
A Greedy Global Framework for LLL

Sanjay Bhattacherjee, Julio Hernandez-Castro, and Jack Moyler⋆

Institute of Cyber Security for Society and School of Computing,
Keynes College, University of Kent, CT2 7NP, UK

{s.bhattacherjee,j.c.hernandez-castro,j.moyler}@kent.ac.uk

Abstract. LLL-style lattice reduction algorithms employ two opera-
tions on ordered basis vectors - size reduction and reordering - to improve
the basis quality by iteratively finding shorter and more orthogonal vec-
tors. These algorithms typically have two design features. First, they
work with a local or global measure of basis quality. Second, they re-
order a subset of the basis vectors based on the basis quality before and
after reordering. In this work, we introduce a new generic framework for
designing lattice reduction algorithms. An algorithm in the framework
makes greedy basis reordering choices globally on the whole basis in ev-
ery iteration, based on a measure of basis quality. The greedy choice
allows to attain the desired quality very quickly making the algorithms
extremely efficient in practice. The framework is instantiated using two
quality measures (1) the potential of the basis, and (2) the squared sum
of its Gram-Schmidt orthogonalised vectors, to get two new basis reduc-
tion algorithms. We prove that both algorithms run in polynomial time
and provide quality guarantees on their outputs. Our squared sum based
algorithm has runtime close to LLL while outperforming BKZ-12 in out-
put quality at higher dimensions. We have made our implementations
and the experimental results public.

Keywords: Lattice reduction · LLL · DeepLLL · BKZ · greedy global
framework · potential · squared sum.

1 Introduction

A Euclidean lattice L is a discrete additive subgroup of Rm. It can always be
represented by a basis matrix B = (b1, . . . ,bn) ∈ Rm×n made of linearly in-
dependent column vectors bi ∈ Rm such that L = {Bx : x ∈ Zn}. There are
infinitely many bases for any lattice with n ≥ 2 and there are ways to transform
a basis into another for the same lattice. The quality of a given lattice basis is
determined by the length of the vectors and how close to orthogonal they are
from each other. Bases with shorter and more orthogonal vectors are considered
to be of better quality. Given a lattice specified by a basis, finding a good quality
basis and short vectors therein is of importance. The process of transforming a
given basis into one of better quality is generally called lattice reduction. It has

⋆ Corresponding author

many applications including in cryptology [24], algorithmic number theory [5],
etc. In particular, it is used as a subroutine in the Block Korkine-Zolotarev
(BKZ) [28] algorithm for efficient lattice reduction and establishing records of
shortest vectors [6] in lattices.

In 1982, Lenstra, Lenstra and Lovász [18] presented the first lattice reduction
algorithm that came to be called LLL after its inventors. LLL uses the Gram-
Schmidt orthogonalisation (GSO) B∗ = (b∗

1, . . . ,b
∗
n) of the basis B. The GSO

process assumes an inherent ordering of the vectors and LLL works with the
same order. Starting from index k = 2 of the ordered basis, LLL traverses up
and down the order in a loop by incrementing or decrementing the index k by 1
in each iteration. There are two kinds of operations – size reductions and swaps
– that are executed within the loop, until the entire basis is of sufficiently good
quality. The quality of the basis is determined by the optimisation criterion called
the Lovász condition (LC) on all pairs of consecutive vectors bk−1,bk ∈ B. This

condition is given by
∥∥b∗

k + µk,k−1b
∗
k−1

∥∥2 ≥ δ
∥∥b∗

k−1

∥∥2, where the µi,j ’s are
the GSO coefficients. After LLL terminates, vector bi in the output basis is
an exponential approximation of the ith shortest linearly independent vector in
the lattice. In [18], LLL was shown to run in polynomial time. They used an
argument surrounding a quantity known as the potential of the basis which is
essentially a measure of basis quality. The potential was further analysed in [14],
where the author discussed a notion of lattice reduction based on maximally
reducing the basis potential for a given lattice.

Schnorr and Euchner introduced a variant of the LLL algorithm called LLL
with deep insertions, or DeepLLL [27]. The key algorithmic novelty was in the
reordering of the vectors. They introduced the notion of deep insertions whereby
instead of just swapping vector bk with the immediate previous vector bk−1, it
could be inserted before any one of the previous vectors b1, . . . ,bk−1. This es-
sentially meant that the index k could be decremented to any value between
{2, . . . , k − 1}. They also extended the LC-constraint from consecutive pairs
(bk−1,bk) to all pairs (bi,bk) for i < k in the ordering1. This introduced more
constraints on the output basis and as a result, the quality of the output ba-
sis is provably better [31] than in LLL. In other words, the ith vector of the
output basis is a better approximation of the ith shortest linearly independent
vector of the lattice, as compared to the LLL output [31, Theorem 1]. However,
DeepLLL requires additional size reduction steps and bookkeeping that make it
significantly more time-consuming than LLL.

Since Schnorr and Euchner introduced DeepLLL, there have been two new
deep-insertion based algorithms - Pot-LLL [8] and SS-LLL [31]. These algo-
rithms replace the extended Lovász condition of DeepLLL with a check on
the improvement of a basis quality. They use the quality measures potential

Pot(B) =
∏n

i=1 ∥b∗
i ∥

2(n−i+1)
and squared sum SS(B) =

∑n
i=1 ∥b∗

i ∥
2
respec-

tively, computed directly from the Gram-Schmidt orthogonalised basis. To stress
that they are essentially variants of DeepLLL, we call them Pot-DeepLLL and
SS-DeepLLL respectively. They are both polynomial-time algorithms that pro-

1 A pair (bi,bk) in a basis can simply be identified by the pair of indices (i, k).

2

vide efficiency versus basis quality trade-offs in between LLL and DeepLLL. They
typically find shorter vectors than LLL but not as short as DeepLLL. They are
slower than LLL, but faster than DeepLLL.

In every iteration of DeepLLL and its variants Pot-DeepLLL and SS-DeepLLL,
the algorithms only work with the sublattice Lk generated by a subset (b1, . . . ,bk)
ofB. Each of these algorithms attempt to iteratively improve the respective mea-
sure. The use of Pot(·) and SS(·) as measures of quality has been quite clear in
the proofs of basis quality and runtime complexity of these algorithms. How-
ever, DeepLLL has not been interpreted as or represented in a form where it
is improving an explicit quality measure in every iteration, to the best of our
knowledge. We do this exercise of interpreting the (generalised) Lovász condition
as a reordering constraint used to improve the length ∥b∗

i ∥ of the ith GSO vec-
tor of the basis, which is a localised measure of quality of the basis. In contrast,
Pot(·) and SS(·) are global measures on the entire basis. We thus have a gener-
alised understanding of all three algorithms based on deep insertions looking to
improve quality measures of a basis.

We propose a new framework for LLL-style algorithms whose novelty lies
in the reordering of the basis at a deep insertion step. All previous LLL-style
algorithms [18,27,8,31] maintain an index k of the vector to be inserted at a
previous position i ∈ {1, . . . , k − 1} in the basis ordering. In the algorithms
using deep insertions [27,8,31], this restricts the deep insertion choices within the
sublattice Lk in an iteration. Our framework defines a generalised algorithm X-
GGLLL for lattice reduction that works with a general quality measure X(B) of
the basis. We move away from the technique of maintaining an index k. Instead,
we make a dynamic greedy choice of a pair of indices (i, k), 1 ≤ i < k ≤ n
globally over the entire basis such that the deep insertion of bk at position i
minimises the basis quality measure X(·). Such deep insertions are carried out
as long as the measure of the reordered basis decreases by at least a fraction
(1 − δ) of its previous value. When the algorithm terminates, the output basis
is guaranteed to have a measure that can not be reduced appreciably (by a
fraction (1− δ)) any further through deep insertions. For a measure X, we call
such a basis δ-X-DeepLLL reduced. By choosing the maximum change possible
at each iteration, our greedy algorithm reaches such a state in a small (if not the
smallest) number of iterations. When the measure has a positive lower bound,
the algorithm is guaranteed to terminate.

The choice of the measure X(·) is a key determining factor in the framework
of algorithms we propose. We instantiate our generalised algorithm X-GGLLL
with the measures Pot(·) and SS(·) in place of X(·) to get the Pot-GGLLL
and SS-GGLLL algorithms respectively. We prove that X-GGLLL outputs a
δ-X-DeepLLL reduced basis and provide theoretical bounds on the runtime of
X-GGLLL. We prove the concrete polynomial runtime complexities for both Pot-
GGLLL and SS-GGLLL and show that they are the same as their X-DeepLLL
counterparts.

We conduct extensive experiments to assess the performance of our algo-
rithms in comparison with LLL [18], Pot-DeepLLL [8], SS-DeepLLL [31], and

3

BKZ (including preprocessing with LLL) [27] with blocksizes 8, 10, 12 and 20.
Our greedy global algorithms simultaneously provide excellent runtime as well
as output quality on the average. They significantly outperform their respective
DeepLLL counterparts on both these counts. The average runtime of SS-GGLLL
is only second to LLL among all algorithms under consideration, a result that
is observed consistently in all dimensions. It is the only LLL-style algorithm to
outperform BKZ-12 in terms of output quality as well in our experiments. Even
though it does not match the quality of BKZ-20, at dimension 150, it is almost
15 times faster than BKZ-20 while providing output quality better than BKZ-
12. The excellent experimental runtimes of our algorithms are in contrast with
their asymptotic runtimes. We conduct further granular analysis of the runtime
performance of all LLL-style algorithms using the number of reorderings and the
number of size reductions of basis vectors to provide justifications therein. Our
implementations, the input bases and the output values we report are available
at [12].

The outline of the paper is as follows. Section 2 details the relevant nota-
tion and gives an overview of lattices. Section 3 provides a description of LLL
and generalises DeepLLL for any measure. Section 4 proposes the greedy global
framework as a novel way of reducing lattice bases. Sections 5 and 6 provide
theoretical analysis and experimental results respectively.

Related Works. Yamaguchi and Yasuda in [30] described an efficient algorithm
for updating the GSO information in DeepLLL. Since the update of the GSO
information is dominant in such an algorithm, this work is of great importance
to our framework. In [32], it was proved that in LLL, the value of the squared
sum SS(B) decreases with every swap. The complexity of LLL [18] and Pot-
DeepLLL [8, Proposition 1] for an input basis B is bounded by the size of
Pot(B). The complexity of SS-DeepLLL is bounded by the size of SS(B) [31].
Fukase and Kashiwabara [9] showed that a basis with a smaller squared-sum
allows more short lattice vectors to be sampled using Schnorr’s random sampling.
This method was used in [32] to sample short vectors.

The original LLL algorithm [18] was known to run in polynomial time for
the reduction parameter δ < 1. For δ = 1, it is known to be polynomial time,
but only for fixed dimensions [1]. Although DeepLLL [27] is not known to run
in polynomial time, its variants Pot-DeepLLL [8] and SS-DeepLLL [31] are both
polynomial time algorithms.

In [4], the authors pointed out that Pot(·) does not capture the typical unbal-
ancedness demonstrated by the GSO norms. They introduced a new potential
function based on the sublattice Lk generalising the one depending on the entire
basis and demonstrated their usefulness.

