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Abstract. Secure RAM computation allows a number of parties to evaluate a function represented
as a RAM program in a way that reveals nothing about the private inputs of the parties except
from what is already revealed by the function output itself. In this work we present Ramen, which
is a new protocol for computing RAM programs securely among three parties, tolerating up to one
passive corruption. Ramen provides reasonable asymptotic guarantees and is concretely efficient at
the same time. We have implemented our protocol and provide extensive benchmarks for various
settings.
Asymptotically, our protocol requires a constant number of rounds and a amortized sublinear amount
of communication and computation per memory access. In terms of concrete efficiency, our protocol
outperforms previous solutions. For a memory of size 226 our memory accesses are 30× faster in
the LAN and 8.7× faster in the WAN setting, when compared to the previously fastest solution
by Vadapalli, Henry, and Goldberg (ePrint 2022). Due to our superior asymptotic guarantees, the
efficiency gap is only widening as the memory gets larger and for this reason Ramen provides the
currently most scalable concretely efficient solution for securely computing RAM programs.

1 Introduction

In the secure computation setting, multiple mutually distrustful parties wish to compute a joint function
of their private inputs, without revealing any information not already revealed by the function’s output.
To perform this task, the parties need to agree on a model of computation, which defines how the function
is represented and how individual computational steps look like. Different models of computation, like
circuits or random-access machines (RAMs), are suitable for different functions. The canonical example
for a computation that can be performed very efficiently in one model, but not in another is binary search.
A RAM that searches through a sorted list of length n needs to only perform log n memory accesses,
but the functionally equivalent circuit would need to parse the full list as an input, which means that
the circuit size depends at least linearly on the length of the list. More generally speaking, RAMs are
usually preferable over circuits for computations that involve sparse data-dependent accesses across large
datasets. Prominent examples of such computations are breadth-first search, Dijkstra’s path finding, and
Gale-Shapley’s algorithm for computing stable matchings.

In the early years of secure computation research [Yao82, Yao86, GMW87, BGW88, CCD88] and
throughout the 90s and 00s the overwhelming majority of research works exclusively focused on efficiently
computing functions represented as circuits, but over the past decade or so there has been an increased
interest in securely computing RAM programs [GKK+12, GHL+14, GLOS15, GLO15, FJKW15, GGMP16,
ZWR+16, Ds17, JW18, KY18, BKKO20, HV21, HKO22]. Existing works on securely computing RAM
programs can be roughly categorized as follows:

Theoretical Foundations. The first construction for securely computing RAM programs with a poly-
logarithmic computational and bandwidth overhead per party per access was presented by Gordon et
al. [GKK+12].3 Subsequently, a series of theoretical works have shown how to construct protocols that
run in a constant number of rounds [LO13] and that only require blackbox use of minimal computational
building blocks [GHL+14, GLOS15, GLO15, GGMP16]. These results provide important theoretical
insights, but do not lead to practically efficient protocols.

3 Similar ideas have already appeared in the earlier works of Ostrovsky and Shoup [OS97] as well as Damg̊ard,
Meldgaard and Nielsen [DMN11].
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Concretely Efficient Protocols. A different line of works [FJKW15, ZWR+16, Ds17, JW18, KY18, BKKO20,
HV21, HKO22] has focused on constructing concretely efficient protocols in the two- and multiparty
setting. Protocols that tolerate a dishonest majority of participants [ZWR+16, Ds17, KY18, HV21]
naturally require more expensive public-key operations and thus are generally slower than protocols in the
honest majority setting [FJKW15, JW18, BKKO20, HV21, VHG22]. One crucial observation underlying
most of these works is that a larger amount of cheap operations can be executed faster than a small
amount of expensive operations. With this in mind, most of these works sacrifice asymptotic efficiency for
concrete performance gains. The protocols of Doerner and Shelat [Ds17], Bunn et al. [BKKO20], and
Vadapalli, Henry, and Goldberg [VHG22], for example, all require each party to perform a linear amount
of cheap operations for each memory access. Unfortunately, asymptotics are bound to kick in as the
memory gets larger and thus a scalable protocol needs to balance asymptotic as well as concrete efficiency
guarantees.

1.1 Our Contribution

In this work, we present a new protocol, called Ramen, for securely computing RAM programs among
three parties in the presence of one passive corruption. Our protocol outperforms previous works in terms
of concrete efficiency, while at the same time providing reasonable asymptotic efficiency guarantees. In
terms of asymptotic guarantees, we provide a comparison to the most relevant related works in Table 1.
We have implemented our protocol and benchmarked its efficiency in various settings. As an exemplary
data point, for a memory of size n = 226, our average memory access time is 30× faster in the LAN and
8.7× faster in the WAN setting, when compared to the currently concretely fastest protocol of Vadapalli,
Henry, and Goldberg [VHG22]. Since our protocol has better asymptotic guarantees, this efficiency gap is
only going to widen, when the memory size increases. For this reason Ramen represents the currently
most concretely efficient and scalable solution for secure RAM computation in the three party setting
with one passive corruption.

Table 1: Comparison with most relevant prior works in the three party setting with one corruption. The
table displays amortized costs per access. In case of [VHG22], the polylog(n) factor is the preprocessing
cost, while O(1) is the online cost.

Rounds Communication Computation

Jarecki et al. [JW18] O(polylog(n)) O(polylog(n)) O(polylog(n))
Bunn et al. [BKKO20] O(1) O(

√
n) O(n)

Vadapalli et al. [VHG22] O(polylog(n)) +O(1) O(polylog(n)) +O(1) O(n)
Ramen (This Work) O(1) O(

√
n · polylog(n)) O(

√
n · polylog(n))

1.2 Technical Overview

Similar to other protocols [ZWR+16, Ds17, HV21, VHG22] aiming for practical efficiency, we start with
the high-level concept introduced by Gordon et al. [GKK+12]. We have a stateful CPU and a memory M
of length n. The CPU will repeatedly provide read or write instructions and in case of a read operation,
the read memory value will be provided as input to the CPU at its next invocation. We will assume that
the CPU can be realized using generic secure computation techniques for circuits and that each CPU
invocation will return the operation and memory location in a secret-shared form to the involved parties.
The main technical challenge is to design efficient protocols that take the secret-shared operation and
efficiently execute it on the secret-shared memory data structure.

Square-Root ORAM Our starting point is the square-root oblivious ram (ORAM) data structure
of Goldreich and Ostrovsky [GO96]. ORAM allows a client to access an encrypted memory held by an
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untrusted server in a communication efficient manner that does not reveal which operation was performed
at what location. Goldreich and Ostrovsky’s construction allows the client to perform read and write
operations with an amortized communication overhead of O (

√
n · polylog(n)).

The square-root construction works as follows: To encode memoryM, the client first appends
√
n dummy

elements to the real memory and picks a pseudorandom permutation π over the domain {1, . . . , n+
√
n}.

The encoded memory is defined as M̃[π(i)] := M[i] for all 1 ≤ i ≤ n+
√
n. The client stores π and the

server stores an encryption of M̃ along with an initially empty array stash of size
√
n.

Whenever the client wants to perform an operation on M[i], it downloads the full stash and checks
whether M[i] is in it. If it is, then the client performs the desired read or write operation on the element

in the stash and reads a dummy element from M̃ that has not yet been read. If the desired entry M[i] is

not in the stash, then the client directly accesses M̃[π(i)], performs the desired operation, and moves it to
the stash. To ensure that the stash does not become overfull, the client will, roughly speaking, download
everything from the server every

√
n accesses, move all updates from the stash into main memory and

then reinitialize this data structure with a new empty stash and a fresh permutation π. In the following,
we will call each such time window of

√
n accesses an epoch. On an intuitive level, the server can never

tell which operation is being performed at what location, since the client always accesses a fresh random
address in M̃ and fully downloads the stash.

In the context of secure computation, the main idea of Gordon et al. [GKK+12], and many of the
subsequent works, was to let the parties jointly play the role of the server and at the same time simulate the
ORAM client through an efficient secure computation protocol. We will refer to this collection of protocols
and secret-shared values as the distributed ORAM. To securely simulate the client for the square-root
ORAM construction, we need to be able to efficiently access a secret-shared stash, efficiently access a
secret-shared version of the encoded memory M̃, and to be able to securely perform the reinitialization
step. Before providing a high-level overview of how we realize those components, let us introduce two
important cryptographic tools that we will make extensive use of.

