 ,σ and y = Rv2 such that ∥y∥2 ≤ T , we have

DZm1 ,σ(v1)

(y +DZm1 ,σ)(v1)
=

DZm1 ,σ(v1)

DZm1 ,σ(v1 − y)
= exp

( π

σ2
(∥y∥22 − 2⟨y,v1⟩)

)
.

By Lemma 2.3, it holds that |⟨y,v1⟩| ≤ σt2∥y∥2 except with probability at most
2e−πt

2
2 = 2−(λ+3+log2 Qs) = ε′. Conditioned on |⟨y,v1⟩| ≤ σt2∥y∥2, we have

DZm1 ,σ(v1)

(y +DZm1 ,σ)(v1)
≤ exp

( π

σ2
(∥y∥22 − 2t2σ∥y∥2)

)
≤ exp

(
π((T/σ)2 + 2t2(T/σ))

)
= exp(π(α−2 + 2t2α

−1))

= M.

We then obtain that

Pv1∼DZm1 ,σ
[M(y +DZm1 ,σ)(v1) ≥ DZm1 ,σ(v1)] ≥ 1− ε′,

and we can set ε′′ = ε′ = 2−λ−3/Qs. Finally, since σ ≥ ηδ(Zm1) for some
δ ∈ (0, 1/2), Lemma 2.2 gives H∞(DZm1 ,σ) ≥ m1 log2 σ − 1. It thus yields

2−
1
2H∞(DZm1 ,σ)−1 ≤ 2−

m1 log2 σ−1
2 −1 ≤ 2−d ≤ ε′,

where the last inequality stems from our condition on d, which we use to set T .
By Theorem 3.1, it then holds

AdvP1,P2 [A] ≤ εLWE +Qs

(
ε′ +

ε′

M
+

ε′(M + 1)

2M

)
≤ εLWE + 3Qsε

′ ≤ 2−λ,

as desired.

In this instantiation, we are only able to reach widths σ which are larger than
the ones from [MP12] and Section 3.1. Indeed, in the latter, v1 was distributed
according to a discrete Gaussian of width σ1 = Θ(b∥R∥2) = Θ(b(

√
m1+

√
m2)),

while here we obtain a width σ = Θ(b
√
m2(
√
m2 +

√
m1)). However, in the

meantime, we drastically reduce the size of v2, which somewhat compensate for
the increase in size of v1 for typical parameters. Although this may appear as
irrelevant in standard applications of MP trapdoors at first glance, we show that
it leads to dramatic improvements in the size of preimages, and that it also finds
advanced applications as that of Section 4 which were vacuous prior to our work.

3.3 Performance

We now take examples of constructions using trapdoor preimage sampling and
give concrete parameters and size estimates with each of the three methods: (1)
the existing approach of [MP12] with spherical Gaussian distributions, (2) the
approach of Section 3.1 with elliptical Gaussian distributions, and (3) the new
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preimage sampling instantiated as in Section 3.2 with a Gaussian distribution
on the top part. We take the example of GPV signatures [GPV08] with MP
trapdoors over Zq, and the more recent group signature of [LNP22a, Sec. 6.4]
based on structured lattices. The security analysis and parameter estimate of
the former are quite simple which is why we choose it as an illustrative example.
For the latter, we only compare approaches (1) and (2) because the construc-
tion is quite complex and the modifications from (3) would require a brand
new security analysis. Nevertheless, for both examples, we witness undeniable
improvement factors on the size of preimages. This represents a leap towards
concrete practicality of constructions based on MP trapdoors.

GPV Signature. We instantiate the signature from [GPV08] with MP trap-
doors in their computational instantiation based on LWE. More precisely, the
secret key R is drawn from U([−1, 1]m1×m2) with m1 = 2d. In the security
proof, one needs to argue that simulated signatures lead to programmed ran-
dom oracle responses which are close to uniform. To do so, we use the simulation
result from Theorem 3.1 (or its equivalent for the old sampling procedure for
approaches (1) and (2)). As such, we need to consider parameters that ensure the
LWEd,m1,q,U([−1,1]) problem is hard. For a fair estimate, we aim at λ + log2 m2

bits of security for LWE, as the pseudorandomness of AR is argued under the
LWE assumption with m2 secrets. The security proof is then concluded by a
reduction to SISd,m1+m2,q,β where β ≥ ∥v − v∗∥2 for two preimages v,v∗. For
approaches (1) and (2), it yields β = 2

√
σ2
1m1 + σ2

2m2 (where σ1 = σ2 for
approach (1)), and for approach (3), we have β =

√
4σ2m1 + (b− 1)2m2.

