
DualMS: Efficient Lattice-Based Two-Round Multi-Signature

with Trapdoor-Free Simulation∗

Yanbo Chen†

June 8, 2023

Abstract

A multi-signature scheme allows multiple signers to jointly sign a common message. In
recent years, two lattice-based two-round multi-signature schemes based on Dilithium-G were
proposed: DOTT by Damg̊ard, Orlandi, Takahashi, and Tibouchi (PKC’21) and MuSig-L by
Boschini, Takahashi, and Tibouchi (CRYPTO’22).

In this work, we propose a lattice-based two-round multi-signature scheme called DualMS.
Compared to DOTT, DualMS is likely to significantly reduce signature size, since it replaces
an opening to a homomorphic trapdoor commitment with a Dilithium-G response in the signa-
ture. Compared to MuSig-L, concrete parameters show that DualMS has smaller public keys,
signatures, and lower communication, while the first round cannot be preprocessed offline as in
MuSig-L.

The main reason behind such improvements is a trapdoor-free “dual signing simulation” of
our scheme. Signature simulation of DualMS is virtually identical the normal signing procedure
and does not use lattice trapdoors like DOTT and MuSig-L.

Keywords. Multi-signature, Dilithium, Fiat-Shamir with aborts, Lattice, Post-quantum

1 Introduction

A multi-signature scheme [IN83] allows a group of signers, each with its own individual key pair, to
run an interactive protocol to sign a common message. All signers authenticate the message together
by producing one multi-signature, which should take much smaller space than a bunch of individual
signatures. In recent years, multi-signatures have found some real-world applications in blockchain
and crypto-currency.

Multi-signatures based on Schnorr signatures. An important line of research is multi-signatures
based on Schnorr signatures. Bellare and Neven [BN06] made an early major step. They pro-
posed a provably secure scheme in the plain public-key model, where each signer just publishes
their public key in clear without any dedicated interactive key generation or proof of posses-
sion [RY07]. Their signing protocol has three rounds of interaction. Since then, a number of
two-round schemes were proposed [BCJ08, MWLD10, STV+16, MPSW19]. Unfortunately, it was
pointed out that these schemes are vulnerable to concurrent attacks [DEF+19, BLL+21]. After
that, a number of provably secure two-round schemes against concurrent attacks were proposed
[DEF+19, NRSW20, AB21, NRS21, BD21, TZ23, PW23]. Maxwell et al. [MPSW19] raised the
idea of key aggregation. In a scheme that supports key aggregation, the public keys of signers
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can be non-interactively aggregated, and the verifier only needs the aggregated key in verification.
While multi-signatures already save space for signatures, this property further reduces storage and
communication for public keys. Most subsequent proposals support key aggregation.

Lattice-based multi-signatures. In recent years, some lattice-based multi-signature schemes
were proposed. The earliest schemes [ES16, MJ19, FH19, FH20, BK20] are at least three-round.
Moreover, the security proofs of [ES16, MJ19, FH19] are incomplete, observed by [DOTT22]. The
only two lattice-based two-round proposals so far are DOTT given by Damg̊ard, Orlandi, Takahashi,
and Tibouchi [DOTT21, DOTT22] and MuSig-L recently by Boschini, Takahashi, and Tibouchi
[BTT22a]. All schemes we mentioned above are based on the Fiat-Shamir with aborts (FSwA)
paradigm [Lyu09, Lyu12], and they make use of many insights from Schnorr-based schemes. For ex-
ample, [MJ19, BTT22b] use similar techniques to Schnorr-based schemes to support key aggregation
in lattice setting. Recently, Fleischhacker et al. [FSZ22] proposed a non-interactive and concretely
efficient scheme, but it only works in the synchronized model. In that setting, each signer can only
produce one signature per time step, and only signatures produced in the same time step and on
the same message can be aggregated.

Existing two-round lattice-based multi-signature schemes. In this work, we focus on lattice-
based multi-signatures in the general setting (rather than restricted settings like the synchronized
model). Existing two-round schemes, DOTT and MuSig-L, are both based on the non-optimized
version of Dilithium-G [DLL+17], a FSwA signature scheme based on module SIS (MSIS) and LWE
(MLWE). A Dilithium-G signature contains a relatively small challenge and a Gaussian distributed
response that dominates the signature size.

DOTT is the first lattice-based two-round scheme. However, signature size of DOTT is relatively
large. It takes homomorphic trapdoor commitment schemes as a building block, and its signature
contains an opening to such a commitment in addition to a normal Dilithium-G signature. In
the instantiations of such commitment schemes based on MSIS and MLWE [GVW15, LNTW19,
DOTT22], the size of an opening is likely much larger than a Dilithium-G signature.

Compared to DOTT, signatures in MuSig-L are in the original form of Dilithium-G and do not
contain extra openings. Moreover, its first round can be preprocessed offline before knowing the
message to sign. However, the Gaussian width of the response in the signature is much larger, which
somehow blows up the whole scheme and in particular, increases the public-key and signature size.
MuSig-L also has much higher communication complexity than DOTT in typical parameter settings.

1.1 Our Contribution

In this work, we propose a lattice-based two-round multi-signature scheme, DualMS. Following
DOTT and MuSig-L, DualMS is based on Dilithium-G [DLL+17]. A DualMS signature contains two
responses instead of only one in Dilithium-G. Compared to DOTT signature, we replace the opening
with a response and thus are likely to have much smaller signatures.

Compared to MuSig-L, DualMS has smaller public keys and signatures in our sample parameters.
Aiming at about 128-bit security level, public-key size + signature size of DualMS and MuSig-L
are approximately 27 kB vs. 124 kB with at most 32 signers and 41 kB vs. 139 kB with at most
1024 signers. Moreover, the communication of DualMS is smaller by an order of magnitude in such
parameter settings.

Our scheme supports key aggregation using common techniques. We prove its security against
concurrent attacks, in the plain public-key model and the random oracle model (ROM), based on
MLWE and MSIS.

Underlying our result is a “dual signing simulation” technique that simulates multi-signatures
in the security proof without trapdoors. In the rest of this section, we will review the trapdoor-

2



based simulation techniques of DOTT and MuSig-L, explain how they affect the performance of the
schemes, and provide an overview of our scheme and simulation.

1.2 Simulation in Prior Works

Straight-line simulation. Let us consider multi-signatures based on Fiat-Shamir paradigm [FS87]
or FSwA. To produce an individual signature in such a scheme, a signer first generates a random
commitment, then hashes the commitment and the message to obtain a challenge, and finally gives a
response to the challenge. A basic framework for multi-signature is as follows. The signers first take a
round of interaction to exchange their individual commitments. They aggregate their commitments
and hash the aggregated one to derive a common challenge or a bunch of per-signer challenges.
After separately responding to the challenge(s), they exchange their responses in another round of
interaction to finally compute an aggregated response. With fewer than two rounds of “exchange
and aggregate”, the size of multi-signature grows linearly with the number of signers.

However, this basic framework is not enough to construct a provably secure scheme. In the
security proof, the reduction needs to simulate the signing procedure without the secret key. In the
case of individual signatures, the reduction is allowed to generate the commitment, the challenge, and
the response in any order. As long as it eventually outputs a valid signature, the order of simulation
is hidden in a black box. Let us take Schnorr signature as an example. On input a challenge c, the
reduction first samples a response z. Then it computes the commitment R := gz/Xc, where g is
the generator and X is the public key, and programs c into the random oracle. On the contrary, the
order matters in the setting of multi-signatures. To play the part of an honest signer, the reduction
has to give a commitment in the first round of interaction. At that time the challenge has not
been determined yet, because it depends on those commitments given by other signers who are
acted by the adversary. The reduction needs to output a correct response later when a challenge is
decided. The standard simulation technique for Schnorr signatures does not work here, because the
commitment R is decided after knowing c and z. This is an important observation: when we design
a multi-signature scheme, we should intentionally enable such “simulation in order” or so-called
straight-line simulation.

Trapdoor-based simulation techniques of existing schemes. We observe that DOTT and
MuSig-L both rely on trapdoor sampling [GPV08, MP12] to enable straight-line simulation.

Let us first recall the underlying individual signature scheme, Dilithium-G. The scheme works
over polynomial rings R = Z[X]/(f(X)) and Rq = Zq[X]/(f(X)). In Dilithium-G, the secret key is
a short vector s ∈ Rl+k. The public key consists of a matrix A ∈ Rk×l

q and a vector t := Ās ∈ Rk
q

where Ā := [A|I]. To sign message µ, the signer first samples a masking vector y ∈ Rl+k from a
discrete Gaussian distribution and computes a commitment w := Āy ∈ Rk

q . It hashes t, µ, and
w to obtain a challenge c := Hsig(t, µ,w) which is a small polynomial. It computes its response as
z := y + cs. Then it performs a rejection sampling: it aborts and restarts with some probability
depending on z and cs. As a result, the distribution of the final output z is independent of s, which
protects the secrecy of s. The signature consists of challenge c and response z. To verify it, the
verifier recovers the commitment by w := Āz− ct and checks whether c = Hsig(t, µ,w).

DOTT follows the structure of mBCJ [BCJ08, DEF+19]. They utilize a homomorphic trapdoor
commitment scheme to enable straight-line simulation. In the first round, each signer broadcasts
nonce1 w committed rather than in clear. The homomorphic property allows the signers to aggregate
the commitments. In the second round, each signer opens its commitment in addition to broadcasts
response z. The reduction does not have to really decide w when it outputs the commitment in the
first round. The trapdoor property allows it to open the commitment as any w of its choice later.
It runs the standard simulation algorithm once the challenge is determined. In the second round,

1“Commitment” appears both in the context of Fiat-Shamir signatures and commitment schemes. To avoid
ambiguity, here we use “nonce” to indicate the commitment w in signatures.
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it opens its commitment as the nonce it obtains from the simulation. The authors proposed their
scheme using a homomorphic trapdoor commitment scheme as a building block, while previously
known instantiations of lattice based trapdoor commitment [GVW15, LNTW19] and their own
instantiation [DOTT22] all rely on trapdoor sampling.

MuSig-L uses a similar structure to DWMS [AB21] and MuSig2 [NRS21], with a very different
simulation technique. The signers exchange multiple pre-commitments in the first round. The
actual individual commitment of each signer is a linear combination of its pre-commitments with
coefficients derived from a hash function. In [BTT22b], the pre-commitment vectors w1, . . . , wm

form a matrix W = [w1, . . . ,wm]. The reduction generates a trapdoor of the matrix so that it can
sample a Gaussian preimage b satisfying Wb = w′ for any w′. The reduction obtains a commitment
w′ when it runs the standard simulation. It then samples a preimage b and programs b into the
random oracle as the coefficients of linear combination. Here trapdoor sampling allows the reduction
to linearly combine W into any commitment of its choice and thus also delays the decision of the
real commitment.

Performance of existing schemes. Now let us look at how the use of trapdoor sampling affects
the performance of DOTT and MuSig-L. In Dilithium-G, a signature consists of a challenge and
a response. The challenge is relatively small. The response z is a (l + k)-dimensional Gaussian
distributed vector, where we typically set the l ≤ k. In DOTT, a signature additionally contains an
opening to a homomorphic trapdoor commitment to the k-dimensional nonce w. In the instantiation
of [DOTT22], the opening is a preimage given by trapdoor sampling of [MP12]. The trapdoor
sampling requires a wide k×m matrix W with m ≈ k log q, where q is the modulus. The Gaussian
widths of z and the preimage are not hugely different, and they only affect signature size by a
logarithmic factor. On the other hand, the dimension m ≈ k log q of a preimage is much larger than
z. Thus, the extra opening is notably larger than the original Dilithium-G signature.