Distributed Point Functions Let f : X → Y be a point function, parameterized by values s and y,
which is defined as

f(x) =

{
y if x = s

0 otherwise,

and let λ be the security parameter. Gilboa and Ishai [GI14] introduced the concept of distributed point
functions, which allow one to take f as input and produce functions f1 and f2 of size O(λ logX) bits each,
such that both look pseudorandom individually, but f1(x) + f2(x) = f(x) for all inputs x. Such functions
can be realized with good concrete efficiency from one-way functions and are useful for performing efficient
two-server private information retrieval. Here we have servers S1 and S2 holding vector v of length n
and client C wanting to privately retrieve v[i]. The client generates functions f1 and f2 for a point
function f that evaluates to 1 at i and sends fb to Sb for b ∈ {1, 2}. The servers independently compute∑n

i=1 fb(i) · v[i] and send the result back to C. The client can sum up the two received values to retrieve
v[i] without either of the servers having learned i. Distributed point functions have also been generalized
to allow for encoding multiple input and output values rather than one [BCGI18].

Distributed Oblivious PRFs Let FDOPRF be a an ideal functionality that can be accessed by parties
P1, P2, and P3. Assume either P1 alone or both P1 and P2 hold a secret key k for a pseudorandom function
PRF and that all parties jointly hold an additive secret sharing of a value x, i.e., each Pi holds xi so that
x = x1 + x2 + x3. Using FDOPRF, the parties can jointly compute an additive secret sharing of the value
PRF(k, x). We will assume that the output domain is sufficiently large to ensure that no polynomial time
adversary, not knowing k, can find two inputs that produce the same output. The function PRF is thus
indistinguishable from a pseudorandom permutation, a fact also known as the switching lemma.

Initializing the Distributed ORAM Now that we have introduced the main cryptographic tools
relevant to our work, let us discuss the general structure of our distributed ORAM. The main memory
M, along with appended dummy elements, will be secret-shared into shares M1,M2,M3, such that
M = M1 +M2 +M3. For i ∈ {1, 2, 3}, parties Pi−1 and Pi+1 will hold a PRF key ki.

4 Additionally, Pi−1

4 We assume that parties’ indices wrap around, i.e., that P3+1 = P1 and P1−1 = P3.
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will hold a random mask vector ri of length m := n +
√
n. Party Pi will hold a randomly permuted

and masked version of the memory share Mi−1. More precisely, Pi will have a vector M′
i of tuples

(PRF(ki, j),Mi−1[j] + ri[PRF(ki, j)]), for j ∈ {1, . . . ,m}, sorted by PRF(ki, j). In this overview, we will
largely ignore the role of the mask vectors ri, but we would like to stress that they will help improving
the concrete efficiency in our full construction during reinitialization at the end of each epoch.

The stash is realized by an additive secret sharing of an ordered list denoted by stash among all parties.
Additionally, P2 and P3 hold an initially empty ordered list Lstash in plain and P1 holds a PRF key kstash.
The list Lstash will hold values PRF(kstash, adr) for all addresses adr that have already been read in the
current epoch. The secret-shared stash will hold tuples (val, valold), where the j-th entry corresponds to
the memory location accessed at time j in the current epoch. The value val is the current value at that
memory location, and valold is the value that was at that address at the beginning of the epoch. Looking
ahead, storing both val and valold will help the parties to just add the difference between the old and the
new value to their additive secret shares of M.

Accessing the Stash Whenever the parties receive an additive secret sharing of adr from the CPU,
the parties need to determine, whether the address is already in the stash. For this, the parties first
use FDOPRF to compute a secret sharing of PRF(kstash, adr). Parties P2 and P3 agree on a mask R and
let P1 reconstruct the value PRF(kstash, adr) + R. Party P1 then generates DPF keys k2, k3 for a point
function that evaluates to 1 at PRF(kstash, adr) +R and to 0 everywhere else. P2 and P3 receive k2 and k3
respectively. Using their list Lstash of read addresses, they add the mask R to each entry and evaluate their
DPF key shares on each entry. If PRF(kstash, adr) was read at access j in the current epoch, then at this
point, P2 and P3 will hold a secret sharing of a vector v of zero entries with a single 1 at location j. If the
address was not yet read, then all entries in v will be 0. P2 and P3 non-interactively compute flag, which
is sum of all entries in v, and loc, which is the inner product of v and the public vector (1, 2, . . . ,

√
n). At

this point, the parties have a secret sharing of a flag indicating, whether the address is already in the
stash, as well as a secret sharing of the potential location of the address in the stash. At the same time
none of the parties learns whether adr was actually found in the stash.

Using a small amount of generic secure computation, the parties can use loc to either reveal PRF(kstash,

adr) or PRF(kstash, ãdr), where ãdr is an unused dummy address, to P2 and P3, who can add it to their
list Lstash. Finally, the parties can use similar tricks in combination with their knowledge of loc to either
read from or write to the desired address in the stash.

Accessing the Memory In addition to the stash access, the parties also need to access adr′, which is

either the desired address adr or an unused dummy address ãdr in the main memory. Recall that each
party Pi holds key ki+1, mask ri+1, and a secret share of the memory that is permuted using key ki and
masked using mask ri. Using three invocations of FDOPRF, the parties can all learn which location in
their memory share they should retrieve. Each party will locally keep track of which location in their
memory was accessed at which time step during an epoch. Note that we never access the same address
twice, always either an address not in the stash or a fresh dummy address, in the main memory. Thus we
successfully hide, which location is actually being touched.

Flushing the Stash As already mentioned above, the stash has a fixed capacity for storing
√
n entries.

For this reason, we need to move all modified data entries residing in the stash back into the secret-shared
memory M and reinitialize our whole distributed ORAM data structure afresh every

√
n accesses. At the

end of each epoch, each Pi holds a sorted list of addresses it has touched in its local permuted memory
M′

i during the epoch. Additionally, she holds a secret sharing of the old and new values corresponding to
each of those accesses in the stash. Parties Pi−1 and Pi+1 know how the memory of Pi was permuted, i.e.,
they know key ki. For the sake of a concrete example, assume an epoch is two accesses long and that Pi

holds a list of read values (
(PRF(ki, adr),PRF(ki, ãdr)

)
along with a secret share of stash (

(val, valold), (ṽal, ṽalold)
)
.
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Pi creates keys fi−1 and fi+1 for a multi-point function that evaluates to her share of val − valold and

ṽal− ṽalold at locations PRF(ki, adr) and PRF(ki, ãdr), respectively. She sends fi−1 and fi+1 to Pi−1 and
Pi+1, who evaluate their received functions at PRF(ki, 1), . . . ,PRF(ki, n+

√
n). These evaluations create

an additively secret-shared vector between Pi−1 and Pi+1. At positions adr and ãdr, the vector contains
Pi’s share of the updates to the values in memory M. At all other positions, the vector contains a secret
sharing of 0. Doing this three times, rotating which party creates the multi-point DPF keys, allows the
parties to create secret-shared vectors that can be added to secret shares of M to apply the updates from
the stash to M privately. At this point parties can pick fresh permutations, and produce fresh shares of
the permuted and masked memory that can be used in the next epoch.

We stress that flushing the memory updates from the secret-shared stash back into the secret-shared
main memory requires no complicated or expensive secure computation techniques and only relies on
plain DPF key generation and evaluation as well as evaluations of a PRF, all operations which are highly
efficient. In our technical overview we have omitted several details that are important both for concrete
efficiency and security. These will be provided in the relevant technical sections.

1.3 Related Work

Now that we are familiar with the conceptual ideas of our work, it is worth taking a step back and
discussing how our work differs from previous constructions. In our discussion here we will focus on
concretely efficient protocols in the three-party setting with one passive corruption and works that are
similar to ours on a conceptual level [FJKW15, ZWR+16, Ds17, JW18, BKKO20, HV21, VHG22].

The works of Faber et al. [FJKW15] as well as Jarecki and Wei [JW18] construct concretely efficient
three-party protocols secure against one passive corruption. Both works use tree-based ORAM construc-
tions as their starting point. These have O(polylog(n)) bandwidth overheads per access, but are generally
difficult to adapt to the distributed ORAM setting. Their resulting protocols are rather complex, require
O(log n) rounds of communication for each memory access, and thus suffer in terms of concrete efficiency.

Zahur et al. [ZWR+16] were the first to construct secure multiparty RAM computation protocols
based on square-root ORAM that were secure against a majority of corrupt parties. Their bandwidth
and computational overhead is O(

√
n · polylog(n)) per party per access and each access requires O(log n)

rounds of communication. Since their work considers a dishonest majority of parties, they necessarily
require larger amounts of computationally expensive public key operations, which affects their concrete
efficiency.

Doerner and Shelat [Ds17] were the first to use DPFs in conjunction with the square-root ORAM
construction to construct efficient two-party secure computation protocols that have a bandwidth overhead
of O (

√
n), a computational overhead of O (n), and require O(1) rounds per access. The authors show that

their construction outperforms the constructions of Zahur et al. [ZWR+16], despite their asymptotically
prohibitively expensive computational overhead for each access. Bunn et al. [BKKO20] extend the idea
of using DPFs for ORAM constructions to the three-party setting with one passive corruptions, while
achieving similar asymptotic guarantees.