We thus give parameters for λ = 128 bits of quantum security for the sig-
nature, using the Core-SVP methodology with sieving SVP oracle. For that, we
fix the gadget base b = 2, randomized rounding factor r = 5.4, and the spectral
norm slack t = 5.4, and rejection sampling slack α = 8 (leading to a repetition
rate of M ≈ 73). We use Qs = 240 as the maximal number of emitted signatures
per key. We then find the appropriate dimension d and modulus q to achieve the
security target. The value of λLWE and λSIS correspond to the reached quantum
security of LWEd,m1,q,U([−1,1]) and SISd,m1+m2,q,β respectively. The estimates
are given in Table 3.1. We observe a 48% improvement on the size of the signa-
ture v of (2) compared to (1), a 53% improvement of (3) compared to (2), and
as a result a 76% improvement of (3) compared to (1). The gain on v2 is even
more blatant as we reduce its size by 90% between (1) and (3).

Remark 3.1. In these estimates, the public matrix A is uniform in Zd×2d
q . We

note that we could use similar tricks as for example [PFH+20,EFG+22,ETWY22]
to reduce the overall size of the signature by choosing A = [Id|A′] with A′ ∈
Zd×d
q . The GPV signature would consist of (v1,2,v2), where v1 = [vT

1,1|vT
1,2]

T ,
because v1,1 is determined by the verification equation as v1,1 = H(m)−A′v1,2−
(G− [Id|A′]R)v2. Since our goal is to show the improvements on v2, we do not
take this optimization into account, though it leads to smaller overall signatures
and possibly better improvement factors.
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λLWE λSIS q d σ1 σ2 |v1| (kb) |v2| (kb) |sig| (kb)

[MP12] 148 130 ≈ 218 1085 2794 2794 4.0 37.7 41.7

Sec. 3.1 145 132 ≈ 217 1010 3741 20 3.7 17.7 21.4

Sec. 3.2 147 130 ≈ 222 1295 140530 - 6.3 3.6 9.9

Table 3.1. Comparison estimates of GPV signature scheme with computational MP
trapdoors with different preimage sampling approaches.

Group Signature. In the group signature from [LNP22a, Sec. 6.4], which is
an improvement of the group signature from [LNPS21], the preimages represent
the group users’ secret key whose knowledge must be proven to issue signatures.
Minimizing the size of the preimages has therefore direct consequences on the
users’ secret key but also indirect ones on the group signatures themselves. In
Table 3.2, we give size estimates of those secret keys with the parameters given
in [LNP22a] using our final convolution result from Section 3.1. Since it only
reduces the size of the bottom part, it has no negative effect on the M-SIS
security (in fact, it leads to smaller M-SIS bounds and thus better security).
We note that in their case, the matrix is of the form [A|iG −AR|B′] and the
preimage is therefore in three parts v1,v2,v3. In the security proof B′ acts as a
substitute for iG−AR as it is set to G−AR′, and as such v3 follows the same
distribution as v2. The signature is instantiated over a power-of-two cyclotomic
ring R of degree n = 4 · 128 = 512, for q = 238 − 107, b = ⌊q1/5⌉, d = 2 and
m1 = 5. We thus have v1 ∈ R5 and v2,v3 ∈ R5d. For a fair comparison, we take
the same estimates as [LNP22a] for randomized rounding and spectral norm.
Our result yields a 28% improvement on the size of the users’ secret key v.

σ1 σ2 σ3 |v1| (kb) |v2| (kb) |v3| (kb) |ski| (kb)

Spherical
[LNP22a]

44233 44233 44233 6.3 12.5 12.5 31.3

Elliptical (Ours) 62007 549 549 6.3 8.1 8.1 22.5

Table 3.2. Estimates of users’ secret key size in the group signature of [LNP22b, Sec.
6.4] for spherical Gaussian preimages ([LNP22b]) and elliptical Gaussian preimages
(Sec. 3.1).

4 A Lattice-Based Aggregate Signature Scheme

As concrete application of our new preimage sampling procedure of Section 3, we
leverage the asymmetry between v1 and v2 to construct the first lattice-based
aggregate signature that supports public aggregation and that is more efficient
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than the naive concatenation of individual signatures. We start by recalling the
definition of aggregate signature schemes in Section 4.1, before presenting our
construction in Section 4.2. Then, we prove the security of our scheme in the
aggregate chosen-key model coined by Boneh et al. [BGLS03] in Section 4.3.
Finally, we dedicate Section 4.4 to discussing the performance of our scheme.

4.1 Aggregate Signature Schemes

An aggregate signature is a regular signature scheme {KeyGen,Sign,Verify} which
also enables public aggregation of different signatures on different messages and
under different signing keys. The regular signature is thus completed with two
algorithms AggSign and AggVerify. The former takes as input a sequence of
messages (mi)i∈[N ], of public keys (pki)i∈[N ] and of signatures (sigi)i∈[N ] of said
messages under the corresponding keys, and outputs a single signature sigagg. The
AggVerify algorithm then takes the same inputs except that it gets sigagg instead
of the individual signatures, and returns 1 if the aggregate signature is valid
and 0 otherwise. An aggregate signature scheme is expected to be correct, i.e.,
honestly generated signatures and aggregate signatures verify using Verify and
AggVerify respectively, and secure in a security model introduced by [BGLS03]
which we recall in Section 4.3.