In MuSig-L, each signer broadcasts a matrix W that enables trapdoor sampling instead of a
single commitment vector. This increases the communication complexity by roughly k log q times.
Moreover, pre-commitments W are commitments to Gaussian vectors, and they are combined with
coefficients b which are again Gaussian. Both distributions need to have large enough Gaussian
width to support their simulation technique. This significantly increases the Gaussian width of
response z and affects signature size. Other parameters also have to grow to keep signature forgery
hard, again increasing public-key and signature size.

1.3 Overview of Our Scheme

Observing the inefficiency of existing schemes caused by trapdoor sampling in simulation, our idea
is to construct a scheme with trapdoor-free simulation. First let us look at a variant scheme of
Dilithium-G. Now the secret key contains another short vector ū ∈ Rl′+k, and the public key
contains an additional matrix B ∈ Rk×l′

q . We also have t := Ās+ B̄ū with B̄ := [B|I]. The signer

samples two masking vectors y and p and computes the commitment w := Āy + B̄p. It computes
two responses z := y+cs and r := p+cū and performs rejection sampling separately. The signature
consists of c, z, and r, and the verifier can recover the commitment by w := Āz + B̄r − ct. This
variant scheme can be viewed as a lattice-based analogue of Okamoto signature [Oka93]. Knowing
any short enough s and ū satisfying Ās+ B̄ū = t is sufficient to produce a signature. In particular,
the signer can set s = 0 or ū = 0.

In our protocol, matrix B is derived by hashing the aggregated public key and message µ. The
signer signs in the special case of ū = 0. When signing a common message µ, the signers derive the
same matrix B. Thus, the signers can exchange their commitment w and responses z and r and
aggregate them by summing them up. This will give a correct multi-signature by linearity. More
precisely, the signers obtain a common challenge c and takes aic as their individual challenge where
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ai is the key aggregation coefficient derived from a hash function. Then it holds that

w̃ = Āz̃+ B̄r̃− ct̃,

where w̃ =
∑n

i=1 wi, z̃ =
∑n

i=1 zi, r̃ =
∑n

i=1 ri, and t̃ =
∑n

i=1 aiti are the aggregated commit-
ment/responses/public key.

In the security proof, the reduction can generate B together with a dual secret key ū satisfying
B̄ū = t. Thus, it can perform straight-line simulation by signing in the special case of s = 0. To
generate a random B with dual secret key ū, the reduction samples short vector u ∈ Rl′−1+k and
lets B := [b|B̂] with random chosen B̂ and b := t− [B̂|I]u. It follows that

B̄

[
1
u

]
= [b|B̂|I]

[
1
u

]
= b+ [B̂|I]u = t.

Therefore, it can take [1,u⊺]⊺ as the dual secret key ū. Matrix B generated in this way is compu-
tationally indistinguishable from a uniformly random one based on MLWE.

While DOTT follows the structure of mBCJ [BCJ08, DEF+19], and MuSig-L follows the structure
of DWMS [AB21] and MuSig2 [NRS21], our DualMS has an analogous structure to HBMS proposed
by Bellare and Dai [BD21]. Nevertheless, the simulation techniques of the two schemes are noticeably
different. Their reduction generates the hash-derived generator h (corresponding to B) as a random
combination of the common generator g (corresponding to A) and public key X (corresponding
to t), and it gives two responses by solving two linear equations. However, in the lattice setting,
solving random equations will unlikely give short responses. Thus, our “dual signing simulation” is
crucial for a lattice-based scheme. Generation and indistinguishability of the dual key are also more
indirect in lattice setting than discrete-logarithm setting.

In the formal specification of our scheme, we apply a simple and effective optimization. Note
that z and r both contain an MLWE error term that will be multiplied by I in matrices Ā and B̄
in the verification. Simply adding up two error terms can significantly reduce the signature size.

2 Preliminaries

Notation. For a positive number n, [n] denotes {1, . . . , n}. If x is a variable, then y := x denotes
that we assign the value of x to y. If D is a distribution, then y ← D denotes that we sample y
from D. If S is a set, then y←$S denotes that we uniformly sample y from S. If f is a real-value
function and S is a set, then f(S) denotes

∑
x∈S f(x).

2.1 Polynomial Rings and Discrete Gaussian Distribution

In this paper, most operations work over polynomial ringsR = Z[X]/(f(X)) andRq = Zq[X]/(f(X)),
where f(X) = XN +1 with N a power of two is the 2N -th cyclotomic polynomial, and q is a prime
that satisfies q = 5 mod 8. Elements over the latter ring have coefficients between −(q − 1)/2 and

(q − 1)/2. The Lp-norm for a vector of ring elements v = [
∑N−1

i=0 v1,iX
i, . . . ,

∑N−1
i=0 vm,iX

i]⊺ ∈ Rm

is defined as
∥v∥p = ∥[v1,0, . . . , v1,N−1, . . . , vm,0, . . . , vm,N−1]∥p.

We need the following lemma about invertibility over Rq.

Lemma 1 ([LN17], Lemma 2.2). Let N > 1 be a power of 2 and q a prime congruent to 5 mod 8.
The ring Rq has exactly 2qN/2−1 elements without an inverse. Moreover, every non-zero polynomial
a ∈ Rq with ∥a∥∞ <

√
q/2 has an inverse.
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We define the key set Sη ⊂ R as

Sη = {x ∈ R : ∥x∥∞ ≤ η}

and the challenge set C = Cκ ⊂ R as

C = {c ∈ R : ∥c∥∞ = 1 ∧ ∥c∥1 = κ}.

By Lemma 1, c− c′ has an inverse for any c, c′ ∈ C and c ̸= c′.
The discrete Gaussian distribution over Rm is defined as follows.

Definition 1 (Discrete Gaussian Distribution over Rm). For x ∈ Rm, the Gaussian function of

parameter v ∈ Rm and s ∈ R is defined as ρv,s(x) = exp(−π∥x− v∥22/s2). The discrete Gaussian
distribution Dm

v,s centered at v is defined as

Dm
v,s(x) =

ρv,s(x)

ρv,s(Rm)
.

In this paper, we omit the subscript v when v = 0. For any ϵ > 0, the smoothing parameter
ηϵ(Λ) [MR04] of lattice Λ is defined as the smallest s > 0 such that ρ1/s(Λ

∗ \ {0}) ≤ ϵ, where Λ∗ is

the dual lattice of Λ. By lemma 3.2 of [MR04], ηϵ(R
m) ≤

√
Nm where ϵ = 2−Nm. The parameter

s that we use in this paper exceeds ηϵ(R
m) by a factor at least

√
2. In this setting, the following

lemma holds, which is a special case of lemma 3.3 in [MP13]. We need the lemma to understand
the distribution of the response in our multi-signature, which is the sum of individual responses.

Lemma 2. Suppose s ≥
√
2 · ηϵ(Rm) with a negligible ϵ. Let xi for i ∈ [n] be independent samples

from Dm
si . Then the distribution of x =

∑n
i=1 xi is statistically close to Dm

s with s =
√∑n

i=1 s
2
i .

The next two lemmas are important for Fiat-Shamir with aborts. Both of them are adapted
from [Lyu12] by [DOTT22].

Lemma 3 ([Lyu12]). For any γ > 1,

Pr
[
∥z∥2 > γ(s/

√
2π)
√
mN : z← Dm

s

]
< γmNemN(1−γ2)/2.

Lemma 4 ([Lyu12]). Fix some t such that t = ω(
√

log(mN)) and t = o(log(mN)). For any

v ∈ Rm, if s ≥
√
2πα∥v∥2 for any positive α, then

Pr
[
M ·Dm

v,s(z) ≥ Dm
s (z) : z← Dm

s

]
≥ 1− ϵ,

where M = et/α+1/(2α2) and ϵ = 2e−t2/2.

The following regularity result adapted from [LPR13] gives the minimum Gaussian width of x
to make [A|I]x statistically close to the uniform distribution.

Lemma 5 ([LPR13]). For positive integers k and l, suppose m = l+ k ≤ poly(N). let Ā = [A|I] ∈
Rk×m

q , where A is uniformly distributed over Rk×l
q . Then with probability 1−2−Ω(N) over the choice

of A, the distribution of Āx ∈ Rk
q , where x ← Dm

s with parameter s > 2N · qk/m+2/(Nm), satisfies

that the probability of each of the qNk possible outcomes is in the interval (1 ± 2−Ω(N))q−Nk. In
particular, it is with statistical distance 2−Ω(N) of the uniform distribution over Rk

q .
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2.2 Assumptions

We restate the standard lattice hard problems, module short integer solution (MSIS) (in Hermite
Normal Form) and learning with error (MLWE).

Definition 2 (MSISq,k,l,β problem). The advantage of algorithm A against the MSISq,k,l,β problem
is defined as

AdvMSISq,k,l,β
(A) = Pr

[
[A|I] · x = 0 ∧ 0 < ∥x∥2 ≤ β : A←$Rk×l

q ;x← A(A) ∈ Rl+k
q

]
.

Definition 3 (MLWEq,k,l,η problem). The advantage of algorithm A against the MLWEq,k,l,η prob-
lem is defined as

AdvMLWEq,k,l,η
(A) =Pr

[
A(A, t) = 1 : A←$Rk×l

q ; s←$Sl+k
η ; t := [A|I] · s

]
− Pr

[
A(A, t) = 1 : (A, t)←$Rk×l

q ×Rk
q

]
.

2.3 Two-Round Multi-Signatures with Key Aggregation

Our definition of multi-signature schemes follows [NRS21]. The definition specially considers those
signing protocols with the following features: 1) the signers interact with each other by broadcasting
protocol messages round by round, 2) the round number is two, and 3) the final multi-signature is
simply an aggregation of all second-round protocol messages. We regard the second-round protocol
message as the individual signature of each signer. We describe the signing protocol as three algo-
rithms Sign1, Sign2, and SAgg corresponding to three stages. They are locally run by each signer.
The signers exchange their protocol messages between these stages. Algorithms Sign1 and Sign2 out-
put a protocol message (for Sign2 it is an individual signature) for the signer to broadcast, and Sign2
and SAgg takes as inputs protocol messages from other signers. A multi-signature is finally output
by SAgg. The signers keep states between Sign1 and Sign2, while SAgg does not take any secret
state. Hence, any designated aggregator who collects the signatures can run SAgg to produce the
multi-signature. The property of key-aggregation [MPSW19] allows to non-interactively aggregate
public keys using a key aggregation algorithm KAgg. The verification algorithm takes as inputs an
aggregated key instead of a list of individual keys.

Definition 4 (Two-round multi-signatures with key aggregation). A two-round multi-signature
scheme MS with key aggregation consists of algorithms with syntax defined as follows:

• Setup() → pp: The parameter generation algorithm outputs a set of public parameters pp.
Throughout, we assume pp is given as an implicit input to all other algorithms.

• KGen()→ (sk, pk): The key generation algorithm outputs a secret key sk and a public key pk.

• KAgg(L) → apk: The deterministic key aggregation algorithm takes as inputs a set of public
keys L = {pk1, . . . , pkn} and outputs an aggregated public key apk.

• Sign1(sk1, L, µ) → (st1,msg1): The first-stage signing algorithm takes as inputs a secret key
sk1, a set of public keys L = {pk1, . . . , pkn}, and a message µ and outputs a state st1 and a
protocol message msg1.

• Sign2(st1, {msg2, . . . ,msgn})→ σ1: The second-stage signing algorithm takes as inputs a state
st1 and a set of protocol messages {msg2, . . . ,msgn} and outputs an individual signature σ1.

• SAgg({σ1, . . . , σn}) → σ̃: The signature aggregation (also the third-stage signing algorithm)
takes as inputs a set of individual signatures {σ1, . . . , σn} and outputs a multi-signature σ̃.