Hamlin and Varia [HV21] construct the first secure two-party protocol based on square-root ORAM
that achieves a sublinear amount of computation, a sublinear bandwidth overhead, and a requires a
constant number rounds per access. Conceptually their construction has similarities to ours. In their
work, the parties jointly permute the secret-shared memory M without revealing the permutation itself to
either of the parties. Since the permutation is not known to either party, their reinitialization step at the
end of each epoch is more complicated and expensive. Concretely, it requires amortized

√
n invocations

of the FDOPRF functionality per access. In contrast to their protocol, our reinitialization is very simple
and we only require a small constant number of FDOPRF invocations per access.

Concurrently and independently from our work, Vadapalli, Henry, and Goldberg [VHG22] have recently
published a new three-party protocol, based on the ideas of Doerner and Shelat [Ds17], with security
against one passive corruption that outperforms all previous works in terms of concrete efficiency in
the same setting. Their protocol requires O(polylog(n)) rounds and communication in the preprocessing
phase, and only O(1) rounds, and bandwidth overhead of O(1) in the online phase. However, it suffers
from a computational overhead of O(n) per access per party. In contrast to their work, we also require
O(1) rounds per access and we have both a bandwidth and computational overhead of O(

√
n · polylog(n))

per access per party. As we show in Section 5, the superior asymptotic costs of our construction start
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to matter, when the memory size gets larger and our protocol becomes concretely faster than the one
of Vadapalli, Henry, and Goldberg. Notably, the difference between the average times per access for a
memory of size 28 and 226 in the WAN setting is less than a factor of 1.5 for our protocol, but more than
a factor of 20 for the protocol of Vadapalli, Henry, and Goldberg.

2 Preliminaries

2.1 Notation

The computational security parameter is denoted by λ, and stat is the statistical security parameter.
Elements in memory M are elements from a field Fp, where the field size is at least 2λ. We use := to
indicate assignment, ← for sampling uniformly at random, and = for comparisons. We use [ℓ] to denote
integers {1, . . . , ℓ}.

RAM Program A RAM program consists of a sequence of CPU instructions which are realized by
a next step function NS. We let stNS denote the current internal state of the program execution. The
function NS takes stNS as well as the last read value as input and outputs an instruction I and the updated
state stNS. The instruction I is a tuple (op, adr, val), where op is either read or write and val is the value to
be written into the memory M at location adr. The state stNS contains start, stop, or continue denoting
the current state of program execution. The state might also contain additional information, such as the
final output, which we denote by z.

Memory We parse M as an array of tuples (indx, val), where indx denotes the index ranging from 1, . . . , n,
and val is the value at that index. We write M[j].val and M[j].indx to denote the value, respectively the
index at location j in M.

Stash We write stash to denote the stash which is an array of size
√
n where each element is a tuple

(adr, val, valold), where val is the most recent value at M[adr], and valold is the value that was read from
M[adr] when the element was first moved to the stash, i.e., the value in M[adr] at the start of the epoch.
We write stash[j].adr (similarly for stash[j].val and stash[j].valold) to denote the address stored at index j
in the stash. We write ststash to denote the state of stash, which is a tuple (flag, loc, valst). The flag flag
indicates whether or not the address in the current instruction is already stored in the stash at some
index, loc stores this index, and valst stores the (up-to-date) value at this index.

Linear Secret Sharing A value val ∈ Fp is additively secret shared among P1, P2, P3, if Pi for i ∈ {0, 1, 2}
holds ⟨val⟩i ∈ Fp such that val =

∑2
i=0 ⟨val⟩i. We omit the party subscript i wherever it is obvious from

the context. We also use replicated secret sharing, which is denoted by J·K, where each Pi is given two of
three additive shares, such that any two parties can reconstruct val.

Pseudorandom Function Let PRF : KPRF ×XPRF → YPRF be a pseudorandom function, where KPRF is
the key space, XPRF is the input, and YPRF is the output domains.

Pseudorandom Permutation Let PRP : KPRP×XPRP → XPRP be a pseudorandom permutation, where
KPRP is the key space and XPRP is input and output domain.

2.2 Distributed Point Functions

Let us formally define DPFs, which have already been discussed informally in the technical overview.

Definition 1 (Distributed Point Function (DPF)). For any t,m ∈ N, let F = {fS,y : [m] → F}
be a class of (m, t)-multi-point functions with input domain [m] and output domain the field F, where
S = {s1, . . . , st} is a subset of [m] of size t, and y = {y1, . . . , yt} ∈ Ft, and for all x ∈ [m],

fS,y(x) =

{
yj , if x = sj for some j ∈ [t],

0, otherwise
.
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Let λ be the computational, and stat be the statistical parameter. A DPF scheme Φ consists of the following
two algorithms:

(k0, k1)← Φ.Gen(1λ, stat, f): Given description f ∈ F , the algorithm returns two keys k0 and k1.
fb(x)← Φ.Eval(kb, x): Given key kb for party b ∈ {0, 1} and input x ∈ [m], return share fb(x) of f(x).

A distributed point function has to satisfy the following properties:

– Correctness: For any f ∈ F and any x ∈ [m], it holds that

Pr
[∑

b∈{0,1} Φ.Eval(kb, x) ̸= f(x)
∣∣

(k0, k1)← Φ.Gen(1λ, stat, f)
]
≤ 2−stat.

– Security: For any b ∈ {0, 1}, there exists a PPT simulator Sim such that for all polynomial size
function sequences fλ ∈ F :

{kb | (k0, k1)← Φ.Gen(1λ, stat, fλ)}
c
≈ {kb ← Simb(1

λ, stat,F)}.

2.3 Secure Multiparty Computation

We assume that all parties are connected via a synchronous communication network and that all parties
have access to private point-to-point channels between each other. We will prove our protocols in the
universal composability framework of Canetti [Can01] and we recall the corresponding formal definitions
in Appendix A.1.

3 Three-Party Random OT

Functionality F3-OT (Fig. 1) defines a three-party variant of random oblivious transfer (OT) [Bea95]. In
the Init phase, the sender S learns a random secret vector r of length ℓ. Then, the Access phase allows
the index party (or chooser) C to repeatedly reveal entries in r at positions of its choice to the receiver
party R. The receiver R learns nothing about the index or the other values in r.

Functionality F3-OT

Parameters: Parties S,C,R, vector length ℓ, and output range Y.
Init: If S is corrupt, receive (Init) from C and R, and (Init, r) from S, store r. Else, receive (Init) from
all parties, sample and store a random vector r ← Yℓ, output r to S. Else, receive (Init) from all parties,
sample and store a random vector r ← Yℓ, output r to S.
Access: For up to ℓ times, on input (Access) from S and R, and (Access, indx) from C, output x := r[indx]
to R.

Fig. 1: Ideal functionality for three-party random OT for three parties S,C,R, which allows R to learn
values in a secret random vector known to S, at secret locations known to C.

In the Init phase of the protocol Π3-OT (Fig. 2), the parties S,C reveal a masked and permuted version
of a vector r to R. Both the permutation and the mask are known to C, but r is only known to S.
During Access, C takes an index indx as input and selectively reveals the mask at the permuted location
π(indx) along with π(indx) to R. Since we only reveal one permuted index in r, parties can run Access
multiple times, without having to repeat Init. A naive implementation of the above functionality would
be to send a masked and permuted vector to R and then selectively provide masks to reveal positions
in the vector. This solution would have a communication complexity that is linear in the size of the
vector, which we want to avoid. Instead, we exploit that the vector r is supposed to be random and
can be represented succinctly by a short PRF key, assuming that the PRF key is known only to S. In
this work, this assumption indeed holds wherever Π3OT is used as a sub-protocol and S is honest. In
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the Init phase, S defines a secret sharing of its pseudorandom vector by sampling two PRF keys kC,
kR along with a PRP key kPRP that defines a permutation π. S defines each entry j of the vector r as
PRF(kC, π(j)) + PRF(kR, π(j)). Then S sends the keys (kC, kPRP) to C and kR to R. This completes the
Init phase. During Access, when C receives an index indx as input, it can locally compute the permuted
index π(indx) and reveal PRF(kC, π(indx)) to R. To allow R to compute PRF(kR, π(indx)), party C also
sends π(indx). Finally R can locally compute r[indx] = PRF(kC, π(indx)) + PRF(kR, π(indx)). Since, only
one out of two PRF keys are revealed to C and R, they never learn the vector r. For the same reason,
R only learns the entries in the vector that are chosen by C and nothing more. Moreover, since only a
permuted index is revealed to R, the party remains oblivious to the actual index that was being accessed.
The security of Π3-OT is summarized in Theorem 1 and the security proof is deferred to Appendix. A.2.