An important direction in improving the efficiency of LLL has been con-
sidering the implementation details of the algorithms and the consequent op-
timisations. In [27], a practical LLL algorithm using floating-point arithmetic
was described, which has been extended by Nguyen and Stehlé [22] in their
very efficient L2 algorithm. This is an important direction in lattice basis reduc-
tion. In [21], an asymptotically fast variant of LLL was proposed that relies on

4

fast integer arithmetic. Another variant of LLL was introduced in [20], where
the costly GSO computations are approximated by Householder transforma-
tions which are performed using floating-point arithmetic. In [3], a perturbation
analysis has been performed on the QR factor R of LLL-reduced bases under
columnwise perturbation. The results obtained may be applied to the floating-
point implementations of LLL-type algorithms. LLL has also been adapted for
use in the Information-Set Decoding algorithm for binary codes in [7] to obtain a
small speed-up. Lenstra introduced the idea of a flag in lattice reduction in [19],
where a flag is defined to carry a little less information than is provided by a
lattice basis. The flag is then reduced within the LLL algorithm by performing
successive steps which replace flags by neighbouring ones for reduction. In [15],
the authors used parallelisation and recursion to improve the efficiency of LLL.
Koy and Schnorr [16] introduced the Segment LLL algorithm - a variant of LLL
which yields a slightly weaker reduced basis but is more efficient by a factor n.
Another important direction is the application of LLL to lattices with an under-
lying structure or form, for example ideal lattices [25], module lattices [17] and
parametric lattices [2]. It is well-understood that LLL generally provides much
better output quality than the analysis of the LLL-reduced bases suggests. To
this end, in [23] and [26], experimental analyses have been performed on the
average-case behaviour of LLL and comparisons are drawn with the worst-case
theoretical results. We note that the key ideas associated with the directions in
this paragraph are more or less orthogonal to the techniques we introduce in this
paper.

2 Preliminaries

Notation. The sets of integers, rational and real numbers are denoted by Z, Q
and R respectively. Let [n] = {1, . . . , n}. For x ∈ R, |x| denotes its absolute
value. The integer closest to x ∈ R is denoted by ⌊x⌉. All vectors are column
vectors. The Euclidean norm of a vector x ∈ Rm is denoted by ∥x∥. The inner
product of vectors x,y ∈ Rm is denoted by ⟨x,y⟩. All logarithms are base 2
unless denoted otherwise.

Lattice, Bases, Sublattice and Linear Span. A lattice L = {Bx : x ∈ Zn}
specified by an ordered set of linearly independent vectors called a basis B =
(b1, . . . ,bn) ∈ Rm×n, is denoted as L(B). We call m the dimension and n
the rank of the lattice L, where m ≥ n. The linear span of B is given by
span(B) = {Bx : x ∈ Rn}. A subset of vectors in B give rise to a sublattice of
L(B). For example, given a basis B = (b1, . . . ,bn) for a lattice L, the vectors
(b1, . . . ,bi) , 1 ≤ i ≤ n form a basis of a sublattice of L that we denote as Li.

For a lattice of dimension n ≥ 2, there are infinitely many bases. If B1 is
a basis for a lattice L, we may transform this into another basis B2 for the
same lattice by B2 = B1U, where U ∈ GLn(Z) is a unimodular matrix. An
invariant across the infinitely many bases of a lattice is its volume. For a basis
B of the lattice, its volume is given by Vol(L) =

√
det(BTB) and geometrically

5

it represents the volume of the fundamental parallelepiped of the lattice. We
generally only consider lattices with vectors in Qm and by scaling we need only
consider lattices in Zm.

Gram-Schmidt Orthogonalisation. For an ordered set of linearly independent
vectors B = (b1, . . . ,bn) ,bi ∈ Rm, its Gram-Schmidt orthogonalisation gives
the corresponding setB∗ = (b∗

1, . . . ,b
∗
n) of orthogonal vectors defined recursively

as follows.

– b∗
1 = b1, and

– for i > 1, b∗
i = bi −

∑i−1
j=1 µi,jb

∗
j ,

where a GSO coefficient µi,j is defined for 1 ≤ j ≤ i ≤ n as

µi,j =

〈
bi,b

∗
j

〉∥∥b∗
j

∥∥2 .

It is easy to see that µi,i = 1 for all 1 ≤ i ≤ n.

Orthogonal Projections. Given a vector v ∈ L(B), its projections πi(v) are
defined for 1 ≤ i ≤ n as

– π1(v) = v, and
– for 2 ≤ i ≤ n, πi(v) is the projection of v orthogonal to span((b1, . . . ,bi−1))

of the sublattice Li−1.

The projection πi(bk) is written in terms of the GSO vectors (b∗
i , . . . ,b

∗
k) and

the GSO coefficients µk,i, . . . , µk,k−1 as follows

πi(bk) = b∗
k +

k−1∑
l=i

µk,lb
∗
l .

In the simplest case, πi(bi) = b∗
i .

Lovász condition. For the parameter 1/4 < δ ≤ 1, the Lovász condition between
consecutive vectors bk−1,bk ∈ B is defined as

δ · ∥πk−1(bk−1)∥2 ≤ ∥πk−1(bk)∥2 .

This can be written as
(
δ − µ2

k,k−1

)
·
∥∥b∗

k−1

∥∥2 ≤ ∥b∗
k∥

2
in terms of the GSO

vectors and coefficients. For all 1 ≤ i < k ≤ n, the Lovász condition can be
generalised (for deep insertions) as

δ · ∥πi(bi)∥2 ≤ ∥πi(bk)∥2 .

6

Algorithm 1: The size reduction algorithm for a vector bk

Input: A basis B = (b1, . . . ,bn), its GSO coefficients µi,j , and an index k.
Output: A basis B′ = (b1

′, . . . ,b′
n) where b′

k is size reduced, and the
updated coefficients µ′

i,j .
1 for j = k − 1, . . . , 1 /* The ‘reverse order’ as in Remark 2 */ do
2 if |µk,j | > 1

2
then

3 bk ← bk − ⌊µk,j⌉bj

4 µk,j ← µk,j − ⌊µk,j⌉
5 for i = 1, . . . , j − 1 do
6 µk,i ← µk,i − ⌊µk,j⌉µj,i /* As in Remark 1 part (3) */

7 return B′ with size reduced b′
k and updated coefficients µ′

i,j .

Size reduction. Given a basis B for a lattice L, size reduction of bi with bj

replaces bi with the vector bi−⌊µi,j⌉bj while bj remains unchanged. If |µi,j | <
1/2, the vector bi remains unchanged. Algorithm 1 describes the size reduction of
a vector bk with all its previous vectors bk−1, . . . ,b1 in the basis. The changes in
the GSO coefficients µi,j due to size reduction have been described in Remark 1.
Size reducing an entire basis B pertains to reducing each bk for 2 ≤ k ≤ n with
all previous vectors bi, 1 ≤ i < k in the ordering. The details are in Remark 2.

Definition 1 (Size reduced basis). A basis B = (b1, . . . ,bn) is said to be
size reduced if for all 1 ≤ j < i ≤ n, |µi,j | ≤ 1/2.

Remark 1 (Changes in GSO Coefficients Upon Size Reduction). Based on the
descriptions in [5, Chapter 2] and [10], we know that, upon a size reduction of bi

with bj (1 ≤ i < j), the values of µi,j must be updated as follows for consistency.

1. We set µi,j ← µi,j − ⌊µi,j⌉; as a result, upon reducing bi with bj , we get
|µi,j | ≤ 1/2.

2. For j < l < i, the values of µi,l remain unchanged. This is based on [5]
and [10, Exercise 17.4.8 (3)]. The proof is as follows2. Let bi be already
size reduced with respect to the vectors bi−1,bi−2, . . . ,bj+1. So we have
∥µi,l∥ ≤ 1/2 for all l such that j < l < i. Now, we size reduce bi with bj to
get b′

i = bi − ⌊µi,j⌉bj . Let µ
′
i,l be the value of µi,l after the size reduction

of bi with respect to bj . Then we have

µ
′

i,l =
⟨b′

i,b
∗
l ⟩

∥b∗
l ∥

2 =
⟨bi − ⌊µi,j⌉bj ,b

∗
l ⟩

∥b∗
l ∥

2 =
⟨bi,b

∗
l ⟩

∥b∗
l ∥
− ⌊µi,j⌉

⟨bj ,b
∗
l ⟩

∥b∗
l ∥

.

Note that since l > j, we have bj ⊥ b∗
l as b∗

l is (by definition) orthogonal
to b1, . . . ,bl−1. Therefore, we have ⟨bj ,b

∗
l ⟩ = 0, and hence

µ′
i,l =

⟨bi,b
∗
l ⟩

∥b∗
l ∥

2 − ⌊µi,j⌉
⟨bj ,b

∗
l ⟩

∥b∗
l ∥

2 =
⟨bi,b

∗
l ⟩

∥b∗
l ∥

2 = µi,l.

2 Although quite straight-forward, the proof is not detailed in the literature to the
best of our knowledge.

7

3. For all 1 ≤ l ≤ j − 1, we set µi,l ← µi,l − ⌊µi,j⌉µj,l.

In summary, if we size reduce bi with bj , then the values µi,l for j < l ≤ i − 1
do not change. However, the values µi,l for 1 ≤ l ≤ j may change.

Remark 2 (Reducing in Reverse). Note that in Algorithm 1, while size reducing
the vector bk with b1, . . . ,bk−1, we must reduce ‘in reverse’. In other words, we
first reduce bk with bk−1, then bk−2, and so on, down to b1. This is for two
reasons. First, as per point (2) of Remark 1, upon size reduction of bk with bi,
the vector bk is still size reduced with respect to all bl for i < l < k. Second,
the size reduction of bk with bi for 1 ≤ i < k affects the size reducedness of bk

with respect to bl for l < i as per point (3) in Remark 1. So by size reducing bk

with bi, only the vectors before bi are candidates for further size reduction of
bk and not the ones between bi and bk.

Lattice Reduction. Given a basis for a lattice, the goal of lattice reduction is
to transform it into a better quality basis consisting of shorter, more orthogo-
nal vectors. Lattice reduction algorithms like LLL and its variants conduct size
reduction as well as reordering of the input basis to improve their quality.

Basis Quality Measures. There are several measures that can be used to describe
the quality of a basis. The most widely used is the Hermite factor (HF)

γ =
∥b1∥

Vol(L)1/n

of a lattice. The vector b1 is assumed to be the shortest vector in the output
basis. It has been shown that the smaller the Hermite factor of a basis, the
better the basis quality [11]. Furthermore, the root Hermite factor (RHF) given

by γ1/n =
(

∥b1∥
Vol(L)1/n

)1/n
can be shown experimentally [11] to converge to a

constant for certain basis reduction algorithms and large n.
The potential (Pot) of a basis B is defined in terms of its GSO vectors B∗ as

Pot(B) =

n∏
i=1

Vol(Li)
2 =

n∏
i=1

∥b∗
i ∥

2(n−i+1)
.

It was introduced in [18] to prove that LLL runs in polynomial time. The po-
tential takes into account not only the vectors in a lattice basis but also their
ordering. Earlier basis vectors have significantly more contribution to the value
of Pot(B) than the later ones. We use the natural logarithm of the potential for
easy handling of the large exponents in its computation, especially with large
values of n.

loge(Pot(B)) = loge

(
n∏

i=1

Vol(Li)
2

)
= 2

n∑
i=1

(n− i+ 1) loge(∥b∗
i ∥).