The goal of aggregate signatures is to perform batch verification of several
independent signatures, albeit sharing the same public parameters. The naive
solution is to define sigagg as the concatenation of the (sigi)i∈[N ] and perform
verification individually but the resulting construction is meaningless, except
perhaps to show that aggregate signatures trivially exist. In practice, we are
therefore interested in aggregate signature schemes that perform better than the
naive concatenation.

As explained in Section 1.1.3, several aggregate signatures gathering such
features have been proposed in the classical setting, but it was yet open to
propose a post-quantum construction. A first attempt over lattices was pro-
posed by Döroz et al. [DHSS20], but had major drawbacks either in performance
(MMSA) or security (MMSAT/MMSATK), and was based on a non-standard as-
sumption called Vandermonde-SIS (or Partial Fourier Recovery). Boudgoust and
Roux-Langlois [BR21] then proposed another lattice-based aggregate signature
based on the FSwA paradigm, which unfortunately ended up being larger than
the trivial concatenation. We now present a lattice-based aggregate signature
scheme that supports public aggregation, whose security is proven in the ag-
gregate chosen-key model based on standard (module) lattice assumptions, and
that performs better than the naive solution. This answers positively to the
open problem left by Boudgoust et al. in [BR21], and provides, to the best of
our knowledge, the first post-quantum aggregate signature combining all such
features.
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4.2 Our Construction

Our aggregate signature scheme is based on the GPV hash-and-sign frame-
work [GPV08], with MP trapdoors [MP12] and our new preimage sampling
algorithm of Section 3. We present our scheme over module lattices.

The combination of the GPV signature and MP trapdoors produces sig-
natures sig = v on messages m by sampling the preimage v of H(m) by
[A|G−AR] mod q. The function H is modeled by a random oracle, the matrix
A is uniformly random and part of the public key, while R is a short matrix
constituting the secret key. The matrix B = AR is also part of the public key.
For different users, each user i would have a set of keys pki = (Ai,Bi = AiRi)
and ski = Ri. An intuitive way of aggregating signatures sigi is to sum them,
but this becomes tricky when the public matrices involved in verification, i.e.,
[Ai|G − Bi], are all different. We can however force all the Ai to be the same
matrix A for all i, making sure A is honestly generated, i.e., without embedding
an illicit trapdoor. This can for example be done by setting A as the hash of
some public parameters. Each user would thus share the same A and would have
their own public key Bi = ARi. Hence, by summing the verification equations,
we would obtain A ·

∑
i∈[N ] v1,i +

∑
i∈[N ](G − Bi)v2,i =

∑
i∈[N ]H(mi). The

aggregate signature could then be (
∑

i v1,i, (v2,i)i), meaning we would only be
aggregating the v1,i and providing the individual v2,i.

As in the previous attempts [DHSS20,BR21], it seems difficult to achieve full
aggregation due to the fact that v2,i faces Bi, which must differ for every user.
As a result, the bit size of the first half

∑
i v1,i would grow logarithmically with

N , while that of the second half (v2,i)i would grow linearly with N . Fortunately,
our preimage sampling algorithm of Section 3 moves the bulk of the signatures
in the v1,i while minimizing the size of v2,i which makes the concatenation of the
v2,i minimal. It therefore amortizes the linear cost of the aggregate signature.

Unfortunately, this aggregate signature is not secure as it is. Indeed, one can
note that the user j can produce a forged aggregate signature on behalf of the
set of users 1, . . . , N as follows:

1. Select a set of messages mi, for i ∈ [N ].
2. Select v2,i, for i ̸= j, distributed as in a normal signature.
3. Compute v2,j such that Gv2,j = −

∑
i ̸=j(G−Bi)v2,i +

∑
i∈[N ]H(mi).

4. Set v1 = Rjv2,j .

The resulting aggregate signature (v1, (v2,i)i) is indeed valid on (mi)i under
public keys (Bi)i since

A · v1 +
∑
i∈[N ]

(G−Bi)v2,i = A · v1 + (G−Bj)v2,j +
∑
i ̸=j

(G−Bi)v2,i

= Gv2,j +
∑
i̸=j

(G−Bi)v2,i

=
∑
i∈[N ]

H(mi)
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Intuitively, the problem stems from the fact that the rogue signer is able to
compute its own signature after seeing/selecting the other components. It can
thus use its own trapdoor to select a preimage that will cancel all these compo-
nents. To solve this problem, we rely on a countermeasure reminiscent of the one
used against rogue key attacks. We tweak the verification equation with small
random weights ei that deterministically depend on the full set {(mi,v2,i,Bi)}i.
This therefore forces the adversary to commit to each v2,i before seeing the ver-
ification equation it must satisfy, which thwarts the previous attack.

