
Searching for Gemstones: Flawed Stegosystems

May Hide Promissing Ideas

Evgnosia-Alexandra Kelesidis1[0000−0002−2569−5705], Diana
Maimuţ1[0000−0002−9541−5705], and Ilona Teodora Ciocan1[0000−0003−4297−1537]

Advanced Technologies Institute
10 Dinu Vintilă, Bucharest, Romania

{alexandra.kelesidis, diana.maimut, ilona.ciocan}@dcti.ro

Abstract. The historical domain of information hiding is alternatively
used nowadays for communication security. Maybe the oldest and cer-
tainly one of the most studied field that falls in this category is steganog-
raphy. Within the current paper, we focus on image steganography tech-
niques in the case of the JPEG format. We propose a corrected and
optimized version of the J3 stegosystem which, to the best of our knowl-
edge and as shown throughout the paper, may be considered a very
good choice in terms of security and efficiency as compared to current
solutions. We reconstruct the entire J3 algorithm (pre-processing, mes-
sage insertion and extraction) and detail all the modifications. We also
present implementation optimizations and cover all practical cases while
still using the maximum image insertion capacity.

Keywords: Information hiding, steganography, stegosystem, image steganogra-
phy, JPEG, steganalysis.

1 Introduction

As communication methods have been constantly evolving together with the
emerging technologies, the need of securing the transmitted data has grown expo-
nentially. Closely related to this fact both cryptography and steganography have
become undoubtable necessities for ensuring data protection. There is a clear dif-
ference between the goals of cryptography and steganography: cryptography’s
purpose is hiding the content of a message by means of various mathematical
methods, while steganography’s purpose consists of hiding the existence of a
message or to minimize the probability of being discovered. Nonetheless, within
the state-of-the-art digital stegosystems the message has to be either encrypted
or at least randomized and then inserted into redundant areas of a particular
file format.

Steganography [48] is used for hiding a secret message by means of an or-
dinary object seen as a cover. The goal is to keep the data secret even if the

cover is analysed by means of various methods1. Thus, a steganographic sys-
tem (stegosystem) has to ensure the transportation of a message by means of a
cover object. These systems can be classified as classical or modern, where those
considered modern take advantage of the vast existence and usage of digital files.

Modern steganography uses different digital carriers for message hiding from
simple text to images, audio or video. Unusual covers can be adopted by means of
using linguistic or natural language steganography for hiding secret messages into
text corpuses. Vector objects, computer generated meshes and any other graph
structured data, such as XML documents, relational databases, CAD documents
can also be used successfully.

In this paper we mainly focus on images as cover objects, as they are consid-
ered very common [16] and also practical from the implementation point of view.
Using digital images as carriers depends on the image encoding technique. Com-
mon types of image encodings are Graphics Interchange Format (GIF), which
consists of a simple encoding in red, green and blue (RGB) colors for each pixel,
and Joint Photographic Experts Group (JPEG) which is further detailed in Sec-
tion 2 as it represents the type of encoding that interests us for the current
paper.

One of the most common methods of digital steganography is the usage of
the Least Significant Bit (LSB) from a particular piece of data. More exactly,
we can use the LSB in order to transport bits from the secret message. This
works due to the fact that this bit is considered redundant, and its modification
does not visually alter the cover object. This is most common due to the ease
of implementation and the fact that the changes that appear in the image by
using this technique are too small to be noticed by the human eye, so the mes-
sage actually becomes hidden. However, it also has major disadvantages such
as the impossibility of using a lossy compression format (the information would
change with compression) and the fact that it is not resistant to steganalysis [9].
Furthermore, applying error-correction codes can improve this technique as it
can be detected and fixed on the fly by various visualization software, making it
impossible to detect for the human eye. Various other techniques are specifically
created for a certain file type.

Another steganographic technique is the frequency hiding technique which is
suitable for JPEG images.

Related Work. According to [35], until 2010, among the best known stegano-
graphic algorithms that used the technique of inserting message bits into the
Discrete Cosine Transformation (DCT) coefficients of an image were F5 [49],
OutGuess [41] and Steghide [26]. However, their message insertion rate is too
low for practical purposes and steganalysis methods2 have been successfully ap-
plied to break them [22,24,25].

1 even though the current good practice is to delete the original cover object after
inserting the message and obtaining the resulting file

2 which allow the detection of the presence of embedded information

Also, besides the previously discussed stegosystems, the nsF5 [21] version of
F5 appeared before the scheme presented in [35]. Steganalysis methods for nsF5
are publicly available [2]. In addition, [2] is a tool that applies also to OutGuess,
Steghide and J-UNIWARD.

After the publication of J3, other related steganographic algorithms such
as HUGO [20], WOW [27], the initial UNIWARD family [28], J2-UNIWARD
[15], and NS in JPEG [14] were published. Nonetheless, various steganalysis
papers regarding these stegosystems were presented in the literature: [36] for
HUGO, [44] for WOW, [34] for J-UNIWARD. Moreover, various characteristics
and vulnerabilites of these stegosystems are studied in detail in [16].

Motivation. As already underlined before, a variety of steganographic algorithms
have been proposed in the literature and used in practice. Most of them are
vulnerable to steganalysis methods. We are particularly interested in the J3
algorithm [35].

We consider that given the lack of clarity in the presentation of J3 and
the fact that its implementation is not publicly available, software engineers
have turned their attention especially to other stegosystems when developing
a steganographic application, even though these schemes may be weaker3 and
more inefficient4. We strongly believe that two of the characteristics of J3 are
a must for the current design of secure stegosystems: histogram restoration5 in
order to resist steganalysis methods and high embedding capacity. However, we
have observed various issues of the previously mentioned algorithm and, thus,
we aimed at correcting and improving it.

