
Obfuscation and Outsourced Computation
with Certified Deletion

James Bartusek* Sanjam Garg† Vipul Goyal‡ Dakshita Khurana§

Giulio Malavolta¶ Justin Raizes|| Bhaskar Roberts**

Abstract

Can we outsource computation on encrypted data, while ensuring that the data is certi-
fiably, information-theoretically deleted by the server after computation? Can we encode a
computer program in a manner that preserves its functionality, while allowing an evaluator to
prove that they deleted the program?

This work answers the above questions, providing the first fully (maliciously) secure so-
lution to the question of blind delegation with certified deletion, and the first solution to the
question of obfuscation with certified deletion. Unlike prior work on deletion, these settings
require security in the presence of repeated access to partial decryptions of encoded data, fol-
lowed by certified deletion of the (rest of the) encoded data. To enable security, we introduce
a powerful new paradigm for secure information-theoretic deletion of data based on quantum
subspace coset states. We obtain the following results.

• Blind Delegation with Certified Deletion.

– Assuming the quantum hardness of learning with errors, we obtain maliciously-
secure blind delegation with certified deletion. This improves upon prior protocols
by Poremba (ITCS 2023) and Bartusek and Khurana (arXiv 2022) that we show are
insecure against a malicious server.

– Assuming sub-exponentially quantum-secure indistinguishability obfuscation, we
obtain a two-message protocol for blind delegation with certified deletion. All previ-
ous protocols required multiple rounds of interaction between the client and server.

• Obfuscation with Certified Deletion.

– Assuming post-quantum indistinguishability obfuscation, we obtain a construction
of differing-inputs obfuscation with certified deletion, for a polynomial number of
differing inputs. As an immediate corollary, we obtain a strong variant of secure
software leasing for every differing-inputs circuit family.

– We obtain two flavors of functional encryption with certified deletion, one where ci-
phertexts can be certifiably deleted, and the other where secret keys can be certifiably
deleted, assuming appropriate variants of indistinguishability obfuscation and other
standard assumptions.

– We show how to prepare an “oracle with certified deletion” implementing any effi-
cient classical functionality.

*UC Berkeley. Email: bartusek.james@gmail.com
†UC Berkeley and NTT Research. Email: sanjamg@berkeley.edu
‡CMU and NTT Research. Email:vipul@cmu.edu
§UIUC. Email: dakshita@illinois.edu
¶Max Planck Institute for Security and Privacy. Email: giulio.malavolta@hotmail.it

||CMU. Email: jraizes@andrew.cmu.edu
**UC Berkeley. Email: bhaskarr@eecs.berkeley.edu

1

• Additional Results.

– Assuming post-quantum CCA-secure public-key encryption, we obtain a notion of
CCA-secure public-key encryption with certified deletion. We view this primarily as
a pedagogical tool towards understanding our technique.

– Assuming post-quantum indistinguishability obfuscation, we show how to generi-
cally add a publicly-verifiable certified deletion property to a variety of cryptosystems.
Publicly-verifiable deletion schemes prior to our work either relied on unproven con-
jectures (Poremba, ITCS 2023) or structured oracles (Hiroka et al., Asiacrypt 2021).

All our primitives satisfy everlasting security after deletion, except for functional encryption with
deletion for secret keys, where a computational certified deletion guarantee is inherent.

2

Contents

1 Introduction 5

2 Technical Overview 7
2.1 Motivating Example . 7
2.2 General Compiler for Certified Deletion . 9
2.3 Blind Delegation with Certified Deletion . 13
2.4 Obfuscation with Certified Deletion . 14
2.5 Flavors of Functional Encryption with Certified Deletion 17
2.6 Other Related Work . 19

3 Preliminaries 20
3.1 Quantum Computation . 20
3.2 Subspaces and Cosets . 21
3.3 Obfuscation . 22
3.4 SNARGs for P . 26
3.5 Fully-Homomorphic Encryption . 27

4 Delayed Preparation of Coset States 27
4.1 Coset Representatives . 27
4.2 Sampling Procedure . 28
4.3 Delayed Preparation of Coset States . 30
4.4 Lemmas . 31

5 General Compiler for Certified Deletion 34
5.1 General Theorem . 36
5.2 Oracle version . 37
5.3 Proof of Theorem 5.5 . 37
5.4 Proofs of Theorem 5.2 and Theorem 5.3 . 41

6 Blind Delegation with Certified Deletion 42
6.1 Definitions . 42
6.2 Construction . 46
6.3 Efficiency . 49
6.4 Security . 50

7 CCA Secure Encryption with Certified Deletion 54
7.1 Definitions . 54
7.2 Construction . 56

8 Obfuscation with Certified Deletion 60
8.1 Definitions . 60
8.2 Construction . 64
8.3 Extensions . 70

3

9 Functional Encryption with Certified Deletion 81
9.1 Definitions . 81
9.2 Some Preliminaries . 85
9.3 Construction of Functional Encryption with Certified Deletion for Ciphertexts 86
9.4 Construction of Functional Encryption with Certified Deletion for Secret Keys 90

A Auxiliary Lemmas from Section 9 100

4

1 Introduction

Data protection. An unprecedented amount of potentially sensitive data is currently being col-
lected, stored, and computed upon by powerful entities. One of the central questions driving
modern cryptography asks whether and how this data can be kept private, while still remaining
functionally useful.

Major progress in this direction came with the development of fully-homomorphic encryption
[Gen09], which provides the ability to delegate computationally intensive tasks to an untrusted
server, while preserving the privacy of the underlying data being computed upon. It is typically
assumed that the strongest notion of privacy we can hope for when delegating computation in
this manner is computational. Indeed, if the FHE ciphertext is a classical string that information-
theoretically contains the user’s sensitive data, the only thing preventing recovery of this data is
the conjectured hardness of a mathematical problem. If this problem becomes easy to solve in
the future due to computational or scientific advances, or if the user’s secret key is leaked to the
server, there is no way to prevent the server from recovering the underlying plaintext.

In an attempt to mitigate this risk, the client could request that the server delete their data
at the end of the protocol. However, there is clearly no way for the server to prove to the client
that their data was actually deleted, at least if the ciphertext is classical and thus copy-able. In a
classical world, once some piece of data is released to the external world (even in the form of an
encrypted ciphertext), it can never be truly “taken back”.

On the other hand, the inherently destructive properties of quantum information provide some
hope that the laws of physics may actually give rise to a true “delete button”. Indeed, some recent
works [BI20, Por23, BK22] have even explored the possibility of “blind delegation with certified
deletion”. In its strongest form, this primitive allows a computationally weak client to delegate
computations to a completely untrusted powerful server, while (i) keeping data computationally
hidden from the server during protocol execution, and (ii) verifying that the server information-
theoretically deletes this data afterwards. However, existing proposals for this primitive are actu-
ally insecure against malicious servers who may deviate from the description of the protocol in an
attempt to learn the client’s data. Thus, we ask the following question.

Can we delegate computation on encrypted data to a malicious server, and ensure that the data
is later information-theoretically deleted?

Software protection. Another major goal of modern cryptography has been to protect not just
data, but rather functionalities, or computer programs. For example, we may hope to protect pro-
grams from reverse-engineering, intellectual property theft, or piracy. Classically, cryptographic
primitives such as program obfuscation or digital watermarking [BGI+12] provide partial solutions.
However, the ease of copying classical information again places fundamental limitations on what
protections are possible to achieve.

To address these limitation, Aaronson raised the possibility of quantum copy-protection [Aar09],
which would encode computation into a provably uncloneable quantum state. The goal here is to
explicitly prevent the copying and redistribution of software, and this notion has inspired many
recent works on the topic (e.g. [ALL+21, CLLZ21]). Unfortunately, full-fledged quantum copy-
protection is difficult to construct, and is subject to strong impossibility results [AL21].

In this work, we take a fresh perspective on the problem of software protection, and study
this notion through the lens of deletion. Consider a client that receives some software in the form

5

of a quantum state, and is able to evaluate it as they like. If they are later able to provably delete
the program, then there is no way that it could be currently distributed elsewhere, and no way
that they could continue to learn information about it in the future. Thus, we ask the following
question.

Can we encode a computer program into a quantum state that preserves its functionality,
while enabling an evaluator to information-theoretically delete the underlying program?

Limitations of existing approaches to certified deletion. Despite much recent progress design-
ing cryptosystems with certified deletion [BI20, HMNY21, HMNY22b, Por23, BK22, HMNY22a],
the above natural questions have remained unanswered. In fact, there is a simple reason why:
We are missing an encoding technique that allows for repeated access to partial information about the
encoded data followed by certified deletion of the (rest of the) encoded data.

In more detail, most work has thus far focused on “all-or-nothing” style primitives: e.g. secret-
key encryption, public-key encryption, attribute-based encryption, timed-release encryption, and
commitments [Unr14, BI20, HMNY21, HMNY22b, BK22]. An exception is a very recent work of
[HMNY22a] which constructs functional encryption with certified deletion of ciphertexts. However,
in contrast with one of the goals of this work, their scheme is only secure in the setting of bounded
collusions, where there is an a-priori upper bound on the number of functional keys an adversary
can request. We also note that [KN22] achieves a weaker private-key version of functional encryp-
tion with certified deletion of secret keys. Even known constructions of fully-homomorphic encryp-
tion with certified deletion [Por23, BK22] are all-or-nothing, in the sense that security becomes
compromised (as we show below) once we give the evaluator access to some type of decryption
oracle.

The main contribution of our work is a new technique that gets around this barrier, giving
several novel primitives with certified deletion.

Our results. In this work, we introduce a powerful new paradigm for secure information-theoretic
deletion of data based on quantum subspace coset states, which were introduced by [VZ21, CLLZ21].
While subspace coset states have previously been used for designing uncloneable cryptography
[CLLZ21, AKL+22], we demonstrate how to use them to obtain information-theoretic deletion.
Our proof technique is inspired by, but significantly expands on, techniques introduced in [BK22].
As a result, we obtain the following novel applications. In almost all of our applications, the cer-
tified deletion guarantee is information-theoretic. That is, after deletion, all plaintext information is
guaranteed to be statistically removed from the adversary’s view.

• CCA-secure encryption. We construct CCA-secure encryption with certified deletion from
post-quantum CCA-secure encryption. We view this primarily as a pedagogical tool, and
a simple way to illustrate the issue with previous schemes which become insecure in the
presence of some type of decryption oracle.

• Blind delegation. We develop the first maliciously secure blind delegation protocol with
certified deletion. Our construction is based solely on the quantum hardness of learning
with errors (LWE) [Reg05], and carefully combines subspace coset states with compact fully-
homomorphic encryption (FHE) [Gen09] and succinct non-interactive arguments (SNARGs)
for P.

6

We also provide the first construction of two-message blind delegation with certified deletion,
based on post-quantum sub-exponentially secure indistinguishability obfuscation. In par-
ticular, once the client sends their encoding of 𝑥, the server can return both the evaluated
output 𝑓(𝑥) and a certificate that all other information about 𝑥 has been deleted without any
more interaction with the client.

• Obfuscation. Assuming post-quantum indistinguishability obfuscation, we obtain the first
construction of differing inputs obfuscation with certified deletion (di𝒪-CD), for a polyno-
mial number of differing inputs. Loosely speaking, di𝒪-CD satisfies the standard notion of
differing inputs obfuscation [BGI+12], in addition to the following certified deletion prop-
erty: Let Π0 and Π1 two programs that differ on one input 𝑦* (or a polynomial number of
hard to find inputs), then it is hard to distinguish an obfuscation of Π0 from an obfuscation
of Π1, even given a differing input 𝑦*, provided that the distinguisher outputs the deletion cer-
tificate first. Intuitively, this formalizes the guarantee that, after deleting a program, one can
no longer evaluate it on any input (more discussion on this later).

We also obtain the following conceptual result in the oracle model. For any classical func-
tionality 𝑓 , one can prepare an oracle that can be queried repeatedly (polynomially many
times) before being permanently deleted. That is, after deletion, even unbounded number of
queries to the oracle will not reveal any more information about 𝑓 .

• Secure Software Leasing. As an immediate corollary of differing inputs obfuscation with
certified deletion, we obtain a strong notion of secure software leasing for every differing in-
puts circuits family. Whereas the standard notion guarantees that a pirated copy of software
cannot be evaluated honestly on certain inputs, this strong notion guarantees that no pirated
copy can be evaluated, even maliciously, on certain inputs.

• Functional encryption. We obtain two flavors of functional encryption with certified dele-
tion: (i) one where ciphertexts can be certifiably deleted, and (ii) one where secret keys can be
certifiably deleted. The former assumes a strong-enough notion of post-quantum functional
encryption (in particular, public-key multi-input FE with arity 2). The latter follows from dif-
fering inputs obfuscation with certified deletion, combined with post-quantum public-key
encryption and injective one-way functions. Functional encryption with certified deletion
for secret keys is our only result with a computational certified deletion guarantee. This is
inherent in the primitive, as secret key deletion only emulates the case where a secret key
was never received.

• Public verification. We develop a generic compiler that results in a variety of primitives with
publicly verifiable certified deletion, assuming post-quantum indistinguishability obfuscation.

2 Technical Overview

2.1 Motivating Example

Public-key encryption with certified deletion. We begin with the basic notion of public-key en-
cryption with certified deletion, and describe a recent construction due to [BK22] based on Wiesner
encodings / BB84 states [Wie83, BB84]. For describing these states, we use the notation |𝑥⟩𝜃, where

7

𝑥 ∈ {0, 1}𝑛 is a string of bits, and 𝜃 ∈ {0, 1}𝑛 is a string of basis choices. Let Enc be the encryp-
tion algorithm for a post-quantum public-key encryption scheme. Then to encrypt a bit 𝑏, sample
𝑥, 𝜃 ← {0, 1}𝑛, and release

|𝑥⟩𝜃 ,Enc(𝜃, 𝑏⊕
⨁︁
𝑖:𝜃𝑖=0

𝑥𝑖).

To delete, measure |𝑥⟩𝜃 in the Hadamard basis to obtain a sting 𝑥′. This verifies as a valid
deletion certificate if 𝑥′𝑖 = 𝑥𝑖 for all 𝑖 : 𝜃𝑖 = 1. [BK22] show that since Enc is semantically secure
and thus hides the choice of 𝜃, any computationally-bounded adversary that produces a valid
deletion certificate must have (essentially) measured most of the qubits in the Hadamard basis,
erasing enough information about {𝑥𝑖}𝑖:𝜃𝑖=0 to claim that 𝑏 is now statistically hidden.

CCA security? This establishes CPA security of the above scheme. Now, it is natural to wonder
whether this same scheme is secure against chosen ciphertext attacks, or CCA secure, assuming that
Enc is CCA secure. Here, we must provide the adversary with a decryption oracle. In order to
define what a decryption oracle is in this setting, we view the above quantum ciphertext as a
superposition over valid classical ciphertexts (𝑦, ct), where ct = Enc(𝜃, 𝑏 ⊕

⨁︀
𝑖:𝜃𝑖=0 𝑥𝑖) and 𝑦 is in

the “support” of |𝑥⟩𝜃, which we define using a set 𝒴 := {𝑦 : 𝑦𝑖 = 𝑥𝑖 ∀𝑖 : 𝜃𝑖 = 0}. Then, we provide
the adversary with oracle access to Dec[𝒴, ct](sk, ·) which takes a classical ciphertext (𝑦′, ct′) as
input and decrypts it using sk unless 𝑦 ∈ 𝒴 and ct′ = ct, in which case it returns ⊥. That is,
the oracle will decrypt any ciphertext outside the support of the “challenge” ciphertext that the
adversary is trying to break.1

Unfortunately, this scheme becomes completely insecure in the presence of such an oracle.
An adversary can learn a description of 𝜃 one bit at a time, by flipping a bit of its state |𝑥⟩𝜃 and
observing whether the oracle returns a successful decryption or rejects. Once it learns 𝜃, we cannot
hope for any certified deletion guarantees. Moreover, the adversary can make additional queries
to learn {𝑥𝑖}𝑖:𝜃𝑖=0, and, eventually, the bit 𝑏.

Subspace coset states. Fortunately, there is a way to get around the problem that BB84 states
are learnable in this sense. Prior work (for example, in the setting of publicly-verifiable quantum
money) has switched to using entangled subspace states [AC12] and the more-general subspace
coset states. A subspace coset state is defined by a subspace 𝑆 of F𝑛

2 and two vectors v,w ∈ F𝑛
2 ,

and is written as
|𝑆v,w⟩ :=

1√︀
|𝑆|

∑︁
z∈𝑆+v

|z⟩ (−1)⟨z,w⟩.

BB84 states are a type of subspace coset state in which the subspace is spanned by the standard
basis vectors {𝑒𝑖}𝑖:𝜃𝑖=1. The coset in the primal space is determined by the bits {𝑥𝑖}𝑖:𝜃𝑖=0, which
are used to hide the bit 𝑏, and the coset in the dual space is determined by the bits {𝑥𝑖}𝑖:𝜃𝑖=1, which
determine what constitutes a valid deletion certificate.

Thus, in an attempt to make this scheme CCA-secure, we replace the use of BB84 states with
more-general subspace coset states. This results in a ciphertext of the form

1There are many subtleties in defining CCA security and many possible definitions. We chose this definition because
we use CCA security as a pedagogical tool to better understand the techniques required for our (other) main goals
where the adversary has access to some type of (classical) decryption oracle.

8

|𝑆v,w⟩ ,Enc(𝑆, 𝑏⊕ ⟨v,1⟩),

where we set 𝑆 to be a random 𝑛/2-dimensional subspace, and a valid deletion certificate is now
any vector ̃︀z ∈ 𝑆⊥ + w. The decryption algorithm, on input a vector z and ciphertext ct, will
decrypt ct to obtain (𝑆, 𝑏′), compute a canonical coset representative of 𝑆+ z and use this resulting
vector to unmask 𝑏.

A malleability issue. This seems to solve our main problem because an adversary with |𝑆v,w⟩
and oracle access to 𝑆 + v will not be able to learn any information about 𝑆, v, or w. However,
we are not completely done. A CCA-secure encryption should intuitively be “non-malleable” in
the sense that any tweak that an adversary makes to a given ciphertext should either result in an
unsuccessful decryption, or a successful decryption to a completely unrelated plaintext. However,
suppose the adversary applies a bit flip to, say, the last qubit of its state |𝑆v,w⟩, and then queries the
decryption oracle. The decryption oracle will accept and decrypt this mauled ciphertext, returning
the bit 𝑏 ⊕ ⟨v,1⟩ ⊕ ⟨v′,1⟩ for some canonical coset representative v′ ∈ 𝑆 + v + (0, . . . , 0, 1). This
output is certainly related to 𝑏, and, depending on how v′ is computed, could even completely
leak 𝑏 to the adversary. For example, if v′ = v + (0, . . . , 0, 1), the decryption oracle would return
𝑏⊕ 1 to the adversary.

Noisy consistency check. Thus, we must include a consistency check inside the classical cipher-
text in order to prevent such mauling attacks. A natural attempt would be to additionally encrypt
v, resulting in a ciphertext Enc(𝑆, v, 𝑏 ⊕ ⟨v,1⟩), and instruct the decryption algorithm to abort (re-
turn ⊥) if its input z satisfies z /∈ 𝑆 + v. However, this is not allowed because the encryption only
hides v computationally. After deletion, an unbounded adversary could learn v and 𝑏⊕ ⟨v,1⟩ and
thereby learn 𝑏.

Instead, we will sample a random superspace of 𝑆 called 𝑇 and encrypt the coset 𝑇 + u that
contains 𝑆 + v. We set dim(𝑇) = 3𝑛/4 as a happy medium, which has two nice properties. First,
since 𝑇 is a negligible fraction of F𝑛

2 , it is hard for an adversary to find a vector in 𝑇 + u ∖ 𝑆 + v,
so the consistency check will be essentially as good as using 𝑆 + v. Second, since 𝑆 is a negligible
fraction of 𝑇 , 𝑇 + u statistically hides enough information about v that ⟨v,1⟩ is uniformly random,
even given 𝑇 + u. Therefore, the proof of certified deletion works.

It turns out that this “noisy consistency check” will be a crucial component of all of our con-
structions, from CCA-secure encryption, to blind delegation, to obfuscation.

2.2 General Compiler for Certified Deletion

Now we will present the tool that underlies all of our applications: a compiler that adds a certified
deletion guarantee to a variety of cryptographic primitives.

First consider a simple template for certified deletion: to hide a bit 𝑏, we give the adversary the
following state:

|𝑆v,w⟩ ,𝒵(𝑆, 𝑏⊕ ⟨v,1⟩),

where |𝑆v,w⟩ is a random subspace coset state and 𝒵 is some side information, which may be clas-
sical. 𝒵 will often represent the primitive to which we are adding a certified deletion guarantee.

9

Note that given only the side information, 𝑏 is statistically hidden because it is masked by ⟨v,1⟩.
However, the information needed to remove the mask v is stored in the computational basis of the
subspace coset state. To prove deletion, the adversary measures the subspace coset state in the
Hadamard basis to get a vector ̃︀z ∈ 𝑆⊥+w, which destroys essentially all information about v and
removes 𝑏 from their view. We will hope to prove that any strategy an (efficient) adversary uses to
obtain a ̃︀z ∈ 𝑆⊥ + w will simultaneously statistically remove 𝑏 from their view.

The recent work of [BK22] showed how to prove this when 𝒵 satisfies semantic security with
respect to 𝑆.2 However our applications need a much richer set of choices for 𝒵 that do not
necessarily hide 𝑆 semantically. For instance, we want the ability to perform the noisy consistency
check. That is: we want 𝒵 to output a randomized (𝑇, u) where 𝑆 + v ⊂ 𝑇 + u. This is essential
for our constructions of blind delegation and obfuscation with certified deletion. But 𝒵 would no
longer hide 𝑆 semantically because 𝑇 reveals some basis vectors of 𝑆⊥. In this case [BK22]’s proof
falls short.

We present a compiler that supports a greater variety of choices for 𝒵 , including the noisy con-
sistency check. Specifically, we develop techniques to allow any choice of 𝒵 that satisfies a form
of subspace-hiding against QPT adversaries. Morally, subspace-hiding means that an adversary
cannot tell whether 𝒵 was testing membership in 𝑆 (and 𝑆⊥) or random superspaces 𝑇 ≥ 𝑆 (and
𝑅 ≥ 𝑆⊥). We sketch our notion of subspace-hiding below:

Definition 2.1 (Subspace-Hiding, Informal). Given any subspace 𝑆 of dimension 𝑛/2 and two cosets
𝑆+v and 𝑆⊥+w, let 𝑇+u and𝑅+x be random cosets that contain the first two: 𝑆+v ⊂ 𝑇+u and 𝑆⊥+w ⊂
𝑅+ x. Then, 𝒵(𝑆, 𝑇, u,w, 𝑏⊕ ⟨v,1⟩) is subspace-hiding if there exists a simulator 𝒮(𝑅, 𝑇, u, x, 𝑏⊕ ⟨v,1⟩)
such that

𝒵(𝑆, 𝑇, u,w, 𝑏⊕ ⟨v,1⟩) ≈𝑐 𝒮(𝑅, 𝑇, u, x, 𝑏⊕ ⟨v,1⟩),

where ≈𝑐 denotes indistinguishability to a quantum polynomial-time adversary.

Next, we claim that if 𝒵 satisfies subspace-hiding (which is a notion of computational security),
then after the deletion certificate is accepted, 𝑏 is statistically hidden, even if the inputs to 𝒵 are
leaked at a later point. We sketch the security claim below.

Claim 2.2 (Certified Deletion Security, Informal). Let EXP(𝑏) be the output of the following experiment:

1. Challenge: The challenger samples the following challenge and sends it to the adversary:

|𝑆v,w⟩ ,𝒵𝜆(𝑆, 𝑇, u,w, 𝑏⊕ ⟨v,1⟩)

2. Response: The adversary responds with a deletion certificate ̃︀z ∈ F𝑛
2 and an auxiliary state 𝜌.

3. Outcome: The challenger checks that ̃︀z ∈ 𝑆⊥ + w

If so, they output 𝜌 and all the inputs to 𝒵 ; if not, they output ⊥.

If 𝒵 is computationally subspace-hiding, then the statistical distance between EXP(0) and EXP(1) is neg-
ligible.

2Also they only consider the case where the quantum state is a string of BB84 states.

10

Proof overview. First, we claim that 𝑏 is statistically hidden given only the side information
𝒵(𝑆, 𝑇, u,w, 𝑏 ⊕ ⟨v,1⟩). Note that 𝑏 is masked by ⟨v,1⟩, and although 𝒵 may give some infor-
mation about v in the form of (𝑇, u), there is still some randomness left in v. In more detail, we can
decompose v into its deterministic and random components by defining v0 = v − u. Then given
(𝑆, 𝑇, u,w), u is deterministic, and v0 is uniformly random over co(𝑆)∩𝑇 .3 Because v0 is uniformly
random given (𝑆, 𝑇, u,w), the bit ⟨v,1⟩ is also uniformly random (with overwhelming probability
over the choice of (𝑆, 𝑇)).

Next, recall that the adversary’s view also includes the quantum state |𝑆v,w⟩ = |𝑆u+v0,w⟩, which
stores v0 in the computational basis. Now, 𝑏 is not necessarily statistically hidden given both
|𝑆u+v0,w⟩ and 𝒵(𝑆, 𝑇, u,w, 𝑏⊕⟨v,1⟩). However, we will show that to prove deletion, the adversary
must essentially measure |𝑆u+v0,w⟩ in the Hadamard basis, destroying all information that the state
had about v0.

To show this, instead of giving the adversary |𝑆u+v0,w⟩, we imagine giving them the following
state, which stores a random ̃︀v0 in the Hadamard basis:

|𝑇u,̃︀v0+w⟩ where ̃︀v0 ← co(𝑇⊥) ∩ 𝑆⊥.

|𝑇u,̃︀v0+w⟩ is in some sense dual with |𝑆u+v0,w⟩. Both states store u in the computational basis and w
in the Hadamard basis. The only difference is that |𝑆u+v0,w⟩ encodes a random v0 in the computa-
tional basis, and instead |𝑇u,̃︀v0+w⟩ encodes a random ̃︀v0 in the Hadamard basis. Furthermore, the
adversary’s behavior will be the same no matter which of the two states we give them. Indeed,
we show that for any fixed 𝑆, 𝑇, u,w, the following states 𝜎0 and 𝜎1 are equivalent:4

𝜎0 ∝
∑︁

v0∈co(𝑆)∩𝑇

|𝑆u+v0,w⟩ ⟨𝑆u+v0,w|

𝜎1 ∝
∑︁

̃︀v0∈co(𝑇⊥)∩𝑆⊥

|𝑇u,̃︀v0+w⟩ ⟨𝑇u,̃︀v0+w|

This is a generalization of the claim that

1

2

(︀
|0⟩ ⟨0|+ |1⟩ ⟨1|

)︀
=

1

2

(︀
|+⟩ ⟨+|+ |−⟩ ⟨−|

)︀
,

which follows from setting 𝑆 = {0} and 𝑇 = {0, 1}. In other words, the state is the same whether
it’s a maximal mixture of computational basis eigenstates or Hadamard basis eigenstates.

Now, we want to argue that if the adversary produces a valid deletion certificate ̃︀z ∈ 𝑆⊥ + w,
then given their remaining state, v0 is statistically close to uniform. Imagine the adversary is given
|𝑇u,̃︀v0+w⟩ and they output a valid deletion certificate ̃︀z ∈ 𝑆⊥ + w with non-negligible probability.
Recall that 𝑇⊥ + ̃︀v0 + w is an affine subspace of 𝑆⊥ + w, so one way to do this is to make a
measurement of the vector ̃︀v0+w encoded in the phase, producing a vector in 𝑇⊥+̃︀v0+w. In fact,
we show that since 𝒵 is computationally subspace-hiding for 𝑆, any adversary’s strategy must be
statistically close to making a measurement of ̃︀v0 + w.5 Then, if the adversary were instead given
|𝑆u+v0,w⟩, this same measurement of the phase would destroy all information about v0, completing
the proof.

3co(𝑆) is a group of coset representatives of 𝑆. See Section 4.1 for a precise definition of co(𝑆).
4This is implictly shown in Section 4.3 and Section 4.4 by purifying 𝜎0 and 𝜎1 and showing that there exists a unitary

acting on the purifying register that maps between the two states.
5That is, we use computational hardness to establish a statistical claim, as done in [BK22] in the context of BB84 states.

11

Delayed preparation of coset states. To switch between 𝜎0 and 𝜎1, we will purify the two states
by adding a second register, and then we show that there is a unitary that acts on the second
register and maps the purification of 𝜎0 to that of 𝜎1. This is described in Section 4. This result
requires us to develop new techniques for working with subspace coset states that we believe are
interesting independently of their applications to certified deletion. Essentially, we provide a way
to represent the quotient groups F𝑛

2/𝑆 and F𝑛
2/𝑇 as subspaces of F𝑛

2 in a way that preserves their
algebraic structure. While this is easy to achieve over R𝑛, it requires some care over F𝑛

2 .

Why prior monogamy of entanglement techniques fail. Prior works [CLLZ21, Shm22] relied on
monogamy of entanglement theorems for general subspace coset states. However, this approach
fails to achieve the generality of our certified deletion compiler. Indeed, a unique combination of
bottlenecks in our setting requires the development of new methods.

First, monogamy of entanglement is an information-theoretic property, and it does not neces-
sarily hold if the adversary receives an encryption of the subspace 𝑆 (where the encryption is only
computationally secure). Furthermore, we would like to eventually prove information-theoretic
deletion of a secret that is initially determined by the adversary’s view. Prior works (e.g., [AK21])
used receiver non-committing encryption schemes which have an “equivocality” property, allow-
ing one to sample the fake keys after 𝑆 is revealed. These were inherently limited to proving
weaker forms of security; e.g., restricted to (computational) security against key-leakage attacks.
Furthermore, equivocality is hard to achieve [KTZ13] for applications such as blind delegation,
which involves FHE. Another setting where an equivocality-based approach fails is obfuscation.
The choice of whether to behave as 𝐶0 or 𝐶1 is “hidden” under the differing inputs. Thus, the
differing inputs act as a key to decrypt 𝑆, which reveals this choice bit. However, any differing
input (i.e. key) 𝑦* is easy to check by simply evaluating the two programs 𝐶0 and 𝐶1 on 𝑦*, al-
lowing fake keys to be immediately recognized. While [BK22] developed methods to overcome
the equivocality issue for certified deletion, they only apply their techniques to settings where the
subspace 𝑆 is semantically hidden.

As such, we cannot invoke techniques or theorems from prior work to obtain or simplify our
results, and need to develop new techniques for subspace coset states. For example, we use a
random superspace to enable a “noisy” consistency check in the construction, while such ran-
dom superspaces are only used in prior work (e.g. [CLLZ21, Shm22]) in the proof. This is nec-
essary in order to obtain everlasting security, since it avoids hard-coding the “real” coset into
the classical information received by the adversary. It also appears difficult to straightforwardly
adapt/combine monogamy-of-entanglement (MoE) claims with [BK22] techniques for our setting,
since MoE claims are not strong enough for our purposes. Specifically, MoE claims in prior work
do not seem to easily extend to rule out the possibility that Bob outputs the string 𝑥, and Charlie
simultaneously outputs the parity of 𝑥 with non-negligible advantage. If this were possible, then
even when one player produces a valid deletion certificate, the other player might learn a bit of
data with non-negligible advantage, which is not allowed by certified deletion security.

Instead, we develop a streamlined proof strategy for our setting following a simple intuition:
there is entropy from the adversary’s perspective because the challenger is (essentially) measuring
a Hadamard basis state in the standard basis. We believe that new information-theoretic and
computational techniques developed in this work will be useful in future works, especially those
that aim to develop other applications with certified deletion.

12

2.3 Blind Delegation with Certified Deletion

Blind delegation. To motivate our construction of maliciously-secure blind delegation with cer-
tified deletion, we show that both prior protocols [Por23, BK22] are insecure against malicious
adversaries.

Both of these protocols consist of four messages. First, the client encrypts their input 𝑚 and
sends a quantum ciphertext |Enc(𝑚)⟩ to the server. Next, the server evaluates a function 𝑓 to
obtain a register holding a superposition over output ciphertexts |Enc(𝑓(𝑚))⟩, which is sent to
the client. The client then coherently applies FHE decryption using their secret key, which allows
them to recover 𝑓(𝑚) without disturbing the state, and then reverse their computation and send
the undisturbed register back to the server. Finally, the server can uncompute 𝑓 and recover the
original ciphertext |Enc(𝑚)⟩. Then, if they want, they can measure the ciphertext in a particular
way to recover a certificate of deletion, which is sent to the client.

Now, consider the following attack. Suppose that the server wants to learn the first bit 𝑚1 of
𝑚. They can easily prepare a state of the form

1√
2
|Enc(𝑚1)⟩C |0⟩S +

1√
2
|Enc(0)⟩C |1⟩S ,

where Enc(0) is a freshly prepared encryption of 0. Then, suppose they send register C to the client
in place of the second message of the protocol described above. In the case that𝑚1 = 0, the client’s
computation will not disturb the state, and the server will receive back the C register unharmed.
But in the case when𝑚1 = 1, the client’s measurement of the output will collapse the state. Thus, if
the server unentangles register C and S, measures S in the Hadamard basis, and observes outcome
|−⟩, they will learn for sure that 𝑚1 = 1, breaking privacy of the protocol.6

This attack relies on the fact that the client always immediately applies an operation that de-
pends on their FHE secret key sk. To prevent this attack, we must introduce a way for the client to
check that the server is honestly following the protocol, before using its secret key to operate on the
state.

Suppose the client’s input is a single bit 𝑏, and consider our basic encryption scheme

|𝑆v,w⟩ ,Enc(𝑆, 𝑏⊕ ⟨v,1⟩),

but where Enc is now instantiated as a fully-homomorphic encryption (FHE) scheme. We will
have the server perform a classical FHE evaluation for circuit 𝑓 in superposition over the vectors
in 𝑆 + v, resulting in a superposition over Enc(𝑓(𝑏)). Now, the client will need to perform two
checks to make sure the server was behaving honestly:

• The client needs to check that the FHE evaluation in superposition was performed honestly.
This can by accomplished by requesting that the server use a succinct non-interactive argu-
ment (SNARG) for P (polynomial-time computation) in superposition, and having the client

6This attack does not contradict any claims made in [Por23] or [BK22] because neither paper claims that their pro-
tocol is maliciously-secure. In [Por23], the correctness and security properties are defined entirely separately. That is,
it is argued that correctness of the four-message protocol holds assuming parties are honest, but security (and certified
deletion security) is only argued assuming that the server does not interact with the client. Thus, the claim is essentially
that either correctness of delegation holds, or privacy against a malicious server holds. But it is never claimed that
both can hold simultaneously. In [BK22], the authors do jointly consider correctness and security of the four-message
protocol. However, they only claim security against servers that are semi-honest during the protocol execution (and
potentially malicious after, while producing the deletion certificate). Thus, the above attack is explicitly disallowed by
the semi-honest assumption.

13

verify this proof before decrypting. Moreover, SNARGs for P are known just from the LWE
assumption [CJJ21], and it is straightforward to see that this SNARG remains post-quantum
secure assuming the post-quantum hardness of LWE.

• The client also needs to check that the input to the server’s computation is honest. This input
is supposed to include any vector in 𝑆+ v. Thus, one solution is to have the client remember
a description of 𝑆+v, and also perform this check on the input before decrypting the output.
However, this solution requires that the client keep the vector v around in memory, which if
leaked would completely compromise certified deletion security. Instead, we use the same
“noisy consistency check” as explained above in the setting of CCA security, and have the
client sample a random affine superspace 𝑇 + u of 𝑆 + v, and only keep this around in
memory.

This is the basic idea of our blind delegation scheme, and more details are given at the begin-
ning of Section 6.2. Before continuing, we make some remarks about our security definition.

• We prove simulation-based security in the “protocols with certified deletion” framework of
[BK22]. That is, we show that our protocol securely realizes an ideal functionality that takes
input (𝑓, 𝑥) from the client, delivers only 𝑓 to the server, and delivers the output 𝑓(𝑥) to the
client. Thus, in the simulated world, the server obtain no information about the client’s pri-
vate input 𝑥. We show that conditioned on the server producing a valid deletion certificate,
their final view in the ideal protocol and in the ideal world are statistically indistinguishable,
indicating that they have information-theoretically lost all information about 𝑥.

• We show that our protocol in fact realizes a reusable ideal functionality, where the client can
request that the server compute for them multiple functions 𝑓1(𝑥), 𝑓2(𝑥), . . . on their original
encrypted data 𝑥, and security still holds.

• In the case that deletion is accepted, we also explicitly leak all of the client’s secret parameters
to the adversary, and still require that statistical security holds. We capture this by defining
a “long-term secrets” tape sec, where after each message, the honest client is supposed to
write all of the information it needs to interact in the remainder of the protocol on this tape.
Conditioned on deletion being accepted, we give the adversary access to this tape.

Finally, we remark that prior to our work, maliciously-secure blind delegation with certified
deletion was not known even without reusability, and even without requiring information-theoretic
security after deletion.

2.4 Obfuscation with Certified Deletion

Now, we show that the techniques we have developed by studying CCA-secure encryption and
malicious blind delegation can be applied to the demanding setting of program obfuscation. Here,
we wish to encode a classical circuit 𝐶 into a quantum state | ̃︀𝐶⟩ that allows for evaluation of 𝐶(𝑥)
on any input 𝑥. Moreover, there should also be a procedure for measuring | ̃︀𝐶⟩ in a particular way
that certifiably destroys information about 𝐶.

While the natural notion of virtual black-box obfuscation is impossible to achieve in general
[BGI+12], several relaxed notions are plausibly achievable. We focus on the case of differing inputs

14

obfuscation for a polynomial number of differing inputs [BGI+12], which is implied by the related
notion of indistinguishability obfuscation [BCP14]. This notion requires that for any two circuits
𝐶0 and 𝐶1 which differ on a polynomial number of hard-to-find inputs, an obfuscation of 𝐶0 is
indistinguishable from an obfuscation of 𝐶1.

Our goal is thus to achieve differing inputs obfuscation with certified deletion for a polynomial
number of differing inputs.7 This is described by the following (simplified) game.

1. The challenger samples two programs 𝐶0 and 𝐶1 from a given distribution, where it holds
that 𝐶0(𝑦) = 𝐶1(𝑦), except for some 𝑦*, that we refer to as the differing input. Importantly,
even given the description of Π0 and Π1, it is computationally hard to find 𝑦*.

2. The challenger flips a coin 𝑏← {0, 1} and sends an obfuscation of 𝐶𝑏 to the attacker.

3. At some point of the experiment, the attacker outputs the deletion certificate, which is veri-
fied by the challenger.

4. If the certificate correctly verifies, then the challenger sends 𝑦* to the attacker.

5. The attacker outputs a guess for the bit 𝑏.

We note that if the attacker becomes unbounded after outputting a valid deletion certificate,
then they could compute 𝑦* themselves. Thus, we remove Step 4 in our definition for information-
theoretic certified deletion.

To justify this definition, we argue that it captures the intuitive guarantees that one would ex-
pect from software with certified deletion. First, there is a sense in which software with certified
deletion implies some notion of obfuscation: if one could learn the program by just looking at its
code, then there would be no point in issuing a deletion certificate. Second, we want to model
the fact that once the adversary has deleted the program, they can no longer evaluate it on any
input. However, it is not clear how to model the information which the adversary learned before
deletion, i.e., when they had a functional copy of the program. We have no way of “looking inside
the adversary’s head” to learn which inputs they evaluate, and, even worse, the attacker may not
even execute the program properly. Our definition sidesteps this issue, by requiring security for
inputs that are hidden even given the plain description of the program (i.e., the differing inputs).
In this sense, our definition can be interpreted as saying that the deletion prevents the adversary
from learning any information that was not obviously leaked from having a running copy of the
program.8

Obfuscation: Construction. Taking intuition from our encryption schemes, we will need to hide
the description of 𝐶 using a random coset v of the subspace 𝑆. Supposing for a moment that we
can simultaneously hide all bits of 𝐶 with a single vector v, this suggests that we hard-code 𝑆 and
𝐶 + v into the description of a classical program 𝑃 [𝑆,𝐶 + v] to be obfuscated. 𝑃 [𝑆,𝐶 + v] will
take as input a vector z (which should be in 𝑆 + v) and a string 𝑥, computes the coset v of 𝑆 that

7Our definition also generalizes to the case of an arbitrary number of differing inputs. However, achieving this
would imply the existence of general differing inputs obfuscation, contrary to current evidence [BSW16, GGHW14].

8Our definition does not prevent an adversary from evaluating the program on easy-to-find inputs after deletion.
This is because we cannot rule out the possibility of them having already evaluated those inputs before deletion.

15

z belongs to, unmasks 𝐶 using v, and computes and outputs 𝐶(𝑥). Then our first attempt at a
construction would consist of

|𝑆v,w⟩ ,Obf(𝑃 [𝑆,𝐶 + v]).

We now run into a familiar issue: the evaluator is not limited to evaluating 𝑃 [𝑆,𝐶 + v] on vec-
tors in 𝑆 + v, and other vectors may be used to “maul” the output and uncover extra information
about 𝐶. Thus, we sample a random superspace 𝑇 + u of 𝑆 + v, and output

|𝑆v,w⟩ ,Obf(𝑃 [𝑆, 𝑇, u, 𝐶 + v]),

where 𝑃 now aborts if its input z /∈ 𝑇 + u. This noisy check again solves our issue, since we will
show that it is difficult for an adversary to find any vectors in 𝑇 + u ∖ 𝑆 + v.

To argue security, we would like to switch an obfuscation of 𝐶0 to an obfuscation of 𝐶1, and
argue that this switch is statistically indistinguishable to an adversary that produces a successful
deletion certificate. Our main theorem provides a way to obtain such statistical guarantees, but it
only handles statistically hiding a single bit. Thus, we must perform a hybrid argument over the
bits of the descriptions of the circuits. We cannot do this naively, since descriptions of circuits “in
between” 𝐶0 and 𝐶1 are not guaranteed to be functionally equivalent to 𝐶0 and 𝐶1. Instead, we
make use of the two-slot technique [NY01], and we defer details of this to the technical sections.

The above describes the main intuition and techniques that allow us to hide functionality,
while still allowing for certified deletion. In the body of the paper, we also derive the following
related results and applications.

Strong secure software leasing. Secure software leasing is defined with respect to a family of
programs [AL21]. The adversary is given a leased program randomly chosen from this family
and outputs two programs. If one of the programs is authenticated, then the other cannot be
evaluated using the honest evaluation procedure.

We observe that any differing inputs program family can be securely leased by obfuscating
it with certified deletion. A differing inputs program family contains pairs of programs (Π0,Π1)
such that given a random pair, it is hard to find an input 𝑦* where Π0(𝑦

*) ̸= Π1(𝑦
*). If an obfusca-

tion of Π0 is returned to the lessor who then generates a valid deletion certificate, then the residual
state cannot be used to distinguish whether the program was Π0 or Π1, even given a differing in-
put 𝑦*. In particular, the adversary that returned the program cannot later evaluate a pirated copy
of it on 𝑦* - otherwise they could check which program matched the output. Therefore, a leased
program can be validated by attempting to delete it and checking the deletion certificate. We em-
phasize that this guarantee is stronger than the original notion of secure software leasing, which
permits the adversary to evaluate a pirated (i.e. unauthenticated) program as long as they do not
use the honest evaluation procedure.

Since we construct obfuscation with certified deletion for a polynomial number of differing in-
puts, we immediately obtain (strong) secure software leasing for differing inputs program families
with a polynomial number of differing inputs. Existing impossibility results for secure software
leasing [AL21, AK22] rule out secure software leasing for families containing programs which
cannot be learned with black-box query access, but can be learned using non-black-box access to
any functionally equivalent program. In contrast, a differing inputs program family contains pro-
grams which cannot be learned, even with non-black-box access to an obfuscation of the program.

16

Succinct randomized encodings with certified deletion. By plugging in a classical succinct in-
distinguishability obfuscator (otherwise known as an i𝒪 for Turing machines) to the above con-
struction, we obtain succinct i𝒪 with certified deletion. As a special case, this allows a compu-
tationally weak client to encode an input 𝑥 and a Turing machineℳ into a quantum state |̃︁ℳ𝑥⟩
which has the following properties:

• Anyone with enough resources for runningℳ can learn use |̃︁ℳ𝑥⟩ to learnℳ(𝑥).

• Moreover, if they do this coherently and then reverse their computation, they can also certi-
fiably delete everything else about 𝑥 by performing a particular measurement on |̃︁ℳ𝑥⟩.

This gives us the notion of a succinct randomized encoding with certified deletion, and immediately
implies a two-message blind delegation scheme with certified deletion. Prior to our work, we
had no candidates for such a protocol, and prior protocols crucially used interaction with the client
to enable recovery of the outputℳ(𝑥) without ruining the ability to certifiably delete 𝑥.

