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Abstract. A privacy pool enables clients to deposit units of a cryptocurrency into a shared
pool where ownership of deposited currency is tracked via a system of cryptographically hidden
records. Clients may later withdraw from the pool without linkage to previous deposits. Some
privacy pools also support hidden transfer of currency ownership within the pool. In August
2022, the U.S. Department of Treasury sanctioned Tornado Cash, the largest Ethereum privacy
pool, on the premise that it enables illicit actors to hide the origin of funds, citing its usage
by the DPRK-sponsored Lazarus Group to launder over $455 million dollars worth of stolen
cryptocurrency. This ruling effectively made it illegal for U.S. persons/institutions to use or
accept funds that went through Tornado Cash, sparking a global debate among privacy rights
activists and lawmakers. Against this backdrop, we present Derecho, a system that institutions
could use to request cryptographic attestations of fund origins rather than naively rejecting all
funds coming from privacy pools. Derecho is a novel application of proof-carrying data, which
allows users to propagate allowlist membership proofs through a privacy pool’s transaction
graph. Derecho is backwards-compatible with existing Ethereum privacy pool designs, adds no
significant overhead in gas costs, and costs users only a few seconds to produce attestations.

1 Introduction

Bitcoin, Ethereum, and other cryptocurrencies have achieved significant market capitalization and
adoption over the past decade, yet the privacy guarantees of many popular blockchains remain lack-
ing. The traceability of transactions in blockchains such as Bitcoin and Ethereum has been well-
studied [AKR+13, MPJ+13, WMW+22], and even privacy-focused blockchains such as Monero are
subject to deanonymization attacks [MSH+18]. Privacy solutions can be designed as add-on compo-
nents to an existing blockchain or as independent blockchains.

In this work, we focus on privacy pools that use zero-knowledge proofs to enable anonymous
transfers of assets on account-based smart contract platforms such as Ethereum. These pools are based
on the design of Zerocash [BCG+14], which is also the basis for the cryptocurrency Zcash [HBHW22].
In a nutshell, these privacy pools enable users to deposit funds into a shared pool, anonymously
transfer funds within the pool, and later withdraw funds without linkage to their previous transactions.

Tornado Cash (Nova) was the most widely used Ethereum privacy pool until U.S. regulators
took action against the service in August 2022. The U.S. Department of the Treasury’s Office of
Foreign Assets Control (OFAC) added the Tornado Cash smart contract addresses to the Specially
Designated Nationals (SDN) list, purportedly due to its usage for laundering more than $9 billion
worth of cryptocurrency since 2019, including by the DPRK state-sponsored Lazarus Group that was
also sanctioned in 2019. This designation forbids U.S. users, including individuals and institutions,
from interacting with the service [Uni22]. It has resulted in locked funds for U.S. users of the service
and has limited the options for law-abiding users that seek to improve the privacy of their transactions
on Ethereum. These sanctions have brought renewed attention to the clash between privacy and
regulatory oversight on smart contract platforms. In October 2022, Coin Center filed a lawsuit against
the Treasury Department arguing that OFAC exceeded its statutory authority in designating Tornado
Cash [Coi22]. It also sparked discussion among researchers and privacy advocates [BKB22, Fis22,
Sol22], questioning both the efficacy and necessity of privacy pool sanctions in addressing illicit
finance, and seeking alternative technical solutions.

A simple solution would restrict deposits into and withdrawals from the privacy pool to accounts
on a specific allowlist.1 For example, the allowlist might be the set of all public Ethereum addresses
1 Alternatively, the usage of the privacy pool could be limited to accounts that are not on a specific blocklist

and not newly generated at the time of deposit. The second criterion is important to prevent the situation
where an attacker move funds to a fresh address in order to evade the restrictions.
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that are not on the U.S. Treasury’s SDN list. However, allowlists are expected to vary by jurisdiction,
and may be updated dynamically.

An alternative solution is for users to generate attestations when necessary, selectively disclos-
ing information about the provenance of funds withdrawn from the pool. When cryptocurrency is
deposited into a privacy pool like Tornado Cash, a digital receipt in the form of a cryptographic
commitment is generated, and the depositor retains a secret key required to use this receipt later. A
user withdraws x units of cryptocurrency from the pool by presenting a zero-knowledge proof that
it knows the secret key of an unused receipt for this exact amount of cryptocurrency, and a keyed
hash of the receipt called a nullifier. The nullifier still hides the receipt but prevents it from being
used twice. While this zero-knowledge proof reveals little information by default (other than trans-
action validity), a user could choose to reveal more information about the origin of a withdrawal to
an interested party (e.g., an exchange). In fact, zero-knowledge proofs can be used to selectively dis-
close information about the unique deposit receipt, including membership of the depositing account
on an allowlist. Similar solutions were proposed more than a decade ago in the context of Tor and
blocklisting of IP-addresses [BG13,TKCS09].

However, this system of user-generated disclosures becomes more challenging in pools that support
in-pool transfers. The recipient of funds must retain the ability to prove facts about its provenance, in
particular, that the funds originated via deposits from accounts on a given set of allowlists. We solve
this problem using proof-carrying data [CT10], a generalization of incrementally verifiable computa-
tion [Val08] that offers a powerful approach to recursive proof composition. When a user makes their
first transaction within the privacy pool, the user generates membership proofs for a set of allowlists.
Subsequent transactions within the privacy pool generate new membership proofs that are derived
from (i.e., prove knowledge of) the previous membership proofs of the transaction inputs and the
details of the current transaction. These membership proofs, which we call proof-carrying disclosures,
can be verified efficiently and may be communicated directly to the recipient of funds.

1.1 Our Contributions

To summarize, our main contributions are as follows:

– We formalize and present Derecho, a privacy pool with attested transactions based on proof-
carrying disclosures. Our system addresses the key legal challenges of privacy pools through a
novel application of proof-carrying data.

– We show that our system achieves practical proof generation and verification times for a range of
system parameters. Since membership proofs are verified off-chain by the recipient, we find that
our system is comparable in gas costs to existing Ethereum privacy pools.

1.2 Technical Overview

A key goal in the system design was to develop a solution that can be introduced as an add-on
component to existing privacy pools on Ethereum and other smart contract platforms. To facilitate
adoption of the system, the design should not require changes to the transaction functionality of the
privacy pool contract or introduce any significant gas costs to the users of the contract. Furthermore,
it should maintain the existing security properties of the privacy pool while optionally allowing for
attestations of allowlist membership.

Derecho assumes the existence of a set of allowlists that are maintained external to the system,
where each allowlist contains a list of Ethereum public-key addresses, along with a dynamic accu-
mulator A (e.g., a Merkle tree) which aggregates the allowlists. That is, for each public key pk on
allowlist with identifier al the element H(al||pk) is inserted into A, where H is a collision-resistant
hash function. For simplicity we restrict to privacy pools that manage only one cryptocurrency asset
at a time, but the system easily generalizes to pools that manage assets of multiple types. The pool
contract maintains an accumulator R of records, where each record is a hash digest (i.e., cryptographic
commitment). When a user first deposits x units of cryptocurrency into the privacy pool from a public
Ethereum address pks, a record of the form H(x||pk1||r1) is added to the accumulator R, where pk1
is a shielded public-key address and r is a nonce that will later be used to nullify the record upon
a transfer or withdrawal. A transfer transaction may create a new record H(x||pk2||r2), a nullifier
n = H(r1), and would include a zero-knowledge proof that a record c = H(x||pk1||r1) exists in R



Derecho: Privacy Pools with Proof-Carrying Disclosures 3

such that n = H(r1). The transfer may also create multiple output records of the form H(xi||pki||ri)
for i ∈ [2, k], and the zero-knowledge proof would additionally attest that

∑
i xi = x. A withdrawal

contains a similar zero-knowledge proof, but publicly reveals the output amount y and a destination
Ethereum address pkd, at which point y units are withdrawn from the pool and delivered to pkd.