Moreover, the current publicly available steganography software applications
use either outdated steganographic algorithms or cryptographic schemes (as the
first data protection layer). Among them we mention OpenStego [5] (which sup-
ports two steganographic plugins, LSB and randomized LSB and uses DES [40]
for the initial encryption step), Hide’N’Send [6], in which data hiding is done
using the standard LSB algorithm and StegoShare [3], where the cover file ma-
nipulation algorithm used is based on fixed location LSB insertion that makes its
output pictures detectable to most steganalysis software. Given the previously
mentioned facts, we believe that new steganographic software tools are a must.
We provide the reader with a sketch of such an application within this paper in
Appendix B.

Structure of the Paper. In Section 2, we introduce the notations and briefly de-
scribe image compression with a focus on JPEG and the J3 stegosystem. We
also add pseudocode for the insertion and extraction algorithms of J3 in Ap-
pendix A. The main results are discussed in Section 3, namely corrections and
enhancements of the J3 algorithm. Details regarding the implementation of the
previously mentioned algorithm are presented in Section 4. We conclude and
provide the reader with future work ideas in Section 5.

3 in terms of security
4 when implemented in software
5 the distribution of bytes in the image is not affected

2 Preliminaries

2.1 Notations

Throughout this paper, we denote by Hist(x) the total number of coefficients
x initially present in the cover image. Let W and H be the image width and
height, respectively. We further consider that C[i], 0 ≤ i < W · H is the array of
DCT coefficients of the image. We denote by ||m|| the bit-length of m.

2.2 Image Compression

An image is a collection of numerical data that constitutes different intensities of
light. This numerical representation forms a two-dimensional matrix with pixel
elements. A pixel consists of one byte if the image is black and white or 3 bytes
if the image is color, in RGB format.

As some images are too large to be transmitted in time, there have been
proposed various algorithms that use mathematical formulas to reduce the size
of files. We refer to these methods as compression techniques. In the case of
images, there are two types of compression algorithms: lossless and lossy.

JPEG [29,38] is a lossy compression algorithm that consists in both types of
components. The lossy stages include transformations to DCT [33] coefficients by
applying the DCT transform followed by quantizations, and the actual compres-
sion is done without loss with the help of Huffmann encoding. Thus, steganogra-
phy can be introduced between the two stages. Through the principles derived
from LSB substitution, messages can be hidden in the least significant color bits
of the coefficients resulting before Huffman encoding. The message becomes very
difficult to detect, being inserted at this stage in the frequency range.

Lossless compression reduces image size by using approximations and partial
data deletion as opposed to lossless compression that eliminates only redundant
data. Thus, lossless compression ensures complete recovery of the original data
while lossy compression allows an approximation to be reconstituted.

JPEG. JPEG has been subject to various patents and standardization processes
for over 30 years now and it is widely adopted.

A JPEG file may be characterized by various encoding methods. The most
common one in this case is JPEG File Interchange Format (JFIF) [4]. We further
recall the steps of this encoding process.

When compressing an RGB image, the following steps are performed:

1. The preprocessing step consisting of converting the image from the RGB
color space to the Y, Cr and Cb (i.e. luminance and chrominance) color space
followed by decomposing the pixel matrices corresponding to each channel
into 8 × 8 pixel blocks;

2. The lossy compression sub-algorithm that takes place in two steps and oper-
ates on the resulted pixel blocks:

– Applying the DCT transform [8] that maps the values of a pixel block into
real numbers that represent essential information about the image. More
precisely, 64 functions are applied to an 8 × 8 pixel block, each function
offering information about different patterns present in the respective
block;

– Applying the quantization algorithm that keeps the lower frequency in-
formation and discards6 the higher frequency information. This takes
place by dividing each coefficient resulted after the DCT transform to a
value from a quantization matrix that is set beforehand and rounding to
the nearest integer.

After performing this step, an 8 × 8 block contains integers whose absolute
values are highest in the top left corner of the matrix, as they correspond
to the lowest frequency information. Thus, at this point, each channel con-
tains numbers that represent quantized information about lower frequency
patterns present in the original image. These values are the DCT coefficients
of the image. For an 8 × 8 block, the coefficient found at the top left cor-
ner is named the DC coefficient and the rest are the AC coefficients. If the
process above is reversed, a visually accurate approximation of the image is
obtained;

3. The lossless compression of the resulted values is performed using either
Huffman or Arithmetic Encoding. This type of compression is optimal due
to the high degree of redundancy of the DCT coefficients that are smallest
in absolute value.

The decoding process consists in reversing the encoding steps.

Properties of the DCT Coefficients. We briefly discuss about the distribu-
tion of the DCT coefficients. When determining the histogram of the correspond-
ing DCT coefficients for each of the Y , Cr and Cb channels, we observe that its
values peak at −1 and 1 and decrease as the absolute value of the coefficients
increase.

[43] shows that the AC coefficients for both luminance and chrominance
follow a Laplacian distribution of mean 0 and standard deviation σ. Hence, the
Probability Density Function is characterized by

p(x) = λ/2 · e−λ·|x|, λ =
√

2/σ. (1)

As estimated in [39], σ takes values around 10. Hence, λ ∼ 0.14. More pre-
cisely, the array C[·] of DCT coefficients7 follows the above mentioned distribu-
tion. As it is a discrete random variable, we have that ∀k ∈ Z

P(C = k) =

∫ k+ 1

2

k− 1

2

p(x)dx. (2)

6 maps to 0
7 without the DC values

We are interested in examining the speed at which the histogram values
decrease as the coefficient’s magnitude increases. It suffices to compute the ratio
Hist(n)/Hist(n + k) for n, k > 0.