8

Another measure of basis quality is the squared sum (SS) of its GSO vectors
B∗ given by

SS(B) =

n∑
i=1

∥b∗
i ∥

2
.

Similarly to Pot(·), the squared sum varies with changes in the lengths of the
GSO vectors. However unlike Pot(·), all GSO vectors contribute equally to its
value.

Ordering of Basis Vectors. Let Sn be the group of permutations of the elements
in [n]. For σ ∈ Sn and a basis B, we define σ(B) =

(
bσ(1), . . . ,bσ(n)

)
to be a

permutation of the basis vectors. Here, σ(j) is the index of the vector in B that
takes position j in the permuted basis σ(B). In particular, we are interested in
the permutations σi,k ∈ Sn for 1 ≤ i < k ≤ n defined as follows.

σi,k(j) =

j if j < i or k < j

k if j = i

j − 1 if i+ 1 ≤ j ≤ k.

Such a permutation of B = (b1, . . . ,bn) essentially gives us the permuted basis

σi,k(B) = (b1, . . . ,bi−1,bk,bi, . . . ,bk−1,bk+1, . . . ,bn)

where bk is inserted between bi−1 and bi, and all vectors bi, . . . ,bk−1 are shifted
up by one position. The other vectors retain their positions in the ordering.

Change in Basis Quality through Permutations. Let X(B) be a measure of basis
quality (like the HF, RHF, Pot, SS, etc.) of B. On permuting the basis B to
σi,k(B), the difference in the measure is denoted as

∆Xi,k = X(B)−X(σi,k(B)).

In particular, we get ∆Poti,k = Pot(B) − Pot(σi,k(B)) and ∆SSi,k = SS(B) −
SS(σi,k(B))3. We note that argmax1≤i<k≤n(∆Xi,k) returns the pair of indices
(i, k) for which the value of ∆Xi,k is maximised.

3 The LLL Algorithm, Its Variants and Generalisations

Given a basis B = (b1, . . . ,bn), we have its GSO B∗ = (b∗
1, . . . ,b

∗
n) and the

coefficients µi,j therein.

3 Note that even though the expression for computing the measure SS(B) itself gives
equal weight to all GSO vectors (unlike Pot(B)) independent of where they occur
in the ordering of B∗, the GSO vectors themselves (and hence their lengths) change
upon reordering. As a result, the value of the measure SS(B) generally changes after
reordering the basis.

9

Definition 2 (δ-LLL reduced basis). Given 1/4 < δ ≤ 1, a basis B =
(b1, . . . ,bn) is said to be δ-LLL reduced if the following two conditions are sat-
isfied.

1. B is size reduced as in Definition 1.
2. For all 2 ≤ k ≤ n, the Lovász condition holds between the consecutive vectors

bk−1,bk ∈ B. In other words,

δ · ∥πk−1(bk−1)∥2 ≤ ∥πk−1(bk)∥2 .

Algorithm 2: The LLL Algorithm [18]

Input: A basis B = (b1, . . . ,bn), a threshold 1/4 < δ ≤ 1
Output: A basis B′ = (b1

′, . . . ,b′
n) which is δ-LLL reduced

1 Find the GSO basis B∗ and initialise the values of µi,j

2 k ← 2
3 while k ≤ n do
4 Size reduce bk /* As in Algorithm 1 */

5 if ∥b∗
k∥2 <

(
δ − µ2

k,k−1

)
∥b∗

k−1∥2 /* Equivalent to the failure of the
condition in (1) */ then

6 B← σk−1,k(B) /* Swap vectors bk−1,bk ∈ B */
7 Update b∗

k−1,b
∗
k /* As in [10, Lemma 17.4.3] */

8 Update µi,j ’s /* As in [5, Algorithm 2.6.3] */
9 k ← max(k − 1, 2)

10 else
11 k ← k + 1

12 return B′, a δ-LLL reduced basis

Definition 3 (δ-DeepLLL reduced basis). Given 1/4 < δ ≤ 1, a basis B =
(b1, . . . ,bn) is said to be δ-DeepLLL reduced if the following two conditions are
satisfied.

1. B is size reduced as in Definition 1.
2. For all 1 ≤ i < k ≤ n,

δ · ∥πi(bi)∥2 ≤ ∥πi(bk)∥2 .

Remark 3. If the Lovász condition holds for all pairs (i, k), then it must certainly
hold for all consecutive pairs (k − 1, k). A δ-DeepLLL reduced basis is hence δ-
LLL reduced.

The LLL and DeepLLL Algorithms. The LLL algorithm [18] is described in
Algorithm 2. The output basis B′ is δ-LLL reduced as in Definition 2. A swap
between vectors bk−1 and bk in the algorithm is denoted by B ← σk−1,k(B).

10

This is generalised in DeepLLL [27] and its variants [8,31] to a deep insertion
step B← σi,k(B) where 1 ≤ i < k ≤ n. All our descriptions are in terms of deep
insertions. The corresponding results for swaps can be derived by substituting
i = k − 1, where applicable.

Remark 4 (Measure for Lovász Condition). The Lovász condition is given by

δ · ∥πk−1(bk−1)∥2 ≤ ∥πk−1(bk)∥2. This can be written as

(1− δ) · ∥πk−1(bk−1)∥2 ≥ ∥πk−1(bk−1)∥2 − ∥πk−1(bk)∥2 .

Here, ∥πk−1(bk−1)∥2 − ∥πk−1(bk)∥2 denotes the change in ∥πk−1(bk−1)∥2 =∥∥b∗
k−1

∥∥2 (the square of the length of the (k − 1)th GSO vector) that will occur
if a swap step B← σk−1,k(B) was to happen. In Algorithm 2, if the condition is

not satisfied, then the change in
∥∥b∗

k−1

∥∥2 is large enough to go ahead with the
swap and bring vector bk to the earlier position k − 1 in the basis ordering. In
general, for 1 ≤ i < k ≤ n, the Lovász condition for a deep insertionB← σi,k(B)

is given by δ · ∥πi(bi)∥2 ≤ ∥πi(bk)∥2 which can also be written similarly as

(1− δ) · ∥πi(bi)∥2 ≥ ∥πi(bi)∥2 − ∥πi(bk)∥2 .

Based on the above, we observe that the (generalised) Lovász condition essen-
tially uses a localised measure of the quality of the basis. For an index 1 ≤ i < n,
the measure of quality of the basis B is given by LCi(B) = ∥πi(bi)∥2 = ∥b∗

i ∥
2
.

The change ∆LCi in the quality of the basis due to a deep insertion B← σi,k(B)
is given by

∆LCi = LCi(B)− LCi(σi,k(B)) = ∥πi(bi)∥2 − ∥πi(bk)∥2 .

Then, the generalised Lovász condition can be written as

(1− δ) · LCi(B) ≥ ∆LCi (1)

which fails if ∆LCi > (1 − δ) · LCi(B) and calls for a deep insertion. This
interpretation of the Lovász condition as a change in the measure of basis quality
is not present in the literature to the best of our knowledge.

Thus the condition of the if statement in step 8 of Algorithm 3 is a further
generalisation of the generalised Lovász condition for any measure of quality
X(B) of the basis B. In Algorithm 3, if the condition is not satisfied, bringing
a later vector bk to an earlier position i in the basis ordering will result in
appreciable improvement in the basis quality X(B).

Variants of DeepLLL: transition from a local measure to a global measure of
quality As noted above, the Lovász condition in LLL [18] and its generalisation in
DeepLLL [27] are both used to check the decrease in ∥πi(bi)∥ = ∥b∗

i ∥ by inserting
a later vector bk at an earlier position i < k. The length of a GSO vector is a
localised measure of quality that does not capture the quality of the whole basis.
This changed in Pot-DeepLLL [8] where instead of a localised measure of quality,

11

the potential Pot(·) was used in DeepLLL so that the effect of permuting vectors
on the entire basis is considered. In SS-DeepLLL [31], Pot(·) was replaced by
another global measure SS(·). The basic operation of deep insertion for reordering
the basis vectors is the same in all three algorithms.

Definition 4 (δ-X-DeepLLL reduced basis). Given 0 < δ ≤ 1, a basis B =
(b1, . . . ,bn) is said to be δ-X-DeepLLL reduced for a basis quality measure X(·)
if the following two conditions are satisfied.

1. B is size reduced as in Definition 1.
2. For all 1 ≤ i < k ≤ n,

δ ·X(B) ≤ X(σi,k(B)).

We omit the δ in naming our algorithms. Unless an algorithm is run for two
different values of δ, this parameter is an implicit input to the algorithm. The
choice of δ is however crucial in determining the quality of the basis. Larger the
value of δ, the better the output quality in general. Hence we include it in the
notation used in the definition of reducedness of a basis.

Using basis quality measures Pot(·) and SS(·) in place of the generic X(·),
Definition 4 is instantiated to that of a Pot-DeepLLL [8] reduced basis and a SS-
DeepLLL [31] reduced basis. We know from [8, Lemma 2] that a Pot-DeepLLL
reduced basis is LLL reduced. Also from [8, Lemma 3], for 1/4n−1 < δ ≤ 1, a
δ-DeepLLL reduced basis is δn−1-Pot-DeepLLL reduced. From [31, Proposition
1] we know that any 1-SS-DeepLLL reduced basis is also δ-LLL reduced for any
1/4 < δ < 1. However, there are no known relationships between δ-SS-DeepLLL
reduced bases and δ-DeepLLL reduced bases to the best of our knowledge. We re-
mark that both Pot-DeepLLL and SS-DeepLLL have polynomial-time complex-
ity by construction, but their output quality cannot be covered by [31, Theorem
1] since their output bases are not DeepLLL-reduced.

Remark 5. In general, for two different basis quality measures X1 and X2, a
δ-X1-DeepLLL reduced basis may or may not be δ-X2-DeepLLL reduced. In
particular a δ-Pot-DeepLLL reduced basis is also δ-LLL reduced whilst a δ-
SS-LLL reduced basis is not necessarily so for δ < 1. Therefore, there exist
bases which are δ-SS-LLL reduced but not necessarily δ-LLL reduced or δ-Pot-
DeepLLL reduced.