We define membership of records on allowlists recursively as follows. The initial record created
upon deposit is a member of allowlist al if and only if its source Ethereum address pks is a member
of al. A record created as the output of a transfer transaction is a member of al if and only if all the
inputs records to the transfer are members of al. Finally, we say that a withdrawal transaction is a
member of al if and only if all the input records to this withdrawal are members of al. (Note that
this final allowlist attestation refers to the withdrawal transaction itself rather than the Ethereum
destination address pkd, which may or may not be on the allowlist for other reasons.)

Since the initial record created upon deposit is publicly linked to the Ethereum source address pks
via the on-chain deposit transaction, it is straightforward for a user to produce a membership proof
of the deposit record on a list al by providing a membership proof for pks using the accumulator A,
which could be verified given the Ethereum transaction log. Producing membership disclosure proofs
for the output records of transactions is more subtle. If a user already has membership proofs for all
the input records to a transfer transaction with respect to a list al, then it can create a membership
proof for an output record of this transaction by proving its knowledge of valid al membership proofs
for all the input records to the transaction. The same could be done for a withdrawal transaction. In
more detail, since neither the output record nor the transaction log contains explicit references linking
it to transaction inputs, but only nullifiers ni for each input record, the zero-knowledge disclosure
proof repeats the logic of the transfer proof: for each ni, it proves knowledge of an input record
ci = H(xi||pki||ri) such that ni = H(ri) and additionally knowledge of a valid membership proof πi

for ci. This recursive proof of knowledge is possible via a proof-carrying data (PCD) scheme.
However, a problem immediately arises: the validity of πi is not actually verifiable against the

record commitment ci alone. For example, verifying the initial membership proof of a deposit record
c required checking against the blockchain transaction log to obtain the link between the record
c and a source Ethereum address pks. Naively, if the public input required to verify a membership
includes the entire blockchain transaction log then the recursive zero-knowledge proof statement would
become impractically large. The standard trick around this problem is to replace the transaction log
public input with an accumulator digest T : the membership disclosure proof for a deposit record c
now includes both an accumulator membership proof for T of a transaction linking c to pks and an
accumulator membership proof for A showing pks is on the list al.

However, yet another subtle complication arises when attempting to produce recursive membership
proofs for the output records of transfers. Suppose the user has a membership proofs π for an input
record c to a transfer creating an output record c′. Suppose further that the accumulator digest T
commits to the transaction log state at the time t that π was created, and that the accumulator
state T ′ commits to the transaction log state at the time t′ that the new transfer is occurring. The
value T is required as input to verify π, but is unknown to the recipient of the transfer at the time
t′. Thus, T is not available as a public input to verify the recursive disclosure created for c′, rather,
the disclosure must prove knowledge of both π, c and T against which π is valid. Moreover, without
additional restrictions, the prover would be free to invent a malicious proof π∗ valid against a T ∗

unrelated to the true blockchain state at any point in history.
To resolve this problem we use history accumulators, which commit not only to the current state of

a set but also all historical states. History accumulators provide an efficient mechanism to prove that a
digest T represents a valid historical state σ, which can be verified against the current digest T ′ of the
history accumulator. Altogether, these techniques result in a system that only requires a few seconds
to produce attestations on a consumer-grade laptop. These attestations can be efficiently verified by
the recipient of funds with respect to the current blockchain state. Due to the fact that these proofs
do not need to be posted on-chain or verified by the smart contract, we were able to leverage recent
developments in PCD that trade a larger proof size for very fast proving times [BCL+21].

1.3 Related Work

Sander and Ta-Shma [STS99] and Camenisch et al. [CHL06] established the foundations of account-
able privacy for ecash systems. With the growing popularity of cryptocurrencies, several works have
examined trade-offs between privacy and accountability/auditability in the design of decentralized
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payment systems. Garman et al. [GGM16] demonstrates how to add privacy-preserving policy en-
forcement mechanisms to the Zerocash design. UTT [TBA+22] designs a decentralized payment sys-
tem that limits the the amount of currency sent per month using the notion of an anonymity budget.
Platypus [WKDC22] and PEReDi [KKS22] explore the design of central bank digital currencies (CB-
DCs) with privacy-preserving regulatory functionality. Platypus [WKDC22] focuses on enforcement of
anonymity budgets and total balance limits. PEReDi [KKS22] supports compliance with regulations
such as Know Your Customer (KYC), Anti Money Laundering (AML), and Combating Financing
of Terrorism (CFT). Their system aims to avoid a single point of failure by distributing the policy
enforcement mechanism. CAP [Esp22] introduces Configurable Asset Privacy schemes, which support
private transfers of heterogeneous assets with custom viewing and freezing policies. ZEBRA [RPX+22]
develops anonymous credentials that support auditability and revocation while enabling efficient on-
chain verification. We refer to [CBC21] for a more detailed study of these research challenges.

ZEXE [BCG+20] provides a general framework for privacy-preserving blockchain applications in
which the application state is a system of records, transactions create and nullify records, and all
records have birth and death predicates defining the conditions under which they can be created or
nullified. Transactions contain zero-knowledge proofs that these predicates are satisfied. As the authors
note, this captures membership proofs of records on allowlists/blocklists as a special case (described in
detail through a “regulation-friendly private stablecoin” example). In terms of comparison to Derecho,
the ZEXE regulation-friendly stablecoin example restricts users of the stablecoin to a single allowlist
(or blocks users on a single blocklist), represented as a credential assigned to the public key address of
a user, while Derecho does not alter the functionality of privacy-preserving cryptocurrencies, enabling
users to separately disclose allowlist provenance off-chain. Unlike Derecho, ZEXE does not address
how users can prove statements about the origin of records within a hidden transaction graph, nor
the added challenge that the users themselves cannot see the full details of transaction history aside
from allowlist membership proofs of their existing records.

Proof-carrying data [CT10] (PCD) generalizes the notion of incrementally verifiable computa-
tion [Val08] (IVC) from sequential computation to distributed computation over a directed acyclic
graph. The initial paper proposing PCD proposed several applications to the integrity of distributed
computations, including distributed program analysis, type safety, IT supply chains, and conjectured
applications to financial systems. Naveh and Tromer [NT16] proposed an application of PCD to image
authentication, i.e., proving the authenticity of photos even after they have been edited according
to a permissible set of transformations (e.g., cropping, rotation, scaling), which would invalidate sig-
natures on the original image data. PCD (and IVC as a special case) has been used to construct
authenticated data structures with richer invariants, such as append-only dictionaries [TFZ+22] and
incrementally verifiable ledger systems [CCDW20,BMRS20].

2 Building Blocks

2.1 Preliminaries

Notation We let λ ∈ N denote the security parameter with unary representation 1λ. We let negl(λ)
and poly(λ) denote the classes of negligible functions and polynomial functions, respectively. We let
PPT denote probabilistic polynomial time. We let A denote a computationally-bounded adversary
modeled as a PPT algorithm. We let [l] denote the set of integers {0, . . . , l−1}. We let x←$ S denote
that x is sampled uniformly at random from a set S. We let Fq denote a finite field of order q.