Oracles with certified deletion. Suppose that we make the idealized assumption that classical
functionality can be encoded into an oracle that parties only have query access to. For any classical
functionality 𝑓 , is it possible to construct an oracle 𝑂𝑓 that allows for evaluation of 𝑓 , but also
supports deletion? That is, after a deletion certificate is produced, 𝑂𝑓 should no longer contain any
information about 𝑓 .

A natural attempt would be to make use of a signature token scheme [BS17], and implement
𝑂𝑓 as the function that takes (𝜎0, 𝑥) as input and only outputs 𝑓(𝑥) if 𝜎0 is a valid signature on 0.
The deletion certificate would then be a valid signature 𝜎1 on 1. Indeed, [ALL+21] make use of
signature tokens and similar intuition for obtaining copy-protection in the oracle model.

However, given an unbounded amount of time or queries to the signature token verification
oracle, an adversary can always find two valid signatures 𝜎0 and 𝜎1, and thus we cannot say that
𝑂𝑓 truly contains no information about 𝑓 after the certificate 𝜎1 is produced.

We show that using our techniques, it is possible to implement an oracle 𝑂𝑓 with such strong
deletion guarantees. After deletion, we have the guarantee that even an unbounded number of
queries to 𝑂𝑓 can be simulated without the description of 𝑓 .

2.5 Flavors of Functional Encryption with Certified Deletion

Functional encryption with certified deletion for secret keys. To substantiate the validity of
our definition for obuscation with certified deletion, we show that our obfuscation scheme can be
immediately used to construct functional encryption with certified deletion for secret keys.

Our construction is essentially the same as the functional encryption from obfuscation trans-
formation from [GGH+13], except that we use obfuscation with certified deletion instead. In more
details, encryption of a message 𝑚 consists of a standard public-key encryption of 𝑚, whereas a
secret key for a function 𝑓 is an obfuscated version of the circuit that decrypts the input ciphertext
to recover 𝑚 and returns 𝑓(𝑚). In the actual scheme, one has to encrypt the same message twice
(and prove that both ciphertext encrypt the same messages) for the proof to go through, but we
can ignore these technicalities in this overview.

17

The above construction already guarantees that a key sk𝑓 only reveals information about 𝑓(𝑚),
by virtue of being a functional encryption scheme. The certified deletion property additionally en-
sures that, if the adversary has a key for 𝑓 , but deletes it before receiving the challenge ciphertext,
then he learns nothing. In fact, a straightforward reduction to the certified deletion security of the
obfuscation scheme ensures that this is the case even if the adversary has access to other secret
keys (security against unbounded collusion).

Functional encryption with certified deletion for ciphertexts. Finally, we also build public-key
functional encryption (FE) that supports certified deletion of ciphertexts and remains secure even
when the adversary obtains an a-priori unbounded number of functional keys. Informally, a func-
tional encryption (FE) scheme supports functional secret keys that enable a key holder to learn a
specific function of encrypted data, but learn nothing else about the data. Similarly, FE with certi-
fied deletion allows an adversary holding a ciphertext encrypting𝑚 and functional keys 𝑓1, . . . , 𝑓𝑘
to certifiably, information-theoretically delete all information about 𝑚 except for 𝑓1(𝑚), . . . , 𝑓𝑘(𝑚).

Recall that we can encrypt a bit 𝑏 in a way that supports deletion by hiding it using a random
coset v of a subspace 𝑆. Building on this, an FE encryption of bit 𝑏9 can be

FE.CD-Enc(𝑏) = |𝑆v,w⟩ ,FE-Enc(𝑆, 𝑏⊕ ⟨v,1⟩))

where FE-Enc is the encryption algorithm of a (classical, post-quantum) functional encryption
scheme. Now, a functional secret key for a function 𝑓 (meant to help the key holder compute
𝑓(𝑏) given an encryption of 𝑏), will correspond to the functional key of the underlying FE scheme
corresponding to a related function 𝑔𝑓 , i.e.,

FE.CD-KeyGen(𝑓) = FE-KeyGen(𝑔𝑓)

where 𝑔𝑓 takes as input a vector z and also takes (𝑆, 𝑏′), then computes the coset of 𝑆 that z is in,
computes 𝑏 = 𝑏′ ⊕ ⟨v,1⟩ and finally outputs 𝑓(𝑏).

To compute 𝑓(𝑏) given ciphertext (|ct1⟩ , ct2) = FE.CD-Enc(𝑏) and functional secret key sk𝑓 =
FE.CD-KeyGen(𝑓), an evaluator will first measure |ct1⟩ to obtain a vector z, then run the FE de-
cryption algorithm with key sk𝑓 on z and ct2 – which encrypts (𝑆, 𝑏′) – to obtain 𝑓(𝑏). However,
this runs into two problems: first, the syntax/correctness of FE requires both z and (𝑆, 𝑏′) to be
in encrypted form in order to meaningfully perform functional decryption and obtain 𝑓(𝑏). We
get around this problem by relying instead on a multi-input functional encryption scheme, that
allows the evaluator to encrypt z on their own before performing functional decryption. Second,
and more importantly, we run into the same issue as all other primitives above: the evaluator is
not limited to running functional decryption on z obtained by measuring |ct1⟩, instead, running
decryption on other vectors may help uncover extra information about 𝑏.

To fix this, we sample a random superspace 𝑇 + u of 𝑆 + v, and output

|𝑆v,w⟩ ,FE-Enc(𝑆, 𝑇, u, 𝑏⊕ ⟨v,1⟩),

where the function 𝑔𝑓 is now modified to abort if its input z /∈ 𝑇 + u. This noisy check solves our
issue one more time, since we can show that it is difficult for an adversary to find any vectors in

9In this overview, we focus on encrypting bits for simplicity – but these ideas work for encrypting longer strings, as
we show in Section 9.

18

𝑇 + u ∖ 𝑆 + v. Finally, just like the case of obfuscation, we use a two-slot technique [NY01] in the
proof due to technical reasons.

Public verification. Although not an emphasis of our work, we note that these techniques also
yield schemes where deletion is publicly verifiable.

Recall that the deletion verification procedure in our basic scheme simply checks whether the
certificate ̃︀z is in the coset 𝑆⊥ +w. This can be made public by giving out an obfuscated program for
membership in 𝑆⊥ + w.

If 𝑆 was spanned by standard basis vectors (the BB84 state case), then this would completely
compromise security, since a description of 𝑆 can easily be learned using black-box access to 𝑆⊥+
w. On the other hand, this is not necessarily true when 𝑆 is a uniformly random subspace. In fact,
[Zha19] showed that if i𝒪 is a post-quantum indistinguishability obfuscator, then no adversary
can distinguish whether they are given i𝒪(𝑆) or i𝒪(𝑇) for a random superspace 𝑇 of 𝑆. Thus,
even if the adversary is additionally given i𝒪(𝑆⊥ + w), during the security proof we can hope to
replace i𝒪(𝑆⊥ + w) with i𝒪(𝑅+ x) for a large affine superspace 𝑅+ x of 𝑆⊥ + w.

This ability to do this is captured in the general case of our main theorem, where we ask that
the output of 𝒵 can be simulated in a computationally indistinguishable manner just using the
information (𝑅, 𝑇, u, x, 𝑏′). By combining with prior work [BK22], we immediately obtain an array
of cryptographic primitives with publicly-verifiable certified deletion, assuming post-quantum
indistinguishability obfuscation. Moreover, we can add public-verifiability to the cryptosystems
constructed in this work, including blind delegation.

We remark that the blind delegation protocol of [Por23] is also shown to be publicly-verifiable,
under the strong Gaussian-collapsing conjecture, and thus our results on public verification are
technically incomparable. However, [Por23]’s conjecture involves an interactive game that has a
baked in certified deletion component, wherein the adversary receives some trapdoor information
conditioned on them successfully returning a pre-image of the hash function. On the other hand,
indistinguishability obfuscation a priori has nothing to do with certified deletion. While post-
quantum indistinguishability obfuscation is also not known from standard assumptions, this is
a very active area of research with many candidates proposed over the last few years [BGMZ18,
CVW18, BDGM22, GP21, WW21, DQV+21].

2.6 Other Related Work

We also mention the prior works that build cryptographic schemes from subspace coset states.
These states were first used by [VZ21] in the context of proofs of quantum knowledge and by
[CLLZ21] to construct signature tokens (among other unclonable primitives) in the plain model.
These were also used to build semi-quantum tokenized signatures [Shm22]. Most recently, [AKL+22]
used subspace coset states to construct unclonable encryption satisfying the notion of unclonable
indistinguishability. We remark that, while there are clearly similarities between the notions of
unclonable encryption and encryption with certified deletion, our security definitions and proofs
are quite different than those in [AKL+22]. For example, [AKL+22] crucially rely on random oracles,
while our results are all in the plain model. Moreover, we achieve security definitions that promise
everlasting security against unbounded adversaries after deletion, while [CLLZ21, AKL+22, Shm22]
focuses on proving that computationally-bounded (or query-bounded) adversaries cannot per-
form a certain task, e.g., generating additional signatures.

19

Two prior works have considered functional encryption with certified deletion. [KN22] achieves
a private-key version of functional encryption with certified deletion of secret keys. [HMNY22a]
achieves functional encryption where the ciphertext can be deleted and it is certified everlasting
(i.e. information theoretic certified deletion). Their construction is secure against bounded collu-
sions, and either relies on the QROM or requires quantum certificates of deletion, and assumes
public-key encryption. On the other hand, our functional encryption schemes support public-key
encryption and are secure (in the sense of certified deletion) against an unbounded number of
colluding users. We assume iO, which (up to subexponential hardness factors) is necessary, since
it is implied by unbounded-collusion FE.

3 Preliminaries

Let 𝜆 denote the security parameter. A function 𝑓 is negligible if for every constant 𝑐 ∈ N,
𝑓(𝑛) < 𝑛−𝑐 for sufficiently large 𝑛. We use negl(𝑛) to represent a generic negligible function of
𝑛. We say that an event happens with overwhelming probability if the probability is at least
1− negl(𝜆).

Let F2 denote the field over {0, 1}, where addition and multiplication are performed modulo
2. For any natural number 𝑛, F𝑛

2 is a vector space. For any vectors u, v ∈ F𝑛
2 , let the inner product

be computed mod 2: ⟨u, v⟩ =
∑︀

𝑖 u𝑖 · v𝑖 mod 2. We denote the 𝑖th standard basis vector of F𝑛
2 as

𝑒𝑖.
Given a vector v ∈ F𝑛

2 : the Hamming weight is the number of nonzero entries in v. The relative
Hamming weight 𝜔(v) is the Hamming weight of v divided by 𝑛. The parity of v is denoted as
𝑝(v) or ⟨v,1⟩.

3.1 Quantum Computation

A quantum register X is a set of 𝑛 qubits, which represent the Hilbert space C2𝑛 and hold a
quantum state. A quantum state on register X is represented as 𝜌 or 𝜌X, and it is a positive semi-
definite operator on C2𝑛 with trace 1. We sometimes refer to this PSD operator as a density matrix.
If the state is pure, it can also be represented as a unit vector |𝜓⟩ ∈ C2𝑛 .

A quantum operation 𝐹 maps a state 𝜌 on register X to a state 𝜎 on register Y. Formally,
a quantum operation is a completely-positive trace-preserving (CPTP) map. Note that the two
registers may have different sizes. Also, some possible notations for 𝐹 include: 𝜎 = 𝐹 (𝜌), 𝜎Y =
𝐹 (𝜌X) and Y ← 𝐹 (X).

A unitary 𝑈 : X → X is a special case of a quantum operation that satisfies 𝑈 †𝑈 = 𝑈𝑈 † = IX,
where IX is the identity matrix on register X. A projector Π is a Hermitian operator such that
Π2 = Π, and a projective measurement is a collection of projectors {Π𝑖}𝑖 such that

∑︀
𝑖Π𝑖 = I.

Trace distance is the quantum analog of total variation distance: for two states 𝜌 and 𝜎, the
trace distance between them is an upper bound on the advantage with which an (unbounded)
algorithm can distinguish 𝜌 and 𝜎. Formally, the trace distance between 𝜌 and 𝜎 is given by:

TD(𝜌, 𝜎) :=
1

2
Tr

(︂√︁
(𝜌− 𝜎)†(𝜌− 𝜎)

)︂
where Tr(·) is the trace of the given matrix.

20

Lemma 3.1 (Gentle Measurement Lemma [Win99, CMSZ21]). Let 𝜌 be a quantum state in some
Hilbert space, and let {Π, 𝐼 − Π} be a projective measurement that acts on that Hilbert space. Also, let
(𝜌,Π) satisfy: Tr(Π𝜌) ≥ 1− 𝛿.

Next, let 𝜌′ be the state that results from applying {Π, 𝐼 − Π} to 𝜌 and post-selecting on obtaining the
first outcome:

𝜌′ =
Π𝜌Π

Tr(Π𝜌)

Then TD(𝜌, 𝜌′) ≤ 2
√
𝛿.

Finally, we’ll define some common bases and states. For a single-qubit Hilbert space, the com-
putational basis is {|0⟩ , |1⟩}, and the Hadamard basis is {|+⟩ , |−⟩}, where:

|+⟩ = |0⟩+ |1⟩√
2

, |−⟩ = |0⟩ − |1⟩√
2

The Hadamard operation 𝐻 maps |0⟩ to |+⟩ and |1⟩ to |−⟩.
The set of states {|0⟩ , |1⟩ , |+⟩ , |−⟩} are known as BB84 states. A Wiesner state is a string BB84

states. For strings (𝑥, 𝜃) ∈ F𝑛
2 , the Wiesner state |𝑥⟩𝜃 is:

|𝑥⟩𝜃 = 𝐻𝜃1 |𝑥1⟩ ⊗ · · · ⊗𝐻𝜃𝑛 |𝑥𝑛⟩

3.2 Subspaces and Cosets

A set 𝑆 ⊆ F𝑛
2 is a subspace if it is closed under vector addition and scalar multiplication. The

notation 𝑆 ≤ 𝑇 means that 𝑆 and 𝑇 are subspaces, and 𝑆 ⊆ 𝑇 . For a subspace 𝑆 ≤ F𝑛
2 , the

orthogonal subspace is 𝑆⊥ = {v ∈ F𝑛
2 : ⟨u, v⟩ = 0,∀u ∈ 𝑆}. Their dimensions satisfy dim(𝑆) +

dim(𝑆⊥) = 𝑛.
For any vector z ∈ F𝑛

2 , the coset of 𝑆 that z belongs to is the set: 𝑆 + z = {v ∈ F𝑛
2 |v = s+ z, ∃s ∈

𝑆}. The cosets of 𝑆 partition F𝑛
2 into equal-sized sets: |𝑆 + z| = |𝑆|, and every z belongs to exactly

one coset of 𝑆.
Finally, a subspace coset state is a state of the following form, where v,w ∈ F𝑛

2 :

|𝑆v,w⟩ =
1√︀
|𝑆|

∑︁
z∈𝑆+v

|z⟩ · (−1)⟨z,w⟩

Lemma 3.2 ([CLLZ21]). 𝐻⊗𝑛 |𝑆v,w⟩ = |𝑆⊥
w,v⟩

Next, we will define a subspace co(𝑆), which is analogous to the quotient group F𝑛
2/𝑆. co(𝑆) ≤

F𝑛
2 is a subspace that contains exactly one element of every coset of 𝑆. This is useful for decompos-

ing vectors since every z ∈ F𝑛
2 has a unique decomposition as z = u+ v, for some (u, v) ∈ 𝑆 × co(𝑆)

(Lemma 4.1).
It is useful intuition to imagine choosing co(𝑆) = 𝑆⊥, but this is not always allowed. Because

𝑆 is a subspace of F𝑛
2 and not R𝑛, it’s possible that some coset of 𝑆 contains multiple vectors from

𝑆⊥ and another coset contains none.
To avoid ambiguity, we always assume that a description of 𝑆 includes a basis for each of the

following subspaces: [𝑆, 𝑆⊥, co(𝑆), co(𝑆⊥)].
See Section 4 for more details about co(𝑆).

21

3.3 Obfuscation

3.3.1 Indistinguishability Obfuscation and Differing Inputs Obfuscation

Here we define three notions of obfuscation. First, indistinguishability obfuscation (i𝒪) guarantees
that for any two functionally equivalent circuits, their obfuscations are indistinguishable. Second,
we define i𝒪 for Turing machines, which is known as succint indistinguishability obfuscation.
Third, we define differing inputs obfuscation (di𝒪), which is similar to i𝒪, but allows the two
circuits to differ on a set of inputs as long as it is hard to find one of the differing inputs.

Definition 3.3 (Indistinguishability obfuscation). An indistinguishability obfuscator for a class of cir-
cuits {𝒞𝜆}𝜆∈N is a PPT algorithm i𝒪 that takes as input a security parameter 1𝜆 and a description of a
circuit 𝐶 ∈ 𝒞𝜆 and outputs an obfuscated circuit ̃︀𝐶. It should satisfy the following properties.

• Correctness. For all 𝜆 ∈ N, all 𝐶 ∈ 𝒞𝜆, and all inputs 𝑥,

Pr[i𝒪(1𝜆, 𝐶)(𝑥) = 𝐶(𝑥)] = 1.

• Security. For all sequences of functionally equivalent circuits {𝐶0,𝜆, 𝐶1,𝜆}𝜆∈N and all QPT adver-
saries {𝒜𝜆}𝜆∈N,

|Pr[𝒜𝜆(i𝒪(1𝜆, 𝐶0,𝜆)) = 1]− Pr[𝒜𝜆(i𝒪(1𝜆, 𝐶1,𝜆)) = 1]| = negl(𝜆).

Next, we define succinct indistinguishability obfuscation, otherwise known as i𝒪 for Turing
machines. We generally parameterize a Turing machine 𝑀 with a step-size 𝑡 and an input length
𝑛. Given 𝑀, 𝑡, and an 𝑥 ∈ {0, 1}𝑛, we define 𝑀 𝑡(𝑥) to be the value written on the output tape of
𝑀 after taking 𝑥 as input and running for 𝑡 steps, if such a value exists. Otherwise, it is defined to
be ⊥.

Definition 3.4 (Succinct indistinguishability obfuscation). A succinct indistinguishability obfuscator
for a class of Turing machines {ℳ𝜆}𝜆∈N is a PPT algorithm si𝒪 that takes as input a security parameter
1𝜆, the description of a Turing machine 𝑀 ∈ ℳ𝜆, a time bound 𝑡, and an input length 𝑛, and outputs an
obfuscated Turing machine ̃︁𝑀 . It should satisfy the following properties.

• Correctness. For any 𝜆 ∈ N, any 𝑀 ∈ℳ𝜆, any 𝑥 ∈ {0, 1}𝑛, and any 𝑡,

Pr[si𝒪(1𝜆,𝑀, 𝑡, 𝑛)(𝑥) =𝑀 𝑡(𝑥)] = 1.

• Security. For all sequences of functionally equivalent Turing machines {𝑀0,𝜆,𝑀1,𝜆, 𝑡𝜆, 𝑛𝜆}𝜆∈N,
meaning that for all 𝜆 ∈ N, and 𝑥 ∈ {0, 1}𝑛(𝜆), 𝑀 𝑡𝜆

0,𝜆(𝑥) = 𝑀 𝑡𝜆
1,𝜆(𝑥), and all QPT adversaries

{𝒜𝜆}𝜆∈N,

|Pr[𝒜𝜆(si𝒪(1𝜆,𝑀0,𝜆, 𝑡𝜆, 𝑛𝜆)) = 1]− Pr[𝒜𝜆(si𝒪(1𝜆,𝑀1,𝜆, 𝑡𝜆, 𝑛𝜆)) = 1]| = negl(𝜆).

• Succinctness. The running time of si𝒪 must be poly(𝜆, |𝑀 |, log 𝑡, 𝑛).

Remark 3.5. (Post-quantum) succinct indistinguishability obfuscation is known from (post-quantum) sub-
exponentially secure indistinguishability obfuscation, one-way functions, and injective pseudo-random gen-
erators [KLW15].

22

Differing inputs obfuscation is similar to indistinguishability obfuscation, but allows the two
circuits to differ on a set of inputs as long as it is hard to find one of the differing inputs. We recall
the definition of a differing input circuit family from [ABG+13].

Definition 3.6 (Differing Inputs Circuits). A circuit family 𝒞 associated with an efficiently sampleable
distribution 𝒟 is said to be a differing input circuit family if for every PPT adversary 𝒜,

Pr[𝐶0(𝑥) ̸= 𝐶1(𝑥) : (𝐶0, 𝐶1, aux)← 𝒟, 𝑥← 𝒜(1𝜆, 𝐶0, 𝐶1, aux)] = negl

If this holds against QPT adversaries, we say it is a post-quantum differing input circuit family. If 𝐶0, 𝐶1

differ on at most 𝑛 inputs for all (𝐶0, 𝐶1, aux) ← 𝒟, we say 𝒞 is a differing inputs circuit family with 𝑛
differing inputs.

In this work, we only consider post-quantum differing input circuit families which differ on
either 1 or polynomially many inputs.

Definition 3.7 (Differing Inputs Obfuscation). An indistinguishability obfuscator di𝒪 for a differing
inputs circuits family 𝒞 associated with an efficiently sampleable distribution𝒟 is a PPT or QPT algorithm
such that:

• Correctness: For all circuits 𝐶, Pr[𝐶(𝑥) = 𝐶(𝑥)∀𝑥 : 𝐶 ← di𝒪(1𝑛, 𝐶)] = 1

• Indistinguishability: For all differing inputs circuit classes and all PPT distinguishers 𝐷,⃒⃒⃒⃒
Pr[𝐷(𝐶0, 𝐶1, aux, 𝐶) = 1 : 𝐶 ← di𝒪(1𝑛, 𝐶0)), (𝐶0, 𝐶1, aux)← 𝒟]
−Pr[𝐷(𝐶0, 𝐶1, aux, 𝐶) = 1 : 𝐶 ← di𝒪(1𝑛, 𝐶1), (𝐶0, 𝐶1, aux)← 𝒟]

⃒⃒⃒⃒
= negl

If indistinguishability holds against QPT distinguishers, we say di𝒪 is quantum-secure. If this holds and
di𝒪 is a PPT algorithm, we instead say it is post-quantum.

[BCP14] show that any indistinguishability obfuscator is also a differing inputs obfuscator for
differing input circuits families with a polynomial number of differing inputs. Their ideas can be
straightforwardly extended to show that this also holds for quantum adversaries, which consist of
a unitary 𝑈𝒜 and an auxiliary quantum input |𝜓𝒜⟩. Their proof performs a binary search over the
input space by constructing intermediate obfuscations and asking the adversary to distinguish
each of them. One may be concerned that performing a single distinguishing experiment may
irreversibly collapse the adversary’s internal state |𝜓𝒜⟩, rendering it useless for subsequent exper-
iments. However, if |𝜓𝒜⟩ exists, then so does the state |𝜓𝒜⟩⊗𝑛, consisting of 𝑛 copies of |𝜓𝒜⟩. This
copied state may be obtained non-uniformly.10 Using one copy per distinguishing experiment
allows the proof to succeed.

3.3.2 Subspace-Hiding Obfuscation

Next, we define the notion of subspace-hiding obfuscation, which provides a membership test for
subspaces while hiding the subspace up to containment in a random superspace. Subspace-hiding
obfuscation is implied by i𝒪 along with injective one-way functions.

10If the adversary is uniform, then its auxiliary input state is empty. Therefore we may obtain multiple copies of it
uniformly, and thus the reduction is uniform in this case.

23

First, let us define the membership test: given a set 𝑆 ⊆ F𝑛
2 , let 𝑃𝑆 be the program that takes as

input a vector v ∈ F𝑛
2 , and outputs 1 if v ∈ 𝑆 and 0 otherwise. Second, when 𝑆 is a subspace, we

define a subspace-hiding obfuscator sh𝒪 to be a program that obfuscates 𝑃𝑆 . For security, we say
that an adversary cannot distinguish sh𝒪(𝑃𝑆) from sh𝒪(𝑃𝑇), where 𝑇 is a random superspace of
𝑆.

Definition 3.8 ([Zha19], Def. 6.2). A subspace-hiding obfuscator sh𝒪 for a field F and dimensions 𝑑𝑆 , 𝑑𝑇
is a PPT algorithm sh𝒪 that takes a program 𝑃𝑆 as input and outputs an obfuscated program ̃︀𝑃 . sh𝒪 is
secure if all QPT adversaries have negligible advantage in the following game:

• The adversary sends the challenger a subspace 𝑆 ≤ F𝑛 of dimension 𝑑𝑆 .

• The challenger samples a random subspace 𝑇 ≤ F𝑛 of dimension 𝑑𝑇 such that 𝑆 ≤ 𝑇 . Then they
sample 𝑏 ← {0, 1}, and if 𝑏 = 0 they compute ̃︀𝑃 ← sh𝒪(𝑃𝑆), and if 𝑏 = 1, they compute ̃︀𝑃 ←
sh𝒪(𝑃𝑇). Then they send ̃︀𝑃 to the adversary.

• The adversary makes a guess 𝑏′ for 𝑏.

The adversary’s advantage is |Pr[𝑏′ = 𝑏]− 1/2|.

Theorem 3.9 ([Zha19], Theorem 6.3). If injective one-way functions exist and |F|𝑛−𝑑𝑇 is exponential,
then any indistinguishability obfuscator, appropriately padded, is a subspace hiding obfuscator for field F
and dimensions 𝑑𝑆 , 𝑑𝑇 .

Next, we can extend the subspace-hiding guarantee to hold even when the program we’re
obfuscating checks membership in a coset of 𝑆.

Corollary 3.10 ([CLLZ21]). Let i𝒪 be an indistinguishability obfuscator and suppose that injective one-
way functions exist, and consider the following game.

• The adversary sends the challenger a subspace 𝑆 < F𝑛
2 of dimension 𝑛/2 and a vector v ∈ co(𝑆).

• The challenger samples a random superspace 𝑇 > 𝑆 of dimension 3𝑛/4 and defines u ∈ co(𝑇) to be
the unique coset of 𝑇 such that 𝑆 + v ⊆ 𝑇 + u. Then they sample 𝑏← {0, 1}. If 𝑏 = 0, they computẽ︀𝑃 ← i𝒪(𝑃𝑆+v), and if 𝑏 = 1 they compute ̃︀𝑃 ← i𝒪(𝑃𝑇+u). Then they send ̃︀𝑃 to the adversary.

• The adversary makes a guess 𝑏′ for 𝑏.

For any QPT adversary, it holds that |Pr[𝑏′ = 𝑏]− 1/2| = negl(𝑛) in the above game.

Proof. We consider a sequence of hybrids.

• ℋ0: ̃︀𝑃 is an obfuscation of 𝑃𝑆+v.

• ℋ1: Sample ̃︀𝑃𝑆 ← i𝒪(𝑆) and let ̃︀𝑃 be an obfuscation of the program ̃︀𝑃𝑆(· − v) that takes as
input a vector x and runs ̃︀𝑃𝑆(x− v).

• ℋ2: Sample ̃︀𝑃𝑇 ← i𝒪(𝑇) and let ̃︀𝑃 be an obfuscation of the program ̃︀𝑃𝑇 (· − v) that takes as
input a vector x and runs ̃︀𝑃𝑇 (x− v).

• ℋ3: ̃︀𝑃 is an obfuscation of 𝑃𝑇+u.

24

Indistinguishability between hybridsℋ0 andℋ1 and between hybridsℋ2 andℋ3 follows from
the security of i𝒪. Indistinguishability between hybrids ℋ1 and ℋ2 follows from the security of
i𝒪 as a subspace-hiding obfuscator.

The following theorem is an information-theoretic version of Corollary 3.10. It doesn’t assume
i𝒪, and instead, the adversary gets quantum query access to the function.

Theorem 3.11. Consider the following game:

1. The adversary chooses a subspace 𝑆 ≤ F𝑛
2 of dimension 𝑛/2 and a vector v ∈ co(𝑆). They send both

to the challenger.

2. The challenger samples a random superspace 𝑇 > 𝑆 of dimension 3𝑛/4 and defines u ∈ co(𝑇) to be
the unique coset of 𝑇 such that 𝑆 + v ⊆ 𝑇 + u. Then they sample 𝑏 ← {0, 1} and if 𝑏 = 0, they set̃︀𝑃 = 𝑃𝑆+v, and if 𝑏 = 1 they set ̃︀𝑃 = 𝑃𝑇+u. Then they give the adversary quantum query access tõ︀𝑃 .

3. The adversary makes a guess 𝑏′ for 𝑏.

For any adversary that makes poly(𝑛) queries, it holds that
⃒⃒
Pr[𝑏′ = 𝑏] − 1/2

⃒⃒
= negl(𝑛) in the game

above.

Proof. We will use the inner-product adversary method of [AC12]. Without loss of generality, let
the adversary’s strategy after step 1 be the following: they start with a state |𝜓0⟩ and then apply
a sequence of unitaries and calls to the challenger’s oracle ̃︀𝑃 . If ̃︀𝑃 = 𝑃𝑆+v, their final state is
|𝜓𝑆+v

𝐸𝑛𝑑⟩, and if ̃︀𝑃 = 𝑃𝑇+u, let their final state be |𝜓𝑇+u
𝐸𝑛𝑑 ⟩. Finally, the adversary makes a single-qubit

measurement on their state and outputs the result.
We will show that if

⃒⃒
⟨𝜓𝑆+v

𝐸𝑛𝑑 |𝜓
𝑇+u
𝐸𝑛𝑑 ⟩

⃒⃒
= 1−negl(𝑛), this implies that the adversary’s distinguish-

ing advantage is negl(𝑛). Let the adversary’s distinguishing advantage be:

Advt =
⃒⃒⃒
Pr[𝑏′ = 𝑏]− 1/2

⃒⃒⃒
We can upper-bound Advt using the trace distance and fidelity between the final states |𝜓𝑆+v

𝐸𝑛𝑑⟩ and
|𝜓𝑇+u

𝐸𝑛𝑑 ⟩:

Advt =

⃒⃒⃒⃒∑︁
𝑇

Pr(𝑇) · [Pr(𝑏′ = 𝑏|𝑇)− 1/2]

⃒⃒⃒⃒
≤

∑︁
𝑇

Pr(𝑇) ·
⃒⃒⃒
Pr(𝑏′ = 𝑏|𝑇)− 1/2

⃒⃒⃒
≤ E𝑇

[︁
TD

(︀
|𝜓𝑆+v

𝐸𝑛𝑑⟩ ⟨𝜓
𝑆+v
𝐸𝑛𝑑 | , |𝜓

𝑇+u
𝐸𝑛𝑑 ⟩ ⟨𝜓

𝑇+u
𝐸𝑛𝑑 |

)︀]︁
≤ E𝑇

[︁√︁
1−

⃒⃒
⟨𝜓𝑆+v

𝐸𝑛𝑑 |𝜓
𝑇+u
𝐸𝑛𝑑 ⟩

⃒⃒2]︁ ≤√︂
1− E𝑇

[︁⃒⃒
⟨𝜓𝑆+v

𝐸𝑛𝑑 |𝜓
𝑇+u
𝐸𝑛𝑑 ⟩

⃒⃒]︁2
Next, the inner product ⟨𝜓𝑆+v

𝐸𝑛𝑑 |𝜓
𝑇+u
𝐸𝑛𝑑 ⟩ doesn’t depend on the unitaries that were applied to the

adversary’s state; it only depends on the queries to ̃︀𝑃 . Let the progress measure 𝑝𝑡 be the expected
inner-product after 𝑡 oracle queries:

𝑝𝑡 = E𝑇

[︀
| ⟨𝜓𝑆+v

𝑡 |𝜓𝑇+u
𝑡 ⟩ |

]︀
25

Now we will show that |𝑝𝑡 − 𝑝𝑡−1| = negl(𝑛).
Note that for any z ∈ F𝑛

2 , if 𝑃𝑇+u(z) = 0, then 𝑃𝑆+v(z) = 0. Next, if 𝑃𝑆+v(z) = 0, then

Pr
𝑇+u

[𝑃𝑇+u(z) = 1] =
|(𝑇 + u)∖(𝑆 + v)|
|F𝑛

2∖(𝑆 + v)|
=

23𝑛/4 − 2𝑛/2

2𝑛 − 2𝑛/2
=

2𝑛/4 − 1

2𝑛/2 − 1
< 2−𝑛/4

By Lemma 19 of [AC12],
|𝑝𝑡−1 − 𝑝𝑡| ≤ 4

√︀
2−𝑛/4 = negl(𝑛)

Finally, we know that 𝑝0 = 1 because |𝜓𝑆+v
0 ⟩ = |𝜓𝑇+u

0 ⟩ = |𝜓0⟩. Then after polynomially many
queries, 𝑝𝑡 = 1− negl(𝑛), so Advt = negl(𝑛).

3.4 SNARGs for P

We define the notion of publicly-verifiable non-interactive delegation for a Turing machine ℳ.
Such a scheme consists of algorithms (SNARG.Gen, SNARG.Prove, SNARG.Verify) with the follow-
ing syntax.

• SNARG.Gen(1𝜆,ℳ, 𝑡, 𝑛) → (pk, vk) is an algorithm that takes as input a security parameter
1𝜆, a Turing machineℳ, a time bound 𝑡, and an input length 𝑛, and outputs a prover key pk
and a verifier key vk.

• SNARG.Prove(pk, 𝑥)→ (𝑦, 𝜋) is an algorithm that takes as input a prover key pk and an input
𝑥 ∈ {0, 1}𝑛 and outputs 𝑦 ∈ {0, 1}𝑚 and a proof 𝜋.

• SNARG.Verify(vk, 𝑥, 𝑦, 𝜋) → {0, 1} is an algorithm that takes as input a verifier key vk, an
input 𝑥, an output 𝑦, and a proof 𝜋, and outputs either 0 or 1.

For Turing machineℳ, let 𝒰ℳ be the language

𝒰ℳ := {(𝑥, 𝑦, 𝑡) :ℳ(𝑥) outputs 𝑦 within 𝑡 steps} .

Definition 3.12. (SNARG.Gen,SNARG.Prove,SNARG.Verify) is a publicly-verifiable non-interactive del-
egation scheme for Turing machineℳ if the following hold.

• Correctness: For all 𝜆, 𝑛, 𝑡 such that 𝑛 ≤ 𝑡 ≤ 2𝜆, and (𝑥, 𝑦, 𝑡) ∈ 𝒰ℳ, it holds that

Pr

[︂
SNARG.Verify(vk, 𝑥, 𝑦, 𝜋) = 1 :

(pk, vk)← SNARG.Gen(1𝜆,ℳ, 𝑡, 𝑛)
(𝑦, 𝜋)← SNARG.Prove(pk, 𝑥)

]︂
= 1.

• Efficiency: In the above completeness experiment, SNARG.Prove runs in time poly(𝜆, |ℳ|, 𝑡, 𝑛)
and SNARG.Verify runs in time poly(𝜆, |ℳ|, log 𝑡, 𝑛).

• Soundness: For every QPT adversary {𝒜𝜆}𝜆 and polynomials 𝑡(𝜆), 𝑛(𝜆), it holds that

Pr

[︂
SNARG.Verify(vk, 𝑥, 𝑦, 𝜋) = 1
(𝑥, 𝑦, 𝑡) /∈ 𝒰ℳ

:
(pk, vk)← SNARG.Gen(1𝜆,ℳ, 𝑡, 𝑛)

(𝑥, 𝑦, 𝜋)← 𝒜𝜆(pk, vk)

]︂
= negl(𝜆).

26

3.5 Fully-Homomorphic Encryption

A fully-homomorphic encryption scheme consists of algorithms FHE = (FHE.Gen,FHE.Enc,FHE.Eval,
FHE.Dec) with the following syntax.

• FHE.Gen(1𝜆) → (pk, sk) is an algorithm that takes as input the security parameter and out-
puts a public key pk and a secret key sk.

• FHE.Enc(pk,𝑚)→ ct is an algorithm that takes as input the public key pk and a message 𝑚,
and outputs a ciphertext ct.

• FHE.Eval(pk, 𝐶, ct)→ ̃︀ct is an algorithm that takes as input the public key pk, a circuit 𝐶, and
a ciphertext ct, and outputs an evaluated ciphertext ̃︀ct.

• FHE.Dec(sk, ct)→ 𝑚 is an algorithm that takes as input the secret key sk and a ciphertext ct,
and outputs a message 𝑚.

An FHE scheme should satisfy semantic security, which states that the encryptions of two
equal-length strings𝑚0,𝑚1 are computationally indistinguishable, and correctness of evaluation,
which states that for any input 𝑚 and circuit 𝐶, FHE.Dec(sk,FHE.Eval(pk, 𝐶, ct)) = 𝐶(𝑚), where
ct ← FHE.Enc(pk,𝑚). An FHE scheme should also satisfy some notion of compactness, which
bounds the size of ciphertexts. In a levelled FHE scheme, the size of ct may grow with the depth
of the circuit 𝐶 to be evaluated, while in an unlevelled FHE scheme, the size of ct must be inde-
pendent of 𝐶. Levelled FHE schemes are known from the hardness of the LWE, and unlevelled
FHE schemes additionally require a circular-security assumption [Gen09, BV11, GSW13].

4 Delayed Preparation of Coset States

Here we develop tools for working with subspace coset states that will help us prove Theorem 5.5,
which is our main theorem. In particular, we show how to prepare a random subspace coset state
but delay the choice of subspace until after the register has been given out. Similar techniques exist
for BB84/Wiesner states, but it is non-trivial to extend them to subspace coset states. Along the
way, we develop a framework for representing the cosets of two subspaces 𝑆 ≤ 𝑇 that maintains
the algebraic structure of the quotient groups F𝑛

2/𝑆 and F𝑛
2/𝑇 . We believe the techniques in this

section are interesting independently of their applications to certified deletion.

4.1 Coset Representatives

Given a subspace 𝑆 ≤ F𝑛
2 , let co(𝑆) be a subspace of F𝑛

2 that contains exactly one vector from every
coset of 𝑆.11 Note, co(𝑆) is analogous to the quotient group F𝑛

2/𝑆, whose elements are the actual
cosets of 𝑆 and which has the same algebraic structure as co(𝑆). co(𝑆) is useful for decomposing
vectors since every z ∈ F𝑛

2 has a unique decomposition as z = u + v, for some (u, v) ∈ 𝑆 × co(𝑆)
(Lemma 4.1).

It is useful intuition to imagine choosing co(𝑆) = 𝑆⊥, but this is not always allowed. Because
𝑆 is a subspace of F𝑛

2 and not R𝑛, it’s possible that some coset of 𝑆 contains multiple vectors from
𝑆⊥ and another coset contains none.

11[CLLZ21] used a different set of coset representatives, called Can𝑆 , which is not necessarily a vector space.

27

For any 𝑆, there exists a valid co(𝑆) (see Definition 4.2 and Lemma 4.3). Usually, there are
many valid choices of co(𝑆), so we pick one of them to be canonical. To avoid ambiguity, let the
description of 𝑆 include a basis for the following subspaces: [𝑆, 𝑆⊥, co(𝑆), co(𝑆⊥)]. This defines
the canonical choices for co(𝑆) and co(𝑆⊥).

Lemma 4.1 shows that the definition of co(𝑆) is equivalent to some useful properties. In this
lemma, we refer to co(𝑆) as 𝐶.

Lemma 4.1. For subspaces 𝑆,𝐶 ≤ F𝑛
2 , the following are equivalent:

1. 𝐶 contains exactly one element from each coset of 𝑆.

2. For any z ∈ F𝑛
2 , there is a unique pair (u, v) ∈ 𝑆 × 𝐶 such that z = u+ v.

3. dim(𝐶) = 𝑛− dim(𝑆) and span(𝑆,𝐶) = F𝑛
2 .

Proof. First, (1) implies (2). For any z ∈ F𝑛
2 , z belongs to a coset of 𝑆, and there is a unique v ∈ 𝐶

from the same coset. Let u = z−v. Since z and v belong to the same coset, then u ∈ 𝑆, and z = u+v.
Second, (2) implies (3). (2) directly shows that span(𝑆,𝐶) = F𝑛

2 . Next, we’ll show that dim(𝐶) =
𝑛 − dim(𝑆). Every z ∈ F𝑛

2 has a unique decomposition in 𝑆 × 𝐶, so |F𝑛
2 | = |𝑆 × 𝐶|. Therefore,

|𝐶| = 2𝑛/|𝑆|, and dim(𝐶) = 𝑛− dim(𝑆).
Third, (3) implies (1). F𝑛

2 = span(𝑆,𝐶), so for any vector z ∈ F𝑛
2 , z = u+v for some (u, v) ∈ 𝑆×𝐶.

Next, v = z − u ∈ 𝑆 + z, so v is in both 𝐶 and 𝑆 + z. Therefore, every coset shares at least one
element with 𝐶. Furthermore, 𝐶 contains exactly one vector from each coset because |𝐶| = 2𝑛/|𝑆|,
which equals the number of cosets.

4.2 Sampling Procedure

In this section, we give a procedure for choosing co(𝑆). We actually consider a more-general
problem: given two subspaces 𝑆 ≤ 𝑇 , we will choose [co(𝑆), co(𝑆⊥), co(𝑇), co(𝑇⊥)] that satisfy
co(𝑇) ≤ co(𝑆) along with some other useful properties. In later sections, whenever we need to
sample two subspaces, 𝑆 ≤ 𝑇 , we will implicitly use Definition 4.2 to sample the associated coset
representatives.

Definition 4.2 (Procedure to Sample Coset Representatives). Given two subspaces 𝑆 ≤ 𝑇 ≤ F𝑛
2 :

1. Choose 𝑛 linearly independent vectors {z1, . . . , z𝑛} uniformly at random such that

𝑆 = span(z1, . . . , zdim(𝑆))

𝑇 = span(z1, . . . , zdim(𝑇))

2. Then let

co(𝑆) = span(zdim(𝑆)+1, . . . , z𝑛)

co(𝑇) = span(zdim(𝑇)+1, . . . , z𝑛)

co(𝑆⊥) = co(𝑆)⊥

co(𝑇⊥) = co(𝑇)⊥

28

3. Choose a fresh random basis for each subspace in [co(𝑆), co(𝑆⊥), co(𝑇), co(𝑇⊥)], and output these
bases. Note that the subspaces do not change in this step – just the bases used to represent them.

The reason we choose fresh random bases for each subspace is so that someone with a descrip-
tion of 𝑆 and co(𝑆) but not 𝑇 does not learn anything about 𝑇 other than the fact that 𝑆 ≤ 𝑇 .
The original basis we chose for co(𝑆) was built from the basis for 𝑇 , which might leak information
about 𝑇 .

Lemma 4.3 analyzes the procedure in Definition 4.2 and proves that it satisfies some useful
properties.

Lemma 4.3. Given two subspaces 𝑆 ≤ 𝑇 ≤ F𝑛
2 , the procedure in Definition 4.2 chooses the subspaces

[co(𝑆), co(𝑆⊥), co(𝑇), co(𝑇⊥)] such that:

1. co(𝑆) is valid: it contains exactly one element from each coset of 𝑆. The analogous statement holds
for co(𝑆⊥), co(𝑇), co(𝑇⊥).

2. co(𝑇) ≤ co(𝑆) and co(𝑆⊥) ≤ co(𝑇⊥).

3. co(𝑆⊥) = co(𝑆)⊥ and co(𝑇⊥) = co(𝑇)⊥.

Proof. To prove property 1, we will show that dim[co(𝑆)] = 𝑛 − dim(𝑆) and span[𝑆, co(𝑆)] = F𝑛
2 .

By Lemma 4.1, this implies that co(𝑆) contains exactly one element from each coset of 𝑆. We will
show the analogous statements for co(𝑆⊥), co(𝑇), co(𝑇⊥).

First, it is clear by the construction of co(𝑆) that dim[co(𝑆)] = 𝑛 − dim(𝑆). It is also clear that
dim[co(𝑇)] = 𝑛− dim(𝑇). Next,

dim[co(𝑆⊥)] = dim[co(𝑆)⊥] = 𝑛− dim[co(𝑆)] = 𝑛− [𝑛− dim(𝑆)] = dim(𝑆) = 𝑛− dim(𝑆⊥)

By the same argument, we can show that dim[co(𝑇⊥)] = 𝑛− dim(𝑇⊥).
Second,

span[𝑆, co(𝑆)] = span(z1, . . . , z𝑛) = F𝑛
2

because the vectors {z𝑖}𝑖∈[𝑛] are linearly independent. By the same reasoning, we can show that
span[𝑇, co(𝑇)] = F𝑛

2 .
Next, we will prove that span[𝑆⊥, co(𝑆)⊥] = F𝑛

2 . First, 𝑆 ∩ co(𝑆) = {0}. This is because co(𝑆)
contains exactly one element of 𝑆 (Lemma 4.1), and the shared element has to be 0 because 𝑆 and
co(𝑆) are both subspaces. Second:

F𝑛
2 = {0}⊥ = [𝑆 ∩ co(𝑆)]⊥ = span[𝑆⊥, co(𝑆)⊥]

For the same reason, span[𝑇⊥, co(𝑇)⊥] = F𝑛
2 .

Now we’ll prove property 2. It is clear from the construction that co(𝑇) ≤ co(𝑆). Next,

co(𝑆⊥) = co(𝑆)⊥ ≤ co(𝑇)⊥ = co(𝑇⊥)

Finally, property 3 is clearly true from the construction.