A Generalisation of DeepLLL, Pot-DeepLLL and SS-DeepLLL. We provide
a generalised description of DeepLLL and its variants Pot-DeepLLL and SS-
DeepLLL in the X-DeepLLL algorithm 3. The X in the name X-DeepLLL cor-
responds to the general measure X(B) of the quality of B. The generalisation
is instantiated for different local and global quality measures of a basis B that
are all based on the GSO vectors B∗. The localised measure LCi(B) = ∥b∗

i ∥
2

(used in DeepLLL [27]) is only for a single GSO basis vector, while the measures
Pot(·) [8] and SS(·) [31] are on the entire GSO basis B∗. In Remark 4 we have

12

Algorithm 3: The X-DeepLLL Algorithm

Input: A basis B = (b1, . . . ,bn), a threshold 0 < δ ≤ 1
Output: B′ = (b1

′, . . . ,b′
n) which is δ-X-DeepLLL reduced

1 Find the GSO basis B∗ and initialise the values of µi,j

2 Size reduce b2, . . . ,bn /* As in Algorithm 1 */
3 Initialise other bookkeeping data structures, if required for X(B)
4 k ← 2
5 while k ≤ n do
6 Size reduce bk /* As in Algorithm 1 */
7 Find i such that i = argmax1≤j<k(∆Xj,k) and set ∆X = ∆Xi,k

8 if ∆X > (1− δ) ·X(B) then
9 B← σi,k(B) /* Deep insert bk before bi */

10 Update B∗ and µl,j /* As in [30, Theorem 1 and Proposition 1] */
11 k ← max(i, 2)

12 else
13 k ← k + 1

14 return B′, a δ-X-DeepLLL reduced basis

argued that the (generalised) Lovász condition can be interpreted as a condi-
tion on the change in the quality of the basis assessed based on the localised
measure LCi(B) = ∥πi(bi)∥2 = ∥b∗

i ∥
2
. Hence, the X-DeepLLL algorithm 3 is a

generalisation of the DeepLLL algorithm of [27]. Pot-DeepLLL and SS-DeepLLL
are both variants of DeepLLL. It should be easy to see that the X-DeepLLL al-
gorithm 3 for the measure X(·) = Pot(·) is Pot-DeepLLL and for the measure
X(·) = SS(·), it is SS-DeepLLL.

In the generalised X-DeepLLL algorithm 3, we note that the threshold value
δ represents a fraction of the measure X(B). If a reordering of the basis B can
improve its quality by more than (1 − δ) · X(B), the algorithm has scope for
such a reordering. In fact, when there is no way to decrease the measure (thus
improving the quality) to less than the fraction δ · X(B) of the measure, that
is when the basis is considered to be δ-X-DeepLLL reduced as in Definition 3.
As may be expected, the threshold δ depends on the measure X in the context.
The notation δ is commonly used [18,27,8] to denote the fraction in the context
of algorithms based on the localised measure LC(·) (when using the Lovász
condition) and the measure Pot(·) for the whole basis. The notation η has been
used in [31] to denote the threshold in the context of the measure SS(·). In
our generalisations of the algorithms and their analysis, we continue using the
more common notation δ with the awareness that for two different measures
X1(·) and X2(·), two different thresholds δ1 and δ2 may have to be considered,
respectively. The relationship between threshold values δ1, δ2 of the algorithms
may be derived from the relationship between their measures X1, X2 as in [8,31].

It should be clear that the value of the threshold δ in the X-DeepLLL algo-
rithm 3 should be upper bounded by δ ≤ 1 (and consequently (1− δ) ≥ 0) due
to the algorithm’s key principle of trying to reduce the measure X(B) in every

13

iteration as explained above. In particular, for δ = 1, a deep insertion is allowed
for any decrease ∆X > 0 in the measure. Assuming the measure X(B) > 0 for
any basis B, since the decrease in the measure ∆X can not be more than or
equal to the measure X(B) itself, hence we necessarily have δ > 0. For the algo-
rithms using the measure LC(·) (based on the Lovász condition), the threshold
must further satisfy δ > 0.25 [18]. In general, the threshold δ and a tighter lower
bound thereof may be determined by the termination condition for the loop.

All LLL-style algorithms work in a manner where a single iteration of the
loop works only with a sublattice Lk generated by (b1, . . . ,bk) of B. The rest
of the vectors (bk+1, . . . ,bn) remain “untouched” in that iteration. Hence, after
a deep insertion step, B ← σi,k(B) the sublattice under consideration in the
next iteration would just be (b1, . . . ,bi). The newly inserted vector bi will have
already been size reduced with respect to the vectors b1, . . . ,bi−1 in the previous
iteration of the loop when considering the index k. The vectors bi+1, . . . ,bk have
all been “shifted” up by one position. They will now require further size reduction
since they will not have been reduced with respect to the newly inserted vector
bi. However, this does not need to be done immediately; these vectors will be size
reduced again when they enter the sublattice under consideration in a subsequent
iteration of the loop. So these algorithms size reduce only one vector in an
iteration and not the whole basis.

Deep Insertions. A deep insertion step B ← σi,k(B) only changes the vec-
tors bi, . . . ,bk in the basis. The vectors b1, . . . ,bi−1,bk+1, . . . ,bn remain un-
changed. The corresponding changes in the GSO basis B∗ and the lengths of the
vectors therein is given by [30, Theorem 1]. The corresponding changes in the
GSO coefficients is given by [30, Proposition 1].

Remark 6. From [30, Theorem 1], we note that due to a deep insertion step
B← σi,k(B) the only GSO vectors that change are b∗

i , . . . ,b
∗
k. Hence, the only

GSO coefficients that change are µl,j for j < l, i ≤ j ≤ k, and i+ 1 ≤ l ≤ n.

Algorithm 4: The X-GGLLL Algorithm

Input: A basis B = (b1, . . . ,bn), a threshold 0 < δ ≤ 1
Output: B′ = (b1

′, . . . ,b′
n) which is a δ-X-GGLLL reduced basis

1 Find the GSO basis B∗ and initialise the values of µi,j

2 Size reduce b2, . . . ,bn in this order /* As in Algorithm 1 for each bk */
3 Find (i′, k′) such that (i′, k′) = argmax1≤i<k≤n(∆Xi,k) and set ∆X = ∆Xi′,k′

4 while ∆X > (1− δ) ·X(B) do
5 B← σi′,k′(B) /* Deep insert bk′ before bi′ */
6 Update B∗ and µl,j /* As in [30, Theorem 1 and Proposition 1] */
7 Size reduce bi′+1, . . . ,bn /* As in Algorithm 1 and proof of Lemma 1*/
8 Find (i′, k′) such that (i′, k′) = argmax1≤i<k≤n(∆Xi,k) and ∆X = ∆Xi′,k′

9 end
10 return B′, a δ-X-DeepLLL reduced basis.

14

4 The X-GGLLL Algorithm

The generalisation of DeepLLL, Pot-DeepLLL and SS-DeepLLL in the form of
the X-DeepLLL algorithm 3 sets the stage for our new framework of algorithms.

The Greedy Global Framework. The greedy global framework described as the
X-GGLLL algorithm 4 provides a general description of algorithms realised by
specifying a basis quality measure X. The algorithm starts by finding the GSO
in step 1 and then size reducing the input basis B in step 2. In step 3, it finds
a pair of indices (i′, k′) that may be suitable for a deep insertion B ← σi,k(B).
It then runs a loop performing a deep insertion and associated bookkeeping
in steps 5-6, the consequent size reductions using Algorithm 1 in step 7 and
finding an appropriate pair (i′, k′) for the next iteration in step 8. By the end of
each iteration of the loop, the algorithm produces a size reduced basis and the
associated bookkeeping information like the values of µi,j , etc. are all updated
to be consistent with the new basis. The loop runs as long as there is a pair
of indices (i′, k′) such that if bk′ is deep inserted before bi′ , the change in the
measure ∆X = X(B)−X(σi′,k′(B)) is at least a fraction (1− δ) of the current
measure X(B). Note that every time the loop runs, a deep insertion is certainly
conducted. For δ close to 1, (1− δ) is a small value. So the algorithm essentially
terminates when there is no possible deep insertion step in the entire basis B
that can reduce the measure X(B) by a fraction (1− δ) that may be considered
as a substantial change to the quality of the basis. Thus X-GGLLL returns a
δ-X-DeepLLL reduced basis as in Definition 4. We prove this in Lemma 2.

LLL, DeepLLL, Pot-DeepLLL and SS-DeepLLL all linearly increase or de-
crease the index 2 ≤ k ≤ n in an iteration. In the process, they only work with
the sublattice Lk generated by a subset (b1, . . . ,bk) of B. The key novelty of
our framework and the algorithms therefrom lies in not restricting the choice
of the vector bk that is investigated for a possible insertion at an earlier posi-
tion to only a sublattice (unlike all previous LLL-style algorithms). Instead, our
algorithm works with the whole basis B = (b1, . . . ,bn) and hence the entire
lattice in every iteration throughout the algorithm. As a result, a deep insertion
step B ← σi,k(B) in our algorithm has to be immediately followed by reduc-
tions of bi+1, . . . ,bn to ensure that the entire basis is size reduced and ready for
the next iteration. Even though this is O(n) more operations than that of X-
DeepLLL, it creates avenues for smarter choices of the indices for size reduction.
In asymptotic terms, this loss is compensated by the O(n) gain for not having
to increment the index k for each deep insertion O(n) times in the worst case.

Apart from working with the whole basis in every iteration, we introduce a
greedy technique to select the indices (i, k). In particular, the algorithm finds a
pair (i′, k′) such that the consequent change in the measure∆X(B) is maximised.
Step 3 of Algorithm 4 does this for the first time before entering the loop and step
8 does it subsequently for each iteration of the loop. The algorithm starts with a
certain value of X(B) that can be at most IX and attempts to reach a minimum
value ZX . By choosing the maximum decrease in each step, it gets closer to

15

ZX by reaching a δ-X-DeepLLL state very quickly (if not the quickest4) by
taking the largest possible leaps at each point. The asymptotic analysis assumes
the least possible change in the measure in every iteration and hence does not
capture the effect of the greedy choice. However, the gains due to the greedy
choice gets reflected in the experimental results provided in Section 6 where our
algorithms perform exceedingly well in terms of their runtimes, total number
of deep insertions and total number of size reductions with respect to previous
LLL-style algorithms.

The greedy choice is not necessarily the best long-term choice though. There
could be other pairs (i, k) in an iteration that do not decrease the measure as
much as the greedy choice (i′, k′) (but more than δ fraction) in that iteration,
but creates the scope for larger decrease in the measure in subsequent itera-
tions. We do not consider such strategies in this work and leave them for future
considerations. Our focus is on the greedy choice only.

Every new measure gives us a unique new lattice reduction algorithm. For the
potential, we get Pot-GGLLL and for the squared sum, we get SS-GGLLL. Like
X-DeepLLL, the values of δ to be used to get output bases of sufficiently good
quality, will depend on the measure X in the context. We assume that any other
measure X will be calculable from the basis vectors and the GSO information. If
necessary, the steps in Algorithm 4 can be modified to take into account possible
additional bookkeeping steps that a measure may require if it is not calculable
from the stored information. We note that the change in the measure X may
require additional computation; for instance, the change in potential requires
the calculation of projections5. However, these computations can be done on the
fly, and are covered by step 8 of Algorithm 4.

Remark 7 (Pre-processing Reduction). The description of Pot-DeepLLL in [8,
Algorithm 1] includes a pre-processing of the basis B by LLL. In case of the
SS-DeepLLL algorithm in [31, Algorithm 2], the description itself does not in-
clude the pre-processing step. However, they have included the pre-processing
step with 0.99-LLL while reporting the performance results [31, Section 4.3.3].
We note here from [31] that the quality of the output basis from a reduction
algorithm is often key to their subsequent use in other algorithms for finding
short vectors in the lattice. We believe that the pre-processing step is an inter-
esting idea that is independent of our generalisations. In particular, any lattice
reduction algorithm can be used for pre-processing the basis before being fed
into a second algorithm for further reduction. Given that the efficiency of our al-
gorithms (especially SS-GGLLL), are in practice almost as good as LLL in many

4 It is well known that an immediate greedy choice is not necessarily always the best
in terms of the overall result of an algorithm.