Protocol Π3-OT

Parameters: A PRF : K × [ℓ]→ Y, and a PRP : KPRP × [ℓ]→ [ℓ].
Init: 1. S samples two PRF keys kC, kR ← K and a PRP key kPRP ← KPRP.
2. S sends (kC, kPRP) to C and kR to R.
3. S defines vector r as follows. For j ∈ [ℓ],

(a) Evaluate permuted index; π(j) := PRP(kPRP, j).
(b) Set r[j] := PRF(kC, π(j)) + PRF(kR, π(j)).

4. S outputs r.
Access: 1. C receives as input indx and computes permuted index π(indx) := PRP(kPRP, indx) and

a := PRF(kC, π(indx)).
2. C sends (π(indx), a) to R.
3. R computes and outputs x := PRF(kR, π(indx)) + a.

Fig. 2: Protocol for three-party random OT.

4 Three-Party Secure RAM Computation

In this section, we explain our three party construction for secure RAM computation in detail. We follow a
top-down approach, starting with the high level functionalities and fleshing out the details as we proceed.

The functionality that we want to achieve is Ff (Fig. 3), which allows us to execute a RAM program
for a function f(x,M), where x is the input, and M is the memory of size n. Functionality Ff executes the
RAM program by executing NS (the next step function) iteratively until stNS outputs stop. At this point,
the final output of the function evaluation is stored in stNS which is secret shared between the parties and,
if needed, can be reconstructed to obtain the output of the computation. As mentioned in the technical
overview, the general approach to realize Ff is to execute NS using any efficient MPC protocol of choice
(FMPC, Fig. 24), to obtain additive shares of instruction I, and use a specialized DORAM functionality
(FDORAM, Fig. 13) for executing I on memory M. The formal protocol description (Πf , Fig. 11) and
corresponding security proof (Theorem 2) appear in Appendix A.3, since they are not new to our work.
Next, we elaborate how to instantiate FDORAM.

4.1 Instantiating FDORAM

The functionality FDORAM (Fig. 13, Appendix A.4) receives additive shares of M in the Init phase,
reconstructs and stores M locally. Upon receiving additive shares of instruction I in the Access phase,
FDORAM reconstructs and executes I locally on M, then outputs additive shares of the result. Finally,
FDORAM can output the current state of M in secret-shared form to the parties. Our starting point for
instantiating this is the basic square-root ORAM construction.

As explained in Section 1.2, intuitively, M is used as a read-only memory while the writes are stashed.
For this purpose, at the start of an epoch, in the Refresh phase, the parties initialize an empty stash
of size

√
n, append

√
n dummy values to their shares of M, and initialize the data-structure needed to

perform read operations on M. In each iteration of the Access phase, parties receive additive shares of
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Functionality Ff

Parameters: A next-step function NS.
Run: On receiving (Run, ⟨M⟩ , ⟨x⟩) from all parties, do:
1. Reconstruct memory M and input x.
2. Initialize stNS := (start, x), d := 0, and rnd := 0.
3. While stNS ̸= (stop, z), do:

(a) Run (stNS, I)← NS(stNS, d).
(b) If I = (read, adr,⊥), set d := M[adr].val.
(c) Else if I = (write, adr, val), set d := M[adr].val and update M[adr].val := I.val.
(d) Update rnd := rnd+ 1.

4. Output additive shares ⟨stNS⟩, ⟨M⟩, rnd to all parties.

Fig. 3: Ideal functionality for secure evaluation of a RAM program f between three parties P1, P2, P3.

the instruction I = (op, adr, val) to be executed. To hide the type of operation, for both read and write
operations, parties execute the following steps in sequence: 1. Check stash for the most up-to-date value
for address adr. 2. Read a value from M. 3. Write updates in stash. 4. Once the stash is full, i.e., after√
n iterations, update M and reinitialize the setup for the next epoch.
We discuss each step in more detail. Throughout the protocol execution we maintain the invariant that,

if adr was previously read, then the most recent value can be found in the stash, otherwise, it is in the
memory M. Hence, in Step 1 the stash is first searched for adr by calling FStash (Fig. 16, Appendix A.5).
Then in Step 2, using Fr-M (Fig. 18, Appendix A.6), M is searched for some address, which is determined
as: If adr was previously read during the epoch, then parties read a fresh dummy address from M in
Step 2, otherwise they read adr. The dummy address for iteration c is deterministically set to be n+ c. In
both steps, depending on whether or not adr was previously accessed, parties either receive secret shares
of the most up-to-date value or a dummy value.

In Step 3, the stash must be updated in two ways. In each iteration, parties write to the stash the
value they read from M in Step 2, using FStash. This update is always made at location c, for iteration c.
A second update must be made, which corresponds to the case when op = write. If adr is a repeat address,
the stash is updated at loc, where the most recent value of adr is stored. If adr is new, it is updated at c.
In order to hide the type of operation, this is done even for op = read but the update value is set to 0.
For privacy in Steps 2 and 3, choices dependent on whether or not adr was read previously and whether
op = read or write need to be made obliviously. This is done using a generic MPC instantiation of FSelect

(Fig. 23, Appendix C).
The final Step 4 of each epoch consists of writing the stashed updates from the stash back into M

using Fw-M (Fig. 20, Appendix A.7), and reinitializing the setup by with the Refresh protocol.
The formal protocol description of ΠDORAM (Fig. 14) and its security proof (Theorem 3) appear in

Appendix A.4. In the following, we explain how to instantiate FStash, Fr-M, and Fw-M.

4.2 Instantiating FStash

The functionality FStash functionality (Fig. 16) is instantiated by Πstash.
The protocol for the Read command is given in Fig. 4. Parties start with an additive sharing of stash

as well as the instruction I and want to compute secret shares of (flag, loc, valst). As previously explained,
to obtain ⟨flag⟩ , ⟨loc⟩, parties P2, P3 maintain list Lstash of PRF evaluations of all the addresses that have
been read from the memory in the current epoch. The key for this PRF is held by P1. Using FDOPRF,
they reveal the masked address adr′ to P1, who generates DPF keys with respect to adr′. Parties P2 and
P3, using their knowledge of the mask, evaluate the keys on all entries present in Lstash, obtaining ⟨flag⟩
and ⟨loc⟩ as a result. In case adr was not present in Lstash, we want to set loc to c, the current iteration
counter. This is achieved via one call to FSelect, to obliviously select between the computed loc and c.
Finally, in order to establish ⟨stash[loc].val⟩, parties first form a replicated sharing of stash to maintain
the invariant that each share of stash is possessed by two parties. This is necessary for reading using DPF
keys. Then using similar tricks as before, parties reveal masked location loc′ to one of the party who
generates DPF keys required to compute ⟨stash[loc].val⟩.
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The part of Πstash for the Write command is shown in Fig. 5. Before writing a value to the stash,
parties first update the list Lstash by opening the PRF evaluation of the address read, denoted by adrM,
towards P2, P3 who append it to Lstash. Then, all of the parties update stash at location c by appending
(⟨adrM⟩ , ⟨valM⟩ , ⟨valM⟩) to it. Finally, the stash must be updated once more with respect to op. Recall
in Step 3 of “Instantiating FDORAM”, we have the following possible cases, depending on flag and op.
If op = write, then stash[loc].val should be updated to valI, where I.val is the value in the instruction.
Moreover, if op = read, then stash[loc].val should remain unchanged, i.e., the update ∆ := 0. These choices
in order to set ∆ are executed by two calls to FSelect. Once ∆ is obtained, the stash is updated using
DPF keys and techniques similar to what has been previously discussed.

Protocol Πstash (Part I: Reading)

Parameters: Stash size
√
n, memory size n. A PRF : K× [m]→ Y. Three DPF schemes: Φ1 for functions

Y → {0, 1}, Φ2 for Fp → {0, 1}, and Φ3 for Fp → Fp.
Read in Stash: Each party Pi has input (c, ⟨stash⟩ , ⟨I⟩). Let ⟨adr⟩ := ⟨I.adr⟩.
Compute flag and possible stash index loc:
1. If c = 1, parties call FDOPRF with (KeyGen, P1), where P1 acts as K and receives a PRF key kstash.

P2, P3 act as R1 and R2, respectively, and initialize an empty list Lstash.
2. Parties initialize ⟨flag⟩ := 0 and ⟨loc⟩ := 0.
3. P2, P3 call FDOPRF with (Eval,masked, ⟨adr⟩)a, and P1 calls FDOPRF with (Eval,masked, ⟨adr⟩ , kstash). P1

receives adr′ := PRF(kstash, adr)⊕R, and P2, P3 receive R.
4. P1 defines f : Y → {0, 1} such that f(j) := 1 if j = adr′. It generates DPF keys (k2, k3) ←

Φ1.Gen(1
λ, stat, f) and sends them to P2 and P3.

