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Abstract. Oblivious RAM (ORAM) allows a client to outsource storage to a remote server while
hiding the data access pattern from the server. Many ORAM designs have been proposed to reduce
the computational overhead and bandwidth blowup for the client. A recent work, Onion Ring ORAM
(CCS’19), is able to achieve O(1) bandwidth blowup in the online phase using fully homomorphic
encryption (FHE) techniques, at the cost of a computationally expensive client-side offline phase. Fur-
thermore, such a scheme can be categorized as a stateful construction, meaning that the client has to
locally maintain a dynamic state representing the order of remote database elements.
We present Panacea: a novel design of ORAM based on FHE techniques, that is non-interactive and
stateless, achieves O(1) bandwidth blowup, and does not require an expensive offline phase for the client
to perform; in that sense, our design is the first of its kind among other ORAM designs. To provide the
client with such performance benefits, our design delegates all expensive computation to the resourceful
server. We additionally show how to boost the server performance significantly using probabilistic batch
codes at the cost of only 1.5x in additional bandwidth blowup and 3x expansion in server storage, but
less amortized bandwidth. Our experimental results show that our design, with the batching technique,
is practical in terms of server computation overhead as well. Specifically, for a database size of 219, it
takes only 1.16 seconds of amortized computation time for a server to respond to a query. As a result of
the statelessness and low computational overhead on the client, and reasonable computational overhead
on the server, our design is very suitable to be deployed as a cloud-based privacy-preserving storage
outsourcing solution with a portable client running on a lightweight device.

1 Introduction

Oblivious RAM (ORAM) is a cryptographic primitive which allows a client to store its private
data on an untrusted server without leaking any information to the server or any observer about
the data or the data access patterns (sequence of read/write operations and the addresses of those
operations).

For efficient storage outsourcing, where a client, with low local memory, can utilize a cloud server
to store its private data, an ideal ORAM design should incur low computational overhead and low
bandwidth blowup1 for the client. However, the ORAM designs from the classical model [23,25,34,35],
where the server acts as a plain storage device and supports only read or write operations, must
incur Ω(log n) bandwidth blowup for a database size of n elements. To overcome such a high
overhead on the client, many designs have been proposed in the server computation model, utilizing
the computational power of the server to reduce the communication overhead [29,32,31,7,15,21].
The server computation model is also more realistic since a cloud server can have much more
computational and memory resources than the client. Most of these designs still require O(log n)
bandwidth blowup, and multiple interactions with a client or a stateful client.

Only recently, designs based on fully homomorphic encryption (FHE) techniques, such as Onion
ORAM [16] and Onion Ring ORAM [8], are able to achieve a bandwidth blowup of O(1), but still

1 Bandwidth blowup is defined as the ratio between the communication cost of ORAM and the non-private case
where the access pattern is not hidden.
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keep interactive and stateful design. Despite their low asymptotic guarantees, both of these designs
still incur significant overhead on the client (in terms of both computational cost and bandwidth
blowup). The construction of Onion ORAM is of purely theoretical interest and costly to implement
in practice [24]. On the other hand, Onion Ring ORAM requires an expensive client-side offline
phase to achieve its performance guarantees. Can we achieve an ORAM with O(1) bandwidth
blowup and low computation overhead for clients without introducing an expensive offline phase?
Is it possible to achieve so with a non-interactive and stateless design?

Our Design. We answer to the above questions affirmatively by proposing a novel ORAM design,
which we call Panacea, in the single-server setup. Based on fully homomorphic encryption (FHE)
techniques, Panacea achieves O(1) bandwidth blowup and low client-side computational overhead
by pushing almost all the computation to the server: The client only needs to encrypt the queries
it sends to the server and decrypt responses upon reception; and thus does not need to take part
in any expensive offline phase, or extra interaction.

Core Design Strategy. Both Onion ORAM and Onion Ring ORAM are inspired from the binary
tree-based ORAM framework proposed by Shi et al. [29], and they use FHE techniques to re-
duce bandwidth blowup. Our design idea emanates from the following observation: such tree-like
structures mainly help in minimizing the number of client-server interactions and are not required
when FHE techniques are used. Instead, our design employs a technique called homomorphic de-
multiplexing (adapted from [14]) which allows the server to operate on all elements in a database
while accessing the client-indexed element and keeping the server oblivious to which specific element
was accessed. In that sense, Panacea introduces a completely new technique for ORAM protocol
design.

We present three variations of Panacea: the first version takes the above idea directly, and
optimizes the number of bits required to represent an address and the total amount of computation
required by the server. Since, it does not rely on any specific database structure, it does not
require the client to maintain the state of the database locally (unlike Onion Ring ORAM or Path
ORAM [30]). Therefore, this design allows the client to be completely stateless2, and does not incur
any memory overhead. With such a stateless design, the client can query the server, go offline, and
then retrieve the results whenever it comes back online. Another notable advantage is that the
client can use its key to access the database from multiple devices without the need for state
synchronization, similar to the advantages of stateless digital signatures when compared to stateful
digital signatures. However, achieving stateless and non-interactive client with O(1) bandwidth
blowup comes at a cost: operating on all elements of the database requires a computation overhead
of O(n) on the server for a database size of n. We make the computation cost for the server more
practical in the other two versions using different amortization techniques.

Optimization Method 1. Our first optimization method exploits the highly parallelizable nature of
our design: for a batch of k queries on distinct elements, the order of execution does not impact the
output. We parallelize the homomorphic de-multiplexing operations using multiple threads; and the
server now needs to operate on each database element only once (instead of k times) for a batch.
The asymptotic computation overhead for the server still remains O(n).

Optimization Method 2: Using Batching. Our second version leverages existing batching techniques
from the literature to amortize the server’s computational cost for a batch of k queries at the

2 The client needs only to maintain static states such as private keys, but it does not need to maintain a private
dynamic state that depends on the state of the database.
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expense of adding some bandwidth blowup. More specifically, we use probabilistic batch codes
(PBC) which incur 1.5x of additional (total) bandwidth and increase the database size by 3x in our
settings, but the amortized bandwidth decreases as the size of batch increases. PBCs also introduce
a very small failure probability of one-in-a-trillion. In this context, a failure translates to only some
(but not all) of k read/write queries being executed. Nonetheless, such a failure does not leak any
information to the server. PBCs are traditionally used for load-balancing applications and PIR
schemes, and cannot be directly applied to an encrypted non-static database because mutation to
individual elements causes consistency issues in the PBC encoding. We solve this problem using
our consistency correction technique. To the best of our knowledge, this is the first time that PBCs
are applied to an encrypted, non-static database. The asymptotic computational complexity for
the server is O(n/k) when PBC is employed.

While the server computation overhead of Panacea is asymptotically higher compared to that
of the existing stateful designs [8,30], we give concrete performance results on databases with up to
219 data elements and show that our construction is more practical compared to them to deploy on
the cloud: we achieve around 1.16 seconds of amortized computation time for the server to respond
to a query, and a bandwidth blowup of 8 for the client (Onion Ring Oram and Path ORAM incur
bandwidth blowups of 12.8 and 160 respectively). To summarize our contributions:
1. we present a novel ORAM design, where a client can be stateless, based on the homomorphic

de-multiplexer technique (Section 4).
2. we show useful performance optimizations for a batch of k queries:

(a) Our first technique utilizes parallel threads, as well as optimizes the number of operations
executed by the server (Section 5).

(b) Our second technique uses batching techniques from literature in combination with our
consistency correction algorithm to make the server-side computational cost practical (Sec-
tion 6).

3. we implement and evaluate the performance of our design along with the batching technique
and describe a cloud-based deployment strategy for performance optimization (Section 7).

Because of the stateless and non-interactive nature of our design with low computation and com-
munication overhead on the client, and practical enough computation overhead on the server, our
design is very suitable to be deployed on the cloud as a storage outsourcing solution. Moreover, our
performance optimization techniques could be of independent interest for other ORAM designs.

2 Background and Related Work

2.1 ORAM Syntax

We consider a single-server-single-client ORAM setup where a client wants to outsource the storage
of its private data to an untrusted server. For a single query, the ORAM algorithm provides an
Access function to the client which takes as input a 3-tuple (a, op, data), where a represents the
logical address of the block requested by the client, op ∈ {Read,Write}, and data is the data being
written to the block if op = Write (if op = Read the block is not updated and data is ignored).
The goal of the ORAM algorithm is to completely hide the data access pattern (which blocks
were read/written) from the server. We consider that the client fetches/stores data on the server
in blocks. A typical size of a block for cloud storage could be a few to several hundred KB. We
consider that the database has n distinct data blocks stored on the server. All relevant notations
are summarized in Table 2.
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One main metric to measure the ORAM algorithm’s overhead is the bandwidth blowup which
is defined as the ratio between the communication cost of ORAM and the non-private case where
the access pattern is not hidden.

Threat Model. We consider an honest-but-curious server, i.e., the server follows the prescribed
protocol correctly. However, the server can store all the ciphertexts and other data sent by the
client and, afterwards, act as a probabilistic polynomial time adversary to perform additional
computations in order to infer the private data or the access pattern of the client. We adopt a
standard security definition similar to [32,27].

Definition 1 (Security) Let y := {(a1, op1, data1), . . . , (as, ops, datas)} denote a sequence of data
accesses by the client, where ai denotes the address of the block being read from or written to on the
i-th access, opi denotes the whether the operation on ai is a read or write, datai denotes the data
if the i-the operation is a write operation. Let A(y) denote the sequence of communication between
the client and the server under an ORAM protocol Π for the access sequence y. We say that Π
provides µ-security, if the following properties hold:
– privacy: for any chosen pair of data access sequences y and y′ of same length, the server

cannot computationally distinguish between A(y) and A(y′);
– correctness: for a sequence of input y, the protocol returns output to the client consistent with

y with probability greater than 1− µ.

Ideally we want to achieve a very small µ: if some elements of the returned output is not correct,
the client can query those elements again as long as the inconsistencies can be detected. Similar to
other works, we do not consider leakage through side channels such as when or how frequently the
client queries the ORAM. We discuss achieving integrity against a potentially malicious server in
Section 8. However, we do not focus on integrity in our main presentation.

2.2 Existing ORAM Designs

Oblivious RAM or ORAM was first introduced by Goldreich and Ostrovsky in their seminal
work [22]. They prove that ORAM designs in the classical model, where the server acts as a
plain storage device to support only read and write operations, have a fundamental requirement of
Ω(log n) bandwidth blowup. Path ORAM [30] is a prominent example in this line of work which
achieves a bandwidth blowup of O(log n) by utilizing a binary tree-based database structure. How-
ever, due to the inherent regular mutations to the structure of binary trees, the client in Path
ORAM is required to locally maintain the state of the database’s structure to be able to keep track
of the location of data elements; which implies a stateful client with memory overhead.