However, if we follow the standard approach where ei ← H(B1,v2,1,m1, . . . ,
BN ,v2,N ,mN , i) for some hash function H, we will end up with the same prob-
lem as in [BR21]: we could only ensure unforgeability for the last signature (the
one generated under public key BN ). This has led the authors in [BR21] to use
a specific security model, where the challenge key must necessarily be the last
one, but the real-world security assurances provided by this model are question-
able. Informally, the problem is related to the forking lemma: at some point
in the security proof we need to rewind and change the weight ej associated
with the challenge public key Bj . However, the proof works only if ej is the last
weight to be queried to the random oracle, hence the restriction in the model
of [BR21]. Otherwise, the adversary could change the other weights after the
rewinding, which would completely invalidate the proof strategy. Here, we stress
that one cannot simply run the simulation several times until this event (ej is
the last queried weight) happens because j is known to the adversary (it is the
index corresponding to the challenge public key). Therefore, an adversary could
systematically initiate its queries with ej , leading this probabilistic approach to
fail.

Fortunately, we show that we can circumvent this issue quite easily by gen-
erating the small elements ei in two steps. Concretely, we first compute f as the
output of hash function Hf taking as input {Bj ,v2,j ,mj}j . The output space is
denoted by F but there are no restrictions on it because f is then fed to another
random oracle. The only constraint is that |F | must be exponential in the secu-
rity parameter to avoid simple guessing or collision-finding attacks. Then, each
ei is generated as the output of another hash function He run on (f, i). Here, the
output of the random oracle shall be small polynomials. We typically use ternary
polynomials ei with fixed Hamming weight, i.e., in C = {e ∈ S1 : ∥e∥1 = w}.
Intuitively, this resorting to two successive random oracles Hf ,He enables the
simulation to anticipate the weight queries and, more importantly, to control
their order. This way, we can rely on the forking lemma without placing any
contrived restrictions on the model, at the cost of only one hash evaluation for
the whole aggregate signature.

The Scheme. In what follows, we work over the 2n-th cyclotomic ring denoted
by R for n a power of two, as defined in Section 2.4. The aggregate signature is
described by Algorithms 4.1 to 4.6.
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Algorithm 4.1: Setup
Input: Security parameter λ, Maximal number of signers N .
1. Choose a positive integers d, q, w, b with q prime and q = 5 mod 8.
2. C ← {e ∈ S1 : ∥e∥1 = w}. ▷ Hash space for weights, such that |C| ≥ 22λ

3. k ← ⌈logb q⌉.
4. (m1,m2)← (2d, dk).
5. G = Id ⊗ [1 · · · bk−1] ∈ Rd×dk

q . ▷ Gadget vector

6. t←
√

(3λ/2 + 4 + log2 Qs)/(π log2 e). ▷ t ≈ 7

7. Choose α > 0. ▷ Rejection Sampling Slack
8. M ← exp(π(α−2 + 2tα−1)). ▷ Repetition rate
9. σ ← α(b− 1)

√
nm2(

√
nm1 +

√
nm2 + t). ▷ Pre-image sampling width

10. A←↩ U(Rd×m1
q ).

Output: pp = (A;G;λ,N, n, q, d,m1,m2, w, k, σ,M).

Algorithm 4.2: KeyGen
Input: Public parameters pp as in Algorithm 4.1.
1. R←↩ U(Sm1×m2

1 )
2. B← AR mod qR ∈ Rd×m2

q

Output: pk = B, and sk = R. ▷ pp stored with pk for simplicity

Algorithm 4.3: Sign
Input: Secret key sk, Message m ∈ {0, 1}∗, Public key pk.
1. if (m,v) is stored then look-up v
2. else v← SamplePre(R;A, Id,H(m), σ). ▷ Algorithm 3.1

Output: sig = v.

Algorithm 4.4: Verify
Input: Public key pk, Message m ∈ {0, 1}∗, Signature sig.
1. Parse sig = v = [vT

1 |vT
2 ]

T with v1 ∈ Rm1 and v2 ∈ Rm2 .
2. b← (Av1 + (G−B)v2 = H(m) mod qR) ∧ (∥v1∥2 ≤ σ

√
nm1) ∧ (v2 ∈ Tm2

b )
Output: b. ▷ b = 1 if valid, 0 otherwise

Algorithm 4.5: AggSign
Input: Public keys (Bi)i∈[N ], Signatures (v1,i,v2,i)i∈[N ], Messages (mi)i∈[N ]

1. f ← Hf (B1,v2,1,m1, . . . ,BN ,v2,N ,mN ) ∈ F ▷ |F | ≥ |C| ≥ 22λ

2. ∀i ∈ [N ], ei ← He(f, i) ∈ C.
3. v1 ←

∑
i∈[N ] eiv1,i.

Output: sigagg = (v1, (v2,i)i∈[N ]).

Algorithm 4.6: AggVerify
Input: Public keys (Bi)i∈[N ], Aggregate Signature (v1, (v2,i)i∈[N ]), Mes-
sages (mi)i∈[N ]

1. f ← Hf (B1,v2,1,m1, . . . ,BN ,v2,N ,mN ) ∈ F
2. ∀i ∈ [N ], ei ← He(f, i) ∈ C.
3. b1 ← (∥v1∥2 ≤ Nw · σ√nm1).
4. b2 ← (∀i ∈ [N ],v2,i ∈ Tm2

b )
5. b3 ← (Av1 +

∑
i∈[N ] ei(G−Bi)v2,i =

∑
i∈[N ] eiH(mi) mod qR)

Output: b1 ∧ b2 ∧ b3. ▷ 1 if valid, 0 otherwise

We give prove the correctness of our scheme in the following theorem.
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Theorem 4.1 (Correctness). The aggregate signature scheme (Setup, Key-
Gen, Sign, Verify, AggSign, AggVerify) described in Section 4.2 is correct. For-
mally, for all security parameters λ and number of signers N , the following hold.