• Vf(apk, µ, σ̃) → 0/1: The deterministic verification algorithm takes as inputs an aggregated
public key apk, a message µ, and a multi-signature σ̃ and outputs 0 or 1.
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Sign({(sk1, pk1), . . . , (skn, pkn)}, µ)
L := {pk1, . . . , pkn}
for i ∈ [n] do (sti,msgi)← Sign1(ski, L, µ)

for i ∈ [n] do σi ← Sign2(sti, {msgj}j∈[n]\{i})

σ̃ := SAgg({σ1, . . . , σn})
return σ̃

Figure 1: Algorithm Sign that defines completeness.

Definition 5 (ε-completeness). Let algorithm Sign be as described in Fig. 1. A two-round multi-
signature scheme MS with key aggregation is said to be ε-complete if fixing any positive integer n,
any pp ∈ Setup(), any (ski, pki) ∈ KGen() for i ∈ [n], and any µ ∈ {0, 1}∗,

Pr[Vf(KAgg(L), µ, σ̃) = 1 : σ̃ ← Sign({(sk1, pk1), . . . , (skn, pkn)}, µ)] ≥ ε,

where L = {pk1, . . . , pkn}.

Below we define the unforgeability of a multi-signature scheme. In the security game, adversary
A is given a target public key pk1. Its goal is to forge a multi-signature under a public-key list L∗

of its choice while required to contain pk1. In a chosen-message attack game, A can concurrently
launch many signing sessions with an honest signer having public key pk1. In each session, A plays
the part of all other signers, with public keys of its choices. To formalize the chosen-message attack,
A has the access to two signing oracles Sign1 and Sign2, corresponding to the first and the second
stages of the signing protocol. Sign1 takes necessary inputs for launching a signing session, i.e.,
a public key list and a message to sign. It returns the first-round protocol message of the honest
signer. Sign2 takes as inputs the first-round protocol messages from other signers and outputs the
individual signature of the honest signer. States are kept between Sign1 and Sign2. When A calls
Sign2, it is required to specify a session ID sid to indicate which session it wants to proceed. Since
SAgg involves no secret state, there is no need for a corresponding oracle. Note that in the setting
of multi-signatures, A can win by forging a signature it has queried under different public-key lists
from L∗.

Definition 6 (Unforgeablility against chosen-message/key-only attack). The advantage of adversary
A against the unforgeability against chosen-message attack (UF-CMA) of a multi-signature scheme
MS in the ROM is defined as

AdvUF-CMA
MS (A) = Pr[UF-CMAMS(A) = 1],

where the game UF-CMAMS is described in Fig. 2. The unforgeability against key-only attack (UF-
KOA) is defined the same as UF-CMA except that A does not have the access to Sign1 and Sign2.

3 Our DualMS Scheme

3.1 Scheme Description

Fig. 3 describes our DualMS scheme. The parameters are listed in Table 1. We explain our con-
struction as below.
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UF-CMAMS(A)
pp← Setup()

(sk1, pk1)← KGen()

ctr := 0

S := ∅; Q := ∅
(L∗, µ∗, σ̃∗)← ASign1,Sign2,H(pp, pk1)

if (pk1 /∈ L∗) ∨ (L∗, µ∗) ∈ Q then

return 0

return Vf(KAgg(L∗), µ∗, σ̃∗)

Sign1({pk2, . . . , pkn}, µ)
ctr := ctr + 1

sid := ctr; S := S ∪ {sid}
L := {pk1, . . . , pkn}
Q := Q∪ {(L, µ)}
(msg1, stsid)← Sign1(sk1, L, µ)

return msg1

Sign2(sid, {msg2, . . . ,msgn})

if sid /∈ S then return ⊥
σ1 ← Sign2(stsid, {msg2, . . . ,msgn})
S := S \ {sid}
return σ1

Figure 2: The UF-CMA security game against multi-signature scheme MS in the ROM, where H
denotes the random oracle.

Setup, key generation, and key aggregation. In the setup stage, a matrix Ā := [A|I] ∈
R

k×(l+k)
q is generated as a public parameter with A uniformly chosen from Rk×l

q . The secret key

s of each signer is a short vector uniformly chosen from Sl+k
η . Recall that η is the maximum L∞-

norm. The public key is t := Ās. Note that A and t constitute a MLWE sample, which ensures
the secrecy of s. The key aggregation algorithm aggregates a list of public keys L = {t1, . . . , tn}
into an aggregated public key. We use a hash function Hagg to compute a small polynomial ai :=
Hagg(L, ti) ∈ C for each ti ∈ L. Then L is aggregated into t̃ :=

∑n
i=1 aiti. Here L is an unordered

set, and duplicate keys ti = tj will make ai = aj .

Signature generation. Now we describe the signing protocol of DualMS. In the protocol, each
signer runs the same procedure, so we describe the protocol by showing the behavior of one signer.
We assign the signer index 1. It has secret key s1 and public key t1. First, the signer computes
the aggregated key t̃ := KAgg(L). Then it uses a hash function Hcom to derive a matrix B :=
Hcom(t̃, µ) ∈ Rk×l′

q and lets B̄ := [B|I] ∈ Rl′+k
q . It computes its commitment w1 := Āy1+ B̄r1 with

y1 ← Dl+k
s and r1 ← Dl′+k

s′ . It broadcasts w1 to other signers as its first-round protocol message.
Once the signer receives all commitments w2, . . . , wn from the other signers, it aggregates

them with its own commitment into an aggregated commitment w̃ :=
∑n

i=1 wi. Then it uses a
hash function Hsig to derive a short challenge c := Hsig(t̃, µ, w̃) ∈ C. It computes its response
z1 := y1+a1cs1 where a1 = Hagg(L, t1). Here the distribution of z1 is discrete Gaussian centered at
a1cs1 depending on secret key s1. Following the FSwA paradigm [Lyu09, Lyu12], the signer runs a
rejection sampling. Namely, it aborts except with probability min(1, Dl+k

s (z1)/(M ·Dl+k
a1cs1,s(z1))).

As a result, when it passes the rejection sampling, the distribution of z1 will center at 0, and thus s1
keeps secret. See a formal analysis in Section 4.1. The signer broadcasts (c, z1, r1) as its individual
signature if it does not abort. Otherwise, the signers may restart the protocol until no signer aborts
here.

Finally, if all individual signatures have the same challenge c, then they can be aggregated into
a multi-signature. This aggregating procedure does not involve any secret states of the signers and
thus can be executed by a designated aggregator rather than the signers. The aggregator splits each
zi into z′i ∈ Rl and z′′i ∈ Rk and similarly, ri into r′i ∈ Rl′ and r′′i ∈ Rk. Then it aggregates z′1, . . . ,
z′n into z̃, r′1, . . . , r

′
n into r̃, and the remaining k-dimensional vectors into ẽ.
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Setup()

A←$Rk×l
q

Ā := [A|I]
return Ā

KGen()

s←$Sl+k
η

t := Ās

return (s, t)

KAgg(L)

{t1, . . . , tn} := L

for i ∈ [n] do

ai := Hagg(L, ti) ∈ C

t̃ :=
∑n

i=1 aiti

return t̃

Vf(apk, µ, σ̃)

t̃ := apk

(c, z̃, r̃, ẽ) := σ̃

B := Hcom(t̃, µ)

w̃ := Az̃+Br̃+ ẽ− ct̃

return J∥z̃∥2 ≤ Bn ∧ ∥r̃∥2 ≤ B′
n

∧∥ẽ∥2 ≤ B′′
n ∧ Hsig(t̃, µ, w̃) = cK

Sign1(sk1, L, µ)

s1 := sk1

{t1, . . . , tn} := L

a1 := Hagg(L, t1)

t̃ := KAgg(L)

B := Hcom(t̃, µ) ∈ Rk×l′
q

B̄ := [B|I] ∈ R
k×(l′+k)
q

y1 ← Dl+k
s

r1 ← Dl′+k
s′

w1 := Āy1 + B̄r1 ∈ Rk
q

return ((s1, t̃, µ, a1,y1, r1,w1),w1)

Sign2(st1, {msg2, . . . ,msgn})
(s1, t̃, µ, a1,y1, r1,w1) := st1

for i = 2, . . . , n do wi := msgi

w̃ :=
∑n

i=1 wi

c := Hsig(t̃, µ, w̃) ∈ C

z1 := y1 + a1cs1

With prob. min(1, Dl+k
s (z1)/(M ·Dl+k

a1cs1,s(z1))):

return (c, z1, r1)

Otherwise:

return ⊥

SAgg({σ1, . . . , σn})
for i = 1, . . . , n do (ci, zi, ri) := σi

if ∃i ∈ [n], ci ̸= c1 then return ⊥
for i = 1, . . . , n do

[z′⊺i , z′′⊺i ] := z⊺i

[r′⊺i , r′′⊺i ] := r⊺i

z̃ :=
∑n

i=1 z
′
i ∈ Rl

r̃ :=
∑n

i=1 r
′
i ∈ Rl′

ẽ :=
∑n

i=1(z
′′
i + r′′i ) ∈ Rk

return (c1, z̃, r̃, ẽ)

Figure 3: Our DualMS scheme.

In the aggregation procedure, we observe that zi and ri both contain a k-dimensional MLWE error
term that will be multiplied by I for verification. We therefore optimize the scheme by aggregating
all the k-dimensional error terms. Compared to directly aggregating zi’s and ri’s separately, the
optimization cuts k dimensions from the final signature. Note that we only apply the optimization
in the very last step. Alternatively, we can also let each signer just produce one error vector at the
beginning. That will further improve efficiency a bit while complicate the presentation hereinafter.
See Appendix C for a more detailed discussion.
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Parameter Description

n Number of parties
N A power of two defining the degree of f(X)
f(X) = XN + 1 The 2N -th cyclotomic polynomial
q = 5 mod 8 Prime modulus
R = Z[X]/f(X) Cyclotomic ring
Rq = Zq[X]/f(X) Ring
k The height of random matrix A
l The width of random matrix A
m = l + k ≤ poly(N) The width of matrix Ā
l′ The width of matrix B given by Hcom

m′ = l′ + k ≤ poly(N) The width of matrix B̄
γ Parameters defining the tail bound of Lemma 3

B = γ(s/
√
2π)
√
Nl The maximum L2-norm of response z′1

Bn =
√
nB The maximum L2-norm of aggregated response z̃

B′ = γ(s′/
√
2π)
√
Nl′ The maximum L2-norm of response r′1

B′
n =
√
nB′ The maximum L2-norm of aggregated response r̃

B′′ = γ(
√
s2 + s′2/

√
2π)
√
Nk The maximum L2-norm of error z′′1 + r′′1

B′′
n =
√
nB′′ The maximum L2-norm of aggregated error r̃

κ The maximum L1-norm of challenge vector c

C = {c ∈ R : ∥c∥∞ = 1 ∧ ∥c∥1 = κ} Challenge set where |C| =
(
N
κ

)
2κ

η The maximum L∞-norm of the secret s
Sη Key set

T = κ2η
√
Nm The maximum L2-norm of a1cs1

η′ The maximum L∞-norm of the secret u
Sη′ Dual key set

T ′ = κ2η′
√
Nm′ The maximum L2-norm of a1cū

α Parameter defining s and M based on Lemma 4

t = ω(
√
log(N)) ∧ t = o(log(N)) Parameter defining M based on Lemma 4

s > max(
√
2παT, 2N · qk/m+2/(Nm)) Deviation parameter of the Gaussian distribution of y1

s′ > max(
√
2παT ′, 2N · qk/m′+2/(Nm′)) Deviation parameter of the Gaussian distribution of r1

M = et/α+1/(2α2) The expected number of restarts of a single party
Mn = Mn The expected number of restarts of all n parties

Table 1: Parameters of DualMS.

Verification. Given an aggregated key t̃, a message µ and a multi-signature (c, z̃, r̃, ẽ), the verifier
recovers the aggregated commitment w̃ := Az̃+Br̃+ẽ−ct̃. It then verifies that c = Hsig(t̃, µ, w̃) and
that z̃, r̃, and ẽ are short enough. We will show the completeness of DualMS in the next subsection.