Note that Hist(n)/Hist(n + k) = P(C = n)/P(C = n + k).

Using the Mean Value Theorem, we know that there exist c1 ∈ [n − 1/2, n +
1/2] and c2 ∈ [n + k − 1/2, n + k + 1/2] such that P(C = n) = 2/2 · p(c1) and
P(C = n + k) = 2/2 · p(c2).

Thus, H = Hist(n)/Hist(n + k) = p(c1)/p(c2) = eλ·(c2−c1) which is in the
interval [eλ·(k−1), eλ·(k+1)], with λ ∼ 0.14. When k ≥ 8, H > 2 and, therefore,
we can conclude that Hist(n) > 2 · Hist(n + 8) and, in particular, Hist(1) >
2 · Hist(9). The values in between are closer to each other.

2.3 The J3 Steganographic Algorithm

The J3 algorithm operates on the DCT coefficients of a JPEG image. For in-
serting or extracting data into or from such image, the first step that occurs is
Huffman decoding for obtaining the coefficients array C[·]. We will further con-
sider that the array C[·] consists only in the AC coefficients, as the DC values
represent the coefficients with zero frequency in both dimensions.

In the following we describe the J3 algorithm applied on the DCT coefficients
array for any of the channels Y, Cr and Cb.

Remark 1. For more clarity, besides the following description of J3, we refer the
reader to Algorithms 1 and 2 which represent the pseudocode for the insertion
and the extraction methods.

Setup. The central technique used by the J3 Algorithm is LSB replacement of
the DCT coefficients of an image. More specifically, a message bit b is inserted
into a DCT coefficient i by replacing the LSB of i with b. The resulting coefficient
is either in {i, i + 1} if i is even or {i − 1, i}, if i is odd.

Let THr ∈ N
∗ be a threshold value chosen in advance and let P = {−CL, . . . ,

CL} \ {0} be the set of coefficients used for data embedding, where CL is the
last odd coefficient with Hist(CL) > THr. In order to perform the insertion, we
use the set of ordered sets C = {{−CL, −CL + 1}, . . . , {−3, −2}, {−1, 1}, {2, 3},
. . . , {CL − 1, CL}}.

The hidden component of J3 consists in embedding the message bits into
DCT coefficients from P whose indices are determined by a Pseudorandom
Number Generator (PRNG) which is initialised with a secret seed.

Remark 2 (Histogram Restoration). Data embedding is done under the condition
that restoring the histogram of the resulting image is possible. Before inserting
a bit into a pair of coefficients, the algorithm verifies if there are enough unused
coefficients in the image from that pair in order to use them for restoring the
original histogram.

Definition 1 (Stop Point). Let SP (x, y) be a Stop Point of the pair {x, y}.
For each valid pair of coefficients, its corresponding Stop Point represents the
first index (generated by the PRNG) such as bit insertion in the respective pair
stops.

Definition 2 (Notations). To check if a generated index is a Stop Point8, we
define two counters in Table 1 for {x, y} ∈ C and x ∈ P.

Counter Definition

T C(x, y) The number of coefficients x changed to y.

T R(x) The number of unused x coefficients.
Table 1. Definitions

Remark 3 (Properties). Note that TC(x, x) is the number of coefficients x that re-
mained unchanged during the insertion of bits and TR(x) = Hist(x)−TC(x, y)−
TC(x, x). For each x ∈ P, TR(x) is initialised with Hist(x) and it decreases at
every insertion into x. For each pair {x, y} ∈ C , both TC(x, y) and SP (x, y) are
initialised with 0. TC(x, y) increases for every bit insertion that maps x into y.

Both insertion and extraction start by computing CL using the value THr
and initialising the PRNG with the secret seed.

Insertion. For inserting a message bit b, a secret index i is generated using
the PRNG such that C[i] ∈ P. We map the obtained C[i] into {x, y} ∈ C . We
further assume that C[i] = x.

First, it is verified whether there are enough coefficients with the value x
that were not accessed in order to use them for restoring the histogram. Hist(x)
increases every time a coefficient y is mapped into x and decreases when x is
mapped into y, so restoring the original histogram is only possible when TR(x) >
TC(y, x) − TC(x, y). In consequence, SP (x, y) becomes i once the inequality

TR(x) ≤ TC(y, x) − TC(x, y) (3)

occurs for the first time9.
If SP (x, y) 6= 0, then the bit b is not inserted into any of the coefficients

{x, y} and another index i is generated. Else, we insert b into x = C[i], decrease
TC(x), and if x becomes y, TC(x, y) increases.

We consider NSP = CL as the number of Stop Points and NbSP = ⌊log2(W ·
H)⌋ + 1 as the length in bits of a Stop Point. Before inserting any message bits,

8 which is equivalent to checking if inserting a message bit into that pair is still possible
or not

9 which means that we have reached the minimum number of untouched coefficients
used for histogram restoration

one must make space for inserting the Stop Points into the cover image, as they
are necessary for extraction. In consequence, the PRNG is used for generating a
set D of indices d, with C[d] ∈ P and ||D|| = NSP ·NbSP . We denote the set of
indices for embedding the message bits by M, with M ∩ D = ∅ and |M| = ||m||.
Note that when constructing the SP (·, ·) array, one must allocate exactly NbSP
bits for each element.

The SP (·, ·) array is identified as the Dynamic Header. The actual first step
of the embedding component of J3 is building a Static Header as follows: the
message length is stored on the first 2 bytes of the array, and NbSP and NSP
on the last two bytes, respectively.