Single signature correctness. For all pp ← Setup(1λ, N), for all (pk, sk) ←
KeyGen(pp), for all m ∈ {0, 1}∗,

P[Verify(pk,m,Sign(sk,m; pk)) = 1] ≥ 1− negl(λ).

Aggregate signature correctness. For all pp← Setup(1λ, N), for all i ∈ [N ]
and for all (pki, ski)← KeyGen(pp), mi ∈ {0, 1}∗, sigi ← Sign(ski,mi; pki),

P[AggVerify(PK,AggSign(PK,SIG,M),M) = 1] ≥ 1− negl(λ),

where PK = (pki)i∈[N ], SIG = (sigi)i∈[N ] and M = (mi)i∈[N ].

Proof. We first look at the single signature correctness. Let pp← Setup(1λ, N),
(B,R) ← KeyGen(pp), m ∈ {0, 1}∗, and v ← Sign(R,m;B). By Lemma 3.2,
it holds that v ∈ LH(m)

q ([A|G − B] mod qR). Additionally, similarly as in the
proof Theorem 3.1, Lemma 2.5 gives that v1 is within statistical distance at
most 1 · (ε′/M + ε′′(M + 1)/(2M)) ≤ 2−3λ/2−2/Qs of DRm1 ,σ, where ε′, ε′′ are
as in Corollary 3.1 satisfying ε′, ε′′ ≤ 2−3λ/2−3/Qs, and v2 ∈ Tm2

b . Notice that
in the correctness we look at one signature which explains the factor 1 and not
Qs in front of ε′/M + ε′′(M + 1)/(2M). Lemma 2.3 then yields

P[Verify(B,m,v) = 1] ≥ 1− 2−3λ/2−2/Qs − 2−2nm1 = 1− negl(λ).

Let us now investigate the correctness of our aggregate signature. Let pp←
Setup(1λ, N), and for all i ∈ [N ] let (pki, ski) ← KeyGen(pp), mi ∈ {0, 1}∗,
sigi ← Sign(ski,mi; pki). Let sigagg ← AggSign(PK,SIG,M) and parse it as
(v1, (v2,i)i∈[N ]). From the single signature correctness above, we directly have
that b2 = 1, namely that v2,i ∈ Tm2

b for all i ∈ [N ]. Then, since v1 =
∑

i∈[N ] eiv1,i

and that ∥eiv1,i∥2 ≤ ∥ei∥1∥v1,i∥2, the single signature correctness reasoning
gives that b1 = 1 except with probability at most N(2−3λ/2−2/Qs + 2−2nm1) =
negl(λ). The latter equality is due to the fact that N ≪ Qs and N = poly(λ).
Finally, the linear relation is verified for every individual signatures and therefore

Av1 +
∑
i∈[N ]

ei(G−Bi)v2,i =
∑
i∈[N ]

ei(Av1,i + (G−Bi)v2,i)

=
∑
i∈[N ]

eiH(mi) mod qR

as desired. It then yields

P[AggVerify(PK,M, sigagg) = 1] ≥ 1−N(2−3λ/2−2/Qs +2−2nm1) = 1− negl(λ),

concluding the proof.
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4.3 Security

The aggregate chosen-key security model introduced by Boneh et al. [BGLS03]
captures the idea that an adversary cannot produce an aggregate signature on
behalf of N users, even if it colludes with (at most) N−1 of them. The adversary
is given a challenge public key pk and the ability to query signatures on this key,
and is asked to produce N − 1 keys pki as well as an aggregate signature sigagg
that verifies with these N public keys. We formally define this model by a game
between an adversary A and a challenger B in three stages.

Setup Stage. B runs Setup and KeyGen to obtain pp, pk, and sk. It then gives
pp and pk to A.

Query Stage. A queries signatures on at most Qs messages m(1), . . . ,m(Qs),
which are answered by B returning sig(i) ← Sign(sk,m(i); pk).

Forgery Stage. A eventually provides a forgery ((pki)i∈[N ], (mi)i∈[N ], sigagg).

The adversary wins the game if (1) there exists an i∗ ∈ [N ] such that pki∗ = pk,
(2) for all i ∈ [Qs], mi∗ ̸= m(i), and (3) AggVerify((pki)i∈[N ], sigagg, (mi)i∈[N ]) =
1. The adversary’s advantage is defined as Adv[A] = P[A wins], where the prob-
ability is over all the random coins. We say that the aggregate signature scheme
is secure in the aggregate chosen-key model if for all probabilistic polynomial
time (PPT) adversary A, Adv[A] is negligible in the security parameter λ.