Simulation. We will give a formal security proof for DualMS in the next section. Here let us briefly
sketch how the reduction performs straight-line simulation. When the adversary queries Hcom, the

reduction answers with B := [b|B̂], where B̂ is uniformly chosen from R
k×(l′−1)
q and b := t1− [B̂|I]u

with u←$Sl′−1+k
η′ . Consequently, the reduction knows a dual secret key ū := [1,u⊺]⊺ satisfying

B̄ū = t1.
In the signing protocol, the reduction computes its commitment as w1 := Āz1 + B̄p with

z1 ← Dl+k
s and p ← Dl′+k

s′ . In the second stage, the reduction generates its individual signature
with r1 := p+ a1cū. The reduction also performs rejection sampling here to keep ū secret.
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3.2 Correctness and Number of Repetitions

We show that DualMS is correct and the expected number of restarts is approximately Mn, i.e.,
DualMS is ε-complete with ε ≈ 1/Mn.

We need the following results implied by Lemma 8 in Section 4.1: conditioned on any commitment
w1 sent out in the first round and any a1, c: 1) the signer passes rejection sampling with probability
approximately 1/M ; 2) the distribution of z1 is statistically close to Dl+k

s . The fact that these results
hold for any w1, a1, and c1 means that no malicious signer can affect them. We know immediately
from the first result that all signers pass rejection sampling together with probability about 1/Mn.

Then we show that if no signer aborts, then the signing protocol outputs a valid multi-signature
except with small probability bounded by Lemma 3. Consider each individual signature produced
by the signing protocol, for all i ∈ [n] we have

wi = Āyi + B̄ri = Ā(zi − aicsi) + B̄ri = Āzi + B̄ri − aicti = Az′i +Br′i + z′′i + r′′i − aicti.

For the multi-signature given by the protocol, we have

w̃ =

n∑
i=1

wi = A

n∑
i=1

z′i +B

n∑
i=1

r′i +

n∑
i=1

(z′′i + r′′i )− c

n∑
i=1

aiti = Az̃+Br̃+ ẽ− ct̃.

Thus, the verifier correctly recovers the aggregated commitment given such a multi-signature, so the
condition c = Hsig(t̃, µ, w̃) always holds.

It remains to consider conditions ∥z̃∥2 ≤ Bn, ∥r̃∥2 ≤ B′
n, and ∥ẽ∥2 ≤ B′′

n. For all i ∈ [n], we know

that ri is sampled from Dl′+k
s′ , and by Lemma 8, the distribution of zi is statistically close to Dl+k

s .

By Lemma 2, the distributions of z̃, r̃, and ẽ are statistically close to Dl
s
√
n
, Dl′

s′
√
n
, and Dk√

n(s2+s′2)

respectively. Then Lemma 3 bounds the probability that ∥z̃∥2, ∥r̃∥2, and ∥ẽ∥2 exceed Bn, B
′
n, B

′′
n,

respectively. Setting the parameter γ in Lemma 3 as 1.1 gives a reasonably small probability, and
γ =
√
3 is enough to yield an unnecessarily small bound (

√
3/e)Nm.

3.3 Security

We have the following security result for DualMS.

Theorem 6 (UF-CMA of DualMS). For any τ -time adversary A against the UF-CMA of DualMS
that makes at most Qh queries to each random oracle and launches at most Qs sessions with the
signing oracles, there exist algorithms B, D, and D′ such that

AdvUF-CMA
DualMS (A) ≤ Qh ·

(√
Q2

h

|C|
+Qh

√
QhAdvMSISq,k,1+l+l′,β (B)

+AdvMLWEq,k,l,η
(D) + (Qh − 1)AdvMLWEq,k,l′−1,η′ (D′)

+ Qs(
3ϵ

2M
+ 2−Ω(N)) +

2Q2
h

|C|
+ 3(

2

qN/2
)k
)
,

where β = 8κ
√

n̂2κ3 +B2
n +B′2

n +B′′2
n , n̂ is the maximum number of duplicate keys in a public key

list, ϵ = 2e−t2/2, t is a parameter as specified in Table 1, and the running time of B, D, and D′ are
essentially 4τ , τ , and τ , respectively.

Let us explain the security guarantees given by this theorem. We can choose t to make ϵ
and hence the term Qs(2ϵ/M + 2−Ω(N)) small enough. The term 3(2/qN/2)k is clearly small. We
also set κ to make |C| large enough. A common setting when N = 256 is κ = 60, which gives
|C| > 2256. Among the two Q2

h/|C| terms in the formula, the square-rooted one is dominant. Due
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to the quadratic loss and the outer factor Qh, |C| > 2256 only permits at most 64 bits of security
(i.e., the adversary need Qh ≥ 264 to achieve constant success probability). It remains to set the
parameters to make MSISq,k,1+l+l′,β , MLWEq,k,l,η, and MLWEq,k,l′−1,η′ hard enough. Note that
AdvMSISq,k,1+l+l′,β (B) is also affected by quadratic and multiplicative loss. For about 64-bit security,

we need AdvMSISq,k,1+l+l′,β (B) ≈ 2−448. AdvMLWEq,k,l′−1,η′ (D′) is affected by an extra factor (Qh−1)
compared to AdvMLWEq,k,l,η

(D). They are required to be about 2−128 and 2−64 respectively.
Our scheme allows duplicate public keys unlike [BTT22b]. We consider the number of duplicates

as an extra parameter n̂. By doing this we can more accurately show how security is affected by
allowing duplicates.

An important type of attacks against multi-signature schemes is to concurrently launch many
signing sessions and linearly combine those signatures from the honest signer into a forged one
[DEF+19, BLL+21]. Our scheme resists such attacks for a similar reason to [DEF+19, BD21,
DOTT22]. Linear combination works only when matrix Ā and B̄ are both fixed. However, different
messages lead to different matrix B̄ with high probability, which prevents the attacker from forging
signatures on new messages.

4 Proof of Security

In this section, we prove Theorem 6.

Assumptions about random oracle queries. Before we begin our proofs, let us make the
following assumptions about the adversary’s random oracle queries.

• The adversary queries Hcom(t̃, µ) before it queries Hsig(t̃, µ, w̃) for any w̃.

• The adversary queries Hagg(L, ti) for every ti ∈ L before it queries Sign1({t2, . . . , tn}, µ),
where L = {t∗1, t2, . . . , tn}.

• The adversary queries Hsig(t̃, µ, w̃) before it queries Sign2(sid, {w2, . . . ,wn}), where t̃ is the
aggregated public key corresponding to that signing session, w̃ =

∑n
i=1 wi, and w1 is the

nonce returned by Sign1 in that session.

• The adversary queries all hash queries that related to its forgery (i.e., all queries that will be
made in verification) before it outputs the forgery.

These assumptions are without loss of generality in the sense that given an arbitrary adversary
A making at most Qh queries to each random oracles and launching Qs sessions with the signing
oracles, we can easily construct an adversary A′ as a “random oracle middle man” that satisfies
the assumptions, wins with the same probability as A, and makes at most 2Qh + n(Qs + 1) queries
to each random oracles. It is reasonable to consider Qh as the dominant term, as Qh is related to
the local computation time of a real-world attacker. Hence, the security loss introduced here is not
essential.

Selective security. We prove Theorem 6 in a modular way. We first reduce UF-CMA to selective
UF-CMA (sel-UF-CMA) (Lemma 7), then sel-UF-CMA to selective UF-KOA (sel-UF-KOA) and
MLWE (Lemma 9), and finally sel-UF-KOA to MSIS and MLWE (Lemma 10). Let us define the sel-
UF-CMA and the sel-UF-KOA of our DualMS. In the selective security game, the adversary selects
at the beginning the index of a Hcom query, and its goal is to forge a multi-signature corresponding
to that Hcom query. Precisely, the sel-UF-CMADualMS security game has the following differences from
UF-CMADualMS. The adversary A = (A1,A2) is split into two stages. The first stage A1 outputs
an index i∗ without making any oracle queries. The second stage A2 has the access to the random
oracles and the signing oracles and outputs its forgery but without a message (namely, it outputs a
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public-key list L∗ and a multi-signature σ̃∗). Suppose the i∗-th Hcom query is Hcom(t̃
∗, µ∗). For A

to win, we require that L∗ includes target public key t∗1, A has not queried (L∗, µ∗) to the signing
oracle, L∗ is aggregated into t̃∗, and Vf(t̃∗, µ∗, σ̃∗) = 1. Also see the definition in Fig. 5 where G0

is exactly sel-UF-CMADualMS. The sel-UF-KOADualMS security game is sel-UF-CMADualMS without the
signing oracles.

Apparently, UF-CMA reduces to sel-UF-CMA with factor Qh loss of success probability. A
reduction that guesses i∗ ∈ [Qh] at the beginning is sufficient to prove that.

Lemma 7 (UF-CMA to sel-UF-CMA). For any τ -time adversary A against the UF-CMA of
DualMS that makes at most Qh queries to each random oracle, there exists an adversary B such
that AdvUF-CMA

DualMS (A) ≤ Qh ·Advsel-UF-CMA
DualMS (B) and the running time of B is essentially τ .

4.1 Straight-Line Simulation

This subsection is a preparation for reducing sel-UF-CMA to sel-UF-KOA. We bound the statistical
distance between the output distributions of the normal signing oracle and the simulated one. Note
that an adversary can query Sign1 to obtain a commitment w and then choose what challenge c
it wants Sign2 to respond according to w. We have to prevent the adversary from distinguishing
the output distributions of Sign2 with strategically chosen c. Therefore, we need to analyze: 1) the
distributions of w output by Sign1 and 2) the distributions of z and r output by Sign2 for any c,
conditioned on any w output by Sign1 in the same session.

We define two procedures Trans and Sim in the following lemma, corresponding to the normal
signing procedure and the dual signing simulation of DualMS, respectively. In both procedures,
out1, out2 correspond to the output of Sign1, Sign2, respectively. Besides bounding the statistical
distance between normal and simulated signing, the lemma also bounds the success probability of
rejection sampling.

Lemma 8. Let integers k, l, l′, m, and m′ satisfy l + k = m ≤ poly(N) and l′ + k = m′ ≤
poly(N). Fix some t such that t = ω(

√
log(N)) and t = ω(

√
log(N)) and t = o(log(N)).2 Let

T = κ2η
√
N(l + k) ≥ max∥cs∥2 and T ′ = κ2η′

√
N(l′ + k) ≥ max∥cū∥2. For any α, let s >

max(
√
2παT, 2N · qk/m+2/(Nm)), s′ > max(

√
2παT ′, 2N · qk/m′+2/(Nm′)), M = et/α+1/(2α2), and

ϵ = 2e−t2/2. Let Trans and Sim be procedures with specific and public inputs as described in Fig. 4.

Then with probability 1− 2−Ω(N) over the choices of A and B̂ uniformly over Rk×l
q ×R

k×(l′−1)
q , for

any s ∈ Sl+k
η , u ∈ Sl′−1+k

η′ , the following claims hold:

1. The distributions of out1 (i.e., w) in Trans and Sim are identical.

2. In both Trans and Sim, for any c ∈ C ′ and conditioned on any out1 (i.e., w), it holds that

1− ϵ

M
− 2−Ω(N) ≤ Pr[out2 ̸=⊥ |w ] ≤ 1

M
+ 2−Ω(N).

3. For any c ∈ C ′ and conditioned on any out1 (i.e., w), the statistical distance between the
distributions of out2 in Trans and Sim is at most 3ϵ/(2M) + 2−Ω(N).