Hash functions We use hash functions satisfying the collision resistance property defined in A.2
of [Esp22]. Our system samples hash functions of the form Hq : {0, 1}∗ → Fq. In this work, we use the
arithmetic hash function Poseidon [GKR+21]. The design of arithmetic hash functions is an active
area of research [AAB+20,GHR+22,GKL+22,BBC+22], and our system can be instantiated with any
efficient construction of these hash functions.

Commitment schemes A commitment scheme C = (Com,Vfy) is a pair of efficient algorithms defined
over a message space M and a randomness space R where:

– cm ← Com(m; r) is a commit algorithm that produces a commitment cm given the message
m ∈M to be committed and the randomness r ← R.
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– b← Vfy(cm,m, r) is a verification algorithm that checks whether (m, r) is the correct opening of
the commitment cm and outputs a bit b ∈ {0, 1} representing accept if b = 1 and reject otherwise.

Informally, a commitment scheme is called binding if it is infeasible to open a commitment to a
different message. It is called hiding if the commitments of any two messages are indistinguishable.
Formal definitions of the binding and hiding properties can be found in A.9 and A.10 of [Esp22].
Commitment schemes can be built from collision-resistant hash functions.

Public-key encryption schemes A public-key encryption scheme is of a triple of efficient algorithms
E = (Gen,Enc,Dec) where:

– (pk, sk) ← Gen(1λ) is a PPT key generation algorithm that outputs a key pair consisting of a
public key pk and a private key sk. The public key defines a message spaceMpk.

– ct← Enc(pk,msg) is a PPT encryption algorithm that outputs a ciphertext ct when given a public
key pk and a message msg ∈Mpk.

– msg ← Dec(sk, ct) is a polynomial-time decryption algorithm that given a ciphertext ct and the
secret key sk whose corresponding public key pk was used to generate the ciphertext, outputs the
encrypted message in plaintext. The output msg is a special reject value if decryption failed.

We require that Pr[Dec(sk,Enc(pk,msg)) = msg] = 1 for all key pairs and messages. We require
that the scheme has the IND-CPA and IK-CPA properties, which are defined in A.7 and A.8 of [Esp22].

Accumulator schemes An accumulator scheme consists of a tuple of efficient algorithms Acc =
(Init,Update,PrvMem,VfyMem) where:

– (rt, σ)← Init(1λ) sets up the initial state σ and digest rt of the accumulator.
– (rt′, σ′) ← Update(rt, σ, elem) inserts an element elem into the set and outputs an updated state

σ′ and digest rt′.
– π ← PrvMem(σ, elem) outputs a set membership proof π for the element elem in the set.
– b ← VfyMem(rt, π, elem) outputs a bit b ∈ {0, 1} verifying whether π is a valid proof for the

accumulation of elem in rt. The output is b = 1 if elem was accumulated and b = 0 otherwise.

History accumulator schemes A history accumulator is an authenticated data structure that commits
to a current set state σn and also to all previous set states σ1, ..., σn−1. When the accumulator digest
rtn for σn is incrementally updated for a new state σn+1, the new digest rtn+1 is a commitment
to σn+1 and all prior states accumulated by rtn. Some history accumulators support history proofs
of additional invariants, e.g., that the current state σ′ of a history accumulator with digest rt′ is
a superset of all historical states. Specifically, a history accumulator scheme consists of a tuple of
efficient algorithms HA = (Init,Update,PrvMem,VfyMem,PrvHist,VfyHist) where the algorithms Init,
Update, PrvMem and VfyMem work as above, and the algorithms PrvHist and VfyHist work as follows:

– π ← PrvHist(rt, σ′) given the current state σ′ (which has a current digest rt′) outputs a proof π
that rt is a historical state of the history accumulator.

– b← VfyHist(rt, rt′, π) outputs a bit b ∈ {0, 1}.

This scheme can be instantiated by Merkle history trees [CW09, MKL+20, BKLZ20, TFZ+22],
which are known to support efficient membership proofs and history proofs [Cro10,LLK13,MKL+20].

zk-SNARKs A preprocessing zk-SNARK(zero-knowledge succinct non-interactive arguments of knowl-
edge) with universal SRS (structured reference string) consists of a tuple of efficient algorithms
ARG = (G, I,P,V) where:

– srs← G(1λ, N) is a PPT generation algorithm that samples an SRS that supports indices of size
up to N . This is the universal setup, which is carried out once and used across all future circuits.

– (ek, vk) ← Isrs(i) is a polynomial-time indexing algorithm that outputs the proving key ek and
verification key vk for a circuit with description i. This algorithm has oracle access to the SRS.

– π ← P(ek, x, w) is a PPT proving algorithm that outputs the proof given the instance x and the
witness w.
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– b← V(vk, x, π) is a polynomial-time verification algorithm that outputs an accepting bit b ∈ {0, 1}
given the verification key vk, the instance x, and a proof π. The bit b = 1 denotes acceptance of
the proof for the instance, while b = 0 denotes rejection of the proof.

We require the standard security properties of completeness, knowledge soundness, zero knowl-
edge, and succinctness. We additionally require (updatable) simulation extractability to ensure non-
malleability of proofs. We refer to [GKK+22] for a formal definition of this property.

Proof-Carrying Data Proof-carrying data (PCD) [CT10] enables a set of parties to carry out an
arbitrarily long distributed computation where every step is accompanied by a proof of correctness.

Let V (G) and E(G) denote the vertices and edges of a graph G. A transcript T is a directed acyclic
graph where each vertex u ∈ V (T) is labeled by local data z

(u)
loc and each edge e ∈ E(T) is labeled by

a message z(e) ̸= ⊥. The output of a transcript T, denoted o(T), is z(e
′) where e′ = (u, v) is the first

edge such that v is a sink in the lexicographic ordering of the edges.
A vertex u ∈ V (T) is φ-compliant for a predicate φ ∈ F if for all outgoing edges e = (u, v) ∈ E(T)

either: (1) if u has no incoming edges, φ(z(e), z(u)loc ,⊥, . . . ,⊥) evaluates to true or (2) if u has m incoming
edges e1, ..., em, φ(z(e), z(u)loc , z

(e1), . . . , z(em)) evaluates to true. A transcript T is φ-compliant if all of
its vertices are φ-compliant.

A proof-carrying data system PCD for a class of compliance predicates F consists of a tuple of
efficient algorithms (G, I,P,V), known as the generator, indexer, prover, and verifier algorithms, for
which the properties of completeness, knowledge soundness, and zero knowledge hold.

Completeness. PCD has perfect completeness if for every adversary A the following holds:

Pr


φ ∈ F

∧ φ(z, zloc, z1, . . . , zm) = 1
∧ (∀i, zi = ⊥ ∨ ∀i,V(ivk, zi, πi) = 1)

⇓
V(ivk, z, π) = 1

∣∣∣∣∣∣∣∣∣∣
pppcd ← G(1λ)

(φ, z, zloc, [zi, πi]
m
i=1)← A(pppcd)

(ipk, ivk)← I(pppcd, φ)
π ← P(ipk, z, zloc, [zi, πi]

m
i=1)

 = 1.