We further generate a set S of secret coefficients s, with C[s] ∈ P and
||S|| = 32, used for embedding the Static Header bits. Note that when generating
the sets D and M, the conditions D ∩ S = ∅ and S ∩ M = ∅ must also hold.

Given the previous notations and observations, the following steps take place
during the insertion.

1. Build the Static Header and generate the set S as previously described. The
Static Header bits are inserted into the coefficients C[s], for s ∈ S;

2. Generate the set D and store it separately;
3. Insert the message bits following the previously mentioned rules. Each index

from the set M is generated once accessing a message bit b. The Stop Points
array is built in the process;

4. Insert the Dynamic Header into the coefficients C[d], for d ∈ D;
5. Restore the original histogram by using coefficients from a set R, with

R[i] ∈ P with the sets R, M, D and S being pairwise disjoint. For each set
of coefficients {x, y} ∈ C , proceed as follows: the value of Hist(x) after inser-
tion became Hist(x) − TC(x, y) + TC(y, x), and Hist(y) became Hist(y) −
TC(y, x) + TC(x, y). Without loss of generality, we suppose TC(x, y) −
TC(y, x) > 0. Then, the TC(x, y) − TC(y, x) additional y coefficients must
become x. In consequence, we generate enough indices from R to restore the
original histogram values for each {x, y} ∈ C .

Note that when generating the sets S and D, for each i ∈ S ∪D, the TR(C[i])
value decreases by 1. Moreover, the TC(·, ·) array is updated accordingly during
any of the insertion steps.

Extraction. For extracting data bits from a cover image, one must know the
secret seed in order to determine the indices used for insertion along with the
Stop Points.

The following steps occur during the extraction algorithm.

1. Generate the indices from S and use them for extracting the Static Header
and verify whether the last 2 bytes of the obtained header are equal to NbSP
and NSP , respectively. If one of the equalities doesn’t hold, then either the
values of the image coefficients where the static header bits were inserted
are changed (the picture has been tampered with), either the seed entered
is wrong or the picture has no message inserted.

2. Generate the indices from the set D and extract SP (x, y), for {x, y} ∈ C .
3. Generate the indices from M by taking into account the message length and

the Stop Points found and use them to extract the message.

3 Main Results

Note that when recalling J3 in Section 2 we already presented some of the
corrections we applied to the original algorithm. Next, we emphasize these mod-
ifications.

1. We have corrected the mechanism of finding StopPoints. In the original arti-
cle [35], the StopPoint value was updated each time Equation (3) was fulfilled.
Therefore, the StopPoint became the last index of the coefficient with that
value that was used when inserting, which led to the incorrect extraction of
the message.
Let {x, y} ∈ C be a pair of coefficients such that SP (x, y) = i 6= 0. We know
i is not the first value for which Equation (3) occurred. Let j be the first
index for which Equation (3) holds. Then, embedding in the pair {x, y} has
stopped once reaching j, but the SP (x, y) value keeps changing until i is
generated. During extraction, when generating j, a message bit is extracted
automatically, which is incorrect, as no message bit was embedded into C[j].
Moreover, bit extraction occurs for each index k generated between i and
j with C[k] ∈ {x, y}, which leads to obtaining a bit string that was not
inserted in the first place.

2. Another fundamental observation that was omitted in [35] regarding the
building blocks of the algorithm (i.e. bit insertion and extraction) is the fact
that the sets S, D and R must be pairwise disjoint.
Supposing i ∈ S ∩ M such as the Static Header bit inserted into C[i] was
0, and the message bit inserted was 1. Let C[i] = x, {x, y} ∈ C . Then
C[i] becomes y after the two insertions. The first bit extracted is the Static
Header bit, as i is firstly generated for this purpose. Simultaneously, the first
bit extracted is the message bit, as the value of C[i] corresponds to the last
insertion made. In consequence, for both occurrences of i, the same bit is
extracted which is a contradiction.

3. Within the extraction algorithm, we added the extracted header check. In the
original version, the Static Header was built only for extracting the message
length, the number of Stop Points and the number of bits on which a Stop
Point is stored.
The inadequacy of this approach resides in the fact that the NbSP and NSP
obtained are used for further extraction, when they could be bogus values.
Their use is only for verification as they depend only on the image and its
histogram (which is preserved), so they are computed before any step of
insertion/extraction and further compared to the extracted values.

In the following we detail other modifications and enhancements that we
brought to the J3 stegosystem.

3.1 Adding a Pre-Processing Step

A preprocessing step was added prior to each sub-algorithm of our proposed
version of J3 (insertion and extraction). The outcomes of this component are ob-
taining an adequate CL value that maximizes the embedding capacity depending
on the distribution of the image histogram and determining a total embedding
capacity of the image for assuring the robustness of the algorithm.

Setting T Hr and Computing CL. In the original algorithm [35], CL is com-
puted using the value THr10. Note that the authors do not offer any optimal
possible values for this threshold. More precisely, THr is hard-coded as a con-
stant that intuitively determines a nonempty set P for images that have a his-
togram which takes smaller values. Usually, it is set somewhere near 300 for the
luminance component and near 100 for the chrominance channels. Consequently,
for higher quality images11, the set of coefficients to be used for performing J3
is large.