5. Party Pi for i ∈ [2, 3] compute for j ∈ [|Lstash|]: ⟨flag⟩ := ⟨flag⟩ + Φ1.Eval(ki, Lstash[j] ⊕ R), and
⟨loc⟩ := ⟨loc⟩+ Φ1.Eval(ki, Lstash[j]⊕R) · j.

6. Each party Pi calls ⟨loc⟩ ← FSelect(⟨flag⟩ , ⟨loc⟩ , c).
7. Randomize additive shares: Each party Pi calls FZero(1) to receive ⟨0⟩ and sets ⟨flag⟩ := ⟨flag⟩+ ⟨0⟩.

Read the stashed value stash[loc].val:
8. Convert ⟨stash.val⟩ to Jstash.valK: For i ∈ {1, 2, 3}, and for j ∈ [|stash|], each Pi sends ⟨stash[j].val⟩i to

Pi+1.
9. Each party initializes ⟨valst⟩ := 0.

10. For i ∈ {1, 2, 3}, do:
(a) Pi−1 samples ri−1,i, ri+1,i ← F2

p and sends them to Pi+1. Both Pi−1 and Pi+1 set ri := ri−1,i +
ri+1,i.

(b) Pi−1 sends ⟨loc⟩+ ri−1,i and Pi+1 sends ⟨loc⟩+ ri+1,i to Pi. Pi reconstructs loci := loc+ ri.
(c) Pi defines fi : Fp → {0, 1} such that fi(j) := 1 if j = loci. It generates DPF keys (ki,i−1, ki,i+1)←

Φ2.Gen(1
λ, stat, fi). Pi sends ki,i−1, ki,i+1 to Pi−1 and Pi+1, respectively.

(d) For j ∈ [|stash|], Pi−1 computes ⟨valst⟩ := ⟨valst⟩+Φ2.Eval(ki,i−1, j+ri) ·⟨stash[j].val⟩i+1. Similarly,
Pi+1 computes ⟨valst⟩ := ⟨valst⟩+ Φ2.Eval(ki,i+1, j + ri) · ⟨stash[j].val⟩i+1.

11. Randomize additive shares: Each party Pi calls FZero(1) to receive ⟨0⟩ and sets ⟨valst⟩ := ⟨valst⟩+ ⟨0⟩.
12. Each Pi outputs ⟨ststash⟩ := (⟨flag⟩ , ⟨loc⟩ , ⟨valst⟩).
a We use two types of FDOPRF evaluation: (i) masked allows the parties to get secret shares of the output;
(ii) unmasked allows one of the parties to get the output in clear.

Fig. 4: Protocol for reading from stash (see Fig. 5 for writing).

4.3 Instantiating Fr-M

The functionality Fr-M (Fig. 18, Appendix A.6) receives additive shares of address to be read and outputs
shares of the memory value at that address. Note that this address is either a dummy or the actual
address in I, and hence might differ from the address mentioned in I. The high level idea to instantiate
the functionality was already discussed in the technical overview. Here, we fill in the missing details.

10



Protocol Πstash (Part II: Writing)

Write in Stash: Each party has input ⟨valM⟩ , ⟨adrM⟩ , c, ⟨stash⟩ , ⟨ststash⟩ , ⟨I⟩.
1. P2, P3 call FDOPRF with (Eval, unmasked, ⟨adrM⟩), and P1 calls it with (Eval, unmasked, ⟨adr⟩ , kstash)

acting as K. P2, acting as R2, receives PRF(kstash, adr).
2. P2 sends PRF(kstash, adr) to P3 and they both append list Lstash := Lstash ||PRF(kstash, adrM).
3. Each party Pi locally updates its share ⟨stash⟩ at location c as: ⟨stash[c]⟩ := (⟨adrM⟩ , ⟨valM⟩ , ⟨valM⟩).
4. Parties parse ⟨ststash⟩ as (⟨flag⟩ , ⟨loc⟩ , ⟨valst⟩), and ⟨I⟩ as (⟨opI⟩ , ⟨adrI⟩ , ⟨valI⟩).
5. Parties call ⟨valold⟩ ← FSelect(⟨flag⟩ , ⟨valst⟩ , ⟨valM⟩) and ⟨valnew⟩ ← FSelect(⟨opI⟩ , ⟨valI⟩ , ⟨valold⟩).
6. Each Pi computes ⟨∆⟩ := ⟨valnew⟩ − ⟨valold⟩ and initializes a vector δi of length |stash| as (0, . . . , 0).
7. For i ∈ {1, 2, 3}, do:

(a) Pi−1 samples ρi−1,i, ρi+1,i ← F2
p, and sends them to Pi+1. Both Pi−1 and Pi+1 compute ρi :=

ρi−1,i + ρi+1,i.
(b) Pi−1 sends ⟨loc⟩+ ρi−1,i, and Pi+1 sends ⟨loc⟩+ ρi+1,i to Pi.
(c) Pi reconstructs loci := loc+ ρi.
(d) Pi defines fi : Fp → Fp, such that fi(j) := ⟨∆⟩i at j = loci. It generates DPF keys (ki,i−1, ki,i+1)←

Φ3.Gen(1
λ, stat, fi). Pi sends ki,i−1, ki,i+1 to Pi−1 and Pi+1, respectively.

(e) For j ∈ [|stash|], Pi−1 updates δi−1[j] := δi−1[j] + Φ3.Eval(ki,i−1, j + ρi), and Pi+1 updates
δi+1[j] := δi+1[j] + Φ3.Eval(ki,i+1, j + ρi).

8. All parties call ⟨01⟩ ← FZero(|stash|).
9. For j ∈ [|stash|], each party Pi updates ⟨stash[j].val⟩ := ⟨stash[j].val⟩+ δi[j] + ⟨01[j]⟩.

10. All parties call ⟨02⟩ ← FZero(|stash|) and ⟨03⟩ ← FZero(|stash|)a.
11. For j ∈ [|stash|], each party Pi updates ⟨stash[j].adr⟩ := ⟨stash[j].adr⟩+ ⟨02[j]⟩ and ⟨stash[j].valold⟩ :=
⟨stash[j].valold⟩+ ⟨03[j]⟩.

12. Parties output ⟨stash⟩. In addition, P2, P3 output Lstash.

a steps 10 and 11 can be avoided with a minor change in the FStash functionality.

Fig. 5: Protocol for writing to the stash.

During Init, Pi−1 defines a vector ri using an Init call to F3-OT. It also picks a PRF key ki along with
Pi+1. Then Pi−1 sends the masked and permuted memory share M′

i consisting of tuples (PRF(ki, j),
Mi−1[j] + ri[PRF(ki, j)]) for j ∈ [m], sorted by their first component, to Pi.

In Access, the value adr′ = PRF(ki, adr) is revealed to Pi via one oblivious PRF evaluation. Pi locally
retrieves the value at M′[adr′] which is equal to Mi−1[adr].val + ri[adr

′]. To form an additive sharing
between Pi and Pi+1, we must reveal the mask at the index adr′ to Pi+1. At this point, notice that,
Pi−1 holds the vector ri, Pi holds the index adr′, and Pi+1 should learn the mask ri[adr

′]. A call to
F3-OT(Access) allows us to do exactly this. One execution of the above procedure results in additive
shares of ⟨M[adr].val⟩ held by Pi, Pi+1. Repeating this procedure thrice for each party’s share of M, gives
us additive shares of M[adr].val.

Observe that since the shuffling of ⟨M⟩ mentioned above is performed by sorting PRF evaluations
of the addresses, M′

i consists of tuples of the form (indx′, val′), where indx′ ∈ YPRF. For correctness, we
require YPRF to be big enough in order to avoid any collisions, which means that it can be much bigger
than m. Naively implementing ri would then require making it as big as the size of YPRF. However, this
can be prevented by leveraging the fact that the sorted list {PRF(ki, indx)}{indx∈[m]} is public, as ki is
known to Pi−1, Pi+1 and the list is revealed to Pi, and that there are no collisions in PRF evaluations.
Let the sorted list be denoted by Li. Now the parties define an inverse map denoted by L−1

i and defined
as the position at which PRF(indx) lies in Li, i.e. for j ∈ [m], the element Li[j] maps to j. Given L−1

i

they can uniquely map the PRF output to a value in [m].
The formal protocol description of Πr-M appears in Fig. 6, while the functionality (Fr-M, Fig. 18) and

the security proof (Theorem 5) are deferred to Appendix A.