To circumvent the lower bound set by Goldreich and Ostrovsky, many ORAM designs were
proposed in the server computation model [29,32,31,7,15,21,33]. In the server computation model,
the server does not just act as a plain storage device. Instead, it helps in offsetting the bandwidth
blowup by performing additional expensive computations. However, most of these designs cannot
achieve a bandwidth blowup that is better than O(log n). It is only in recent times that the de-
signs of Onion ORAM and Onion Ring ORAM have achieved the capability to circumvent the
O(log n) bandwidth blowup. Using FHE techniques, both designs provide a non-interactive online
phase with a bandwidth blowup of O(1). However, given that they both employ binary tree-based
database structures, similar to Path ORAM, the clients in their cases need to maintain a state
of the database’s structure locally. Additionally, Onion ORAM and Onion Ring ORAM introduce
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Table 1: Comparison between our design and previous ORAM approaches in terms of storage
requirement (in bits) and computational cost of both server and client for a batch of k queries. We
denote L as the number of levels of ORAM tree of Onion Ring ORAM [8] and Path ORAM [30],
Z as the number of slots in each node, n the number of data elements, and N and q as ciphertext
parameters of underlying FHE scheme. w is the number of hash functions used for our batching
technique. In our work we set w = 3.

Ours(Method 1) Ours(Method 2) Onion Ring ORAM [8] Path ORAM [30]

Memory

(Server)
O(n ·N · log q) O(w · n ·N · log q) O(Z · (2L − 1) ·N · log q) Z · n

Memory

(Client)
O(1) O(w · n · logn) O(n · logn+ Z ·N · log q) O(logn) · ω(1)

Stateful 5 5 3 3

Computation

(Client-Query)
O(k · logn) O(k · logn) O(k · logn) O(k · logn)

Computation

(Client-Eviction)
5 5 O(Z · logZ · logn) O(k · logn)

expensive eviction (offline) phases to achieve their guarantees.3 While Onion Ring ORAM signifi-
cantly improves over Onion ORAM, it still nevertheless incurs computation and memory overheads
on the stateful client: the client is required to perform expensive operations and interact with the
server during the eviction phase.

We observe that such binary tree-based structures are not necessary when using FHE techniques:
the server can operate on all elements while reading from/writing to only one element, or a batch
of them. This motivates us to take a step away from this design paradigm, and propose a novel
design strategy which achieves a non-interactive and stateless client for the ORAM scheme while
guaranteeing a bandwidth blowup of O(1) and eliminating the need for offline eviction phases.

In our design (both with and without PBCs), the client prepares a query, sends it to the server,
and then can go offline. After querying, it does not need to be involved in any computation, and can
retrieve the result whenever it comes back online. In our core design, the client does not have any
memory overhead. However, with our PCB optimization, the client needs to generate an IndexMap
(c.f. Section 6). But, once the IndexMap is generated, it is not required to be updated anymore:
hence preserving the stateless property of the client. Furthermore, IndexMap can be assumed public,
unlike the requirement of secure client-side storage of non-key material by Path ORAM and Onion
Ring ORAM. We compare our design with Onion Ring ORAM and Path ORAM in Table 1 based
on the trade-offs offered by each.

Other Interesting Designs. Using the technique of Recursive ORAM [22], a design can achieve
statelessness by recursively storing the state of the database as another ORAM in the same server
as the original database. However, such designs requires O(log n) interactions between the server
and the client to achieve overall Ω(log n) bandwidth blowup. The design of TWORAM [19] avoids
such recursive interaction by employing garbled circuits to access the elements, and using the output
of the garbled circuit as the input to the next one recursively. However, that requires the client to
update the garbled circuits for the accessed elements after every access: which actually increases
the overall bandwidth overhead and the blowup is still Ω(log(n)), and brings back the requirement
of a secure client-side storage.

3 Even for Path ORAM, all the write operations can be done as part of an eviction phase, however, the cost is
similar to that of the read operations. On the other hand, the eviction phases in Onion ORAM and Onion Ring
ORAM are much more expensive compared to Path ORAM.
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Table 2: Protocol and system parameters for ORAM
DB The database
n Number of data blocks (elements) in the database
w Number of hash functions for PBC
k Number of queries in a single batch query
b Number of buckets in DB to support PBC
p Failure probability of PBC

op The access type, op ∈ {Read,Write}
〈v,w〉 Dot product of two vectors v,w
xi,x[i] The i-th component of vector x
log(·) Logarithm function with base 2

N The maximum degree of a polynomial
t Plaintext modulus
q Ciphertext modulus
` Decomposition parameter
R Z[X]/(XN + 1) for a positive integer N
Rq Z[X]/(XN + 1) mod q for positive integers q,N
λ Security parameter

3 Preliminaries

3.1 Preliminaries of Underlying FHE Scheme

Notations. We define vectors and matrices in lowercase bold and uppercase bold, respectively.
A dot product of two vectors v,w is denoted by 〈v,w〉. For a vector x, both xi and x[i] denote
either the i-th component scalar or the i-th element of an ordered finite set. log(·) is the logarithm
function with base 2. Let R and Rq denote Z[X]/(XN + 1) and (Z/qZ)[X]/(XN + 1), respectively,
for positive integers q and N . We summarize the notations in Table 2.

Ciphertexts. We define the ciphertext modulus as q and the plaintext modulus as t, where t� q,
and denote ∆ = bq/te.
– An RLWE ciphertext is defined as c := (a, b) ∈ R2

q , where b = a · s + ∆ ·m + e for a message
polynomial m ∈ Rt and a secret key s ∈ R. c is denoted by RLWEs(m).

– Given a base g and ` = O(log q), we define a gadget vector g = (1, g, . . . , g`−1)t. An RGSW
ciphertext is a form of C := (a,b) ∈ R2`×2

q , where b = H +m ·G, where each row of H is an
RLWEs(0) and G is a gadget matrix which is defined by G = I2 ⊗ g. The ciphertext is denoted
as RGSWs(m). s can be omitted if it is clear from the context.

Homomorphic Operations and Basic Algorithms. We introduce some homomorphic opera-
tions and basic algorithms used in this paper.

Homomorphic Addition. Let c1 := (a1, b1) and c2 := (a2, b2) be two RLWE ciphertexts. The addition
between two ciphertexts is defined as c+ := c1 + c2 = (a1 + a2, b1 + b2).

External Product. We denote a homomorphic multiplication between an RLWE ciphertext and an
RGSW ciphertext as �, which is called external product in [10], and define it as follows: a� B =
G−1(a) ·B, where B is an RGSW(mB) where B ∈ {0, 1} and a is an RLWE(ma) where ma ∈ Rt and
G−1(·) is the gadget decomposition function which satisfies G−1(a) ·G = a+ e mod q for a ∈ R2

q ,
where e is some error introduced by the decomposition.
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CMUX gate. With the given external product, we can build a small circuit called CMUX [11] which
takes three inputs a, b, (RLWE ciphertexts) encrypting ma,mb respectively, and C (an RGSW
ciphertext encrypting a bit), and outputs either of a or b depending on the value which C encrypts.
The CMUX gate with the three inputs are defined as follows: CMUX(C, a, b) = (b−a)�C+a =: c,
where c encrypts mb if C is an encryption of 1, otherwise ma.

Conversion. We refer to an efficient conversion algorithm (Algorithm 4 of [8]) to switch a format of
ciphertext from RLWE form to RGSW, while preserving the message m. In our case, the algorithm
accepts ` RLWE ciphertexts {RLWEs(m · gj)}j∈[`] as input and outputs RGSWs(m). To run this
algorithm, an additional public evaluation key denoted by ksk us needed. This key is precomputed
and sent by the client beforehand. We call the algorithm RLWEtoRGSW throughout the paper.

3.2 Homomorphic De-Multiplexer

The goal of the homomorphic de-multiplexer in our ORAM is to output a unit vector which contains
1 on a desired position. A similar functionality called homomorphic traversal is discussed in [14]. Its
purpose is, given a binary tree of depth L, to move a value from the root to a desired leaf. In ORAM,
the client needs to indicate the desired item to be accessed without revealing its index to server. So
we leverage this technique to distinguish the desired item from other database elements. Assuming
that a server stores n data elements, we prepare a complete binary tree with level L = log n. If the
client wants to access the i-th element from the database, it can homomorphically index the i-th leaf
with an encryption of 1, and the rest with encryptions of 0 via homomorphic de-multiplexing. Given
these n leaves, the server can run the desired operation exclusively at the desired item because an
operation on the i-th position can be activated with encryption of 1 only. We remind that the server
cannot distinguish between encryptions of 0 or 1.

Unlike the approach of [14], the client only prepares dlog ne bits which represent a bit-decomposition
of the index i, encrypts them all in RGSW format and transmits the ciphertexts to server. The
server runs the algorithm with the encrypted log n bits as controller bits, each in their correspond-
ing level. In our case, all nodes on the same level of a tree use the same controller bit, whereas [14]
requires different input for each decision node. At the end of the algorithm, we obtain an encryption
of 1 on the i-th leaf from the left.

We call the algorithm HomDemux and present it in Algorithm 1. In our instantiation, HomDemux
takes log n RGSW ciphertexts (the encrypted controller bits) and an integer for the root value, and
outputs n RLWE ciphertexts (the leaf nodes) which can be seen as an encrypted a unit vector of
dimension n.

We note that the above algorithm outputs a vector of RLWE ciphertexts of dimension n, where
the desired position has an encryption of r ≥ 1. Technically, the output is not a unit vector if
r 6= 1, but we eventually have a unit vector of RGSW ciphertexts of dimension n in our ORAM
instantiation, after running additional algorithm called RLWEtoRGSW, which will be discussed in
Section 4.2.

4 Core Design of Panacea

Here we present the design for single query ORAM with O(1) bandwidth blowup and no client-side
memory overhead. In Sections 5 and 6 we extend our design to improve server performance by
allowing multiple queries to be sent in batches.
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Algorithm 1 Homomorphic de-multiplexer HomDemux

1: Input: logn controller elements {c0, . . . , cL−1}, and the root value r .
2: Output: n values of leaves: z0, . . . , zn−1

3: b0 ← r
4: Initialize the node values: bi := 0 for i ∈ {1, . . . , 2n− 2}
5: for i← 0, . . . , L− 1 do
6: for j ← 0, . . . , 2i − 1 do
7: b2i+1+2j−1 := b2i−1+j − b2i−1+j · ci . · denotes homomorphic multiplication
8: b2i+1+2j := b2i−1+j · ci
9: end for

10: end for
11: for i← 0, . . . , n− 1 do
12: zi := b2L+1−1+i

13: end for
14: return z0, . . . , zn−1

4.1 Design Description and Overview

We begin with a high-level description of how our algorithm works in the plaintext setting, and
then show how it is converted to the FHE setting.