In addition, the majority of images existing nowadays have a higher qual-
ity. E.g., for smartphone camera images even in the portrait mode, Hist(1) and
Hist(−1) are surpassing 10000. Also, Hist(2) and Hist(3) exceed 7000 on the Y
channel. Therefore, P is large: usually CL > 50 on the Y channel and CL > 10
on the Cr and Cb channels. What stands out about the distribution of the de-
termined coefficients is the fact that the values closer to CL have their Hist(·)
values by definition near THr but disproportionately small compared to the
Hist(·) values of the coefficients closer to 0. Even though apparently this impli-
cation has no impact on message insertion (the high frequency of the coefficients
from P implies the possibility of inserting large messages), there are very often
cases in which the algorithm loops as it is incapable of finding coefficients closer
to CL for restoring the histogram.

Moreover, before reaching this step of the J3 insertion, the algorithm speed
is decreased compared to the case when we set a large THr (only for inserting
into reasonable quality images) such as CL is small. On the other hand, a large
CL implies a large Stop Points array, which means a big additional number
of bits to be inserted into the image as the Dynamic Header. In most cases,
SP (x, y) = 0 for all {x, y} ∈ C as TR(·) automatically contains large values,
being initialised by TR(i) = Hist(i). This means that for a large set of messages
||D|| = CL · NbSP additional zeroes are inserted. For a common JPEG image
of 1 MB and reasonable quality, there are D ≈ 50 · 20 = 1000 null bits of
Dynamic Header. As the image size increases, ||D|| increases, and this leads
to the incapacity of embedding messages of reasonable length into the image
because for coefficients closer to CL, the corresponding Stop Point remains 0,
but when inserting into the Dynamic Header, the coefficients that must remain
untouched for restoring the histogram are used here for embedding the Stop
Points array.

10 set in advance
11

i.e. their histogram contains larger values

To sum up, THr must be a value that depends on each image so it is com-
puted according to the image histogram. The main property that THr must
fulfill is to determine a CL so as for an i with the absolute value close to CL,
Hist(i) is proportional to Hist(1) and Hist(−1).

Remark 4 (Optimal THr). By taking into account the distribution of the DCT
coefficients as exposed in 2, we concluded that THr = Hist(1)/2 is an optimal
value for both performance and robustness. The choice was confirmed in practice,
as both parameters substantially increased.

The Limit EC . With the value CL computed, one must know how many
message bits can be safely embedded into an image (channel). The limit we
propose is

EC = Σ{x,y}∈C min(Hist(x), Hist(y)) − ||S|| − ||D||.

The choice of EC enables us to take advantage of the maximum embedding
capacity of every pair {x, y} ∈ C while keeping exactly the minimum number
of unused coefficients for restoring the histogram. This occurs in the worst case
scenario which is for every pair {x, y} ∈ C , Hist(x) ≥ Hist(y), every message
bit to be inserted maps x into y.

Indeed, we start with TR(x) = Hist(x), TR(y) = Hist(y), TC(x, y) = 0 and
TC(y, x) = 0. When insertion transforms x into y, TR(x) becomes Hist(x) −
1 and TC(x, y) becomes 1. After k successive identical steps, TR(x) becomes
Hist(x) − k and TC(x, y) becomes k. We know that in order to reach a Stop
Point for the pair {x, y}, Equation (3) must hold either for x or y. For y, we
have Hist(y) ≤ k. Thus, the number of steps needed for updating the value of
SP (x, y) is k = Hist(y). In conclusion, the message piece to be inserted into
{x, y} must have the length at most Hist(y) in order for the restoration of the
histogram to occur.

If the message is constructed such that for each pair {x, y} ∈ C insertion
occurs as above, then the longest message that can be inserted while keeping
enough untouched coefficients for histogram restoration is Σ{x,y}∈C min(Hist(x),
Hist(y)). As the Static and Dynamic headers are also inserted, the maximum
embedding capacity becomes EC .

Remark 5 (Pre-processing Motivation). In conclusion, the pre-processing step is
necessary for an accurate embedding process, as it reveals the optimal coefficient
pairs for a correct and efficient insertion component and a safe upper bound for
the size of the data to be inserted.

3.2 Taking Advantage of Each Channel’s Embedding Capacity

In the original J3 algorithm, the embedding component is applied on all three
channels Y, Cr and Cb: if the message length exceeds the total capacity of the

Y channel12, then the remaining bits are inserted into Cr. If message bits still
remain, they are inserted into Cb.

Our proposal is to take advantage of each channel’s embedding capacity (as
defined in the previous paragraph) by splitting the message into pieces propor-
tionate to the EC of each channel.

We denote by EC(Y), EC(Cr) and EC(Cb) the embedding capacities of Y, Cr

and Cb respectively. We split the message into pieces of length

⌊ EC(Y)
EC(Y)+EC(Cr)+EC(Cb) · ||m||⌋, ⌊ EC(Cr)

EC(Y)+EC(Cr)+EC(Cb) · ||m||⌋
and⌊ EC(Cb)

EC(Y)+EC(Cr)+EC(Cb) · ||m||⌋.

Note that when adding the three lengths, we obtain a value in the set
{||m||, ||m|| + 1, ||m|| + 2}. In consequence, if the sum is ||m|| + 1, then one
of the lengths is decreased by 1, and if it is ||m|| + 2, then two of the lengths are
decreased.

In summary, we maximize the relative embedding capacity of each channel.
If a channel has a capacity much higher than the others, then the remaining
channels will have the corresponding message lengths equal to 0 and no embed-
ding will occur (only in their Static Headers, and each will have their first two
bytes equal to 0). If a channel has a small capacity relatively to the other two
channels, then its Static Header will begin with two null bytes.