29

4.3 Delayed Preparation of Coset States

Our goal in this section is for Alice to prepare a random subspace coset state for Bob, but delay
choosing the underlying subspace until after she sends the register to Bob. This technique is used
in the proof of the main theorem, Theorem 5.5, and it uses the formalism for coset representatives
that we developed above.

Let Alice be given two subspaces 𝑆 ≤ 𝑇 ≤ F𝑛
2 , and let the corresponding coset representatives

[co(𝑆), co(𝑆⊥), co(𝑇), co(𝑇⊥)] be sampled from the procedure in Definition 4.2. Next, let Alice be
given cosets u ∈ co(𝑇) and w ∈ co(𝑆⊥), which partially determine the subspace coset state that
Alice will sample.

Alice will sample the subspace coset state from one of the following distributions:

• Distribution 0: Sample |𝑆v,w⟩ such that 𝑆 + v ⊆ 𝑇 + u, uniformly at random.

• Distribution 1: Sample |𝑇u,̃︀v⟩ such that 𝑇⊥ + ̃︀v ⊆ 𝑆⊥ + w, uniformly at random.

Bob’s register will eventually contain the sampled state. But there’s a twist: Alice will decide
which distribution to sample from after she sends Bob her register.

Here is one way for Alice to sample from distribution 0 or 1:

1. To sample from distribution 0, Alice prepares the following state on two 𝑛-qubit registers:

|𝜓⟩0 :=
1√︀
|𝐴|

∑︁
v0∈𝐴

|𝑆u+v0,w⟩ |v0⟩

where 𝐴 = co(𝑆) ∩ 𝑇 . She sends the first register to Bob, and measures the second register
in the computational basis.

2. To sample from distribution 1, she prepares the following state:

|𝜓⟩1 :=
1√︀
|𝐵|

∑︁
̃︀v0∈𝐵 |𝑇u,̃︀v0+w⟩ |̃︀v0⟩

where𝐵 = co(𝑇⊥)∩𝑆⊥. She sends the first register to Bob, and measures the second register
in the computational basis.

Claim 4.4. The procedure above correctly samples from distribution 0 or distribution 1.

Proof. In this procedure, we have decomposed v into its deterministic and random components, u
and v0 respectively. Every v ∈ co(𝑆) has a unique decomposition as v = u+ v0 for some u ∈ co(𝑇)
and v0 ∈ 𝐴 (Lemma 4.5). Since v0 is sampled uniformly at random from 𝐴, v is sampled uniformly
at random such that v ∈ co(𝑆) and 𝑆+ v ⊆ 𝑇 +u. Therefore, the procedure correctly samples from
distribution 0.

A similar argument works for distribution 1. We have decomposed ̃︀v into its deterministic and
random components, w and ̃︀v0 respectively. Every ̃︀v ∈ co(𝑇⊥) has a unique decomposition as̃︀v = ̃︀v0+w for some ̃︀v0 ∈ 𝐵 and w ∈ co(𝑆⊥) (Lemma 4.6). Since ̃︀v0 is sampled uniformly at random
from 𝐵, ̃︀v is sampled uniformly at random such that ̃︀v ∈ co(𝑇⊥) and 𝑇⊥ + ̃︀v ⊆ 𝑆⊥ + w. Therefore,
the procedure correctly samples from distribution 1.

30

Next, Alice can map between |𝜓⟩0 and |𝜓⟩1 by applying local operations to the second register.
We will define a unitary 𝑈 that acts on the second register and maps superpositions over to 𝐴 to
superpositions over 𝐵. For any v0 ∈ 𝐴, let

𝑈 |v0⟩ =
1√
𝑐

∑︁
̃︀v0∈𝐵 |

̃︀v0⟩ · (−1)⟨v0,̃︀v0⟩
and for any ̃︀v0 ∈ 𝐵, let

𝑈 † |̃︀v0⟩ = 1√
𝑐

∑︁
v0∈𝐴

|v0⟩ · (−1)⟨v0,̃︀v0⟩
where 𝑐 is a normalization constant. Technically, 𝑈 acts on any superposition over F𝑛

2 , and we
define it fully in Definition 4.8. We show in Lemma 4.13 that when 𝑈 is applied to the second
register of |𝜓⟩0, it maps the state to |𝜓⟩1.

Now we have the tools to do delayed preparation of the subspace coset state:

1. Alice prepares |𝜓⟩0 on two 𝑛-qubit registers. She sends the first register to Bob.

2. (a) To sample from distribution 0: Alice measures the second register in the computational basis to get
a random v0 ← 𝐴. The state on Bob’s register collapses to |𝑆u+v0,w⟩.

(b) Instead, to sample from distribution 1: Alice applies 𝑈 to the second register, mapping |𝜓⟩0 to |𝜓⟩1.
Then she measures the second register in the computational basis to get a random ̃︀v0 ← 𝐵. The
state on Bob’s register collapses to |𝑇u,̃︀v0+w⟩.

Delayed Preparation of a Subspace Coset State

4.4 Lemmas

This section provides the lemmas that were used in Section 4.3 to develop the protocol for delayed
preparation of subspace coset states.

Recall that for a given 𝑆 ≤ 𝑇 : 𝐴 = co(𝑆) ∩ 𝑇 and 𝐵 = co(𝑇⊥) ∩ 𝑆⊥.

Lemma 4.5 (Decomposition into 𝑆 × 𝐴 × co(𝑇)). For each z ∈ F𝑛
2 , there is a unique tuple (s, v0, u) ∈

𝑆 ×𝐴× co(𝑇) such that z = s+ v0 + u. Also span(𝑆,𝐴) = 𝑇 , and span[𝐴, co(𝑇)] = co(𝑆).

Proof. For every z ∈ F𝑛
2 , there is a unique pair (t, u) ∈ 𝑇 × co(𝑇) such that z = t + u (Lemma 4.1).

Furthermore, t can be decomposed as t = s+ v0 for a unique pair (s, v0) ∈ 𝑆 × co(𝑆).
Next, v0 ∈ 𝐴. To see this, note that v0 = t − s ∈ span(𝑇, 𝑆) = 𝑇 , and v0 ∈ co(𝑆). Therefore,

v0 ∈ co(𝑆) ∩ 𝑇 = 𝐴.
Now we’ll show that span(𝑆,𝐴) = 𝑇 . This is because 𝑆,𝐴 ≤ 𝑇 , and each t ∈ 𝑇 can be

decomposed as t = s+ v0 for some (s, v0) ∈ 𝑆 ×𝐴.
Finally, we’ll show that span[𝐴, co(𝑇)] = co(𝑆). First, 𝐴, co(𝑇) ≤ co(𝑆) (Lemma 4.3). Next,

each z ∈ co(𝑆) can be decomposed as z = s + v0 + u for a unique (s, v0, u) ∈ 𝑆 × 𝐴 × co(𝑇).
Furthermore, s = 0 because otherwise co(𝑆) would contain two vectors in the same coset of 𝑆: z
and z− s. Therefore, z ∈ span[𝐴, co(𝑇)], so co(𝑆) ⊆ span[𝐴, co(𝑇)].

Lemma 4.6 (Decomposition into 𝑇⊥×𝐵×co(𝑆⊥)). For each z ∈ F𝑛
2 , there is a unique tuple (t,̃︀v0,w) ∈

𝑇⊥ ×𝐵 × co(𝑆⊥) such that z = t+ ̃︀v0 + w. Also span(𝑇⊥, 𝐵) = 𝑆⊥, and span[𝐵, co(𝑆⊥)] = co(𝑇⊥).

31

Proof. The proof is analogous to that of Lemma 4.5.

Next, we’ll define the function 𝑈 and prove that it is unitary.

Lemma 4.7. |𝐴| = |𝐵| = |𝑇 |/|𝑆|

Proof. 𝑆 is a subgroup of 𝑇 , so 𝑇 can be partitioned into |𝑇 |/|𝑆| cosets of 𝑆. Therefore, |𝐴| =
|co(𝑆) ∩ 𝑇 | = |𝑇 |/|𝑆|.

Next, 𝑇⊥ ≤ 𝑆⊥ because 𝑆 ≤ 𝑇 . Therefore 𝑆⊥ can be partitioned into |𝑆⊥|/|𝑇⊥| cosets of 𝑇⊥.
Finally,

|𝐵| = |co(𝑇⊥) ∩ 𝑆⊥| = |𝑆
⊥|
|𝑇⊥|

=
2𝑛

|𝑆|
· |𝑇 |
2𝑛

=
|𝑇 |
|𝑆|

Definition 4.8 (Unitary 𝑈).

• Let 𝑐 = |𝑇 |/|𝑆| = |𝐴| = |𝐵| (see Lemma 4.7)

• Let 𝐴 = F𝑛
2∖𝐴, and 𝐵 = F𝑛

2∖𝐵.

• Let 𝑓 be a bijective mapping from 𝐴 to 𝐵. Such an 𝑓 exists because 𝐴 and 𝐵 have the same size.

• Let 𝑈 be the linear function mapping any v0 ∈ 𝐴 to

𝑈 |v0⟩ =
1√
𝑐

∑︁
̃︀v0∈𝐵 |

̃︀v0⟩ · (−1)⟨v0,̃︀v0⟩
and any v0 ∈ 𝐴 to |𝑓(v0)⟩.

Lemma 4.9. 𝑈 † is the linear function mapping any ̃︀v0 ∈ 𝐵 to

𝑈 † |̃︀v0⟩ = 1√
𝑐

∑︁
v0∈𝐴

|v0⟩ · (−1)⟨v0,̃︀v0⟩

and any ̃︀v0 ∈ 𝐵 to |𝑓−1(̃︀v0)⟩.
Proof. For any v0 ∈ 𝐴 and any ̃︀v0 ∈ 𝐵,

⟨̃︀v0|𝑈 |v0⟩ = 1√
𝑐
· (−1)⟨v0,̃︀v0⟩

If v0 /∈ 𝐴 or ̃︀v0 /∈ 𝐵, then
⟨̃︀v0|𝑈 |v0⟩ = 1̃︀v0==𝑓(v0)

Lemma 4.10. 𝑈 is unitary.

32

Proof. To prove the claim, we will show that for any v0, v
′
0 ∈ F𝑛

2 , ⟨v′0|𝑈 †𝑈 |v0⟩ = 1v0==v′0
.

First, if v0 or v′0 are not in 𝐴, then

⟨v′0|𝑈 †𝑈 |v0⟩ = 1v′0==𝑓−1∘𝑓(v0) = 1v0==v′0

Now let v0, v′0 ∈ 𝐴.

⟨v′0|𝑈 †𝑈 |v0⟩ =
1

𝑐

∑︁
̃︀v′0∈𝐵

∑︁
̃︀v0∈𝐵 ⟨

̃︀v′0|̃︀v0⟩ · (−1)⟨v0,̃︀v0⟩−⟨v′0,̃︀v′0⟩

=
1

𝑐

∑︁
̃︀v0∈𝐵(−1)

⟨v0−v′0,̃︀v0⟩

If v0 = v′0, then ⟨v′0|𝑈 †𝑈 |v0⟩ = 1
𝑐

∑︀̃︀v0∈𝐵 1 = 1.
Now let v0 − v′0 ̸= 0. Lemma 4.11 says that for half of the vectors ̃︀v0 ∈ 𝐵, ⟨v0 − v′0,̃︀v0⟩ = 1, and

for the other half, ⟨v0 − v′0,̃︀v0⟩ = 0. Therefore,

⟨v′0|𝑈 †𝑈 |v0⟩ =
1

𝑐

∑︁
̃︀v0∈𝐵(−1)

⟨v0−v′0,̃︀v0⟩ = 1

2
− 1

2
= 0

We’ve shown that for any v0, v
′
0 ∈ F𝑛

2 , ⟨v′0|𝑈 †𝑈 |v0⟩ = 1v0==v′0
, so 𝑈 is unitary.

Lemma 4.11. For any v0, v
′
0 ∈ 𝐴, if v0 ̸= v′0, then for exactly half of the vectors ̃︀v0 ∈ 𝐵, ⟨v0 − v′0,̃︀v0⟩ = 1,

and for the other half, ⟨v0 − v′0,̃︀v0⟩ = 0.

Proof. First, v0− v′0 ∈ 𝐴 because 𝐴 is a subspace. Second, for any non-zero v0− v′0 ∈ 𝐴, there exists
a ̃︀v*0 ∈ 𝐵 for which ⟨v0 − v′0,̃︀v*0⟩ = 1. Otherwise, v0 − v′0 ∈ 𝐵⊥, which is ruled out by Lemma 4.12.

Since 𝐵 is a subspace, 𝐵 can be partitioned into pairs of vectors (̃︀v0,̃︀v′0) where ̃︀v′0 = ̃︀v0 + ̃︀v*0.
Next,

⟨v0 − v′0,̃︀v′0⟩ ≠ ⟨v0 − v′0,̃︀v0⟩
Therefore, half of the vectors ̃︀v0 ∈ 𝐵 satisfy ⟨v0−v′0,̃︀v0⟩ = 1, and the other half satisfy ⟨v0−v′0,̃︀v0⟩ =
0.

Lemma 4.12. 𝐴 ∩𝐵⊥ = {0}

Proof. First, 𝑆⊥ ∩ co(𝑆⊥) = {0} because 𝑆⊥ shares exactly one vector with co(𝑆⊥) (Lemma 4.1). It
has to be 0 because 𝑆⊥ and co(𝑆⊥) are subspaces. By the same logic, 𝑇⊥ ∩ co(𝑇⊥) = {0}.

Second,
𝐵⊥ = [co(𝑇⊥) ∩ 𝑆⊥]⊥ = [co(𝑇)⊥ ∩ 𝑆⊥]⊥ = span[co(𝑇), 𝑆]

Next, let z ∈ 𝐴 ∩ 𝐵⊥. That means z can be decomposed into two vectors (z′, z′′) ∈ co(𝑇)× 𝑆 such
that z = z′ + z′′. Additionally, z is in 𝑇 and co(𝑆).

We’ll use these properties to show that z = 0. z′′ ∈ 𝑆 ≤ 𝑇 , so z′ = z− z′′ ∈ 𝑇 . But z′ ∈ co(𝑇) as
well, so z′ = 0. Therefore, z = z′′ ∈ 𝑆. But z ∈ co(𝑆) as well, so z = 0. Therefore, 𝐴 ∩𝐵⊥ = {0}.

Lemma 4.13. Applying 𝑈 to the v0 register of |𝜓⟩0 produces |𝜓⟩1:

1√
𝑐

∑︁
v0∈𝐴

|𝑆u+v0,w⟩ ⊗ (𝑈 |v0⟩) =
1√
𝑐

∑︁
̃︀v0∈𝐵 |𝑇u,̃︀v0+w⟩ |̃︀v0⟩

33

Proof.

LHS =
1√︀
𝑐 · |𝑆|

∑︁
v0∈𝐴

∑︁
z∈𝑆+v0+u

|z⟩ ⊗ (𝑈 |v0⟩) · (−1)⟨z,w⟩ (1)

=
1√︀
𝑐 · |𝑆|

∑︁
z∈𝑇+u

∑︁
v0∈𝐴 : z∈𝑆+v0+u

|z⟩ ⊗ (𝑈 |v0⟩) · (−1)⟨z,w⟩ (2)

=
1√︀
𝑐 · |𝑆|

∑︁
z∈𝑇+u

|z⟩ ⊗ (𝑈 |v0⟩) · (−1)⟨z,w⟩ where v0 ∈ 𝐴 satisfies z ∈ 𝑆 + v0 + u (3)

For Eq. (2) we switched the order of summation. z only takes values in 𝑇 + u, and it takes each
value in 𝑇 + u exactly once. For Eq. (3), we removed the summation over v0 because it is uniquely
determined by z. These facts are proven in Lemma 4.5.

Next:

LHS =
1√︀

𝑐2 · |𝑆|

∑︁
̃︀v0∈𝐵

∑︁
z∈𝑇+u

|z⟩ |̃︀v0⟩ · (−1)⟨z,w⟩+⟨v0,̃︀v0⟩ (4)

=
1√︀

𝑐2 · |𝑆|

∑︁
̃︀v0∈𝐵

∑︁
z∈𝑇+u

|z⟩ |̃︀v0⟩ · (−1)⟨z,̃︀v0+w⟩ (5)

=

√︃
|𝑇 |

𝑐2 · |𝑆|
∑︁
̃︀v0∈𝐵 |𝑇u,̃︀v0+w⟩ |̃︀v0⟩ = 1√

𝑐

∑︁
̃︀v0∈𝐵 |𝑇u,̃︀v0+w⟩ |̃︀v0⟩ (6)

= RHS (7)

For Eq. (5), we used the fact that ⟨z,̃︀v0⟩ = ⟨v0,̃︀v0⟩ (Lemma 4.14).

Lemma 4.14. Let v0 ∈ 𝐴, ̃︀v0 ∈ 𝐵, and z ∈ 𝑆 + v0 + u. Then ⟨z,̃︀v0⟩ = ⟨v0,̃︀v0⟩.
Proof. First, z− v0 ∈ 𝑆 + u ⊂ span[𝑆, co(𝑇)]. Second,

span[𝑆, co(𝑇)] = [𝑆⊥ ∩ co(𝑇)⊥]⊥ = [𝑆⊥ ∩ co(𝑇⊥)]⊥ = 𝐵⊥

Therefore, ⟨z− v0,̃︀v0⟩ = 0, so ⟨z,̃︀v0⟩ = ⟨v0,̃︀v0⟩.
5 General Compiler for Certified Deletion

In this section, we present a general technique for proving certified deletion that works well with
existing cryptographic primitives and enables the constructions in subsequent sections.

Consider the following simple construction. To hide a bit 𝑏, we give the adversary:

|𝑆v,w⟩ , 𝑏⊕ ⟨v,1⟩

where |𝑆v,w⟩ is a subspace coset state, sampled uniformly at random such that dim(𝑆) = 𝑛/2,
v ∈ co(𝑆),w ∈ co(𝑆⊥). The bit 𝑏 is masked by ⟨v,1⟩, and the information needed to remove the
mask is stored in the subspace coset state.

To prove deletion, the adversary measures the subspace coset state in the Hadamard basis to
get a vector ̃︀z ∈ 𝑆⊥ +w. We’ll show that if they prove deletion, then all but negligible information

34

about v is lost. That is, even if 𝑆 is leaked at a later point, 𝑏 remains statistically hidden because
⟨v,1⟩ is statistically close to uniformly random.

Definition 5.1 below describes this scenario. We say that security holds if the output of EXP*

is statistically close between the cases where 𝑏 = 0 and 𝑏 = 1.

Definition 5.1 (Certified Deletion Game, Abstract Form). Let 𝑏 be a bit, let {𝒜𝜆}𝜆∈N be a QPT adver-
sary, and let {𝒵𝜆}𝜆∈N be a quantum or classical operation. Then let EXP*(1𝜆,𝒜𝜆,𝒵𝜆, 𝑏) be the output of
the following experiment:

1. Challenge: Let 𝑛 = 4𝜆. The challenger samples a subspace 𝑆 of dimension 𝑛/2 along with vectors
(v,w)← co(𝑆)× co(𝑆⊥), uniformly at random.

Next, they sample a subspace 𝑇 uniformly at random such that 𝑆 ≤ 𝑇 and dim(𝑇) = 3𝑛/4, using
the procedure in Definition 4.2. Let u ∈ co(𝑇) be the unique coset such that 𝑆 + v ⊂ 𝑇 + u.

Finally, the challenger sends the adversary the following challenge:

|𝑆v,w⟩ ,𝒵𝜆(𝑆, 𝑇, u,w, 𝑏⊕ ⟨v,1⟩)

2. Response: The adversary, running 𝒜𝜆, responds with a deletion certificate ̃︀z ∈ F𝑛
2 and an auxiliary

state 𝜌.

3. Outcome: The challenger checks that ̃︀z ∈ 𝑆⊥ + w

If so, they output (𝜌, 𝑆, 𝑇, u,w, 𝑏⊕ ⟨v,1⟩); if not, they output ⊥.

In Definition 5.1, 𝒵 represents the side information given to the adversary. In the simplest
case, 𝒵 = ⊥, and it’s simple to prove that security holds. Note that we cannot give 𝑆, v, or w in
the clear because then the adversary could learn v while also outputting a ̃︀z ∈ 𝑆⊥+w. In all of our
applications, we need to give the adversary some information about (𝑆, v,w), but we’re careful to
hide it. For instance, when 𝒵 = Enc(1𝜆, 𝑆) for some semantically-secure encryption scheme Enc,
or 𝒵 = [Enc(1𝜆, 𝑆), i𝒪(𝑃𝑆⊥+w)], we can prove that security holds.

Theorem 5.2 (Semantically Secure Encryption). Let Enc be a semantically secure encryption scheme.
That is to say: for all QPT {𝒜𝜆}𝜆∈N,⃒⃒⃒

Pr
[︀
𝒜𝜆(Enc(1

𝜆, 0)) = 1
]︀
− Pr

[︀
𝒜𝜆(Enc(1

𝜆, 1)) = 1
]︀⃒⃒⃒

= negl(𝜆).

Next for any 𝜆 ∈ N, let
𝒵𝜆(𝑆, 𝑇, u,w, 𝑏

′) = Enc(1𝜆, 𝑆).

Then for any QPT adversary {𝒜𝜆}𝜆∈N,

TD
(︁
EXP*(1𝜆,𝒜𝜆,𝒵𝜆, 0),EXP

*(1𝜆,𝒜𝜆,𝒵𝜆, 1)
)︁
= negl(𝜆).

The next theorem says that we can make the deletion certificate publicly verifiable, assuming
post-quantum i𝒪. To do so, we include i𝒪(𝑃𝑆⊥+w) in 𝒵 .

35

Theorem 5.3 (Encryption with Publicly-Verifiable Deletion). Let Enc be a semantically secure encryp-
tion scheme, and assume post-quantum indistinguishability obfuscation (i𝒪). Next, for any 𝜆 ∈ N, let

𝒵𝜆(𝑆, 𝑇, u,w, 𝑏
′) =

[︀
Enc(1𝜆, 𝑆), i𝒪(𝑃𝑆⊥+w)

]︀
.

Then for any QPT adversary {𝒜𝜆}𝜆∈N,

TD
(︁
EXP*(1𝜆,𝒜𝜆,𝒵𝜆, 0),EXP

*(1𝜆,𝒜𝜆,𝒵𝜆, 1)
)︁
= negl(𝜆).

It is natural to wonder whether we can include i𝒪(𝑃𝑆+v) in𝒵 , just like we included i𝒪(𝑃𝑆⊥+w).
In fact, this is not allowed because i𝒪 only hides v computationally. If ⟨v,1⟩ is not statistically
hidden, then neither is 𝑏. However, 𝒵 can include (𝑇, u), which satisfy 𝑆 + v ⊂ 𝑇 + u, and for
our applications that is good enough. The bit 𝑏 remains statistically hidden because even given
(𝑆, 𝑇, u,w), ⟨v,1⟩ is uniformly random (with overwhelming probability over the choice of (𝑆, 𝑇)).

5.1 General Theorem

The previous theorems are special cases of Theorem 5.5 below. We will use it in subsequent sec-
tions to prove certified deletion. Theorem 5.5 says that security holds in EXP* if any information
that 𝒵 gives the adversary about 𝑆⊥+w could also be computed from a larger random coset 𝑅+x
that contains 𝑆⊥ + w. We call this property subspace hiding, and it is analogous to [Zha19]’s notion
of subspace-hiding obfuscation (Definition 3.8). Below, we will precisely define the property of 𝒵
we need.

Definition 5.4 (Subspace Hiding). Let A be a class of adversaries12. We say that a quantum operation
{𝒵𝜆}𝜆∈N is subspace-hiding for A if there exists a simulator {𝒮𝜆}𝜆∈N such that for any adversary in A ,
their advantage in the following game is negligible in 𝜆:

1. Let 𝑛 = 4𝜆. The adversary chooses subspaces 𝑆, 𝑇 ≤ F𝑛
2 such that 𝑆 ≤ 𝑇, dim(𝑆) = 𝑛/2, and dim(𝑇) =

3𝑛/4, they choose vectors u ∈ co(𝑇) and w ∈ co(𝑆⊥), and they choose a bit 𝑏′. Then they send these
variables to the challenger.

2. The challenger samples 𝑅, a uniformly random superspace of 𝑆⊥ of dimension 3𝑛/4. Let x ∈ co(𝑅)
be the unique coset such that 𝑆⊥ + w ⊂ 𝑅 + x. Next, the challenger samples a bit 𝑐 ← {0, 1}. If
𝑐 = 0, they compute 𝒵𝜆(𝑆, 𝑇, u,w, 𝑏

′) and send the output to the challenger. If 𝑐 = 1, they compute
𝒮𝜆(𝑅, 𝑇, u, x, 𝑏′) and send the output to the challenger.

3. The adversary outputs a guess 𝑐′ ∈ {0, 1} for 𝑐.

The adversary’s advantage is |Pr(𝑐′ = 𝑐)− 1/2|.

Finally, the theorem below says that 𝑏 is statistically hidden in EXP* if 𝒵 is subspace-hiding.

Theorem 5.5 (General theorem). Let {𝒵𝜆}𝜆∈N be defined as it was in EXP*, and let A be a class of
adversaries. Next, if {𝒵𝜆}𝜆∈N is subspace-hiding for A , then for any adversary {𝒜𝜆}𝜆∈N ∈ A ,

TD
(︁
EXP*(1𝜆,𝒜𝜆,𝒵𝜆, 0),EXP

*(1𝜆,𝒜𝜆,𝒵𝜆, 1)
)︁
= negl(𝜆)

12A should be closed under constant-factor increases in space and time. That is say: for any adversary {𝒜}𝜆∈N ∈ A
and any quantum adversary {ℬ}𝜆∈N, if the time and space complexity of {ℬ}𝜆∈N is more than that of {𝒜}𝜆∈N by a
constant factor, then {ℬ}𝜆∈N is also in A .

36

5.2 Oracle version

So far, we have just defined the output of 𝒵 and 𝒮 to be some quantum register that is sent to the
adversary. We can consider a more general version where the output of 𝒵 and 𝒮 also includes the
description of a classical oracle𝒪, which the adversary gets (quantum-accessible) query access to.

It is simple to modify our definitions for the oracle case. In Definition 5.1 and Definition 5.4,
we said that the challenger sends the output of 𝒵 or 𝒮 to the adversary. But if the output includes
the description of an oracle, then the challenger gives𝒜 quantum query access to the oracle rather
than sending the description of the oracle to 𝒜. Finally, Theorem 5.5 and its proof still hold when
the output of 𝒵 and 𝒮 includes an oracle.

5.3 Proof of Theorem 5.5

See Section 2.2 for an overview of how this proof works.

Delayed Preparation of Coset States

First, we will recall the following definitions from Section 4. Define |𝜓⟩0 and |𝜓⟩1 as follows:

|𝜓⟩0 =
1√︀
|𝐴|

∑︁
v0∈𝐴

|𝑆u+v0,w⟩ |v0⟩

|𝜓⟩1 =
1√︀
|𝐵|

∑︁
̃︀v0∈𝐵 |𝑇u,̃︀v0+w⟩ |̃︀v0⟩

where, 𝐴 = co(𝑆) ∩ 𝑇 and 𝐵 = co(𝑇⊥) ∩ 𝑆⊥.
Next, we will define a unitary 𝑈 that acts on the second register and maps superpositions over

to 𝐴 to superpositions over 𝐵. For any v0 ∈ 𝐴, let

𝑈 |v0⟩ =
1√
𝑐

∑︁
̃︀v0∈𝐵 |

̃︀v0⟩ · (−1)⟨v0,̃︀v0⟩
and for any ̃︀v0 ∈ 𝐵, let

𝑈 † |̃︀v0⟩ = 1√
𝑐

∑︁
v0∈𝐴

|v0⟩ · (−1)⟨v0,̃︀v0⟩
Notes: 𝑐 is a normalization constant, and 𝑈 depends on (𝑆, 𝑇). Technically, 𝑈 acts on any super-
position over F𝑛

2 , and we define it fully in Definition 4.8. Also see Lemma 4.9 and Lemma 4.10.
Finally, when 𝑈 is applied to the second register of |𝜓⟩0, it maps the state to |𝜓⟩1 (Lemma 4.13).

Hybrids

Consider the following sequence of hybrids. We’ll only say how each hybrid differs from the one
before it:

• ℋ0(𝑏) is EXP*(1𝜆,𝒜𝜆,𝒵𝜆, 𝑏).

37

• ℋ1(𝑏) : In the challenge stage, the challenger samples a bit 𝑏′ ← {0, 1}, and sends the adver-
sary the following challenge:

|𝑆v,w⟩ ,𝒵𝜆(𝑆, 𝑇, u,w, 𝑏
′)

Then at the start of the outcome stage, they check whether 𝑏′ = 𝑏⊕ ⟨v,1⟩. If so, they proceed
normally. If not, the game stops, and the outcome is ⊥.

• ℋ2(𝑏) : In the challenge stage, the challenger samples (𝑆, 𝑇, u,w, 𝑏′) normally, but then they
jointly sample (|𝑆v,w⟩ , v) as follows. First they prepare |𝜓⟩0 and then they measure the v0
register. Let v = u + v0, and then the first register of |𝜓⟩0 holds the state |𝑆v,w⟩. Then the
challenge sent to the adversary is the same as in the previous hybrid.

• ℋ3(𝑏) : In the challenge stage, the challenger prepares |𝜓⟩0 as before, but they delay measur-
ing the v0 register until the start of the outcome stage. The challenge still includes the |𝑆v,w⟩
register, but now it’s entangled with the v0 register.

• ℋ4 : At the start of the outcome stage, the challenger applies 𝑈 to the v0 register and measures
it to get ̃︀v0. Also let ̃︀v = ̃︀v0 + w. Then they check that̃︀z ∈ (𝑆⊥ + w)∖(𝑇⊥ + ̃︀v)
The output of the hybrid is 1 if the check passes and 0 otherwise.

• ℋ5 : The challenger applies 𝑈 to the v0 register and measures the result in the challenge stage
rather than the outcome stage. Therefore the challenge is:

|𝑇u,̃︀v⟩ ,𝒵𝜆(𝑆, 𝑇, u,w, 𝑏
′)

for a uniformly random ̃︀v0 ← 𝐵.

• ℋ6 : In the challenge stage, the challenger samples (𝑆, 𝑇, u,̃︀v,w, 𝑏′) as before. They also sam-
ple a subspace 𝑅 uniformly at random such that 𝑆⊥ ≤ 𝑅, and dim(𝑅) = 3𝑛/4, using the
procedure in Definition 4.2. Let x ∈ co(𝑅) be the unique coset such that 𝑆⊥ + w ⊂ 𝑅 + x.
Then the challenge is

|𝑇u,̃︀v⟩ ,𝒮𝜆(𝑅, 𝑇, u, x, 𝑏′)
The following claims step through the hybrids above to show that

TD
(︁
EXP*(1𝜆,𝒜𝜆,𝒵𝜆, 0),EXP

*(1𝜆,𝒜𝜆,𝒵𝜆, 1)
)︁
= negl(𝜆)

Claim 5.6. Pr(ℋ6 → 1) = negl(𝜆).

Proof. The adversary’s challenge is completely determined by (𝑅, 𝑇, u,̃︀v, x, 𝑏′). For the rest of the
proof, fix any valid choice of these variables. Then given those variables, ̃︀z is independent of
𝑆⊥+w, and 𝑆⊥+w is a uniformly random subspace coset such that dim(𝑆⊥) = 𝑛/2, 𝑇⊥ ≤ 𝑆⊥ ≤ 𝑅,
and 𝑇⊥ +̃︀v ⊂ 𝑆⊥ +w ⊂ 𝑅+ x. Then we can show that the adversary has negligible probability of
winningℋ6:

Pr[ℋ6 → 1] = Pr
𝑆,w

[︀ ̃︀z ∈ (𝑆⊥ + w)∖(𝑇⊥ + ̃︀v)]︀ ≤ max
z∈F𝑛

2

Pr
𝑆,w

[︀
z ∈ (𝑆⊥ + w)∖(𝑇⊥ + ̃︀v)]︀

= max
z∈(𝑅+x)∖(𝑇⊥+̃︀v) Pr𝑆,w

(︀
z ∈ 𝑆⊥ + w

)︀
=
|𝑆⊥ + w| − |𝑇⊥ + ̃︀v|
|𝑅+ x| − |𝑇⊥ + ̃︀v| =

2𝑛/2 − 2𝑛/4

23𝑛/4 − 2𝑛/4
= negl(𝜆)

38

Claim 5.7. Pr(ℋ5 → 1) = negl(𝜆).

Proof. If Pr[ℋ5 → 1] and Pr[ℋ6 → 1] were non-negligibly different, then that would break the
subspace-hiding property of𝒵 . The reduction goes as follows: first, the adversary in the subspace-
hiding game would sample (𝑆, 𝑇, u,̃︀v,w, 𝑏′) from the same distribution as in ℋ5/ℋ6. Then they
send (𝑆, 𝑇, u,w, 𝑏′) to the subspace-hiding challenger to receive either𝒵𝜆(𝑆, 𝑇, u,w, 𝑏

′) or 𝒮𝜆(𝑅, 𝑇, u, x, 𝑏′).
Then they simulate the rest of the hybrid, either ℋ5 or ℋ6. Finally their output 𝑐 is the output of
the hybrid. If for some adversary, Pr[ℋ5 → 1] and Pr[ℋ6 → 1] were non-negligibly different, then
this reduction would break the subspace-hiding property of 𝒵𝜆.

Claim 5.8. Pr(ℋ4 → 1) = Pr(ℋ5 → 1)

Proof. The only difference between the hybrids is which comes first: (1) the adversary’s computa-
tion, or (2) the act of applying 𝑈 to the v0 register and measuring it. These operations commute be-
cause they act on separate registers, so the outputs of these hybrids are identically distributed.

Claim 5.9. TD[ℋ3(0),ℋ3(1)] = negl(𝜆)

Proof.

1. Let us runℋ3 andℋ4 using the same QPT adversary. Then the hybrids are identical until the
start of the outcome stage. It will be useful to compare the outcome stages of the two hybrids.

2. ℋ4 outputs 0 with overwhelming probability, so we will focus on this event. If ℋ4 outputs
0, then one of the following events occurred:

(a) Event a: ̃︀z /∈ 𝑆⊥ + w

(b) Event b: ̃︀z ∈ 𝑇⊥ + ̃︀v0 + w

These two events are mutually exclusive because 𝑇⊥ + ̃︀v0 + w ⊆ 𝑆⊥ + w for any ̃︀v0 ∈ 𝐵.

Next, if event b occurred, then the value of̃︀v0 is uniquely determined by (𝑆, 𝑇,w,̃︀z) (Lemma 4.6).
For a given (𝑆, 𝑇,w,̃︀z) satisfying ̃︀z ∈ 𝑆⊥ + w, let ̃︀v*0 be the unique value of ̃︀v0 ∈ 𝐵 for which̃︀z ∈ 𝑇⊥ + ̃︀v0 + w.

3. We can view the challenge and response stages of ℋ3/ℋ4 as a procedure for generating a
quantum state, which includes all of the registers held by the adversary and challenger,
including the registers holding classical random variables. Next, we can view the outcome
stage ofℋ4 as a measurement performed on that state.

We will define projections on the state that represent events a and b.

(a) Let Π𝑎 project onto values of (𝑆, 𝑇,w,̃︀z) for which ̃︀z /∈ 𝑆⊥ + w.

(b) Let Π𝑏:

i. first project onto all values of (𝑆, 𝑇,w,̃︀z) for which ̃︀z ∈ 𝑆⊥ + w, and
ii. then project the v0 register onto 𝑈 |̃︀v*0⟩ ⟨̃︀v*0|𝑈 †.

Note that ̃︀v*0 is determined by the values on the (𝑆, 𝑇,w,̃︀z) registers.

Note that Π𝑎 and Π𝑏 project onto orthogonal spaces because events a and b are mutually
exclusive.

39

4. Let us assume for a moment that the state produced by the challenge and response stages lies
in the image of Π𝑎. In this case, TD[ℋ3(0),ℋ3(1)] = 0 because the output of ℋ3 is ⊥, which
doesn’t depend on 𝑏.

5. Next, consider the case where the state produced by the challenge and response stages lies in
the image of Π𝑏. We will show that in this case, TD[ℋ3(0),ℋ3(1)] = negl(𝜆).

First, the state on the v0 register is initially 𝑈 |̃︀v*0⟩ ⟨̃︀v*0|𝑈 †. Then the ℋ3 challenger measures
the v0 register in the computational basis, which returns a uniformly random value in 𝐴
that is independent of the other registers.13 Furthermore, ⟨v,1⟩ is uniformly random, with
overwhelming probability over the choice of (𝑆, 𝑇) (Lemma 5.10).

The only part ofℋ3 that depends on 𝑏 is when the challenger checks that 𝑏′ = 𝑏⊕ ⟨v,1⟩. But
if ⟨v,1⟩ is uniformly random and independent of the other registers, then the output of the
hybrid is independent of 𝑏. Therefore, TD[ℋ3(0),ℋ3(1)] = negl(𝜆).

6. Now consider the case where the state produced by the challenge and response stages is in
the image of Π𝑎 + Π𝑏. In this case as well, TD[ℋ3(0),ℋ3(1)] = negl(𝜆). The output of ℋ3 is
obtained by tracing out all registers except for the output register. The result is a mixture of
the output states from Item 4 and Item 5.

7. In reality, the state produced by the challenge and response stages is negligibly close in trace
distance to a state in the image of Π𝑎+Π𝑏. This is becauseℋ4 → 0 with overwhelming prob-
ability. Therefore Π𝑎 + Π𝑏 is a gentle measurement: applying Π𝑎 + Π𝑏 to the state produced
by the challenge and response stages changes the state by a negligible amount, measured in
trace distance.

Therefore, TD[ℋ3(0),ℋ3(1)] = negl(𝜆).

Lemma 5.10. With overwhelming probability in 𝑛 over the randomness of 𝑆 and 𝑇 , exactly half of the
vectors v ∈ 𝐴+ u satisfy ⟨v,1⟩ = 1, and the other half satisfy ⟨v,1⟩ = 0.

Proof. With overwhelming probability, 𝐴 contains at least one vector v*0 for which ⟨v*0,1⟩ = 1. This
is because over the randomness of 𝑆 and 𝑇 , 𝐴 is a uniformly random subspace of dimension 𝑛/4.
One way to sample such a subspace is to sample 𝑛/4 vectors uniformly at random such that they
are linearly independent. Half of the vectors z ∈ F𝑛

2 satisfy ⟨z,1⟩ = 1, so the probability that all
the vectors in 𝐴 satisfy ⟨v0,1⟩ = 0 is ≤ (1/2)𝑛/4 = negl(𝑛).

If there is at least one v*0 ∈ 𝐴 for which ⟨v*0,1⟩ = 1, then exactly half of the vectors v0 ∈ 𝐴
satisfy ⟨v0,1⟩ = 1. Since 𝐴 is a subspace, it can be partitioned into pairs of vectors (v0, v

′
0) where

v′0 = v0 + v*0. Next, ⟨v0,1⟩ ≠ ⟨v′0,1⟩, and

⟨v0 + u,1⟩ ≠ ⟨v′0 + u,1⟩

Therefore, half of the vectors v ∈ 𝐴+ u satisfy ⟨v,1⟩ = 1, and the other half satisfy ⟨v,1⟩ = 0.
13Compared to prior work ([BI20, BK22])), our claim that v0 is uniformly random and independent of the other

registers is quite strong. Our use of subspace coset states allows us to make such a strong claim and makes our proof
more streamlined. [BI20, BK22] essentially argue that the v0 register is somewhat localized in the Hadamard basis, so
the value in the computational basis has a certain amount of entropy, even conditioned on the adversary’s registers;
in contrast, we say that the v0 register is a single eigenstate of the 𝑈 basis, 𝑈 |̃︀v*0⟩, and therefore the value in the
computational basis is uniformly random.

40

Claim 5.11. 1
2 · TD[ℋ0(0),ℋ0(1)] = TD[ℋ1(0),ℋ1(1)] = TD[ℋ2(0),ℋ2(1)] = TD[ℋ3(0),ℋ3(1)]

Proof. First, the only difference between ℋ3 and ℋ2 is which comes first: (1) the adversary’s com-
putation or (2) the act of measuring v0. These operations commute because they act on separate
registers, so the outputs of the two hybrids are identically distributed.

Second, the outputs of ℋ2 and ℋ1 are identically distributed. The only difference between the
hybrids is how the challenge is sampled, but both hybrids ultimately sample the challenge from
the same distribution.

Finally, 1
2 · TD[ℋ0(0),ℋ0(1)] = TD[ℋ1(0),ℋ1(1)]. In ℋ1(𝑏), when 𝑏′ = 𝑏 ⊕ ⟨v,1⟩, the challenge

and the output of the hybrid have the same distribution as inℋ0(𝑏). When 𝑏′ ̸= 𝑏⊕ ⟨v,1⟩, then the
output is ⊥. 𝑏′ is independent of 𝑏 and v, so

TD[ℋ1(0),ℋ1(1)] =
1

2
· TD[ℋ0(0),ℋ0(1)] +

1

2
· 0 =

1

2
· TD[ℋ0(0),ℋ0(1)]

In summary, we’ve shown that

TD[EXP*(1𝜆,𝒜𝜆,𝒵𝜆, 0),EXP
*(1𝜆,𝒜𝜆,𝒵𝜆, 1)] = TD[ℋ0(0),ℋ0(1)] = negl(𝜆)

5.4 Proofs of Theorem 5.2 and Theorem 5.3

Theorem 5.12 (Theorem 5.2 Restated). Let Enc be a semantically secure encryption scheme. Next for
any 𝜆 ∈ N, let

𝒵𝜆(𝑆, 𝑇, u,w, 𝑏
′) = Enc(1𝜆, 𝑆).

Then for any QPT adversary {𝒜𝜆}𝜆∈N,

TD
(︁
EXP*(1𝜆,𝒜𝜆,𝒵𝜆, 0),EXP

*(1𝜆,𝒜𝜆,𝒵𝜆, 1)
)︁
= negl(𝜆).

Proof. It suffices to prove that {𝒵𝜆}𝜆∈N is subspace-hiding for all QPT adversaries, and then we
can appeal to Theorem 5.5 to finish the proof. For any 𝜆 ∈ N, let the simulator be 𝑆𝜆(𝑅, 𝑇, u, x, 𝑏′) =
Enc(1𝜆, 0*), where 0* is the same length as the description of 𝑆. Any QPT adversary has negligible
advantage at distinguishing Enc(1𝜆, 𝑆) and Enc(1𝜆, 0*), so {𝒵𝜆}𝜆∈N is subspace-hiding for all QPT
adversaries.

Theorem 5.13 (Theorem 5.3 Restated). Let Enc be a semantically secure encryption scheme, and assume
post-quantum indistinguishability obfuscation (i𝒪). Next, for any 𝜆 ∈ N, let

𝒵𝜆(𝑆, 𝑇, u,w, 𝑏
′) =

[︀
Enc(1𝜆, 𝑆), i𝒪(𝑃𝑆⊥+w)

]︀
.

Then for any QPT adversary {𝒜𝜆}𝜆∈N,

TD
(︁
EXP*(1𝜆,𝒜𝜆,𝒵𝜆, 0),EXP

*(1𝜆,𝒜𝜆,𝒵𝜆, 1)
)︁
= negl(𝜆)

Proof. We only need to show that {𝒵𝜆}𝜆∈N is subspace-hiding for all QPT adversaries. Let the
simulator be 𝑆𝜆(𝑅, 𝑇, u, x, 𝑏′) = [Enc(1𝜆, 0*), i𝒪(𝑃𝑅+x)]. We will show that no QPT adversary can
distinguish the outputs of 𝒵 and 𝒮 with non-negligible advantage. Consider the following se-
quence of hybrids:

41

• ℋ0: Given (𝑆, 𝑇, u,w, 𝑏′), compute and output [Enc(1𝜆, 𝑆), i𝒪(𝑃𝑆⊥+w)].

• ℋ1: Given (𝑆, 𝑇, u,w, 𝑏′), compute and output [Enc(1𝜆, 0*), i𝒪(𝑃𝑆⊥+w)].

• ℋ2: Given (𝑆, 𝑇, u,w, 𝑏′), sample 𝑅, a uniformly random superspace of 𝑆⊥ of dimension
3𝑛/4, and let x ∈ co(𝑅) be the unique coset for which 𝑆⊥ + w ⊂ 𝑅 + x. Then compute and
output [Enc(1𝜆, 0*), i𝒪(𝑃𝑅+x)].

Every QPT adversary has negligible advantage at distinguishing the outputs ofℋ0 andℋ1, by the
semantic security of Enc. Furthermore, every QPT adversary has negligible advantage at distin-
guishing the outputs of ℋ1 and ℋ2 , by Corollary 3.10.. Essentially, this follows from the fact that
i𝒪 is a subspace-hiding obfuscator

Next,ℋ0 andℋ2 are the two cases the adversary is asked to distinguish in the subspace-hiding
game (Definition 5.4), and we’ve shown that the advantage for any QPT adversary is negligible.
Therefore, 𝒵 is subspace-hiding for any QPT adversary.