1. The client sends (a, op, data), where a is the logical address of a requested block4, op represents
either a read or write operation, and data is the new data.

2. The server de-multiplexes a into a unit vector (l0, . . . , ln−1) where la = 1, and the remaining
values are 0, then returns the result of the dot-product 〈(l0, . . . , ln−1), (d0, . . . , dn−1)〉 to the
client.

3. To update, the server runs a simple circuit on every element di of the database:
– Let tempi ← if (op = Read) di else data.
– Update the database entry di ← tempi.

Now we give an overview of the same construction in the FHE setting:

Client: Query Generation. A query consists of a 3-tuple: (a, op, data), following the same se-
mantics as the plaintext version, except all the elements are encrypted.

The client chooses an index i ∈ [0, . . . , n − 1], and computes its binary bit-decomposition to
obtain logn bits, denoted by ε0, . . . , εlogn−1. The client then encrypts these log n bits to generate
a. Based on the desired operation op (either Read or Write), the client and generates an encryption
of 0 and 1 and places them in an ordered tuple as follows: Read = Enc(0) and Write = Enc(1). The
final element in the query is data, which is an encryption of zero in the case of a Read query or the
actual data to be written in the case of a Write query.

Server: Main computation. Once the server receives a query from the client, it executes the
following two phases:

1. Response phase: The server runs the homomorphic de-multiplexer, denoted as HomDemux(a, r),
on the input to generate an encrypted unit vector of dimension n indicating the desired posi-
tion that the client wants to access, and the root value r which will be moved to the desired

4 A data block refers a database element in our paper. We use these terms interchangeably.
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component of the output. Suppose r = 1, then the server computes a dot product between the
unit vector and the data array to obtain the value at the requested position. Finally, the server
sends the result to the client. Regardless of the operation, the client retrieves the original value
at the desired location. If the op is Read, the client can access what it intended to retrieve (the
i-th item). In case of a write operation, the client will ignore the received value. The actual
database update (write) phase occurs after the response.

2. Update Phase: Server creates a temporary array of n elements which contains either the original
data elements or the updated value data, depending on op by running the function called RW
that achieves the following: if op is Read, the temporary array copies the original data elements;
and if op is Write, the client input data is copied to every n elements.

Then the server runs the CMUX gate with the n leaves (as a controller bit) which are the
output of HomDemux and the corresponding temporary element and the original data denoted
as dj for each j ∈ [0, n− 1]. In more detail, the n leaves contain only one encryption of 1 at the
desired position (the i-th leaf) and the rest are encryptions of 0. Therefore, the i-th element
will be updated with data if op = Write, otherwise, it is updated to the original value di, which
means it remains same eventually.

Every computation is done over encrypted elements, so that the server is oblivious to what
operation is given and what block is updated or returned to the client.

4.2 Instantiation based on Homomorphic Encryption

We describe our protocol using FHE ciphertexts as defined in Section 3. Let i be binarized as
i = (ε0, ε1, . . . , εs−1)2, where 2s = n. We show how data elements and the query elements are
encoded in the following:

– dj is an RLWE sample under client’s key K, ∀j ∈ [0, . . . , n− 1]

– a := (RGSWK(ε0), . . . ,RGSWK(εs−1))

– op := (RGSWK(bop))), if bop = 0, it encodes Read. Otherwise, it encodes Write.
– data := RLWEK(α), where α is an update value if op = Write, otherwise, α is any random value.

As soon as the server receives a query from a client, it runs RW(op, data, dj) for each data element
dj . The algorithm is defined as follows:

– RW(C, a, b)→ c :

• Given an input of an RGSW ciphertext C and two RLWE ciphertexts a, b encrypting m0, m1

respectively, it outputs an RLWE ciphertext c which encrypts either m0 or m1.

• Computes c := CMUX(C, a, b)

Hence, if C = RGSWK(0) (which is op = Read), the output c is an RLWE ciphertext encrypting
m1 (the original data). After each component of the output of HomDemux is converted to an
RGSW ciphertext via RLWEtoRGSW5, the RGSW ciphertexts are used as controller bits of a CMUX
gate to select either tempj or dj . The final dot product step consists of performing n component-
wise external products between n RGSW ciphertexts {Lj}j∈[0,...,n−1] and n RLWE ciphertexts
{dj}j∈[0,...,n−1]. With the above definitions of encoding and functions, we describe the server side
instantiation our ORAM protocol in Algorithm 2.

5 The conversion algorithm is adapted from Algorithm 4 of [8].
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Algorithm 2 ORAM protocol on server’s side

1: Input: (a, op, data), where a is the logical address of the requested block, op is either Read or Write, and data
is the value written to the block at address a if op = Write. We note that everything in the query is encrypted
under an FHE scheme.

2: Notation:
– n := the number of data element.
– di := the i-th data element stored in a server.
– L := {l0, . . . , ln−1}; the set of value of leaves.
– temp := temporary data element.

3: Server sets y := 0
4: for i← 0, . . . , `− 1 do
5: Server runs HomDemux(a, gi+1)→ Li
6: end for
7: for j ← 0, . . . , n− 1 do
8: Server runs RLWEtoRGSW({li,j}i∈[0,...`−1], ksk)→ Lj
9: Server computes y := y + dj � Lj

10: end for
11: Server sends y to the client
12: for j ← 0, . . . , n− 1 do
13: Server runs RW(op, dj , data)→ temp
14: Server computes dj := CMUX(Lj , dj , temp)
15: end for

4.3 Computation and Communication Complexity

The communication complexity of the query is O(log n) since the client sends only log n encrypted
bits. For every query, the server sends exactly one encrypted block to the client as response. There-
fore, we also have an overall O(1) bandwidth blow-up as existing FHE-based ORAM designs [8,16].
Due to our stateless strategy, the server has to touch all database elements to guarantee security,
hence the computation complexity is O(n). In more detail, we run ` · n/2, n, ` · n, n and n external
products for HomDemux,RW,RLWEtoRGSW, computing y, and updating data, respectively. Since
` is a parameter of the underlying FHE scheme, it is independent of n.

Since we separate the protocol into two phases: Response and Update, the server’s response
latency from the client’s perspective would be equivalent to the running time of the response
phase, which consumes (`/2 + ` + 1) · n external products. After responding, the server performs
2n external products in the update phase. The server’s total time for each query would be the sum
of the duration of both phases.

4.4 Security

The security of our ORAM scheme stems directly from the semantic security (IND-CPA) of the
underlying homomorphic encryption scheme. Our queries consist of FHE ciphertexts, encoding the
queried database index, desired operation, and potential update value. Semantic security ensures
that the server cannot learn any information about the underlying plaintexts of the query elements.
The security of our design can be expressed through the following theorem.

Theorem 1 (Security of Panaceacore). Assuming IND-CPA security of the underlying FHE
scheme E, and assuming E is correct except a failure probability negligible in the security parameter
λ, Panaceacore provides µ-security as defined in Definition 1 with µ negligible in λ.

10



We refer to Appendix A for the proof of the above theorem. The theorem relies on the correctness
and security of the underlying FHE scheme. However, when instantiating, we require an additional
assumption of circular security which is always assumed in any FHE based protocol due to the use of
key material (the key switching key in our case for RLWEtoRGSW) when encrypting key-dependent
information. Since there is no known attack on circular security, we believe that it would be safe to
rely on such an assumption without harm on our concrete security, as is the case in other similar
works.

5 Multi-query ORAM with Amortized Computation Cost: Method 1

The design of ORAM presented in Section 4 handles one query at a time and incurs a server-side
computational overhead of O(n) for each query. In this section, we present a method to reduce
the (amortized) server-side computation cost for a batch of k queries on distinct elements over τ
processor threads. For simplicity, we assume the number of threads to be equal to the number of
queries (τ = k). However, all the available processor threads can be fully utilized as long as ` ·k ≥ τ .
Our protocol is described in Algorithm 3 and Algorithm 4.

Algorithm 3 Multi-query ORAM: Multi-Threaded Step

1: Input: {(ai, opi, datai)}, i ∈ [k], where k is the number of queries and the rest are the same as Algorithm 2.
2: Notation: we use the same notation as Algorithm 2.
3: for every thread i ∈ [k] do
4: run ` times of HomDemux(ai, g

s) for s ∈ {1, . . . , `} followed by RLWEtoRGSW to obtain Li,j .
5: yi ← 0
6: for j ∈ [0, n− 1] do
7: yi := yi + dj � Li,j
8: end for
9: The server sends {yi}i∈[k] to the client.

10: for j ∈ [0, n− 1] do
11: tempi,j := RW(opi, dj , datai) � Li,j
12: end for
13: (Li,j , tempi,j) is kept for use in Algorithm 4.
14: end for

Algorithm 4 Multi-query ORAM: Merge and Update Step

1: let tempi := {tempi,0, . . . , tempi,n−1}, Li := {Li,0, . . . ,Li,n−1}
2: ¯temp :=

∑k
i=1 tempi, L̄ :=

∑k
i=1 Li

3: CMUX(L̄j ,Enc(dj), ¯tempj),∀j ∈ [0, . . . , n− 1] . Effectively, if L̄j = Enc(1) it outputs ¯tempj , Enc(dj) otherwise.

Algorithm 3 parallelizes Algorithm 2 except for Lines 9 and 14. Note that, only one entry with
a distinct position is not an encryption of zero in each tempi. Therefore, in Algorithm 4, adding
all tempi values does not destroy the value of the entry due to k − 1 zeros. As a result, ¯temp has k
encryptions which encrypt non-zero values at the desired positions, with the rest being encryptions
of zero. Moreover, the elements of L̄ indicate the positions of the non-zero elements.
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In essence, the first step (Algorithm 3) results in O(n) multiplications parallelized over each
available thread, and the second step (Algorithm 4) merges the results by applying 2n multipli-
cations and k additions. Thus, the latency to process and respond to k queries is same as that
of a single query, as O(n) operations are performed before responding to the client. Similarly, the
response is sent to the client before performing the database update.

We make two observations where this method achieves performance gains when compared to
running (a multithreaded version of) Algorithm 2 sequentially for k queries. First, during the de-
multiplexing step of Algorithm 2, if the number of threads available is greater than the number of
decomposition levels `, then the additional threads would remain unused. In the method described
in this section, all threads available would be utilized as long as ` · k ≥ τ . Second, instead of
performing k · n applications of the CMUX gate at the end, we sum the ciphertexts and only
perform n CMUX operations.