We note that in [BGLS03], the challenge key is set to be pk1. In the context
of there construction in bilinear groups, this can be assumed without loss of gen-
erality because the order of the signatures that are aggregated does not matter.
In our case, each (half) signature v1,i is multiplied by a weight ei = He(f, i)
which depends on the position i and also the order of the signatures because
of f = Hf (B1,v2,1,m1, . . . ,BN ,v2,N ,mN ). These weights are necessary in the
lattice setting to avoid the attack we described in Section 4.2. As a result, in the
security proof, the challenger has to guess the position i∗ of the challenge key in
order to exploit the forgery to break the underlying computational assumption.

Theorem 4.2 (Security). The aggregate signature scheme (Setup, KeyGen,
Sign, Verify, AggSign, AggVerify) described in Section 4.2 is secure in the ag-
gregate chosen-key model under the M-SIS and M-LWE assumptions. More for-
mally, for any PPT adversary A against the aggregate chosen-key security, it
holds that

Adv[A] ≤ N ·
(
2εM-LWE +

Qe

|C|
+

√
QeεM-SIS

)
+ negl(λ) = negl(λ),

where εM-LWE is the hardness bounds of M-LWEm2

n,d,m1,q,U(S1)
, and εM-SIS is that

of M-SISn,d,m1+m2,q,β with β =
√

(2w(N + 1)σ
√
nm1)2 + (4w(b− 1)

√
nm2)2.

Proof. We proceed by a sequence of games that we prove indistinguishable from
the aggregate chosen-key game. In the final game, we use the general forking
lemma in order to deduce a solution of M-SIS. We first denote by Qs the maximal
number of signature queries, and by Qe the maximal number of queries to He.
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Game G0. We change the original aggregate chosen-key game by programming
the random oracles in a certain way. The challenger B starts by sampling i+ ←↩
U([N ]), which later acts as a guess on the position of the challenge key in the
forgery. B is also provided with some random inputs hj ←↩ U(C) for all j ∈ [Qe].
Additionally, B keeps four tables Ts, Tf , Te, Tm that will be used to store the
corresponding queries, and which are all empty at the outset of the game. Finally,
it further stores an index je, initially set to 0.

Setup. B computes pp← Setup(1λ) and (B,R) = (pk, sk)← KeyGen(pp). It then
sends pp, pk to A.

Queries to H. On input m ∈ {0, 1}∗ given by A, B first checks whether m is
already stored in Tm. If so, it directly outputs the u from Tm corresponding to
m. If not, it samples u←↩ U(Rd

q), stores (m,u) in Tm and sends u to A.

Queries to Hf . On input (Bi,v2,i,mi)i∈[N ] given by A, B first checks whether
it already appears in Tf . If so, it directly outputs the f in Tf corresponding to
the input. If not, it samples f ←↩ U(F ), stores ((Bi,v2,i,mi)i∈[N ], f) in Tf and
sends f to A. Additionally, for all i ∈ [N ] \ {i+}, B samples ei ←↩ U(C) and
stores (f, i, ei) in Te.
Queries to He. On input (f, i) given by A, B first checks whether it already
appears in Te. If so, it outputs the ei from Te corresponding to (f, i). If (f, i)
does not appear in Te, then either f does not appear in Tf or i = i+. Without
loss of generality, we can assume that f has previously been obtained by a query
to Hf , and therefore we necessarily have i = i+. Then, B increments je to je+1
and sends hje to A. It also stores (f, i+, hje) in Te. Notice that He(f, i

+) is
therefore set after all the other He(f, i) for i ̸= i+.

Signature queries. On input m, B first checks if m appears in Ts. If so, it out-
puts the v from Ts corresponding to m. If not, it proceeds as follows. B checks
if m is in Tm. If not, it samples u ←↩ U(Rd

q) and stores (m,u) in Tm. Other-
wise, it gets the corresponding syndrome u. Then, it runs the legitimate signing
algorithm Sign with sk, pk, pp by just replacing H(m) by u, namely sampling
v← SamplePre(R;A, Id,u, σ). It then stores (m,v) in Ts and sends v to A.

Forgery. Eventually, A outputs ((pki)i∈[N ], (mi)i∈[N ], sigagg) to B such that there
exists i∗ ∈ [N ] satisfying pki∗ = pk, that mi∗ was not part of the signing
queries, and such that AggVerify((pki)i∈[N ], sigagg, (mi)i∈[N ]) = 1. If these con-
ditions are not met, then B outputs (0,⊥). From now on, we assume that these
conditions are met, which happens with probability Adv[A] as everything is
correctly distributed. Then, if i∗ ̸= i+, then B also outputs (0,⊥). Since i+

is completely independent of the view of A as all the random oracle queries
are identical as in the standard game, this happens with probability 1/N . If
f = Hf ((pki,v2,i,mi)i∈[N ]) was not queried, then A would have had to guess
the correct value of f to obtain the weights ei, and thus the signature would
verify with probability at most 1/|F |. Noting that 1/|F | = negl(λ), it would
entail a negligible advantage for A. So we assume that f has been queried.
Similarly, if He(f, i