Combined with constructions from [BK22], we obtain the following immediate corollary.

Corollary 5.14. Assuming post-quantum indistinguishability obfuscation and𝑋 ∈ {public-key, attribute-based,
fully-homomorphic, timed-release,witness} encryption, there exists𝑋 with publicly-verifiable certifed dele-
tion.

6 Blind Delegation with Certified Deletion

Blind delegation is an interactive protocol that allows a client with limited computational re-
sources to compute a resource-intensive function with the help of a more-powerful server. Through
this protocol, the client learns the output of the function, but their running time is much less than
the time needed to actually compute the function. To reduce the client’s computational load, the
client delegates the most expensive computations to the server. However the server is blind, in
the sense that they do not learn anything about the input to the function that they are computing.

There exist protocols for blind delegation based on fully homomorphic encryption, in which
the server receives an encryption of the input. But these protocols only hide the input from the
server computationally. Our version of blind delegation provides statistical hiding after deletion.
After learning the output of the computation, the client can subsequently request that the server
delete the encryption of the input and prove that they have done so. If the proof is accepted, it
guarantees that the input is statistically hidden from the server, even if the client’s secret key is
leaked later on.

The rest of the section is organized as follows: we will first define maliciously-secure blind
delegation with certified deletion, and then provide a construction and security proof.

6.1 Definitions

In this section, we will define the cryptographic primitive maliciously secure blind delegation with
certified deletion. We will use a simulation-based definition, which is common in the study of
interactive computation, and which encompasses both correctness and security.

The client wishes to learn 𝑦 = ℳ𝑡(𝑥), the result of running Turing machine ℳ on input 𝑥
for 𝑡 timesteps. The client’s running time should be poly(log 𝑡), which is much less than the time
needed to actually compute 𝑦.

42

Ideal functionality. We define the desired input-output behavior of our protocol using the ideal
functionalityℱBD, which is given in Section 6.1. An ideal functionality is a classical interactive ma-
chine. It may occur over multiple phases, each with distinct inputs and outputs, and the outputs
of previous phases may be used as inputs in later phases . The first phase of ℱBD is Setup, where
the client encrypts 𝑥. The next is Eval, where the client asks the server to compute ℳ𝑡(𝑥). Eval
may be repeated many times if the client wants to compute many Turing machines on 𝑥. Later on,
we will add another phase to handle deletion.

Parties: client 𝐶 and server 𝑆, each with input the security parameter 1𝜆.

• Setup: ℱBD receives an input 𝑥 from 𝐶, and sends |𝑥| to 𝑆.

• Eval: Repeat the following an arbitrary number of times.

– ℱBD receives a description of a Turing machineℳ and a step-size 𝑡 from 𝐶, and sends (ℳ, 𝑡) to 𝑆.a

– ℱBD sends 𝑦 :=ℳ𝑡(𝑥) to 𝐶.

aFor convenience, we keep ℳ and 𝑡 public, and only hide the client’s input 𝑥. However, note that ℳ could be
the universal Turing machine, in which case hiding 𝑥 would mean hiding everything about the client’s computation
except for an upper bound 𝑡 on its run-time.

Ideal Functionality ℱBD

Figure 1: The ideal functionality for blind delegation with certified deletion.

Security with abort. If an adversarial server decides not to computeℳ𝑡(𝑥), we want the client’s
output to be abort, so we add the following feature to ℱBD: the ideal functionality knows when
the server is corrupted. Then at the end of each phase, once it has computed the outputs, the
functionality sends the outputs of the server to the adversary. Then the functionality awaits a
command from the adversary of either deliver or abort. Upon receiving deliver, the functionality
delivers to the client their outputs. Upon receiving abort, the functionality instead delivers abort
to the client.

The real-ideal paradigm. A two-party protocol Πℱ for computing the (potentially reactive) func-
tionality ℱ consists of two families of quantum interactive machines 𝐴 and 𝐵. An adversary in-
tending to attack the protocol by corrupting a party 𝑀 ∈ {𝐴,𝐵} can be described by a family of
sequences of quantum interactive machines {𝒜𝜆 := (𝒜𝜆,1, . . . ,𝒜𝜆,𝑘)}𝜆∈N, where 𝑘 is the number
of phases of ℱ . This adversarial interaction happens in the presence of an environment, which is
a family of sequences of quantum operations {𝒵𝜆 := (𝒵𝜆,1, . . . ,𝒵𝜆,𝑘)}𝜆∈N, and a family of initial
advice states {|𝜓𝜆⟩}𝜆∈N. It proceeds as follows.

• 𝒵𝜆,1 receives as input |𝜓𝜆⟩. It outputs what (if any) inputs the honest party 𝐻 ∈ {𝐴,𝐵}
is initialized with for the first phase of Πℱ . It also outputs a quantum state on registers
(A,Z), where A is the state that holds inputs and outputs of the adversary, and Z holds the
remaining state of the environment.

• 𝒜𝜆,1 receives as input a state on register A, and interacts with the honest party in the first
phase of Πℱ . It may also maintain an additional register A′. It outputs a state on register A.

43

• 𝒵𝜆,2 receives as input registers (A,Z) along with the honest party outputs from the first
phase. It computes honest party inputs for the second phase, and updates registers (A,Z).

• 𝒜𝜆,2,𝒵𝜆,3, . . . ,𝒜𝜆,𝑘 are defined analogously.

Given an adversary, environment, and advice, we define the random variable Πℱ [𝒜𝜆,𝒵𝜆, |𝜓𝜆⟩]
as the output of the above procedure, which includes registers (A,Z) and the final honest party
outputs.

An ideal-world protocol ̃︀Πℱ for functionality ℱ consists of “dummy” parties ̃︀𝐴 and ̃︀𝐵 that have
access to an additional “trusted” party that implements ℱ . That is, ̃︀𝐴 and ̃︀𝐵 only interact directly
with ℱ , providing inputs and receiving outputs, and do not interact with each other. We con-
sider the execution of ideal-world protocols in the presence of a simulator, described by a family
of sequences of quantum interactive machines {𝒮𝜆 := (𝒮𝜆,1, . . . ,𝒮𝜆,𝑘)}𝜆∈N, analogous to the def-
inition of an adversary above. This interaction also happens in the presence of an environment
{𝒵𝜆 := (𝒵𝜆,1, . . . ,𝒵𝜆,𝑘)}𝜆∈N, and a family of initial advice states {|𝜓𝜆⟩}𝜆∈N, as described above.
Note that the simulator may maintain a register between phases that the environment cannot ac-
cess. Finally, we define the analogous random variable ̃︀Πℱ [𝒮𝜆,𝒵𝜆, |𝜓𝜆⟩] to be the output of the
ideal-world procedure.

Definition 6.1 (Secure realization of ℱ). A protocol Πℱ securely realizes the 𝑘-phase functionality ℱ if
the following property holds:

• Computational security. For every QPT adversary {𝒜𝜆 := (𝒜𝜆,1, . . . ,𝒜𝜆,𝑘)}𝜆∈N corrupting
either party 𝐴 or 𝐵, there exists a QPT simulator {𝒮𝜆 := (𝒮𝜆,1, . . . ,𝒮𝜆,𝑘)}𝜆∈N such that for any
QPT environment {𝒵𝜆 := (𝒵𝜆,1, . . . ,𝒵𝜆,𝑘)}𝜆∈N, polynomial-size family of advice {|𝜓𝜆⟩}𝜆∈N, and
QPT distinguisher {𝒟𝜆}𝜆∈N, it holds that⃒⃒⃒⃒

Pr [𝒟𝜆 (Πℱ [𝒜𝜆,𝒵𝜆, |𝜓𝜆⟩]) = 1]− Pr
[︁
𝒟𝜆

(︁̃︀Πℱ [𝒮𝜆,𝒵𝜆, |𝜓𝜆⟩]
)︁
= 1

]︁ ⃒⃒⃒⃒
= negl(𝜆).

The deletion phase. We will describe how to add a deletion phase to a generic two-party func-
tionality, although the reader may keep in mind the specific functionality, for blind delegation,
that we defined above. We use ℱDel to denote a functionality ℱ with an added deletion phase.

Section 6.1 describes the deletion phase. When the parties are labeled 𝐴 and 𝐵, we use the
convention that 𝐴 requests deletion, and then 𝐵 deletes 𝐴’s information. If ℱ is reactive, we allow
𝐴 to request the deletion phase between any two phases of ℱ , or at the end of ℱ . But once the
deletion phase has been executed, the functionality ends, and no other phases will be executed.

Parties: 𝐴 and 𝐵

• Receive a query Deletion Requested from 𝐴, and send it to 𝐵.

• Receive a query Deletion Confirmed from 𝐵. If a message Deletion Requested has been recorded, send
Deletion Confirmed to 𝐴, and otherwise ignore the message.

Deletion Phase

Figure 2: Specification of a generic deletion phase that can be added to any ideal functionality ℱ .

44

The deletion phase adds one bit to each party’s output. Party 𝐵’s output is denoted DelReq,
which is set to 1 if party 𝐴 sends a message Deletion Requested (and is set to 0 otherwise). Party
𝐴’s output is denoted DelOutcome, and is set to 1 if party 𝐵 sends a message Deletion Confirmed
(and is set to 0 otherwise).

The long-term secrets tape. In certified deletion, we want security to hold even when the honest
party’s secret information is leaked, so we will define sec to represent the leaked information. Let
sec be a (classical or quantum) tape where the honest party writes all of its “long-term secrets”.
That is, at the end of each message, the honest party writes all the information it needs to partic-
ipate in the rest of the protocol on sec, and at the beginning of its next message computation, it
retrieves all information it needs from this tape.

Definition 6.2 (Secure realization ofℱDel). A protocol ΠℱDel securely realizes the 𝑘-phase functionality
ℱDel if the following properties hold:

• Computational security. ℱDel satisfies the computational security property of Definition 6.1.

• Certified deletion. For every QPT adversary {𝒜𝜆 := (𝒜𝜆,1, . . . ,𝒜𝜆,𝑘)}𝜆∈N corrupting party 𝐵,
there exists a QPT simulator {𝒮𝜆 := (𝒮𝜆,1, . . . ,𝒮𝜆,𝑘)}𝜆∈N such that for any QPT environment
{𝒵𝜆 := (𝒵𝜆,1, . . . ,𝒵𝜆,𝑘)}𝜆∈N, and polynomial-size family of advice {|𝜓𝜆⟩}𝜆∈N,

TD
(︁
ΠDelOutcome=1

ℱDel [𝒜𝜆,𝒵𝜆, |𝜓𝜆⟩], ̃︀ΠDelOutcome=1
ℱDel [𝒮𝜆,𝒵𝜆, |𝜓𝜆⟩]

)︁
= negl(𝜆),

where

– ΠDelOutcome=1
ℱDel [𝒜𝜆,𝒵𝜆, |𝜓𝜆⟩] is defined to consist of ΠℱDel [𝒜𝜆,𝒵𝜆, |𝜓𝜆⟩] as well as the con-

tents of party 𝐴’s tape sec if party 𝐴’s output DelOutcome is set to 1, and is defined to be ⊥
otherwise, and

– ̃︀ΠDelOutcome=1
ℱDel [𝒮𝜆,𝒵𝜆, |𝜓𝜆⟩] is defined to be equal to ̃︀ΠℱDel [𝒮𝜆,𝒵𝜆, |𝜓𝜆⟩] if party 𝐴’s output

DelOutcome is set to 1 (that is, the simulator must simulate sec), and is defined to be ⊥ other-
wise.

Finally, we define what it means for an interactive protocol Π between client and server to be
a maliciously secure blind delegation protocol with certified deletion.

Definition 6.3. A two-party protocol Π between a client and a server is a secure protocol for blind delega-
tion with certified deletion if the following properties hold.

• Security. Π securely realizes (Definition 6.2) the functionality ℱDel
BD against adversaries that corrupt

the server (or neither party).

• Efficiency. The client runs in time poly(𝜆, |𝑥|,𝑚*, log 𝑡*, 𝑘*), where 𝑚* is the description length
of the largest Turing machineℳ input by the client, and 𝑡* is the largest step-size 𝑡 input by the client,
and 𝑘* is the number of Eval phases that were executed. The server runs in time poly(𝜆, |𝑥|,𝑚*, 𝑡*, 𝑘*).

Note that the client’s runtime is polynomial in log 𝑡*, which is much smaller than 𝑡*, the num-
ber of timesteps that the machine runs for.

45

6.2 Construction

Overview

Imagine that 𝑥 is a single bit. Then the ciphertext encrypting 𝑥 is a quantum state of the following
form:

FHE.Enc[pk, (𝑆, 𝑥⊕ ⟨v,1⟩)], |𝑆v,w⟩ (8)

where |𝑆v,w⟩ is a subspace coset state. Essentially, 𝑥 is masked with a uniformly random bit ⟨v,1⟩,
and it is encrypted along with the information, 𝑆, that is needed to remove the mask.

Next, the client sends the ciphertext to the server and asks them to computeℳ𝑡(𝑥) homomor-
phically. Since (𝑆, 𝑥 ⊕ ⟨v,1⟩) are encrypted using an FHE scheme, the server can homomorphically
remove the mask, recover 𝑥, and computeℳ𝑡(𝑥). The server does these computations in super-
position over the quantum ciphertext without measuring anything. Therefore, their output is a
superposition over encryptions ofℳ𝑡(𝑥). Then the server sends their registers to the client. The
client checks that the server computed their output correctly and decrypts it to learn 𝑦 =ℳ𝑡(𝑥).
Here, the client measures 𝑦, but it is a gentle measurement. Because the client already checked
that the server computed their output correctly, they will measure the correct value of 𝑦 with
overwhelming probability.

Finally, to delete the data, the client and server uncompute their previous computations, and
then the server measures |𝑆v,w⟩ in the Hadamard basis. The value they measure is a vector ̃︀z ∈
𝑆⊥ + w, which serves as the certificate of deletion. The reason why this “deletes” 𝑥 is that by
measuring the state in the Hadamard basis, the server destroys the information they have about
v. Then 𝑥 is statistically hidden, forever masked behind the bit ⟨v,1⟩.

Homomorphic Evaluation

The main goal of the protocol is to evaluateℳ𝑡 homomorphically on an encryption of 𝑥. In this
section, we will define ServerEval, the subprotocol that does this. It uses FHE.Eval to do the heavy
lifting and applies a preprocessing function UnmaskInput to correctly format the input to FHE.Eval.

First, the encryption of 𝑥 will be a ciphertext of the following form: let ℓ be the length of 𝑥,
and for each bit 𝑖 ∈ [ℓ], let |(𝑆𝑖) v𝑖,w𝑖⟩ be a subspace coset state. Let 𝑥′𝑖 = 𝑥𝑖 ⊕ ⟨v𝑖,1⟩, and let
ct

(0)
𝑖 = FHE.Enc[pk, (𝑆𝑖, 𝑥

′
𝑖)]. Then let the ciphertext be:(︀

ct
(0)
𝑖 , |(𝑆𝑖) v𝑖,w𝑖⟩

)︀
𝑖∈[ℓ]

Also, since UnmaskInput and ServerEval are classical functions applied in superposition to the quan-
tum ciphertext, we’ll represent each state |(𝑆𝑖) v𝑖,w𝑖⟩ with a generic classical value z𝑖 ∈ 𝑆𝑖 + v𝑖 in
the support of the superposition.

Next, UnmaskInput is defined below. It outputs 𝑥 when the server and client are honest.

Inputs: (𝑆𝑖, 𝑥
′
𝑖, z𝑖)𝑖∈[ℓ]

UnmaskInput

46

1. For each 𝑖 ∈ [ℓ] :

(a) Compute the coset v′𝑖 ∈ co(𝑆𝑖) that z𝑖 belongs to.

(b) Compute 𝑥′′𝑖 = 𝑥′𝑖 ⊕ ⟨v′𝑖,1⟩.

2. Output 𝑥′′ := (𝑥′′1 , . . . , 𝑥
′′
ℓ).

Note that when the server and client are honest, v𝑖 = v𝑖, 𝑥′′𝑖 = 𝑥𝑖, and 𝑥′′ = 𝑥.

Now we’ll define ServerEval. It outputs an encryption of ℳ𝑡(𝑥) when the server and client are
honest.

Inputs: pk,ℳ, 𝑡, (ct
(0)
𝑖 , z𝑖)𝑖∈[ℓ]:

1. Encrypt the z𝑖s. For each 𝑖 ∈ [ℓ]:
let ct(1)𝑖 = FHE.Enc(pk, z𝑖)

2. Homomorphically compute UnmaskInput:

ct(2) = FHE.Eval
[︀
pk,UnmaskInput, (ct

(0)
𝑖 , ct

(1)
𝑖)𝑖∈[ℓ]

]︀
3. Homomorphically computeℳ𝑡. First compute 𝐶ℳ𝑡 , the circuit description ofℳ𝑡. Then compute:

ct(3) = FHE.Eval
(︀
pk, 𝐶ℳ𝑡 , ct(2)

)︀
Finally, output ct(3).

ServerEval

Note that when the server and client are honest, (ct(0)𝑖 , ct
(1)
𝑖)𝑖∈[ℓ] are an encryption of (𝑆𝑖, 𝑥′𝑖, z𝑖)𝑖∈[ℓ].

Then ct(2) is an encryption of 𝑥, and ct(3) is an encryption ofℳ𝑡(𝑥).

Finally, let us define a Turing machineℳ′ that runs ServerEval with some inputs hardwired.

ℳ′ = ServerEval
[︀
pk,ℳ, 𝑡, (ct

(0)
𝑖 , ·)𝑖∈[ℓ]

]︀
The only input toℳ′ is the quantum part of the ciphertext: {|(𝑆𝑖) v𝑖,w𝑖⟩}𝑖∈[ℓ]. The classical part is
hardwired. Finally,ℳ′ computes an encryption ofℳ𝑡(𝑥) by running ServerEval on the ciphertext.

Full Construction

Here is the construction of the protocol for blind delegation with certified deletion (ΠℱDel
𝐵𝐷

). It will
call ServerEval (defined above) as a subroutine.

47

Inputs: 1𝜆, 𝑥

1. The client sets up an FHE scheme:
FHE.Gen(1𝜆)→ (pk, sk)

2. The client encrypts 𝑥:
Let ℓ be the length of 𝑥, and let 𝑛 = 4𝜆. Then, for each 𝑖 ∈ [ℓ]:

(a) They sample a subspace 𝑆𝑖 of dimension 𝑛/2 uniformly at random, along with two vectors (v𝑖,w𝑖)←
co(𝑆𝑖)× co(𝑆⊥

𝑖). Then they generate:

ct
(0)
𝑖 = FHE.Enc[pk, (𝑆𝑖, 𝑥𝑖 ⊕ ⟨v,1⟩)]
Z𝑖 = |(𝑆𝑖) v𝑖,w𝑖

⟩

Some notation: Z𝑖 is a quantum register, which holds the state |(𝑆𝑖) v𝑖,w𝑖⟩. Also let Z := (Z𝑖)𝑖∈[ℓ].

(b) They sample a subspace 𝑇𝑖 uniformly at random such that 𝑆𝑖 ≤ 𝑇𝑖 and dim(𝑇𝑖) = 3𝑛/4 using the
procedure specified in Definition 4.2. Let u𝑖 ∈ co(𝑇𝑖) be the unique coset such that 𝑆𝑖+v𝑖 ⊂ 𝑇𝑖+u𝑖.

3. The client sends register Z to the server. Then they store some information for later on the long-term
secrets tape:

sec = pk, sk, (𝑆𝑖, 𝑇𝑖, u𝑖,w𝑖, ct
(0)
𝑖)𝑖∈[ℓ]

Setup

Eval is repeated an arbitrary number of times, once for each functionℳ𝑡 to be computed on 𝑥.

Inputs:ℳ, 𝑡

1. Client: The client sets up a SNARG scheme to certify the computation ofℳ𝑡(𝑥).

(a) Letℳ′ = ServerEval
[︀
pk,ℳ, 𝑡, (ct

(0)
𝑖 , ·)𝑖∈[ℓ]

]︀
(defined above). Recall that the only input toℳ′ is the

register Z, and the rest of the inputs are hardwired.

(b) Next, the client computes ℓ′ = poly(𝜆, ℓ,𝑚), which upper bounds the input length of ℳ′, along
with 𝑡′ = poly(𝜆, ℓ, 𝑡,𝑚), which upper bounds the runtime ofℳ′. Then they compute:

SNARG.Gen(1𝜆,ℳ′, 𝑡′, ℓ′)→ (SNARG pk,SNARG vk)

In our notation, the description ofℳ′ is included in the public key SNARG pk.

(c) Then the client sends the server (SNARG pk,SNARG vk).

2. Server:

(a) The server appliesℳ′ in superposition to Z, while computing a SNARG certifying that the com-
putation was done correctly. With our notation, that looks like this:

Y,P← SNARG.Prove
(︀
SNARG pk,Z

)︀
where Y is the register containing the output ofℳ′, and P is the register containing the SNARG
proof. They are entangled with each other and with Z.

Eval

48

(b) The server sends registers (Z,Y,P) to the client.

3. Client:

(a) The client verifies the SNARG. First, they compute in superposition the function:

SNARG.Verify
(︀
SNARG vk,Z,Y,P

)︀
and then they measure the output bit. If the output is 1, they continue. Otherwise, they output
abort and the protocol ends.

(b) Next they verify that each Z𝑖 ∈ 𝑇𝑖 + u𝑖. Specifically, for each 𝑖 ∈ [ℓ], they compute 𝑃𝑇𝑖+u𝑖(Z𝑖) in
superposition and measure the output. If for some 𝑖 they measure 0, then they they output abort
and the protocol ends. Otherwise they continue.

(c) The client decrypts Y in superposition, by running FHE.Dec(sk,Y) in superposition and measuring
the result, 𝑦. Then the client outputs 𝑦.

(d) The client uncomputes the computations they performed (except measurements) and sends the
registers Z,Y,P back to the server.

4. Server: The server uncomputes the computations they performed.

1. Client: The client requests the deletion of their data by sending Deletion Requested to the server.

2. Server: For each 𝑖 ∈ [ℓ], the server applies 𝐻⊗𝑛 to Z𝑖 and then measures the register to get the valuẽ︀z𝑖. They send each ̃︀z𝑖 to the client.

3. Client: For each 𝑖 ∈ [ℓ], the client checks that 𝑃𝑆⊥
𝑖 +w𝑖

(̃︀z𝑖) = 1. If all checks pass, they output
DelOutcome = 1, and otherwise they output DelOutcome = 0.

Del

Lemma 6.4 (Correctness). If the server (as well as the client) is honest, then with overwhelming probabil-
ity in 𝜆, the following occurs: on every execution of Eval, the client outputs 𝑦 =ℳ𝑡(𝑥), and DelOutcome =
1.

Proof. During Eval, ℳ′ is correctly computed with overwhelming probability. In that case, Y =
ℳ′(Z). Also the Z register satisfies: 𝑃𝑆𝑖+v𝑖(Z𝑖) = 1 for all 𝑖. This implies that each classical
value in Y’s superposition is an encryption of ℳ𝑡(𝑥). This is because for each classical value
z𝑖 in Z𝑖’s superposition: z𝑖 ∈ 𝑆𝑖 + v𝑖. Then UnmaskInput[(𝑆𝑖, 𝑥𝑖 ⊕ ⟨v𝑖,1⟩, z𝑖)𝑖∈[ℓ]] outputs 𝑥, and

ℳ′[(z𝑖)𝑖∈[ℓ]] = ServerEval(pk,ℳ, 𝑡, (ct
(0)
𝑖 , z𝑖)𝑖∈[ℓ]) outputs an encryption ofℳ𝑡(𝑥).

Next, the measurements in Eval produce a particular outcome with overwhelming probability,
so they change the state of the system by a negligible amount (measured in trace distance). Then at
the start of Del, the Z register is negligibly close to what it was originally: for each 𝑖, Z𝑖 = |(𝑆𝑖)v𝑖,w𝑖⟩.
Then the server measures a collection of vectors ̃︀z𝑖 ∈ 𝑆⊥

𝑖 + w𝑖, which the client accepts.

6.3 Efficiency

Theorem 6.5. The construction of blind delegation with certified deletion satisfies efficiency (Definition 6.3).

Proof. As before, let 𝑘* be the number of times Eval is run, let 𝑚* be the description length of the

49

largest Turing machineℳ input by the client, and let 𝑡* be the largest step-size 𝑡 input by the client.
Next, note that the entire protocol runs in time poly(𝜆, ℓ,𝑚*, 𝑡*, 𝑘*) because every step runs in time
polynomial in the input length, and the inputs to each phase have length poly(𝜆, ℓ,𝑚*, 𝑡*). Now it
remains to show that the client’s computations in the protocol take time poly(𝜆, ℓ,𝑚*, log 𝑡*, 𝑘*).

The input to Setup has length 𝜆+ ℓ, and Setup runs in time poly(𝜆, ℓ).
Next, Eval is run 𝑘* times, and we’ll show that each time, the client’s computations take

time poly(𝜆, ℓ,𝑚*, log 𝑡*). In Eval step 1, the description ofℳ′, 𝑡′ takes space poly(𝜆, ℓ,𝑚*, log 𝑡*),
so SNARG.Gen takes time poly(𝜆, ℓ,𝑚*, log 𝑡*). Also, the time it takes to compute the descrip-
tion of ℳ′, 𝑡′ is poly(𝜆, ℓ,𝑚*, log 𝑡*). In Eval step 3, the client runs SNARG.Verify, which takes
time poly(𝜆, ℓ,𝑚*, log 𝑡*) (Definition 3.12). The rest of Eval step 3 deals with variables that take
poly(𝜆, ℓ,𝑚*, log 𝑡*) space, so it runs in time poly(𝜆, ℓ,𝑚*, log 𝑡*).

Finally, the client’s computations in Del take time poly(𝜆, ℓ).

6.4 Security

We will use the following simulator 𝒮𝜆 to prove both computational security and certified deletion.
It will simulate the real-world protocol with input 𝑥′ = 0𝑙 in place of 𝑥.

Definition 6.6 (The Simulator). The simulator is a collection of QPT functions 𝒮𝜆 = (𝒮𝜆,1, . . . ,𝒮𝜆,𝑘)
with the following behavior:

1. 𝒮𝜆,1 runs Setup(1𝜆, 0𝑙). This includes initializing a tape sec.

2. For each round of Eval, the simulator receives (ℳ, 𝑡) from the ideal functionality. Then they run a
modified version of Eval(ℳ, 𝑡), which is defined as follows. They run the honest client protocol and
use 𝒜𝜆 to simulate the server. If the simulated client aborts in steps 3a or 3b, then the simulator
outputs abort. If the simulator reaches step 3c, they skip that step and instead just output deliver.

3. When they receive Deletion Requested, the simulator runs Del, simulating both the honest client
and the adversarial server 𝒜𝜆. If the simulated client outputs DelOutcome = 1, then the simulator
outputs Deletion Confirmed. Finally, in the certified deletion definition, they also output their tape
sec when DelOutcome = 1.

Theorem 6.7. The construction of blind delegation with certified deletion satisfies computational security
(Definition 6.3).

Proof. The following sequence of hybrids transforms the real-world protocol to the ideal-world
protocol. We’ll only say how each hybrid differs from the one before it:

• ℋ0 is ΠℱDel
𝐵𝐷

(𝒜𝜆,𝒵𝜆, |𝜓𝜆⟩), the real-world protocol.

• ℋ1: If the client reaches Eval step 3c (where they decrypt the ciphertext), they skip that step
and instead compute and output 𝑦 =ℳ𝑡(𝑥).

• ℋ2 : Instead of running Setup(1𝜆, 𝑥), the client runs Setup(1𝜆, 0ℓ).

First, the output of ℋ0 is statistically close to the output of ℋ1: TD[ℋ0,ℋ1] = negl(𝜆). This is
because on any execution of Eval the following occurs with overwhelming probability: either the
client aborts or they measure 𝑦 = ℳ𝑡(𝑥) (Lemma 6.9). Next, consider two cases. First, for the

50

given (𝒵𝜆,𝒜𝜆, |𝜓𝜆⟩) and the given phase of Eval, the probability that the client aborts is over-
whelming. If the client aborts, then they never reach step 3c. Therefore, the output on this round
is statistically close between ℋ0 and ℋ1. Second, if the probability of aborting on the given phase
of Eval is not overwhelming, then given that the client does not abort, they measure 𝑦 = ℳ𝑡(𝑥)
with overwhelming probability. This is a gentle measurement; because it produces a particular
outcome with overwhelming probability, the measurement changes the quantum state by a negli-
gible amount (measured in trace distance). So even though the client omits this measurement in
ℋ1, this changes the outcome of the hybrid by a negligible amount.

Second, ℋ1 and ℋ2 are computationally indistinguishable to any QPT distinguisher 𝒟𝜆, be-
cause FHE is semantically secure. Eval step 3c is the only place in the real-world protocol where
the FHE decryption key sk is used. Sinceℋ1 andℋ2 omit this step, both hybrids can be simulated
without sk, which lets us reduce to the semantic security game.

In the semantic security game, the challenger samples (pk, sk) by running FHE.Gen(1𝜆), which
is the same as Setup step 1 in our construction. Then they send pk to the semantic security ad-
versary, and the adversary simulates the rest of ℋ1 or ℋ2. In Setup step 2a, when they need
to encrypt a message, the adversary sends the challenger two options, (𝑆𝑖, 𝑥𝑖 ⊕ ⟨v𝑖,1⟩)𝑖∈[ℓ] or
(𝑆𝑖, 0 ⊕ ⟨v𝑖,1⟩)𝑖∈[ℓ]. This allows the adversary to simulate ℋ1 or ℋ2, depending on which mes-
sage the challenger encrypted. Then they use the distinguisher𝒟𝜆 to distinguish which of the two
hybrids they simulated. By the semantic security of FHE, the distinguisher must have negligible
advantage.

Third, note that the output of ℋ2 has the same distribution as ̃︀ΠℱDel
𝐵𝐷

(𝒮𝜆,𝒵𝜆, |𝜓𝜆⟩), the ideal-
world protocol that uses the simulator from Definition 6.6. The inner workings of ℋ2 may differ
from the ideal-world protocol, but their output distributions are the same.

Therefore any QPT distinguisher has negl(𝜆) advantage at distinguishing ΠℱDel
𝐵𝐷

(𝒜𝜆,𝒵𝜆, |𝜓𝜆⟩)
and ̃︀ΠℱDel

𝐵𝐷
(𝒮𝜆,𝒵𝜆, |𝜓𝜆⟩).

Theorem 6.8. The construction of blind delegation with certified deletion satisfies certified deletion (Defi-
nition 6.3).

Proof. Recall that ΠDelOutcome=1
ℱDel

𝐵𝐷
[𝒜𝜆,𝒵𝜆, |𝜓𝜆⟩] comprises the output of ΠℱDel

𝐵𝐷
[𝒜𝜆,𝒵𝜆, |𝜓𝜆⟩] as well as

the client’s tape sec when DelOutcome = 1, and it comprises only ⊥ when DelOutcome = 0. In the
ideal world, ̃︀ΠDelOutcome=1

ℱDel
𝐵𝐷

[𝒮𝜆,𝒵𝜆, |𝜓𝜆⟩] is defined analogously, except the simulator, not the ideal
client, outputs sec. We will show that these two distributions are statistically close.

The following sequence of hybrids transforms the real-world protocol to the ideal-world pro-
tocol. We’ll only say how each hybrid differs from the one before it.

• ℋ0 is ΠDelOutcome=1
ℱDel

𝐵𝐷
[𝒜𝜆,𝒵𝜆, |𝜓𝜆⟩]

• ℋ1 : If the client reaches Eval step 3c, they skip it and simply output 𝑦 =ℳ𝑡(𝑥).

For each 𝑖 ∈ [ℓ]:

• ℋ𝑖+1 : Let 𝑥(𝑖) = (0𝑖, 𝑥[𝑖+1,ℓ]). That’s to say: the first 𝑖 bits are 0 and the rest match 𝑥. Then
the client runs Setup(1𝜆, 𝑥(𝑖)).

• ℋℓ+1 : The client runs Setup(1𝜆, 0ℓ).

51

First, the outputs ofℋ0 andℋ1 are statistically close: TD[ℋ0,ℋ1] = negl(𝜆). This follows from the
same argument we used in the proof of computational security (Theorem 6.7).

Second, TD[ℋ1,ℋ2] = negl(𝜆). We’ll show this with a reduction to the certified deletion
game in Definition 5.1. Assume toward contradiction that there is an adversarial server for which
TD[ℋ1,ℋ2] is non-negligible. Then there is an adversary for Definition 5.1 that simulates ℋ1 or
ℋ2 and achieves non-negligible advantage in Theorem 5.5.

Let’s fix some notation. The adversary and challenger are the players in Definition 5.1, and the
server and client are the players in ℋ1 or ℋ2. The input to the game in Definition 5.1 is bit 𝑏 that
corresponds to 𝑥1. If 𝑏 = 0, we will end up simulatingℋ2, and if 𝑏 = 1, we will end up simulating
ℋ1 (we can assume that 𝑥1 = 1 inℋ1 because otherwise,ℋ1 andℋ2 would be identical).

Now here is what the game in Definition 5.1 looks like with the adversary that simulates ℋ1

orℋ2:

EXP*(𝑏):

1. The challenger receives 𝑏 as input and sets 𝑥1 = 𝑏. Then they set up the encryption scheme:

FHE.Gen(1𝜆)→ (pk, sk)

Then they sample subspaces (𝑆1, 𝑇1) and vectors (u1, v1,w1) from the specified distribution.
Then they compute Z1 = |(𝑆1) v1,w1⟩, 𝑥′1 = 𝑥1 ⊕ ⟨v1, 1⟩ and ct

(0)
1 = FHE.Enc[pk, (𝑆1, 𝑥

′
1)].

Finally they send the adversary
Z1, ct

(0)
1 , pk, 𝑇1, u1

2. (a) The adversary simulates the rest of Setup, from step 2 onward. For every 𝑖 ∈ {2, . . . , ℓ},
they sample (𝑆𝑖, 𝑇𝑖, u𝑖, v𝑖,w𝑖), and they compute 𝑥′𝑖 and ct

(0)
𝑖 . Finally, they initialize the

tape sec as follows:

sec = pk, 𝑇1, u1, ct
(0)
1 , (𝑆𝑖, 𝑇𝑖, u𝑖,w𝑖, ct

(0)
𝑖)𝑖≥2

sec includes all the expected variables except (sk, 𝑆1,w1), since the adversary doesn’t
know them.

(b) The adversary simulates Eval by executing the client and server’s algorithms, except
they skip step 3c.

(c) The adversary simulates Del steps 1 and 2. In step 3, they must verify the deletion
certificate. First they verify that for all 𝑖 ∈ {2, . . . , ℓ}, 𝑃𝑆⊥

𝑖 +w𝑖
(̃︀z𝑖) = 1. If any check fails,

they set 𝜌 = ⊥. Otherwise, they let 𝜌 include sec, any outputs of the protocol so far, and
any state held by the server.
Finally, the adversary sends (̃︀z1, 𝜌) to the challenger.

3. The challenger checks whether 𝑃𝑆⊥
1 +w1

(̃︀z1) = 1. If so they output (𝜌, 𝑆1, 𝑇1, u1,w1, 𝑥
′
1) and if

not, they output ⊥.

We can show that TD[EXP*(0),EXP*(1)] = negl(𝜆) because the auxiliary information sent to the
adversary is subspace-hiding. The auxiliary information of the adversary’s challenge is

FHE.Enc(pk, [𝑆1, 𝑥
′
1)], pk, 𝑇1, u1

52

This is computationally indistinguishable from [FHE.Enc(0*), pk, 𝑇1, u1], where 0* is the same length
as (𝑆1, 𝑥

′
1). That is to say, the auxiliary information is computationally indistinguishable from

something that does not depend on 𝑆1 or w1. Therefore it satisfies the notion of subpsace hiding
defined in Definition 5.4. Then Theorem 5.5 says that TD[EXP*(0),EXP*(1)] = negl(𝜆).

Next, steps 1 and 2 of EXP* correctly simulate ℋ1 or ℋ2 up through Del step 2, except that
sec is missing (sk, 𝑆1,w1). However, in step 3 of EXP*, the challenger appends (𝑆1,w1) to the
output if 𝑃𝑆⊥

1 +w1
(̃︀z1) = 1. Furthermore, given pk, which is included in the output, an unbounded

machine can sample sk from the correct distribution. (Because we’re using public-key encryption,
all ciphertexts were generated using pk, not sk, so the distribution of sk, even given the ciphertexts,
just depends on pk).

Therefore TD
(︀
[EXP*(0), sk], [EXP*(1), sk]

)︀
= TD[EXP*(0),EXP*(1)]. Since (EXP*, sk) includes

every variable output byℋ1 orℋ2, TD[ℋ1,ℋ2] is negl(𝜆).

By the same reasoning, we can show that for any adjacent hybrids (ℋ𝑖,ℋ𝑖+1), where 𝑖 ∈ [ℓ],
TD[ℋ𝑖,ℋ𝑖+1] = negl(𝜆). Therefore, TD[ℋ0,ℋℓ+1] = negl(𝜆).

Finally, note that the output ofℋℓ+1 is the same as the output of ̃︀ΠDelOutcome=1
ℱDel

𝐵𝐷
[𝒮𝜆,𝒵𝜆, |𝜓𝜆⟩].

Lemma 6.9 (Integrity). In the real-world protocol, the probability is overwheleming in 𝜆 that on every
execution of Eval, the client aborts or outputs 𝑦 =ℳ𝑡(𝑥).

Proof. Consider the following sequence of hybrids. We’ll only state how each hybrid differs from
the one before it.

• ℋ0: Run the real-world protocol. Output 1 if on every execution of Eval, the client aborts or
outputs 𝑦 =ℳ𝑡(𝑥). Otherwise output 0.

For each 𝑖 ∈ [ℓ]:

• ℋ𝑖: Whenever Eval step 3b is run, the client checks that 𝑃𝑆𝑖+v𝑖(Z𝑖) = 1 (instead of checking
that 𝑃𝑇𝑖+u𝑖(Z𝑖) = 1).

The probability of outputting 1 is negligibly close in ℋ0 and ℋ1. We can show this by reduc-
ing to the subspace-hiding game of Theorem 3.11. The server’s inputs depend on 𝑆1 and v1 but
do not otherwise depend on 𝑇1 or u1. From the server’s point of view, 𝑇1 is a uniformly ran-
dom superspace of 𝑆1 such that dim(𝑇1) = 3𝑛/4, and u1 ∈ co(𝑇1) is the unique coset such that
𝑆1 + v1 ⊂ 𝑇1 + u1. The reduction to the subspace-hiding game is the following: the adversary
for the subspace-hiding game choooses a random (𝑆1, v1), sends them to the challenger, and then
simulates ℋ0 or ℋ1. When they need to execute Eval step 3b, they query the challenger’s oracle,
which implements 𝑃𝑇1+u1 or 𝑃𝑆1+v1 . Depending on which function the challenger chose to imple-
ment, the adversary ends up simulating ℋ0 or ℋ1. Finally, the adversary outputs the whatever
bit the hybrid outputs. By Theorem 3.11, the probability of outputting 1 in ℋ0 and ℋ1 must be
negligibly close.

By the same argument, we can show that for any adjacent hybrids (ℋ𝑖,ℋ𝑖+1), the probability of
outputting 1 is negligibly close. Since there are polynomially-many hybrids, then the probability
of outputting 1 is negligibly close betweenℋ0 andℋℓ.

Next, we’ll show that in ℋℓ, the probability of outputting 1 is overwhelming. First, by the
soundness of the SNARG, the following occurs with overwhelming probability: SNARG.Verify
rejects or registers (Z,Y) satisfy Y = ℳ′(Z). If the client does not abort, then right before they

53

measure 𝑦, register Z satisfies: 𝑃𝑆𝑖+v𝑖(Z𝑖) = 1 for all 𝑖. We already showed that if register Z
satsifies that condition, and Y = ℳ′(Z), then decrypting register Y and measuring the result
produces 𝑦 = ℳ𝑡(𝑥). Therefore, ℋℓ outputs 1 with overwhelming probability, and this implies
thatℋ0 does as well.

7 CCA Secure Encryption with Certified Deletion

7.1 Definitions

First, we define the syntax of two forms of public-key encryption. A classical public-key encryption
scheme consists of algorithms (Gen,Enc,Dec) with the following syntax.

• Gen(1𝜆)→ (pk, sk): The key generation algorithm takes as input a security parameter 1𝜆 and
outputs a classical public key pk and a classical secret key sk.

• Enc(pk, 𝑥)→ ct: The encryption algorithm takes as input the public key and a classical string
𝑥, and outputs a classical ciphertext ct.

• Dec(sk, ct)→ {𝑥,⊥}: The decryption algorithm takes as input the secret key and a ciphertext,
and outputs a classical string 𝑥 or ⊥.

For correctness, we require that for all 𝜆, (pk, sk) ∈ Gen(1𝜆), and 𝑥, Dec(Enc(pk, 𝑥)) = 𝑥.
A quantum public-key encryption scheme with classical decryption consists of algorithms (Gen,Enc,Dec)

with the following syntax.

• Gen(1𝜆)→ (pk, sk): The key generation algorithm takes as input a security parameter 1𝜆 and
outputs a classical public key pk and a classical secret key sk.

• Enc(pk, 𝑥) → |ct⟩: The encryption algorithm takes as input the public key and a classical
string 𝑥, and outputs a quantum ciphertext ct.

• Dec(sk, 𝑐) → {𝑥,⊥}: The decryption algorithm takes as input the secret key and a classical
string 𝑐, and outputs a classical string 𝑥 or ⊥.

For defining correctness, we use the following notation: for a pure quantum state |ct⟩ :=∑︀
𝑐 𝛼𝑐 |𝑐⟩ on 𝑛 qubits, we let Sup(|ct⟩) ⊆ {0, 1}𝑛 be the set of 𝑐 such that 𝛼𝑐 ̸= 0. That is Sup(|ct⟩)

consists of all strings that could be observed upon a measurement in the computational basis.
Then, we require that for all 𝜆, (pk, sk) ∈ Gen(1𝜆), 𝑥, |ct⟩ ∈ Enc(pk, 𝑥), and 𝑐 ∈ Sup(|ct⟩), Dec(sk, 𝑐) =
𝑥. Essentially, Enc must output a superposition over valid classical ciphertexts.

In a quantum public-key encryption scheme with classical decryption and certified deletion, the
Enc algorithm also outputs a classical verification key vk, and we augment the syntax with two
more algorithms.

• Del(|ct⟩)→ cert: The deletion algorithm takes as input a quantum ciphertext |ct⟩ and outputs
a classical deletion certificate cert.

• Ver(vk, cert) → {⊤,⊥}: The verification algorithm takes as input the verification key and a
deletion certificate and outputs ⊤ or ⊥.

54

For correctness of deletion, we require that for all 𝜆, (pk, sk) ∈ Gen(1𝜆), and 𝑥, if we sample
(|ct⟩ , vk)← Enc(pk, 𝑥), then Pr[Verify(vk,Del(|ct⟩)) = ⊤] = 1− negl(𝜆).

Definition 7.1 (IND-qCCA security [BZ13]). A classical public-key encryption scheme (Gen,Enc,Dec)
is indistinguishable under quantum chosen-ciphertext attacks (IND-qCCA secure) if for any QPT adversary
{𝒜𝜆}𝜆∈N, their probability of winning the below experiment is at most 1/2 + negl(𝜆).

• The challenger samples (pk, sk)← Gen(1𝜆) and a bit 𝑏← {0, 1}, and sends pk to the adversary 𝒜𝜆.

• The adversary obtains quantum accessible access to the classical oracle Dec(sk, ·), and outputs two
strings 𝑚0,𝑚1 to the challenger.

• The challenger samples ct* ← Enc(pk,𝑚𝑏) and sends ct* to the adversary.

• The adversary obtains quantum accessible access to the classical oracle Dec[ct*](sk, ·) that outputs ⊥
on input ct* and otherwise runs Dec(sk, ·). It outputs a bit 𝑏′.

• The adversary wins if 𝑏′ = 𝑏.

Definition 7.2 (IND-qCCA-CD security). A quantum public-key encryption scheme with classical de-
cryption and certified deletion (Gen,Enc,Dec,Del,Ver) satisfies certified deletion security under quantum
chosen-ciphertext attacks (IND-qCCA-CD) if it satisfies correctness, correctness of deletion, and for any
QPT adversary {𝒜𝜆}𝜆∈N,⃒⃒⃒⃒

Pr
[︁
C-EXP𝒜𝜆

𝜆 (0) = 1
]︁
− Pr

[︁
C-EXP𝒜𝜆

𝜆 (1) = 1
]︁ ⃒⃒⃒⃒

= negl(𝜆),

and

TD
(︁
EV-EXP𝒜𝜆

𝜆 (0),EV-EXP𝒜𝜆
𝜆 (1)

)︁
= negl(𝜆).

The experiment C-EXP𝒜𝜆
𝜆 (𝑏) is defined as follows.