6 Multi-query ORAM with Amortized Computation Cost: Method 2

In this method, we use an existing batching technique from the literature to achieve a sublinear
server-side amortized computational cost when considering a batch of k queries. However, the pro-
posed batching techniques come with their own trade-offs: the networking overhead when batching
is much higher than the baseline. Additionally, batch codes require a redundancy of elements in
the database, which significantly increases the server’s storage overhead. We provide an overview
of batch codes and introduce our construction below.

Batch Codes. A batch code, parameterized by the 4-tuple (n,m, k, b), takes as input a database with
n elements, and outputs a set of m (possibly distinct) elements distributed among b buckets, such
that any k elements from the original database can be retrieved by fetching at most one element
from each of the b buckets. We want m < kn to have any performance improvement for the server.

Probabilistic Batch Codes (PBC). A probabilistic batch code, parameterized the 5-tuple (n,m, k, b, p),
is a relaxed version of batch codes which allows a failure probability of p to retrieve all k elements
when the batch elements are chosen uniformly at random (without replacement). This introduces
a probability p of encountering a batch of k elements such that there is no way to retrieve all
the elements in that batch by fetching at most one element from each bucket. Ideally, we target
minimizing the probability of failure as much as possible to maximize the probability of a successful
execution of our ORAM protocol.

6.1 Improving Performance Using PBC

We use a PBC based on reverse cuckoo hashing. Our technique draws inspiration from the batching
technique used in the PIR protocol: SealPIR [6]. One key difference between ORAM and PIR is
that PIR protocols only provide read operations on the database, whereas ORAM schemes provide
both read and write operations. Additionally, all data elements would be encrypted in the context
of ORAM.

Using PBC, the database would be divided into b buckets using w pre-specified (non-cryptographic)
hash functions. First, the server allocates a total of m = w · n elements into b buckets, such that
there would exist w instances of each element spread across W buckets. Then, for each batch of
k < b queries, the client accesses exactly one element from each bucket. We describe the details of
this design and its underlying components below.
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Database Allocation by Server. Let h1, · · · , hw be w distinct hash functions. Since the client
and the server need to agree on some hash functions, the hash functions are publicly specified as
part of the protocol. Given a database of n elements, each element is hashed based on its index in the
original database. The actual element is encrypted and remains encrypted throughout the process.
Suppose an element at index ι produces the following hash values: i1 = h1(ι), · · · , iw = hw(ι).
The server adds the elements from the buckets i1, · · · , iw. The process is then repeated for all
distinct elements in the database. Upon completion, each element will have w instances spread over
b buckets (possibly non-distinct). Depending on the hash functions, it is possible that there are
multiple instances of the same element in a bucket, but only with small probability. However, the
presence of two elements in one bucket does not impact the security of ORAM and only influences
the failure probability of PBC. We further discuss more this failure probability and its implication
in Section 6.4.

Batch-query by Client. For every batch of k (read/write) queries, the client is expected to
perform b accesses, one from each of the b buckets. For each access per bucket, the client can run
the core protocol described in Section 4. The client selects the elements for those b accesses in a
way that satisfies all the k desired read/write operations. To that end, the client uses the reverse
cuckoo hashing technique with the w hash functions as described below.

The problem can be looked at as a balls-and-bins problem. The client has to place k balls (the
intended read/write operations) into b bins (the buckets in the database), where each bin can have
at most one ball. For a ball (the index of an element) ι the client computes w candidate buckets
by applying the hash functions. Then places the ball in one of the empty candidate bins. If none of
the candidate bins are empty, the client picks one uniformly at random, removes the existing ball
ιold from the chosen bin, and places the new ball ι there. For the removed ball ιold, the client runs
the insertion procedure again, and if that causes another ball to be removed, this procedure goes
on recursively for a maximum number of iterations.

If the client can successfully place all the k balls into b bins, that becomes the assignment for
elements in each bucket the client should access from the server. There is also a small chance of
failure to place all the k balls into b bins, we evaluate the failure probability in Section 6.4. Since
the client and the server are using the same hash functions, if assignment puts an element ι in bin
i for the client, that element will be available in bucket i on the server database. Now, the client
can run one instance of the core ORAM protocol described in Section 4 for each bucket. Note that,
for (b− k) buckets, which were empty after placing k balls into b bins, the client generates dummy
read requests. Since the client accesses one element from each bucket, and no bucket is touched
more than once in one batch, the server does not know which buckets correspond to which of the k
accesses requested by the client. However, to access a specific element in a bucket, the client needs
to know the index j of the element in that bucket for the index ι in the original database. Moreover,
since the elements in the database are encrypted and each element has exactly w redundant copies,
the other (w− 1) copies need to be updated as well for each write access. Otherwise, the database
would lose consistency, and any future queries might not return correct (up-to-date) results. We
describe below how we solve the above two problems.

6.2 Mapping Indices

In order to access an element from a bucket the client needs to know the index j of the element in
the bucket for its original index ι in the database. We solve that problem using an IndexMap which
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Algorithm 5 ORAM protocol using PBC

1: {Di}i∈[b] := the database divided into b buckets, initially all buckets are empty.
2: dι := the element at index ι in the original database DB.
3: {ht}t∈[w] := the hash functions used for PBC.
4: I := IndexMap: the mapping between an original database index ι and the pairs (i, j) denoting bucket index and

the location inside the bucket.

5: function Server:Setup(Database DB)
6: for i← 0, . . . , b− 1 do
7: counteri := 0
8: end for
9: for each index ι in DB do

10: for t← 0, . . . , w do
11: i := ht(ι); Append to Di the element dι
12: Add the 3-tuple (ι, i, counteri) to I; counteri := counteri + 1
13: end for
14: end for
15: end function

16: function Client:SendBatchQuery({(at, opt, datat)}t∈[k])
17: {(it, jt, op′t)}t∈[b] ← BatchEncode(I, {(at, opt)}t∈[k])
18: for t← 0, . . . , b− 1 do
19: Send request on Dit for each input (jt, op

′
t, data

′
t)

20: end for
21: end function

22: function Server:BatchResponse({(ji, opi, datai)}i∈[b]) . (ji, opi, datai) are encrypted for Server.
23: for i← 0, . . . , b− 1 do
24: Run Algorithm 2 on Di on input {(ji, opi, datai)} . The response yi is sent back during the process.
25: end for
26: ConsistencyCorrection() . See Algorithm 6.
27: end function

28: function Client:BatchExtract({(at, opt)}t∈[k], {y1, . . . , yb})
29: x1, . . . , xb := Decrypt {y1, . . . , yb}
30: return BatchDecode(I, {(at, opt)}t∈[k], {x1, . . . , xb})
31: end function
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stores this mapping. The client can store the IndexMap throughout the time it uses the database
which that adds a small memory overhead, in order to save query generation time. For a database
with one million entries, the total size of IndexMap is less than 9 MB for our chosen parameters.

It is to be noted that the indices of the elements are used as inputs to the hash functions during
the process of allocating them to the buckets. Therefore, once the buckets are allocated by the server,
IndexMap is never modified. Other ORAM designs that rely on client storage require the client to
maintain some metadata representing the state of the database, and that needs to be updated after
every read/write access and requires secure storage to protect privacy. On the contrary, IndexMap
in our case can be public and does not require any updates. Moreover, if the server uses a pre-
defined source of randomness (which does not break the security of the ORAM protocol), IndexMap
becomes deterministic and can be provided to the client as part of the setup. In that sense, our
client remains stateless: even if the client goes offline, it can easily retrieve/reconstruct the IndexMap
from setup information.

We denote the method of producing b pairs of bucket indices and the corresponding indices in
the buckets from k indices from the original database as BatchEncode(). This operation accepts as
input k tuples {(ι1, op1), . . . , (ιk, opk)} and outputs b 3-tuples {(i1, j1, op1), . . . , (ib, jb, op1)}. When
the client receives the server’s response, it just needs to discard the (b−k) responses corresponding
to the dummy requests mentioned above. We call this method BatchDecode(). We describe the
ORAM algorithm using PBC in Algorithm 5.

6.3 Consistency Correction

Since our batching technique requires redundancy, all w copies of data elements need to be updated
for each write access. With the above method alone6, only one of w copies would be updated, leaving
the remaining copies as encryptions of the old data. Therefore, we introduce a new technique which
also updates the remaining redundant w − 1 blocks to avoid data inconsistency.

We explain our technique to correctly update all the copies with w = 3 for simplicity (we also
choose w = 3 in our setting which we explain in Section 6.4). This method can be easily extended
to any value of w.

We note that this correction is run after the merge and update phase (Algorithm 4) is executed
on each bucket. Suppose that the three hash functions (w = 3) are applied to index ι and the
resulting indices are given by (i1, j1), (i2, j2) and (i3, j3), where i∗ and j∗ represent the bucket index
and the position of an element inside the bucket respectively. After processing a batch, the server
obtains the following for each pair (i, j) as a result of applying the homomorphic de-multiplexer
(Section 3.2) on each bucket:

Li,j : an RGSW ciphertext that encrypts 1 if the j-th element in the i-th bucket is accessed, or 0
otherwise.

Bi: an RGSW ciphertext that encrypts 1 if the operation in the i-th bucket is a write operation,
or 0 otherwise. This is the same as op from the client’s query (Section 4.2).

Note that only one Li,j corresponding to the same element will contain 1, since no element can be
accessed twice in the same batch. Similarly, only one Li,j will contain 1 for a given bucket i. The
server derives Bi from the op parameter in the client’s query, then applies the following consistency

6 PBC without consistency correction
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correction formula to update the database:

V new
ι = Vi1,j1 � (1− Li1,j1 �Bi1 − Li2,j2 �Bi2 − Li3,j3 �Bi3) (1)

+ (Vi1,j1 � Li1,j1 �Bi1 + Vi2,j2 � Li2,j2 �Bi2 + Vi3,j3 � Li3,j3 �Bi3),

where Vi,j denotes the ciphertext at (i, j). V new
ι is the updated value which is copied to locations

(i1, j1), (i2, j2) and (i3, j3), replacing Vi1,j1 , Vi2,j2 and Vi3,j3 respectively.
If we consider one of the Li,j to be an encryption of 1, then intuitively, the top line of Equation (1)

evaluates to an encryption of 0 if it is a write operation, otherwise it is an encryption of Vi1,j1 . The
bottom line of Equation (1) evaluates to an encryption of 0 if it is a read operation, otherwise it is
the new value that is written to the database. If none of Li,j is an encryption of 1, then Equation (1)
evaluates to Vi1,j1 . As a result, if the client performs a write operation to one of the indices i1, j1,
i2, j2 and i3, j3, then subsequently the new value is returned, otherwise the old value is returned.
We assume that the client is honest and does not attempt to submit queries which can make its
own database inconsistent, i.e., more or equal to two of Li1,j1 ,Li2,j2 and Li3,j3 is an encryption of
1. We present the method in Algorithm 6.