Knowledge soundness. PCD has knowledge soundness with respect to an auxiliary input distri-
bution D if for every expected polynomial-time adversary P̃ there exists an expected polynomial-time
extractor EP̃ such that for every set Z:

Pr

 φ ∈ F
∧ (pppcd, ai, φ, o(T), ao) ∈ Z
∧ T is φ-compliant

∣∣∣∣∣∣
pppcd ← G(1λ)
ai← D(pppcd)

(φ,T, ao)← EP̃(pppcd, ai)



≥ Pr

 φ ∈ F
∧ (pppcd, ai, φ, o, ao) ∈ Z
∧ V(ivk, o, π) = 1

∣∣∣∣∣∣∣∣
pppcd ← G(1λ)
ai← D(pppcd)

(φ, o, π, ao)← P̃(pppcd, ai)
(ipk, ivk)← I(pppcd, φ)

− negl(λ).

Zero knowledge. PCD has (statistical) zero knowledge if there exists a PPT simulator S such
that for every honest adversary A the distributions below are statistically indistinguishable:

 (pppcd, φ, z, π)

∣∣∣∣∣∣∣∣
pppcd ← G(1λ)

(φ, z, zloc, [zi, πi]
m
i=1)← A(pppcd)

(ipk, ivk)← I(pppcd, φ)
π ← P(ipk, z, zloc, [zi, πi]

m
i=1)

 and

 (pppcd, φ, z, π)

∣∣∣∣∣∣
(pppcd, τ)← S(1λ)

(φ, z, zloc, [zi, πi]
m
i=1)← A(pppcd)

π ← S(τ, φ, z)


An adversary is honest if their output results in the implicant of the completeness condition being

satisfied with probability 1, i.e., φ ∈ F, φ(z, zloc, z1, . . . , zm) = 1, and either zi = ⊥ or V(ivk, zi, πi) = 1
for each incoming edge zi. A proof π has size poly(λ, |φ|); that is, the proof size is not allowed to grow
with each application of the prover algorithm P.

Our system uses the PCD construction of [BCL+21], which is based on split accumulation schemes.
Other constructions are described in [BCCT13], [BCTV14], Halo [BGH19], [BCMS20], Fractal [COS20],
and Halo Infinite [BDFG21]. Nova [KST22] is a recent IVC construction based on folding schemes,
however we require the more general notion of PCD to support multiple transaction inputs.
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3 Definitions

3.1 System Components

Our system consists of accounts, allowlists, clients, and the privacy pool contract.

– Account. An externally-owned account controls units of a cryptocurrency and has a correspond-
ing public/private key pair. For simplicity, we refer to externally-owned accounts as accounts.

– Allowlist. A list of accounts that are not prohibited from financial interactions in certain settings,
such as a geographic jurisdiction. This list is managed by a trusted party and updated regularly.

– Client. A client operates one or more accounts on the Ethereum blockchain and interacts with the
privacy pool through cryptocurrency deposits, transfers, and withdrawals. The client generates
membership proofs on a set of allowlists when transferring or withdrawing funds.

– Privacy Pool Contract. The privacy pool contract supports deposits and withdrawals of coins
from the pool and anonymous transfers of coins within the pool. The contract stores allowlists to
support membership proofs.

The following data structures are used in our system:

– Public Parameters. In the setup of the system, a trusted party generates public parameters pp
that are available to all participants in the system.

– User Key Pairs. A user generates a key pair (sk, pk) when joining the privacy pool. The public
key pk is used for receiving coins and the secret key sk is used for creating transactions. The
public key is derived from the user’s Ethereum address addr and the generated secret key. The
user generates a key pair (sk′, pk′) for encryption and decryption of owner memos.

– Account List. The user’s public keys are stored in the account list AccountList of the privacy
pool contract upon registration. This account list supports the anonymous transfer functionality.

– Coin Commitments. A coin commitment cm := Com(amt, pk; r) is a commitment to an amount
amt and a user’s public key pk using randomness r. The opening of the coin commitment open :=
(amt, pk, r) is used in transaction creation.

– Nullifier Sets. A nullifier set NullifierList is used to prevent double-spending attacks. A nullifier
null can be constructed from an opening of a coin commitment.

– Owner Memos. An owner memo memo is used by the coin owner to create the coin commitment
from the encryption of the opening of the commitment. It can be shared with the recipient by
posting the memo on the public ledger as part of the transaction or by sending the memo through
a private communication channel.

– Allowlists. An allowlist consists of a unique identifier al and a set of authorized addresses
AuthAddressList.

– Membership Proof Lists. A membership proof list π is a set of membership proofs for a coin
commitment. Each membership proof asserts membership on a specific allowlist in the system.

– Membership Declarations. A membership declaration decl := Hq(al∥pk) is a public reference
to an allowlist identifier al and a user’s public key pk.

– Deposit Records. A deposit record recdep := Hq(amt∥pk∥cm∥uid) is a public record for a deposit
into the privacy pool that is derived from the value amount amt, the user’s public key pk, the coin
commitment cm generated upon deposit, and the unique identifier uid of the deposit transaction.

– Transfer Records. A transfer record rectfr := Hq(null∥cm) is a public record for a pool transfer
that is derived from the nullifier null for a transaction input and the coin commitment cm for a
transaction output. A transfer record is generated for each input-output pair.

– Accumulators. Our system uses sparse Merkle trees to efficiently prove set membership. An
on-chain accumulator with digest rtc maintains the set of published coin commitments.

– History Accumulators. Our system uses sparse Merkle history trees to efficiently prove set
membership and ensure consistency of PCD messages. There are three history accumulators: the
membership declaration history accumulator with digest rtid, the deposit record history accumu-
lator with digest rtdep, and the transfer record history accumulator with digest rttfr. These history
accumulators are maintained off-chain using public information derived from the blockchain state.

The client supports the following operations:

– GenerateKeyPair(pp, addr) → (sk, pk, sk′, pk′). Given public parameters pp and an address addr,
output a user key pair (sk, pk) and an encryption key pair (sk′, pk′).
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– CreateDepositTx(pp, amt, pk) → txdep. Given public parameters pp, a value amount amt, and a
user public key pk, output a deposit transaction txdep. The deposit transaction will result in the
creation and accumulation of deposit records and will transfer amt units of value from the sender
to the privacy pool contract.

– CreateTransferTxn,m(. . . )→ txtfr. Given public parameters pp, a list of input user secret keys skin,
a list of openings of input coin commitments openin, a list of input addresses addrin, a list of
openings of output coin commitments openout, and a list of encryption public keys pk′, output a
transfer transaction txtfr. The transfer transaction will transfer value from the input coin owners
to the output coin owners while ensuring that the input coins can no longer be spent after the
transaction is executed. The transfer transaction will result in the creation and accumulation of
transfer records for each of the transaction outputs. This algorithm is parametrized by the number
of transaction inputs n and the number of transaction outputs m.

– CreateWithdrawalTxn(. . . ) → txwdr. Given public parameters pp, a list of sender secret keys skin,
a list of openings of input coin commitments openin, a list of input addresses addrin, an open-
ing of a (placeholder) output coin commitment openout, and an output address addrout, output a
withdrawal transaction txwdr. The withdrawal transaction will transfer amt units of value from
the input coins to the output address. The withdrawal transaction will result in the creation and
accumulation of transfer records for each of the transaction outputs. To maintain compatibility
with the compliance predicate for membership proofs, a single output coin commitment is gener-
ated. However, this placeholder coin commitment is not accumulated, so it cannot be spent. This
algorithm is parametrized by the number of transaction inputs n.