+) was not queried, then the probability that b3 = 1 in
AggVerify is at most 1/|C| as A would have had to guess the value of ei+ . Since
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1/|C| = negl(λ), then such an adversary A would have a negligible advantage.
So we further assume, without loss of generality that He(f, i

+) was queried and
is equal to some hj for some counter index j. Then, B outputs (j, out) with
out = ((pki)i∈[N ], (mi)i∈[N ], sigagg, (He(f, i))i∈[N ])). Further, we let pk denote
the probability that B does not output (0,⊥) in game Gk. Here, we have

p0 =
1

N
Adv[A]. (3)

Game G1. This game is identical to game G0 except in the way signatures are
generated. Instead, B simulates signatures without resorting to sk by using the
simulator from Corollary 3.1. We thus change the way queries to H and signing
queries are handled.
Queries to H. On input m ∈ {0, 1}∗ given by A, B first checks whether m is
already stored in Tm. If so, it directly outputs the u from Tm corresponding to
m. If not, it samples v1 ←↩ DRm1 ,σ, v2 ←↩ G−1(U(Rd

q)), sets v = [vT
1 |vT

2 ]
T ∈

Rm1+m2 and computes u = [A|G − B]v mod qR. It rejects such a v,u with
probability 1−1/M and repeats the procedure until v,u is kept. Then, B stores
(m,u) in Tm and (m,v) in Ts. It then sends u to A.
Signature queries. On input m ∈ {0, 1}∗ given by A, B first checks whether m
is already stored in Ts. If so, it directly outputs the v from Ts corresponding to
m. If not, it means that H was never queried on m. In this case, B performs the
query to H(m) on its own as above and fills Tm with (m,u) and Ts with (m,v).
It then sends v to A.

The simulation result of Corollary 3.1, extended to the module setting as
explained in Section 3.2, yields that

|p0 − p1| ≤ εM-LWE +Qs · 2−3λ/2−1−log2 Qs = εM-LWE + negl(λ). (4)

Game G2. Since sk is no longer used in game G1, we define G2 to be identical
to G1 except in the setup stage.
Setup. B computes pp ← Setup(1λ) and samples B′ ←↩ U(Rd×m2

q ). It then
computes B← G−B′ and sets pk← B. It then sends pp, pk to A.

Since B′ is uniform, then so is B. By the M-LWEm2

n,d,m1,q,U(S1)
assumption,

AR mod qR in game G1 is εM-LWE-indistinguishable from B in game G2. As a
result, it holds that

|p1 − p2| ≤ εM-LWE. (5)

Forking. We now aim at bounding p2, using the general forking lemma recalled
in Lemma 2.6. We use the forking algorithm FB of Algorithm 2.1 around B
and we will invoke Lemma 2.6. The input generator IG is defined by outputting
A = [A|B′]←↩ U(R

d×(m1+m2)
q ) and pp honestly generated (where A is the same

matrix as the one in pp). We call acc the accepting probability of B, i.e., acc = p2,
and frk the forking probability from Lemma 2.6. Hence, with probability frk, the
two calls to B, and in turn A (which are both oblivious to the fact they are being
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rewound), return (j, out) and (j′, out′) with j = j′ ̸= 0 and hj ̸= h′j . The output
of FB is in this case (1, out, out′). We now use out, out′ to construct a solution
to M-SIS on the matrix A.

By definition of the forking, we have that the random coins are the same up
to the forking index j. As a result, (f, i+) = (f ′, i+) and ei+ = hj ̸= h′j = e′i+ .
Because f = f ′, this implies that pki = pk′i, v2,i = v′2,i and mi = m′i for all
i ∈ [N ]. Additionally, due to the fact that ei+ is set before all the ei in the
queries to He, we have that ei = e′i for all i ̸= i+. Then, since sigagg and sig′agg
both verify, we have

Av1 +
∑
i∈[N ]

ei(G−Bi)v2,i =
∑
i∈[N ]

eiH(mi) mod qR

Av′1 +
∑
i∈[N ]

e′i(G−B′i)v
′
2,i =

∑
i∈[N ]

e′iH(m′i) mod qR

We call ∆e = ei+ − e′i+ . With the prior observations, combining the above
equations gives

A(v1 − v′1) +∆e · (G−B)v2,i+ = ∆e · H(mi+) mod qR

We note that mi+ was not queried for a signature, but it must have been queried
to H (otherwise A would have had a negligible advantage to begin with). Hence,
Ts contains an entry (mi+ ,v

′′) where v′′ was generated as in game G2. Then,
v′′ verifies Av′′1 + (G−B)v′′2 = H(mi+) mod qR. We then obtain

A(v1 − v′1 −∆e · v′′1 ) +∆e · (G−B)(v2,i+ − v′′2 ) = 0 mod qR,

which can be written Ax = 0 mod qR for

x =

[
v1 − v′1
∆e · v2,i+

]
−∆e · v′′ ∈ Rm1+m2 .