3.3 Security Aspects

Cryptographic Security. A cryptographic component is necessary for a stegosys-
tem for at least two reasons:

1. Given solely an image that hides the existence of a message m, if one knows
beforehand the indices of the coefficients in which the bits of m were inserted,
then recovering them can be done by simply applying the inverse of the LSB
embedding. In consequence, the message insertion must be performed into
coefficients of secret indices, known only by the sender and the receiver. A
feasible method to ensure this is using a PRNG initialised with a secret seed
(as currently done in most of the modern stegosystems).

2. If an adversary obtains a cover image both before and after insertion, then
part of the message bits can be recovered by simply observing the DCT
coefficients that differ. Thus, in general, half of the message bits can be
obtained (the bit and the coefficient used for insertion must have different
parities). Therefore, prior to insertion, the messages have to be encrypted
with a key agreed between the sender and the recipient13.

Steganographic Security. We further asssume that the cryptographic security
requirements are fulfilled.

If an adversary has the two versions of an image (before and after insertion),
recovering parts of the original message becomes infeasible due to the encryption

12 defined in [35] as Σ{x,y}∈C Hist(x) + Hist(y)
13 Symmetric key cryptosystems are customarily used.

step. Even so, by analyzing the differences in histograms in the case of various
stegosystems using specific tools, it can be observed which of the two images
hides information.

When the J3 stegosystem is used, both images have the same histogram
due to the histogram compensation step. Therefore, an image that hides data
is indistinguishable from an image that was not used for insertion. Thus, the
security is theoretically assured by default.

We applied steganalysis techniques implemented in specific tools to our en-
hanced J3 algorithm (e.g. StegoHunt [7]) and obtained the expected result.

Remark 6. Regarding the cryptographic security, we propose the use of state-
of-the-art cryptographic schemes (see Appendix B): the better the encryption
scheme, the more secure the stegosystem. Nonetheless, without affecting the
efficiency of the implementation.

4 Implementation

We ran the code for our algorithm on a standard laptop using both Windows
10 and Ubuntu 20.04.5 LTS OS14, with the following specifications: Intel Core
i7-10510U with 4 cores and 16 Gigabytes of RAM. The programming language
we used for implementing our algorithms was C++.

To extract the DCT coefficients from an image and restore the image from
them independently of the platform on which the application runs, it is necessary
to use a library that implements the ITU T.81 JPEG Compatible standard.
The main library that is used for encoding and decoding JPEG is libjpeg. It is
written in the C programming language and distributed under the Custom BSD
license (free software) for any platform (cross-platform) [46].

The latest released version is libjpeg 9e15. It underlies the OpenCv, torchjpeg,
and JasPer libraries, implementing basic JPEG operations [46].

We refer the reader to [1] for the source code representing the implementation
of our proposed results.

4.1 Implementation Results

Taking into account the fact that J3 was already compared to the other stegosys-
tems mentioned in Section 1 and its performance and security were proven supe-
rior both theoretically and in practice, we directly compare our proposal to the
original version of J3.

When given an image for extraction, the original J3 algorithm first obtains
the Static Header and then uses it for further extracting data which leads to
events such as obtaining bogus values or remaining stuck in a loop. By using
our additional Static Header checkup, if an image has nothing embedded into
it or if it was altered (for example by sending it through a channel that applies

14 The Ubuntu OS was installed on a virtual machine.
15 as of January 16, 2022

additional compression algorithms), then an exception is thrown that warns the
user regarding the state of the image.

On the other hand, if the message inserted was long enough for at least a
Stop Point to change its value, then the extraction using J3 is incorrect for the
reasons previously exposed (in Section 3). Note that our proposal works with
long messages, extraction taking place as expected.

For large images (especially for those taken with the camera of an An-
droid/IOS phone, their size being over 1 MB), the original J3 algorithm loops
even for very short messages (under 20 bytes), or lasts for an unreasonable
amount of time (more than 5 minutes) as searching for indices for histogram
restoring was time consuming (for pairs of the form {2k, 2k + 1}, for 2k + 1 close
to CL). The reason of this occurrence is the fact that the search for indices such
as the corresponding C[i] is in {2k, 2k + 1} and i was not previously used takes
too much time. This is caused by the fact that when generating i, C[i] has a
much higher probability to be closer to 0.

Remark 7. We present a set of results regarding the speed of our enhanced J3
algorithm in Table 2 for an image of 3, 4 MB, taken with an Android camera
having the quality 300 × 400. The metrics used were the average execution time
(mean) and the standard deviation from the mean (std) of the obtained timings.
We generated 50 random messages for each length. It can easily be observed that
not only the average time of our proposal is considerably smaller, but also the
execution times are closer to the average time than in the case of the original
algorithm.

Message length Original J3 insertion Enhanced J3 insertion
(bytes) (seconds) (seconds)

mean std mean std

20 8.203 0.120 0.21 0.005

200 10.782 3.764 0.346 0.018

1000 21.740 6.036 2.615 0.126

5000 136.098 35.078 60.108 2.045

10000 234.663 49.002 139.67 6.008
Table 2. Original vs. enhanced J3 implementation results

For lower quality images, J3 not only has a very low embedding capacity, but
it is also prone to being unable to completely insert a message of a reasonable
length relatively to the total embedding capacity of the image.

Our approach performs well for very low quality images. For an image of
4.5 kB of a very small resolution (256 × 194, 96 dpi on 96 dpi), grayscale, with
Hist(1) = 1870 on Y we could embed messages of 140 bytes in under 0.2 seconds.

In all the previously mentioned measurements, extraction was also performed
and the message was correctly recovered in each case.