– CreateMembershipProofn,m(. . . ) → (zout,πout). Given the arguments to the transfer/withdrawal
operation, a list of membership declarations decl, a list of membership witnesses for the member-
ship declarations wid, a list of history proofs for the membership declaration history accumulator
cid, a list of deposit records recdep, a list of unique deposit identifiers uid, a list of membership
witnesses for the deposit records wdep, a list of history proofs for the deposit record history ac-
cumulator cdep, a list of transfer records rectfr, a list of membership witnesses for the transfer
records wtfr, a list of history proofs for the transfer record history accumulator ctfr, a list of input
PCD message lists zin, and a list of input PCD proof lists πin, output a list of PCD message
lists zout and a list of PCD proof lists πout. A membership proof list is generated for each of the
output coins by the prover algorithm in the PCD scheme. This algorithm is parametrized by the
number of transaction inputs n and the number of transaction outputs m.

– CreateRegistrationTx(pp, pk, al) → txreg. Given public parameters pp, a user public key pk, and a
set of allowlists al, output a registration transaction txreg. This transaction will validate the user’s
membership for each of the allowlists and create membership declarations.

The privacy pool supports the following operations:

– PrivacyPoolSetup(1λ) → pp. This algorithm sets up the initial state of the system, including the
accumulators and the configurable parameters. Returns the system’s public parameters pp.

– ProcessDepositTx(pp, txdep)→ (b, recdep, uid). This algorithm validates the deposit amount, verifies
the deposit proof, creates and accumulates the deposit record, generates a unique identifier, and
transfers funds from the sender address to the privacy pool contract address. Returns accept/reject
bit b, deposit record recdep, and unique identifier uid for the deposit transaction. The deposit record
recdep and the unique identifier uid are used in the initial round of membership proof generation.

– ProcessTransferTxn,m(pp, txtfr)→ (b, rectfr). This algorithm checks the value invariant and verifies
the transfer proof. If the transaction is valid, input nullifiers are added to the nullifier set, output
coin commitments are added to the coin commitment accumulator, and the transfer record is
created and accumulated. Returns accept/reject bit b and the transfer record rectfr. The transfer
record is used in a round of membership proof generation.

– ProcessWithdrawalTxn(pp, txwdr) → (b, rectfr). This algorithm validates the input coin commit-
ments and verifies the withdrawal proof. If the transaction is valid, input nullifiers are added
to the nullifier set, the transfer record is created and accumulated, and funds are sent from the
privacy pool to the recipient. Returns accept/reject bit b and the transfer record rectfr.

– ProcessRegistrationTx(pp, txreg)→ (b,decl). The contract will store the public key pk for the user
in the account list. The contract verifies that the sender is authorized to declare membership on
the allowlists in the set al. Returns accept/reject bit b and a list of membership declarations decl.
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3.2 System Goals

The security goals of privacy pools consist of correctness, availability, confidentiality, and unlinkability.
Correctness ensures that a pool does not allow clients to spend coins that have already been spent

or that they do not own. Availability ensures that clients cannot be prevented from using the privacy
pool. Once coin commitments have been added to the contract state, clients cannot be prevented
from spending coins that they own and have not previously spent. Confidentiality and unlinkability
are the key privacy considerations. A pool ensures confidentiality of transactions if only the sender
and recipient learn the value amount associated with each transaction. A pool ensures unlinkability
of transfers and withdrawals if an adversary has a negligible advantage in guessing an input coin
commitment associated with a given transfer or withdrawal transaction.

Derecho does not alter the functionality of the privacy pool and thus preserves these correctness
and privacy properties. However, we also need to define additional correctness and privacy goals for
proof-carrying disclosures. Correctness ensures that a client cannot attest membership of a transaction
output on a given allowlist unless each of the transaction inputs has an attestation of membership
on this allowlist or is a deposit from an address that is registered on this allowlist. Privacy ensures
that the allowlist membership proof does not reveal anything besides the allowlist membership of the
transaction output (e.g., it does not reveal transaction details).

In our construction, correctness will follow from the definition of the compliance predicate and
privacy from the zero-knowledge property of the underlying PCD scheme.

4 Construction

4.1 Building Block Algorithms

– Commitment Creation. A commitment is computed using a hash function that is applied
to the input elements and randomness. For a coin with value amt owned by public key pk,
the coin commitment cm is computed by Com(amt, pk; r) := Hq(amt∥pk∥r). We may also write
cm := Com(open) for the opening open = (amt, pk, r).

– Nullifier Creation. A nullifier is computed using a hash function that is applied to the opening
of the coin commitment and the user’s secret key sk. The nullifier for a coin commitment with
opening open = (amt, pk, r) is computed by Nullify(open) := Hq(r).

– Memo Encryption. ct← Encpk(m; r) denotes an ElGamal encryption algorithm that computes
ciphertext ct from public key pk, message m, and randomness r.

– Membership Declaration Creation. For an allowlist al and public key pk, the membership
declaration is computed by decl := Hq(al∥pk).

– Deposit Record Creation. A deposit record is computed using a hash function that is applied
to the user’s public key pk, the value amount amt, the coin commitment cm generated upon
deposit, and the unique identifier uid of the deposit transaction. The deposit record is computed
by recdep := Hq(pk∥amt∥cm∥uid) without reference to any private values.

– Transfer Record Creation. A transfer record is computed using a hash function that is applied
to an input nullifier null and an output coin commitment cm. The transfer record is computed by
rectfr := Hq(null∥cm) without reference to any private values.

4.2 Recursive Membership Proof

This section defines the PCD system for attestations of allowlist membership for a transaction output.
Let n be the number of transaction inputs, m be the number of transaction outputs, and l be the
number of allowlists. For simplicity, we fix the set of allowlists (alj)j∈[l] to yield a set of compliance
predicates (φj)j∈[l]. We refer to section 2.1 for a complete description of proof-carrying data.

The compliance predicate φj is a function of the message z, the local data zloc, and the incoming
messages (zi)i∈[n]. Each compliance predicate φj is defined with respect to a specific allowlist alj .
A message z consists of public data associated with the transaction output: the input nullifiers, the
output coin commitment, and auxiliary data related to the deposit records, transfer records, and
membership declarations. The local data zloc for the message consists of private data associated with
the transaction output: input and output coin commitment openings, secret keys for the transaction
inputs, membership witnesses for the accumulated elements (i.e., deposit records, transfer records,
and membership declarations), and proofs for the history accumulator digests.
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Each transfer transaction corresponds to a vertex in the proof-carrying data graph G. This vertex
typically has n incoming edges and m outgoing edges. However, this vertex has no incoming edges
when all transaction inputs consist of fresh deposits to the privacy pool. For a node with incoming
edges, each message zi corresponds to a message that was generated as the output of a previous
transaction. If the node has no incoming edges, zi = ⊥. A vertex u is φj-compliant if for all outgoing
edges with message z either: (1) if u has no incoming edges, φj(z, zloc,⊥, . . . ,⊥) evaluates to true or (2)
if u has n incoming edges, φj(z, zloc, z1, . . . , zn) evaluates to true. Note that zi = ⊥ or V(ivk, zi, πi) = 1
for each incoming edge zi. The prover generates an output proof π = P(ipk, z, zloc, [zi, πi]

m
i=1).