Proof. Claim 1 is obvious, as y, r in Trans are identical to z, p in Sim. However, we still need to
examine the distribution of out1 = w for proving other claims. We first look at w in Trans. Split r
into r = [r1, r

⊺
2 ]

⊺. Then we have

B̄r = r1(t− [B̂|I]u) + [B̂|I]r2.
2Since m ≤ poly(N) and m′ ≤ poly(N), we have log(Nm) = Θ(logN) and log(Nm′) = Θ(logN), so t = o(log(N))

is enough for invoking Lemma 4.
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Specific Inputs:

s ∈ Sl+k
η ; ū := [1,u⊺]⊺ where u ∈ Sl′−1+k

η′

Public Inputs:

c ∈ C′ = {ab : a, b ∈ C}
Ā := [A|I] where A ∈ Rk×l

q ; t := Ās

B̄ := [b|B̂|I] where B̂ ∈ R
k×(l′−1)
q and b := t− [B̂|I]u

Trans(s)

y← Dl+k
s

r← Dl′+k
s′

out1 := w := Āy + B̄r

z := y + cs

With prob. min(1, Dl+k
s (z)/(M ·Dl+k

cs,s(z))):

out2 := (z, r)

Otherwise: // Abort

out2 :=⊥

Sim(ū)

p← Dl′+k
s′

z← Dl+k
s

out1 := w := Āz+ B̄p

r := p+ cū

With prob. min(1, Dl′+k
s′ (r)/(M ·Dl′+k

cū,s′(r))):

out2 := (z, r)

Otherwise: // Abort

out2 :=⊥

Figure 4: Procedures Trans and Sim of Lemma 8.

By Lemma 5, with probability 1− 2−Ω(N) over the choice of B̂, [B̂|I]r2 is within statistical distance
2−Ω(N) of the uniform distribution. Hence, B̄r and w are also within distance 2−Ω(N) of the uniform
distribution. Similarly, in Sim, Āz and w are within statistical distance 2−Ω(N) of the uniform
distribution.

Let us turn to claim 2 and look at Trans first. The conditional distribution of y on any w is
within statistical distance 2−Ω(N) of Dm

s , since3

Pr[y = y∗ |w = w∗ ] =
Pr[w = w∗ |y = y∗ ] · Pr[y = y∗]

Pr[w = w∗]

=
Pr
[
B̄r = w∗ − Āy∗] · Pr[y = y∗]

Pr[w = w∗]

=
(1± 2−Ω(N))q−Nk ·Dm

s (y∗)

(1± 2−Ω(N))q−Nk

= (1± 2−Ω(N))Dm
s (y∗).

Consider an arbitrary c ∈ C ′. Let v = cs, and Sv = {z ∈ Rm : M · Dm
v,s(z) ≥ Dm

s (z)}. Since
z = y + cs, we have

Pr[z = z∗ |w ] = (1± 2−Ω(N))Dm
v,s(z

∗). (1)

3In this proof, notation y∗ (and z∗, r∗, w∗, etc.) appear in an equation to denote some specific value if we view
y as a random variable distributed according to the Trans or Sim.
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Thus,

Pr[out2 ̸=⊥ |w ] ≥
∑

z∈Rm

(1− 2−Ω(N))Dm
v,s(z) ·min(1,

Dm
s (z)

M ·Dm
v,s(z)

)

≥
∑
z∈Sv

Dm
s (z)

M
+
∑
z/∈Sv

Dm
v,s(z)− 2−Ω(N)

≥
∑
z∈Sv

Dm
s (z)

M
− 2−Ω(N) ≥ 1− ϵ

M
− 2−Ω(N).

In the last inequality, we have used Lemma 4. It also holds that

Pr[out2 ̸=⊥ |w ] ≤
∑

z∈Rm

(1 + 2−Ω(N))Dm
v,s(z) ·min(1,

Dm
s (z)

M ·Dm
v,s(z)

)

≤
∑

z∈Rm

Dm
v,s(z) ·

Dm
s (z)

M ·Dm
v,s(z)

+ 2−Ω(N) =
1

M
+ 2−Ω(N).

Similar arguments can show that in Sim, the conditional distribution of p on any w is within
statistical distance 2−Ω(N) of Dm′

s′ and give the same bound for Pr[out2 ̸=⊥ |w ].
It remains to prove claim 3. We already have Pr[out2 =⊥ |w ] in Trans and Sim. It suffices to only

consider Pr[out2 = (z, r) |w ] with z ∈ Rm and r ∈ Rm′
. In both procedures, Pr[out2 = (z, r) |w ] =

0 when Āz+ B̄r ̸= w + ct. Define function P over Rm ×Rm′
as

P (z, r) =
Dm

s (z)Dm′

s′ (r)

Mq−Nk
.

We are going to show that both in Trans and Sim,∑
z∈Rm,r∈Rm′

Āz+B̄r=w+ct

|Pr[out2 = (z, r) |w ]− P (z, r)| ≤ ϵ

M
+ 2−Ω(N). (2)

This will prove claim 3 when combined with claim 2. Again, we prove the bound for Trans, and a
similar argument applies to Sim.

Define Pw as

Pw(z∗, r∗) =
Dm

s (z∗) ·Dm′

s′ (r
∗)

M · Pr
[
B̄r = w + ct− Āz∗

] ,
and P ′

w as

P ′
w(z∗, r∗) = Dm

v,s(z
∗) ·min(1,

Dm
s (z∗)

M ·Dm
cs,s(z

∗)
) · Dm′

s′ (r
∗)

Pr
[
B̄r = w + ct− Āz∗

] .
By Lemma 5, we have ∑

z∈Rm,r∈Rm′

Āz+B̄r=w+ct

|Pw(z, r)− P (z, r)| ≤ 2−Ω(N). (3)

For z∗ and r∗ satisfying Āz∗ + B̄r∗ = w + ct, we have

Pr[out2 = (z∗, r∗) |w ]

= Pr[z = z∗ ∧ out2 ̸=⊥ |w ] · Pr[r = r∗ |w ∧ z = z∗ ]

= Pr[z = z∗ ∧ out2 ̸=⊥ |w ] · Pr
[
r = r∗

∣∣ B̄r = w + ct− Āz∗
]

= Pr[z = z∗ |w ] ·min(1,
Dm

s (z∗)

M ·Dm
v,s(z

∗)
) · Dm′

s′ (r
∗)

Pr
[
B̄r = w + ct− Āz∗

] .
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By Eq. (1), ∑
z∈Rm,r∈Rm′

Āz+B̄r=w+ct

|Pr[out2 = (z, r) |w ]− P ′
w(z, r)| ≤ 2−Ω(N). (4)

Finally,∑
z∗∈Rm,r∗∈Rm′

Āz∗+B̄r∗=w+ct

|P ′
w(z∗, r∗)− Pw(z∗, r∗)|

=
∑

z∗∈Rm,r∗∈Rm′

Āz∗+B̄r∗=w+ct

Dm′

s′ (r
∗)

Pr
[
B̄r = w + ct− Āz∗

] ∣∣∣∣Dm
v,s(z

∗) ·min(1,
Dm

s (z∗)

M ·Dm
v,s(z

∗)
)− Dm

s (z∗)

M

∣∣∣∣
=

∑
z∗∈Sv,r

∗∈Rm′

Āz∗+B̄r∗=w+ct

Dm′

s′ (r
∗)

Pr
[
B̄r = w + ct− Āz∗

] ∣∣∣∣Dm
s (z∗)

M
− Dm

s (z∗)

M

∣∣∣∣
+

∑
z∗ /∈Sv,r

∗∈Rm′

Āz∗+B̄r∗=w+ct

Dm′

s′ (r
∗)

Pr
[
B̄r = w + ct− Āz∗

] ∣∣∣∣Dm
v,s(z

∗)− Dm
s (z∗)

M

∣∣∣∣
≤

∑
z∗ /∈Sv,r

∗∈Rm′

Āz∗+B̄r∗=w+ct

Dm
s (z∗)Dm′

s′ (r
∗)

M · Pr
[
B̄r = w + ct− Āz∗

]
=

1

M

∑
z∗ /∈Sv

Dm
s (z∗)

Pr
[
B̄r = w + ct− Āz∗

] ∑
r∗∈Rm′

B̄r∗=w+ct−Āz∗

Dm′

s′ (r
∗)

=
1

M

∑
z∗ /∈Sv

Dm
s (z∗) ≤ ϵ

M
.

Combined with Eqs. (3) and (4), this proves Eq. (2) . A similar argument can show Eq. (2) for
Sim.

4.2 Reduction from sel-UF-CMA to sel-UF-KOA and MLWE

Lemma 9 (sel-UF-CMA to sel-UF-KOA and MLWE). For any τ -time adversary A against the
sel-UF-CMA of DualMS that makes at most Qh queries to each random oracle and launches at most
Qs sessions with the signing oracles, there exist algorithms B and D such that

Advsel-UF-CMA
DualMS (A) ≤ Advsel-UF-KOA

DualMS (B) + (Qh − 1)AdvMLWEq,k,l′−1,η′ (D)

+Qs(
3ϵ

2M
+ 2−Ω(N)) +

Qh(Qh − 1)

|C|
+ (

2

qN/2
)k,

where ϵ = 2e−t2/2, t is a parameter as specified in Table 1, and the running time of B and D are
essentially τ .

Proof. Let G0 be the original sel-UF-CMADualMS game. We define a series of hybrid games G1, G2,0,
. . . , G2,Qh

, and G3. They are all described in Fig. 5, where we omit normal random oracles Hagg

and Hsig.
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G0(A) – G3(A)
A←$Rk×l

q

Ā := [A|I]
s1 ←$Sl+k

η

t∗1 ←$ Ās1

Tu := ∅ // G2,0 – G3

ctr := 0; S := ∅; Q := ∅
Orc := {Sign1,Sign2,

Hagg,Hcom,Hsig}
(st, i∗)← A1(Ā, t1) // selective

(L∗, σ̃∗)← AOrc
2 (st)

if t∗1 /∈ L∗ ∨ (L∗, µ∗) ∈ Q
∨KAgg(L∗) ̸= t̃∗ then

return 0

return Vf(t̃∗, µ∗, σ̃∗)

Hcom(t̃, µ)

if Tcom[t̃, µ] ̸=⊥ then

return Tcom[t̃, µ]

B←$Rk×l′
q // G0

if |Tcom| = i∗ − 1 then // G1 – G3

B←$Rk×l′
q // G1 – G3

else // G1 – G3

B̂←$R
k×(l′−1)
q // G1 – G3

v←$Rk
q // G1

if |Tcom| < j then // G2,j – G3

u←$Sl′−1+k
η′ // G2,j – G3

Tu[t̃, µ] := u // G2,j – G3

v := [B̂|I]u // G2,j – G3

else // G2,j – G3

v←$Rk
q // G2,j – G3

b := t∗1 − v // G1 – G3

B := [b|B̂] // G1 – G3

Tcom[t̃, µ] := B

if |Tcom| = i∗ then

(t̃∗, µ∗) := (t̃, µ) // selective

return Tcom[t̃, µ]

Sign1({t2, . . . , tn}, µ) // G0

ctr := ctr + 1

sid := ctr; S := S ∪ {sid}
L := {t∗1, . . . , tn}
Q := Q∪ {(L, µ)}
t̃ := KAgg(L)

if (t̃, µ) = (t̃∗, µ∗) then // G3

return ⊥ // G3

a1 := Hagg(L, t
∗
1)

B := Hcom(t̃, µ)

B̄ := [B|I]
y1 ← Dl+k

s // G0 – G2,Qh

r1 ← Dl′+k
s′

// G0 – G2,Qh

w1 := Āy1 + B̄r1 // G0 – G2,Qh

stsid := (t̃, µ, a1,y1, r1,w1) // G0 – G2,Qh

p← Dl′+k
s′

// G3

z1 ← Dl+k
s // G3

w1 := Āz1 + B̄p // G3

stsid := (t̃, µ, a1,p, z1,w1) // G3

return w1

Sign2(sid, {w2, . . . ,wn})

if sid /∈ S then return ⊥
S := S \ {sid}
(t̃, µ, a1,y1, r1,w1) := stsid // G0 – G2,Qh

(t̃, µ, a1,p, z1,w1) := stsid // G3

w̃ :=
∑n

i=1 wi

c := Hsig(t̃, µ, w̃)

z1 := y1 + a1cs1 // G0 – G2,Qh

u := Tu[t̃, µ] // G3

ū := [1,u⊺]⊺ // G3

r1 := p+ a1cū // G3

With prob. min(1,
Dl+k

s (z1)

M·Dl+k
a1cs1,s(z1)

): // G0 – G2,Qh

With prob. min(1,
Dl′+k

s′ (r1)

M·Dl′+k
a1cū,s′ (r1)

): // G3

return (c, z1, r1)

Otherwise:

return ⊥

Figure 5: The hybrid games G0 – G3.