4.4 Instantiating Fw-M

The main idea for flushing stash has already been discussed in the technical overview 1.2. As in the
case of Πr-M, here too, we reduce communication and computation required for generating DPF keys
by leveraging the map L−1

i , using which, Pi can generate DPF keys for a much smaller input domain
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Protocol Πr-M

Parameters: PRF PRF : K × [m]→ Y.
Init: Each party Pi inputs its share ⟨M⟩ which is interpreted as a list of tuples (indx, ⟨val⟩), where
indx ∈ [m]. For i ∈ {1, 2, 3},
1. All parties call FDOPRF with (KGen, Pi−1) with Pi−1 acting as K. Pi−1 receives ki.
2. Pi−1 sends ki to Pi+1.
3. Pi−1, Pi+1 locally compute a list Li[j] := PRF(ki, j), for j ∈ [m] and sort it.
4. Pi−1 calls F3-OT with (Init). Pi, Pi+1 call F3-OT with Init. Pi−1 receives mask vector as ri.
5. Pi−1 computes:

(a) For j ∈ [m], set M′
i[j].indx := PRF(ki, j), and M′

i[j].val := ⟨M[j].val⟩+ ri[L
−1
i (PRF(ki, j))].

(b) Sort tuples in M′
i lexicographically with respect to M′

i.indx.
(c) Send M′

i to Pi.
6. Pi receives M

′
i from Pi−1.

7. Pi locally computes list Li[j] := M′
i[j].indx, for j ∈ [m].

8. Pi initializes empty list adrreadi .
9. Output: Pi outputs ki−1, ki+1, Li.

Access: Each party Pi inputs additive share ⟨adrM⟩, the set adrreadi and keys ki−1, ki+1.
1. Each party Pi initializes ⟨v⟩ := 0.
2. For i ∈ {1, 2, 3}, do:

(a) Pi−1 calls FDOPRF with inputs (Eval, unmasked, ⟨adrM⟩ , ki), and Pi, Pi+1 call with input
(Eval, unmasked, ⟨adrM⟩), with Pi acting as R2. Pi receives adr

′ := PRF(ki, adrM).
(b) Pi updates adr

read
i := adrreadi ||adr′.

(c) Pi computes j′ := L−1
i (adr′).

(d) Pi sets ⟨x⟩ := M′
i[j

′].val and Pi−1 sets ⟨x⟩ := 0.
(e) Pi calls F3-OT with (Access, j′), and Pi−1, Pi+1 call with Access. Pi+1 receives ri[j

′], and sets
⟨x⟩ := −ri[j

′].
(f) Each party computes: ⟨v⟩ := ⟨v⟩+ ⟨x⟩.

3. Output: Each party Pi outputs (⟨v⟩ , adrreadi ).

Fig. 6: Protocol for reading from memory.

[m] instead of YPRF. The functionality we want to achieve is Fw-M (Fig. 20), and the formal protocol
description appears in Πw-M (Fig. 7). The proof of security is deferred to Appendix A (Theorem 6).

Protocol Πw-M

Parameters: Φ = (Gen,Eval) is a multi-point DPF scheme for functions [m]→ Fp, and a function PRF.
Let m = n+

√
n, where n is the size of M.

Update Memory: Each party Pi, for i ∈ {1, 2, 3} has input ⟨M⟩ , Li and ⟨stash⟩. Pi also inputs auxiliary
information adrreadi , and two PRF keys (ki−1, ki+1). M is interpreted as set of tuples (indx, val).

1. For i ∈ {1, 2, 3}:
(a) Pi−1, Pi+1 locally compute a list Li[j] := PRF(ki, j), for j ∈ [m] and sort it.
(b) Pi locally defines: for j ∈ [m], set L−1

i (Li[j]) := j.
(c) Pi defines a multi-point function fi : [m] → Fp such that, for j ∈ [

√
n], fi(L

−1
i (adrreadi [j])) :=

⟨stash[j].val⟩ − ⟨stash[j].valold⟩. It generates multi-point DPF keys (mki,i−1,mki,i+1) ←
Φ.Gen(1λ, stat, fi) and sends them to Pi−1 and Pi+1 respectively.

(d) For t ∈ {1, 2, 3} \ {i}: Pt locally updates ⟨M⟩t as: For j ∈ [n], ⟨M[j].val⟩ := ⟨M[j].val⟩ +
Φ.Eval(mki,t, L

−1
i (PRF(ki, j)))

2. All parties call FZero(n) to receive ⟨0⟩.
3. Parties locally compute ⟨M⟩ := ⟨M⟩+ ⟨0⟩.

Fig. 7: Protocol for updating memory with stash entries.
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4.5 Instantiating FDOPRF

We use Legendre PRF to instantiate FDOPRF functionality [Dam90]. A single bit Legendre PRF, fPRF : Fp×
Fp → {0, 1}, where p is a public prime is defined as follows:

fPRF(k, x) = Lp(k + x) with Lp(a) =
1

2

((
a

p

)
+ 1

)
mod p.

Here,
(

a
p

)
denotes the Legendre symbol, i.e., it evaluates to 1 if a is non-zero and a quadratic residue

modulo p, 0 if a ≡ 0 mod p, and −1 otherwise. Lp(·) simply maps this value to {0, 1, (p + 1)/2}. To
extend the range to an ℓ bit output, we select ℓ independent keys and replicate the computation for a
single bit output ℓ times. More specifically, for an ℓ bit output, we pick a vector of keys of size ℓ, denoted
as k, and define PRF(k, x) as:

PRF(k, x) =
(∑ℓ−1

i=0 2
i · Lp(ki + x)

)
mod p.

We optimize the implementation of our protocol by using two different types of FDOPRF evaluations,
which we call the unmasked and the masked type, respectively. In both types, one party K holds the PRF
key k. In the unmasked type, some other receiver party R2 learns, in clear, the PRF evaluation of an
additively shared value x. On the other hand, in the masked type, we require all parties to learn secret
shares of the evaluation. Specifically, two of the parties (R1,R2) learn a random bit r, while K learns
f(k, x) ⊕ r. The former type performs slightly better as it requires two less rounds of communication
compared to the latter. We use it to obtain PRF evaluations in the write phase of Πstash, and for all PRF
evaluations in Πr-M. The masked type is used to obtain PRF evaluations in the read phase of Πstash.

The functionality FDOPRF can be called in two modes corresponding to the two types, and it appears
in Fig. 8. Next, we explain both our constructions. Both the protocols are inspired by the analogous
protocol in [GRR+16], which given additive shares of x, allows all parties to learn additive shares of
f(k, x). Here however, the protocols are modified and optimized for our specific and different use case of
FDOPRF. For completeness, we present the masked version Πm

DOPRF here in Fig. 9, while the unmasked
version ΠDOPRF is deferred to Appendix B in Fig. 22. Given Πm

DOPRF, parties can always obtain outputs
consistent with the unmasked mode by simply reconstructing the shares towards one party.

Both the protocols exploit multiplicativity of Legendre symbols. In the unmasked protocol, the main
idea is to mask k + x with a random square s2 and open s2(k + x) to R1. Since, s

2 is a quadratic residue
modulo p, it holds that Lp(s

2(k + x)) = Lp(k + x) due to the multiplicativity of Legendre symbols. Thus,
K can locally compute the PRF evaluation. For the masked version, the idea is similar. We reveal either
s2(k + x) or α · s2(k + x) depending on whether r = 0 or 1, where α is a random non-quadratic residue
modulo p. Thus when r = 0, K locally computes Lp(s

2(k+ x)) = Lp(k+ x) (from multiplicativity), which
is equal to f(k, x)⊕ r. On the other hand, when r = 1, we get two cases: (i) if (k + x) is not a square,
then α · s2(k + x) is, and, (ii) if (k + x) is a square, then α · s2(k + x) is not. Observe that in both the
cases for r = 1, K obtains f(k, x)⊕ r. The detailed proof of security is deferred to Appendix B.

Both our protocols can be further optimized (as we do in our implementation) to precompute input
independent values. This includes generation of PRG seeds, steps 1-3 in ΠDOPRF, and steps 1-5 in Πm

DOPRF.
Moreover, the PRG seeds and the value α can be set up once and for all. α can be reused in all Πm

DOPRF

instantiations as it is always masked by s which is sampled freshly in each instantiation.

Protocol Specific Notations. x ◦ y denotes element-wise product. b · a, where b is a scalar, denotes the
product of b with each element in vector a. Wherever + or − operations are between two vectors, it
denotes element-wise addition or subtraction. Wherever, there is a + or − operation between a vector x
and a scalar a, for example, (x+ a), it denotes addition of a to each element in x.

Collision Resistance. In our application, we will evaluate PRF function on a small input domain of
size m = n+

√
n. For correctness of our scheme, we require that the evaluations should be unique for

this input domain, i.e., there are no collisions with high probability. To ensure that collisions happen
with probability at most 2stat, where stat is the statistical security parameter, we set the parameter ℓ as
ℓ := log2(m) + stat. When we use the DOPRF in the stash protocol, where the domain size is

√
n, we set

ℓ := log2(
√
n) + stat, accordingly.
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Functionality FDOPRF

Parameters: Output length ℓ, a PRF : K × X → {0, 1}ℓ.
KeyGen: On receiving (KeyGen, Pi) from all parties, treat Pi as K. Randomly sample k← K. Output k
to K.
Eval: On receiving (Eval,mode, ⟨x⟩) from all parties and receive k from K. Do:
1. Reconstruct x. Compute y := PRF(k, x).
2. Sample r ← {0, 1}ℓ.
3. If mode = masked, output r to R1,R2, and y ⊕ r to K.
4. Else, mode = unmasked output y to R2.