If a vertex has no incoming edges, this indicates that each transaction input is a coin that was
generated upon deposit to the pool. This is the base case of the compliance predicate. In this case,
the predicate performs a series of checks for each transaction input. The predicate checks that the
deposit record is correctly computed from the public data (i.e, the value amount, the user’s public
key, the deposit coin commitment, and the unique identifier of the deposit transaction) and verifies
that the deposit record is accumulated. The predicate checks that the membership declaration is
correctly computed from the allowlist identifier and the user’s public key and verifies that the mem-
bership declaration is accumulated. In this case, the prover is computing an attestation from public
information in such a way that the initial attestation can be reused in subsequent attestations.

If a vertex has n incoming edges, this indicates that each transaction input is a coin that was the
output of a previous transfer transaction. In this case, the membership proof for this transaction will
attest to the validity of previous membership proofs with respect to previous messages. However, a
problem arises where the history accumulator digests of previous messages may be stale with respect
to the current state of the history accumulator for the current message. We thus additionally need
to prove that the prior history accumulator digests represent correct historical states with respect
to the current history accumulator digest. Otherwise, there is no guarantee that the prior history
accumulator digests correspond to valid prior contract states. The predicate will ensure consistency by
verifying that the prior history accumulator digest of message zi is a valid historical digest according to
the current history accumulator digest of message z. The predicate will verify history proofs for three
history accumulators: the membership declaration history accumulator, the deposit record history
accumulator, and the transfer record history accumulator.

In both cases, the predicate computes nullifiers for the transaction inputs based on the input
coin commitment openings. The predicate computes the output coin commitment from its opening.
The predicate ensures the consistency of the output coin commitments of the previous messages with
the input coin commitment openings of the current local data. Finally, the predicate computes the
transfer record for each pair of input nullifier and output coin commitment and verifies that the
transfer record is accumulated.

While these computations reference the (private) local data, the resulting proofs can be veri-
fied with respect to the corresponding (public) message. Each transaction output corresponds to an
outgoing edge in the PCD graph, so each transaction output has a corresponding membership proof.

From the recipient’s perspective, it is important to check the validity of the public information in
the message z with respect to the privacy pool contract state, in addition to verifying the proof π with
respect to the message z. Otherwise, it is not guaranteed that the membership proof is meaningful.
The recipient should be able to perform this check at any time with access to the current state.

Our design offers flexibility in combining coins with membership proofs on distinct sets of allowlists
that have a non-empty intersection. For instance, a coin with membership proofs on allowlists al1 and
al2 may be combined with a coin with a membership proof on allowlist al1 to produce transaction
outputs with a membership proof on allowlist al1 only.

– Message z := (null, cm, rtid,decl, rtdep, recdep,uid, rttfr, rectfr):
• null := (nulli)i∈[n]: List of nullifiers for the transaction inputs.
• cm: Output coin commitment.
• rtid: Digest of membership declaration history accumulator.
• decl := (decli)i∈[n]: Membership declarations for the allowlist alj .
• rtdep: Digest of deposit record history accumulator.
• recdep := (recdepi )i∈[n]: Deposit records derived from public information.
• uid := (uidi)i∈[n]: Unique identifiers for the deposit transactions.
• rttfr: Digest of transfer record history accumulator.
• rectfr := (rectfri )i∈[n]: Transfer records derived from public information.
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– Local data zloc := (openin, openout,wid, cid,wdep, cdep,wtfr, ctfr):
• openin := (amtini , pk

in
i , r

in
i )i∈[n]: List of input coin commitment openings.

• openout := (amtout, pkout, rout): Output coin commitment opening.
• wid := (wid

i )i∈[n]: Membership witnesses for membership declarations decl and digest rtid.
• cid := (cidi )i∈[n]: History proofs for digest rtid with respect to previous digests r̂t

id
i .

• wdep := (wdep
i )i∈[n]: Membership witnesses for deposit records recdep and digest rtdep.

• cdep := (cdepi )i∈[n]: History proofs for digest rtdep with respect to previous digests r̂t
dep
i .

• wtfr := (wtfr
i )i∈[n]: Membership witnesses for transfer records rectfr and digest rttfr.

• ctfr := (ctfri )i∈[n]: History proofs for digest rttfr with respect to previous digests r̂t
tfr
i .

– Previous messages (zi)i∈[n]:
• zi := ( ˆnulli, ĉmi, r̂t

id
i , ˆdecli, r̂t

dep
i , ˆrecdepi , ûidi, r̂t

tfr
i , ˆrectfr)

• zi is a message for the i-th transaction input.
• Each message zi has the same format as z.

– Previous proofs (πi)i∈[n]:
• πi is a proof for the i-th transaction input.
• Each proof πi can be verified with respect to zi.

– Compliance predicate φj(z, zloc, z1, . . . , zn) for allowlist alj :
• For i ∈ [n]:

∗ For base case (zi = ⊥), check the following:
· decli = Hq(alj∥pkini )
· HA.VfyMem(rtid,w

id
i , decli)

· recdepi = Hq(amtini ∥pk
in
i ∥Com(openini )∥uidi)

· HA.VfyMem(rtdep,w
dep
i , recdepi )

∗ Otherwise, check the consistency of messages:
· ĉmout

i = Com(amtini , pk
in
i ; r

in
i )

· HA.VfyHist(r̂t
id
i , rtid, c

id
i )

· HA.VfyHist(r̂t
dep
i , rtdep, c

dep
i )

· HA.VfyHist(r̂t
tfr
i , rttfr, c

tfr
i )

• For i ∈ [n]:
∗ nulli = Hq(r

in
i )

• cm = Com(amtout, pkout; rout)
• For i ∈ [n]:

∗ rectfri = Hq(nulli∥cm)
∗ HA.VfyMem(rttfr,w

tfr
i , rectfri )

4.3 Transfer Proof

This is the zk-SNARK statement for the validity of an anonymous transfer in the privacy pool. The
proof shows that the value amount is preserved in the transfer, the sender knows the secret keys for
each of the input coin commitments, the input coin commitments are accumulated, the owner memo
of each output is correctly encrypted, the nullifiers for the input coin commitments are correctly
computed, and the output coin commitments are correctly computed.

Let n be the number of transaction inputs and m be the number of transaction outputs. We allow
placeholder coins with a placeholder public key and a zero amount to support transaction padding.

– Statement:
• For i ∈ [n]:

∗ pkini = Hq(sk
in
i ∥addr

in
i )

∗ nulli = Hq(r
in
i )

∗ Acc.VfyMem(rtc,w
in
i ,Com(amtini , pk

in
i ; r

in
i ))

•
∑

i∈[n] amtini =
∑

i∈[m] amtouti

• For i ∈ [m]:
∗ cmi = Com(amtouti , pkouti ; routi )
∗ memoi = Encpk′i((amtouti , pkouti , routi ), γi)

– Public inputs:
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• (nulli)i∈[n]: List of nullifiers for the transaction inputs.
• (cmi)i∈[m]: List of output coin commitments.
• (memoi)i∈[m]: List of output owner memos.
• rtc: Digest of coin commitment accumulator.

– Private inputs:
• (amtini , pk

in
i , r

in
i )i∈[n]: List of openings of input coin commitments.

• (addrini )i∈[n]: List of owner addresses for transaction inputs.
• (skini )i∈[n]: List of user secret keys for transaction inputs.
• (win

i )i∈[n]: List of membership witnesses for transaction inputs.
• (amtouti , pkouti , routi )i∈[m]: List of openings of output coin commitments.
• (pk′i)i∈[m]: Public keys for encryption of transaction outputs.
• (γi)i∈[m]: Encryption randomness values for transaction outputs.