G1 differs from G0 only in Hcom. In G0, on any fresh query, Hcom returns B uniformly chosen
from Rk×l′

q . In G1, except on the i∗-th fresh query, the first column b of B is instead decided by
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b := t∗1 − v with v←$Rk
q . Apparently the view of A in G0 and G1 are identical, so we have

Pr[G0(A) = 1] = Pr[G1(A) = 1].

G2,0 only differs from G1 in the game initialization. To set up, G2,0 initializes an empty table Tu.
For 1 ≤ j ≤ Qh, G2,j differs from G2,j−1 in the j-th fresh Hcom query. To answer the j-th fresh Hcom

query in G2,j−1, if j ̸= i∗, then the first column of B = [b|B̂] is decided by b := t∗1−v with uniform

v. In G2,j , v is instead decided by v := [B̂|I]u with a short u uniformly chosen from Sl′−1+k
η′ . Then

u is stored in Tu[t̃, µ].
Note that B̂ and v constitute aMLWEq,k,l′−1,η′ instance. A distinguisherD againstMLWEq,k,l′−1,η′

can simulate G2,j−1 / G2,j for 1 ≤ j ≤ Qh and j ̸= i∗ for A, since in G2,j the short secret u is never
used elsewhere. Thus, we have

Pr[G2,0(A) = 1] = Pr[G1(A) = 1], Pr[G2,i∗(A) = 1] = Pr[G2,i∗−1(A) = 1],

and for 1 ≤ j ≤ Qh and j ̸= i∗

Pr[G2,j−1(A) = 1]− Pr[G2,j(A) = 1] ≤ AdvMLWEq,k,l′−1,η′ (D).

G3 differs from G2,Qh
only in the signing oracles. In G2,Qh

, the signing oracles use the secret
key s1 to execute the signing protocol like an honest party. In G3, the signing oracles retrieve
u = Tu[t̃, µ] to obtain a vector ū = [1,u⊺]⊺. Unless Hcom(t̃, µ) is the i∗-th fresh Hcom query, B̄
and ū will have relation as specified in Fig. 4. The oracles use ū to perform straight-line simulation
following algorithm Sim in Fig. 4. There will be no item Tu[t̃∗, µ∗] in Tu, so the signing oracles in
G3 fail when dealing with (t̃, µ) = (t̃∗, µ∗).

In each signing session, if (t̃, µ) ̸= (t̃∗, µ∗), it can be verified that the outputs of the signing
oracles in G2,Qh

and G3 are distributed respectively according to Trans and Sim in Fig. 4. We already
bounded their statistical distance by 3ϵ/(2M)+2−Ω(N). On the other hand, G3 will be distinguishable
from G2,Qh

if (t̃, µ) = (t̃∗, µ∗). Nevertheless, in this case G2,Qh
outputs 1 only if A at the end

outputs a different L∗ from the queried public-key list L satisfying KAgg(L∗) = KAgg(L) = t̃∗.
Let AggCol denote the event that A ever queried two different public-key lists L∗ ̸= L satisfying
KAgg(L∗) = KAgg(L). Lemma 12 in Appendix A upper-bounds the probability of AggCol by
Qh(Qh − 1)/|C|+ (2/qN/2)k. Therefore, we have

Pr[G2,Qh
(A) = 1]− Pr[G3(A) = 1] ≤ Qs(

3ϵ

2M
+ 2−Ω(N)) +

Qh(Qh − 1)

|C|
+ (

2

qN/2
)k.

Finally, note that s1 is only used to compute t∗1 in G3. Hence, an adversary B against the sel-UF-
KOA of DualMS can perfectly simulate G3 for A. It uses the corresponding random oracle responses
in its own sel-UF-KOA game to answer Hagg and Hsig queries from A and to answer the i∗-th fresh
query to Hcom. It outputs the same i∗, L∗, and σ̃∗ as A. Consequently, we have

Advsel-UF-CMA
DualMS (A) ≤ Advsel-UF-KOA

DualMS (B) + (Qh − 1)AdvMLWEq,k,l′−1,η′ (D)

+Qs(
3ϵ

2M
+ 2−Ω(N)) +

Qh(Qh − 1)

|C|
+ (

2

qN/2
)k.

4.3 Reduction from sel-UF-KOA to MSIS and MLWE

Lemma 10 (sel-UF-KOA to MSIS and MLWE). For any τ -time adversary A against the sel-UF-
KOA of DualMS that makes at most Qh queries to each random oracle, there exist algorithms B and
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D such that

Advsel-UF-KOA
DualMS (A) ≤

√
Q2

h

|C|
+Qh

√
QhAdvMSISq,k,1+l+l′,β (B)

+AdvMLWEq,k,l,η
(D) + Qh(Qh + 1)

|C|
+ 2(

2

qN/2
)k,

where β = 8κ
√

n̂2κ3 +B2
n +B′2

n +B′′2
n , n̂ is the maximum number of duplicate keys in a public key

list, and the running time of B and D are essentially 4τ and τ , respectively.

The proof follows the “double forking” framework of [MPSW19, NRS21, BTT22b]. In particular,
a double-forking proof for lattice-based scheme was given in [BTT22b], and our proof is analogous
to theirs. Therefore, we only sketch the proof here and defer the complete version to Appendix A.
We first consider the inner forking algorithm B′ that runs A twice. If adversary A wins in the first
time, B′ can obtain L∗, t̃∗ µ, w̃, z̃, r̃, and ẽ satisfying t̃∗ = KAgg(L∗) and

Az̃+Br̃+ ẽ = w̃ + ct̃∗,

where c = Hsig(t̃, µ, w̃) is what we call the “crucial” query corresponding to the forgery. Algorithm
B′ then forks the adversary at the crucial query, assigning another hash value c′ to Hsig(t̃, µ, w̃)
in the second execution. In this execution, with probability lower-bounded by the forking lemma
[PS96, BN06], we have c ̸= c′, A wins, and Hsig(t̃, µ, w̃) is again the crucial query. In this case, B′
obtains another tuple of responses z̃′, r̃′, and ẽ′ satisfying

Az̃′ +Br̃′ + ẽ′ = w̃ + c′t̃∗.

Combine the two equations, and then we have

Aẑ+Br̂+ ê = ĉt̃∗,

where ẑ = z̃− z̃′, r̂ = r̃− r̃′, ê = ẽ− ẽ′ and ĉ = c− c′ ̸= 0.
Now we consider the outer forking algorithm B that runs B′ twice. Note that t̃∗ = KAgg(L∗) =

n∗a1t
∗
1 +

∑
ti∈L∗∧ti ̸=t∗1

aiti, where n∗ is the number of times that t∗1 occurs in L∗. Thus, the earlier

equation becomes

Aẑ+Br̂+ ê = ĉ(n∗a1t
∗
1 +

∑
ti∈L∗∧ti ̸=t∗1

aiti).

This time we regard a1 = Hagg(L
∗, t∗1) as the crucial query. Algorithm B runs B′ another time and

assigns another value a′1 to Hagg(L
∗, t∗1). With the probability given by the forking lemma, we have

a1 ̸= a′1, again B′ succeeds, and Hagg(L
∗, t∗1) is the crucial query. Then B obtains ĉ′, ẑ′, r̂′, and ê′

satisfying

Aẑ′ +Br̂′ + ê′ = ĉ′(n∗a′1t
∗
1 +

∑
ti∈L∗∧ti ̸=t∗1

aiti).

Multiply the first equation by ĉ′ and the second by ĉ and subtract the second from the first, and
then we have

A(ĉ′ẑ− ĉẑ′) +B(ĉ′r̂− ĉr̂′) + ĉ′ê− ĉê′ = n∗ĉĉ′(a1 − a′1)t
∗
1.

Rearrange the equation, and we have

[t∗1|A|B|I]


n∗ĉĉ′(a1 − a′1)

ĉ′ẑ− ĉẑ′

ĉ′r̂− ĉr̂′

ĉ′ê− ĉê′

 = 0.
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By Lemma 1, none of ĉ, ĉ′, and a1 − a′1 are zero-divisors. Hence, n∗ĉĉ′(a1 − a′1) ̸= 0, and B obtains
a MSIS solution with respect to the matrix [t∗1|A|B]. Here we replace t∗1 = Ās1 with a random t∗1
independent of A by MLWE.

We need to be careful with the possibility that B′ obtains different public-key sets from the two
executions of A. The consequence is that there will not be a unique crucial query Hagg(L

∗, t∗1) for B
to fork. Fortunately, such an event is unlikely, because KAgg is somehow “collision resistant”. We
will formally define the relative bad events and bound their probabilities in Appendix A.

5 Concrete Parameters and Comparison

In this section, we provide two sample concrete parameter settings for DualMS, aiming at about 128
classical bits of security. We consider the number of signers n = 32 and n = 1024. We also provide
parameters for MuSig-L for comparison.

Choosing parameters. For both schemes, we fix N = 256. Then we let κ = 60 for 256 bits of
entropy. We set t = 13.5 aiming at 128-bit security and γ = 1.1 to let the bound given by Lemma 3
small enough.

For DualMS, we fix l′ = l+1, η′ = η and set α = 8.5n for an expected repetition number ≈ 5. It
remains for us to choose main parameters q, k, l, and η. We consider the following security criteria:

• The hardness of forging a multi-signature on a new message. Based on the security of hash
functions, this is conjectured to be as hard as choosing the inputs to hash functions to fix a
target t′ = w̃+ ct̃ and finding z, r, and e satisfying Az+Br+ e = t′ [DKL+21]. This implies
solving MSISq,k,l+l′+1,β = MSISq,k,2l+2,β , where β ≈

√
B2

n +B′2
2 +B′′2

2 .

• The pseudorandomness of the public key, which is related to the hardness of MLWEq,k,l,η.

• The “zero-knowledge” of signatures, i.e., how well the signatures hide useful information from
the adversary, which is related to MLWEq,k,l′−1,η′ = MLWEq,k,l,η required by the signature
simulation.

For MuSig-L, we consider an optimized scheme with computational instead of statistical trapdoor
indistinguishability. Similarly, we estimate the hardness of forging a multi-signature related to MSIS,
the pseudorandomness of the public key related to MLWE, and the trapdoor indistinguishability re-
quired by signature simulation. Remarkably, the simulation of MuSig-L requires the Gaussian width
s to be so large that the protocol almost always succeeds. See more details about the parameters of
MuSig-L in Appendix B.

We estimate the hardness of MSIS and MLWE using the security estimator of CRYSTALS.4

Size of the challenge in the signature is estimated as 32 bytes as in [DKL+21]. Sizes of Gaussian
responses in the signature are simply estimated based on Bn, B

′
n, and B′′

n and their dimensions based
on Lemma 2 of [BB13]. The main parameters are chosen to minimize public-key size + signature
size while satisfying the required security level.

Comparison. Table 2 summarizes our sample parameters. It shows that, aiming at approximately
128-bit security, public-key size + signature size of DualMS is about 4.7x times smaller than MuSig-L
when n = 32 and about 3.4x smaller when n = 1024.

The comparison in Gaussian width s explains such differences. Relatively large Gaussian width
of MuSig-L is somehow inherent in its construction and simulation technique. The large Gaussian
width is directly related to the signature size. Moreover, it makes the underlying MSIS problem
easier and thus requires to raise the main parameters.