5 Conclusions and Future Work

We recalled the J3 algorithm, which differs from other stegosystems working
with DCT coefficients both by its high ability to hide data and by keeping
the histogram of the original image (and, thus, preventing statistical attacks).
The main result of our work was the reconstruction of the entire J3 algorithm
including all its sub-algorithms: pre-processing, message insertion and extraction.
We also optimized the stegosystem and covered all practical cases while still using
the maximum image insertion capacity.

Future Work. In the near future, a major goal of our research is building an
application based on our short description in Appendix B that will enable the
user to perform data insertion and extraction within different platforms, a feature
not yet available in the case of current steganography applications.

A first step for continuing our research in this direction is to present a con-
crete comparison (especially in terms of efficiency) between our proposed soft-
ware application and the publicly available applications.

Another idea is to apply more powerful steganalysis techniques in order to
check the security of our proposed scheme.

References

1. https://github.com/cryptocrew601

2. https://github.com/daniellerch/aletheia

3. https://stegoshare.soft112.com

4. https://www.iso.org/standard/54989.html

5. https://www.openstego.com

6. https://www.softpedia.com/get/Security/Encrypting/Hide-N-Send.shtml

7. https://www.wetstonetech.com/products/stegohunt-steganography-detection

8. Ahmed, N., Natarajan, T., Rao, K.: Discrete Cosine Transform. IEEE Transactions
on Computers C-23(1), 90–93 (1974)

9. Arun Kumar Singh, Juhi Singh, D.H.V.S.: Steganography in Images Using LSB
Technique 5(1), 425–430 (January 2015)

10. Aumasson, J.P.: Password Hashing Competition (2013-2015)
11. Aumasson, J.P.: Serious Cryptography: A Practical Introduction to Modern En-

cryption. USA (2017)
12. Biryukov, A., Dinu, D., Khovratovich, D.: Argon2: the Memory-Hard Function for

Password Hashing and Other Applications. University of Luxembourg (2015)
13. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,

Third Edition. The MIT Press, 3rd edn. (2009)
14. Denemark, T., Bas, P., Fridrich, J.: Natural Steganography in JPEG Compressed

Images. In: Proc. IS&T, Electronic Imaging, Media Watermarking, Security, and
Forensics (2018)

15. Denemark, T., Fridrich, J.: Steganography with Multiple JPEG Images of the Same
Scene. In: IEEE TIFS. pp. 2308–2319 (2017)

16. Denemark, T.: Side-Information for Steganography Design and Detection. Ph.D.
thesis, Binghamton University–SUNY, New York, USA (2018)

https://github.com/cryptocrew601
https://github.com/daniellerch/aletheia
https://stegoshare.soft112.com
https://www.iso.org/standard/54989.html
https://www.openstego.com
https://www.softpedia.com/get/Security/Encrypting/Hide-N-Send.shtml
https://www.wetstonetech.com/products/stegohunt-steganography-detection

17. Dworkin, J.: Recommendation for Block Cipher Modes of Operation: Ga-
lois/Counter Mode (GCM) and GMAC (2007-11-28 2007)

18. Dworkin, J., Barker, B., Foti, J., Bassham, E., Roback, E.: Announcing the
Advanced Encryption Standard (AES). Computer Security Division, Information
Technology Laboratory, National Institute of Standards and Technology Gaithers-
burg, MD (2001)

19. Fabien A. P. Petitcolas, Ross J. Anderson, M.G.K.: Information Hiding—A Survey
87(7), 1062–1078 (1999)

20. Filler, T., Fridrich, J.: Gibbs Construction in Steganography. In: IEEE Transac-
tions on Information Forensics and Security (2010)

21. Fridrich, J., Pevný, T., Kodovský, J.: Statistically Undetectable JPEG Steganogra-
phy: Dead Ends, Challenges, and Opportunities. In: Proceedings of the 9th ACM
Multimedia & Security Workshop, Dallas, TX. pp. 3–14 (2007)

22. Fridrich, J., Goljan, M., Hogea, D.: Attacking the OutGuess. In: Proc. ACM: Spe-
cial Session on Multimedia Security and Watermarking (2002)

23. Fridrich, J., Goljan, M., Hogea, D.: Steganalysis of jpeg images: Breaking the f5
algorithm. pp. 310–323 (10 2002)

24. Fridrich, J., Goljan, M., Hogea, D.: New Methodology for Breaking Steganographic
Techniques for JPEGs. In: SPIE: Electronic Imaging 2003, Security and Water-
marking of Multimedia Contents (2003)

25. Fridrich, J., Goljan, M., Hogea, D.: Steganalysis of JPEG Images: Breaking the F5
Algorithm. In: Information Hiding. pp. 310–323. Springer (2003)

26. Hetzl, S., Mutzel, P.: A Graph-Theoretic Approach to Steganography. In: Commu-
nications and Multimedia Security (2005)

27. Holub, V., Fridrich, J.: Designing Steganographic Distortion using Directional
Filters. In: IEEE International Workshop on Information Forensics and Security
(WIFS) (2012)

28. Holub, V., Fridrich, J., Denemark, T.: Universal Distortion Function for Steganog-
raphy in an Arbitrary Domain. In: EURASIP Journal on Information Security,
(Section:SI: Revised Selected Papers of ACM IH and MMS 2013) (2014)

29. International Organization for Standardization: Information Technology — Digi-
tal Compression and Coding of Continuous-Tone still Images: Requirements and
Guidelines. ISO/IEC 10918-1 (1994)

30. Isnanto, R.R., Septiana, R., Hastawan, A.F.: Robustness of steganography image
method using dynamic management position of least significant bit (lsb). In: 2018
International Seminar on Research of Information Technology and Intelligent Sys-
tems (ISRITI). pp. 131–135 (2018)