• Sample (pk, sk)← Gen(1𝜆), and sends pk to the adversary 𝒜𝜆.

• The adversary obtains quantum accessible access to the classical oracle Dec(sk, ·), and outputs two
strings 𝑚0,𝑚1.

• The challenger samples |ct*⟩ , vk← Enc(pk,𝑚𝑏) and sends |ct*⟩ to the adversary.

• The adversary obtains quantum accessible access to the classical oracle Dec[Sup(|ct*⟩)](sk, ·) that
outputs ⊥ on input any 𝑐* ∈ Sup(|ct*⟩) and otherwise runs Dec(sk, ·). It outputs a classical string
cert.

• The challenger computes the bit Ver(vk, cert) and sends it to the adversary.

• The adversary continues to run with access to the oracle Dec[Sup(|ct*⟩)](sk, ·), and finally outputs a
bit 𝑏.

The experiment EV-EXP𝒜𝜆
𝜆 (𝑏) considers everlasting security given a deletion certificate, and is defined as

follows.

55

• Sample (pk, sk)← Gen(1𝜆), and sends pk to the adversary 𝒜𝜆.

• The adversary obtains quantum accessible access to the classical oracle Dec(sk, ·), and outputs two
strings 𝑚0,𝑚1.

• The challenger samples |ct*⟩ , vk← Enc(pk,𝑚𝑏) and sends |ct*⟩ to the adversary.

• The adversary obtains quantum accessible access to the classical oracle Dec[Sup(|ct*⟩)](sk, ·) that
outputs ⊥ on input any 𝑐* ∈ Sup(|ct*⟩) and otherwise runs Dec(sk, ·). It outputs a classical string
cert and a left-over quantum state 𝜌.

• If Ver(vk, cert) = ⊤ then output 𝜌, and otherwise output ⊥.

7.2 Construction

Let (CGen,CEnc,CDec) be a classical public-key encryption scheme that satisfies IND-qCCA secu-
rity (Definition 7.1). Consider the following quantum public-key encryption scheme with classical
decryption and certified deletion.

QGen(1𝜆): Sample (pk, sk)← CGen(1𝜆).

QEnc(pk,𝑚):

1: Let 𝑛 = 4𝜆, ℓ = |𝑚|, and for each 𝑖 ∈ [ℓ], sample 𝑆𝑖 < 𝑇𝑖 < F𝑛
2 such that dim(𝑆𝑖) = 𝑛/2 and

dim(𝑇𝑖) = 3𝑛/4, sample v𝑖,w𝑖 ← co(𝑆𝑖)× co(𝑆⊥
𝑖), and let u𝑖 be the coset of 𝑇𝑖 that v𝑖 belongs to.

2: For 𝑖 ∈ [ℓ], define ̃︀𝑚𝑖 = 𝑚𝑖 ⊕ ⟨v𝑖,1⟩.
3: Output

|ct⟩ :=
(︀
{|(𝑆𝑖)v𝑖,w𝑖⟩}𝑖∈[ℓ],CEnc

(︀
pk, {𝑆𝑖, 𝑇𝑖, u𝑖, ̃︀𝑚𝑖}𝑖∈[ℓ]

)︀)︀
, vk := {𝑆𝑖,w𝑖}𝑖∈[ℓ].

QDec(sk, 𝑐):

1: Parse 𝑐 as {t𝑖}𝑖∈[ℓ], ct
′, and compute {𝑆𝑖, 𝑇𝑖, u𝑖, ̃︀𝑚𝑖}𝑖∈[ℓ] := Dec(sk, ct′) (and abort and output ⊥ if the

result was ⊥).
2: For 𝑖 ∈ [ℓ], if t𝑖 /∈ 𝑇𝑖 + u𝑖, then abort and output ⊥. Otherwise, let v′𝑖 ∈ co(𝑆𝑖) be the coset of 𝑆𝑖 that t𝑖

belongs to, and define 𝑚′
𝑖 := ̃︀𝑚𝑖 ⊕ ⟨v′𝑖,1⟩.

3: Output 𝑚′ := (𝑚′
1, . . . ,𝑚

′
ℓ).

QDel(|ct⟩): Measure {|(𝑆𝑖)v𝑖,w𝑖⟩}𝑖∈[ℓ] in the Hadamard basis to obtain vectors {z𝑖}𝑖∈[ℓ], and output cert :=

{z𝑖}𝑖∈[ℓ].
QVer(vk, cert): If z𝑖 ∈ 𝑆⊥

𝑖 + w𝑖 for all 𝑖 ∈ [ℓ] then output ⊤ and otherwise output ⊥.

IND-qCCA Secure Encryption

Theorem 7.3. The scheme (QGen,QEnc,QDec,QDel,QVer) satisfies IND-qCCA-CD security (Defini-
tion 7.2).

Proof. Consider any QPT adversary {𝒜𝜆}𝜆∈N. We first show that⃒⃒⃒⃒
Pr

[︁
C-EXP𝒜𝜆

𝜆 (0) = 1
]︁
− Pr

[︁
C-EXP𝒜𝜆

𝜆 (1) = 1
]︁ ⃒⃒⃒⃒

= negl(𝜆).

To do so, we define the following sequence of hybrids.

56

• ℋ0: This is C-EXP𝒜𝜆
𝜆 (0).

• ℋ1: We change how the Dec[Sup(|ct*⟩)](sk, ·) oracle is implemented. Let {𝑆*
𝑖 , 𝑇

*
𝑖 , u

*
𝑖 , ̃︀𝑚*

𝑖 }𝑖∈[ℓ]
be the values sampled during encryption of the challenge ciphertext. We hard-code these
values into Dec[Sup(|ct*⟩)](sk, ·) and implement the oracle as follows.

– Parse Sup(|ct*⟩) as {𝑆*
𝑖 + v*𝑖 }𝑖∈[ℓ], ct*.

– Parse the input 𝑐 as {t𝑖}𝑖∈[ℓ], ct′.
– If t𝑖 ∈ 𝑆*

𝑖 + v*𝑖 for all 𝑖 and ct′ = ct*, abort and output ⊥.

– If ct′ = ct*, set {𝑆𝑖, 𝑇𝑖, u𝑖, ̃︀𝑚𝑖}𝑖∈[ℓ] := {𝑆*
𝑖 , 𝑇

*
𝑖 , u

*
𝑖 , ̃︀𝑚*

𝑖 }𝑖∈[ℓ], and otherwise set {𝑆𝑖, 𝑇𝑖, u𝑖, ̃︀𝑚𝑖}𝑖∈[ℓ] :=
Dec(sk, ct′) (and abort and output ⊥ if the result was ⊥).

– For 𝑖 ∈ [ℓ], if t𝑖 /∈ 𝑇𝑖 + u𝑖, then abort and output ⊥. Otherwise, let v′𝑖 ∈ co(𝑆𝑖) be the
coset of 𝑆𝑖 that t𝑖 belongs to, and define 𝑚′

𝑖 := ⟨v′𝑖,1⟩.
– Output 𝑚′ := (𝑚′

1, . . . ,𝑚
′
ℓ).

• ℋ2: Same asℋ1, except that the challenge ciphertext is

|ct*⟩ :=
(︀
{|(𝑆*

𝑖)v*𝑖 ,w*
𝑖
⟩}𝑖∈[ℓ],CEnc(pk, {𝑆*

𝑖 , 𝑆
*
𝑖 , v

*
𝑖 , ̃︀𝑚*

𝑖 }𝑖∈[ℓ]
)︀
.

• ℋ3: Same asℋ2, except that we hard-code {𝑆*
𝑖 , 𝑆

*
𝑖 , v

*
𝑖 , ̃︀𝑚*

𝑖 }𝑖∈[ℓ] rather than {𝑆*
𝑖 , 𝑇

*
𝑖 , u

*
𝑖 , ̃︀𝑚*

𝑖 }𝑖∈[ℓ]
into the oracle Dec[Sup(|ct*⟩)](sk, ·).

• ℋ4: Same asℋ3, except that we no longer hard-code any extra values into Dec[Sup(|ct*⟩)](sk, ·),
which we implement as follows.

– Parse Sup(|ct*⟩) as {𝑆*
𝑖 + v*𝑖 }𝑖∈[ℓ], ct*.

– Parse the input 𝑐 as {t𝑖}𝑖∈[ℓ], ct′.
– If ct′ = ct*, abort and output ⊥.

– Set {𝑆𝑖, 𝑇𝑖, u𝑖, ̃︀𝑚𝑖}𝑖∈[ℓ] := Dec(sk, ct′) (and abort and output ⊥ if the result was ⊥).

– For 𝑖 ∈ [ℓ], if t𝑖 /∈ 𝑇𝑖 + u𝑖, then abort and output ⊥. Otherwise, let v′𝑖 ∈ co(𝑆𝑖) be the
coset of 𝑆𝑖 that t𝑖 belongs to, and define 𝑚′

𝑖 := ⟨v′𝑖,1⟩.
– Output 𝑚′ := (𝑚′

1, . . . ,𝑚
′
ℓ).

• ℋ5: Same asℋ4, except that we switch the string ̃︀𝑚* from encrypting 𝑚0 to encrypting 𝑚1.

• ℋ6: Reverse the changes made inℋ4.

• ℋ7: Reverse the changes made inℋ3.

• ℋ8: Reverse the changes made inℋ2.

• ℋ9: Reverse the changes made inℋ1. This is C-EXP𝒜𝜆
𝜆 (1).

Now we argue indistinguishability between each pair of hybrids. Forℋ𝑖 andℋ𝑖+1,ℋ𝑖 ≈ ℋ𝑖+1

means that |Pr[ℋ𝑖 = 1] − Pr[ℋ𝑖+1 = 1]| = negl(𝜆), and ℋ𝑖 ≡ ℋ𝑖+1 means that Pr[ℋ𝑖 = 1] =
Pr[ℋ𝑖+1 = 1].

57

• ℋ1 ≡ ℋ0: This change in how Dec[Sup(|ct*⟩)](sk, ·) is implemented results in exactly the
same distribution, since when ct′ = ct*, Dec(sk, ct′) = {𝑆*

𝑖 , 𝑇
*
𝑖 , u

*
𝑖 , ̃︀𝑚*

𝑖 }𝑖∈[ℓ].

• ℋ2 ≈ ℋ1: This follows by a reduction to the IND-qCCA security of (CGen,CEnc,CDec), with
ct* being the challenge ciphertext. This redution succeeds because we never need to query
the CDec[ct*](sk, ·) oracle when ct′ = ct*.

• ℋ3 ≈ ℋ2: Note that from the adversary’s perspective in ℋ2, each 𝑇𝑖 + u𝑖 is a uniformly ran-
dom superspace of 𝑆𝑖 + v𝑖. Thus, this follows from ℓ = poly(𝜆) invocations of Theorem 3.11.

• ℋ4 ≡ ℋ3: This change in how Dec[Sup(|ct*⟩)](sk, ·) is implemented results in exactly the
same distribution. This follows because in ℋ3, when ct′ = ct* and there exists t𝑖 /∈ 𝑆*

𝑖 + v*𝑖 ,
the oracle will abort anyway after decrypting ct*.

• ℋ5 ≈ ℋ4: This follows by a reduction to the IND-qCCA security of (CGen,CEnc,CDec), with
ct* being the challenge ciphertext. Again, we note that the CDec[ct*](sk, ·) oracle does not
need to be queried when ct′ = ct*.

• The rest of the indistinguishabilities follow from symmetric arguments.

Now, we show that

TD
(︁
EV-EXP𝒜𝜆

𝜆 (0),EV-EXP𝒜𝜆
𝜆 (1)

)︁
= negl(𝜆).

To do so, we define the following sequence of hybrids.

• ℋ0: This is EV-EXP𝒜𝜆
𝜆 (0).

• ℋ1: Let {𝑆*
𝑖 , 𝑇

*
𝑖 , u

*
𝑖 , ̃︀𝑚*

𝑖 }𝑖∈[ℓ] be the values sampled during encryption of the challenge cipher-
text. We replace the oracle Dec[Sup(|ct*⟩)](sk, ·) with Dec[{𝑇 *

𝑖 + u*𝑖 }𝑖∈[ℓ], ct*](sk, ·). That is, we
replace the check that all t𝑖 ∈ 𝑆*

𝑖 + v*𝑖 with the check that all t𝑖 ∈ 𝑇 *
𝑖 + u*𝑖 .

• ℋ2: We implement the oracle Dec[{𝑇 *
𝑖 + u*𝑖 }𝑖∈[ℓ], ct*](sk, ·) as follows.

– Parse the input 𝑐 as {t𝑖}𝑖∈[ℓ], ct′.
– If ct′ = ct*, abort and output ⊥.

– Set {𝑆𝑖, 𝑇𝑖, u𝑖, ̃︀𝑚𝑖}𝑖∈[ℓ] := Dec(sk, ct′) (and abort and output ⊥ if the result was ⊥).

– For 𝑖 ∈ [ℓ], if t𝑖 /∈ 𝑇𝑖 + u𝑖, then abort and output ⊥. Otherwise, let v′𝑖 ∈ co(𝑆𝑖) be the
coset of 𝑆𝑖 that t𝑖 belongs to, and define 𝑚′

𝑖 := ⟨v′𝑖,1⟩.
– Output 𝑚′ := (𝑚′

1, . . . ,𝑚
′
ℓ).

• ℋ3: Same asℋ2, except that we switch the string ̃︀𝑚* from encrypting 𝑚0 to encrypting 𝑚1.

• ℋ4: Reverse the changes made inℋ2.

• ℋ5: Reverse the changes made inℋ1.

The proof is completed by combining the following claims. The corresponding claims for ℋ4

andℋ5 are symmetric.

58

Claim 7.4. TD (ℋ0,ℋ1) = negl(𝜆).

Proof. Suppose not. Then inℋ0, there exists some fixed 𝑞 such that with non-negligible probability
𝛿, the 𝑞’th query that 𝒜𝜆 makes to Dec[Sup(|ct*⟩)](sk, ·) has non-negligible amplitude 𝜖 on vectors
{t𝑖}𝑖∈[ℓ] such that there exists 𝑗 where t𝑗 ∈ 𝑇 *

𝑗 + u*𝑗 ∖ 𝑆*
𝑗 + v*𝑗 .

Now consider the following sub-hybrids, where we setℋ0,0 = ℋ0.

• ℋ0,1: We hard-code the values {𝑆*
𝑖 , 𝑇

*
𝑖 , u

*
𝑖 , ̃︀𝑚*

𝑖 }𝑖∈[ℓ] into Dec[Sup(|ct*⟩)](sk, ·) and implement
the oracle as follows.

– Parse Sup(|ct*⟩) as {𝑆*
𝑖 + v*𝑖 }𝑖∈[ℓ], ct*.

– Parse the input 𝑐 as {t𝑖}𝑖∈[ℓ], ct′.
– If t𝑖 ∈ 𝑆*

𝑖 + v*𝑖 for all 𝑖 and ct′ = ct*, abort and output ⊥.

– If ct′ = ct*, set {𝑆𝑖, 𝑇𝑖, u𝑖, ̃︀𝑚𝑖}𝑖∈[ℓ] := {𝑆*
𝑖 , 𝑇

*
𝑖 , u

*
𝑖 , ̃︀𝑚*

𝑖 }𝑖∈[ℓ], and otherwise set {𝑆𝑖, 𝑇𝑖, u𝑖, ̃︀𝑚𝑖}𝑖∈[ℓ] :=
Dec(sk, ct′) (and abort and output ⊥ if the result was ⊥).

– For 𝑖 ∈ [ℓ], if t𝑖 /∈ 𝑇𝑖 + u𝑖, then abort and output ⊥. Otherwise, let v′𝑖 ∈ co(𝑆𝑖) be the
coset of 𝑆𝑖 that t𝑖 belongs to, and define 𝑚′

𝑖 := ⟨v′𝑖,1⟩.
– Output 𝑚′ := (𝑚′

1, . . . ,𝑚
′
ℓ).

• ℋ0,2: Same as ℋ0,1 except that we replace the classical part ct* of the challenge ciphertext
with a CEnc encryption of a (sufficiently long) string of 0s.

• ℋ0,3: Same as ℋ0,2 except that we replace the hard-coded values {𝑆*
𝑖 , 𝑇

*
𝑖 , u

*
𝑖 , ̃︀𝑚*

𝑖 }𝑖∈[ℓ] with
{𝑆*

𝑖 , 𝑆
*
𝑖 , v

*
𝑖 , ̃︀𝑚*

𝑖 }𝑖∈[ℓ].

Note that ℋ0,0 and ℋ0,1 are the same distribution. By reduction to IND-qCCA security of
(CGen,CEnc,CDec),𝒜𝜆 cannot distinguish betweenℋ0,1 andℋ0,2 except with negligible probabil-
ity. Finally, by ℓ invocations of Theorem 3.11, 𝒜𝜆 cannot distinguish betweenℋ0,2 andℋ0,3 except
with negligible probability. Thus, in ℋ0,3, it must be the case that with non-negligible probability
𝛿′, 𝒜𝜆’s 𝑞’th query to Dec[Sup(|ct*⟩)](sk, ·) has non-negligible amplitude 𝜖′ on vectors {t𝑖}𝑖∈[ℓ] such
that there exists 𝑗 where t𝑗 ∈ 𝑇 *

𝑗 + u*𝑗 ∖ 𝑆*
𝑗 + v*𝑗 .

This is a contradiction, because 𝒜𝜆 receives no information about {𝑇 *
𝑖 , u

*
𝑖 }𝑖∈[ℓ] in ℋ0,3. In par-

ticular, we can bound the probability that measuring 𝒜𝜆’s 𝑞’th query results in {t𝑖}𝑖∈[ℓ] such that
there exists 𝑗 where t𝑗 ∈ 𝑇 *

𝑗 + u*𝑗 ∖ 𝑆*
𝑗 + v*𝑗 by

ℓ · max
𝑖∈[ℓ],z𝑖

Pr
𝑇 *
𝑖

[z𝑖 ∈ 𝑇 *
𝑖 + u*𝑖 ∖ 𝑆*

𝑖 + v*𝑖] = negl(𝜆).

Claim 7.5. TD (ℋ1,ℋ2) = 0.

Proof. This change in how Dec[{𝑇 *
𝑖 + u*𝑖 }𝑖∈[ℓ], ct*](sk, ·) is implemented results in exactly the same

distribution. This follows because in ℋ1, when ct′ = ct* and there exists t𝑖 /∈ 𝑇 *
𝑖 + u*𝑖 , the oracle

will abort anyway after decrypting ct′.

Claim 7.6. TD (ℋ2,ℋ3) = negl(𝜆).

59

Proof. We will switch the bits of ̃︀𝑚* one at a time, and appeal to Theorem 5.5 for each switch. Here,
we argue that we can switch the first bit ̃︀𝑚*

1 from 𝑚0,1 ⊕ ⟨v1,1⟩ to 𝑚1,1 ⊕ ⟨v1,1⟩. That is, we let
ℋ2,0 := ℋ2 and ℋ2,1 be the same as ℋ2,0 except that the first bit of ̃︀𝑚* is 𝑚1,1 ⊕ ⟨v1,1⟩, and we
show that TD (ℋ2,0,ℋ2,1) = negl(𝜆). The rest of the switches follow an identical argument.

First, note that it suffices to show that the trace distance betweenℋ2,0 andℋ2,1 is negligible (1)
conditioned on 𝑚0,1 = 0 and 𝑚1,1 = 1 and (2) conditioned on 𝑚0,1 = 1 and 𝑚1,1 = 0. Thus, it suffices
to show that TD (EXP0,EXP1) = negl(𝜆), where EXP𝑏 is defined as follows. We split 𝒜 := 𝒜𝜆 into
two parts (𝒜0,𝒜1). 𝒜0 takes as input pk, has access to Dec(sk, ·), and outputs 𝑚0,𝑚1. 𝒜1 takes as
input |ct*⟩, has access to Dec[{𝑇 *

𝑖 + u*𝑖 }𝑖∈[ℓ], ct*](sk, ·), and outputs a deletion certificate cert and a
left-over quantum state 𝜌. Now, we describe EXP𝑏.

• Sample 𝑆 < 𝑇 < F𝑛
2 such that dim(𝑆) = 𝑛/2 and dim(𝑇) = 3𝑛/4, sample v,w ← co(𝑆) ×

co(𝑆⊥), and let u be the coset of 𝑇 that v belongs to.

• Initialize a machine 𝒵 with (𝑆, 𝑇, u,w, 𝑏′), where 𝑏′ = 𝑏⊕ ⟨v,1⟩.

• 𝒵 sets 𝑆*
1 := 𝑆, 𝑇 *

1 := 𝑇, v*1 := v,w*
1 := w, and ̃︀𝑚*

1 := 𝑏′. Then, it samples (pk, sk)← CEnc(1𝜆),
and runs𝒜Dec(sk,·)

0 until it outputs 𝑚0,𝑚1. For 𝑖 ∈ [2, ℓ], sample 𝑆*
𝑖 , 𝑇

*
𝑖 , v

*
𝑖 ,w

*
𝑖 , u

*
𝑖 , ̃︀𝑚*

𝑖 as in the
description of QEnc (using the bits 𝑚0,2, . . . ,𝑚0,ℓ), and set

|ct*⟩ :=
(︀
{|(𝑆*

𝑖)v*𝑖 ,w*
𝑖
⟩}𝑖∈[ℓ], ct* := CEnc

(︀
pk, {𝑆*

𝑖 , 𝑇
*
𝑖 , u

*
𝑖 , ̃︀𝑚*

𝑖 }𝑖∈[ℓ]
)︀)︀
,

and 𝑂 := Dec[{𝑇 *
𝑖 + u*𝑖 }𝑖∈[ℓ], ct*](sk, ·).

• Run 𝒜𝑂
1 (|ct*⟩) until it outputs (cert, 𝜌).

Now, by Theorem 5.5 (in particular, the extension to include oracles discussed in Section 5.2),
to show that TD (EXP0,EXP1) = negl(𝜆), it suffices to show that 𝒵 is subspace-hiding accord-
ing to Definition 5.4. For this, it suffices to show that we can remove 𝑆*

1 = 𝑆 from CEnc, since
this is the only place where 𝑆 is used. This follows directly from the IND-qCCA security of
(CGen,CEnc,CDec). The reduction succeeds because, by definition of Dec[{𝑇 *

𝑖 + u*𝑖 }𝑖∈[ℓ], ct*](sk, ·),
it never has to query the CDec[ct*](sk, ·) oracle on ct′ = ct*.

8 Obfuscation with Certified Deletion

8.1 Definitions

Definition 8.1 (Differing inputs obfuscation with certified deletion). An differing inputs obfuscation
scheme with (publicly-verifiable) certified deletion for a class of circuits {𝒞𝜆}𝜆∈N has the following syntax.

• i𝒪-CD(1𝜆, 𝐶) → | ̃︀𝐶⟩ , vk: The obfuscation algorithm takes as input the security parameter 1𝜆, a
circuit 𝐶 ∈ 𝒞𝜆 and outputs a (quantum) obfuscated program | ̃︀𝐶⟩ and a verification key vk.

• Eval(| ̃︀𝐶⟩ , 𝑥) → 𝑦: The evaluation algorithm takes as input the obfuscated program | ̃︀𝐶⟩ and a (clas-
sical) input 𝑥, and outputs a (classical) 𝑦.

60

• Del(| ̃︀𝐶⟩) → cert: The deletion algorithm takes as input the obfuscated program | ̃︀𝐶⟩ and outputs a
deletion certificate cert.

• Verify(vk, cert) → {⊤,⊥}: The verification algorithm takes as input the verification key and a dele-
tion certificate and outputs either ⊤ or ⊥.

It should satisfy the following properties.

• Functionality preservation. For all 𝜆 ∈ N, all 𝐶 ∈ 𝒞𝜆, and all inputs 𝑥,

Pr[Eval(| ̃︀𝐶⟩ , 𝑥) = 𝐶(𝑥) : | ̃︀𝐶⟩ , vk← i𝒪-CD(1𝜆, 𝐶)] = 1.

We remark that even if the description of Eval involves measurements, the above correctness guarantee
implies that the obfuscated state | ̃︀𝐶⟩ can be reused an arbitrary number of times, by implementing
Eval coherently and just measuring the output bit.

• Correctness of deletion. For all sequence of circuits {𝐶𝜆 ∈ 𝒞𝜆}𝜆∈N,

Pr

[︃
Verify(vk, cert) = ⊤ :

| ̃︀𝐶⟩ , vk← i𝒪-CD(1𝜆, 𝐶𝜆)

cert← Del(| ̃︀𝐶⟩)
]︃
= 1− negl(𝜆).

• Computational security. Let {𝒞𝜆}𝜆∈N be a differing inputs circuits family associated with an
efficiently sampleable distribution family {𝒟𝜆}𝜆∈N. Then for all QPT adversaries {𝒜𝜆}𝜆∈N,⃒⃒⃒⃒

Pr[𝒜(𝐶0, 𝐶1, aux, di𝒪-CD(1𝑛, 𝐶0))) = 1 : (𝐶0, 𝐶1, aux)← 𝒟𝜆]
−Pr[𝒜(𝐶0, 𝐶1, aux, di𝒪-CD(1𝑛, 𝐶1))) = 1 : (𝐶0, 𝐶1, aux)← 𝒟𝜆]

⃒⃒⃒⃒
= negl(𝜆)

• Certified everlasting security. Let {𝒞𝜆}𝜆∈N be a differing inputs circuits family associated with a
sampler {𝒟𝜆}𝜆∈N. For all QPT adversaries {𝒜𝜆}𝜆∈N,

TD (EV-EXP(0,𝒜𝜆),EV-EXP(1,𝒜𝜆)) = negl(𝜆),

where the experiment EV-EXP(𝑏,𝒜) is defined as follows.

– Sample (𝐶0, 𝐶1, aux) ← 𝒟𝜆. Sample (| ̃︀𝐶⟩ , vk) ← i𝒪-CD(1𝜆, 𝐶𝑏) and initialize 𝒜 with
(𝐶0, 𝐶1, aux, | ̃︀𝐶⟩ , vk).

– Parse 𝒜’s output as a deletion certificate cert and a left-over quantum state 𝜌.
– If Verify(vk, cert) = ⊤ then output 𝜌, and otherwise output ⊥.

Note that we require that even an unbounded adversary cannot tell the leftover state from
EV-EXP(0,𝒜𝜆) and EV-EXP(1,𝒜𝜆) apart. Such an adversary can compute the differing inputs for
themselves, since 𝒜 was given the classical descriptions of 𝐶0 and 𝐶1. Thus, even an unbounded
adversary cannot evaluate the obfuscated program on the differing inputs after deletion.

In this work, we consider the case of differing inputs circuits families with a polynomial num-
ber of differing inputs. One notable special case is the case of zero differing inputs. We call this
case indistinguishability obfuscation with certified deletion (i𝒪-CD). It guarantees that for any two
functionally equivalent circuits 𝐶0 and 𝐶1, i𝒪-CD(𝐶0) is statistically close to i𝒪-CD(𝐶1) after they
have been deleted.14

14Intriguingly, i𝒪-CD does not imply di𝒪-CD for a polynomial number of differing inputs, unlike their counterparts

61

Nested differing inputs. We also introduce a new circuit class called nested differing inputs cir-
cuits, along with the corresponding security property. This property will allow generalizing the
classical technique of wrapping a differing inputs obfuscation inside another indistinguishability
obfuscator with a more general functionality. Since the functionality of the outer i𝒪 may take in a
larger input than the inner functionality, and may query the inner differing inputs obfuscation and
use the output arbitrarily, there may be an exponential number of differing inputs.15 As long as
the adversary cannot find a differing input when given the description of the outer functionality,
the inner functionality can still be switched according to the security of differing inputs obfus-
cation for a polynomial number of differing inputs. This technique allows additional versatility
when using differing inputs obfuscation.

Unfortunately, wrapping a quantum program in a classical indistinguishability obfuscation is
not well-defined. Therefore, we explicitly build this technique into the properties of di𝒪-CD.

Definition 8.2 (Nested Differing Inputs Circuits). A nested differing inputs circuits family 𝒞′ is defined
by a circuit 𝐶𝑓 and a differing inputs circuit family 𝒞 with a distribution 𝒟𝒞 . It consists of the circuits
𝐶𝑓 ∘ 𝐶𝒞 for 𝐶𝒞 ∈ 𝒞, which take as input bitstrings 𝑥 and 𝑦 then output Π𝑓 (𝑥, 𝑦, 𝐶𝒞(𝑦)). It is associated
with a distribution 𝒟′. Samples from 𝒟′ are obtained by sampling (𝐶0, 𝐶1, aux) ← 𝒟𝒞 and outputting
(𝐶𝑓 ∘ 𝐶0, 𝐶𝑓 ∘ 𝐶1, aux).

𝑦* is a nested differing input for (Π𝑓 ∘Π0,Π𝑓 ∘Π1, aux)← 𝒟′ if it is a differing input for (Π0,Π1).
Note that two circuits Π𝑓 ∘ Π0 and Π𝑓 ∘ Π1 may have an exponential number of differing inputs
even though they only have polynomially many nested differing inputs. However, all differing
inputs are of the form (𝑥, 𝑦*) where 𝑦* is a nested differing input.

Deletion security for nested differing inputs circuit families using the same di𝒪-CD security
game. We say a di𝒪-CD scheme has deletion security for nested differing inputs circuits if it has
deletion security for all nested differing inputs circuits families. We refer to such a scheme as a
nested differing inputs obfuscation with certified deletion.

Succinct indistinguishability obfuscation. Next, we define succinct indistinguishability obfus-
cation, otherwise known as i𝒪 for Turing machines. We generally parameterize a Turing machine
𝑀 with a step-size 𝑡 and an input length 𝑛. Given 𝑀, 𝑡, and an 𝑥 ∈ {0, 1}𝑛, we define 𝑀 𝑡(𝑥) to be
the value written on the output tape of 𝑀 after taking 𝑥 as input and running for 𝑡 steps, if such a
value exists. Otherwise, it is defined to be ⊥.

Definition 8.3 (Succinct indistinguishability obfuscation with certified deletion). A succinct indis-
tinguishability obfuscation scheme with (publicly-verifiable) certified deletion for a class of Turing machines
{ℳ𝜆}𝜆∈N has the following syntax.

• si𝒪-CD(1𝜆,𝑀, 𝑡, 𝑛) → |̃︁𝑀⟩ , vk: The obfuscation algorithm takes as input the security parameter
1𝜆, the description of a Turing machine 𝑀 ∈ ℳ𝜆, a step-size 𝑡, and an input length 𝑛, and outputs
a (quantum) obfuscated Turing machine |̃︁𝑀⟩ and a verification key vk.

which do not support deletion. In the latter case, one can use a distinguisher for di𝒪 to find the differing inputs for a
given pair of circuits 𝐶0, 𝐶1 in polynomial time. This would violate the properties of a differing inputs circuit class.
However, the distinguisher for di𝒪-CD only manages to distinguish after deletion. Since it is allowed unbounded com-
putation after deletion, it can find the differing inputs at this point regardless of whether it can successfully distinguish
the obfuscation.

15For example, say the outer functionality takes as input (𝑥, 𝑦), then ignores 𝑥 and outputs 𝑓(𝑦), where 𝑓 is the inner
functionality.

62

• Eval(|̃︁𝑀⟩ , 𝑥) → 𝑦: The evaluation algorithm takes as input the obfuscated program |̃︁𝑀⟩ and a
(classical) input 𝑥, and outputs a (classical) 𝑦.

• Del(|̃︁𝑀⟩) → cert: The deletion algorithm takes as input the obfuscated program |̃︁𝑀⟩ and outputs a
deletion certificate cert.

• Verify(vk, cert) → {⊤,⊥}: The verification algorithm takes as input the verification key and a dele-
tion certificate and outputs either ⊤ or ⊥.

It should satisfy the following properties.

• Functionality preservation. For all 𝜆 ∈ N, all 𝑀 ∈ℳ𝜆, all 𝑥 ∈ {0, 1}𝑛, and all 𝑡,

Pr[Eval(|̃︁𝑀⟩ , 𝑥) =𝑀 𝑡(𝑥) : |̃︁𝑀⟩ , vk← si𝒪-CD(1𝜆,𝑀, 𝑡, 𝑛)] = 1.

We remark that even if the description of Eval involves measurements, the above correctness guarantee
implies that the obfuscated state |̃︁𝑀⟩ can be reused an arbitrary number of times, by implementing
Eval coherently and just measuring the output bit.

• Correctness of deletion. For all sequences of Turing machines {𝑀𝜆 ∈ℳ𝜆, 𝑡𝜆, 𝑛𝜆}𝜆∈N,

Pr

[︃
Verify(vk, cert) = ⊤ :

|̃︁𝑀⟩ , vk← si𝒪-CD(1𝜆,𝑀𝜆, 𝑡𝜆, 𝑛𝜆)

cert← Del(|̃︁𝑀⟩)
]︃
= 1− negl(𝜆).

• Computational security. For all sequences of functionally equivalent Turing machines {𝑀0,𝜆,
𝑀1,𝜆, 𝑡𝜆, 𝑛𝜆}𝜆∈N, meaning that for all 𝜆 ∈ N, and 𝑥 ∈ {0, 1}𝑛(𝜆), 𝑀 𝑡𝜆

0,𝜆(𝑥) =𝑀 𝑡𝜆
1,𝜆(𝑥), and all QPT

adversaries {𝒜𝜆}𝜆∈N,

|Pr[𝒜𝜆(si𝒪-CD(1𝜆,𝑀0,𝜆, 𝑡𝜆, 𝑛𝜆)) = 1]− Pr[𝒜𝜆(si𝒪-CD(1𝜆,𝑀1,𝜆, 𝑡𝜆, 𝑛𝜆)) = 1]| = negl(𝜆).

• Certified everlasting security. For all sequences of functionally equivalent Turing machines {𝑀0,𝜆,
𝑀1,𝜆, 𝑡𝜆, 𝑛𝜆}𝜆∈N and all QPT adversaries {𝒜𝜆}𝜆∈N,

TD (EV-EXP(𝑀0,𝜆, 𝑡𝜆, 𝑛𝜆,𝒜𝜆),EV-EXP(𝑀1,𝜆, 𝑡𝜆, 𝑛𝜆,𝒜𝜆)) = negl(𝜆),

where, given a Turing machine (𝑀, 𝑡, 𝑛) and an adversary𝒜, the experiment EV-EXP(𝑀, 𝑡, 𝑛,𝒜) is
defined as follows.

– Sample |̃︁𝑀⟩ , vk← si𝒪-CD(1𝜆,𝑀, 𝑡, 𝑛) and initialize 𝒜 with (|̃︁𝑀⟩ , vk).
– Parse 𝒜’s output as a deletion certificate cert and a left-over quantum state 𝜌.

– If Verify(vk, cert) = ⊤ then output 𝜌, and otherwise output ⊥.

• Succinctness. The running time of si𝒪-CD must be poly(𝜆, |𝑀 |, log 𝑡, 𝑛).

63

8.2 Construction

We provide a construction of di𝒪-CD for circuits with polynomially-many differing inputs from
post-quantum i𝒪 (and one-way functions). The construction consists of two pieces. First, it con-
tains the quantum part of a ciphertext which can be certifiably deleted. This ciphertext can be
decrypted by measuring it in the computational basis then doing classical computation. Second,
it contains the obfuscation of a classical program which has the classical part of the ciphertext
hard-coded. This program takes as input a supposed measurement of the ciphertext along with
the input 𝑥. If the measurement is valid, then the program decrypts it to obtain two circuits, one
of which is evaluated on the input 𝑥.

Hard-Coded Values. Subspace and offset tuples {𝑆𝑖, 𝑇𝑖, u𝑖}𝑖∈[2ℓ+1], a bitstring ̃︀𝑐 ∈ {0, 1}2ℓ+1.

Input. vectors {t𝑖}𝑖∈[2ℓ+1] and an input 𝑥.

1: if t𝑖 ∈ 𝑇𝑖 + u𝑖 for every 𝑖 ∈ [2ℓ+ 1] then
2: Let v′𝑖 ∈ co(𝑆𝑖) be the coset of 𝑆𝑖 that t𝑖 belongs to, and define 𝑐′𝑖 := ̃︀𝑐𝑖 ⊕ ⟨v′𝑖,1⟩.
3: Parse 𝑐′1, . . . , 𝑐′2ℓ+1 as (𝑏, 𝐶0, 𝐶1), where 𝐶0 and 𝐶1 are circuits with description length ℓ. Output
𝐶𝑏(𝑥).

di𝒪-CD Classical Program

di𝒪-CD(1𝜆, 𝐶):

1: Let 𝑛 = 4𝜆, let ℓ = |𝐶|, and for each 𝑖 ∈ [2ℓ + 1], sample 𝑆𝑖 < 𝑇𝑖 < F𝑛
2 such that dim(𝑆𝑖) = 𝑛/2 and

dim(𝑇𝑖) = 3𝑛/4, sample v𝑖,w𝑖 ← co(𝑆𝑖)× co(𝑆⊥
𝑖), and let u𝑖 be the coset of 𝑇𝑖 that v𝑖 belongs to.

2: Let 𝑐 := (0, 𝐶, 0ℓ), and for all 𝑖 ∈ [2ℓ+ 1], define ̃︀𝑐𝑖 := 𝑐𝑖 ⊕ ⟨v𝑖,1⟩. Define ̃︀𝑐 := (̃︀𝑐1, . . . ,̃︀𝑐2ℓ+1).
3: Compute the indistinguishability obfuscation i𝒪class of the di𝒪-CD classical program using hard-

coded values {𝑆𝑖, 𝑇𝑖, u𝑖}𝑖∈[2ℓ+1] and ̃︀𝑐.
4: Output

| ̃︀𝐶⟩ := (︀
{|(𝑆𝑖)v𝑖,w𝑖

⟩}𝑖∈[2ℓ+1], i𝒪class

)︀
, vk :=

{︁
i𝒪

(︁
𝑃𝑆⊥

𝑖 +w𝑖

)︁}︁
𝑖∈[2ℓ+1]

.

Eval(| ̃︀𝐶⟩ , 𝑥):
1: Measure {|(𝑆𝑖)v𝑖,w𝑖

⟩}𝑖∈[2ℓ+1] in the computational basis to obtain vectors {t𝑖}𝑖∈[2ℓ+1].a

2: Run i𝒪class on input ({t𝑖}𝑖∈[2ℓ+1], 𝑥) to obtain 𝑦, then output 𝑦.

Del(| ̃︀𝐶⟩): Measure {|(𝑆𝑖)v𝑖,w𝑖
⟩}𝑖∈[2ℓ+1] in the Hadamard basis to obtain vectors {z𝑖}𝑖∈[2ℓ+1], and output

cert := {z𝑖}𝑖∈[2ℓ+1].

Verify(vk, cert): If i𝒪
(︁
𝑃𝑆⊥

𝑖 +w𝑖

)︁
(z𝑖) = 1 for all 𝑖 ∈ [2ℓ+ 1] then output ⊤ and otherwise output ⊥.

aAs remarked in Definition 8.1, one can always perform this coherently and preserve the ability to run Eval on
mutiple inputs.

Differing Inputs Obfuscation with Certified Deletion

Theorem 8.4. Assuming post-quantum indistinguishability obfuscation and one-way functions, there ex-
ists differing inputs obfuscation with (publicly-verifiable) certified deletion for polynomially many differing
inputs (Definition 8.1).

64

Proof. First, we note that (perfect) functionality preservation and correctness of deletion (with
some negligible error) are immediate from the scheme. Thus, it remains to show computational
security and certified everlasting security.

Computational security. Consider two differing inputs circuits (𝐶0, 𝐶1, aux)← 𝒟𝜆. We will switch
an obfuscation of 𝐶0 to an obfuscation of 𝐶1 via the following sequence of hybrids.

• ℋ0: This is the distribution (| ̃︀𝐶⟩ , vk)← i𝒪-CD(1𝜆, 𝐶0).

• ℋ1: We modify the classical program i𝒪class to always decode ̃︀𝑐 to 𝑐′ = (0, 𝐶0, 0
ℓ) if it does

not abort. This is accomplished by replacing the hardcoded (𝑇𝑖, u𝑖) with (𝑆𝑖, v𝑖) in i𝒪class for
each 𝑖 ∈ [2ℓ+ 1]. That is, we obfuscate the following program.

Hard-Coded Values. Subspace and offset tuples {𝑆𝑖, 𝑆𝑖, v𝑖}𝑖∈[2ℓ+1], a bitstring ̃︀𝑐 ∈ {0, 1}2ℓ+1.

Input. vectors {t𝑖}𝑖∈[2ℓ+1] and an input 𝑥.

1: if t𝑖 ∈ 𝑆𝑖 + v𝑖 for every 𝑖 ∈ [2ℓ+ 1] then
2: Let v′𝑖 ∈ co(𝑆𝑖) be the coset of 𝑆𝑖 that t𝑖 belongs to, and define 𝑐′𝑖 := ̃︀𝑐𝑖 ⊕ ⟨v′𝑖,1⟩.
3: Parse 𝑐′1, . . . , 𝑐′2ℓ+1 as (𝑏, 𝐶0, 𝐶1), where 𝐶0 and 𝐶1 are circuits with description length ℓ.

Output 𝐶𝑏(𝑥).

ℋ1 Classical Program

Note that if 𝑡𝑖 ∈ 𝑆𝑖 + 𝑣𝑖, then 𝑣′𝑖 = 𝑣𝑖. Since 𝑐𝑖 = 𝑐𝑖 ⊕ ⟨v𝑖,1⟩, the program always decodes ̃︀𝑐 to
𝑐′ = 𝑐 = (0, 𝐶0, 0

ℓ) if it does not abort.

• ℋ2: Replace 𝑐 = (0, 𝐶0, 0
ℓ) with 𝑐 = (0, 𝐶1, 0

ℓ) when computing ̃︀𝑐.
• ℋ3: For each 𝑖 ∈ [2ℓ + 1], replace (𝑆𝑖, v𝑖) with (𝑇𝑖, u𝑖) in the obfuscated program 𝑃 . This is

the distribution (| ̃︀𝐶⟩ , vk)← i𝒪-CD(1𝜆, 𝐶1).

Indistinguishability betweenℋ0 andℋ1 and betweenℋ2 andℋ3 follows from subspace-hiding
obfuscation (Corollary 3.10), while indistinguishability betweenℋ1 andℋ2 follows from the secu-
rity of di𝒪 due to the fact that 𝐶0 and 𝐶1 differ on a polynomial number of inputs, which are hard
to find. Recall that any i𝒪 is a di𝒪 for a polynomial number of differing inputs.

Certified everlasting security. Consider two functionally equivalent circuits𝐶0, 𝐶1. We will switch
an obfuscation of 𝐶0 to an obfuscation of 𝐶1, by changing one bit of the string 𝑐 in the construction
at a time, and argue that each switch is statistically close conditioned on the adversary producing a
successful deletion certificate.

• ℋ0: This is the certified everlasting security game with | ̃︀𝐶⟩ , vk← i𝒪-CD(1𝜆, 𝐶0).

• ℋ1 −ℋℓ: In hybridℋ𝑖 for 𝑖 ∈ [1, . . . , ℓ], we switch the ℓ+ 1+ 𝑖’th bit of 𝑐 to the 𝑖’th bit of the
description of 𝐶1. That is, inℋℓ, the string 𝑐 = (0, 𝐶0, 𝐶1).

• ℋℓ+1: Switch the first bit of 𝑐 to 1. So, now 𝑐 = (1, 𝐶0, 𝐶1).

65

• ℋℓ+2 − ℋ2ℓ+1: In hybrid ℋ𝑖 for 𝑖 ∈ [ℓ + 2, . . . , 2ℓ + 1], we switch the 𝑖 − ℓ’th bit of 𝑐 to the
𝑖− ℓ− 1’th bit of 𝐶1. That is, inℋ2ℓ+1, the string 𝑐 = (1, 𝐶1, 𝐶1).

• ℋ2ℓ+2: Switch the first bit of 𝑐 to 0. So, now 𝑐 = (0, 𝐶1, 𝐶1).

• ℋ2ℓ+3 − ℋ3ℓ+2: In hybrid ℋ𝑖 for 𝑖 ∈ [2ℓ + 3, 3ℓ + 2], we switch the 𝑖 − ℓ − 1’th bit of 𝑐 to 0.
That is, in ℋ3ℓ+2, the string 𝑐 = (0, 𝐶1, 0

ℓ). Note that this is exactly the certified everlasting
security game with | ̃︀𝐶⟩ , vk← i𝒪-CD(1𝜆, 𝐶1).

The proof follows by combining the following claims.

Claim 8.5. For all 𝑖 ∈ [1, . . . , ℓ], TD(ℋ𝑖−1,ℋ𝑖) = negl(𝜆).