4https://github.com/pq-crystals/security-estimates
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Params MuSig-L DualMS MuSig-L DualMS
n 32 32 1024 1024
N 256 256 256 256
⌈log(q)⌉ 104 37 104 48
k 8 6 10 7
l 42 7 38 9
η 1 1 1 1
PK 26 6.94 32.5 10.5
Sig 98.47 19.72 106.53 30.91
PK+Sig 124.47 26.66 139.03 41.41
log(s) 60.04 27.13 65.54 32.27
MSIS 125 130 126 132
MLWE > 700 130 > 500 131

Table 2: Summary of the concrete parameters. “PK” refers to public-key size, and “Sig” refers to
signature size, both measured in kB. “MSIS” refers to the hardness of MSIS related to signature
forgery. Variable s refers to Gaussian width of the response in the signature. For DualMS, it actually
refers to s′ which is slightly larger than s. “MLWE” refers to the hardness of MLWE related to the
pseudorandomness of public keys (and the indistinguishability of simulation for DualMS). We do
not show the hardness of MLWE related to the indistinguishability of simulation of MuSig-L, since
it can be set to sufficiently hard with a very small effect on the efficiency (see Appendix B).

Let us give a more detailed discussion. In DualMS, like typical FSwA signature schemes, the
Gaussian width s of responses is decided by the requirement of hiding secret keys using rejection
sampling. However, the construction of MuSig-L introduces another dominant requirement on the
width that grows with qk/(l+k). The consequences include unusually large s and almost no rejection,
large l and unnecessarily hard MLWE. Our understanding is that, while MuSig-L enables a clever
straight-line simulation, it goes toward the opposite direction of Lyubashevsky’s FSwA signatures
[Lyu09, Lyu12], which introduce rejection sampling and LWE for a smaller Gaussian width and
narrower matrix. On the other hand, the extra lower-bound of s in MuSig-L is independent of
α ∝ n, so the growth of n affects MuSig-L less than DualMS when n is not too large.

We point out that we do not apply practical optimizations to DualMS and MuSig-L. We believe
there is a lot of room for improvement of the concrete efficiency of both schemes. Our sample
parameters provide more a proof of concept than practical meanings. Especially, parameter setting
for MuSig-L is more involved. The authors of [BTT22b] did not provide concrete parameters, and
our parameters could be non-optimal. We leave further optimizations and more comparison with
different settings, such as security levels and number of signers, as future work.

Despite the advantages in efficiency of DualMS, we stress again that MuSig-L is irreplaceable so
far if one wants the first round to be offline. Our estimation shows that the online-offline property
could be expensive in lattice setting.

Communication and round complexity. Note that despite being two-round, the signing pro-
tocol succeeds in returning a valid signature only with some probability. Hence, the actual round
complexity to produce a signature is larger. The naive way to produce a valid signature is to se-
quentially repeat the signing protocol until getting one. In this case, the protocol round complexity
(2 for our scheme) should be multiplied by the expected times of repetitions. In fact, we can also
repeat the protocol in parallel, which increases the communication while reduce the actual round
number. That is, outside the signing protocol, there is always a trade-off between communication
and round complexity.

We provide some examples for our parameter setting. We set the success probability to be around
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1/5, so sequential repetitions make the expected round number to be about 5× 2 = 10. If we repeat
the protocol for 5 times in parallel, then the success probability will be amplified to more than 2/3,
which yields an expected round number of about 1.5× 2 = 3. If we want the success probability to
be about 0.99 so that the actual round number is virtually 2, then it will suffice to run 20 parallel
repetitions.

Let us roughly compare the communication cost of DualMS and MuSig-L. In MuSig-L, each signer
broadcasts in the first round more than log q many commitments, each of equal size to a public
key, and in the second round roughly a signature. In DualMS, each signer broadcasts only one
commitment in the first round. The second-round message is k dimensions longer than a signature
but is only output with probability about 1/5. Suppose DualMS is executed in parallel 20 times,
and MuSig-L is run only once since it almost never rejects. Then in our parameter settings with
n = 32 for DualMS and MuSig-L, respectively, each signer broadcasts about <300 kB vs. >2800 kB
to produce one valid signature. When n = 1024, the number is <400 kB vs. >3500 kB.

Here we also mention a possible trick to reduce the second round communication of DualMS:
generate a pseudorandom r1 and only broadcast the seed in the second round.

Comparison with DOTT. DualMS has a closer structure to DOTT than MuSig-L. They are likely
to have similar public size and communication, while the main difference is the signature size.
Compared to DOTT, DualMS basically replaces the opening of a commitment scheme with a partial
response of Dilithium (the vector r) in the signature.

We do not make concrete comparison with DOTT. As it is a generic construction using homo-
morphic equivocable trapdoor commitments as a building block, the concrete efficiency will vary
according to different instantiations of the commitment scheme. On the other hand, we argued in
Section 1 that the instantiations from MSIS and MLWE of such commitment schemes so far give a
significantly larger opening size compared to a Dilithium-G signature.

Here, we provide some evidence of the advantage of DualMS over DOTT from their constructions:
DualMS can be seen as an instantiation of DOTT, with a much weaker “commitment”. In other
words, DOTT overstrikes the target of a multi-signature scheme using an unnecessarily powerful
building block.

Specifically, if we view w = Āy + B̄r as a commitment to Āy with commitment key B̄ and
randomness r, then DualMS is an instantiation of the generic construction of DOTT. However, the
properties of such a “commitment” scheme have two main differences compared to the requirements
of the security analysis of DOTT.

• The commitment is not binding, while the security of DOTT is reduced to the binding of the
commitment scheme. Clearly, one can open w to some random vector by sampling random r.

• The equivocability is much weaker. An equivocable commitment scheme generally allows the
trapdoor-holder to open a commitment to any vector. In our commitment scheme, the trapdoor
is a short vector ū satisfying B̄ū = t. It only allows the trapdoor-holder to commit to a vector
Āy and then equivocate it to some related vector, namely Āy − ct, where c is from a much
smaller set than the whole vector space. Moreover, rejection sampling is necessary to keep the
trapdoor secret, so the equivocation can fail. It was also shown in Schnorr-based constructions
that weaker equivocability is enough for multi-signatures [BCJ08, PW23].

The security proof of DOTT cannot work with our weaker equivocable commitment. Thus, it is
necessary for us to provide a new proof for DualMS.
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Hagg(L, tj)

if Tagg[L, tj ] =⊥ then

if t∗1 /∈ L then

Tagg[L, tj ]←$C

else

for ti ∈ L ∧ ti ̸= t∗1 do

Tagg[L, ti]←$C

ctragg := ctragg + 1

Tagg[L, t∗1] := a(ctragg)

return Tagg[L, tj ]

Hcom(t̃, µ)

if Tcom[t̃, µ] =⊥ then

if |Tcom| ̸= i∗ − 1 then

Tcom[t̃, µ]←$Rk×l′
q

else Tcom[t̃, µ] := B

return Tcom[t̃, µ]

Hsig(t̃, µ, w̃)

if Tsig[t̃, µ, w̃] =⊥ then

ctrsig := ctrsig + 1

Tsig[t̃, µ, w̃] := c(ctrsig)

return Tsig[t̃, µ, w̃]

Figure 6: How W answers hash queries.
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A Proof of Lemma 10

Proof. We first construct a wrapper W. It takes as inputs A, B, and t∗1 which are uniformly
distributed over Rk×l

q , Rk×l′

q , and Rk
q , respectively, and a(1), . . . , a(Qh), c(1), . . . , c(Qh) which are

uniformly distributed over C. It initializes three empty tables Tagg, Tcom, and Tsig and sets two
counters ctragg and ctrsig to 0. It runs A on inputs Ā = [A|I] and t. In the first stage, A outputs
an index i∗.

In the second stage, W answers hash queries from A as described in Fig. 6. We underline several
points that are worth noting. First, to answer a fresh query Hagg(L, tj) with t∗1 ∈ L, W programs
Tagg[L, t∗1] with the next unused value among {a(1), . . . , a(Qh)} after setting Tagg[L, ti]←$C for all
other ti ∈ L. Second, W answers the i∗-th fresh Hcom query with B. Third, W answers every fresh
Hsig with the next unused value among {c(1), . . . , c(Qh)}.

At the end, adversary A outputs a list of public key L∗ and a forged multi-signature σ̃∗ =
(c, z̃, r̃, ẽ). Let t∗ and µ∗ be the inputs to the i∗-th fresh Hcom query. The wrapper W checks the
following conditions and outputs I = 0 if any of them does not hold:

• t∗1 ∈ L∗, KAgg(L∗) = t∗, and Vf(t∗, µ∗, σ̃∗) = 1.

• Event AggOrd does not occur, where AggOrd is defined as that there exists a set of public
key L that contains t∗1, was queried to Hagg later than the i∗-th fresh Hcom query, and satisfies
KAgg(L) = t∗.
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• Event AggCol does not occur, where AggCol is defined as that there exists two different
sets of public key L and L′ that have been queried to Hagg, both contain t∗1, and satisfy
KAgg(L) = KAgg(L′).

If all the three conditions hold, then W outputs

I, J, w̃, z̃, r̃, ẽ, t̃∗, c, L∗, a1, . . . , an,

where w̃ = Az̃+Br̃+ ẽ− ct̃∗, ai = Tagg[L∗, ti] for every ti ∈ L∗, I is the index such that c(I) = c
was assigned to Tsig[t̃∗, µ∗, w̃], and J is the index such that a(J) = a1 was assigned to Tagg[L∗, t1].

The first condition thatW checks is exactly the success condition of A in sel-UF-KOADualMS. The
game simulated by W differs from sel-UF-KOADualMS only in the distribution of target public key. In
particular, in sel-UF-KOADualMS, t

∗
1 = Ās1 for a secret key s1 uniformly distributed over Sl

η, while

W gives t∗1 uniformly distributed over Rk
q to A. Apparently there exists a distinguisher D, which

essentially runs W, such that the first condition holds with probability at least Advsel-UF-KOA
DualMS (A)−

AdvMLWEq,k,l,η
(D). Lemma 11 and Lemma 12 bound the probability of AggOrd and AggCol by

Qh/|C| + (2/qN/2)k and Qh(Qh − 1)/|C| + (2/qN/2)k, respectively. Let εW denote the probability
that W outputs I ̸= 0. Then we have

Advsel-UF-KOA
DualMS (A) ≤ εW +AdvMLWEq,k,l,η

(D) + Q2
h

|C|
+ 2(

2

qN/2
)k. (5)

Inner forking algorithm. Then we construct the inner forking algorithm B′. It takes as inputs
A, B, t∗1 which are uniformly distributed over Rk×l

q , Rk×l′

q , and Rk
q , respectively, and a(1), . . . , a(Qh)

which are uniformly distributed over C. It runs ForkW(X), where the input X consists of A, B, t∗1,
and a(1), . . . , a(Qh), and the inputs c(1), . . . , c(Qh) of W are interpreted as h1, . . . , hQ in Lemma 13.
All the outputs of W other than I are interpreted as the side output Y in Lemma 13.

If ForkW outputs ⊥, then B′ outputs J = 0. If ForkW gives a non-⊥ output, then suppose the
side outputs Y and Y ′ of W in the two executions consist of

J, w̃, z̃, r̃, ẽ, t̃∗, c, L∗, a1, . . . , an, and J ′, w̃′, z̃′, r̃′, ẽ′, t̃∗′, c′, L∗′, a′1, . . . , a
′
n,

respectively. We argue that:

J = J ′, w̃ = w̃′, t̃∗ = t̃∗′, L∗ = L∗′, a1 = a′1, . . . , an = a′n.