31. Jamil, T.: Steganography: The Art of Hiding Information Is Plain Sight 18(01)
(1999)

32. Kaliski, B.: RFC2898: PKCS5: Password-Based Cryptography Specification Ver-
sion 2.0 (2000)

33. Ken Cabeen, P.G.: Image Compression and Discrete Cosine Transform (2013)
34. Koshkina, N.V.: J-UNIWARD Steganoanalysis. In: Cybernetics and Systems Anal-

ysis (May 2021)
35. Kumar, M., Newman, R.: J3: High Payload Histogram Neutral JPEG Steganogra-

phy. In: 2010 Eighth International Conference on Privacy, Security and Trust. pp.
46–53 (2010)

36. Luo, X., Song, X., Li, X., Zhang, W., Lu, J., Yang, C., Liu, F.: Steganalysis of
HUGO steganography based on parameter recognition of syndrome-trellis-codes.
Multimedia Tools and Applications 75, 13557–13583 (2015)

37. Morkel, T., Eloff, J.H.P., Olivier, M.S.: An Overview of Image Steganography. In:
ISSA (2005)

38. Muzhir Shaban AL-Ani, F.H.A.: The JPEG Image Compression Algorithm 6(3),
1055–1062 (May 2013)

39. Narayanan, G.: A study of probability distributions of dct coefficients in jpeg
compression (2010)

40. National Institute of Standards and Technology: Data Encryption Standard (DES)
(October 1999)

41. Provos, N.: Defending Against Statistical Steganalysis. In: Usenix security sympo-
sium. vol. 10, pp. 323–336 (2001)

42. Rif, D.: Re-encoding Persistent Video Steganography (2018)
43. Smoot, S.R., Rowe, L.A.: DCT coefficient distributions. In: Human Vision and

Electronic Imaging. vol. 2657, pp. 403–411. International Society for Optics and
Photonics, SPIE (1996)

44. Tang, W., Li, H., Luo, W., Huang, J.: Adaptive Steganalysis against WOW Em-
bedding Algorithm. In: Proceedings of the 2nd ACM Workshop on Information
Hiding and Multimedia Security. p. 91–96. IH&MMSec 1́4, Association for Com-
puting Machinery, New York, NY, USA (2014)

45. Trithemius, J.: Steganographia: Hoc est: Ars Per Occultam Scripturam Animi Sui
Voluntatem Absentibus aperiendi certa. Berner (1606)

46. Vollbeding, I.J.G.G.: Libjpeg (January 16 2022), http://ijg.org/

47. Wang, H., Wang, S.: Cyber Warfare: Steganography vs. Steganalysis 47(10), 73–83
(October 2004)

48. Wayner, P.: Disappearing Cryptography. In: Information Hiding: Steganography
and Watermarking (3rd Edition - December 3, 2008)

49. Westfeld, A.: High Capacity Despite Better Steganalysis (F5 – a Steganographic Al-
gorithm). In: I. S. Moskowitz, editor, Information Hiding, 4th International Work-
shop, volume 2137 of Lecture Notes in Computer Science. pp. 289–302 (2001)

50. Winarno, A., Arrasyid, A.A., Sari, C.A., Rachmawanto, E.H., et al.: Image Wa-
termarking Using Low Wavelet Subband Based on 8× 8 Sub-Block DCT. In: 2017
International Seminar on Application for Technology of Information and Commu-
nication (iSemantic). pp. 11–15. IEEE (2017)

http://ijg.org/

A Pseudocode

Algorithm 1 Insertion of message bits

x← P RNG(seed)
if Cx is even and b = 1 then

if Cx > 0 then
Cx ← Cx + 1
T C(Cx, Cx + 1)← T C(Cx, Cx + 1) + 1

else
Cx ← Cx − 1

end if
end if
if Cx is odd 6= 1 and b = 0 then

if Cx > 0 then
Cx ← Cx − 1
T C(Cx, Cx − 1)← T C(Cx, Cx − 1) + 1

else
Cx ← Cx + 1

end if
end if
if Cx = −1 and b = 1 then

Cx ← 1
T C(Cx, Cx + 1)← T C(Cx, Cx + 1) + 1

end if
if Cx = 1 and b = 0 then

Cx ← −1
T C(Cx, Cx − 1)← T C(Cx, Cx − 1) + 1

end if

Algorithm 2 Extraction of message bits

x← P RNG(seed)
if Cx is even then

b← 1
end if
if Cx is odd 6= 1 then

b← 0
end if
if Cx = −1 then

b← 0
end if
if Cx = 1 then

b← 1
end if

B A Steganography Application Proposal

User RNG

Password Salt

Argon2iIV Key

AES-GCM

Ciphertext

J3 User

Message

Cover image

Steganogram

Fig. 1. The flow of our steganography application proposal

A natural continuation of our proposed results is putting them in practice.
Thus, we briefly describe a steganography software application. The flow of the
application is shortly presented in Figure 1.

The user enters a password from which the secret key for AES-256 [18] is
derived. AES is used in the GCM authenticated encryption mode of operation
[17]. Thus, the plaintext (the message entered by the user) is encrypted and
authenticated. Then, our proposed J3 variant is used to hide the cryptogram
into a cover JPEG image.

Within the application, the Argon2i function [12] is used (as the winner of
the Password Hashing Competition [10]) to derive both the key and the IV 16.

The keys should only be temporarily stored in the RAM of the smartphone/PC
(while the cryptographic and steganographic operations are performed).

16 of size 96 bits

	Searching for Gemstones: Flawed Stegosystems May Hide Promissing Ideas