4.4 Withdrawal Proof

This is the zk-SNARK statement for the validity of a withdrawal from the privacy pool. The proof
shows that the value amount is preserved in the withdrawal, the sender knows the secret keys for
each of the input coin commitments, the input coin commitments are accumulated, and the nullifiers
are correctly computed. Let n be the number of transaction inputs for the withdrawal. As in the case
of the transfer statement, we allow placeholder coins to support transaction padding. We include the
recipient address in the public inputs to ensure that a front-running adversary cannot change the
address in the withdrawal transaction. This defense relies on the non-malleability of the proof, which
is guaranteed by the simulation extractability property of the zk-SNARK scheme.

– Statement:
• For i ∈ [n]:

∗ pkini = Hq(sk
in
i ∥addr

in
i )

∗ nulli = Hq(r
in
i )

∗ Acc.VfyMem(rtc,w
in
i ,Com(amtini , pk

in
i ; r

in
i ))

•
∑

i∈[n] amtini = amtout
– Public inputs:
• (nulli)i∈[n]: List of nullifiers for the transaction inputs.
• addrout: Output recipient address.
• amtout: Output value amount.
• rtc: Digest of coin commitment accumulator.

– Private inputs:
• (amtini , pk

in
i , r

in
i )i∈[n]: List of openings of input coin commitments.

• (addrini )i∈[n]: List of owner addresses for transaction inputs.
• (skini )i∈[n]: List of user secret keys for transaction inputs.
• (win

i )i∈[n]: List of membership witnesses for transaction inputs.

4.5 System Algorithms

We present the client algorithms in Figure 1 and the privacy pool algorithms in Figure 2.
The client generates and registers a public-private key pair before transacting with the privacy

pool. The client may create three types of financial transactions: deposit transactions, transfer trans-
actions, and withdrawal transactions.

When a client transfers coins within the privacy pool, the client will separately create a membership
proof list for each of the output coin commitments. As discussed above, we require special handling
of the base case of the membership proof. When a client withdraws from the privacy pool, the client
generates a final membership proof list. The privacy pool contract checks for transaction validity, but
the contract does not have access to the proof-carrying disclosures. These proofs can be communicated
through a direct channel to the recipient rather than being posted on a public bulletin board.

In an extension of the system, it would be possible to build upon the final membership proof lists
for standard Ethereum transfers that occur after withdrawal from the privacy pool. Here we restrict
our focus to transfers within the privacy pool.



Derecho: Privacy Pools with Proof-Carrying Disclosures 13

CreateMembershipProofn,m(. . . )

Inputs: pp, skin, openin, openout, decl,wid, cid, recdep, uid,wdep, cdep, rectfr,wtfr, ctfr, zin,πin

// Compute null and cm as specified in the deposit and withdrawal operations
Set zout = [] and πout = []

for j ∈ [l] do

for i ∈ [m] do

if z
in
ij = ⊥ (base case) then

Set z = (null, cm[i], rtid, decl[. . . ][j], rtdep, recdep, uid, rttfr, rectfr)

Set zloc = (openin, openout[i],wid,⊥,wdep,⊥,wtfr,⊥)
else

Set z = (null, cm[i], rtid,⊥, rtdep,⊥,⊥, rttfr, rectfr)
Set zloc = (openin, openout[i],⊥, cid,⊥, cdep,wtfr, ctfr)

endif

Generate proof π
out
ij = PCD.P(ipkj , z, zloc, [z

in
ij , π

in
ij ]

n
i=1)

Set zout[i][j] = z and πout[i][j] = π
out
ij

endfor

endfor

return (zout,πout)

GenerateKeyPair(pp, addr)

Generate encryption keys (pk′, sk′)← E.Gen(1λ)

Generate secret key sk←$ {0, 1}λ

Generate public key pk = Hq(sk∥addr)

return (sk, pk, sk′, pk′)

CreateDepositTx(pp, amt, pk)

Sample r ←$ {0, 1}λ

Compute coin commitment cm = Hq(amt∥pk∥r)
Set open = (amt, pk, r)

Set txdep = (cm, amt, pk)

return txdep

CreateTransferTxn,m(. . . )

Inputs: pp, skin, openin, addrin, openout, pk
′

Set null = [] and win = []

for i ∈ [n] do

Set sk = skin[i]

Parse (amt, pk, r) = openin[i]

Compute coin commitment cm = Hq(amt∥pk∥r)
Compute nullifier null = Hq(r)

Compute w = Acc.PrvMem(σc, cm)

Add null to null,w to win

endfor

Set cm = [],memo = [], and γ = []

for i ∈ [m] do

Parse (amt, pk, r) = openout[i]

Compute coin commitment cm = Hq(amt∥pk∥r)

Sample γ ←$ {0, 1}λ

Set pk′ = pk′[i]

Compute owner memo memo = Encpk′ (amt∥pk∥r; γ)

Add cm to cm,memo to memo, γ to γ

endfor

Set instance x = (null, cm,memo, rtc)

Set witness w = (openin, addrin, skin,win, openout, pk
′
,γ)

Generate transfer proof πt = ARG.P(ekt, x, w)

Set txtfr = (nullin, cmout,memoout, rtc, πt)

return txtfr

CreateWithdrawalTxn(. . . )

Inputs: pp, skin, openin, addrin, openout, addrout
Set null = [] and win = []

for i ∈ [n] do

Set sk = skin[i]

Parse (amt, pk, r) = openin[i]

Compute coin commitment cm = Hq(amt∥pk∥r)
Compute nullifier null = Hq(r)

Compute w = Acc.PrvMem(σc, cm)

Add null to null,w to win

endfor

Set cm = []

Parse (amt, pk, r) = openout

Compute coin commitment cm = Hq(amt∥pk∥r)
Add cm to cm

Set instance x = (null, amt, addrout, rtc)

Set witness w = (openin, addrin, skin,win)

Generate withdrawal proof πw = ARG.P(ekw, x, w)

Set txwdr = (amt, addrout, null, cm, rtc, πw)

return txwdr

Fig. 1: Client Algorithms.
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PrivacyPoolSetup(1λ)

* Sample hash function Hq : {0, 1}∗ → Fq

* Specify the maximum deposit amount amtmax ∈ N and the Merkle Tree depth d ∈ N

* Create (rtdep, σdep) = HA.Init(1λ), (rttfr, σtfr) = HA.Init(1λ), and (rtid, σid) = HA.Init(1λ)

* Run universal setup for zk-SNARK: srs = ARG.G(1λ)
* Construct circuit descriptions t for transfer proof and w for withdrawal proof
* Generate keys for circuit: ekt, vkt ← ARG.Isrs(t) and ekw, vkw ← ARG.Isrs(w)

* Construct compliance predicates (φj)j∈[l] for membership proofs

* Run setup for PCD: pppcd = PCD.G(1
λ
)

for j ∈ [l] do

* Generate keys for PCD: ipkj , vpkj ← PCD.I(pppcd, φj)

endfor

Create (rtc, σc) = Acc.Init(1λ)

Set NullifierList = ∅ and DigestList = ∅
Set AccountList = {} and AuthAccountList = {}
Populate AuthAccountList for each allowlist alj

Set pp = {Hq, amtmax, d, rtc, σc, rtid, σid, rtdep, σdep, rttfr, σtfr, ekt, vkt, ekw, vkw, (ipkj , vpkj)j∈[l]