5 In Pot-DeepLLL, when computing the position i for deep inserting a vector bk, it
is necessary to compute the projections πi(bk) in order to check if the insertion is
viable. However, this is not essential in the computation of the measure SS since the
change in SS due to an insertion can be computed directly using the GSO information
that was updated in a previous step without computing a projection [31, Equation
5].

16

cases, while providing much better output quality, we believe the pre-processing
can be done using any algorithm that would be suitable in the context depend-
ing on an efficiency versus output quality trade-off for the given input parame-
ters, basis types, etc. Hence, we have excluded the pre-processing step from our
theoretical descriptions, asymptotic analysis and experiments of the LLL-style
algorithms and have focused on their independent performances.

The BKZ algorithm [27] runs LLL as a preprocess before applying the block-
wise reduction. We use the NTL library implementation of BKZ that inherits
this feature in our experiments.

5 Theoretical Results

Lemma 1. Let X(B) be lower bounded by ZX > 0. Algorithm 4, outputs a size
reduced basis as in Definition 1.

Proof. In every iteration of Algorithm 4, the measure decreases by ∆X(B) =
X(B)−X(σi,k(B)). Since it can keep decreasing only until ZX > 0, the algorithm
terminates and outputs a basis.

To prove that the output basis is size reduced, it is sufficient to show that the
basis vectors are all size reduced by the end of each iteration of the while loop
in Algorithm 4. We prove this by induction on the number of loop iterations.
We note that step 2 of Algorithm 4 size reduces the whole basis before the first
iteration. In general, we assume that the basis is size reduced at the start of
iteration r. By Remark 6, a deep insertion step B ← σi,k(B) only changes the
GSO vectors b∗

i , . . . ,b
∗
k. From [30, Theorem 1, Proposition 1] and point (2) of

Remark 1, we know the following.

– The vectors b1, . . . ,bi−1 do not need further size reduction. In fact, the vec-
tors b1, . . . ,bi−1 have not changed. Since their orders have not changed
either, their GSO vectors also remain the same.

– The vector bk upon being inserted in position i does not need further size
reduction. In the deep insertion step B← σi,k(B), the vector bk is inserted
in position i. This vector has already been size reduced with respect to
b1, . . . ,bi−1 in a previous iteration < r (or before the loop starts). However,
its GSO changes from πk(bk) to πi(bk) due to the reordering.

– Vectors bi+1, . . . ,bk need to be size reduced by all earlier vectors, but bk+1, . . . ,bn

need only to be reduced by bk, . . .b1. By Remark 6, the only GSO coefficients
that change upon a deep insertion B← σi,k(B) are µl,j for j < l, i ≤ j ≤ k,
and i+ 1 ≤ l ≤ n.

• In particular, for vectors bl, i+ 1 ≤ l ≤ k, the following things change.

∗ The GSO of vector bl changes from being a projection of bl orthog-
onal to span((b1, . . . ,bl−1)) to being orthogonal to
span((b1, . . . ,bi−1,bk,bi+1, . . . ,bl−1)).

∗ Also, bl may not be size reduced with respect to this newly inserted
vector bk.

17

Hence, we start with bi+1 and size reduce it with the newly inserted
vector bk. Upon this size reduction, for 1 ≤ l < k, the values of µi+1,l

will be updated by part (3) of Remark 1. Hence, we must size reduce
bi+1 with all vectors bi, . . . ,b1 as explained in Remark 2. We similarly
reduce all vectors bi+2, . . . ,bk.

• Reordering the vectors (b1, . . . ,bk) does not change span((b1, . . . ,bk)).
The vectors bk+1, . . . ,bn have not been changed due to the deep inser-
tion step. Hence, their projections orthogonal to span((b1, . . . ,bk)) re-
main the same. Thus their GSO remains the same. Furthermore, the vec-
tors bk+1, . . . ,bn may not be size reduced with respect to bi+1, . . . ,bk.
Therefore, vectors bk+1, . . . ,bn must be size reduced only with the vec-
tors bk, . . . ,b1 as in Remark 2.

We therefore must reduce bi′+1, . . .bn, due to the change in GSO of the
vector in position i′. This is done in step 7 of Algorithm 4.

⊓⊔

Lemma 2. Algorithm 4 returns a δ-X-DeepLLL reduced basis as in Defini-
tion 4.

Proof. Algorithm 4 outputs a basis B′. The condition in the while statement
in step 4 of the algorithm ensures that upon termination of the algorithm, no
possible reordering σi,k(B

′) for all 1 ≤ i < k ≤ n results in a ∆X = X(B′) −
X(σi,k(B

′)) which is greater than (1− δ) ·X(B′). In other words,

∆X = X(B′)−X(σi,k(B
′)) ≤ (1− δ) ·X(B′)

for all 1 ≤ i < k ≤ n. Equivalently, δ ·X(B′) ≤ X(σi,k(B
′)) for all 1 ≤ i < k ≤ n.

Also by Lemma 1, the basis B′ on output is size reduced. Hence, the output of
X-GGLLL is a δ-X-DeepLLL reduced basis as per Definition 4. ⊓⊔

In Algorithm 4, the basis quality measure X(B) being a function of the basis

B, may be computed using the values of the associated parameters like ∥bi∥2,
∥b∗

i ∥
2
and µi,k, for all 1 ≤ i ≤ k ≤ n. Let C be an upper bound on the square

of the norm of the vectors in B. The following result is on the computational
complexity of the general X-GGLLL algorithm.

Lemma 3. Let ∥bi∥2 ≤ C for all 1 ≤ i ≤ n in a basis B. In Algorithm 4[Step 8],
let the number of bit operations required for finding the pair of indices (i′, k′) for
the maximum ∆Xi,k be O(fX(C,m, n)) using exact Q arithmetic but without fast
integer arithmetic. Let IX and ZX respectively denote upper and lower bounds
on X(B) and let 0 < δ < 16. Then the total number of bit operations performed
by the X-GGLLL algorithm 4 is given by

O
((

n4 log2 C +mn4 log2 C + fX(C,m, n)
)
log1/δ

(
IX
ZX

))
(2)

6 We note that Algorithm 4 can work with δ = 1 because it can (theoretically) allow
very small changes in the measure X. However, an arbitrarily small change in the
measure cannot be captured by a fixed value of δ in the expression for the number
of iterations. Hence, δ < 1 in the analysis.

18

using exact Q arithmetic but without fast integer arithmetic.

Proof. We assume all arithmetic operations in Algorithm 4 are using exact Q
arithmetic but without fast integer arithmetic. We first note that the size reduc-
tion step within the while loop ensures that length of the vectors in the basis
B do not increase throughout the algorithm [18]. All arithmetic operations are
on integers of size O(n logC) bits by the same argument as in [18][Proposition
1.26].

At each iteration of the while loop, we reduce the measure X by a factor of
at least δ. So after i iterations, the measure X(i) = 1

δiX satisfies

ZX ≤
1

δi
X ≤ IX .

For a given δ, the iteration number i is maximised for ZX = 1
δiX. Thus, the

number of deep insertions (iterations of the while loop) is bounded above by

log1/δ

(
IX
ZX

)
.

Within each iteration of the while loop, we do the following operations.

– Deep insertions: A deep insertion and its associated bookkeeping are done
in steps 5-6 of the algorithm. This results in updates of the basis parameters
like the GSO vectors and the GSO coefficients. We know from the analysis
of [30, Algorithm 4] that the total bit-complexity of the GSO updates is
O
(
n4 log2 C

)
.

– Size reductions: Step 7 of the algorithm size reduces the basis and performs
the associated bookkeeping updates. A vector in the basis containsm integers
each of size O(n logC). So the size reduction of a vector bk with bi, 1 ≤ i < k
requires O

(
mn2 log2 C

)
bit operations. So the size reduction of bk with all

such bi as in Algorithm 1 requires O
(
mn3 log2 C

)
bit operations. Hence size

reducing all basis vectors will require O
(
mn4 log2 C

)
bit operations.

– Index search: In step 8, we search for the pair of indices (i′, k′) for which the
measure ∆Xi′,k′ is the minimum among all possible pairs. We assume this
step requires O(fX(C,m, n)) bit operations in every iteration.

So Algorithm 4 needs a total of O
(
n4 log2 C +mn4 log2 C + fX(C,m, n)

)
bit

operations in each iteration of the while loop. Considering all iterations, the
total number of bit operations performed by the algorithm is given by

O

 n4 log2 C︸ ︷︷ ︸

deep insertion

+mn4 log2 C︸ ︷︷ ︸
size reduction

+ fX(C,m, n)︸ ︷︷ ︸
index search

 log1/δ

(
IX
ZX

)
︸ ︷︷ ︸

#iterations

 .

⊓⊔

19

The proof of Lemma 3 shows that the asymptotic complexity of Algorithm 4
does not capture the value by which the measure X decreases in each iteration.
Any deep insertion strategy which decreases X by a fraction at least (1− δ) will
result in an algorithm with asymptotic complexity at most as in 2 of Lemma 3. In
practice, the greedy choice of an insertion that results in the maximum possible
decrease in the measure makes the algorithm very efficient.

We use Lemma 3 corresponding to the general framework to find the compu-
tational complexities of the concrete algorithms Pot-GGLLL and SS-GGLLL.

5.1 Computational Complexity of Pot-GGLLL

With Vol(Li)
2 =

∏i
j=1

∥∥b∗
j

∥∥2, the potential is given by

Pot(B) =
n∏

i=1

Vol(Li)
2 =

n−1∏
i=1

Vol(Li)
2 ·Vol(L)2.

From [8, Proof of Proposition 1] we know that an upper bound on the value of
Pot(B) is

IPot =

n−1∏
i=1

Vol(Li)
2Vol(L)2 ≤

n−1∏
i=1

CiVol(L)2 ≤
n−1∏
i=1

C
n(n−1)

2 Vol(L)2

and a lower bound is ZPot ≥ Vol(L)2. In 2, we substitute the expressions for
the number of iterations and the complexity of index search to find the overall
complexity of Pot-GGLLL. From Lemma 3, the maximum number of iterations
in Pot-GGLLL is

log1/δ

(
IPot
ZPot

)
= log1/δ

(
Cn(n−1)/2

)
= O(n2 log1/δ C).

For a pair (i, k) of indices, computing the value of ∆Poti,k as described in [8,
Equation 3.1] requires O(n2) arithmetic operations or equivalently O(n4 log2 C)
bit operations. A straight-forward extension of this to find argmax1≤i<k≤n(∆Poti,k)
would require the computation of ∆Poti,k for each pair (i, k) with a total of
O(n6 log2 C) bit operations. This computation can be improved by O(n) time.
For a fixed index k, the values of ∆Poti,k can be computed incrementally for all
i ∈ {k− 1, . . . , 1} where ∆Poti−1,k is computed using the value of ∆Poti,k. This
optimisation is applicable to Pot-DeepLLL as well as Pot-GGLLL. Hence Pot-
GGLLL computes argmax1≤i<k≤n(∆Poti,k) using O(n5 log2 C) bit operations in
each iteration. In total, Pot-GGLLL requires

O
((

n4 log2 C +mn4 log2 C + n5 log2 C
)
n2 log1/δ C

)
= O

(
(m+ n)

n6 log3 C

log 1/δ

)
bit operations. From [8][Proof of Proposition 1] we know that Pot-DeepLLL re-

quires O
(
(m+ n)n4 log1/δ C

)
arithmetic operations or equivalently

20

O
(
(m+ n)n

6 log3 C
log 1/δ

)
bit operations, which is the same as Pot-GGLLL. The num-

ber of bit operations for each part of the Pot-DeepLLL algorithm has been listed
in Table 1.