Algorithm 6 ConsistencyCorrection by server after every batch

1: Notation:
– Vi,j := the j-th data element stored in the i-th bucket.
– {ht}t∈{1,2,3} := the hash functions used for PBC. . We write the algorithm considering 3 hash functions.
– I := IndexMap: stores the mapping between an original database index ι and the pairs (i, j) denoting bucket

index and the location in the bucket.
– {Li,j}; the set of leaf values after running HomDemux on bucket i.

2: for ι← 0, . . . , n− 1 do
3: (i1, j1), (i2, j2), (i3, j3) := query I for ι.
4: for t← 1, 2, 3 do
5: Bit ← opit
6: end for
7: v := Vi1,j1 � (1− Li1,j1 �Bi1 − Li2,j2 �Bi2 − Li3,j3 �Bi3) + (Vi1,j1 � Li1,j1 �Bi1 + Vi2,j2 � Li2,j2 �Bi2 +
Vi3,j3 � Li3,j3 �Bi3)

8: Di1 [j1] := Di2 [j2] := Di2 [j2] := v
9: end for

6.4 Failure Probability and Parameter Choices

There is a very small probability that the assignment of k balls in b bins will fail. However, that
will only result in a failure to retrieve some k elements from a batch of queries. And, the client will
know that the batch will fail, before even sending the batch query to the server.

Analyzing the exact probability of failure, and determining the constant factors of cuckoo hash-
ing still remains an open problem. However, there are empirical studies [18,9,26] to estimate this
probability for different parameter choices. Chen et al. [9] estimates that the failure probability is
≈ 2−40 when w = 3 and b = 1.5k, for k > 200. Following their analysis, we choose k = 256, w = 3,
and b = 384. With that, the database has an additional 3x storage overhead, and the client has
an additional 1.5x bandwidth overhead. However, since the access in each bucket is independent
of other buckets for a single batch, then the server can run multiple accesses targeting different
buckets in parallel.
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6.5 Tradeoffs And Comparison With Method 1

With our batching technique, we reduce the server-side computational cost of by several factors (as
demonstrated in our experiments in Section 7). However, this improvement comes at a bandwidth
cost of 1.5x when compared to our Method 1 or the core protocol and a storage cost as the database
takes 3x more space. Additionally, there is a slight increase in client-side memory overhead compared
to Method 1 due to the storage of the hash table (see Table 1). Since each component of IndexMap
consists of a few bits (bit length of an index), the actual overhead does not have a big impact on
the client’s performance. On the other hand, if running cuckoo hashing is fast enough, then the
client does not need to store IndexMap, instead, he generates the hash every time he queries. Then
the memory complexity on the client side becomes O(1), but the query generation complexity will
increase to O(n) (running hash functions over n elements), which is a fair trade-off.

In Method 1, we mainly optimize the number of read/write operations to the database: the
overall computation cost for the server is still O(n). If disk-IO per block is expensive (e.g., very large
block size) or the cost of computation is not a concern (availability of a powerful cluster), Method
1 could be beneficial to optimize the bandwidth. However, given that server-side computational
overhead is much higher than disk access, Method 2 would be more useful to optimize the server
computation time. Especially, with the high speed (200 − 500 MB/s) read/write capabilities of
solid-state-devices and typical block size (several KB), we consider that disk-IO is not a bottleneck,
and the cost of 1.5x additional bandwidth blowup and 3x expansion in the size of database are
reasonable trade-offs. Therefore, we mainly focus on evaluating Method 2 in Section 7.

6.6 Response Time Improvement from Cloud Orchestration

Till now we have assumed that a single server holds all the buckets. However, if we consider a
cloud service scenario, each of the b buckets can be held by a different cloud server, employing a
total of b cloud servers. However, after the response is sent to the client, one of them still needs
to run the consistency correction for the whole database, and communicate the updates to rest of
the servers— which adds additional intra-cloud communication. In our evaluation in Sections 7.5
and 7.6 we consider the following setting: there is one persistent database instance D, and spawn
(b− 1) additional on-demand instances to process each bucket; once the buckets are processed, D
runs the consistency correction for the whole database. We demonstrate that such a setting can
yield an overall response time (for the whole batch) close to the amortized response time; and does
not incur significant cost for the intra-cloud communication. We would like to emphasize that this
orchestration does not change our security model: all cloud resources would be under the control
of one entity, e.g., Amazon AWS or Google Cloud.

7 Implementation and Evaluation

Our protocol leverages the TFHE scheme [11] which supports every homomorphic operation we
use. We provide an implementation in the Rust Programming Language7 using the Concrete Core
library8 [12] for homomorphic operations. The source code is available on GitHub.9 We include the
dependency manifest (Cargo.lock) and the parameter sets used in our experiments (params.json)
to ensure reproducible results.

7 Toolchain: Rust version 1.68.0 nightly-x86 64-unknown-linux-gnu
8 “concrete-core” version: 1.0.2
9 https://github.com/KULeuven-COSIC/Panacea
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7.1 Experimental Setup

To simulate a Server implementing our scheme, we benchmarked our implementation on a dedicated
cloud instance running Red Hat Linux. The instance was equipped with an Intel R© Xeon

TM
Platinum

8360Y CPU (36-core@2.4ghz) and 2TB of RAM.
To simulate a client, we compiled our code, targeting a Linux PC equipped with an Intel R©

Core
TM

i5-6600 CPU (4-core@3.3ghz) and 8GB of RAM, as well as a 2020 Apple MacBook Pro
with an M1 chip and 8GB of RAM. In contrast with our server setup, benchmarks evaluated on
both client setups were limited to a single-thread for ease of comparison.

We assume that the client and the server agree on the database and FHE parameters prior to
execution. Additionally, during setup, the client generates their keys and sends the evaluation keys
to the server. The server sets up a dummy database (or a database consisting of trivial RLWE
encryptions of zeros). We benchmark successive simulations of our protocol for a variable database
size progressing from n = 212 to n = 219 using the same hardware. Our instantiations use parameters
in Table 3, yielding 119 bits of security [5] (we set the same parameter sets (N, q, σ) as Onion Ring
Oram).

Table 3: TFHE Parameters

Parameter Value

standard deviation 2−55

polynomial degree N 2048

decomposition parameters for key switching (g, `) (25, 11)

decomposition parameters for query (g, `) (25, 9)

plaintext modulus t 28

ciphertext modulus q 264

7.2 Bandwidth

Table 4: Bandwidth blowup and the actual cost for 384KB data element size when n = 219. We
used method 2 (PBC) for our amortized scenario.

ORAM type Bandwidth blowup amortized blowup

Stateful
Path ORAM 28.5 MB 76 57 MB 152

OnionRing ORAM 2 MB 5.33 246MB 640
OnionRing ORAM (with query packing) 2 MB 5.33 4.8 MB 12.8

Stateless
Panacea 14.6 MB 38 15.9MB 41.4

Panacea (with query packing) 3 MB 8 3 MB 8

So far, we have shown that FHE gives optimal communication overhead of stateless ORAM
as the first optimal bandwidth of stateful ORAM was also achieved by FHE [16]. Theoretically,
ciphertext size can be chosen small enough as long as it can encrypt the message bits, independent
of n. However, all current instantiations, including ours, are based on leveled FHE scheme [8]
to avoid expensive bootstrapping, and chose ciphertext size q large enough to ensure correctness.
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Therefore, the choice of q is not exactly independent to n, i.e., depending on the multiplicative depth
of the protocol. Since we also don’t want to include running bootstrapping as a part of server’s
latency, we face the same problem. The main algorithm in our work and Onion Ring ORAM have
O(log n) multiplicative depth, therefore, the size of ciphertext q = O(log n). As a result, the actual
bandwidth complexity in both instantiations becomes O(log n · log q) = O(log n · log logn).

We compare the bandwidth of our design with that of existing stateful designs (specifically,
PathORAM and Onion Ring ORAM) under similar conditions. Unlike previous stateful designs,
our query cannot contain any plaintext to guarantee the security.

Therefore, the actual communication cost for queries would be worse than that of many stateful
designs due to size of FHE ciphertexts. With the concrete parameters used in our implementation,
one RGSW ciphertext costs 576KB and one RLWE ciphertext (encrypting 2KB of message) as
one response costs 16KB (we use the same technique of OnionRing ORAM [8] to reduce the size
of response by reducing modulus from 64 bits to 32 bits). We require log n RGSW ciphertexts to
encode the chosen index a and one for the operation op. We note that OnionRing ORAM considered
the database is encoded with AES encryption, then it becomes RLWE ciphertexts during eviction,
so that the size of data can be negligible, compared to other query elements. We can consider the
same setting10, but it is not necessary to complete ORAM. We stress that this is a way to optimize
bandwidth of ORAM instantiation.

For a fair comparison of bandwidth, we also consider this setting. When n = 219, the query
size consists of 20 RGSW ciphertexts (20 · 576KB = 11.25MB), and 384KB for AES encrypted
data, resulting in 11.6MB. Then the server’s answer consists of 192 RLWE ciphertexts (to retrieve
a data element of size 384KB) each of size 16KB, resulting in 3MB in total. Due to the choice of
parameters in Onion Ring ORAM [8] t = 212, it was possible that more data could be loaded (up
to 3KB) in one ciphertext, resulting in a reduced server response size of 2MB. It is possible for us
to set the same t in theory, but for large n = 219, we had to reduce the parameter to guarantee the
correctness in our actual implementation.

Each bucket contains 212 elements (since b=384), each query consists of 13 RGSW ciphertexts
(7.3MB) and data of size 384KB, the answer is as same as the single query case (3MB). However,
since we have 1.5x blowup from PBC, it results in 15.9MB (=1.5*10.6MB).

We can reduce amortized bandwidth more and gain the computation time per bucket in this
method. For example, if we set b=1536, each bucket conains 210 elements, then the resulting amor-
tized bandwidth will become 13.7MB which is smaller than the single query case.

Onion Ring ORAM has less bandwidth overhead than us since the query is not encrypted using
homomorphic encryption. On the other hand, their bandwidth increases in amortized scenario, due
to huge amount of additional ingredients encrypted for eviction. To reduce the high overhead, they
use query packing method to pack all the query bits in ` RLWE ciphertexts, instead of sending
log n+1 RGSW ciphertexts as we currently do. Even without this optimization, we still have much
less bandwidth overhead than PathORAM due to our constant bandwidth blowup.