The adversary A does not know v′′ but only Av′′ mod qR which takes 2nd log2 q

possible values. By [DORS08, Lem. 2.2], the entropy of v′′ given Av′′ mod qR is
at least H∞(v′′)− nd log2 q. Since v′′ is sampled by the simulator, it holds that
v′′1 ∼ DRm1 ,σ and v′′2 ∼ G−1(U(Rd

q)). As a result, H∞(v′′) = H∞(DRm1 ,σ) +
nd log2 q. Then, by Lemma 2.2, we have that H∞(DRm1 ,σ) ≥ nm1 log2 σ − 1 as
σ ≥ ηδ(R

m1) for some negligible δ > 0. We thus obtain that the entropy of v′′
given Av′′ mod qR is at least nm1 log2 σ − 1 ≫ 4λ, and then that x = 0 only
with negligible probability. Finally, we have

∥x∥2 ≤
√
(∥v1∥2 + ∥v′1∥2 + ∥∆e∥1∥v′′1∥2)2 + (∥∆e∥1 · (

∥∥v2,i+
∥∥
2
+ ∥v′′2∥2))2

≤
√
(2w · (N + 1) · σ

√
nm1)2 + (2w · 2(b− 1)

√
nm2)2

= β,
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except with probability 2−2nm1 ≪ 2−4λ that is due to Lemma 2.3. Therefore, x
is a solution to M-SISn,d,m1+m2,q,β except with negligible probability. Since we
assumed that the hardness bound of the latter was εM-SIS, it thus hold that

frk ≤ εM-SIS + negl(4λ) (6)

Combining Equation (6) with the result from the general forking lemma, we get

p2 = acc ≤ Qe

|C|
+

√
Qe(εM-SIS + negl(4λ)).

We can assume without loss of generality that Qe ≤ 2λ, and recalling that C
is chosen so that |C| ≥ 22λ, it holds Qe/|C| = negl(λ). Combined with Equa-
tions (3), (4), and (5), we get

Adv[A] ≤ N ·
(
2εM-LWE +

Qe

|C|
+
√

QeεM-SIS

)
+ negl(λ),

as claimed.

4.4 Performance Evaluation

We now evaluate the performance of our aggregate signature compared to the
naive concatenation. For that we define the compression rate as

compression rate = 100 ·
(
1− |sigagg|
|concatenation|

)
%.

However, to obtain a fair comparison, we cannot simply compare the con-
catenation of signatures produced by Algorithm 4.3 with the aggregate signature
output by Algorithm 4.5. Indeed, in the case of a mere concatenation, the param-
eters used in Algorithm 4.3 would not be optimal, one would instead use those
for single GPV signatures, as described in Section 3.3. We thus compare below
the size of an aggregate signature with the concatenation of signatures generated
with better parameters, tailored to the single signature use-case. Concretely, al-
though we use the same ring R = Z[x]/⟨xn + 1⟩, where n = 256, we select
q ≈ 223.5, d = 6, b = 2, σ ≈ 388335 for single signatures, leading to slightly
over λ = 128 bits of quantum security and signature size of |v| = 12.75 kb.
Hence, the concatenation of N signatures results in a naive aggregate signature
of |concatenation| = N · 12.75 · 213 bits.

We estimate the aggregate signature size for different values of N ranging
from N = 5 to N = 1000. The bit-size of the aggregate signature is given by

|sigagg| = nm1⌈log2(Nwσ log2 λ)⌉+N · nm2⌈log2 b⌉

The parameters of our scheme are set according to Setup (Algorithm 4.1) with
Qs = 240, where q and d are selected to guarantee sufficient security for the un-
derlying M-SISn,d,m1+m2,q,β and M-LWEm2

n,d,m1,q,U(S1)
problems. Since the pa-

rameters increase with N (typically the bound β), the values of q and d will
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naturally depend on N accordingly. We observe that passed a certain threshold
for N , the modulus q and rank d need to be increased to preserve the security
of the scheme, which results in lower compression rates. The higher N gets, the
more we would have to increase q and d, and we thus expect that for large N the
concatenation would become better than our aggregate signature. Nevertheless,
in practical use cases of aggregate signatures the number of signers stays in the
low hundreds which in our case offer a 20− 30% compression rate compared to
the naive concatenation, as shown in Table 4.1.

Number of signers N 5 10 50 100 500 1000

Concatenation (kb) 63.75 127.5 637.0 1275.0 6375 12750.0

Rank-Modulus (d, q) (6, 223.5) (6, 223.5) (6, 223.5) (6, 223.5) (6, 223.5) (6, 223.5)

Aggregate Signature (kb) 49.2 95.5 454.5 942.5 5223.9 10990.1

Rank-Modulus (d, q) (7, 232.3) (8, 231.9) (8, 234.3) (8, 236.3) (9, 236.7) (9, 238.6)

Compression Rate 22.79% 25.10% 28.70% 26.08% 18.06% 13.80%

Table 4.1. Comparison estimates of our aggregate signature and the concatenation of
GPV signatures over module lattices with our result of Sec. 3.2 as described above.
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