Fig. 8: Functionality for a distributed PRF evaluation between parties R1,R2,K where K holds the key.
In mode = unmasked it allows R2 to obtain PRF evaluation in clear, and in mode = masked it allows all
parties to obtain secret sharing of the PRF evaluation.

Protocol Πm
DOPRF

Parameters: Output length ℓ, a Prg that expands a seed of length l to l′ field elements.
KeyGen: R1 samples k1 ← Fℓ

p, and sends it to K. R2 samples k2 ← Fℓ
p, and sends it to K. K sets

k := k1 + k2.
Init: Parties sample pairwise PRG seeds: K samples kk,1 ← {0, 1}l, R1 samples k1,2 ← {0, 1}l, and R2

samples k2,k ← {0, 1}l, and sends it to R1, R2, and K, respectively. Let α be a fixed quadratic non-residue
modulo p known to R1 and R2.
Eval: Each party has input ⟨x⟩, and pairwise PRG seeds. K in addition has key k.
1. K and R1 compute m,a, c1, e← PRG(kk,1), where m ∈ Fp,a,a1, e ∈ Fℓ

p.
2. R1,R2 compute s← PRG(k1,2), where s ∈ Fℓ

p.
3. R1 samples r1 ← {0, 1}ℓ, and sends it to R2. Similarly, R2 samples r2 ← {0, 1}ℓ, and sends it to R1.

Both R1,R2 set r := r1 ⊕ r2.
4. R1,R2 define t as: for j ∈ [1, ℓ], set t[j] := s2[j] if r[j] = 0. Else, set t[j] := s2[j] · α.
5. R1 defines b := t− e, and c3 := a ◦ b− c1. Send c3 to R2.
6. K computes y1 := ⟨x⟩ −m, R1 computes y2 := ⟨x⟩+m and R2 sets y3 := ⟨x⟩. R1 sends y2 to R2.
7. K computes and sends d := k + y1 − a to R2.
8. R2 computes w := t · (y2 + y3), and z3 := d ◦ t+ c3 +w. It sends z3 to K.
9. K computes z1 := e ◦ (k + y1)c1 − d ◦ e, and z := z1 + z3.

10. K computes, for j ∈ [1, ℓ], o[j] := 1
2

((z[j]
p

)
+ 1

)
mod p.

11. K outputs o, R1,R2 output r.

Fig. 9: Protocol for a secure, distributed and oblivious evaluation of PRF.

4.6 Cost Analysis

Here, we calculate the overall communication and computation cost for executing Πf . For the sake of
analysis, assume that the number of instructions required to execute Πf is t ·

√
n, i.e., we have t epochs.

Πf makes one call to FDORAM(Init) and FDORAM(GetM) once per execution. Per instruction, Πf makes one
call to FMPC and FDORAM(Access). When instantiated, the only prohibitive component here are the calls
to FDORAM. We give the per instruction, per party cost (in terms of field elements) for FDORAM(Access)
and sub-protocols required for instantiating it. We give per execution cost for instantiating FDORAM(Init)
and FDORAM(GetM). The costs are summarized in Table 2.

– FZero: Can be implemented naively by each party sending a vector of size m and locally computing
shares of 0, which requires O(m) communication and computation.

– FSelect: Implemented by computing flag · x+ (1− flag) · y in MPC with two multiplications, and thus
O(1) communication and computation.

– ΠDOPRF: For both versions, this requires computing and sending vectors (of elements from Fp) of
length ℓ, where ℓ is at most log2 (m) + stat, and m = n+

√
n. Thus, communication and computation

is O(log2 (m)) field elements.
– Π3-OT(Init): Each party communicates 2 PRF, 1 PRP key. In addition, the party evaluates the mask

vector r. This requires communication O(1) and computation O(m).
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– Π3-OT(Access): Per iteration, each party communicates an index indx ∈ [m] and a PRF evaluation a,
and locally evaluates one PRF evaluation. This requires communication and computation O(1).

– Πstash(Read): The cost here is dominated by converting additive to replicative shares which requires
O(
√
n) communication and computation.

– Πstash(Write): The communication is dominated by DPF keys which is at most O(
√
n log2(p)), while

computation requires evaluating DPF keys over entire stash, i.e, O(
√
n) computation.

– Πr-M(Init): Mainly involves sending a masked, and sorted M, and one run of Π3-OT(Init). Total
communication and computation cost is O(m log(m)), and per access, it is O(

√
n log(m)).

– Πr-M(Access): Per access, there is one FDOPRF evaluation, and one run of Π3-OT(Access). Thus the
communication and computation is O(log2(m)).

– Πw-M: The communication and computation cost is dominated by calling FZero. Thus overall, it is
O(n) for each epoch, and per iteration it is O(

√
n).

– ΠDORAM(Init): This consists of just one call to Πr-M(Init). Thus, per execution, cost is O(m log(m))
for both communication and computation. This amounts to O(log(m)/t) cost per instruction.

– ΠDORAM(Access): Per access, this requires one read and write access to the stash FStash, two calls
to FSelect, and one Πr-M(Access). After each

√
n accesses, there is one call to Πw-M and Πr-M(Init).

Therefore, per access computation and communication cost is O(
√
n log(m)).

– ΠDORAM(GetM): Per execution, just one call to Πw-M, which requires O(n) communication and
computation per call. This is called only once after all t×

√
n instructions have been executed. Thus,

per access, this costs only O(log(m)/t).

Cost for one Πf execution. For t ·
√
n instructions, Πf executes ΠDORAM(Init) once, ΠDORAM(Access) t ·

√
n

times, and ΠDORAM(GetM) once. This amounts to O(
√
n log(m)) computation and communication cost

per instruction. Note that all sub-protocols require only constant rounds of communication per iteration.

Table 2: Amortized asymptotic costs per party for executing one instruction. Here, n is the number of
elements in memory and m := n+

√
n. Each sub-protocol requires O(1) rounds of communication.

Primitive Computation Communication

ΠDOPRF O(log(m)) O(log(m))

Π3-OT(Init) O(m) O(1)
Π3-OT(Access) O(1) O(1)
Πstash(Read) O(

√
n) O(

√
n)

Πstash(Write) O(
√
n) O(

√
n log(p))

Πr-M(Init) O(m log(m)) O(m log(m))

Πr-M(Access) O(log(m)) O(log(m))

Πw-M O(
√
n) O(

√
n)

ΠDORAM(Init) O(log(m)/t) O(log(m)/t)

ΠDORAM(Access) O(
√
n log(m)) O(

√
n log(m))

ΠDORAM(GetM) O(log(m)/t) O(log(m)/t)

5 Implementation

To benchmark the performance of our protocols, we implemented them using the Rust programming
language. We plan to publish our implementation as open source software for other researchers to compare
and build upon.
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5.1 Setup

Instantiations of Primitives We implement the multi-point distributed point function with the protocol
of [SGRR19], and the single-point distributed point function with Half-Tree [GYW+22] using a fixed-
key-AES-based hash function [GKWY20]. For the Legendre PRF, we use the prime field Fp with
p = 340282366920938462946865773367900766209. Moreover, we use AES-CTR as a PRG and Blake3 to
instantiate a PRF into Fp, where we obtain Fp via rejection sampling.

Experimental Setup We conducted our experiments on a set of three servers each equipped with an Intel
Core i9-9900 CPU having 16 logical cores (i.e., including hyperthreading) and 128GB memory, connected
with 10 Gigabit Ethernet. On average, we measured a bandwidth of 9.4Gbit/s and an RTT of 1ms.
Additionally, we also configure Traffic Control in the Linux kernel with the tc (8) utility to simulate a
WAN setting with 100Mbit/s bandwidth and 30ms latency, as well as various settings where we either
limit the bandwidth or enforce additional latency.

For each experiment with memory size n, we measured the time that the protocol needs for one epoch
consisting of

√
n accesses (until the stash is full) followed by the then necessary refresh (where the stash

is written back into the memory). This allows us to give the amortized run-times per access operation,
since the accesses early in the epoch are slightly faster because of the lower number of elements stored in
the stash. We separate the costs into the input-independent preprocessing phase and the online phase of
the protocol.

To compare our work with Duoram [VHG22], we also run experiments with their implementation5 on
the same hardware. For each n, we first run the preprocessing phase to measure the time required to
preprocess the necessary DPFs per write, followed by the online phase of 128 writes. We chose to measure
the time required for writes, since it similarly to our access – which hides whether it is a read or a write –
also consists of a read followed by an update to the memory.