Query Packing. We can also use the same optimization technique of Onion Ring ORAM called
query packing method to reduce the query size. Then, the server would have to unpack queries upon
reception and convert them into the right format to be processed. We call this conversion operation
query unpacking. Then, there would be an additional server-side computational overhead that has
O(log n) complexity. Query unpacking can be trivially parallelized, therefore it does not cause a
significant impact to the total computation time. When we pack everything in the client’s query

10 OnionRing ORAM also can consider our setting.
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(i.e. indices of the item, operation encoding) into ` RLWE ciphertexts, the bandwidth consumption
would be dominated by the server’s response: 3MB in this case. The result is given in the last row
of Table 4.

We have also implemented our design with query packing by using a tweaked version of Al-
gorithm 4 of [8] for n = 219 without modifying our parameters. We note that their unpacking
method (Algorithm 4 of [8]) causes the presence of a lot of additional noise, given the same set
of parameters. Therefore, we use a tweaked version of their algorithm (discussed in Appendix B)
to guarantee correctness. In our implementation, the unpacking algorithm consumed 69 ms per
RLWE ciphertext, hence the additional cost is around 13 seconds to unpack 20 RGSW ciphertexts
for n = 219.

We note that our bandwidth blowup is only affected by the ciphertext expansion factor (ratio
between ciphertext and plaintext) of the underlying FHE scheme: Panacea maintains a constant
bandwidth blowup independent of the block size. On the other hand, Onion Ring ORAM [8] has
another factor Z (the number of real blocks in each node/bucket of their tree structure) which
depends on n. In order to keep the bandwidth blowup constant in practice, Onion Ring ORAM
requires large block size in combination with query packing.

7.3 Computation Overhead

To demonstrate the practicality of our design we evaluate the computation overhead for the server
with our design.

Single query and Method 1. For our single query performance, with n = 212, the response
time is 1.77s and the update duration is 0.81s. We used k = 36 threads when implementing the
single query protocol to benchmark the performance. Afterwards, we used Method 1 to handle k
queries in one go using the same setup. As expected, our Method 1 for k queries is faster than
running our single query (Algorithm 2) protocol k times on the same number of cores. This is due
to the inability to parallelize all parts of the computation in the single query case as we observed
in Section 5. Specifically, to process k queries, Section 5 consumes 28% less time on average to
respond to the client when compared to Algorithm 2. For larger database sizes we refer to the
batched version of our protocol shown next.

Batching with PBC. When the protocol uses PBC, the client batches 256 queries and submits
the whole batch to the server which processes it at once. In our experiment we use a total of 36
threads (one thread per core) to parallelize server-side computations. Numbers in Table 5 show the
averages taken over 5 independent runs of the experiment. The sum of the response duration and
update duration represents the total time spent by the server to treat a query. The response duration
specifies the elapsed duration between the server receiving the client’s query and transmitting the
response. The update duration is equivalent to the time spent by the server to update the database
after responding to the client. Figure 1 displays the linear growth of the amortized duration of
server computation as the number of database elements increases.

We find a clear performance advantage when comparing with the single query mode. Using a
database size of 212, the server is over 180 times faster in terms of access duration.

We came across some difficulties when comparing our numbers directly with those of Onion
Ring ORAM, [8] since their implementation is not publicly available. Moreover, we conjecture that
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Table 5: Computation time required by the server for database size n, with n from 212 to 219, for
the size of the batch k = 256 with PBC. Numbers in brackets are amortized cost. All times are in
seconds.

n Response Duration Update Duration Total Time

212 2.47 (0.0096) 1.01 (0.0004) 3.48 (0.014)

214 9.53 (0.037) 2.89 (0.011) 12.42 (0.049)

216 38.08 (0.15) 11.04 (0.043) 49.13 (0.19)

218 147.92 (0.58) 48.02 (0.19) 195.94 (0.77)

219 296.43 (1.16) 94.83 (0.37) 391.26 (1.53)

the numbers presented in [8] are theoretical projections which do not account for bottlenecks from
data transfer speeds between CPU and RAM which we noticed during our experiments when using
large database sizes. Memory bandwidth is a well-known bottleneck for FHE computation [28,20].
Therefore, we provide an analytical comparison below.
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Fig. 1: Amortized duration of server computation with database size n from 212 to 219 and batch
size k = 256. The x-axis denotes the database size n, and the y-axis denotes the duration (in
seconds).

Explanation and Analytical Comparison with Onion Ring ORAM. The server’s main
computation is performed over all n data elements to guarantee the security, either sequentially
or in parallel depending on the server’s resources and deployment scenario. Therefore, O(n) is
an inevitable complexity. In more detail, the response phase which mainly influences the latency
consists of (`/2+`+1)·n external product in practice, where ` is a parameter of the underlying FHE
scheme. In our experiments, we set ` = 9. Hence, at least 14.5 · n external products are performed.
If we use Method 2, this number is multiplied by w = 3 to handle k ≥ 200 queries at a time.

When comparing with Onion Ring ORAM, we note that their construction has a default com-
plexity of O(log n) for both online and offline phases. During the online phase, the only computation
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performed is an addition of log n ciphertexts, which is extremely cheap when compared to other
homomorphic operations. However, for every A accesses, they require an interactive offline phase
called eviction, during which the server runs an expensive algorithm log n times interactively with
the client. This algorithm is instantiated with FHE and some concrete parameters in [8]. However,
we note that there exists a hidden factor of Z logZ in their complexity analysis of eviction. This
factor is a result of reshuffling Z blocks in each node (bucket) on a selected path during eviction. In
detail, the dominant complexity during the eviction comes from performing Z · logZ · log n ≈ 217

external products, where Z ≈ 29 according to their choice of parameters, when n = 222. Therefore,
the dominant factor is not limited by log n anymore, and the number of slots (Z) in every bucket
is the key factor which impacts real performance. As a result, Z should also be chosen carefully
according to n.

If we set k = A, we can compare two different designs in the amortized scenario with k queries.
Therefore, our experimental numbers show that our stateless design can achieve comparable per-
formance to that of stateful Onion Ring ORAM. The actual latency of their eviction phase also
depends on how fast the client is at answering since it requires multiple client-server interactions.
Additionally, our protocol parallelizes much better given additional server resources, whereas their
eviction should be run sequentially and interactively, which also contributes positively to our prac-
tical performance. These factors should also be taken into account when applying such protocols
in the real world.

Client Performance: Method 2. One of the benefits of our stateless design is that the client
has much less of a computational burden compared to stateful constructions. The client-side com-
putation only consists of generating queries (encrypting indices) and decrypting responses from the
server. The duration of performing one RGSW Encryption during setup is 0.17s for Intel i5-6600,
and 0.065s for Apple M1. As such, the computation cost is small enough for the client to run
efficiently even when using a normal computer.

On the other hand, Onion Ring ORAM necessarily requests the client to join the offline (evic-
tion) phase after every A accesses. In the eviction phase, a client has to generate a permutation to
reshuffle blocks in log n buckets on a chosen path, resulting in having to perform O(log n ·Z · logZ)
encryptions. Moreover, the client also has to download Z data elements (which are encrypted)
multiple times during the eviction phase.

7.4 Memory Usage

For the server’s memory overhead, our approach does not rely on the structure of the database; it
always has a constant overhead, apart from Method 2 which relies on the number of hash functions
that we use. On the other hand, Onion Ring ORAM and other stateful designs rely heavily on
the tree depth (L) and the number of slots (Z) in each node to guarantee the security. For Onion
Ring ORAM, both of these parameters are highly dependent on n. However, with the concrete
parameters used for their implementation, they chose Z and L carefully for Z · 2L to be bounded
by 4n for optimal performance results. Therefore, with our choice of w = 3 in Method 2, we store
3n elements with the server, and our storage overhead is similar to Onion Ring ORAM in practice.

Regarding real-time memory consumption on the server’s side, recall from Section 6 that we
need to store w · n RGSW ciphertexts Li,j in memory temporarily to perform the consistency
correction algorithm, which introduces considerable memory usage since one RGSW ciphertext
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consists of 2` RLWE ciphertexts. But it is possible to reduce the memory usage by a half if the
consistency correction is performed as soon as possible, i.e., by performing consistency correction
on the three entries in the encoded database that are mapped from the same original index right
after they are available, instead of waiting for Panaceacore to be completed on every bucket. We
leave this optimization for future work.

7.5 On-Demand Server

Instead of having a long-running server, cloud services can be used to create on-demand servers for
the majority of the processing requirements. In our case, the client stores the database in a Google
Cloud Storage Bucket. Whenever a query (or a batch of them) is submitted by a client, it would
be ingested by a cloud scheduler, operating at negligible cost, which boots up an instance of our
server from a snapshot. This instance would exist only for the duration of performing one access
operation, to minimize billing costs. The server instance, provided with the client’s query by the
scheduler, would then fetch the required database bucket and parameters from the storage bucket
and store them directly to on its ramdisk partition.

We assume that the speed at which the ramdisk partition on the server can communicate bi-
directionally with the storage solution at a rate of 4GB/s11. The server instance then computes the
response, transmits it back to the client, updates the database and stores it back on the storage
solution then gets shut down automatically. For batch processing, the cloud scheduler can spawn
b such instances (one corresponding to each bucket); once each of those instances finishes their
processing, the scheduler spawns another separate instance to run the consistency correction on
the whole database. The total billable time during which our server operates can be calculated by
summing the time to load the encrypted database, the total computation time and the time to
store the updated database.

7.6 Monetary Cost

Using the same parameter set from Table 3 and k = 256, we present the concrete cost of operating
our server using Method 2 without query packing. Appendix C provides a reference price list
retrieved from the website of Google Cloud Platform (GCP)[1][2][3].

Data Transfer and Storage. Given that internal storage traffic (i.e. transfers between a cloud
instance and a standard storage bucket) is free of charge on GCP, we can neglect the monetary
cost of transferring the database from client to server. The same applies for Ingress traffic from the
client to the cloud, which means that the client can transmit their queries with no server-side cost.

Our fixed parameters grant us a fixed server response size of 12.5MB, regardless of the database
size. This translates to $0.0028 of billable egress traffic per response. Table 6 shows the of the
database to be stored size in GB with n from 212 to 219 and the estimated cost in US Dollars
per month. This low cost demonstrates that storing, transferring and treating FHE ciphertexts is
affordable for significantly-scaled server deployments.