NullifierList,DigestList,AccountList,AuthAccountList}
return pp

ProcessRegistrationTx(pp, txreg)

Parse (pk, al) = txreg

Set AccountList[txreg.sender] = pk

Set decl = []

for al ∈ al do

Require txreg.sender is in AuthAddressList[al]

Compute decl = Hq(pk∥al)
Add decl to decl

* Update rtid = HA.Update(rtid, σid, decl)

endfor

return (1, decl)

ProcessDepositTx(pp, txdep)

Parse (cm, amt, pk) = txdep

Check amt is less than or equal to amtmax

Update rtc = Acc.Update(rtc, σc, cm)

Add rtc to DigestList

Transfer amt units from txdep.sender to contract address
* Compute unique identifier uid for deposit
* Create deposit record recdep = Hq(amt∥pk∥cm∥uid)
* Update rtdep = HA.Update(rtdep, σdep, recdep)

return (1, recdep, uid)

ProcessTransferTxn,m(pp, txtfr)

Parse (null, cm,memo, rt′c, πt) = txtfr

Require rt′c ∈ DigestList

for i ∈ [n] do

Set null = null[i]

Require null /∈ NullifierList

Add null to NullifierList

endfor

for i ∈ [m] do

Set cm = cm[i]

Update rtc = Acc.Update(rtc, σc, cm)

for j ∈ [n] do

Set null = null[j]

* Create transfer record rectfr = Hq(null∥cm)

* Update rttfr = HA.Update(rttfr, σtfr, rectfr)

endfor

endfor

Add rtc to DigestList

Require ARG.V(vkt, [null, cm,memo, rt′c], πt)

return (1, rectfr)

ProcessWithdrawalTxn(pp, txwdr)

Parse (amt, addr, null, cm, rt′c, πw) = txwdr

Require rt′c ∈ DigestList

for i ∈ [n] do

Set null = null[i]

Require null /∈ NullifierList

Add null to NullifierList

* Create transfer record rectfr = Hq(null∥cm)

* Update rttfr = HA.Update(rttfr, σtfr, rectfr)

endfor

Require ARG.V(vkw, [null, amt, addr, rt′c], πw)

Transfer amt units from contract address to recipient addr

return (1, rectfr)

Fig. 2: Privacy Pool Algorithms. Operations prefixed by * occur off-chain.
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Component Sub-component Constraints

Membership
Value Computation 1,258
Membership Proof 6,161

History Proof 6,161

Deposit Record
Value Computation 6,420
Membership Proof 6,161

History Proof 6,161

Transfer Record
Value Computation 1,990
Membership Proof 6,161

History Proof 6,161

Transaction Value Computation 3,705
Value Consistency 1

Total – 50,340

Fig. 3: Component-wise breakdown of R1CS
constraints for the compliance predicate in
the recursive membership proof.
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Fig. 4: Recursive membership proof generation
time and verification time for a range of system
parameters and parallel processing configurations.

5 Evaluation

We implement our construction of proof-carrying disclosures using Rust and the Arkworks ecosys-
tem [ac22]. Our implementation consists of ≈ 5500 lines of code and is available open source.2

We additionally evaluated a prototype of privacy pool based on Ethereum to measure the costs
of registration relative to the standard operations of the privacy pool. This prototype is derived
from an open-source implementation that replicates the functionality of Tornado Cash and includes
optimizations suggested in the Tornado Cash audit report, such as replacing the MiMC hash function
with the Poseidon hash function for efficiency.

The constraints and proof-carrying data primitives are implemented within the Arkworks ecosys-
tem. We instantiate the PCD scheme of [BCL+21] with the Pasta cycle of elliptic curves [Hop20].
This PCD scheme uses a transparent setup.

The compliance predicate circuit consists of 50,340 constraints. A component-wise breakdown of
the constraints is provided in Figure 3. The verification of the membership proofs and history proofs
accounts for the majority of the constraints in the compliance predicate. The constraint count has
been optimized through usage of the Poseidon [GKR+21] hash function.

We evaluated the performance on a laptop with an Apple M1 Max processor. For a tree depth of
20 and single-threaded execution, the setup time was 5.4 seconds, the proving time was 19.2 seconds,
and the verification time was 12.6 seconds. With multi-threaded execution, the setup time was 2.0
seconds, the proving time was 3.4 seconds, and the verification time was 1.9 seconds. Figure 4 contains
proving/verification times for a range of Merkle tree depth values. The proof size was 6.3MB for a
tree depth of 20. Other PCD schemes such as [BCTV14] could be used, resulting in different tradeoffs
in the setup type, proving/verification time, and proof size.

Our design does not introduce additional gas costs in the core functionality of the privacy pool
contract. The history accumulators can be maintained offline based on the public blockchain state
to support generation of membership proofs. The allowlist functionality incurs minimal costs to the
pool operator for contract deployment (559k gas) and minimal costs to the user for the one-time
registration operation (49k gas for an allowlist of size 220). Furthermore, the cost of the registration
operation increases slowly as it is based on Merkle path verification (4.7k gas for a 2x increase in
allowlist size). For comparison, the deployment of the Tornado Cash contract incurs costs of 5.38m
gas, whereas deposit transactions and withdrawal transactions incur costs of 857k gas and 331k gas,
respectively. As a result, users do not incur significant additional gas costs in this design. These results
should extend to any smart contract platform with cost-efficient hash function operations.

2 https://github.com/joshbeal/derecho

https://github.com/joshbeal/derecho


16 Josh Beal and Ben Fisch

6 Future Work

Derecho supports attestations of membership on allowlists. Allowlists can also be used to implement
blocklists by simply including every unblocked address on the allowlist. The challenge with supporting
blocklists more directly is that a user can easily transfer funds from a blocklisted address pks to a fresh
Ethereum address pk′s before depositing into the privacy pool. The funds might then be transfered
several hops within the pool before the blocklist could be updated to include pk′s. At this stage, the
output records of these hops would include valid proofs of non-membership. It would be infeasible to
require these proofs to be updated relative to the newer states of the blocklists because the holders
of those records do not have knowledge of the records’ origin, only the non-membership attestations
that were valid against the previous blocklist states. In the case of allowlists, users can be required
to register new addresses on the allowlists so that freshly created addresses are not automatically
included, preventing users from undermining the disclosure proof system by creating a fresh Ethereum
address before depositing into the pool. On the other hand, a similar challenge would arise if addresses
are removed from allowlists, but we do not anticipate this would happen as frequently. Given that
using allowlists to implement blocklists results in an enormously large list, it would be interesting to
develop alternative constructions that more directly support blocklist non-membership proofs, while
preventing attacks of the nature described above. One solution is to blocklist all fresh addresses,
although this may result in a similar issue of blocklist bloat. We leave this question for future work.

While it may be desirable to extend Derecho to support revocation of allowlist membership, this
functionality could result in a direct conflict with the privacy goals of the system. Suppose there
exists a construction where a single address addr may be removed from an allowlist al to create a new
allowlist al′ such that old membership proofs for al can be updated to support verification against
al′. Then a membership proof that was previously valid against the old allowlist al but not the new
allowlist al′ can be used to break the privacy guarantee of unlinkability. More precisely, this implies
that the party who is able to compute al′ and the party who is able to update a membership proof
π for funds stored at a given record within the privacy pool would be able to collude at any time to
discover all addresses on al from which the funds originated. We leave exploration of relaxed privacy
models that might be compatible with revocation for future work.
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