This is because the two executions of W are identical until W assigns c(I) to Tsig[t̃∗, µ∗, w̃]. It
immediately follows that t̃∗ = t̃∗′ and w̃ = w̃′ as index I are the same in the two executions. Note
that AggOrd and AggCol did not occur in both executions, and we assumed at the beginning
of Section 4 that query Hcom(t̃

∗, µ∗) was made earlier than Hsig(t̃
∗, µ∗, w̃). Hence, L∗ was queried

to Hagg earlier than the assignment to Tsig[t̃∗, µ∗, w̃], and it is the only public-key list ever queried
that is aggregated into t̃∗. All the other equations follow. On the other hand, we have c ̸= c′ by the
description of ForkW in Lemma 13.

Then we have
Az̃+Br̃+ ẽ = w̃ + ct̃∗ and Az̃′ +Br̃′ + ẽ′ = w̃ + c′t̃∗

as W outputs I ̸= 0 only if the forgery given by A is valid. Subtract the second equation from the
first, and let ẑ = z̃− z̃′, r̂ = r̃− r̃′, ê = ẽ− ẽ′ and ĉ = c− c′ ̸= 0. Then we have

Aẑ+Br̂+ ê = ĉt̃∗ = ĉ

n∑
i=1

aiti,

where {t1, . . . , tn} = L∗ and t1 = t∗1. Algorithm B′ outputs

J, ẑ, r̂, ê, ĉ, L∗, a1, . . . , an.
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Let εB′ be the probability that B′ outputs J ̸= 0. By Lemma 13,

εW ≤
Qh

|C|
+
√
QhεB′ . (6)

Outer forking algorithm. Finally, we construct the outer forking algorithm B. It takes as inputs
a k × (1 + l + l′) matrix over Rq and partitions it as [t∗1|A|B]. It runs ForkB′(X), where the input
X consists of A, B, and t∗1, and the inputs a(1), . . . , a(Qh) of B′ are interpreted as h1, . . . , hQ in
Lemma 13. The output J of B′ are interpreted as I in Lemma 13, and all other outputs as side
output Y .

If ForkB′ outputs J ̸= 0, then suppose the side outputs Y and Y ′ of B′ in the two executions
consist of

ẑ, r̂, ê, ĉ, L∗ = {t1, . . . , tn}, a1, . . . , an, and ẑ′, r̂′, ê′, ĉ′, L′∗ = {t′1, . . . , t′n}, a′1, . . . , a′n,

respectively. We argue that L∗ = L∗′, and ai = a′i for every ti ̸= t∗1. This is because the four
executions of W during the two executions of B′ are identical until W assigns a(J) to Tagg[L∗, t∗1].
It immediately follows that L∗ = L∗′ by the fact that index J are the same in the four executions.
Other equations follow from the fact that W assigns Tagg[L∗, ti] for ti ̸= t∗1 earlier than Tagg[L∗, t∗1].
On the other hand, we have a1 ̸= a′1 again by the definition of ForkB′ .

Suppose that t∗1 occurs n∗ times in L∗. Then we have

Aẑ+Br̂+ ê = ĉ(n∗a1t
∗
1 +

∑
ti ̸=t∗1

aiti) and Aẑ′ +Br̂′ + ê′ = ĉ′(n∗a′1t
∗
1 +

∑
ti ̸=t∗1

aiti).

By multiplying the first equation by ĉ′ and the second by ĉ, we have

A(ĉ′ẑ− ĉẑ′) +B(ĉ′r̂− ĉr̂′) + ĉ′ê− ĉê′ = n∗ĉĉ′(a1 − a′1)t
∗
1.

Then we rearrange the equation and have

[t∗1|A|B|I]


n∗ĉĉ′(a1 − a′1)

ĉ′ẑ− ĉẑ′

ĉ′r̂− ĉr̂′

ĉ′ê− ĉê′

 = 0.

Note that ĉ, ĉ′, and â are not zeros and also not zero-divisors by Lemma 1, so n∗ĉĉ′â ̸= 0. The
L2-norm of the vector is√

∥n∗ĉĉ′â∥22 + ∥ĉ′ẑ− ĉẑ′∥22 + ∥ĉ′r̂− ĉr̂′∥22 + ∥ĉ′ê− ĉê′∥22
≤ 8κ

√
n̂2κ3 +B2

n +B′2
n +B′′2

n = β.

To see the inequality, first note that ∥n∗ĉĉ′â∥2 ≤ n̂∥ĉ∥1∥ĉ′∥1∥â∥2, where ∥ĉ∥1, ∥ĉ′∥1 ≤ 2κ and
∥â∥2 ≤ 2

√
κ. Moreover, we have ∥ĉ′ẑ− ĉẑ′∥2 ≤ ∥ĉ′∥1∥ẑ∥2 + ∥ĉ∥1∥ẑ′∥2, where ∥ẑ∥2, ∥ẑ′∥2 ≤ 2Bn.

Similar bounds hold for ∥ĉ′r̂− ĉr̂′∥2 and ∥ĉ′ê− ĉê′∥2. Thus, B successfully obtains a solution to
MSISq,k,1+l+l′,β with respect to [t∗1|A|B].

By Lemma 13, we have

εB′ ≤ Qh

|C|
+
√
QhAdvMSISq,k,1+l+l′,β (B). (7)

Combining Eqs. (5) to (7) we have

Advsel-UF-KOA
DualMS (A) ≤

√
Q2

h

|C|
+Qh

√
QhAdvMSISq,k,1+l+l′,β (B)

+AdvMLWEq,k,l,η
(D) + Qh(Qh + 1)

|C|
+ 2(

2

qN/2
)k.
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Lemma 11 ([BTT22b]).

Pr[AggOrd] ≤ Qh

|C|
+ (

2

qN/2
)k.

Proof. Note that t∗1 = [t∗1,1, . . . , t
∗
1,k]

⊺ is a vector that consists of k elements uniformly distributed

over Rq. By Lemma 1, except with probability at most (2/qN/2)k, one of the k elements is invertible.
We condition on this event and assume t∗1 is invertible without loss of generality. We bound the
probability that a list of public keys L = {t∗1, t2, . . . , tn} queried to Hagg later than the i∗-th fresh
Hcom query, where t∗1 occurs n∗ times, is aggregated into t̃∗. This event occurs only if the first
element of t∗1, . . . , tn aggregate into the first element of t̃∗. More specifically, let ti,1 be the first
element of ti for i ∈ [n] and t̃1 the first element of t̃∗. Then L is aggregated into t̃∗ only if

n∗a1t
∗
1,1 +

∑
ti ̸=t∗1

aiti,1 = t̃1.

As an integer, n∗ is invertible, so it follows that

a1 = n∗−1t∗−1
1 (t̃1 −

∑
ti ̸=t∗1

aiti,1).

Since a1 is uniformly distributed over C, it occurs with probability at most 1/|C|. We can conclude
the proof by the union bound.

Lemma 12 ([BTT22b]).

Pr[AggCol] ≤ Qh(Qh − 1)

|C|
+ (

2

qN/2
)k.

Proof. The reason is basically the same as Lemma 11. Here we can bound the probability that
KAgg(L) = KAgg(L′) with 1/|C| for each pair of public-key sets L and L′ queried to KAgg, and the
lemma follows from the union bound.

Lemma 13 (General forking lemma [BN06]). Fix an interger Q ≥ 1, a set H of size |H| ≥ 2. Let
A be a randomized algorithm that takes as inputs X, h1, . . . , hQ, takes as random coin tosses from
set R, and outputs tuple (I, Y ) where I ∈ {0, . . . , Q} and Y is what we call “side output”. Let DX

be an unspecified distribution. Let

ε = Pr[I ≥ 1 : X ←$DX ;h1, . . . , hQ←$H; (I, Y )← A(X,h1, . . . , hQ)].

Define the forking algorithm ForkA with respect to A as follows:

ForkA(X)

ρ←$R
h1 . . . , hQ ←$H
(I, Y )← A(X,h1, . . . , hQ; ρ)

if I = 0 then return ⊥
h′
I , . . . , h

′
Q ←$H

(I ′, Y ′)← A(X,h1, . . . , hI−1, h
′
I , . . . , h

′
Q; ρ)

if I ̸= I ′ ∨ hI = h′
I then return ⊥

return (I, Y, Y ′)
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Let
ε′ = Pr[ForkA(X) ̸=⊥: X ←$DX ].

Then

ε ≤ Q

|H|
+
√
Qε′.

B Parameter Setting for MuSig-L

In MuSig-L, a signer’s pre-commitments in the first round form a matrix that supports trapdoor
sampling in simulation. We consider computationally distinguishable trapdoors based on MLWE,
so w1 + w2 pre-commitments form a k × (k + w1 + w2) matrix W = [I|W1|W2] = [W̄|W2]. In the
simulation, W1 is uniform distributed, and W2 is set as G− W̄R, where G is the gadget trapdoor
I⊗ g with g⊺ = [1, b, b2, . . . , b⌈log(q)⌉−1], and R is a Gaussian distributed trapdoor.

Let m = k + w1 + w2 be the width of matrix W. According to [BTT22b], we approximate
the standard deviation σ1 of MuSig-L signatures as σ1 ≈ σyσb

√
N(w1 + w2)(l + k). The simulation

requires
σb ≈ σ̄ · s1(

√
ΣG) · (

√
N(k + w1) +

√
Nw2),

with σ̄ the standard deviation of R and s1(
√
ΣG) a parameter related to the structure of G, and

σy ≈ 64
√
2/π · σbq

k/(l+k)
√

N(2 +N + log(N(l + k))).

Here we have some parameters to decide about matrix W. First, the base b reduce w2 by
a logarithmic factor but increases s1(

√
ΣG) by a linear factor [MP12]. Hence, we set b = 2, so

w2 = k⌈log(q)⌉. Second, there is a trade-off between w1 and σ̄. We observe that w1 is much smaller
than w2, so increasing w1 does not essentially affect the performance. Thus, we set very small
σ̄ = 1, and then decide w1 according to the trapdoor indistinguishability related to MLWE. In our
parameter settings, w2 is more than 768, while typically w1 < 20 is enough for MLWE hardness.
We can easily adjust the hardness with very slight effect on the efficiency. Therefore, trapdoor
indistinguishability is not a crucial security criteria and not included in Table 2.

C A Note on The Optimization

In the first version of this paper5, we did not realize the simple and useful trick of aggregating z′i
and r′i. In this updated version, we apply the optimization but only in the very last step SAgg of
signature generation. This already makes pronounced improvement in signature size while allows
us to make as few changes as possible. In particular, Sign1 and Sign2 are unchanged, so we do not
need to modify the security proofs until Section 4.3.

Alternatively, we can apply the optimization earlier. Since z′′1 and r′′1 will be eventually aggregated
to e1 ∈ Rk, we can let the signer directly sample y′

1 ← Dl
s, r

′
1 ← Dl′

s′ , and a vector d1 ∈ Rk in
Sign1. Then in Sign2, d1 can be viewed as split into y′′

1 ← Dk
s and r′′1 for rejection sampling, while

the second-round message is directly e1.
The benefit is that the Gaussian width of e1 can be reduced. Recall that the Gaussian width s

(resp. s′) should be larger than a bound s1 (resp. s′1) to hide the secret key (resp. dual key) and
another bound s2 (resp. s

′
2) to apply Lemma 5 in the dual signing (resp. normal signing) procedures.

Hence, we set s > max(s1, s2) and s′ > max(s′1, s
′
2). However, in the normal signing, it suffices to

split d1 into y′′
1 with Gaussian width s1 for rejection sampling and r′′1 with Gaussian width s′2 for

Lemma 5. Similarly, in the dual signing, d1 is split into p′′ with Gaussian width s′1 and z′′1 with
Gaussian width s2. Therefore, rather than

√
s2 + s′2 where s > max(s1, s2) and s′ > max(s′1, s

′
2) as

in our scheme specification, the Gaussian width of e1 can be reduced to max(
√
s21 + s′22 ,

√
s′21 + s22).

5https://eprint.iacr.org/archive/2023/263/20230222:193121
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