Proof. We will reduce this claim to Theorem 5.5. To do so, we must define a distribution 𝒵 and
argue that it is subspace-hiding according to Definition 5.4. Defining 𝑖* := ℓ+1+ 𝑖, we note that the
output of i𝒪-CD inℋ𝑖−1 andℋ𝑖 can be written as

|(𝑆𝑖*)v𝑖* ,w𝑖* ⟩ ,𝒵𝜆(𝑆𝑖* , 𝑇𝑖* , u𝑖* ,w𝑖* ,̃︀𝑐𝑖*)
where a sample from 𝒵𝜆(𝑆𝑖* , 𝑇𝑖* , u𝑖* ,w𝑖* ,̃︀𝑐𝑖*) takes the form(︂

{|(𝑆𝑖)v𝑖,w𝑖⟩}𝑖 ̸=𝑖* , i𝒪class,
{︁
i𝒪

(︁
𝑃𝑆⊥

𝑖 +w𝑖

)︁}︁
𝑖∈[2ℓ+1]

)︂
A sample from𝒵𝜆(𝑆𝑖* , 𝑇𝑖* , u𝑖* ,w𝑖* ,̃︀𝑐𝑖*) is obtained by sampling fromℋ𝑖−1 (equivalently,ℋ𝑖) using
fresh randomness for every 𝑖 ̸= 𝑖* and omitting the extra copy of |(𝑆𝑖*)v𝑖* ,w𝑖* ⟩. We show that 𝒵𝜆 is
subspace-hiding via the following sequence of hybrids.

• ℋ0(𝑆𝑖* , 𝑇𝑖* , u𝑖* ,w𝑖* ,̃︀𝑐𝑖*): This is 𝒵𝜆(𝑆𝑖* , 𝑇𝑖* , u𝑖* ,w𝑖* ,̃︀𝑐𝑖*).
• ℋ1(𝑆𝑖* , 𝑇𝑖* , u𝑖* ,w𝑖* ,̃︀𝑐𝑖*): Same as ℋ0, except that we modify the classical program i𝒪class to

always decode the first ℓ + 1 bits of ̃︀𝑐 to (0, 𝐶0) if it does not abort. Therefore it will always
either abort or evaluate 𝐶0.

Specifically, replace the hard-coded values (𝑇𝑖, u𝑖) with (𝑆𝑖, v𝑖) in the di𝒪-CD classical pro-
gram, for every 𝑖 ∈ [1, . . . , ℓ + 1]. In other words, in ℋ1, i𝒪class is an obfuscation of the
following program.

Hard-Coded Values. Subspace and offset tuples {𝑆𝑖, 𝑆𝑖, v𝑖}𝑖∈[ℓ+1] and {𝑆𝑖, 𝑇𝑖, u𝑖}𝑖∈[ℓ+2,...,2ℓ+1], a

bitstring ̃︀𝑐 ∈ {0, 1}2ℓ+1.
Input. vectors {t𝑖}𝑖∈[2ℓ+1] and an input 𝑥.

1: if t𝑖 ∈ 𝑆𝑖 + v𝑖 for every 𝑖 ∈ [ℓ+ 1] then
2: if t𝑖 ∈ 𝑇𝑖 + u𝑖 for every 𝑖 ∈ [ℓ+ 2, 2ℓ+ 1] then
3: Let v′𝑖 ∈ co(𝑆𝑖) be the coset of 𝑆𝑖 that t𝑖 belongs to, and define 𝑐′𝑖 := ̃︀𝑐𝑖 ⊕ ⟨v′𝑖,1⟩.
4: Parse 𝑐′1, . . . , 𝑐′2ℓ+1 as (𝑏, 𝐶0, 𝐶1), where 𝐶0 and 𝐶1 are circuits with description length ℓ.

Output 𝐶𝑏(𝑥).

ℋ1 Classical Program

66

Note that if 𝑡𝑖 ∈ 𝑆𝑖 + 𝑣𝑖, then 𝑣′𝑖 = 𝑣𝑖. This is always the case for 𝑖 ∈ [ℓ + 1] if the program
does not abort. Since 𝑐𝑖 = 𝑐𝑖 ⊕ ⟨v𝑖,1⟩, the program always decodes the first ℓ+ 1 bits of ̃︀𝑐 to
(0, 𝐶0) if it does not abort.

• ℋ2(𝑆𝑖* , 𝑇𝑖* , u𝑖* ,w𝑖* ,̃︀𝑐𝑖*): Same as ℋ1, except that we replace 𝑆𝑖* with 0|𝑆𝑖* | in the classical
obfuscated program i𝒪𝑐𝑙𝑎𝑠𝑠. This removes its dependence on 𝑆𝑖*. Note that since 𝑖* > ℓ+ 1,
the program still decodes the first ℓ bits of ̃︀𝑐 to (0, 𝐶0) if it does not abort. Therefore it will
always either abort or evaluate 𝐶0.

• ℋ3(𝑆𝑖* , 𝑇𝑖* , u𝑖* ,w𝑖* ,̃︀𝑐𝑖*): Same asℋ2, except that we will remove the dependence of i𝒪
(︁
𝑃𝑆⊥

𝑖*+w𝑖*

)︁
on 𝑆𝑖* + w𝑖* . Sample 𝑅𝑖* as a uniformly random superspace of 𝑆⊥

𝑖* of dimension 3𝑛/4 and
define x𝑖* ∈ co(𝑅𝑖*) so that 𝑆⊥

𝑖* +w𝑖* ⊂ 𝑅𝑖* + x𝑖* . Use i𝒪
(︀
𝑃𝑅𝑖*+x𝑖*

)︀
in place of i𝒪

(︁
𝑃𝑆⊥

𝑖*+w𝑖*

)︁
.

Note that this distribution can be prepared just given (𝑅𝑖* , 𝑇𝑖* , u𝑖* , x𝑖* ,̃︀𝑐𝑖*) as defined in Def-
inition 5.4, and thus can be considered the simulated distribution.

Now, the indistinguishability ofℋ0 andℋ1 follows by repeated application of subspace-hiding
obfuscation (Corollary 3.10) for each 𝑖 ∈ [1, . . . , ℓ+ 1]. Next, the indistinguishability ofℋ1 andℋ2

follows from the security of i𝒪, since these programs are functionally equivalent. Indeed, note that
in both hybrids, the program always outputs𝐶0(𝑥) if it does not abort, and the aborting conditions
are the same. Finally, the indistinguishability ofℋ2 andℋ3 follows again from Corollary 3.10.

Claim 8.6. TD(ℋℓ,ℋℓ+1) = negl(𝜆).

Proof. We will again reduce this claim to Theorem 5.5. Note that the output of i𝒪-CD in ℋℓ and
ℋℓ+1 can be written as

|(𝑆1)v1,w1⟩ ,𝒵𝜆(𝑆1, 𝑇1, u1,w1,̃︀𝑐1)
where a sample from 𝒵𝜆(𝑆1, 𝑇1, u1,w1,̃︀𝑐1) takes the form(︂

{|(𝑆𝑖)v𝑖,w𝑖⟩}𝑖 ̸=1, i𝒪class,
{︁
i𝒪

(︁
𝑃𝑆⊥

𝑖 +w𝑖

)︁}︁
𝑖∈[2ℓ+1]

)︂
A sample from𝒵𝜆(𝑆𝑖* , 𝑇𝑖* , u𝑖* ,w𝑖* ,̃︀𝑐𝑖*) is obtained by sampling fromℋℓ (equivalently,ℋℓ+1) using
fresh randomness for every 𝑖 ̸= 1 and omitting the extra copy of |(𝑆1)v1,w1⟩. In ℋℓ, we havẽ︀𝑐1 = 0⊕ ⟨v1,1⟩ and inℋℓ+1, we have ̃︀𝑐1 = 1⊕ ⟨v1,1⟩. We show that 𝒵𝜆 is subspace-hiding via the
following sequence of hybrids.

• ℋ0(𝑆1, 𝑇1, u1,w1,̃︀𝑐1): This is 𝒵𝜆(𝑆1, 𝑇1, u1,w1,̃︀𝑐1).
• ℋ1(𝑆1, 𝑇1, u1,w1,̃︀𝑐1): Same as ℋ0, except that we modify the classical obfuscated program

i𝒪class to always decode the last 2ℓ bits of ̃︀𝑐 to (𝐶0, 𝐶1). Therefore it will always abort, output
𝐶0(𝑥), or output 𝐶1(𝑥), depending on ̃︀𝑐1. Specifically, replace (𝑇𝑖, u𝑖) with (𝑆𝑖, v𝑖) in the
di𝒪-CD classical program for every 𝑖 ∈ [2, . . . , 2ℓ+ 1].

Note that if 𝑡𝑖 ∈ 𝑆𝑖+ 𝑣𝑖, then 𝑣′𝑖 = 𝑣𝑖. This is always the case for 𝑖 > 1 if the program does not
abort. Since 𝑐𝑖 = 𝑐𝑖 ⊕ ⟨v𝑖,1⟩, the program always decodes the last 2ℓ+ bits of ̃︀𝑐 to (𝐶0, 𝐶1) if
it does not abort.

67

• ℋ2(𝑆1, 𝑇1, u1,w1,̃︀𝑐1): Same asℋ1, except we modify the classical program to use hard-coded
versions of 𝐶0 and 𝐶1, instead of decoding them from ̃︀𝑐. In particular, it uses the indistin-
guishability obfuscations ̃︀𝐶0 and ̃︀𝐶1 of these programs. In detail, i𝒪class is an obfuscation of
the following program:

Hard-Coded Values. Subspace and offset tuple {𝑆1, 𝑇1, u1} and {𝑆𝑖, 𝑆𝑖, v𝑖}𝑖∈[2,...,2ℓ+1], a bitstring

̃︀𝑐 ∈ {0, 1}2ℓ+1, obfuscated programs ̃︀𝐶0 = i𝒪(𝐶0) and ̃︀𝐶1 = i𝒪(𝐶1).
Input. vectors {t𝑖}𝑖∈[2ℓ+1] and an input 𝑥.

1: if t1 ∈ 𝑇1 + u1 then
2: if t𝑖 ∈ 𝑆𝑖 + v𝑖 for every 𝑖 ∈ [1, . . . , 2ℓ+ 1] then
3: Let v′1 ∈ co(𝑆1) be the coset of 𝑆1 that t1 belongs to, and define 𝑏 := ̃︀𝑐1 ⊕ ⟨v′1,1⟩.
4: Output ̃︀𝐶𝑏(𝑥).

ℋ2 Classical Program

• ℋ3(𝑆1, 𝑇1, u1,w1,̃︀𝑐1): Same asℋ2, except in the classical program, the hard-coded value ̃︀𝐶0 is
an obfuscation of 𝐶1 instead of 𝐶0. In other words, i𝒪𝑐𝑙𝑎𝑠𝑠 is an obfuscation of the following
program:

Hard-Coded Values. Subspace and offset tuple {𝑆1, 𝑇1, u1} and {𝑆𝑖, 𝑆𝑖, v𝑖}𝑖∈[2,...,2ℓ+1], a bitstring

̃︀𝑐 ∈ {0, 1}2ℓ+1, obfuscated programs ̃︀𝐶0 = i𝒪(𝐶1) and ̃︀𝐶1 = i𝒪(𝐶1).
Input. vectors {t𝑖}𝑖∈[2ℓ+1] and an input 𝑥.

1: if t1 ∈ 𝑇1 + u1 then
2: if t𝑖 ∈ 𝑆𝑖 + v𝑖 for every 𝑖 ∈ [1, . . . , 2ℓ+ 1] then
3: Let v′1 ∈ co(𝑆1) be the coset of 𝑆1 that t1 belongs to, and define 𝑏 := ̃︀𝑐1 ⊕ ⟨v′1,1⟩.
4: Output ̃︀𝐶𝑏(𝑥).

ℋ3 Classical Program

• ℋ4(𝑆1, 𝑇1, u1,w1,̃︀𝑐1): Same as ℋ3, except the classical program always evaluates a hard-
coded copy of 𝐶1 if it does not abort. Since the circuit being internally evaluated is always
the same, the program does not need to decode ̃︀𝑐, and therefore we can also remove 𝑆1 from
its parameters. In detail, i𝒪class is an obfuscation of the following program:

68

Hard-Coded Values. A subspace and offset {𝑇1, u1}, subspace and offset tuples {𝑆𝑖, 𝑆𝑖, v𝑖}𝑖∈[2ℓ+1],

a bitstring ̃︀𝑐 ∈ {0, 1}2ℓ+1, the circuit 𝐶1.
Input. vectors {t𝑖}𝑖∈[2ℓ+1] and an input 𝑥.

1: if t1 ∈ 𝑇1 + u1 then
2: if t𝑖 ∈ 𝑆𝑖 + v𝑖 for every 𝑖 ∈ [1, . . . , 2ℓ+ 1] then
3: Output 𝐶1(𝑥).

ℋ4 Classical Program

• ℋ5(𝑆1, 𝑇1, u1,w1,̃︀𝑐1): Same asℋ4, except that we will remove the dependence of i𝒪
(︁
𝑃𝑆⊥

1 +w1

)︁
on 𝑆1 + w1. Sample 𝑅1 as a uniformly random superspace of 𝑆⊥

1 of dimension 3𝑛/4 and de-
fine x1 ∈ co(𝑅1) so that 𝑆⊥

1 + w1 ⊂ 𝑅1 + x1. Use i𝒪 (𝑃𝑅1+x1) in place of i𝒪
(︁
𝑃𝑆⊥

1 +w1

)︁
. Note

that this distribution can be prepared just given (𝑅1, 𝑇1, u1, x1,̃︀𝑐1) as defined in Definition 5.4,
and thus can be considered the simulated distribution.

Now, the indistinguishability of ℋ0 and ℋ1 follows by repeated application of Corollary 3.10
for each 𝑖 ∈ [2, . . . , 2ℓ + 1]. Next, the indistinguishability of ℋ1 and ℋ2 follows from the security
of i𝒪, since these programs are functionally equivalent. Indeed, note that in ℋ1, the program will
always either abort or unmask the ̃︀𝑐 as (𝑏, 𝐶0, 𝐶1) for some arbitrary bit 𝑏. Therefore in both ℋ1

and ℋ2, the program outputs 𝐶𝑏(𝑥) if it does not abort. The indistinguishability of ℋ2 and ℋ3

follows from the security of di𝒪, which follows from the security of i𝒪. Since 𝐶0 and 𝐶1 differ
on a polynomial number of hard-to-find inputs, i𝒪(𝐶0) ≈ i𝒪(𝐶1). The indistinguishability of ℋ3

and ℋ4 follows from the security of i𝒪, since these programs are functionally equivalent. Indeed,
note that inℋ3, the program will always evaluate i𝒪(𝐶1) if it does not abort, which is functionally
equivalent to 𝐶1. Finally, the indistinguishability ofℋ2 andℋ3 follows again from Corollary 3.10.

Claim 8.7. For all 𝑖 ∈ [ℓ+ 2, . . . , 2ℓ+ 1], TD(ℋ𝑖−1,ℋ𝑖) = negl(𝜆).

Proof. This follows from essentially an identical proof as Claim 8.5.

Claim 8.8. TD(ℋ2ℓ+1,ℋ2ℓ+2) = negl(𝜆).

Proof. This follows from a similar proof to Claim 8.6. The only difference is that we can transition
directly from sub-hybridℋ1 toℋ4 using the security of i𝒪. Note that inℋ1, the classical program
would always unmask (𝑏, 𝐶1, 𝐶1) if it does not abort, and so it always evaluates 𝐶1 in this case. In
ℋ4, the classical program also always evaluates 𝐶1 if it does not abort, and the aborting conditions
are the same.

Claim 8.9. For all 𝑖 ∈ [2ℓ+ 3, . . . , 3ℓ+ 2], TD(ℋ𝑖−1,ℋ𝑖) = negl(𝜆).

Proof. This follows from essentially an identical proof as Claim 8.5.

69

8.3 Extensions

We describe several extensions to di𝒪-CD. These include:

• Section 8.3.1: Nested di𝒪-CD.

• Section 8.3.2: di𝒪-CD with provable correctness.

• Section 8.3.3: Strong secure software leasing.

• Section 8.3.4: Succinct obfuscation and two-message blind delegation with certified deletion.

• Section 8.3.5: Oracles with certified deletion.

8.3.1 Nested Differing Inputs Obfuscation with Certified Deletion

Recall that the di𝒪-CD construction given above can be evaluated by performing a computational
basis measurement, then evaluating a classical program on the result. Therefore, we can “nest” an
obfuscated program program ((|𝜓⟩ , i𝒪class), vk) ← di𝒪-CD(𝐶) inside another program 𝐶𝑓 by cre-
ating the program 𝐶𝑓 ∘ i𝒪class. It can be correctly evaluated by measuring |𝜓⟩ in the computational
basis, then evaluating 𝐶𝑓 ∘ i𝒪class on the measurement result and any other inputs. Furthermore,
the inner program retains its certified deletion security. 𝐶𝑓 ∘ i𝒪class can be additionally obfuscated
using di𝒪-CD to protect 𝐶𝑓 , since 𝐶𝑓 ∘ i𝒪class is a classical program. Thus we have the following
corollary.

Corollary 8.10. Assuming post-quantum indistinguishability obfuscation and one-way functions, there
exists nested differing inputs obfuscation with (publicly verifiable) certified deletion for polynomially many
nested differing inputs.

8.3.2 di𝒪-CD with Provable Correctness

A desirable property for an obfuscation scheme is the ability to prove that the program is well-
formed. For example, when obfuscating a program that allows the holder to decrypt ciphertexts,
the holder may wish to be assured that they can correctly decrypt any ciphertext. Unfortunately,
our di𝒪-CD construction does not allow for this. Since the functionality of an obfuscated program̃︀𝐶 = (|𝜓⟩ , i𝒪class) is determined by |𝜓⟩, whether or not ̃︀𝐶 has the correct functionality is not a
QMA statement.

Tokenized di𝒪-CD To remedy this, we introduce a new di𝒪-CD property which we call “tok-
enization” and give an alternative scheme which satisfies it. A tokenized di𝒪-CD generates pro-
grams which consist of a quantum token and a classical (obfuscated) program. Crucially, the
functionality of the program is fully determined by the classical obfuscated program. On input a
(measured) token 𝑡 and an input 𝑥, the classical program either aborts for all 𝑥 or evaluates 𝐶(𝑥)
for a fixed program 𝐶. This ensures that if a token is valid, then the program behaves correctly
on it, and that invalid tokens are detectable. Thus, the well-formedness of a tokenized di𝒪-CD
program can be formulated as the QMA statement “there exists a token 𝑡 such that the classical
program evaluates 𝐶(𝑥) for all 𝑥”.

70

Definition 8.11 (Tokenized di𝒪-CD). A (nested) differing inputs obfuscator with certified deletion (Obf,
Eval, Del, Verify) is tokenized if it satisfies the following properties:

1. Obf(Π) outputs a quantum token |𝜓⟩ =
∑︀

𝑡∈{0,1}poly(𝜆) 𝛼𝑡 |𝑡⟩ and a classical program ̃︀Π.

2. Eval((|𝜓⟩ , ̃︀Π), 𝑥) = ̃︀Π(|𝜓⟩ , 𝑥) = ∑︀
𝑡∈{0,1}poly(𝜆) 𝛼𝑡 |̃︀Π(𝑡, 𝑥)⟩.

3. The probability of generating an obfuscation (|𝜓⟩ , ̃︀Π) ← Obf(Π) such that for all 𝑡 ∈ {0, 1}poly(𝜆),
either

(a) for all 𝑥, ̃︀Π(𝑡, 𝑥) = Π(𝑥)

(b) or for all 𝑥, ̃︀Π(𝑡, 𝑥) = ⊥
is 1− negl(𝜆).

Computational Certified Deletion Achieving the tokenized property requires trading statistical
security after deletion for computational security after deletion. This is unavoidable for provable
correctness, since the functionality must be encoded classically in order for correctness to be a
QMA statement. Thus the functionality is information-theoretically determined even after dele-
tion. We define a computational certified deletion security by directly leaking the differing inputs
after deletion. This captures the fact that the adversary can no longer evaluate the program on
differing inputs once it deletes the program.

Definition 8.12 (Computational certified deletion for di𝒪-CD). Let 𝒟 be the distribution associated
with a differing inputs circuit family 𝒞. Define the following game, parameterized by a bit 𝑏:

1. The challenger samples differing input circuits (𝐶0, 𝐶1, aux) ← 𝒟. It computes the set of differing
inputs 𝑌 * = {𝑦* : 𝐶0(𝑦

*) ̸= 𝐶1(𝑦
*)} and the obfuscation (̃︁𝐶𝑏, vk) ← di𝒪-CD(Π𝑏, 1

𝜆), then sends
(̃︀𝐶𝑏, 𝐶0, 𝐶1, aux) to the adversary.

2. The challenger receives a proof of deletion cert from the adversary.

3. If Verify(vk, cert) = ⊤, send the set of differing inputs 𝑌 * to the adversary.

4. The adversary outputs a bit 𝑏′ and wins if 𝑏′ = 𝑏.

A di𝒪-CD scheme has computational certified deletion security for 𝒞 if the adversary’s advantage in winning
this game is negl(𝜆).

If this holds even when the adversary also receives vk in step 1, then we say the di𝒪-CD scheme has
publicly verifiable computational certified deletion security.

Construction The construction is almost exactly the same as our original di𝒪-CD construction
(Section 8.2), except we remove the noise from the check. This is accomplished by setting 𝑆𝑖 = 𝑇𝑖
and u𝑖 = v𝑖 instead of sampling them so that 𝑇𝑖 + u𝑖 is a random super-coset of 𝑆𝑖 + v𝑖. In more
detail, to obfuscate a program 𝐶, do the following.

• Let 𝑛 = 4𝜆, let ℓ = |𝐶|. For each 𝑖 ∈ [2ℓ + 1], sample 𝑆𝑖 < F𝑛
2 such that dim(𝑆𝑖) = 𝑛/2 and

sample v𝑖,w𝑖 ← co(𝑆𝑖)× co(𝑆⊥
𝑖).

71

• Let 𝑐 := (0, 𝐶, 0ℓ), and for all 𝑖 ∈ [2ℓ+ 1], define ̃︀𝑐𝑖 := 𝑐𝑖 ⊕ ⟨v𝑖,1⟩. Define ̃︀𝑐 := (̃︀𝑐1, . . . ,̃︀𝑐2ℓ+1).

• Compute the indistinguishability obfuscation i𝒪class of the di𝒪-CD classical program using
hard-coded values {𝑆𝑖, 𝑆𝑖, v𝑖}𝑖∈[2ℓ+1] and ̃︀𝑐.

• Output
| ̃︀𝐶⟩ := (︀

{|(𝑆𝑖)v𝑖,w𝑖⟩}𝑖∈[2ℓ+1], i𝒪class

)︀
, vk :=

{︁
i𝒪

(︁
𝑃𝑆⊥

𝑖 +w𝑖

)︁}︁
𝑖∈[2ℓ+1]

.

Deletion and verification are done as in the original scheme. For convenience, we recall the
di𝒪-CD classical program here.

Hard-Coded Values. Subspace and offset tuples {𝑆𝑖, 𝑇𝑖, u𝑖}𝑖∈[2ℓ+1], a bitstring ̃︀𝑐 ∈ {0, 1}2ℓ+1.

Input. vectors {t𝑖}𝑖∈[2ℓ+1] and an input 𝑥.

1: if t𝑖 ∈ 𝑇𝑖 + u𝑖 for every 𝑖 ∈ [2ℓ+ 1] then
2: Let v′𝑖 ∈ co(𝑆𝑖) be the coset of 𝑆𝑖 that t𝑖 belongs to, and define 𝑐′𝑖 := ̃︀𝑐𝑖 ⊕ ⟨v′𝑖,1⟩.
3: Parse 𝑐′1, . . . , 𝑐′2ℓ+1 as (𝑏, 𝐶0, 𝐶1), where 𝐶0 and 𝐶1 are circuits with description length ℓ. Output
𝐶𝑏(𝑥).

di𝒪-CD Classical Program

Corollary 8.13 (Tokenized di𝒪-CD). Assuming post-quantum indistinguishability obfuscation and one-
way functions, there exists di𝒪-CD with provable correctness for polynomially many differing inputs.

Proof. Observe that if t𝑖 ∈ 𝑆𝑖 + v𝑖, then ̃︀𝑐 is always unmasked to (0, 𝐶, 0ℓ). Therefore whenever the
program does not abort, it evaluates 𝐶. Since whether the program aborts is independent of the
input 𝑥, the above construction is indeed tokenized. This establishes provable correctness.

Next we show (publicly verifiable) computational certified deletion security. Consider the
following hybrids:

• ℋ0: The outcome bit from the computational certified deletion game for the tokenized di𝒪-CD
construction.

• ℋ1: This is the same as ℋ0, except we modify i𝒪class. For every 𝑖 ∈ [2ℓ + 1], sample a
random 𝑇𝑖 ⊃ 𝑆𝑖 with dimension 3𝑛/4. Let u𝑖 be the coset of 𝑇𝑖 that v𝑖 belongs to. Instead of
obfuscating the di𝒪-CD classical program with {𝑆𝑖, 𝑆𝑖, v𝑖} hard-coded, use {𝑆𝑖, 𝑇𝑖, u𝑖}. This
is our original di𝒪-CD scheme.

Indistinguishability of ℋ0 and ℋ1 follows from the repeated application of subspace-hiding
obfuscation (Corollary 3.10). Observe that any QPT adversary’s winning advantage inℋ1 is negli-
gible. Otherwise, an adversary could violate the (information-theoretic) certified deletion security
of the original di𝒪-CD scheme (Theorem 8.4) by computing the list of differing inputs inefficiently
after deletion, then running the QPT adversary. Since the distributions over the outcome bits of
the game inℋ0 andℋ1 are indistinguishable, this also holds inℋ0.

72

8.3.3 Strong Secure Software Leasing

We show that obfuscation with certified deletion implies a strong notion of secure software leas-
ing [AL21] for a wide class of programs. As corollary, we construct this notion of secure software
leasing from post-quantum indistinguishability obfuscation and post-quantum one-way func-
tions.

Definition 8.14 (Secure Software Leasing). A secure software leasing scheme for a circuit class 𝒞 consists
of the QPT algorithms (Gen,Eval,Verify), defined as follows.

• Gen(1𝑛, 𝐶) takes in the security parameter and a circuit 𝐶 ∈ 𝐶, then outputs a leased program ̃︀𝐶
and a verification key vk.

• Eval(̃︀𝐶, 𝑥) takes in a leased program ̃︀𝐶 and an input 𝑥, then outputs a value 𝑦.

• Verify(vk, ̃︀𝐶) takes in a verification key vk and a leased program ̃︀𝐶, then outputs Accept or Reject.

It must satisfy correctness:

• Evaluation Correctness: For every 𝐶 ∈ 𝒞 with input length 𝑛,

Pr[Eval(̃︀𝐶, 𝑥) = 𝐶(𝑥) ∀𝑥 ∈ {0, 1}𝑛 : (̃︀𝐶, vk)← Gen(1𝑛, 𝐶)] = 1− negl(𝜆)

• Verification Correctness: For every 𝐶 ∈ 𝒞 with input length 𝑛,

Pr[Verify(vk, ̃︀𝐶) = ⊤ : (̃︀𝐶, vk)← Gen(1𝑛, 𝐶)] = 1− negl(𝜆)

The definition above has slightly different syntax than the one presented in [AL21]. It directly
generates a leased program and verification key in Gen, instead of generating the verification key
in Gen, then separately generating leased programs in an algorithm named Lessor which also takes
in the verification key. We note that a scheme with the syntax definition above can be transformed
into a scheme with the syntax from [AL21] by using any symmetric-key encryption scheme and
signature scheme.

Strong finite-term leasing security guarantees that if the leasee returns a valid program, then
the output of the program on certain inputs is hidden. This is a stronger guarantee than finite
lessor security, which only guarantees that after the leasee returns a valid program, they cannot
evaluate every input using the honest Eval procedure.

Definition 8.15 (Strong Finite-Term Leasing). A secure software leasing scheme (Gen,Eval,Verify) for
a circuit class 𝒞 associated with a distribution 𝒟𝒞 has strong 𝛽-perfect finite-term leasing if for all QPT
adversaries 𝒜 = (𝒜1,𝒜2) where 𝒜1 outputs a bipartite state on registers 𝑅1 and 𝑅2, the following holds:

Pr

⎡⎣ Verify(vk,Tr𝑅2 [𝜌]) = ⊤
∧

∀𝑥 Pr[𝒜2(Tr
𝑅1 [𝜌], 𝑥) = 𝐶(𝑥)] ≥ 𝛽

:

𝐶 ← 𝒟𝒞
(̃︀𝐶, vk)← Gen(1𝑛, 𝐶)

𝜌← 𝒜1(̃︀𝐶)
⎤⎦ = negl(𝜆)

If this holds when vk is also given to 𝒜1 and 𝒜2, then we say it has publicly verifiability. If this holds when
𝒜2 is computationally unbounded, we say it has statistical returns.

73

Theorem 8.16. Assuming di𝒪-CD, there exists secure software leasing with (publicly verifiable) 𝛽-perfect
strong finite-term security for all differing inputs circuits families, where 𝛽 = 1/2+negl(𝜆). Furthermore,
it has statistical returns.

Proof. Let di𝒪-CD = (Obf,Eval,Del,Verify) be a differing inputs obfuscation with certified deletion.
The secure software leasing scheme SSL is

• SSL.Gen(1𝑛, 𝐶): Run di𝒪-CD.Obf(1𝑛, 𝐶) then output the result

• SSL.Eval(̃︀𝐶, 𝑥): Run di𝒪-CD.Eval(̃︀𝐶, 𝑥) and outputs the result.

• SSL.Verify(vk, ̃︀𝐶): We first describe the scheme with measurements. Evaluate cert← di𝒪-CD.Del(̃︀𝐶).
Output di𝒪-CD.Verify(vk, cert). To avoid damaging a valid program, do this procedure co-
herently and measure the output bit.

Correctness follows from the description of the scheme and correctness of di𝒪-CD. To show
strong finite term lessor security, we first define 𝒟𝒞 . Recall that a differing inputs circuit family is
associated with an efficiently sampleable distribution 𝒟DI. To generate a sample from 𝒟𝒞 , sample
(𝐶0, 𝐶1, aux)← 𝒟DI and a bit 𝑏, then output 𝐶𝑏. Observe that if the leasee returns a valid program,
then a valid deletion certificate can be extracted from the program.

Consider the SSL experiment where 𝒟𝒞 outputs a circuit 𝐶𝑏. Call the state that the adversary
outputs 𝜌(𝑏).16 Let 𝜌′(𝑏) be the leftover state after applying the deletion procedure to the first reg-
ister and tracing out the resulting certificate. Say the certificate is valid with noticeable probability.
Then by the security of di𝒪-CD and convexity of trace distance, we have TD(𝜌′(0), 𝜌′(1)) = negl(𝜆)
whenever the certificate is valid.

We now argue that the probability 𝜌′(𝑏) can be used to evaluate 𝐶𝑏(𝑦
*) is at most 1/2+ negl(𝜆)

for any differing input 𝑦*. Say that 𝒜2(𝜌
′(𝑏), 𝑥) outputs 𝐶𝑏(𝑥) with probability 𝛽0 for all 𝑥. Then

𝒜2(𝜌
′(1 − 𝑏), 𝑥) also outputs 𝐶𝑏(𝑥) with probability ≥ 𝛽0 − negl(𝜆). Therefore, for any differing

input 𝑦*,𝒜2(𝜌
′(1−𝑏), 𝑦*) is incorrect with probability at least 1−𝛽0−negl(𝜆). Thus, the probability

of 𝒜2 correctly evaluating for a random 𝑏 is at most 1/2𝛽0 + 1/2(1− (𝛽0 − negl)) = 1/2 + negl(𝜆).
In other words, 𝛽 <= 1/2 + negl(𝜆).

Reducing 𝛽. We can lower 𝛽 further for certain differing inputs circuits classes. Consider the
game where an adversary 𝒜 receives ̃︁𝐶0 ← di𝒪-CD(𝐶0), deletes it, then attempts to guess 𝐶0(𝑦

*)
for some differing input 𝑦*. Since di𝒪-CD(𝐶0) ≈ di𝒪(𝐶1) even given 𝑦* after deletion, intuitively
𝒜 cannot guess 𝐶0(𝑦

) any better than if it were just given 𝐶1 and 𝑦.

Theorem 8.17. Assuming di𝒪-CD, there exists secure software leasing with (publicly verifiable) 𝛽-perfect
strong finite-term security for all differing inputs circuits families, where

𝛽 = max
QPT 𝒜

Pr

[︂
𝒜(𝐶1, 𝑦

*) = 𝐶0(𝑦
*) :

(𝐶0, 𝐶1, aux)← 𝒟𝒞
uniform 𝑦* s.t. 𝐶0(𝑦

*) ̸= 𝐶1(𝑦
*)

]︂
+ negl(𝜆)

Furthermore, it has statistical returns, where 𝛽 is taken as the maximum over unbounded 𝒜.
16We consider this to be a pure state sampled from the adversary’s output distribution. Otherwise, we can set the

probability of outputting a “good” pirated state to 0 by simply arguing that the adversary always outputs mixed state
with negligible probability mass on “good” pure states.

74

Proof. The proof is almost identical to the one above, except for two differences. First, we define
𝒟𝒞 to output a random 𝐶0, instead of a random 𝐶𝑏. Second, we note that 𝒜2(𝜌

′(1), 𝑦*) outputs
𝐶0(𝑦

) with probability at most 𝛽 for every differing input 𝑦. Therefore 𝒜2(𝜌
′(0), 𝑦*) outputs

𝐶0(𝑦
*) with probability at most 𝛽 + negl(𝜆).

This result gives a very general criteria for whether a program class can be securely leased.
Indeed, many program classes which were previously studied for secure software leasing are a
special case of this theorem. We do note, however, that some of these classes have been securely
leased in prior work using weaker assumptions than i𝒪.

Corollary 8.18. Assuming post-quantum one-way functions and di𝒪-CD, there exists strong secure soft-
ware leasing for pseudorandom functions, evasive functions, random point functions, and compute-and-
compare circuits.

Sketch. We sketch the result for psuedorandom functions and note that the other classes can be
argued similarly. Let 𝒞 be a PRF-evaluating circuit class, where 𝐶𝑘(𝑥) = PRF(𝑘, 𝑥) for every 𝐶𝑘 ∈
𝒞. Let 𝑘𝑦* be a privately punctured PRF key [KPTZ13, BW13, BGI14, BLW17], which has the same
behavior as 𝑘, except it contains no information about PRF(𝑘, 𝑦*). Privately puncturable PRFs can
be obtained from i𝒪 [BLW17], which is implied by di𝒪-CD. Then {(𝐶𝑘, 𝐶𝑘*𝑦) : 𝑦* ← {0, 1}𝜆} is a
differing inputs circuits class where

max
QPT 𝒜

Pr

[︂
𝒜(𝐶1, 𝑦

*) = 𝐶0(𝑦
*) :

(𝐶0, 𝐶1, aux)← 𝒟𝒞
uniform 𝑦* s.t. 𝐶0(𝑦

*) ̸= 𝐶1(𝑦
*)

]︂
= negl(𝜆)

8.3.4 Succinct obfuscation and two-message blind delegation with certified deletion

Now, we observe that exactly the same proof given in Theorem 8.4, but using si𝒪 rather than i𝒪,
will suffice to prove the following theorem.

Theorem 8.19. Assuming post-quantum succinct indistinguishability obfuscation and one-way functions,
there exists succinct indistinguishability obfuscation with (publicly-verifiable) certified deletion (Defini-
tion 8.3).

We will use this observation to construct a two-message blind delegation with certified dele-
tion protocol. In fact, we will present our construction using the primitive of succinct randomized
encoding with certified deletion, which is defined as follows.

Definition 8.20 (Succinct randomized encoding with certified deletion). A succinct randomized en-
coding with (publicly-verifiable) certified deletion for a class of Turing machines {ℳ𝜆}𝜆∈N has the following
syntax.

• SRE-CD.Enc(1𝜆,𝑀, 𝑥, 𝑡)→ |̃︁𝑀𝑥,𝑡⟩ , vk: The encode algorithm takes as input the security parameter
1𝜆, the description of a Turing machine 𝑀 ∈ ℳ𝜆, an input 𝑥, and a step-size 𝑡, and outputs a
(quantum) succinct randomized encoding |̃︁𝑀𝑥,𝑡⟩ and a verification key vk.

• SRE-CD.Eval(|̃︁𝑀𝑥,𝑡⟩)→ 𝑦: The evaluation algorithm takes as input the succinct randomized encod-
ing |̃︁𝑀𝑥,𝑡⟩ and outputs a (classical) 𝑦.

75

• SRE-CD.Del(|̃︁𝑀𝑥,𝑡⟩) → cert: The deletion algorithm takes as input the obfuscated program |̃︁𝑀𝑥,𝑡⟩
and outputs a deletion certificate cert.

• SRE-CD.Verify(vk, cert) → {⊤,⊥}: The verification algorithm takes as input the verification key
and a deletion certificate and outputs either ⊤ or ⊥.

It should satisfy the following properties.

• Correctness. For all 𝜆 ∈ N, all 𝑀 ∈ℳ𝜆, all 𝑥 ∈ {0, 1}𝑛, and all 𝑡,

Pr[SRE-CD.Eval(|̃︁𝑀𝑥,𝑡⟩) =𝑀 𝑡(𝑥) : |̃︁𝑀𝑡,𝑥⟩ , vk← SRE-CD(1𝜆,𝑀, 𝑥, 𝑡)] = 1.

• Correctness of deletion. For all sequences of Turing machines and inputs {𝑀𝜆 ∈ℳ𝜆, 𝑥𝜆, 𝑡𝜆}𝜆∈N,

Pr

[︃
Verify(vk, cert) = ⊤ :

|̃︁𝑀𝑥,𝑡⟩ , vk← SRE-CD(1𝜆,𝑀𝜆, 𝑥𝜆, 𝑡𝜆)

cert← SRE-CD.Del(|̃︁𝑀𝑥,𝑡⟩)

]︃
= 1− negl(𝜆).

• Computational security. There exists a QPT simulator {𝒮𝜆}𝜆∈N such that for all sequences of
Turing machines and inputs {𝑀𝜆 ∈ℳ𝜆, 𝑥𝜆, 𝑡𝜆}𝜆∈N and all QPT adversaries {𝒜𝜆}𝜆∈N,

⃒⃒⃒
Pr

[︁
𝒜𝜆

(︁
SRE-CD(1𝜆,𝑀𝜆, 𝑥𝜆, 𝑡𝜆)

)︁
= 1

]︁
− Pr

[︁
𝒜𝜆

(︁
𝒮𝜆(1𝜆,𝑀𝜆, 𝑡𝜆,𝑀

𝑡𝜆
𝜆 (𝑥𝜆))

)︁
= 1

]︁⃒⃒⃒
= negl(𝜆).

• Certified everlasting security. There exists a QPT simulator {S𝜆}𝜆∈N such that for all sequences
of Turing machines and inputs {𝑀𝜆 ∈ℳ𝜆, 𝑥𝜆, 𝑡𝜆}𝜆∈N and all QPT adversaries {𝒜𝜆}𝜆∈N,

TD
(︁
REAL𝒜𝜆(𝑀𝜆, 𝑥𝜆, 𝑡𝜆), IDEAL

𝒜𝜆,𝒮𝜆(𝑀𝜆, 𝑡𝜆,𝑀
𝑡𝜆
𝜆 (𝑥𝜆))

)︁
= negl(𝜆),

where the experiments are defined as follows. Given a Turing machine / input (𝑀,𝑥, 𝑡) and an
adversary 𝒜, the experiment REAL𝒜(𝑀,𝑥, 𝑡) is defined as follows.

– Sample |̃︁𝑀𝑥,𝑡⟩ , vk← SRE-CD(1𝜆,𝑀, 𝑥, 𝑡) and initialize 𝒜 with (|̃︁𝑀𝑥,𝑡⟩ , vk).
– Parse 𝒜’s output as a deletion certificate cert and a left-over quantum state 𝜌.

– If SRE-CD.Verify(vk, cert) = ⊤ then output 𝜌, and otherwise output ⊥.

Given a Turing machine / output (𝑀, 𝑡, 𝑦), an adversary 𝒜, and a simulator 𝒮, the experiment
IDEAL𝒜,𝒮(𝑀, 𝑡, 𝑦) is defined as follows.

– Sample |̃︁𝑀𝑦⟩ , vk← 𝒮(1𝜆,𝑀, 𝑡, 𝑦) and initialize 𝒜 with (|̃︁𝑀𝑦⟩ , vk).
– Parse 𝒜’s output as a deletion certificate cert and a left-over quantum state 𝜌.

– If SRE-CD.Verify(vk, cert) = ⊤ then output 𝜌, and otherwise output ⊥.

• Succinctness. The running time of SRE-CD must be poly(𝜆, |𝑀 |, |𝑥|, log 𝑡).

76

Parties: client 𝐶 and server 𝑆, each with input the security parameter 1𝜆.

• ℱnrBD receives a Turing machine 𝑀 , an input 𝑥, and a step-size 𝑡 from 𝐶.

• ℱnrBD computes 𝑦 =𝑀 𝑡(𝑥) and sends (𝑀, 𝑡, 𝑦) to 𝑆 and 𝑦 to 𝐶.

Ideal Functionality ℱnrBD

Figure 3: The ideal functionality for single-use blind delegation with certified deletion

Note that SRE-CD is immediately implied by an si𝒪-CD scheme, by obfuscating an input-less
Turing machine 𝑀 [𝑥] that has 𝑥 hard-coded. The simulator will simply obfuscate an input-less
Turing machine that always outputs 𝑀 𝑡(𝑥).

Now, we show how to construct a two-message blind delegation protocol with certified dele-
tion. We will define an ideal functionality for this task that is slightly different than ℱBD specified
above (Section 6.1). In particular, the ideal functionality ℱnrBD (Section 8.3.4) is not reusable (there
is only one Turing machine queried by the client), and we allow the server to see the output of the
client’s desired computation, while still hiding the input 𝑥.

Theorem 8.21. Assuming sub-exponentially secure post-quantum indistinguishability obfuscation and
one-way functions,17 there exists a two-message protocol Π that securely realizes (Definition 6.2) the func-
tionalityℱDel

nrBD against adversaries that corrupt the server, and where the client runs in time poly(𝜆, |𝑀 |, |𝑥|, log 𝑡).

Proof. The construction proceeds as follows. Let 𝑓 be a one-way function. Suppose the client
wants to delegate a Turing machine computation specified by 𝑀,𝑥, 𝑡 with one bit of output. They
do the following.

• Sample 𝑟0, 𝑟1 ← {0, 1}𝜆 and define 𝑠0 := 𝑓(𝑟0) and 𝑠1 := 𝑓(𝑟1).

• Define Turing machine 𝑀 ′ to take (𝑥, 𝑟0, 𝑟1) as input, run 𝑀(𝑥) for 𝑡 steps to obtain a bit 𝑏,
and then output 𝑟𝑏.

• Sample |̃︁𝑀 ′⟩ , vk← SRE-CD(1𝜆,𝑀 ′, (𝑥, 𝑟0, 𝑟1), 𝑡) and output

|̃︁𝑀 ′⟩ , vk, 𝑠0, 𝑠1.

The server then runs 𝑟𝑏 ← SRE-CD.Eval(|̃︁𝑀 ′⟩) coherently (that is, they only measure the output
𝑟𝑏), and then, if desired, runs cert ← SRE-CD.Del(|̃︁𝑀 ′⟩). The server returns (𝑟𝑏, cert) to the client.
If there exists 𝑏 such that 𝑠𝑏 = 𝑓(𝑟𝑏), then the client outputs 𝑏.

To argue security, we define the simulator to take as input (𝑀, 𝑡, 𝑏 := 𝑀 𝑡(𝑥)), sample 𝑟0, 𝑟1,
compute 𝑠0 := 𝑓(𝑟0), 𝑠1 := 𝑓(𝑟1), and run |̃︁𝑀 ′⟩ , vk ← 𝒮(𝑀 ′, 𝑡, 𝑟𝑏), where 𝒮 is the simulator for
the SRE-CD scheme. Then, it runs the adversarial server on input |̃︁𝑀 ′⟩ , vk. If it receives 𝑟 such
that 𝑓(𝑟) = 𝑠𝑏, it instructs the ideal functionality to deliver the output, and otherwise it does not.
If it receives cert such that SRE-CD(vk, cert) = ⊤, it instructs the ideal functionality to deliver
Deletion Confirmed. It is straightforward to see that, due to the security of the one-way function
𝑓 and the SRE-CD scheme, this satisfies Definition 6.2. In particular, note that the client does not
need to keep any long-term secrets, so the tape sec is empty, and does not have to be simulated.

17As remarked in Section 3.3, it is known how to construct si𝒪 from sub-exponentially secure i𝒪.

77

Remark 8.22. Even though ℱnrBD leaks the output 𝑦 to the server, the client could always hide its “real”
output from the server as follows. Suppose the client wants to delegate the computation of (𝑀, 𝑡) on input
𝑥 ∈ {0, 1}𝑛. Consider the Turing machine (𝑀 ′, 𝑡) that takes 𝑛 + 1 bits (𝑥, 𝑏) as input, and outputs
𝑏 ⊕𝑀 𝑡(𝑥). Then the client can sample a random 𝑏 ← {0, 1} and delegate 𝑀 ′ on input (𝑥, 𝑏). The server
will only learn 𝑏⊕𝑀 𝑡(𝑥), which is a uniformly random bit from their view.