5.2 Computational Complexity of SS-GGLLL

An upper bound on the value of SS(B) is given by

ISS =

n∑
i=1

∥b∗
i ∥

2 ≤ n · C

and a lower bound is ZSS ≥ n which occurs when C = 1. From Lemma 3, the
maximum number of iterations in SS-GGLLL is

log1/δ

(
ISS
ZSS

)
= log1/δ (C) .

as was noted in [31, Proposition 2]. From [31, Equation 5], we know that ∆SSi,k
can be computed in O(n3 log2 C) bit operations. Using similar techniques as in
Pot-GGLLL, the computation of argmax1≤i<k≤n(∆SSi,k) requires O(n4 log2 C)
bit operations. Hence SS-GGLLL requires a total of

O
((

n4 log2 C +mn4 log2 C + n4 log2 C
)
log1/δ (C)

)
= O

(
mn4 log3 C

log 1/δ

)
bit operations. In comparison, the number of bit operations of SS-DeepLLL is

O
(
mn4 log3 C

log 1/δ

)
which is again the same as SS-GGLLL. The number of bit operations for each
part of the SS-DeepLLL algorithm has been listed in Table 1.

Algorithm Name Deep Insertion Size Reduction Index Search Number of Iterations

Pot-DeepLLL mn3 log2 C mn3 log2 C n4 log2 C n3 log1/δ C

Pot-GGLLL n4 log2 C mn4 log2 C n5 log2 C n2 log1/δ C

SS-DeepLLL mn3 log2 C mn3 log2 C n3 log2 C n log1/δ C

SS-GGLLL n4 log2 C mn4 log2 C n4 log2 C log1/δ C

Table 1: Complexity comparison of X-DeepLLL and X-GGLLL.

Remark 8 (Comparison between X-DeepLLL and X-GGLLL). A comparison
between the number of bit operations required in different parts of the X-
DeepLLL and X-GGLLL algorithms is shown in Table 1. It provides a better
understanding of where a greedy global algorithm makes gains and losses when

21

compared with the corresponding DeepLLL algorithm. For deep insertion, X-
DeepLLL requires O(mn3 log2 C) bit operations. This involves a reordering of
the basis followed by an update of the relevant GSO information. In comparison,
X-GGLLL requires O(n4 log2 C) bit operations using [30, Algorithm 4]. For size
reductions, X-DeepLLL requires O(n) fewer bit operations than X-GGLLL be-
cause the greedy global algorithms need the basis to be completely size reduced
before performing the index search. In contrast, X-DeepLLL needs the basis to
be size reduced only up to index k being considered in an iteration. X-DeepLLL
also requires O(n) fewer bit operations for index search than X-GGLLL. In X-
DeepLLL, the index k is fixed, and so only a search for the best index i for
insertion is required. However, for X-GGLLL, the search covers all pairs (i, k)
for 1 ≤ i < k ≤ n, and so O(n) more operations are required. The increase in
complexity due to index search is compensated in the number of iterations of
the while loop that requires O(n) fewer operations in X-GGLLL than in X-
DeepLLL. This is because X-DeepLLL maintains the index k which must reach
k = n+ 1 for the algorithm to terminate. If N is the number of deep insertions
in X-DeepLLL, the number of times k is incremented in step 13 of Algorithm 3
is upper bounded by N(n− 1)+n as argued in [18]. In other words, there are at
most O(n) more iterations of the while loop than the number of deep insertions.
Since there is no such incremental change in the indices in X-GGLLL, hence it
requires O(n) fewer iterations.

Remark 9. The output basis of X-GGLLL is δ-X-DeepLLL reduced just like in
X-DeepLLL. In practice, the output basis of X-GGLLL is usually better than
X-DeepLLL. For example, for the first basis we tested at dimension 40, the
values of RHF are 1.0127 for SS-GGLLL and 1.0151 for SS-DeepLLL. However,
X-GGLLL is not necessarily guaranteed to reduce the basis quality measure X
more than X-DeepLLL. For instance, for the second basis we tested at dimension
40, the values of RHF are 1.0151 for SS-DeepLLL and 1.0155 for SS-GGLLL.

6 Experimental Results

We conduct concrete comparative analysis of a number of relevant LLL-style
algorithms including LLL [18], Pot-DeepLLL [8] and SS-DeepLLL [31]; the BKZ
algorithm [27] with blocksizes 8, 10, 12 and 20; and our two new proposals Pot-
GGLLL and SS-GGLLL. For LLL, Pot-DeepLLL and Pot-GGLLL we use the
threshold value δ = 0.999. For SS-DeepLLL and SS-GGLLL we use the threshold
δ = (1− 10−6) following the rationale provided in the discussion in [31, Section
4.3.1].

To the best of our knowledge, there is no publicly available implementation
of SS-DeepLLL [31, Algorithm 2]. Hence, for the sake of uniformity and fairness,
we have used our own implementations of all LLL-style algorithms using floating
point arithmetic. We have used the NTL library datatypes ZZ for integers and
RR for real numbers. For each dimension we fixed a precision which is a delib-
erate overestimate so that we did not encounter anomalies due to floating-point

22

arithmetic. We ran all algorithms with the same precision at a given dimension.
We have used the BKZ RR algorithm of NTL [29] in our comparisons. We do not
apply any preprocessing to our implementations of the LLL-style algorithms.
However, the BKZ implementation in the NTL library [29] includes preprocess-
ing with LLL. Our implementations, the input lattice bases we have used in our
experiments and the outputs of our algorithms are available at [12].

Each algorithm ran on a single Intel® Xeon® CPU E7-4830 v2 at 2.20 GHz
on a shared memory machine. Our input bases are random in the sense of Gold-
stein and Mayer [13] and are akin to those provided by the SVP Challenge [6].
These bases have the form

B =

[
q 0
x I

]
=

q 0 0 . . . 0
x1 1 0 . . . 0
x2 0 1 . . . 0
...

. . .

xn−1 0 . . . 0 1

where q is a 10n-bit prime, x = (x1, . . . , xn−1)

T is a column vector of integers
modulo q chosen uniformly at random and I is the (n − 1) × (n − 1) identity
matrix. For dimensions n = 40, 50, 60, 70, 80 and 90, we tested the algorithms
by generating 300 such bases and for dimensions n = 100, 110, 120, 130, 140 and
150, we tested on 50 bases.

Our comparisons of the aforementioned algorithms are based on three effi-
ciency parameters, namely, (1) average running time (Table 2 and Figure 1), (2)
number of reorderings (swaps in LLL and deep insertions in the rest; Table 3
and Figure 2), and (3) number of size reductions of the basis vectors as in step
3 of Algorithm 1 (Table 4 and Figure 3). We measure the output quality using
the root Hermite factor (RHF) (Table 5 and Figure 4).

Dimension

Algorithm 40 50 60 70 80 90 100 110 120 130 140 150

LLL 2.03 5.74 12.6 22.7 41.9 85.0 148 248 348 580 831 1134

SS-DeepLLL 8.54 25.3 63.2 124 244 490 954 1777 2479 4103 6268 8753
SS-GGLLL 2.20 6.06 15.1 31.1 63.2 120 275 497 818 1695 2554 3873

Pot-DeepLLL 14.2 48.1 136 295 645 1323 3022 5644 8918 15929 25617 37328
Pot-GGLLL 6.37 20.7 59.1 134 301 649 1555 3043 5130 9865 16886 26739

BKZ-08 6.62 19.4 47.9 93.9 187 370 775 1492 2141 3730 5889 8341
BKZ-10 6.85 20.2 50.8 100.0 202 417 829 1630 2393 4205 6804 9535
BKZ-12 7.20 21.6 54.8 109 221 443 941 1861 2655 4746 7683 11014
BKZ-20 9.23 30.4 90.4 201 458 1069 2645 5422 9742 17614 32865 57624

Table 2: Average runtime in seconds (rounded to most significant 3 digits for
smaller values).

23

40 50 60 70 80 90
Dimension

0

200

400

600

800

1000

1200

Ti
m
e
ta
ke
n
to
 re

du
ce
 th

e
ba

sis
 (s

ec
on

ds
)

Pot-DeepLLL
BKZ-20
Pot-GGLLL
SS-DeepLLL
BKZ-12
BKZ-10
BKZ-08
SS-GGLLL
LLL

100 110 120 130 140 150
Dimension

0

10000

20000

30000

40000

50000

60000

Ti
m
e
ta
ke
n
to
 re

du
ce
 th

e
ba
sis

 (s
ec
on
ds
)

BKZ-20
Pot-DeepLLL
Pot-GGLLL
BKZ-12
BKZ-10
SS-DeepLLL
BKZ-08
SS-GGLLL
LLL

Fig. 1: Average runtime in seconds.

Comparison between LLL, X-DeepLLL and X-GGLLL. We first compare the
LLL-style algorithms. LLL is, as expected, the quickest in every dimension. How-
ever, again as one would expect, it produces the worst quality in terms of average
RHF in every dimension.

While the asymptotic runtime complexities of our greedy global algorithms
Pot-GGLLL and SS-GGLLL are the same as the corresponding X-DeepLLL
algorithms, we see from Table 2 (Figure 1) that our algorithms run in much
less time on average in every dimension. As the dimension grows, they become
even better in comparison. At dimension 150, SS-GGLLL is around 2.27 times
faster than SS-DeepLLL and Pot-GGLLL is about 1.40 times faster than Pot-
DeepLLL. In fact, the average runtime of SS-GGLLL is only second to LLL
among all algorithms under consideration, consistently in all tested dimensions.
Compared with LLL, at dimension 40, SS-GGLLL is just 1.09 times slower,
and at dimension 150, SS-GGLLL is around 3.39 times slower. However Pot-
GGLLL does not compare as well with LLL in terms of time. At dimension
40, Pot-GGLLL is roughly 3.14 times slower and is around 23.6 times slower at
dimension 150.

Dimension

Algorithm 40 50 60 80 90 100 130 150

LLL 27355 47667 73652 142102 184177 231595 400127 535176

SS-DeepLLL 12512 23996 39682 83783 112048 144138 258387 346082
SS-GGLLL 362 517 705 1206 1525 1938 3626 5442

Pot-DeepLLL 11891 22251 36332 75783 101189 130547 239663 329958
Pot-GGLLL 300 429 571 914 1128 1364 2186 2902

Table 3: Average number of reorderings (swaps and deep insertions).