11 https://cloud.google.com/compute/docs/disks/performance
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Table 6: Growth of database in GB with n from 212 to 219 and estimated cost of storage per month
in US Dollars

n Database Size (GB) Cost per Month

212 0.403 $0.010478

214 1.611 $0.041886

216 6.445 $0.16757

218 25.782 $0.670332

219 51.564 $1.340664

Table 7: Server time to load the database from storage, perform the ORAM computation, store
the updated database in storage, and their sum (total server time) in seconds with the estimated
monetary cost in US Dollars.

n Load ORAM Update Total Cost

212 0.1 3.48 0.1 3.68 $0.02576

214 0.402 12.42 0.402 13.2 $0.092568

216 1.611 49.13 1.611 52.35 $0.366464

218 6.445 195.94 6.445 208.83 $1.46181

219 12.891 391.26 12.891 417.042 $2.919294

Server-Side Protocol Execution. We assume that our server runs on demand. More details on
our proposed server setup can be found in Section 7.5. For simplicity, we assume that regardless of
the value of n, a server instance would be equipped with 36 cores and 2TB of RAM to replicate our
experimental setup. Thus referring to Table 8 we can assume that running our server would cost
$25.2/h or $0.007/s. Table 7 provides an estimated cost in US Dollars per batch of 256 queries
with n from 212 to 219.

8 Discussion

8.1 Noise Growth

Due to the nature of FHE schemes, after performing a certain number of operations, ciphertexts
accumulate noise over time. When the noise becomes too high, it would no longer be possible to
decrypt ciphertexts successfully. This applies to our ORAM protocol: after a certain number of
(sequential) accesses, the result returned by the server may respond with ciphertexts that cannot
be decrypted by the client anymore.

We show that our protocol can support over 100,000 (amortized) queries using Method 2 before
bootstrapping is needed to refresh the noise budget. It is because the noise contained in the data is
additively accumulated per access due to the homomorphic operation that we use called external
product in [11].

The multiplicative depth of the protocol grows linearly in the number of sequential accesses.
In every access, the new noise term to be added is generated via a series of external products
(HomDemux and RLWEtoRGSW) among ciphertexts which have low noise. Let’s denote this term
by vq which does not depend on the noise contained in data, hence it has always same variance
bound for a fixed set of parameters. The noise contained in a data element edata is updated as
edata := c1 · edata + c2 · vq after one access, where c1, c2 are small constants less than 5. Therefore,
the noise (in terms of number of bits) grows with O(logQ) complexity, where Q is the number of
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accesses. That is why we can keep small noise growth. Specifically, for n = 219, t = 28 running
Method 2 (Section 6) with batch size k = 256, and fixing our other parameters as described, we
were able to process 425 successive batched queries, averaged after 10 samples, before we reached
a decryption failure.

8.2 Defense Against Malicious Servers

The design presented in this paper mainly focuses on an honest but curious server (adversary).
Our design can be extended with minor modifications to support the assumptions required when
considering a malicious server. We use a technique similar to [17], where the client stores message
authentication codes along with the elements. More specifically, for every element di the client stores
Enc(di,MACK(i, di)) at slot i in the database. This allows the client to immediately detect if the
server does not follow the protocol and returns a bad ciphertext or a ciphertext from any location
other than the queried index for a Read access. However, the server might still be able to replay
old elements from the same location. One way to mitigate against replay attacks, and guarantee
the freshness of the blocks, would be to maintain a separate counter for each element, and use that
counter as part of the input of MAC. After every Write access the corresponding counter needs to
be increased. However, this requires that client maintains a state of all the counters locally, which
adds state to our stateless design.

So we suggest a probabilistic defense mechanism: For every t Write accesses, the client chooses
one of them at random for verification purposes. The index corresponding to that verification access
would be Read immediately after a Write operation at the same location. If the server’s response
does not match the previously updated value on the position, then the client can immediately detect
the server’s malicious behavior. Our privacy guarantees imply that the server cannot learn anything
about the type of intended access, as such, the server has no way to infer access patterns to identify
the for verification accesses. For every malicious action, the client detects it with a probability of
at least 1

t .

When the client detects such a malicious action by the server, if the client aborts immediately,
that provides a unique side-channel to the server. The server knows that after (maliciously) modi-
fying a certain block the client has aborted the protocol. We leave it for future work to handle such
side-channel attacks. However, the server will try to avoid detection for financial purposes, e.g., if
it is a cloud server running storage as a service. If the clients can detect such malicious behavior
from the server, they will eventually take their businesses elsewhere.

9 Conclusion

This work introduces a novel ORAM paradigm which supports a stateless client and has a compar-
atively low bandwidth blowup; a major departure from the tree-based ORAM constructions in the
existing literature. We propose our core protocol supporting single-access queries along with two
variations for multi-access: The first variation uses parallelism to reduce the server’s computation
time by 28% when compared to the core protocol; the second variation (Section 6) uses probabilistic
batch codes to significantly improve the performance in the amortized setting (by over 180 times
when compared to the core protocol for n = 212), achieving only 1.16 seconds of access time for
n = 219. While the asymptotic computation overhead for the server in our protocol looks high
compared to existing designs, our implementation’s concrete performance is more than acceptable,
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especially for small to moderately sized databases. Our novel design approach can encourage other
protocol designers to rethink the design space for ORAM.
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A.1 Security Definition

Recall that we adopt a standard security definition similar to [32,27].

Definition 1 (Security Definition) Let,

y := {(a1, op1, data1), . . . , (as, ops, datas)}

denote a sequence of data accesses by the client, where ai denotes the address of the block being
read from or written to on the i-th access, opi denotes the whether the operation on ai is a read
or write, datai denotes the data if the i-the operation is a write operation. Let A(y) denote the
sequence of communication between the client and the server under an ORAM protocol Π for the
access sequence y. We say that Π provides µ-security, if the following properties hold:
– privacy: for any chosen pair of data access sequences y and y′ of same length, the server

cannot computationally distinguish between A(y) and A(y′);
– correctness: for a sequence of input y, the protocol returns output to the client consistent with

y with probability greater than 1− µ.

Note that the parameter µ in our definition is not a negligible function in the asymptotic sense.
Instead, we show concrete security for µ ≈ 2−40, for the version with probabilistic batch codes
(PBC). However, the version without PBC always returns the correct output as long as the un-
derlying FHE scheme returns the correct output. Recall that we have an honest-but-curious server
which can store all ciphertexts and other data sent by the client and, afterwards, act as a proba-
bilistic polynomial time adversary to perform additional computations in order to infer the client’s
private data or access patterns.

A.2 Security Proof for Panaceacore

Theorem 1 (Security of Panaceacore) Assuming IND-CPA security of the underlying FHE scheme
E, and assuming E is correct except a failure probability negligible in the security parameter λ,
Panaceacore provides µ-security as defined in Definition 1 with µ negligible in λ.

Proof (Proof-sketch). We perform the proof in two parts:
1. first, we show that it is difficult for the server to distinguish between two communication se-

quences corresponding to data access sequences y and y′, where |y| = |y′|;
2. second, we show that the ORAM protocol always returns correct output and updates the ac-

cessed elements correctly.

Claim. Given two data access sequences y = {(a1, op1, data1), . . . , (as, ops, datas)} and y′ = {(a′1, op′1, data′1), . . . , (a′s, op′s, data′s)}
of same length s ∈ poly(λ), the server cannot (computationally) distinguish between communication
sequences A(y) and A(y′) under the protocol Panaceacore.

Proof: Suppose, for the sake of contradiction, that the server can run a distinguisher D to
distinguish between A(y) and A(y′) with a probability p non-negligible in the security parameter
λ.

We want to show that using this distinguisher D, we can construct an adversary Adv for the
IND-CPA game of the underlying FHE scheme. For our proof we consider the IND-CPA game
where the adversary is allowed to send multiple challenge queries.12

12 Security in a (polynomially bounded) multi-challenge IND-CPA game implies security in a single challenge IND-
CPA game.
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The adversary Adv acts as the challenger in the ORAM security game against the server.
The server can choose two sequences of data access y = {(a1, op1, data1), . . . , (as, ops, datas)} and
y′ = {(a′1, op′1, data′1), . . . , (a′s, op′s, data′s)} of same length s. The challenger (Adv in this case) picks
one of y and y′ based on the challenge bit b of the IND-CPA game and runs the ORAM protocol
as described below:

1. Adv allows the client to directly query the oracle of the IND-CPA game to receive encryptions
for all database elements. The client provides the ciphertexts to Adv, and Adv provides them
to the server to set up the database for the ORAM protocol.

2. After Adv receives y and y′ from the server, for each i ∈ [1, s]:

– if ai 6= a′i, Adv uses ai, a
′
i as a pair of challenge plaintexts for the IND-CPA game and the

response to construct the corresponding ORAM access request to the server;
– if opi 6= op′i, Adv uses opi and op′i as a pair of challenge plaintexts for the IND-CPA game

and the response to construct the corresponding request to the server;
– if datai 6= data′i, Adv uses datai, data

′
i as a pair of challenge plaintexts for the IND-CPA

game and the response to construct the corresponding request to the server;
– Adv receives the ciphertexts corresponding to all remaining elements of y (or y′, since those

elements are same) by querying the oracle of the IND-CPA game before sending the challenge
pairs. Using them, Adv can construct all s access requests. Adv instructs the client to send
the requests to the server.

3. Using the ciphertexts received from the IND-CPA game (as responses to the challenge pairs
and oracle queries), the client runs the ORAM protocol with the server for s rounds.

4. If the distinguisher D for the ORAM protocol returns 1, Adv outputs 1 to the IND-CPA game.

Note that, whenever some parts of y[i] and y′[i] are different, Adv (on behalf of the client for
the ORAM protocol) chooses the corresponding ciphertext based on the response of the IND-CPA
game. Therefore, Adv effectively picks y or y′ based on the challenge bit b of the IND-CPA game
without actually knowing b. Adv does not observe any of the database elements (during setup
or the protocol run), or the actual queries in plaintext. Therefore, the server does not have any
information other than the distinguisher D, and the observed ciphertexts.

According to the ORAM protocol, the client sends all query elements (ai, opi, datai) as encrypted
values. All database elements are also encrypted and all encrypted ciphertexts are re-randomized
(as a result of operations under the FHE scheme) after every query. The response received by the
client for each access is also encrypted.

For every access in ORAM, the server touches database elements: so that the access pattern is
identical for every query.

This means that the distinguisher D only has the ciphertexts that the client sends to the server
or the results of homomorphic computations at its disposal. Therefore, Adv wins the multi-query
IND-CPA game with probability p. Which contradicts the IND-CPA security of the FHE scheme
unless p is negligible. �

Claim. Given an input 3-tuple (a, op, data) to the ORAM access protocol, if any operations of E
does not return incorrect output, the client receives the correct response and the accessed element
is correctly updated in case of a write operation.