However, we remark that in this scenario, the client does maintain a long-term secret, that is, the bit
𝑏. And we cannot explicitly leak 𝑏 to the server. Thus, we can securely realize a variant of ℱnrBD where the
ideal functionality does not deliver 𝑦 to the server, but only under a variant of Definition 6.2 where the
long-term secret tape sec is not leaked to the adversary.

8.3.5 Oracles with certified deletion

In this section, we describe an application of our techniques in the “oracle model”, where par-
ties may have (quantum-accessible) oracle access to any classical functionality. We show how to
implement an “oracle with certified deletion” for any classical functionality 𝑓 (with polynomial
description size). This primitive allows us to prepare an oracle ̂︀𝑓 that anyone may use to evaluate
𝑓 . However, any adversary that queries ̂︀𝑓 some poly(𝜆) number of times and then produces a
(classical and publicly-verifiable) certificate of deletion can no longer learn any information about
𝑓 via ̂︀𝑓 . That is, even given unbounded queries to ̂︀𝑓 , the adversary will never again be able to learn
anything about 𝑓 , despite the fact that it was previously able to use ̂︀𝑓 to learn 𝑓(𝑥) for any inputs
𝑥 of its choice.

Definition 8.23 (Oracle with certified deletion). An oracle with certified deletion consists of the
following polynomial-time algorithms.

• Enc(1𝜆, 𝑓) → (|ek⟩ , vk, ̂︀𝑓): The encode algorithm takes the security parameter 1𝜆 and a classical
functionality 𝑓 as input, and outputs a quantum evaluation key |ek⟩, a verification key vk, and a
classical functionality ̂︀𝑓 .

• Eval
̂︀𝑓 (|ek⟩ , 𝑥)→ 𝑦: The evaluation algorithm has oracle access to ̂︀𝑓 , takes an evaluation key |ek⟩ and

an 𝑥 as input, and outputs 𝑦.

• Del(|ek⟩)→ cert: The deletion algorithm takes as input an evaluation key |ek⟩ and outputs a deletion
certification cert.

• Verify(vk, cert) → {⊤,⊥}: The verification algorithm takes as input the verification key vk and a
deletion certificate cert and outputs ⊤ or ⊥.

It should satisfy the following properties.

• Correctness. For any 𝜆, 𝑓 , and 𝑥,

Pr
[︁
Eval

̂︀𝑓 (|ek⟩ , 𝑥) = 𝑓(𝑥) : |ek⟩ , vk, ̂︀𝑓 ← Enc(1𝜆, 𝑓)
]︁
= 1.

• Correctness of deletion. For any 𝜆 and 𝑓 ,

Pr

[︂
Verify(vk, cert) = ⊤ :

|ek⟩ , vk, ̂︀𝑓 ← Enc(1𝜆, 𝑓)
cert← Del(|ek⟩)

]︂
= 1− negl(𝜆).

78

• Certified deletion. There exists a simulator 𝒮 such that for any adversary 𝒜 with unbounded time
and unbounded oracle queries, and any 𝑓 ,

⃒⃒
Pr[REAL𝒜(𝜆, 𝑓) = 1]− Pr[IDEAL𝒜,𝒮(𝜆, 𝑓) = 1]

⃒⃒
= negl(𝜆),

where the experiments are defined as follows. Given a security parameter 𝜆 and a functionality 𝑓 , the
experiment REAL𝒜(𝜆, 𝑓) proceeds as follows.

– Sample (|ek⟩ , vk, ̂︀𝑓)← Gen(1𝜆, 𝑓).

– Run 𝒜 ̂︀𝑓,Verify(vk,·)(|ek⟩). If 𝒜 does not output a classical cert such that Verify(vk, cert) = ⊤
within its first poly(𝜆) oracle queries, then abort and output ⊥.

– Otherwise, continue running 𝒜 ̂︀𝑓,Verify(vk,·) until it halts and outputs a bit.

Given a security parameter 𝜆 and a functionality 𝑓 , the experiment IDEAL𝒜,𝒮(𝜆, 𝑓) proceeds as
follows.

– Sample (|ek⟩ , vk)← 𝒮(1𝜆, |𝑓 |).

– Run 𝒜𝒮𝑓 ,Verify(vk,·)(|ek⟩), where each query made by 𝒜 to ̂︀𝑓 is answered by 𝒮𝑓 making a single
query to 𝑓 . If 𝒜 does not output a classical cert such that Verify(vk, cert) = ⊤ within its first
poly(𝜆) oracle queries, then abort and output ⊥.

– Otherwise, once𝒜 outputs cert such that Verify(vk, cert) = ⊤, continue running𝒜𝒮,Verify(vk,·)

until it halts and outputs a bit. Note that in this final stage 𝒮 does not have access to 𝑓 .

Now, we show how to construct an oracle with certified deletion. The querier will hold a
quantum ciphertext containing the program to be evaluated. The oracle will run a program which
checks that the ciphertext is intact, then decrypts it and evaluates it on the queried input.

Hard-Coded Values. {𝑆𝑖, 𝑇𝑖, u𝑖}𝑖∈[ℓ], a bitstring ̃︀𝑓 ∈ {0, 1}ℓ.
Input. Vectors {t𝑖}𝑖∈[ℓ] and an input 𝑥.

1: if t𝑖 ∈ 𝑇𝑖 + u𝑖 then
2: v′𝑖 ∈ co(𝑆𝑖) be the coset of 𝑆𝑖 that t𝑖 belongs to and define 𝑓 ′𝑖 := ̃︀𝑓𝑖 ⊕ ⟨v′𝑖,1⟩.
3: Output 𝑓 ′(𝑥).

Oracle Program

Enc(1𝜆, 𝑓):

1: Let 𝑛 = 4𝜆, and for each 𝑖 ∈ [ℓ], sample 𝑆𝑖 < 𝑇𝑖 < F𝑛
2 such that dim(𝑆𝑖) = 𝑛/2 and dim(𝑇𝑖) = 3𝑛/4,

sample v𝑖,w𝑖 ← co(𝑆𝑖)× co(𝑆⊥
𝑖), and let u𝑖 be the coset of 𝑇𝑖 that v𝑖 belongs to.

2: For each 𝑖 ∈ [ℓ], let ̃︀𝑓𝑖 := 𝑓𝑖 ⊕ ⟨v𝑖,1⟩, and define ̃︀𝑓 := (̃︀𝑓1, . . . , ̃︀𝑓ℓ).
3: Let 𝑓 be the oracle program with hard-coded values {𝑆𝑖, 𝑇𝑖, u𝑖}𝑖∈[ℓ] and ̃︀𝑓 .

Oracle with Certified Deletion

79

4: Output
|ek⟩ := {|(𝑆𝑖)v𝑖,w𝑖

⟩}𝑖∈[ℓ], vk := {𝑆⊥
𝑖 ,w𝑖}𝑖∈[ℓ], ̂︀𝑓.

Eval
̂︀𝑓 (|ek⟩ , 𝑥): Measure {|(𝑆𝑖)v𝑖,w𝑖⟩}𝑖∈[ℓ] in the computational basis to obtain vectors {t𝑖}𝑖∈[ℓ], and query

({t𝑖}𝑖∈[ℓ], 𝑥) to ̂︀𝑓 to obtain output 𝑦.
Del(|ek⟩): Measure {|(𝑆𝑖)v𝑖,w𝑖⟩}𝑖∈[ℓ] in the Hadamard basis to obtain vectors {z𝑖}𝑖∈[ℓ], and output cert :=

{z𝑖}𝑖∈[ℓ].
Verify(vk, cert): If z𝑖 ∈ 𝑆⊥

𝑖 + w𝑖 for all 𝑖 ∈ [ℓ] then output ⊤ and otherwise output ⊥.

Theorem 8.24. The above construction is an oracle with certified deletion (Definition 8.23).

Proof. Correctness and correctness of deletion follow immediately from the the description of the
scheme, so it suffice to prove certified deletion.

We describe the simulator 𝒮 . Given 1𝜆 and a description length ℓ, 𝒮 first samples {𝑆𝑖, 𝑇𝑖, v𝑖,w𝑖, u𝑖}𝑖∈[ℓ]
as in the description of Enc, and sets |ek⟩ := {|(𝑆𝑖)v𝑖,w𝑖⟩}𝑖∈[ℓ], vk := {𝑆⊥

𝑖 ,w𝑖}𝑖∈[ℓ]. It answers ̂︀𝑓
queries as follows, where the classical functionality described below will be run in superposition
over 𝒜’s quantum query.

• For queries ({t𝑖}𝑖∈[ℓ], 𝑥) made before 𝒜 produces cert, 𝒮 checks that t𝑖 ∈ 𝑇𝑖 + u𝑖 for all 𝑖 ∈ [ℓ],
and outputs ⊥ if not. Otherwise it queries 𝑓 on 𝑥 to obtain 𝑦 and outputs 𝑦.

• For queries ({t𝑖}𝑖∈[ℓ], 𝑥) made after𝒜 produces cert, 𝒮 answers using the program𝑃 [{𝑆𝑖, 𝑇𝑖, u𝑖}𝑖∈[ℓ], ̃︀𝑓],
where ̃︀𝑓 := (⟨v1,1⟩, . . . , ⟨vℓ,1⟩). Note that 𝑃 is now completely independent of 𝑓 .

We show via a sequence of hybrids that for any 𝑓 ,
⃒⃒
Pr[REAL𝒜(𝜆, 𝑓) = 1]−Pr[IDEAL𝒜,𝒮(𝜆, 𝑓) =

1]
⃒⃒
= negl(𝜆).

• ℋ0: This is REAL𝒜(𝜆, 𝑓).

• ℋ1: For each 𝑖 ∈ [ℓ], sample 𝑅𝑖 as a random superspace of 𝑆⊥
𝑖 of dimension 3𝑛/4, and let

x𝑖 ∈ co(𝑅𝑖) be such that 𝑆⊥
𝑖 + w𝑖 ⊂ 𝑅𝑖 + x𝑖. Answer each of 𝒜’s queries to Verify before it

produces cert using vk′ := {𝑅𝑖, x𝑖}𝑖∈[ℓ].

• ℋ2: Answer each of 𝒜’s queries to ̂︀𝑓 before it produces cert using the strategy described in
the simulator. That is, the {𝑆𝑖}𝑖∈[ℓ] are not used to answer these queries, only {𝑇𝑖, u𝑖}𝑖∈[ℓ].

• ℋ3 − ℋℓ+2: In ℋ𝑖 for 𝑖 ∈ [3, . . . , ℓ + 2], switch the (𝑖 − 2)’th bit of ̃︀𝑓 from 𝑓𝑖−2 ⊕ ⟨v𝑖−2,1⟩ to
⟨v𝑖−2,1⟩.

• ℋℓ+3: Reverse the switch made in ℋ1. That is, answer each of 𝒜’s queries to Verify before it
produces cert using vk := {𝑆⊥

𝑖 ,w𝑖}𝑖∈[ℓ]. This is the simulator described above.

Now we argue statistical indistinguishability between each pair of hybrids, which completes
the proof.

• The difference between ℋ0 and ℋ1 is negl(𝜆), which follows from ℓ invocations of Theo-
rem 3.11.

80

• The difference between ℋ1 and ℋ2 is negl(𝜆), which follows from ℓ invocations of Theo-
rem 3.11.

• For each 𝑖 ∈ [3, . . . , ℓ + 2], we can directly reduce the indistinguishability of ℋ𝑖−1 and ℋ𝑖

to Theorem 5.5 by noting that the only information obtained by 𝒜 about 𝑆𝑖−2, v𝑖−2,w𝑖−2 via
oracle queries to ̃︀𝑓 and Verify are the random superspaces 𝑇𝑖−2, u𝑖−2, 𝑅𝑖−2, x𝑖−2.

• The difference betweenℋℓ+2 andℋℓ+3 is negl(𝜆), which follows from ℓ invocations of Theo-
rem 3.11.

9 Functional Encryption with Certified Deletion

We consider two notions of functional encryption with certified deletion. One allows the secret
key to be deleted, while the other allows ciphertexts to be deleted. In functional encryption with
secret key certified deletion, a secret key sk𝑓 can be used to learn 𝑓(𝑥) from any ciphertext Enc(𝑥)
until sk𝑓 is deleted, then it can no longer be used to learn anything. This notion was previously
studied by [KN22]. In functional encryption with ciphertext certified deletion, if a key sk𝑓 is received
before 𝑐 = Enc(𝑥) is deleted, then it can be used to learn 𝑓(𝑥). However, no more information
about 𝑥 can be learned after 𝑐 is deleted, even if new secret keys are received.

9.1 Definitions

Functional Encryption. A functional encryption scheme FE = (FE-Setup,FE-KeyGen,FE-Enc,
FE-Dec) for a family of message spaces {𝒳𝑛}, a family of output spaces {𝒴𝑛} and a family of
functions ℱ consists of the following polynomial time algorithms:

• FE-Setup(1𝜆). The setup algorithm takes as input the security parameter 𝜆 and outputs a
master public key-secret key pair (pp,msk).

• FE-Enc(pp, 𝑥) → ct. The encryption algorithm takes as input a message 𝑥 ∈ 𝒳𝑛 and the
master public key pp. It outputs a ciphertext ct.

• FE-KeyGen(msk, 𝑓) → sk𝑓 . The key generation algorithm takes as input a function 𝑓 ∈ ℱ𝜆

and the master secret key msk. It outputs a function secret key sk𝑓 .

• FE-Dec(sk𝑓 , ct)→ 𝑦. The decryption algorithm takes as input a secret key sk𝑓 and a cipher-
text ct. It outputs a string 𝑦 ∈ 𝒴𝜆 or ⊥.

Definition 9.1. (Correctness) A functional encryption scheme FE for ℱ is correct if for all 𝑓 ∈ ℱ𝜆 and all
𝑥 ∈ 𝒳𝜆

Pr

[︂
FE-Dec(sk𝑓 ,FE-Enc(pp, 𝑥)) = 𝑓(𝑥) :

(pp,msk)← FE-Setup(1𝜆)
sk𝑓 ← FE-KeyGen(msk, 𝑓)

]︂
= 1

where the probability is over the random coins of FE-Setup,FE-Enc,FE-KeyGen and FE-Dec.

81

Security. We define (standard) security of functional encryption using the following game (Adaptive-IND)
between a challenger and an adversary.

• Setup Phase: The challenger generates (pp,msk) ← FE-Setup(1𝜆) and then hands over the
master public key pp to the adversary.

• Key Query Phase 1: The adversary makes function secret key queries by submitting func-
tions 𝑓 ∈ ℱ𝜆. The challenger responds by giving the adversary the corresponding function
secret key sk𝑓 ← FE-KeyGen(msk, 𝑓).

• Challenge Phase: The adversary chooses two messages𝑀0,𝑀1 of the same size (each in 𝒳𝜆)
such that for all queried functions 𝑓 in the key query phase, it holds that 𝑓(𝑀0) = 𝑓(𝑀1).
The challenger selects a random bit b ∈ {0, 1} and sends a ciphertext ct← FE-Enc(pp,𝑀𝑏) to
the adversary.

• Key Query Phase 2: The adversary may submit additional key queries 𝑓 ∈ ℱ𝜆 as long as
they do not violate the constraint described above.

• Guess: The adversary submits a guess 𝑏′ and wins if 𝑏′ = 𝑏. The adversary’s advantage in
this game is defined to be 2 · |Pr[𝑏 = 𝑏′]− 1/2|.

Definition 9.2 (Adaptive-IND Security). A functional encryption scheme FE is adaptively secure if all
PPT adversaries have at most a negligible advantage in the Adaptive-IND security game.

Multi-input Functional Encryption. A (public-key) multi-input functional encryption scheme
extends the definition of functional encryption to consider 𝑛-ary functions. For our construc-
tion, we will rely on a multi-input FE scheme that supports functions of arity two. The syntax of
MIFE remains the same as above except that we have two encryption algorithms MIFE-Enc1 and
MIFE-Enc2, one for each arity, and the decryption algorithm MIFE-Dec accepts two ciphertext as
input, along with a functional secret key.

Definition 9.3. (Correctness) A multi-input functional encryption scheme MIFE for ℱ is correct if for all
𝑓 ∈ ℱ𝜆, all 𝑥 ∈ 𝒳𝜆 and 𝑦 ∈ 𝒴𝜆,

Pr

⎡⎣ (pp,msk)← MIFE-Setup(1𝜆)
sk𝑓 ← MIFE-KeyGen(msk, 𝑓)

MIFE-Dec(sk𝑓 ,MIFE-Enc1(pp, 𝑥),MIFE-Enc2(pp, 𝑦)) = 𝑓(𝑥, 𝑦)

⎤⎦ = 1

where the probability is over the random coins of MIFE-Setup,MIFE-Enc,MIFE-KeyGen and MIFE-Dec.

Security. We will require the following notion of security (Adaptive-IND-MIFE) from the MIFE
scheme.

• Setup Phase: The challenger generates (pp,msk) ← FE-Setup(1𝜆) and then hands over the
master public key pp to the adversary.

• Key Query Phase 1: The adversary makes function secret key queries by submitting func-
tions 𝑓 ∈ ℱ𝜆. The challenger responds by giving the adversary the corresponding function
secret key sk𝑓 ← FE-KeyGen(msk, 𝑓).

82

• Challenge Phase: The adversary chooses two messages𝑀0,𝑀1 of the same size (each in 𝒳𝜆)
such that for all queried functions 𝑓 in the key query phase, and every 𝑦 ∈ 𝒴 it holds that
𝑓(𝑀0, 𝑦) = 𝑓(𝑀1, 𝑦). The challenger selects a random bit b ∈ {0, 1} and sends a ciphertext
ct← FE-Enc1(pp,𝑀𝑏) to the adversary.

• Key Query Phase 2: The adversary may submit additional key queries 𝑓 ∈ ℱ𝜆 as long as
they do not violate the constraint described above.

• Guess: The adversary submits a guess 𝑏′ and wins if 𝑏′ = 𝑏. The adversary’s advantage in
this game is defined to be 2 · |Pr[𝑏 = 𝑏′]− 1/2|.

Definition 9.4 (Adaptive-IND-MIFE Security). A multi-input functional encryption scheme MIFE is
adaptively secure if all PPT adversaries have at most a negligible advantage in the Adaptive-IND-MIFE
security game.

Remark 9.5. We note that MIFE satisfying the above (adaptive) definition can be realized from sub-
exponentially secure one-way functions and sub-exponentially secure i𝒪 following [GGG+14, GJO16,
BPW16], and sub-exponentially secure i𝒪 can itself be based on sub-exponentially secure FE [AJ15, BV15].
In a weaker selective setting, where the challenge phase occurs before all other phases, this definition can be
realized from polynomially secure i𝒪 [GGG+14]. We also observe that MIFE satisfying the above definition
implies i𝒪, where to obfuscate a program, we simply encrypt the description of the program via MIFE-Enc1,
and output the functional key for an (appropriately large) universal circuit. This obfuscated circuit can be
evaluated on any input 𝑥 by encrypting it using MIFE-Enc2, and running functional decryption.

Notions of Certified Deletion

Certified deletion for ciphertexts. A (quantum) functional encryption scheme with certified
deletion for ciphertexts modifies the above syntax so that FE-Enc(pp, 𝑥) outputs a quantum ci-
phertext |ct⟩ and (classical) verification key vk, and includes the following algorithms.

• Del(|ct⟩)→ cert. The deletion algorithm takes as input a quantum ciphertext ct and outputs
a (classical) deletion certificate cert.

• Verify(|ct⟩ , vk)→ {⊤,⊥} takes as input a (classical) ciphertext and verification key, and out-
puts either ⊤ or ⊥.

It additionally satisfies the following correctness of deletion property.

Definition 9.6. (Correctness of Deletion) A functional encryption scheme FE for ℱ satisfies correctness of
deletion if for all 𝑥 ∈ 𝒳𝜆

Pr

⎡⎢⎢⎣
(pp,msk)← FE-Setup(1𝜆)
(|ct⟩ , vk)← FE-Enc(pp, 𝑥)

cert← Del(|ct⟩)
Verify(cert, vk) = ⊤

⎤⎥⎥⎦ = 1

where the probability is over the random coins of FE-Setup,FE-Enc,Del and Verify.

Finally, it also satisfies a certified deletion property.

83

Definition 9.7. (Ciphertext certified everlasting adaptive security for FE.) For all QPT adversaries {𝒜𝜆}𝜆∈N,

TD (EV-EXP0(𝒜𝜆),EV-EXP1(𝒜𝜆)) = negl(𝜆),

where, given an adversary 𝒜, the experiment EV-EXP𝑏(𝒜) is defined as follows.
EV-EXP𝑏(𝒜𝜆):

• Setup Phase: The challenger generates (pp,msk)← FE-Setup(1𝜆) and then hands over the master
public key pp to the adversary.

• Key Query Phase 1: 𝒜makes function secret key queries by submitting functions 𝑓 ∈ ℱ𝜆. The chal-
lenger responds by giving the adversary the corresponding function secret key sk𝑓 ← FE-KeyGen(msk, 𝑓).

• Challenge Phase: 𝒜 chooses two messages 𝑀0,𝑀1 of the same size (each in 𝒳𝜆) such that for all
queried functions 𝑓 in the key query phase, it holds that 𝑓(𝑀0) = 𝑓(𝑀1). The challenger selects a
random bit b ∈ {0, 1} and sends a ciphertext ct← FE-Enc(pp,𝑀𝑏) to the adversary.

• Key Query Phase 2: 𝒜 may submit additional key queries 𝑓 ∈ ℱ𝜆 as long as they do not violate the
constraint described above.

• Deletion Phase: At some point, 𝒜 sends a certificate of deletion cert.

Let 𝜌 denote the left-over state of 𝒜. If Verify(vk, cert) = ⊤, output 𝜌 and otherwise output ⊥.

It is also possible to define a certified everlasting selective variant of the definition above,
where the challenge phase occurs before all other phases in the experiment.

Certified deletion for secret keys. A (quantum) functional encryption scheme with certified
deletion for secret keys modifies the syntax of a functional encryption scheme similarly to that
of a functional encryption scheme with certified deletion ciphertexts. However, instead of Del tak-
ing a ciphertext as input, it takes a secret key |sk𝑓 ⟩ as input. It must also satisfy deletion correctness
(defined similarly to ciphertext deletion correctness) and secret key certified deletion.

Definition 9.8 (Secret key computational certified deletion adaptive security for FE.). A functional
encryption scheme, augmented as above, has secret key certified deletion (SKCD) if the advantage of every
QPT adversary in the following game is negl(𝜆):

• Setup Phase: The challenger samples (pk,msk)← FE-Setup(1𝑛) and sends pk to the adversary.

• Query Phase 1: The following query phase is repeated a polynomial number of times:

1. The adversary adaptively submits a query 𝑓𝑖 ∈ ℱ(𝑛).
2. The challenger samples (sk𝑓𝑖 , vk𝑖)← FE-KeyGen(msk, 𝑓𝑖) and sends sk𝑓𝑖 to the adversary.

• Deletion Phase: Let 𝑛 be the number of iterations in the query phase. The adversary sends a list of
deletion proofs cert1, . . . , cert𝑛, along with two messages 𝑚0 and 𝑚1. For any secret key sk𝑓𝑖 they do
not wish to delete, they may send cert𝑖 = ⊥.

• Challenge Phase: The challenger checks the deletion proofs. If 𝑓𝑖(𝑚0) = 𝑓𝑖(𝑚1) for every 𝑓𝑖 such
that Verify(cert𝑖, vk𝑖) = ⊥, then sample a random bit 𝑏 and send Enc(pk,𝑚𝑏) to the adversary.

84

• Query Phase 2: The following query phase is repeated a polynomial number of times:

1. The adversary adaptively submits a query 𝑓𝑖 ∈ ℱ(𝑛).
2. If 𝑓𝑖(𝑚0) = 𝑓𝑖(𝑚1), the challenger samples (sk𝑓𝑖 , vk𝑖) ← FE-KeyGen(msk, 𝑓𝑖) and sends sk𝑓𝑖

to the adversary.

• The adversary outputs a bit 𝑏′ and wins if 𝑏′ = 𝑏.

We say the functional encryption scheme has selective secret key certified deletion if this holds in the
game where adversary must declare the challenge messages 𝑚0 and 𝑚1 before the challenger samples
(pk, sk).

We note that the above definition only guarantees computational security after deletion. How-
ever, this is unavoidable. Any functional encryption scheme is also a public key encryption
scheme, so the ciphertext itself can only be computationally hiding, even without access to any
secret keys.

9.2 Some Preliminaries

In Appendix A, we prove a variant of subspace-hiding security for functional encryption, building
on subspace-hiding obfuscation [Zha19]. Our proof makes use of the following corollary of the
lemma we prove in Appendix A.

Corollary 9.9. (Subspace-Hiding for Multi-input Functional Encryption) Any multi-input functional en-
cryption scheme (MIFE-Setup,MIFE-KeyGen,MIFE-Enc1,MIFE-Enc2,MIFE-Dec) of arity two (Defini-
tion 9.4) satisfies the following.

Pr

⎡⎢⎢⎢⎢⎢⎢⎣𝑏
′ = 𝑏

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
𝑏← {0, 1}
(pp,msk)← MIFE-Setup(1𝜆)
𝑀 ← 𝒜MIFE-KeyGen(msk,𝑔(·))(pp)
ct← MIFE-Enc2(𝑆, 𝑇, u, v,𝑀, 0, 0) if 𝑏 = 0
ct← MIFE-Enc2(𝑆, 0, 0, v,𝑀, 1, 0) if 𝑏 = 1

𝑏′ ← 𝒜MIFE-KeyGen(msk,𝑔(·))(pp, sk𝑓 , ct, 𝑆, v)

⎤⎥⎥⎥⎥⎥⎥⎦ = negl(𝜅)

where the probability is over the randomness of sampling 𝑆 < 𝑇 < F𝑛
2 such that dim(𝑆) ≤ dim(𝑇) and

both dimensions are in [𝑛/2, 3𝑛/4] for 𝑛 = 4𝜆, v,w← co(𝑆)× co(𝑆⊥), and letting u be the coset of 𝑇 that
v belongs to, and 𝑔(𝑓) is an appropriately defined function that obtains input (t, (𝑆, 𝑇, u, v,𝑀, 𝑐, td)) and
parses td = (𝑐1, 𝑖, 𝑦). Then, if 𝑐1 = 0, it does the following:

• If 𝑐 = 0, if t /∈ 𝑇 + u, then abort and output ⊥, and otherwise output 𝑓(𝑀).

• If 𝑐 = 1, if t /∈ 𝑆 + v, then abort and output ⊥, and otherwise output 𝑓(𝑀).

Remark 9.10. We note that in the corollary above, 𝑔𝑓 is also well defined on values of 𝑐1 ̸= 0, but we
skip these details in the statement of the Corollary in this section, and defer them to the expanded version
presented in Appendix A.

85

9.3 Construction of Functional Encryption with Certified Deletion for Ciphertexts

Let MIFE = (MIFE-Setup,MIFE-KeyGen,MIFE-Enc1,MIFE-Enc2,MIFE-Dec) denote a public-key multi-
input functional encryption scheme of arity two, satisfying Definition 9.4.

We build FE.CD = (FE.CD-Setup,FE.CD-KeyGen,FE.CD-Enc,FE.CD-Dec) as follows.

FE.CD-Setup(1𝜆): Output (pp,msk)← MIFE-Setup(1𝜆).

FE.CD-Enc(pp,𝑚):

1: Let 𝑛 = 4𝜆, let ℓ = |𝑚|, and for 𝑖 ∈ [2ℓ + 1], sample 𝑆𝑖 < 𝑇𝑖 < F𝑛
2 such that dim(𝑆𝑖) = 𝑛/2 and

dim(𝑇𝑖) = 3𝑛/4, sample v𝑖,w𝑖 ← co(𝑆𝑖)× co(𝑆⊥
𝑖), and let u𝑖 be the coset of 𝑇𝑖 that v𝑖 belongs to.

2: Let ̂︀𝑚 := (0,𝑚, 0ℓ), and for all 𝑖 ∈ [2ℓ+ 1], define ̃︀𝑚𝑖 := ̂︀𝑚𝑖 ⊕ ⟨v𝑖,1⟩. Define ̃︀𝑚 := (̃︀𝑚1, . . . , ̃︀𝑚2ℓ+1).
3: Let |ct1⟩ = {|(𝑆𝑖)v𝑖,w𝑖

⟩}𝑖∈[2ℓ+1] and ct2 = FE-Enc2
(︀
pp,

(︀
{𝑆𝑖, 𝑇𝑖, u𝑖, 0, ̃︀𝑚𝑖}𝑖∈[2ℓ+1], 0

2ℓ+1
)︀)︀

.

4: Output |ct⟩ = |ct1⟩ , ct2 and the certified deletion verification key vk :=
{︁
i𝒪

(︁
𝑃𝑆⊥

𝑖 +w𝑖

)︁}︁
𝑖∈[2ℓ+1]

.

FE.CD-KeyGen(msk, 𝑓): Output sk𝑓 = MIFE-KeyGen(msk, 𝑔𝑓), where 𝑔𝑓 is the following function.

1: Take vectors {t𝑖}𝑖∈[2ℓ+1] as the first input, and parse the second input as the set(︀
{𝑆𝑖, 𝑇𝑖, u𝑖, v𝑖, ̃︀𝑚𝑖}𝑖∈[2ℓ+1], 𝑐

)︀
and a final message 𝑀 .

2: If 𝑀 ̸= ⊥, output 𝑓(𝑀) and end. Otherwise, continuea.
3: for each 𝑖 ∈ [2ℓ+ 1] such that 𝑐𝑖 = 0 do
4: If t𝑖 /∈ 𝑇𝑖 + u𝑖, then abort and output ⊥, and otherwise let v′𝑖 ∈ co(𝑆𝑖) be the coset of 𝑆𝑖 that t𝑖

belongs to, and define 𝑚′
𝑖 := ̃︀𝑚𝑖 ⊕ ⟨v′𝑖,1⟩.

5: for each 𝑖 ∈ [2ℓ+ 1] such that 𝑐𝑖 = 1 do
6: If t𝑖 /∈ 𝑆𝑖 + v𝑖, then abort and output ⊥, and otherwise let v′𝑖 ∈ co(𝑆𝑖) be the coset of 𝑆𝑖 that t𝑖

belongs to, and define 𝑚′
𝑖 := ̃︀𝑚𝑖 ⊕ ⟨v′𝑖,1⟩.

7: Parse 𝑚′
1, . . . ,𝑚

′
2ℓ+1 as (𝑏,𝑚0,𝑚1). Output 𝑓(𝑚𝑏).

FE.CD-Dec(pp, sk𝑓 , |ct⟩)

1: Parse |ct⟩ = |ct1⟩ , ct2.
2: Measure |ct1⟩ = {|(𝑆𝑖)v𝑖,w𝑖

⟩}𝑖∈[2ℓ+1] in the computational basis to obtain vectors {t𝑖}𝑖∈[2ℓ+1]. Let
ct′ = FE-Enc1(pp, {t𝑖}𝑖∈[2ℓ+1])

3: Output the result of FE-Dec (ct′, ct2).
Del(|ct⟩): Measure {|(𝑆𝑖)v𝑖,w𝑖

⟩}𝑖∈[2ℓ+1] in the Hadamard basis to obtain vectors {z𝑖}𝑖∈[2ℓ+1], and output

cert := {z𝑖}𝑖∈[2ℓ+1].

Verify(vk, cert): If i𝒪
(︁
𝑃𝑆⊥

𝑖 +w𝑖

)︁
(z𝑖) = 1 for all 𝑖 ∈ [2ℓ+ 1] then output ⊤ and otherwise output ⊥.

aIn the rest of this section, we will often omit explicitly writing the last part of the input, this should be taken
to denote that the final message 𝑀 is parsed as ⊥ and this “if” statement is skipped. Furthermore, 𝑔𝑓 contains
additional “if” statements matching the ones in Corollary 9.9 that will be used when we rely on Corollary 9.9 in the
proof, but we skip these here for notational convenience.

FE with Certified Deletion for Ciphertexts

Theorem 9.11. Assuming post-quantum public-key multi-input functional encryption adaptively (resp.,
selectively) secure against unbounded collusions (Definition 9.4), there exists public-key functional encryp-
tion with ciphertext certified everlasting adaptive (resp., selective) security (Definition 9.7) with publicly
verifiable deletion.

Proof. Correctness of decryption and correctness of deletion are immediate from the scheme. Thus,

86

it remains to show computational security and certified everlasting security. We prove this in the
adaptive setting below; a proof in the selective setting follows similarly.

Computational security. We have the following hybrids, where changes between subsequent hy-
brids are colored in red.

• ℋ0: This corresponds to Exp0 where (|ct⟩ , vk)← FE.CD-Enc(pp,𝑀0).

• ℋ1: Generate ciphertext ct2 as MIFE-Enc2
(︀
pp,

(︀
{𝑆𝑖, 𝑇𝑖, u𝑖, v𝑖, ̃︀𝑚𝑖}𝑖∈[2ℓ+1], 0

2ℓ+1
)︀)︀

.

• ℋ2: Generate ciphertext ct2 as MIFE-Enc2
(︀
pp,

(︀
{𝑆𝑖, 𝑇𝑖, u𝑖, v𝑖, ̃︀𝑚𝑖}𝑖∈[2ℓ+1], 1

2ℓ+1
)︀)︀

.

• ℋ3: Replace ̂︀𝑚 = (0,𝑀0, 0
ℓ) with ̂︀𝑚 = (0,𝑀1, 0

ℓ).

• ℋ4: Generate ciphertext ct2 as MIFE-Enc2
(︀
pp,

(︀
{𝑆𝑖, 𝑇𝑖, u𝑖, v𝑖, ̃︀𝑚𝑖}𝑖∈[2ℓ+1], 0

2ℓ+1
)︀)︀

.

• ℋ5: Generate ciphertext ct2 as MIFE-Enc2
(︀
pp,

(︀
{𝑆𝑖, 𝑇𝑖, u𝑖, 0, ̃︀𝑚𝑖}𝑖∈[2ℓ+1], 0

2ℓ+1
)︀)︀

. This corre-
sponds to Exp1 where (|ct⟩ , vk)← FE.CD-Enc(pp,𝑀1).

Indistinguishability between ℋ0 and ℋ1 and between ℋ4 and ℋ5 follows from MIFE security,
because the v𝑖 values are never used. Indistinguishability between ℋ1 and ℋ2, and ℋ3 and ℋ4

follows from Corollary 9.9. Finally, indistinguishability between ℋ2 and ℋ3 follows from the se-
curity of FE due to the fact that 𝑓(𝑀0) = 𝑓(𝑀1).

Certified everlasting security. We will switch an encryption of 𝑀0 to an encryption of 𝑀1, by
changing one bit of the string ̂︀𝑚 in the construction at a time, and argue that each switch is statis-
tically close conditioned on the adversary producing a successful deletion certificate.

• ℋ0: This is the certified everlasting security game with |̃︀ct⟩ , vk← FE.CD-Enc(1𝜆,𝑀0).

• ℋ1−ℋℓ: In hybridℋ𝑖 for 𝑖 ∈ [1, . . . , ℓ], we switch the ℓ+1+ 𝑖’th bit of ̂︀𝑚 to the 𝑖’th bit of the
description of 𝑀1. That is, inℋℓ, the string ̂︀𝑚 = (0,𝑀0,𝑀1).

• ℋℓ+1: Switch the first bit of ̂︀𝑚 to 1. So, now ̂︀𝑚 = (1,𝑀0,𝑀1).

• ℋℓ+2 − ℋ2ℓ+1: In hybrid ℋ𝑖 for 𝑖 ∈ [ℓ + 2, . . . , 2ℓ + 1], we switch the 𝑖 − ℓ’th bit of ̂︀𝑚 to the
𝑖− ℓ− 1’th bit of 𝑀1. That is, inℋ2ℓ+1, the string ̂︀𝑚 = (1,𝑀1,𝑀1).

• ℋ2ℓ+2: Switch the first bit of ̂︀𝑚 to 0. So, now ̂︀𝑚 = (0,𝑀1,𝑀1).

• ℋ2ℓ+3 −ℋ3ℓ+2: In hybrid ℋ𝑖 for 𝑖 ∈ [2ℓ + 3, 3ℓ + 2], we switch the 𝑖 − ℓ − 1’th bit of ̂︀𝑚 to 0.
That is, inℋ3ℓ+2, the string ̂︀𝑚 = (0,𝑀1, 0

ℓ). Note that this is exactly the certified everlasting
security game with |̃︀𝑐𝑡⟩ , vk← i𝒪-CD(1𝜆,𝑀1).

The proof follows by combining the following claims.

Claim 9.12. For all 𝑖 ∈ [1, . . . , ℓ], TD(ℋ𝑖−1,ℋ𝑖) = negl(𝜆).

87

Proof. We will reduce this claim to Theorem 5.5. To do so, we must define a distribution 𝒵 and
argue that it is subspace-hiding according to Definition 5.4. Defining 𝑖* := ℓ+1+ 𝑖, we note that the
output of FE.CD-Enc inℋ𝑖−1/ℋ𝑖 can be written as

|(𝑆𝑖*)v𝑖* ,w𝑖* ⟩ ,
(︁
{|(𝑆𝑖)v𝑖,w𝑖⟩}𝑖 ̸=𝑖* ,FE-Enc2

(︁
pp,

(︁
{𝑆𝑖, 𝑇𝑖, u𝑖, 0, ̃︀𝑚𝑖}𝑖∈[2ℓ+1], 0

2ℓ+1
)︁)︁)︁

where in ℋ𝑖−1, ̃︀𝑚𝑖* = 0 ⊕ ⟨v𝑖* ,1⟩ and in ℋ𝑖, ̃︀𝑚𝑖* = (𝑀1)𝑖 ⊕ ⟨v𝑖* ,1⟩. Thus, we must show that the
following distribution 𝒵𝜆 is subspace-hiding.

𝒵𝜆(𝑆, 𝑇, u,w, 𝑏
′):

• Set 𝑆𝑖* := 𝑆, 𝑇𝑖* := 𝑇, u𝑖* := u,w𝑖* := w𝑖, and ̃︀𝑚𝑖* := 𝑏′.

• For 𝑖 ∈ [2ℓ+1] ∖ {𝑖*}, sample 𝑆𝑖 < 𝑇𝑖 < F𝑛
2 uniformly at random such that dim(𝑆) = 𝑛/2 and

dim(𝑇) = 3𝑛/4, sample v𝑖 ← co(𝑆𝑖) ∩ 𝑇𝑖, and let u𝑖 be the coset of 𝑇𝑖 that v𝑖 belongs to.

• Sample the bits ̃︀𝑚𝑖 for 𝑖 ̸= 𝑖* as they are sampled inℋ𝑖−1 andℋ𝑖, and output

{|(𝑆𝑖)v𝑖,w𝑖⟩}𝑖 ̸=𝑖* ,FE-Enc2
(︁
pp,

(︁
{𝑆𝑖, 𝑇𝑖, u𝑖, 0, ̃︀𝑚𝑖}𝑖∈[2ℓ+1], 0

2ℓ+1
)︁)︁

,
{︁
i𝒪

(︁
𝑃𝑆⊥

𝑖 +w𝑖

)︁}︁
𝑖∈[2ℓ+1]

.

We will proceed via a sequence of hybrids.

• ℋ0(𝑆, 𝑇, u,w, 𝑏
′): This is 𝒵𝜆(𝑆, 𝑇, u,w, 𝑏

′).

• ℋ1(𝑆, 𝑇, u,w, 𝑏
′): Same asℋ0, except that the ciphertext is

{|(𝑆𝑖)v𝑖,w𝑖⟩}𝑖 ̸=𝑖* ,FE-Enc2
(︁
pp,

(︁
{𝑆𝑖, 𝑇𝑖, u𝑖, v𝑖, ̃︀𝑚𝑖}𝑖∈[2ℓ+1], 1

ℓ+10ℓ
)︁)︁

• ℋ2(𝑆, 𝑇, u,w, 𝑏
′): Same asℋ1, except that the ciphertext is

{|(𝑆𝑖)v𝑖,w𝑖⟩}𝑖 ̸=𝑖* ,FE-Enc2
(︁
pp,

(︁
{𝑆𝑖, 𝑇𝑖, u𝑖, v𝑖, ̃︀𝑚𝑖}𝑖∈[ℓ+1], {0, 𝑇𝑖, u𝑖, 0, ̃︀𝑚𝑖}𝑖∈[ℓ+2,2ℓ+1], 1

ℓ+10ℓ,𝑀0

)︁)︁
• ℋ3(𝑆, 𝑇, u,w, 𝑏

′): Same as ℋ2, except that we sample 𝑅𝑖* as a uniformly random superspace
of 𝑆⊥

𝑖* of dimension 3𝑛/4, define x𝑖* ∈ co(𝑅𝑖*) so that 𝑆⊥
𝑖* + w𝑖* ⊂ 𝑅𝑖* + x𝑖* , and set the

verification key to be i𝒪
(︀
𝑃𝑅𝑖*+x𝑖

)︀
in place of i𝒪

(︁
𝑃𝑆⊥

𝑖*+w𝑖

)︁
. Note that this distribution can

be prepared just given (𝑅, 𝑇, u, x, 𝑏′) as defined in Definition 5.4, and thus can be considered
the simulated distribution.

Now, the indistinguishability ofℋ0 andℋ1 follows by MIFE security and repeated application
of subspace-hiding functional encryption (Corollary 9.9) for each 𝑖 ∈ [1, . . . , ℓ + 1]. Next, the
indistinguishability of ℋ1 and ℋ2 follows from the security of MIFE. Indeed, note that in ℋ1, the
functional keys will always either abort or unmask the first ℓ+1 bits of ̃︀𝑚 to (0,𝑀0), which means
that the final step of the program will always output 𝑓(𝑀0). Finally, the indistinguishability ofℋ2

andℋ3 follows from Corollary 3.10.

Claim 9.13. TD(ℋℓ,ℋℓ+1) = negl(𝜆).

88

Proof. We will again reduce this claim to Theorem 5.5. Note that the output of i𝒪-CD in ℋℓ/ℋℓ+1

can be written as

|(𝑆1)v1,w1⟩ ,
(︁
{|(𝑆𝑖)v𝑖,w𝑖⟩}𝑖 ̸=1,FE-Enc2

(︁
pp,

(︁
{𝑆𝑖, 𝑇𝑖, u𝑖, 0, ̃︀𝑚𝑖}𝑖∈[2ℓ+1], 0

2ℓ+1
)︁)︁)︁

𝒵𝜆(𝑆, 𝑇, u,w, 𝑏
′):

• Set 𝑆1 := 𝑆, 𝑇1 := 𝑇, u1 := u,w1 := w, and ̃︀𝑚1 := 𝑏′.

• For 𝑖 ∈ [2ℓ+ 1] ∖ {1}, sample 𝑆𝑖 < 𝑇𝑖 < F𝑛
2 uniformly at random such that dim(𝑆) = 𝑛/2 and

dim(𝑇) = 3𝑛/4, v𝑖 ← co(𝑆𝑖) ∩ 𝑇𝑖, and let u𝑖 be the coset of 𝑇𝑖 that v𝑖 belongs to.

• Sample the bits ̃︀𝑚𝑖 for 𝑖 ̸= 1 as they are sampled inℋ𝑖−1 andℋ𝑖, and output

|(𝑆1)v1,w1⟩ ,
(︁
{|(𝑆𝑖)v𝑖,w𝑖⟩}𝑖 ̸=1,FE-Enc2

(︁
pp,

(︁
{𝑆𝑖, 𝑇𝑖, u𝑖, 0, ̃︀𝑚𝑖}𝑖∈[2ℓ+1], 0

2ℓ+1
)︁)︁)︁

We will proceed via a sequence of hybrids.

• ℋ0(𝑆, 𝑇, u,w, 𝑏
′): This is 𝒵𝜆(𝑆, 𝑇, u,w, 𝑏

′).

• ℋ1(𝑆, 𝑇, u,w, 𝑏
′): Same asℋ0, except that we output

{|(𝑆𝑖)v𝑖,w𝑖⟩}𝑖 ̸=1,FE-Enc2
(︁
pp,

(︁
{𝑆𝑖, 𝑇𝑖, u𝑖, v𝑖, ̃︀𝑚𝑖}𝑖∈[2ℓ+1], 0||12ℓ

)︁)︁
• ℋ2(𝑆, 𝑇, u,w, 𝑏

′): Same asℋ1, except that we output

{|(𝑆𝑖)v𝑖,w𝑖⟩}𝑖 ̸=1,FE-Enc2
(︁
pp,

(︁
0, 𝑇1, u1, 0, ̃︀𝑚1, {𝑆𝑖, 𝑇𝑖, u𝑖, v𝑖, ̃︀𝑚𝑖}𝑖∈[2,2ℓ+1], 0||12ℓ,𝑀0

)︁)︁
• ℋ3(𝑆, 𝑇, u,w, 𝑏

′): Same as ℋ2, except that we sample 𝑅1 as a uniformly random superspace
of 𝑆⊥

1 of dimension 3𝑛/4, define x1 ∈ co(𝑅1) so that 𝑆⊥
1 + w1 ⊂ 𝑅1 + x1, and use (𝑃𝑅1+x1)

in place of
(︁
𝑃𝑆⊥

1 +w1

)︁
to verify certificates. Note that this distribution can be prepared just

give (𝑅, 𝑇, u, x, 𝑏′) as defined in Definition 5.4, and thus can be considered the simulated
distribution.