The number of reorderings of basis vectors (swaps and deep insertions) is
crucial to the runtime analysis of our X-GGLLL algorithms. It is a strong in-
dicator of the reason why our algorithms do so well in practice, even though
their asymptotic behaviour is similar to their DeepLLL counterparts as shown

24

40 50 60 70 80 90
Dimension

103

104

105

Nu
m
be
r o

f S
wa

ps
/D
ee
p
In
se
rti
on
s r
eq
ui
re
d
to
 re

du
ce

th
e
ba
sis

(lo
ga

rit
hm

ic
sc
al
e)

LLL
SS-DeepLLL
Pot-DeepLLL
SS-GGLLL
Pot-GGLLL

100 110 120 130 140 150
Dimension

104

105

Nu
m
be
r o

f S
wa

ps
/D
ee
p
In
se
rti
on
s r
eq
ui
re
d
to
 re

du
ce
 th

e
ba
sis

(lo
ga
rit
hm

ic
sc
al
e)

LLL
SS-DeepLLL
Pot-DeepLLL
SS-GGLLL
Pot-GGLLL

Fig. 2: Average number of reorderings.

in Table 1. The average number of reorderings in the LLL-style algorithms is pro-
vided in Table 3 (Figure 2). At dimension 40, the number in SS-GGLLL is only
around 1.32% of LLL and around 2.90% of SS-DeepLLL. Pot-GGLLL does even
better. The number in Pot-GGLLL at dimension 40 is only 1.10% of LLL and
2.52% of Pot-DeepLLL. At dimension 150, the number in SS-GGLLL is around
1.02% of LLL and around 1.57% of SS-DeepLLL. The number in Pot-GGLLL
at dimension 150 is only 0.54% of LLL and 0.88% of Pot-DeepLLL.

Remark 10. The comparisons of the number of reorderings in LLL-style algo-
rithms provide strong intuitive justification for our greedy global approach in
terms of improving the efficiency. One would expect that fewer reorderings of
the basis (and hence fewer GSO updates and size reductions) would result in a
more efficient algorithm. However, we must note that upon a reordering in the
X-GGLLL algorithm, there is more that needs to be done compared to LLL or
X-DeepLLL to ensure that the basis is fully size reduced for the next iteration.
Hence, recording the number of size reductions of bk with bj (Algorithm 1[Step
3]) provides a more granular measure of efficiency for fairer comparison between
the LLL-style algorithms.

Dimension

Algorithm 40 50 60 80 90 100 130 150

LLL 81180 185909 359996 992472 1485987 2123061 4982003 7815673

SS-DeepLLL 143755 371094 790779 2522662 4010701 6044032 16242772 27623812
SS-GGLLL 70705 164548 337483 1106309 1827259 2903142 9523874 18822813

Pot-DeepLLL 127230 320840 669874 2052506 3199109 4732811 12083865 19710300
Pot-GGLLL 67410 155502 312213 963137 1541376 2353368 6759215 12158151

Table 4: Average number of size reductions bk−⌊µk,j⌉bj (Algorithm 1[Step 3]).

Table 4 provides the average number of size reductions (Algorithm 1[Step
3]) for each LLL-style algorithm in some of the representative dimensions. Pot-
GGLLL requires fewer size reductions on average than SS-GGLLL in all di-
mensions in our tests. Also, the greedy global variants always perform fewer

25

40 50 60 70 80 90
Dimension

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

Nu
m
be

r o
f s

ize
-re

du
ct
io
n
st
ep

s r
eq

ui
re
d
to
 re

du
ce

 th
e
ba

sis

SS-DeepLLL
Pot-DeepLLL
SS-GGLLL
Pot-GGLLL
LLL

100 110 120 130 140 150
Dimension

5000000

10000000

15000000

20000000

25000000

Nu
m
be

r o
f s

ize
-re

du
ct
io
n
st
ep

s r
eq

ui
re
d
to
 re

du
ce
 th

e
ba

sis

SS-DeepLLL
Pot-DeepLLL
SS-GGLLL
Pot-GGLLL
LLL

Fig. 3: Average number of size reductions bk − ⌊µk,j⌉bj (Algorithm 1[Step 3]).

size reductions than their DeepLLL counterparts. At dimension 150, the num-
ber in SS-GGLLL is 68.1% of SS-DeepLLL and the number in Pot-GGLLL is
61.7% of Pot-DeepLLL. The X-GGLLL algorithms require smaller number of
size reductions than LLL in smaller dimensions. At dimension 40, the number in
Pot-GGLLL is around 83.0% of LLL while that of SS-GGLLL is around 87.1% of
LLL. As the dimension increases, the increase in the number of size reductions
in LLL is lesser than the other algorithms. At dimension 150, the number in
SS-GGLLL is 2.41 times of LLL and the number in Pot-GGLLL is 1.56 times of
LLL. A graphical representation of the average number of size reductions in Fig-
ure 3 shows the diverging curves of X-GGLLL and the respective X-DeepLLL
counterparts showing that the difference in the number keeps growing as the
dimension increases.

Dimension

Algorithm 40 60 80 90 100 130 150

LLL 1.01664 1.01829 1.01938 1.01955 1.01957 1.02036 1.02049

SS-DeepLLL 1.01366 1.01392 1.01408 1.01403 1.01416 1.01409 1.01405
SS-GGLLL 1.01335 1.01377 1.01375 1.01374 1.01382 1.01366 1.01368

Pot-DeepLLL 1.01372 1.01430 1.01456 1.01468 1.01472 1.01503 1.01506
Pot-GGLLL 1.01349 1.01405 1.01437 1.01448 1.01453 1.01476 1.01491

BKZ-08 1.01324 1.01399 1.01427 1.01440 1.01454 1.01462 1.01475
BKZ-10 1.01315 1.01367 1.01383 1.01395 1.01403 1.01411 1.01422
BKZ-12 1.01290 1.01327 1.01344 1.01351 1.01359 1.01376 1.01386
BKZ-20 1.01242 1.01228 1.01235 1.01237 1.01231 1.01246 1.01248

Table 5: Average Root Hermite Factor (RHF).

In addition to having better runtime, the X-GGLLL algorithms achieve a
smaller average RHF than their corresponding X-DeepLLL algorithms across
the tested dimensions, as shown in Table 5 (Figure 4). At dimension 150, SS-
GGLLL outperforms SS-DeepLLL achieving average RHFs 1.01368 and 1.01405
respectively. Similarly, Pot-GGLLL and Pot-DeepLLL achieve average RHFs
1.01491 and 1.01506 respectively. To summarise,

26

40 50 60 70 80 90
Dimension

1.012

1.013

1.014

1.015

1.016

1.017

1.018

1.019

Ro
ot
 H
er
m
ite
 Fa
ct
or
 o
f t
he
 re
du
ce
d
ba
sis

LLL
Pot-DeepLLL
Pot-GGLLL
BKZ-08
SS-DeepLLL
BKZ-10
SS-GGLLL
BKZ-12
BKZ-20

100 110 120 130 140 150
Dimension

1.012

1.013

1.014

1.015

1.016

1.017

1.018

1.019

1.020

Ro
ot
 H
er
m
ite
 Fa
ct
or
 o
f t
he
 re
du
ce
d
ba
sis

LLL
Pot-DeepLLL
Pot-GGLLL
BKZ-08
BKZ-10
SS-DeepLLL
BKZ-12
SS-GGLLL
BKZ-20

Fig. 4: Average Root Hermite Factor (RHF).

X-GGLLL on the average outperforms X-DeepLLL both in terms of
efficiency and output quality

whilst achieving the same theoretical notion of reduction as proved in Lemma 2
(by producing δ-X-DeepLLL reduced bases) and the same asymptotic runtime
complexity as explained in Section 5.1 and Section 5.2.

Comparing SS-GGLLL and BKZ. SS-GGLLL clearly outperforms Pot-GGLLL
both in terms of efficiency and output quality throughout our tests. So we next
compare SS-GGLLL and BKZ with blocksizes 8, 10, 12 and 20.

We first note that SS-GGLLL is unilaterally faster than BKZ for all 4 block-
sizes and all dimensions in our tests. At dimension 150, BKZ-8, 10, 12 and
20 took around 2.15, 2.46, 2.84 and 14.9 times longer than SS-GGLLL respec-
tively. It is clear from the diverging curves in Figure 1 that BKZ becomes slower
compared to SS-GGLLL as the dimension increases. In particular, the factor by
which the runtime of BKZ-20 grows relative to SS-GGLLL is also increasing.

While SS-GGLLL starts below BKZ-8, 10 and 12 in terms of its output qual-
ity at dimension 40, it eventually outperforms at higher dimensions. In Figure 5,
the ratios of the average RHFs of SS-GGLLL and BKZ-8, 10, 12 and 20, are pro-
vided for all dimensions tested. A value above the dotted line at y = 1 implies
that the RHF of SS-GGLLL is smaller, whereas a value below it implies that the
RHF of BKZ is smaller. SS-GGLLL starts outperforming BKZ-8 before dimen-
sion 50, BKZ-10 before dimension 70 and BKZ-12 before dimension 120. When
one also considers that SS-GGLLL is significantly faster than BKZ (especially
at higher dimensions), it is clear that SS-GGLLL is indeed an improvement on
BKZ for blocksizes 8, 10 and 12.

One can notice from Figure 5 that the RHF of SS-GGLLL keeps getting
better than BKZ-8, 10 and 12 with increasing dimension and the gap between
them continues to widen. From Figure 4, we also notice that the RHFs for BKZ-8,
10 and 12 are generally increasing with the dimension, while that of SS-GGLLL

27

is generally decreasing. This explains the reason behind SS-GGLLL eventually
outperforming BKZ-8, 10 and 12 in Figure 5.

Even though BKZ-20 is much slower than SS-GGLLL, it provides better
output quality across all dimensions that we tested. However, the behaviour of
BKZ-20 in larger dimensions may be expected to emulate that of BKZ-8, 10
and 12 with respect to SS-GGLLL. It seems that the runtime of SS-GGLLL
will continue to improve when compared with BKZ-20, whilst the gap in quality
slowly decreases. It is hard to say how narrow the gap in RHF between SS-
GGLLL and BKZ-20 will become in higher dimensions due to the subtle changes
that can be noticed thus far. Whilst there is a possibility that the RHF of SS-
GGLLL eventually gets better than BKZ-20, that may not happen as well.

Our focus in this work has been the core performance of algorithms and its
analysis rather than their specific applications and use in engineering solutions
like preprocessing. Hence we compare SS-GGLLL directly with BKZ. We note
that SS-GGLLL can be used to replace LLL as a preprocessing step in BKZ.
While preprocessing with SS-GGLLL will run longer than LLL, it will provide
a far better quality basis for BKZ to begin with, which may in turn reduce the
runtime of BKZ.

40 50 60 70 80 90 100 110 120 130 140 150
Dimension

0.9985

0.9990

0.9995

1.0000

1.0005

1.0010

Th
e

va
lu

e
of

 th
e

RH
F

of
 B

KZ
 w

ith
 d

iff
er

en
t

bl
oc

ks
ize

s d
iv

id
ed

 b
y

th
e

RH
F

of
 S

S-
GG

LL
L

BKZ-8/SS-GGLLL
BKZ-10/SS-GGLLL
BKZ-12/SS-GGLLL
BKZ-20 / SS-GGLLL

Fig. 5: The gap between the RHF of SS-GGLLL and BKZ with blocksize β = 8,
10, 12 and 20, expressed as

RHFBKZ-β

RHFSS-GGLLL
(which is = 1 at the dotted line).