Proof: The correctness of the ORAM protocol can be implied from: (1) correctness of the
underlying FHE scheme, (2) the homomorphic traversal algorithm accessing the correct location, (3)
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the final step returning the correct value if the above conditions are satisfied, (4) and, if op = Write,
the location is updated correctly.

By assumption of the claim, the FHE scheme is correct: all valid homomorphic operations will
generate correct ciphertexts which can be correctly decrypted.

We can prove the correctness of homomorphic traversal by the method of induction on the
number of database elements n. For simplicity, we assume n = 2` for some integer `.

We first show, as the base case, that homomorphic traversal is correct for ` = 1, i.e., n = 2. In
that case, the traversal tree consists of only the root and two leaves directly connected to the root.
Before the traversal, the root contains the value b = 1, and each of the leaves contain Enc(0). The
client sends only one bit of a (encrypted), which that acts as the controller bit for the root. Let us
denote that encrypted controller bit with c. We update the right leaf node with b · c, which is 1 if
c = 1, and 0 otherwise (assuming the correctness of the FHE scheme). Similarly, the left node is
updated with (1− c) · b, which is 1 if c = 0, and 0 otherwise.

Now, as an inductive hypothesis, let us assume that homomorphic traversal is correct up to a
certain tree depth `. This means that for an `-bit a, the traversal produces n = 2` ciphertexts: of
which n−1 are Enc(0), and one is Enc(1) at index a. We want to show that homomorphic traversal
is correct for depth `+ 1.

There are 2` nodes at the `-th level, and n = 2`+1 leaf nodes at level `+1. Now, a has `+1 bits.
After, ` iterations of the homomorphic traversal, all nodes at level ell contain Enc(0), except for
one at location denoted by x = {a[i]}i∈[0,`−1] which contains Enc(1) (by inductive hypothesis). Let

us denote those nodes with bi, i ∈ [0, 2`−1]; for all i, bi = Enc(0) except bx = Enc(1). Consequently,
during the (` + 1)-th iteration (which is also the last iteration), all leaf nodes will get the value
Enc(0) except for the child nodes of bx. We know from the structure of binary tree, that the child
nodes of bx are at indices x||0 and x||1 among the leaf nodes. Similar to the argument of base case,
if a[`+ 1] = 0, then the left child is Enc(1) and the right child is Enc(0), and vice-versa. Therefore,
homomorphic traversal sets the correct element at depth `+ 1.

Now the only thing remaining is to prove is that the final output is correct. Additionally, iff op =
Write, then the database element is updated correctly with data. The first condition is implied by the
correctness of the dot product between the output of the homomorphic traversal and the database
element, which is in turn implied by the correctness of the FHE scheme. The second condition
(correct update) is implied by the correctness of the RW and CMUX operations. RW ensures that
the data element is updated iff op = Write, AND CMUX ensures that any update happens only at the
location corresponding to the leaf with value Enc(1) after homomorphic traversal. The correctness
of both of these operations are implied by the correctness of the FHE scheme. �

From the above claim we can can say that Panaceacore always returns the correct result for all
possible sequence y if E is correct. However, if E has a negligible failure probability γ, Panaceacore
has a negligible failure probability of µ = poly(γ), since s ∈ poly(λ). �

A.3 Security Proof for Panaceapbc

Theorem 2 (Security of Panaceapbc) Let E be an IND-CPA secure FHE scheme that is correct
except with a failure probability γ ∈ negl(λ). Given a sequence of data accesses y = {(a1, op1, data1), . . . , (as, ops, datas)}
of length s ∈ poly(λ), with each batch of size k, and a failure probability p of the probabilistic batch
code, Panaceapbc provides µ-security as defined in Definition 1 with µ < p · sk + negl(λ).

Proof (proof-sketch). Similar to the proof of Theorem 1, we also provide this proof in two parts:
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1. we show that it is difficult for the server to distinguish between two communication sequences
corresponding to data access sequences y and y′, where |y| = |y′|;

2. we show that the ORAM protocol returns correct output with a probability very close to 1.
We will first prove our second claim, then prove the first one. For simplicity, since the client always
sends queries in batches of size k, we assume that s = αk where α is an integer. A similar argument
can be extended easily for other values of α assuming that the client will add dummy access requests
to complete the size k of the last batch.

Claim. Given a sequence of inputs y = {(a1, op1, data1), . . . , (as, ops, datas)} to the ORAM access
protocol, if any operations of E does not return incorrect output, the access operations (read or
write) are correctly executed for all the input tuples (ai, opi, datai) with probability 1 − µ where
µ < p · sk .

Proof: In the proof of Appendix A.2 we have argued that the homomorphic traversal yields the
correct output. However, Panaceapbc additionally applies batching, and individually runs Panaceacore
over each of the b buckets. Therefore, we can argue that each individual run over all buckets pre-
serves correctness with 0 failure probability, when an access request is made by the client.

However, the batching technique comes with a failure probability p: for a (randomly chosen)
batch of size k, the client will fail to create a batch which can retrieve all k elements with probability
p. In such a case, we consider that our ORAM protocol has failed to generate the correct output.

For a sequence of length s, there is a total of s
k = α batches. The probability that none of them

fails is quantified by:
P = (1− p)α ≥ 1− αp

Therefore, the probability that at least one of them fails is quantified by:

µ = 1− P ≤ αp

If all batches are successful, then the client retrieves correct output for all access requests in the
sequence y (implied from the success condition of the batching and correctness of the FHE scheme).
The client fails to retrieve all the s elements if one of the batches fails; which happens with proba-
bility µ ≤ αp = p · sk . �

However, there is a negligible probability γ for the FHE scheme to generate incorrect results.
In such cases, the client will receive inconsistent output. Since γ ∈ negl(λ) and s ∈ poly(λ),
µ ≤ p · sk + γ · poly(s) ≤ p · sk + negl(λ).

Now we move to proving the first claim which states that two communication sequences A(y)
and A(y′) corresponding to y and y′ are indistinguishable by the server. However, to ensure that
no leakage emerges from the number of batches actually requested by the client, in case there is a
failure with PBC, we assume that the client completes the batch with dummy requests and sends
the batch even if this action would not help the client retrieve/update the k elements. With that
additional assumption, we can claim the following:

Claim. Given two sequences of accesses y = {(a1, op1, data1), . . . , (as, ops, datas)} and y′ = {(a′1, op′1, data′1), . . . , (a′s, op′s, data′s)}
of same length s, the server cannot (computationally) distinguish between the communication se-
quences A(y) and A(y′) under the protocol Panaceapbc.

Proof: The proof of this claim is very similar to that of Appendix A.2. The only difference is that
the queries are now sent in batches of k; but nevertheless, the server still touches all the elements
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in the database for each batch. Same as in the proof of Appendix A.2, the server can break the
IND-CPA game for the underlying FHE scheme if the security of the ORAM scheme is broken.

The server can choose two sequences with one different element (which is at position s):
(ai, opi, datai) = (a′i, op

′
i, data

′
i)∀1 ≤ i ≤ (s − 1), but as 6= a′s and datas 6= data′s; however, the

server picks ops = op′s. The server picks either ops = Read or Write uniformly at random. Then the
server tries to distinguish which one of y and y′ is chosen by the client.

The server plays two IND-CPA games G1 and G2 as an adversary. In G1, the server chooses the
pair (as, a

′
s) as challenge plaintexts for the IND-CPA game, and in G2 the pair datas and data′s as

challenge plaintexts. If the distinguisher D for the ORAM protocol returns 1, the server outputs 1
to both games. We skip the detailed proof here. �

From the above two claims we can claim that Panaceapbc provides security as defined in Defi-
nition 1 with µ ≤ p · sk + negl(λ)

In our batching technique with PBC, we choose parameters such that p ≈ 2−40. That makes
µ ≈ 2−40 × s

k . Even after a million batch queries (with each batch containing k queries), the
probability that any of the batches would fail is almost one-in-a-million.

B Query Unpacking

In this section, we discuss how to pack a query for slower noise growth, while keeping a practical
computation time. Algorithm 3 of [8] has the least computation complexity among the conversion
methods from RLWE(M(X)) to RLWE(Mi), where i ∈ [N ] with Ø(logN) complexity. However, this
approach results in a lot of noise at the end as discussed in their paper. Therefore, we slightly
modify the algorithm by adopting a key switching method (Algorithm 7 of [8]).

Before discussing the algorithm, we define below a ciphertext form which we will employ:

– RLWE′s(m) := Z+(0,g ·m ∈ R`×2q , where Z is a matrix where each row is an RLWEs(0), and g :=

(b0, b1, . . . , b`−1)t for a positive integer b. The secret key s is defined as s0+s1X+· · · sN−1XN−1.

Our query consists of C := RLWE(M(X)) packing all bits in coefficients of M(X). Then we rear-
range the coefficient of C to place the desired coefficient at the constant term. Next, we run the
following key switching algorithm to output Ci := RLWE(Mi).

Algorithm 7 Key Switching from an RLWE to an RLWE

Input: c := RLWEs(M(X)) = (a, b), where b = −a · s+∆M(X) + e, and ksk := {kski := RLWE′s(si)}i∈[0,...,N ]

Output: c := RLWEs(M0) ∈ R2
q

1: Parse a := a0 + a1X + · · ·+ aN−1X
N−1

2: for i← 1 to N do
3: Compute ci := (〈g−1(ai), kski[1]〉, 〈g−1(ai), kski[2]〉)
4: end for
5: Compute c := (

∑n
i=1 ci[1], b+

∑n
i=1 ci[2])

6: return c

Then, we switch the call of Algorithm 3 by the above algorithm in Algorithm 4 of Onion Ring
ORAM to generate the same output.

The algorithm consists of N scalar products between an integer and polynomial, which costs
less than N external products, with additive noise growth. Consequently, the output noise only has
N factor in the variance, whereas Algorithm 3 incurs a factor of N2.
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C Google Cloud Platform Reference Price List

The price list from Google Cloud Platform [1][2][3] is added in Table 8 for reference.

Table 8: Cloud services required and reference unitary price list from Google Cloud Platform (GCP)
in US Dollars for Europe region

Service Unit Price per Unit

Standard Storage GB/month $0.026

Storage Traffic GB Free

Memory-optimized Compute CPU Core/hour $0.03831

Memory-optimized Compute Memory GB/hour $0.00563

Premium Ingress Traffic GB Free

Premium Egress Traffic GB $0.23
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