Now, the indistinguishability of ℋ0 and ℋ1 follows by security of MIFE and by repeated ap-
plication of Corollary 9.9 for each 𝑖 ∈ [2, . . . , 2ℓ + 1]. Next, the indistinguishability of ℋ1 and ℋ2

follows from the security of MIFE. Indeed, note that in ℋ1, the program will always either abort
or unmask the ̃︀𝑚 as (𝑏,𝑀0,𝑀1) for some arbitrary bit 𝑏. Since 𝑓(𝑀0) = 𝑓(𝑀1), this means that
the last step always outputs 𝑓(𝑀0). Finally, the indistinguishability of ℋ2 and ℋ3 follows from
Corollary 3.10.

Claim 9.14. For all 𝑖 ∈ [ℓ+ 2, . . . , 2ℓ+ 1], TD(ℋ𝑖−1,ℋ𝑖) = negl(𝜆).

Proof. This follows from essentially an identical proof as Claim 9.12.

Claim 9.15. TD(ℋ2ℓ+1,ℋ2ℓ+2) = negl(𝜆).

Proof. This follows from essentially an identical proof as Claim 9.13.

Claim 9.16. For all 𝑖 ∈ [2ℓ+ 3, . . . , 3ℓ+ 2], TD(ℋ𝑖−1,ℋ𝑖) = negl(𝜆).

Proof. This follows from essentially an identical proof as Claim 9.12.

89

9.4 Construction of Functional Encryption with Certified Deletion for Secret Keys

Our construction is a natural generalization of the construction in [GGH+13]. Their construction
makes use of a classical public key encryption scheme (GenPKE,EncPKE,DecPKE) and statistically
simulation sound non-interactive non-interactive zero knowledge proofs (SSS-NIZK). The secret
key sk𝑓 consists of an obfuscated program which takes in a SSS-NIZK 𝜋 and two ciphertexts 𝑐1, 𝑐2,
then if 𝜋 shows that 𝑐1 and 𝑐2 encrypt the same message, it outputs 𝑓(Dec(𝑐1)). Our construction
simply implements this functionality as a di𝒪-CD program with a very slight change to allow
treating the challenge ciphertext as a differing input.

SSS-NIZK proof systems can be built using statistically-binding commitments and any NIZK
proof system [GGH+13]. NIZK proof systems are known from quantum-resistant assumptions
[PS19].

Define the language

ℒ = {(pk1, pk2, 𝑐1, 𝑐2,1, 𝑐2,2) : ∃𝑚, 𝑟1, 𝑟2 s.t. 𝑐1 = Enc(pk1,𝑚; 𝑟1) ∧ 𝑐2 = Enc(pk2,𝑚⊕ 𝑐2,2); 𝑟2)}

This language consists of ciphertexts which encrypt the same message. 𝑐2,2 acts as a one-time-
pad key for the message inside 𝑐2,1, which will later allow us to argue that some 𝑐*2,1, 𝑐

*
2,2 is hard

to find even when we have access to 𝑐*2,1 and a one-way function image 𝑔(𝑐*2,2). This is necessary
for constructing a differing inputs circuit where (𝑐*2,1, 𝑐

*
2,2) is part of the differing input.

Hardcoded: a function 𝑓 , a public key pk, and a secret key sk1 for a classical PKE

Input: NIZK 𝜋, ciphertexts 𝑐1 and (𝑐2,1, 𝑐2,2)

1: Parse pk = (crs, pk1, pk2)
2: if Verifyℒ(crs, 𝜋, (pk1, pk2, 𝑐2,1, 𝑐2,2)) = ⊤ then
3: Output 𝑓(Dec(sk1, 𝑐1)).

FE Secret Key Functionality

Setup(1𝑛)

1: Sample two classical PKE key pairs (pk1, sk1), (pk2, sk2)← GenPKE(1
𝑛).

2: Set crs← SetupNIZK(1
𝑛).

3: Output the public key pk = (crs,ℒpk1,pk2 , pk1, pk2) and the master secret key msk = sk1.
KeyGen(msk, 𝑓) Output a di𝒪-CD program for the FE Secret Key Functionality using the parameters

(𝑓, pk, sk1).
Enc(pk,𝑚)

1: Parse pk = (crs, pk1, pk2). Sample 𝑐2,2 uniformly at random, then compute 𝑐1 = EncPKE(pk1,𝑚; 𝑟1)
and 𝑐2,1 = EncPKE(pk2,𝑚⊕ 𝑐2,2; 𝑟2).

2: Compute 𝜋 ← Proveℒ(crs, (pk1, pk2, 𝑐1, 𝑐2,1, 𝑐2,2), (𝑟1, 𝑟2)).
3: Output (𝜋, 𝑐1, 𝑐2,1, 𝑐2,2).

Dec(sk𝑓 , 𝑐)

1: Parse sk𝑓 = (|𝑡⟩ , Π̃sk𝑓) and 𝑐 = (𝜋, 𝑐1, 𝑐2,1, 𝑐2,2).

FE with Certified Deletion for Secret Keys

90

2: Coherently evaluate and output Π̃sk𝑓 (|𝑡⟩ , 𝜋, 𝑐1, 𝑐2,1, 𝑐2,2).
Del(sk𝑓)

1: Parse sk𝑓 = (|𝑡⟩ , Π̃sk𝑓).
2: Compute and output the di𝒪-CD deletion proof cert← Deldi𝒪-CD(|𝑡⟩).

Verify(cert, vk) Output Verifydi𝒪-CD(cert, vk).

Theorem 9.17 (Selective FE with SKCD). Assuming the existence of nested differing inputs obfuscation
with certified deletion, post-quantum indistinguishability obfuscation, public key encryption, and injective
one-way functions, there exists functional encryption with selective secret key certified deletion.

Remark. We previously constructed nested di𝒪-CD and a classical PKE from post-quantum in-
distinguishability obfuscation and differing inputs circuits. The existence of injective one-way
functions implies the existence of differing inputs circuits.

Proof. Any poly-time adversary makes at most 𝑞 = 𝑞(𝑛) queries over both query phases. For
simplicity we assume that they make exactly 𝑞 queries. We proceed by a hybrid argument where
in the first hybrid the challenger encrypts 𝑚0. Then, we gradually change the encryption into an
encryption of 𝑚1 using a two-key argument.

• Hyb0: This is the secret key certified deletion game for functional encryption played with the
scheme above using message 𝑚0 in the challenge ciphertext.

• Hyb1: This hybrid is identical to the previous hybrid, except (crs, 𝜋*) are simulated as

(crs, pk*)← Sim(1𝑛, (pk1, pk2, 𝑐
*
1, 𝑐

*
2,1, 𝑐

*
2,2),ℒ)

where the challenge ciphertext is (𝜋*, 𝑐*1, 𝑐
*
2,1, 𝑐

*
2,2). Note that in the selective security game,

the challenge ciphertext can be computed before the public key is given to the adversary.

• Hyb2: This hybrid is identical to the previous hybrid, except the challenge ciphertext is com-
puted using 𝑐*2,1 = Enc(pk2,𝑚1 ⊕ 𝑐*2,2). Recall that the NIZK 𝜋* is simulated according to
(𝑐*1, 𝑐

*
2,1, 𝑐

*
2,2).

• Hyb3,𝑖 for 𝑖 = 1, . . . , 𝑞: In this series of hybrids, we change the form of the functional secret
keys sk𝑓 . In Hyb3,𝑖, the first 𝑖 functional secret keys requested are computed as obfuscations
of the Hyb3 program. The remaining 𝑖+1 to 𝑞 keys are generated as in Hyb2. Hyb3,0 is exactly
Hyb2. Let 𝑔 be an injective one-way function.

Hardcoded: a function 𝑓 , a public key pk, and secret key sk1 for a classical PKE, the message 𝑚1,

the ciphertexts 𝑐*1, 𝑐*2,1, and the value 𝑔(𝑐*2,2)
Input: NIZK 𝜋, ciphertexts 𝑐1 and (𝑐2,1, 𝑐2,2)

1: Parse pk = (crs, pk1, pk2)
2: if Verifyℒ(crs, 𝜋, (pk1, pk2, 𝑐1, 𝑐2,1, 𝑐2,2)) = ⊤ then
3: if 𝑐1 = 𝑐*1, 𝑐2,1 = 𝑐*2,1 and 𝑔(𝑐2,2) = 𝑔(𝑐*2,2) then

Hyb3 Program

91

4: Output 𝑓(𝑚1).
5: else
6: Output 𝑓(Dec(sk1, 𝑐1)).

• Hyb4,𝑖 for 𝑖 = 1, . . . , 𝑞: In this series of hybrids, we change the form of the functional secret
keys sk𝑓 . In Hyb4,𝑖, the first 𝑖 functional secret keys requested are computed as obfuscations
of the Hyb4 program. The remaining 𝑖 + 1 to 𝑞 keys are generated as in Hyb3,𝑞. Hyb4,0 is
exactly Hyb3,𝑞.

Hardcoded: a function 𝑓 , a public key pk, and secret keys sk1, sk2 for a classical PKE

Input: NIZK 𝜋, ciphertexts 𝑐1 and (𝑐2,1, 𝑐2,2)

1: Parse pk = (crs, pk1, pk2)
2: if Verifyℒ(crs, 𝜋, (pk1, pk2, 𝑐1, 𝑐2,1, 𝑐2,2)) = ⊤ then
3: Output 𝑓(Dec(sk2, 𝑐2,1) + 𝑐2,2).

Hyb4 Program

• Hyb5: This hybrid is identical to the previous hybrid, except the challenge ciphertext is com-
puted using 𝑐*1 = Enc(pk1,𝑚1).

• Hyb6,𝑖 for 𝑖 = 1, . . . , 𝑞: In this series of hybrids, we change the form of the functional secret
keys sk𝑓 . In Hyb6,𝑖, the first 𝑖 functional secret keys requested are computed as obfuscations
of the FE secret key program. The remaining 𝑖+ 1 to 𝑞 keys are generated as in Hyb5. Hyb6,0
is exactly Hyb5.

• Hyb6: This hybrid is identical to the previous hybrid, except the crs and NIZK proof 𝜋* in
the challenge ciphertext are generated honestly. This hybrid corresponds to the secret key
certified deletion game using message 𝑚1 in the challenge ciphertext.

Claim 9.18. If the SSS-NIZK system is computationally zero knowledge, then Hyb0 is computationally
indistinguishable from Hyb1.

Proof. This is immediate from the zero knowledge property, since the rest of the game can be
simulated by a reduction which internally generates the PKE keys.

Claim 9.19. If the classical PKE scheme is semantically secure, Hyb1 is computationally indistinguishable
from Hyb2.

Proof. This is immediate from the semantic security of the classical PKE scheme, since the rest of
the game can be simulated by a reduction which internally generates just (pk1, sk1).

Claim 9.20. If the di𝒪-CD scheme has nested differing inputs certified deletion, the classical PKE is se-
mantically secure, and if 𝑔 is an injective one-way function, Hyb3,𝑖 is computationally indistinguishable
from Hyb3,𝑖+1. Note that Hyb2 = Hyb3,0.

Proof. We can rewrite the FE secret key program and the Hyb3 program in nested form as follows:

92

Hardcoded: a public key pk and an inner program Π

Input: NIZK 𝜋, ciphertexts 𝑐1 and (𝑐2,1, 𝑐2,2)

1: Parse pk = (crs, pk1, pk2)
2: if Verifyℒ(crs, 𝜋, (pk1, pk2, 𝑐1, 𝑐2,1, 𝑐2,2)) = ⊤ then
3: Output Π(𝑐1, 𝑐2,1, 𝑐2,2)

FE Secret Key Outer Program

Hardcoded: a function 𝑓 and secret key sk1 for a classical PKE

Input: ciphertexts 𝑐1 and (𝑐2,1, 𝑐2,2)

1: Output 𝑓(Dec(sk1, 𝑐1)).

FE Secret Key Inner Program

Hardcoded: a function 𝑓 , secret key sk1 for a classical PKE, the message 𝑚1, the ciphertexts 𝑐*1 and 𝑐*2,1,

and the one-way function image 𝑔(𝑐*2,2)
Input: ciphertexts 𝑐1 and (𝑐2,1, 𝑐2,2)

1: if 𝑐1 = 𝑐*1, 𝑐2,1 = 𝑐*2,1, and 𝑔(𝑐2,2) = 𝑔(𝑐*2,2) then
2: Output 𝑓(𝑚1).
3: else
4: Output 𝑓(Dec(sk1, 𝑐1)).

Hyb3 Inner Program

The FE secret key program is obtained by instantiating the FE secret key outer program with
the FE secret key inner program. The Hyb3 program is obtained by instantiating it with the Hyb3
inner program. Using the injectiveness of the one-way function, it is easy to verify that the two
inner programs differ in at most one input: (𝑐*1, 𝑐

*
2,1, 𝑐

*
2,2). To show that the inner programs are

differing inputs circuits, we need to show that (𝑐*1, 𝑐
*
2,1, 𝑐

*
2,2) is hard to find given their descriptions

and the auxiliary information the adversary has when the challenger creates the obfuscated cir-
cuits, which is the message pair (𝑚0,𝑚1) and the description of the FE secret key outer program
without the hardcoded inner program Π. It suffices to show that the adversary cannot even find
𝑐*2,2.

Claim 9.21. Assuming the properties from claim 9.20, for any (𝑚0,𝑚1) and any function 𝑓 , we have

Pr

⎡⎢⎢⎢⎢⎢⎢⎣𝒜(Π0,Π1, aux) = 𝑐*2,2 :

(pk1, sk1), (pk2, sk2)← KeyGenPKE(1
𝑛),

𝑐*2,2 ← {0, 1}𝑛,
𝑐*1 ← Enc(pk1,𝑚0), 𝑐

*
2,1 ← Enc(pk2,𝑚1 ⊕ 𝑐*2,2),

Π0 = FEInner(𝑓, sk1),
Π1 = Hyb3Inner(𝑓, sk1,𝑚1, 𝑐

*
1, 𝑐

*
2,1, 𝑔(𝑐

*
2,2))

aux = (pk1, pk2,𝑚0,𝑚1, 𝑓)

⎤⎥⎥⎥⎥⎥⎥⎦ = negl(𝜆)

Proof. Consider a hybrid where 𝑐*2,1 is generated as an encryption of 0 instead of being an encryp-

93

tion of 𝑚1 ⊕ 𝑐*2,2. Since Π0, Π1, and aux can be generated given 𝑐*2,1 and pk2, without knowledge
of sk2, this hybrid is indistinguishable from the experiment above due to the semantic security
of the PKE. Note that in this hybrid, 𝑐*2,2 is independent of 𝑚0 and 𝑚1 even given 𝑐*2,1. Fur-
thermore, Π0 and Π1 can be computed just using 𝑔(𝑐*2,2) instead of 𝑐*2,2. Since 𝑐*2,2 is uniformly
random and independent of the auxiliary information, by the one-way property of 𝑔 we have
Pr[𝒜(Π0,Π1, aux) = 𝑐*2,2] = negl(𝜆) in this hybrid. Since this hybrid is indistinguishable from the
original experiment, we have the claim.

Therefore the nested differing inputs certified deletion property of the di𝒪-CD scheme ensures
that, for any𝑚0,𝑚1 ,and 𝑓𝑖, the deletion game played with the FE secret key program for sk𝑓𝑖 is in-
distinguishable from the one played with the Hyb3 program for sk𝑓𝑖 , i.e. Hyb3,𝑖 is computationally
indistinguishable from Hyb3,𝑖+1.

Claim 9.22. If the di𝒪-CD scheme is an indistinguishability obfuscator and the NIZK is statistically sim-
ulation sound, Hyb4,𝑖 is computationally indistinguishable from Hyb4,𝑖+1. Note that Hyb3,𝑞 = Hyb4,0.

Proof. It suffices to show that the Hyb3 program is functionally equivalent to the Hyb4 program,
since then indistinguishability obfuscation immediately implies the indistinguishability of the two
hybrids. Consider any input (𝜋, 𝑐1, 𝑐2,1, 𝑐2,2). There are three cases:

• 𝜋 is rejecting. In this case, both programs output ⊥.

• 𝜋 is accepting and (𝑐1, 𝑐2,1, 𝑐2,2) = (𝑐*1, 𝑐
*
2,1, 𝑐

*
2,2). In this case, both programs output 𝑓(Dec(sk2, 𝑐2,1)⊕

𝑐2,2) = 𝑓(𝑚1).

• 𝜋 is accepting and (𝑐1, 𝑐2,1, 𝑐2,2) ̸= (𝑐*1, 𝑐
*
2,1, 𝑐

*
2,2). In this case, due to the statistical simulation

soundness of the NIZK, Dec(sk1, 𝑐1) = Dec(sk2, 𝑐2,1) ⊕ 𝑐2,2. Therefore both programs have
the same output 𝑓(Dec(sk1, 𝑐1)).

Claim 9.23. If the classical PKE scheme is semantically secure, Hyb5 is computationally indistinguishable
from Hyb4,𝑞.

Proof. This is immediate from the semantic security of the classical PKE scheme, since the rest of
the game can be simulated by a reduction which internally generates (pk2, sk2).

Claim 9.24. If the di𝒪-CD scheme is an indistinguishability obfuscator and the NIZK is statistically sim-
ulation sound, Hyb6,𝑖 is computationally indistinguishable from Hyb6,𝑖+1. Note that Hyb5 = Hyb6,0.

Proof. It suffices to show that the Hyb4 program is functionally equivalent to the FE secret key
program, since then indistinguishability obfuscation immediately implies the indistinguishability
of the two hybrids. Consider any input (𝜋, 𝑐1, 𝑐2,1, 𝑐2,2). There are two cases:

• 𝜋 is rejecting. In this case, both programs output ⊥.

• 𝜋 is accepting. In this case, due to the statistical simulation soundness of the NIZK, Dec(sk1, 𝑐1) =
Dec(sk2, 𝑐2,1) ⊕ 𝑐2,2. This holds even for (𝑐1, 𝑐2,1, 𝑐2,2) = (𝑐*1, 𝑐

*
2,1, 𝑐

*
2,2). Therefore both pro-

grams have the same output 𝑓(Dec(sk2, 𝑐2,1)⊕ 𝑐2,2).

94

Claim 9.25. If the NIZK is computationally zero knowledge, Hyb6,𝑞 is computationally indistinguishable
from Hyb7.

Proof. This is immediate from the zero knowledge property, since the rest of the game can be
simulated by a reduction which internally generates the PKE keys.

Therefore the game when played when the challenge ciphertext is an encryption of 𝑚0 is in-
distinguishable from the game when the challenge ciphertext is an encryption of 𝑚1.

References

[Aar09] Scott Aaronson. Quantum copy-protection and quantum money. In 2009 24th Annual
IEEE Conference on Computational Complexity, pages 229–242, 2009.

[ABG+13] Prabhanjan Ananth, Dan Boneh, Sanjam Garg, Amit Sahai, and Mark Zhandry.
Differing-inputs obfuscation and applications. Cryptology ePrint Archive, Report
2013/689, 2013. https://eprint.iacr.org/2013/689.

[AC12] Scott Aaronson and Paul Christiano. Quantum money from hidden subspaces. In
Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of Computing, STOC
’12, page 41–60, New York, NY, USA, 2012. Association for Computing Machinery.

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from com-
pact functional encryption. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part I, volume 9215 of LNCS, pages 308–326. Springer, Heidelberg,
August 2015.

[AK21] Prabhanjan Ananth and Fatih Kaleoglu. Unclonable encryption, revisited. LNCS,
pages 299–329. Springer, Heidelberg, 2021.

[AK22] Prabhanjan Ananth and Fatih Kaleoglu. A note on copy-protection from random
oracles. Cryptology ePrint Archive, Paper 2022/1109, 2022. https://eprint.
iacr.org/2022/1109.

[AKL+22] Prabhanjan Ananth, Fatih Kaleoglu, Xingjian Li, Qipeng Liu, and Mark Zhandry. On
the feasibility of unclonable encryption, and more. CRYPTO, 2022.

[AL21] Prabhanjan Ananth and Rolando L. La Placa. Secure software leasing. LNCS, pages
501–530. Springer, Heidelberg, 2021.

[ALL+21] Scott Aaronson, Jiahui Liu, Qipeng Liu, Mark Zhandry, and Ruizhe Zhang. New ap-
proaches for quantum copy-protection. LNCS, pages 526–555. Springer, Heidelberg,
2021.

[BB84] Charles H Bennett and Gilles Brassard. Quantum cryptography: Public key distribu-
tion and coin tossing. In Proceedings of the IEEE International Conference on Computers,
Systems, and Signal Processing, pages 175–179, 1984.

95

https://eprint.iacr.org/2013/689
https://eprint.iacr.org/2022/1109
https://eprint.iacr.org/2022/1109

[BCP14] Elette Boyle, Kai-Min Chung, and Rafael Pass. On extractability obfuscation. In
Yehuda Lindell, editor, TCC 2014, volume 8349 of LNCS, pages 52–73. Springer, Hei-
delberg, February 2014.

[BDGM22] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Factoring
and Pairings Are Not Necessary for IO: Circular-Secure LWE Suffices. In Mikołaj
Bojańczyk, Emanuela Merelli, and David P. Woodruff, editors, 49th International Col-
loquium on Automata, Languages, and Programming (ICALP 2022), volume 229 of Leib-
niz International Proceedings in Informatics (LIPIcs), pages 28:1–28:20, Dagstuhl, Ger-
many, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,
Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. J.
ACM, 59(2):6:1–6:48, 2012.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseu-
dorandom functions. In Hugo Krawczyk, editor, PKC 2014, volume 8383 of LNCS,
pages 501–519. Springer, Heidelberg, March 2014.

[BGMZ18] James Bartusek, Jiaxin Guan, Fermi Ma, and Mark Zhandry. Return of GGH15: Prov-
able security against zeroizing attacks. In Amos Beimel and Stefan Dziembowski,
editors, TCC 2018, Part II, volume 11240 of LNCS, pages 544–574. Springer, Heidel-
berg, November 2018.

[BI20] Anne Broadbent and Rabib Islam. Quantum encryption with certified deletion.
LNCS, pages 92–122. Springer, Heidelberg, March 2020.

[BK22] James Bartusek and Dakshita Khurana. Cryptography with certified deletion. Cryp-
tology ePrint Archive, Paper 2022/1178, 2022. https://eprint.iacr.org/
2022/1178.

[BLW17] Dan Boneh, Kevin Lewi, and David J. Wu. Constraining pseudorandom functions
privately. In Serge Fehr, editor, PKC 2017, Part II, volume 10175 of LNCS, pages
494–524. Springer, Heidelberg, March 2017.

[BPW16] Nir Bitansky, Omer Paneth, and Daniel Wichs. Perfect structure on the edge of chaos
- trapdoor permutations from indistinguishability obfuscation. In Eyal Kushilevitz
and Tal Malkin, editors, TCC 2016-A, Part I, volume 9562 of LNCS, pages 474–502.
Springer, Heidelberg, January 2016.

[BS17] Shalev Ben-David and Or Sattath. Quantum tokens for digital signatures. Cryptol-
ogy ePrint Archive, Report 2017/094, 2017. https://eprint.iacr.org/2017/
094.

[BSW16] Mihir Bellare, Igors Stepanovs, and Brent Waters. New negative results on differing-
inputs obfuscation. In Marc Fischlin and Jean-Sébastien Coron, editors, EURO-
CRYPT 2016, Part II, volume 9666 of LNCS, pages 792–821. Springer, Heidelberg,
May 2016.

96

https://eprint.iacr.org/2022/1178
https://eprint.iacr.org/2022/1178
https://eprint.iacr.org/2017/094
https://eprint.iacr.org/2017/094

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption
from (standard) lwe. In 2011 IEEE 52nd Annual Symposium on Foundations of Computer
Science, pages 97–106, 2011.

[BV15] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from
functional encryption. In Venkatesan Guruswami, editor, 56th FOCS, pages 171–190.
IEEE Computer Society Press, October 2015.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their appli-
cations. In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part II, volume
8270 of LNCS, pages 280–300. Springer, Heidelberg, December 2013.

[BZ13] Dan Boneh and Mark Zhandry. Secure signatures and chosen ciphertext secu-
rity in a quantum computing world. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part II, volume 8043 of LNCS, pages 361–379. Springer, Heidelberg,
August 2013.

[CJJ21] Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. Snargs for $∖mathcal{P}$
from LWE. In 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS
2021, Denver, CO, USA, February 7-10, 2022, pages 68–79. IEEE, 2021.

[CLLZ21] Andrea Coladangelo, Jiahui Liu, Qipeng Liu, and Mark Zhandry. Hidden cosets
and applications to unclonable cryptography. LNCS, pages 556–584. Springer, Hei-
delberg, 2021.

[CMSZ21] Alessandro Chiesa, Fermi Ma, Nicholas Spooner, and Mark Zhandry. Post-quantum
succinct arguments: Breaking the quantum rewinding barrier. In 62nd IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO, USA, February
7-10, 2022, pages 49–58. IEEE, 2021.

[CVW18] Yilei Chen, Vinod Vaikuntanathan, and Hoeteck Wee. GGH15 beyond permuta-
tion branching programs: Proofs, attacks, and candidates. In Hovav Shacham and
Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of LNCS, pages
577–607. Springer, Heidelberg, August 2018.

[DQV+21] Lalita Devadas, Willy Quach, Vinod Vaikuntanathan, Hoeteck Wee, and Daniel
Wichs. Succinct LWE sampling, random polynomials, and obfuscation. LNCS, pages
256–287. Springer, Heidelberg, 2021.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael
Mitzenmacher, editor, 41st ACM STOC, pages 169–178. ACM Press, May / June 2009.

[GGG+14] Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan Katz, Feng-
Hao Liu, Amit Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-input functional
encryption. In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014,
volume 8441 of LNCS, pages 578–602. Springer, Heidelberg, May 2014.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In 54th FOCS, pages 40–49. IEEE Computer Society Press, October 2013.

97

[GGHW14] Sanjam Garg, Craig Gentry, Shai Halevi, and Daniel Wichs. On the implausibility
of differing-inputs obfuscation and extractable witness encryption with auxiliary in-
put. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part I, volume
8616 of LNCS, pages 518–535. Springer, Heidelberg, August 2014.

[GJO16] Vipul Goyal, Aayush Jain, and Adam O’Neill. Multi-input functional encryption
with unbounded-message security. In Jung Hee Cheon and Tsuyoshi Takagi, ed-
itors, ASIACRYPT 2016, Part II, volume 10032 of LNCS, pages 531–556. Springer,
Heidelberg, December 2016.

[GP21] Romain Gay and Rafael Pass. Indistinguishability obfuscation from circular security.
In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2021, page 736–749, New York, NY, USA, 2021. Association for Computing
Machinery.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learn-
ing with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Ran
Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS,
pages 75–92. Springer, Heidelberg, August 2013.

[HMNY21] Taiga Hiroka, Tomoyuki Morimae, Ryo Nishimaki, and Takashi Yamakawa. Quan-
tum encryption with certified deletion, revisited: Public key, attribute-based, and
classical communication. LNCS, pages 606–636. Springer, Heidelberg, 2021.

[HMNY22a] Taiga Hiroka, Tomoyuki Morimae, Ryo Nishimaki, and Takashi Yamakawa. Certi-
fied everlasting functional encryption. CoRR, abs/2207.13878, 2022.

[HMNY22b] Taiga Hiroka, Tomoyuki Morimae, Ryo Nishimaki, and Takashi Yamakawa. Certi-
fied everlasting zero-knowledge proof for QMA, 2022. Advances in Cryptology -
CRYPTO 2022 - 42nd Annual International Cryptology Conference, Santa Barbara,
CA, USA.

[KLW15] Venkata Koppula, Allison Bishop Lewko, and Brent Waters. Indistinguishability
obfuscation for turing machines with unbounded memory. In Proceedings of the Forty-
Seventh Annual ACM Symposium on Theory of Computing, STOC ’15, page 419–428,
New York, NY, USA, 2015. Association for Computing Machinery.

[KN22] Fuyuki Kitagawa and Ryo Nishimaki. Functional encryption with secure key leas-
ing. In Advances in Cryptology - ASIACRYPT 2022. Springer Cham, 2022.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas
Zacharias. Delegatable pseudorandom functions and applications. In Ahmad-Reza
Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 2013, pages 669–684.
ACM Press, November 2013.

[KTZ13] Jonathan Katz, Aishwarya Thiruvengadam, and Hong-Sheng Zhou. Feasibility and
infeasibility of adaptively secure fully homomorphic encryption. In Kaoru Kuro-
sawa and Goichiro Hanaoka, editors, PKC 2013, volume 7778 of LNCS, pages 14–31.
Springer, Heidelberg, February / March 2013.

98

[NY01] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against cho-
sen ciphertext attacks. ACM Symposium on Theory of Computing, 03 2001.

[Por23] Alexander Poremba. Quantum proofs of deletion for learning with errors. In
Yael Tauman Kalai, editor, 14th Innovations in Theoretical Computer Science Conference,
ITCS 2023, January 10-13, 2023, MIT, Cambridge, Massachusetts, USA, volume 251 of
LIPIcs, pages 90:1–90:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023.

[PS19] Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for NP from (plain)
learning with errors. In Alexandra Boldyreva and Daniele Micciancio, editors,
CRYPTO 2019, Part I, volume 11692 of LNCS, pages 89–114. Springer, Heidelberg,
August 2019.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptogra-
phy. In Harold N. Gabow and Ronald Fagin, editors, 37th ACM STOC, pages 84–93.
ACM Press, May 2005.

[Shm22] Omri Shmueli. Semi-quantum tokenized signatures. In Yevgeniy Dodis and Thomas
Shrimpton, editors, Advances in Cryptology - CRYPTO 2022 - 42nd Annual International
Cryptology Conference, CRYPTO 2022, Santa Barbara, CA, USA, August 15-18, 2022,
Proceedings, Part I, volume 13507 of Lecture Notes in Computer Science, pages 296–319.
Springer, 2022.

[Unr14] Dominique Unruh. Revocable quantum timed-release encryption. In Phong Q.
Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS,
pages 129–146. Springer, Heidelberg, May 2014.

[VZ21] Thomas Vidick and Tina Zhang. Classical proofs of quantum knowledge. LNCS,
pages 630–660. Springer, Heidelberg, 2021.

[Wie83] Stephen Wiesner. Conjugate coding. SIGACT News, 15:78–88, 1983.

[Win99] Andreas J. Winter. Coding theorem and strong converse for quantum channels. IEEE
Trans. Inf. Theory, 45(7):2481–2485, 1999.

[WW21] Hoeteck Wee and Daniel Wichs. Candidate obfuscation via oblivious LWE sampling.
LNCS, pages 127–156. Springer, Heidelberg, 2021.

[Zha19] Mark Zhandry. Quantum lightning never strikes the same state twice. In Yuval Ishai
and Vincent Rijmen, editors, EUROCRYPT 2019, Part III, volume 11478 of LNCS,
pages 408–438. Springer, Heidelberg, May 2019.

99

A Auxiliary Lemmas from Section 9

We prove the following lemma and its corollary, which will assist in our proof of FE with certified
deletion. This is a variant of (and follows a proof structure that is similar to the proof of) subspace-
hiding obfuscation [Zha19], but tailored to functional encryption.

Lemma A.1 (Subspace-Hiding for Multi-input Functional Encryption). Any multi-input functional
encryption scheme (MIFE-Setup,MIFE-KeyGen,MIFE-Enc1,MIFE-Enc2,MIFE-Dec) of arity two (Defini-
tion 9.4) satisfies the following.

Pr

⎡⎢⎢⎢⎢⎢⎢⎣𝑏
′ = 𝑏

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
𝑏← {0, 1}
(pp,msk)← MIFE-Setup(1𝜆)
𝑀 ← 𝒜MIFE-KeyGen(msk,𝑔(·))(pp)
ct← MIFE-Enc2(𝑆, 𝑇, u, v,𝑀, 0, 0) if 𝑏 = 0
ct← MIFE-Enc2(𝑆, 0, 0, v,𝑀, 1, 0) if 𝑏 = 1

𝑏′ ← 𝒜MIFE-KeyGen(msk,𝑔(·))(pp, sk𝑓 , ct, 𝑆, v)

⎤⎥⎥⎥⎥⎥⎥⎦ = negl(𝜅)

where the probability is over the randomness of sampling 𝑆 < 𝑇 < F𝑛
2 such that dim(𝑆) = 𝑑 and dim(𝑇) =

𝑑 + 1 where 𝑑 ∈ [𝑛/2, 3𝑛/4] for 𝑛 = 4𝜆, v,w ← co(𝑆) × co(𝑆⊥), and letting u be the coset of 𝑇 that v
belongs to. Moreover for any function 𝑓 the related function 𝑔(𝑓) is defined as follows. First, obtain input
(t, (𝑆, 𝑇, u, v,𝑀, 𝑐, td)) and parse td = (𝑐1, 𝑖, 𝑦). Then,

• If 𝑐1 = 0, do:

– If 𝑐 = 0, if t /∈ 𝑇 + u, then abort and output ⊥, and otherwise output 𝑓(𝑀).

– If 𝑐 = 1, if t /∈ 𝑆 + v, then abort and output ⊥, and otherwise output 𝑓(𝑀).

(We note that the above “If 𝑐1 = 0” is the only branch that is invoked in the real experiment, the
following if statements only support the proof.)

• If 𝑐1 = 1, do:

– If 𝑐 = 0, if t− u /∈ 𝑇 , then abort and output ⊥, and otherwise output 𝑓(𝑀).

– If 𝑐 = 1, if t− v /∈ 𝑆, then abort and output ⊥, and otherwise output 𝑓(𝑀).

• If 𝑐1 = 2, do:

– If 𝑐 = 0, then compute B to be the (𝑛− 𝑑)× 𝑛 matrix whose rows are a basis for 𝑆⊥, the space
orthogonal to 𝑆. Then if B · (t− v) ̸= 0 and ̂︀𝐺𝑦(B · (t− v)) ̸= 1, then abort and output ⊥ and
otherwise output 𝑓(𝑀). Here ̂︀𝐺𝑦 is a program that outputs 1 on input 𝑥 where 𝑓(𝑥) = 𝑦, and
otherwise outputs 0.

– If 𝑐 = 1, then compute B to be the (𝑛− 𝑑)× 𝑛 matrix whose rows are a basis for 𝑆⊥, the space
orthogonal to 𝑆. Then if B · (t − v) ̸= 0 and ̂︀𝐺(B · (t − v)) ̸= 1, then abort and output ⊥ and
otherwise output 𝑓(𝑀). Here ̂︀𝐺 is the all-zeroes program.

• If 𝑐1 = 3, do:

100

– If t ≤ 𝑖, then compute B to be the (𝑛 − 𝑑) × 𝑛 matrix whose rows are a basis for 𝑆⊥, the space
orthogonal to 𝑆. Then if B · (t− v) ̸= 0 and ̂︀𝐺𝑦(B · (t− v)) ̸= 1, then abort and output ⊥ and
otherwise output 𝑓(𝑀). Here ̂︀𝐺𝑦 is a program that outputs 1 on input 𝑥 where 𝑓(𝑥) = 𝑦, and
otherwise outputs 0.

– If t < 𝑖, then compute B to be the (𝑛 − 𝑑) × 𝑛 matrix whose rows are a basis for 𝑆⊥, the space
orthogonal to 𝑆. Then if B · (t − v) ̸= 0 and ̂︀𝐺(B · (t − v)) ̸= 1, then abort and output ⊥ and
otherwise output 𝑓(𝑀). Here ̂︀𝐺 is the all-zeroes program.

Proof. We consider the following sequence of hybrids.

• ℋ0: ct is an encryption of (0, 𝑇, u, 0,𝑀, 0, td) where td = (0, 0, 0).

• ℋ1: ct is an encryption of (𝑆, 𝑇, u, v,𝑀, 0, td) where td = (1, 0, 0).

• ℋ2: ct is an encryption of 𝑀2 = (𝑆, 0, u, v,𝑀, 0, td) for td = (2, 0, 𝑦), 𝑦 = 𝑓(𝑥) for 𝑥 ←
{0, 1}𝑛−𝑑, 𝑥 ̸= 0.

• ℋ3: ct is an encryption of 𝑀3 = (𝑆, 0, u, v,𝑀, 1, td) where td = (2, 0, 0).

• ℋ4: ct is an encryption of (𝑆, 0, u, v,𝑀, 1, td) where td = (1, 0, 0).

• ℋ5: ct is an encryption of (𝑆, 0, 0, v,𝑀, 1, td) where td = (0, 0, 0).

Indistinguishability between hybrids ℋ0 and ℋ1, between hybrids ℋ3 and ℋ4, and between
hybridsℋ4 andℋ5 follows straightforwardly from the security of MIFE (Definition 9.4).

Indistinguishability between hybrids ℋ1 and ℋ2 also follows from the security of MIFE as
follows. Consider sampling 𝑥* ← {0, 1}𝑛−𝑑 such that 𝑥* ̸= 0, then computing 𝑦 = 𝑓(𝑥*), and
𝑇 as the subspace of vectors t′ such that 𝐵 · t′ is in the span of 𝑥*. For challenge messages
𝑀0 = (𝑆, 𝑇, u, v,𝑀, 0, td) for td = (2, 0, 𝑦) and 𝑀1 = (𝑆, 𝑇, u, v,𝑀, 1, td) for td = (2, 0, 0), in-
distinguishability follows by security of MIFE since 𝑔𝑓 (·,𝑀0) = 𝑔𝑓 (·,𝑀1).

Finally, indistinguishability between ℋ2 and ℋ3 follows by an argument inspired by [BCP14]
for the setting of extractability/differing-inputs obfuscation. In more detail, suppose these hybrids
are distinguishable with non-negligible advantage 𝜖 = 𝜖(𝑛). Then we will build an inverter 𝐼 that
inverts the one-way function on a random 𝑦 with probability 𝜖

2 , leading us to a contradiction. The
inverter 𝐼 given 𝑦 aims to find 𝑥* such that 𝑓(𝑥*) = 𝑦. The inverter proceeds as follows.

1. Set 𝑖 = 2𝑛−𝑑−1.

2. While 𝑖 > 0, repeat:

(a) Define ℋmid where ct is generated as an encryption of 𝑀mid = (𝑆, 𝑇, u, v,𝑀, 0, td) for
td = (3, 𝑖, 𝑦).

(b) Estimate the advantage 𝜖𝐿 of the adversary betweenℋ2 andℋmid with estimation error
bounded by 𝜖

2𝑛 w.h.p. (this requires 𝑂(𝑛
2

𝜖2
) samples). If 𝜖𝐿 > 𝜖 · (𝑛−1

𝑛), set 𝑥*[1] = 0 and
renameℋmid toℋ3. Otherwise set 𝑥*[1] = 1 and renameℋmid toℋ2.

3. Output 𝑥*.

101

By a union bound, error in estimating any bit of 𝑥* is bounded by 𝜖
2𝑛 · (𝑛 − 𝑑) + negl(𝑛) ≤ 𝜖

2 .
Therefore, the inverter given 𝑦 runs in polynomial time and successfully outputs the inverse of 𝑦
with probability 𝜖

2 . This is a contradiction as desired.

Applying this lemma repeatedly immediately yields the following corollary, which is the full
version of Corollary 9.9, where the dimensions between subspaces 𝑆 and 𝑇 does not differ by 1,
but by upto 𝑛

4 .

Corollary A.2. (Subspace-Hiding for Multi-input Functional Encryption) Any multi-input functional
encryption scheme (MIFE-Setup,MIFE-KeyGen,MIFE-Enc1,MIFE-Enc2,MIFE-Dec) of arity two (Defi-
nition 9.4) satisfies the following.

Pr

⎡⎢⎢⎢⎢⎢⎢⎣𝑏
′ = 𝑏

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
𝑏← {0, 1}
(pp,msk)← MIFE-Setup(1𝜆)
𝑀 ← 𝒜MIFE-KeyGen(msk,𝑔(·))(pp)
ct← MIFE-Enc2(𝑆, 𝑇, u, v,𝑀, 0, 0) if 𝑏 = 0
ct← MIFE-Enc2(𝑆, 0, 0, v,𝑀, 1, 0) if 𝑏 = 1

𝑏′ ← 𝒜MIFE-KeyGen(msk,𝑔(·))(pp, sk𝑓 , ct, 𝑆, v)

⎤⎥⎥⎥⎥⎥⎥⎦ = negl(𝜅)

where the probability is over the randomness of sampling 𝑆 < 𝑇 < F𝑛
2 such that dim(𝑆) ≤ dim(𝑇) and

both dimensions are in [𝑛/2, 3𝑛/4] for 𝑛 = 4𝜆, v,w← co(𝑆)× co(𝑆⊥), and letting u be the coset of 𝑇 that
v belongs to. Moreover for any function 𝑓 the related function 𝑔(𝑓) is defined as follows. First, obtain input
(t, (𝑆, 𝑇, u, v,𝑀, 𝑐, td)) and parse td = (𝑐1, 𝑖, 𝑦). Then,

• If 𝑐1 = 0, do:

– If 𝑐 = 0, if t /∈ 𝑇 + u, then abort and output ⊥, and otherwise output 𝑓(𝑀).
– If 𝑐 = 1, if t /∈ 𝑆 + v, then abort and output ⊥, and otherwise output 𝑓(𝑀).

• If 𝑐1 = 1, do:

– If 𝑐 = 0, if t− u /∈ 𝑇 , then abort and output ⊥, and otherwise output 𝑓(𝑀).
– If 𝑐 = 1, if t− v /∈ 𝑆, then abort and output ⊥, and otherwise output 𝑓(𝑀).

• If 𝑐1 = 2, do:

– If 𝑐 = 0, then compute B to be the (𝑛− 𝑑)× 𝑛 matrix whose rows are a basis for 𝑆⊥, the space
orthogonal to 𝑆. Then if B · (t− v) ̸= 0 and ̂︀𝐺𝑦(B · (t− v)) ̸= 1, then abort and output ⊥ and
otherwise output 𝑓(𝑀). Here ̂︀𝐺𝑦 is a program that outputs 1 on input 𝑥 where 𝑓(𝑥) = 𝑦, and
otherwise outputs 0.

– If 𝑐 = 1, then compute B to be the (𝑛− 𝑑)× 𝑛 matrix whose rows are a basis for 𝑆⊥, the space
orthogonal to 𝑆. Then if B · (t − v) ̸= 0 and ̂︀𝐺(B · (t − v)) ̸= 1, then abort and output ⊥ and
otherwise output 𝑓(𝑀). Here ̂︀𝐺 is the all-zeroes program.

• If 𝑐1 = 3, do:

– If t ≤ 𝑖, then compute B to be the (𝑛 − 𝑑) × 𝑛 matrix whose rows are a basis for 𝑆⊥, the space
orthogonal to 𝑆. Then if B · (t− v) ̸= 0 and ̂︀𝐺𝑦(B · (t− v)) ̸= 1, then abort and output ⊥ and
otherwise output 𝑓(𝑀). Here ̂︀𝐺𝑦 is a program that outputs 1 on input 𝑥 where 𝑓(𝑥) = 𝑦, and
otherwise outputs 0.

102

– If t < 𝑖, then compute B to be the (𝑛 − 𝑑) × 𝑛 matrix whose rows are a basis for 𝑆⊥, the space
orthogonal to 𝑆. Then if B · (t − v) ̸= 0 and ̂︀𝐺(B · (t − v)) ̸= 1, then abort and output ⊥ and
otherwise output 𝑓(𝑀). Here ̂︀𝐺 is the all-zeroes program.

103

	Introduction
	Technical Overview
	Motivating Example
	General Compiler for Certified Deletion
	Blind Delegation with Certified Deletion
	Obfuscation with Certified Deletion
	Flavors of Functional Encryption with Certified Deletion
	Other Related Work

	Preliminaries
	Quantum Computation
	Subspaces and Cosets
	Obfuscation
	SNARGs for P
	Fully-Homomorphic Encryption

	Delayed Preparation of Coset States
	Coset Representatives
	Sampling Procedure
	Delayed Preparation of Coset States
	Lemmas

	General Compiler for Certified Deletion
	General Theorem
	Oracle version
	Proof of thm:main-thm
	Proofs of thm:enc-with-cep and thm:enc-with-pv-cep

	Blind Delegation with Certified Deletion
	Definitions
	Construction
	Efficiency
	Security

	CCA Secure Encryption with Certified Deletion
	Definitions
	Construction

	Obfuscation with Certified Deletion
	Definitions
	Construction
	Extensions

	Functional Encryption with Certified Deletion
	Definitions
	Some Preliminaries
	Construction of Functional Encryption with Certified Deletion for Ciphertexts
	Construction of Functional Encryption with Certified Deletion for Secret Keys

	Auxiliary Lemmas from sec:fe