7 Conclusion

In this work, we have presented a greedy global framework as a generic algorithm
X-GGLLL based on a measure of quality X of a lattice basis. The key novelty
in is framework is to work with the whole lattice in every iteration in place
of a sublattice as in all previous LLL-style algorithms. The basis vectors are
reordered using a greedy approach towards improving their quality that results
in very efficient algorithms. We have proved results on the efficiency of the general
framework and on the two new algorithms we propose using the basis quality
measures - potential Pot and squared sum SS. Furthermore, we have shown that
the bases produced by our algorithms are of provable quality. Experimentally
we have found that our algorithms do very well in terms of both efficiency and
basis quality when compared to their counterparts introduced in [8] and [31]
respectively. Our squared-sum based algorithm SS-GGLLL is second only to

28

LLL in terms of efficiency while producing output bases with quality that gets
generally better than BKZ of increasing blocksize as the dimension increases.

Our design principle has been to achieve the best possible efficiency in reach-
ing an assured quality by reducing the measure X as much as possible in each
iteration. The result is quick improvements in the basis quality. Our framework
could be altered to not make the most greedy choice resulting in a slower al-
gorithm which performs more iterations to help close the gap in quality with
BKZ (say with blocksize 20) at smaller dimensions. There could be other strate-
gies that may as well decrease the overall runtime without compromising on the
quality or even improving it, as X-GGLLL did over X-DeepLLL. We believe our
framework has opened up avenues for designing interesting new lattice reduction
algorithms.

Acknowledgement. We thank the anonymous reviewers for their detailed com-
ments on an earlier version of this paper that helped in improving it significantly.
We also thank Palash Sarkar for his comments on the paper.

References

1. Akhavi, A.: The optimal LLL algorithm is still polynomial in fixed dimension. The-
oretical Computer Science 297(1), 3–23 (2003). https://doi.org/10.1016/S0304-
3975(02)00616-3

2. Bogart, T., Goodrick, J., Woods, K.: A Parametric Version of LLL and Some
Consequences: Parametric Shortest and Closest Vector Problems. SIAM J. Discret.
Math. 34(4), 2363–2387 (jan 2020). https://doi.org/10.1137/20M1327422

3. Chang, X.W., Stehlé, D., Villard, G.: Perturbation analysis of the QR factor R in
the context of LLL lattice basis reduction. Mathematics of Computation 81(279),
1487–1511 (2012)

4. Chen, J., Stehlé, D., Villard, G.: Computing an LLL-reduced basis of the orthogo-
nal lattice. In: Proceedings of the 2018 ACM International Symposium on Symbolic
and Algebraic Computation. p. 127–133. ISSAC ’18, Association for Computing
Machinery, New York, NY, USA (2018). https://doi.org/10.1145/3208976.3209013

5. Cohen, H.: A course in computational algebraic number theory. Springer (1993)

6. Darmstadt T.U.: SVP challenge. https://www.latticechallenge.org/svp-challenge/

7. Debris-Alazard, T., Ducas, L., van Woerden, W.P.J.: An algorithmic reduction
theory for binary codes: LLL and more. IEEE Transactions on Information Theory
68(5), 3426–3444 (2022). https://doi.org/10.1109/TIT.2022.3143620

8. Fontein, F., Schneider, M., Wagner, U.: PotLLL: a polynomial time version of LLL
with deep insertions. Designs, Codes and Cryptography 73(2), 355–368 (2014).
https://doi.org/10.1007/s10623-014-9918-8

9. Fukase, M., Kashiwabara, K.: An accelerated algorithm for solving svp based on
statistical analysis. J. Inf. Process. 23, 67–80 (2015)

10. Galbraith, S.D.: Mathematics of public key cryptography. Cambridge University
Press, USA, 1st edn. (2012)

11. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N.P. (ed.) EURO-
CRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Istanbul, Turkey (apr 2008).
https://doi.org/10.1007/978-3-540-78967-3 3

29

https://doi.org/10.1016/S0304-3975(02)00616-3
https://doi.org/10.1016/S0304-3975(02)00616-3
https://doi.org/10.1137/20M1327422
https://doi.org/10.1145/3208976.3209013
https://www.latticechallenge.org/svp-challenge/
https://doi.org/10.1109/TIT.2022.3143620
https://doi.org/10.1007/s10623-014-9918-8
https://doi.org/10.1007/978-3-540-78967-3_3

12. GGLLL: Our implementations of all lll-style algorithms (2023), https://github.
com/GG-LLL/Greedy-Global-LLL

13. Goldstein, D., Mayer, A.: On the equidistribution of hecke points. Forum Mathe-
maticum 15(2), 165–189 (2003). https://doi.org/10.1515/form.2003.009

14. Howgrave-Graham, N.A.: Isodual reduction of lattices. Cryptology ePrint Archive,
Paper 2007/105 (2007), https://eprint.iacr.org/2007/105

15. Kirchner, P., Espitau, T., Fouque, P.A.: Towards faster polynomial-time lattice
reduction. In: Malkin, T., Peikert, C. (eds.) 2021, Part II. LNCS, vol. 12826, pp.
760–790. Springer, Virtual Event (Aug 16–20, 2021). https://doi.org/10.1007/978-
3-030-84245-1 26

16. Koy, H., Schnorr, C.P.: Segment LLL-reduction of lattice bases. In: Silverman, J.H.
(ed.) Cryptography and Lattices. pp. 67–80. Springer Berlin Heidelberg (2001).
https://doi.org/10.1007/3-540-44670-2 7

17. Lee, C., Pellet-Mary, A., Stehlé, D., Wallet, A.: An LLL algorithm for mod-
ule lattices. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019, Part II.
LNCS, vol. 11922, pp. 59–90. Springer, Kobe, Japan (Dec 8–12, 2019).
https://doi.org/10.1007/978-3-030-34621-8 3

18. Lenstra, A.K., Lenstra, H., Lovász, L.: Factoring polynomials with rational coeffi-
cients. Math. Ann. 261, 515–534 (1982). https://doi.org/10.1007/BF01457454

19. Lenstra, H.W.: Flags and lattice basis reduction. In: Casacuberta, C., Miró-Roig,
R.M., Verdera, J., Xambó-Descamps, S. (eds.) European Congress of Mathematics.
pp. 37–51. Birkhäuser Basel, Basel (2001)

20. Morel, I., Stehlé, D., Villard, G.: H-LLL: using householder inside LLL. In: Pro-
ceedings of the 2009 International Symposium on Symbolic and Algebraic Compu-
tation. p. 271–278. ISSAC ’09, Association for Computing Machinery, New York,
NY, USA (2009). https://doi.org/10.1145/1576702.1576740

21. Neumaier, A., Stehlé, D.: Faster LLL-type reduction of lattice bases. In: Proceed-
ings of the ACM on International Symposium on Symbolic and Algebraic Compu-
tation. p. 373–380. ISSAC ’16, Association for Computing Machinery, New York,
NY, USA (2016). https://doi.org/10.1145/2930889.2930917

22. Nguyen, P.Q., Stehlé, D.: Floating-point LLL revisited. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 215–233. Springer, Aarhus, Denmark (May 22–
26, 2005). https://doi.org/10.1007/11426639 13

23. Nguyen, P.Q., Stehlé, D.: LLL on the average. In: Proceedings of the 7th Interna-
tional Conference on Algorithmic Number Theory. p. 238–256. ANTS’06, Springer-
Verlag, Berlin, Heidelberg (2006). https://doi.org/10.1007/11792086 18

24. Nguyen, P.Q., Stern, J.: The two faces of lattices in cryptology. In: Silverman, J.H.
(ed.) Cryptography and Lattices. pp. 146–180. Springer Berlin Heidelberg, Berlin,
Heidelberg (2001). https://doi.org/10.1007/3-540-44670-2 12

25. Plantard, T., Susilo, W., Zhang, Z.: LLL for ideal lattices: re-evaluation of the se-
curity of Gentry—Halevi’s FHE scheme. Des. Codes Cryptography 76(2), 325–344
(aug 2015). https://doi.org/10.1007/s10623-014-9957-1

26. Schneider, M., Buchmann, J., Lindner, R.: Probabilistic analysis of LLL reduced
bases. In: in Proc. WEWoRC 2009 (2010)

27. Schnorr, C.P., Euchner, M.: Lattice basis reduction: improved practical algorithms
and solving subset sum problems. Mathematical programming 66(1), 181–199
(1994). https://doi.org/10.1007/BF01581144

28. Schnorr, C.: A hierarchy of polynomial time lattice basis reduction algorithms. The-
oretical Computer Science 53(2), 201–224 (1987). https://doi.org/10.1016/0304-
3975(87)90064-8

30

https://github.com/GG-LLL/Greedy-Global-LLL
https://github.com/GG-LLL/Greedy-Global-LLL
https://doi.org/10.1515/form.2003.009
https://eprint.iacr.org/2007/105
https://doi.org/10.1007/978-3-030-84245-1_26
https://doi.org/10.1007/978-3-030-84245-1_26
https://doi.org/10.1007/3-540-44670-2_7
https://doi.org/10.1007/978-3-030-34621-8_3
https://doi.org/10.1007/BF01457454
https://doi.org/10.1145/1576702.1576740
https://doi.org/10.1145/2930889.2930917
https://doi.org/10.1007/11426639_13
https://doi.org/10.1007/11792086_18
https://doi.org/10.1007/3-540-44670-2_12
https://doi.org/10.1007/s10623-014-9957-1
https://doi.org/10.1007/BF01581144
https://doi.org/10.1016/0304-3975(87)90064-8
https://doi.org/10.1016/0304-3975(87)90064-8

29. Shoup, V.: NTL: a library for doing number theory (2021), available at https:
//github.com/libntl/ntl

30. Yamaguchi, J., Yasuda, M.: Explicit formula for Gram-Schmidt vectors in LLL with
deep insertions and its applications. In: Kaczorowski, J., Pieprzyk, J., Pomyka la,
J. (eds.) Number-Theoretic Methods in Cryptology. pp. 142–160. Springer (2018).
https://doi.org/10.1007/978-3-319-76620-1 9

31. Yasuda, M., Yamaguchi, J.: A new polynomial-time variant of LLL with deep in-
sertions for decreasing the squared-sum of Gram–Schmidt lengths. Designs, Codes
and Cryptography 87(11), 2489–2505 (2019). https://doi.org/10.1007/s10623-019-
00634-9

32. Yasuda, M., Yokoyama, K., Shimoyama, T., Kogure, J., Koshiba, T.: Analysis of
decreasing squared-sum of gram-schmidt lengths for short lattice vectors. Jour-
nal of Mathematical Cryptology 11(1), 1–24 (2017). https://doi.org/10.1515/jmc-
2016-0008

31

https://github.com/libntl/ntl
https://github.com/libntl/ntl
https://doi.org/10.1007/978-3-319-76620-1_9
https://doi.org/10.1007/s10623-019-00634-9
https://doi.org/10.1007/s10623-019-00634-9
https://doi.org/10.1515/jmc-2016-0008
https://doi.org/10.1515/jmc-2016-0008

	A Greedy Global Framework for LLL