5.2 Benchmarking Results

Memory Size In Table 3, we give the runtimes for memories with sizes from n = 28 to n = 226 in the
LAN and WAN settings, where we run both the preprocessing and the online phase with 16 threads.

In the LAN setting, the runtimes for the online phase increase slowly with the memory size n: We
only need 36.5ms per access in a memory with n = 226 entries. The runtimes are much higher in the
WAN setting, starting at 330ms, but they still only increase very slowly with n: There is only a 76ms
difference between n = 28 and n = 226. Hence, the latency is the dominating factor in this setting, as our
protocol needs several (although constant) rounds for each access.

For the preprocessing phase, we clearly see that the runtimes increase linearly in
√
n. Moreover, in the

WAN setting, the preprocessing runtimes do not increase much compared to the LAN setting, since the
preprocessing protocol is constant round w.r.t. the number of accesses, and the 100Mbit/s bandwidth is
not a bottleneck.

Comparison with Three-Party Duoram [VHG22] We compare the performance of the two protocols for
memory sizes from n = 28 to n = 226 in the LAN and WAN settings. The resulting runtimes are visualized
in Fig. 10. The corresponding data is also provided in Table 4 (Appendix D).

Since the Duoram implementation does not support multithreading in the online phase, we used for
both protocols 16 threads in the preprocessing phase, and then a single thread in the online phase. Note
that in our work every memory entry is an element of a 128 bit prime field, whereas Duoram works by
default on 64 bit integers. Hence, it is more costly for us to send elements between the parties, and the
arithmetic is more costly as well. On the other hand, we can store about twice the amount of data per
element.

The results show that the Duoram performs better in the online phase for memory sizes n ≤ 220,
whereas our protocol is faster for larger memory sizes n ≥ 221. At this point the asymptotic difference
in computation – our O(

√
n) vs. Duoram’s O(n) – cost kicks in: While our runtimes increase relatively

slowly, those of Duoram deteriorate rapidly, so that our protocol is 14× faster for n = 226. In the WAN
setting, this effect sets in a bit later, between n = 224 and n = 225, because of the higher round complexity
of our protocol, and our protocol is more than 2× faster for n = 226.

5 https://git-crysp.uwaterloo.ca/avadapal/duoram/src/2a88d1a2976d727ceec6915c02d3134149185d3a
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Table 3: Amortized runtimes in ms and communication costs in KiB per access for memory sizes n = 28

to n = 226 in the LAN and WAN setting with 16 threads for preprocessing and online phase.

log2 n
Time per Access in ms

Communication in KiB
LAN WAN

Online Prep. Total Online Prep. Total Online Prep. Total

8 2.09 0.38 2.46 329.03 10.24 339.27 11.37 4.36 15.73
9 3.25 0.44 3.69 336.32 7.50 343.82 11.88 4.58 16.47

10 3.71 0.64 4.36 332.30 5.73 338.03 12.78 4.81 17.58
11 3.66 0.79 4.45 331.31 4.92 336.23 13.65 5.15 18.79
12 3.98 1.10 5.07 333.98 4.48 338.46 15.36 5.72 21.08
13 1.69 1.04 2.74 336.41 3.48 339.89 17.47 6.47 23.95
14 3.61 1.28 4.90 335.09 3.50 338.59 20.28 7.51 27.79
15 4.96 1.53 6.49 335.53 3.71 339.24 24.30 8.94 33.25
16 6.43 2.12 8.55 335.96 4.04 340.00 29.80 10.99 40.79
17 5.58 2.79 8.37 336.42 4.69 341.11 37.56 13.83 51.39
18 9.92 3.98 13.90 336.98 5.64 342.62 48.32 17.86 66.18
19 6.47 5.58 12.05 337.88 7.18 345.05 63.55 23.50 87.05
20 7.79 8.86 16.65 339.35 9.65 349.00 84.86 31.48 116.34
21 14.00 12.87 26.87 341.34 13.57 354.91 115.01 42.71 157.72
22 16.97 18.57 35.54 344.25 20.02 364.27 157.41 58.61 216.01
23 19.85 26.71 46.56 349.21 28.59 377.80 217.38 81.02 298.40
24 23.79 38.52 62.31 355.60 42.56 398.16 301.96 160.74 462.70
25 29.47 55.28 84.75 364.35 62.27 426.62 421.63 259.35 680.98
26 36.53 79.53 116.06 376.07 90.61 466.67 590.52 388.88 979.40
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Fig. 10: Comparison of online and total runtimes of Ramen (this work) and the three-party Duoram
protocol [VHG22] for different memory sizes in the LAN and WAN settings.
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The preprocessing phase of our protocol is even for large memory sizes very light, and takes always
less time than the preprocessing of Duoram. With respect to the overall runtime, our protocol is faster
for memory sizes n ≥ 218 in the LAN setting and n ≥ 219 in the WAN setting. For n = 226, we have an
improvement of 30× in the LAN setting, and 8.7× in the WAN setting compared to Duoram.

Summarizing, we can say that our protocol is better suited for large memories, while Duoram performs
well on small memories as well as in high-latency network settings.

Network Conditions To see how our protocol performs under different network conditions, we give
benchmark results for accesses of a n = 222 element memory with 16 threads in Table 5a and 5b
(Appendix D), where we limit the available bandwidth and impose an artificial latency, respectively. The
bandwidth has only very little influence on the runtime – more than 50Mbit/s does not increase the
performance very much. Latency, on the other hand, has a large impact on the runtime in the online
phase, which increase linearly. The preprocessing phase, however, is unaffected since its round complexity
is independent of the number of accesses.

Multithreading To see how much of the computation in our protocol is parallelizable we ran experiments
with 1 to 16 threads in the LAN setting with fixed memory size n = 222. In Table 6 (Appendix D) we
give the runtimes as well as the achieved speedup and efficiency of the parallelization.6

In the online phase, the achieved speedup is limited to < 2× for any number of threads. This is
likely due to the ratio of computation to the rounds of communication in the access protocol. It is to be
expected that the efficiency of parallelization drops significantly in the WAN setting, where the parties
already spend most of their time waiting for the network.

The preprocessing phase is much better parallelizable since it includes most of the heavy work such
as the evaluations of the Legendre PRF on each index of the memory. Here we achieve a speedup of up
to 8. Moreover, we see that for up to 8 threads, the efficiency stays above 0.8, but it drops to 0.5 when
increasing adding more threads. This effect is likely due to hyperthreading, i.e., executing two logical
threads on the same physical CPU core while sharing its resources.
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SGRR19. Phillipp Schoppmann, Adrià Gascón, Leonie Reichert, and Mariana Raykova. Distributed vector-OLE:
Improved constructions and implementation. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang,
and Jonathan Katz, editors, ACM CCS 2019: 26th Conference on Computer and Communications
Security, pages 1055–1072, London, UK, November 11–15, 2019. ACM Press.

VHG22. Adithya Vadapalli, Ryan Henry, and Ian Goldberg. Duoram: A bandwidth-efficient distributed
oram for 2- and 3-party computation. Cryptology ePrint Archive, Report 2022/1747, 2022. https:
//eprint.iacr.org/2022/1747.

Yao82. Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In 23rd Annual
Symposium on Foundations of Computer Science, pages 160–164, Chicago, Illinois, November 3–5,
1982. IEEE Computer Society Press.

Yao86. Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In 27th Annual
Symposium on Foundations of Computer Science, pages 162–167, Toronto, Ontario, Canada, October 27–
29, 1986. IEEE Computer Society Press.

ZWR+16. Samee Zahur, Xiao Shaun Wang, Mariana Raykova, Adria Gascón, Jack Doerner, David Evans, and
Jonathan Katz. Revisiting square-root ORAM: Efficient random access in multi-party computation.
In 2016 IEEE Symposium on Security and Privacy, pages 218–234, San Jose, CA, USA, May 22–26,
2016. IEEE Computer Society Press.

A Protocols and Security Proofs

A.1 Security Model

Throughout the paper, we assume that parties We prove the security of our protocols in the universal
composability framework of [Can01]. The security requirements are captured by defining the real-world
and the ideal-world. The real-world experiment is defined with respect to a protocol Π (run by parties
P1, P2, P3), an adversary A and an environment Z. The environment Z can write inputs to all parties,
read outputs of all parties, and additionally interact with A throughout execution. After A is activated, it
can corrupt one of the parties in the system, and from then on gets read-only access to the internal state
of the corrupted party. It also gets to change any input for the corrupt party, which is modeled as follows:
When Z wants to write input x for a corrupted party, it first interacts with A who might change it to
x′, after which Z writes x′ on the input tape of the corrupt party. Let RealΠ,A,Z denote the output of
the distinguisher Z when interacting in the real-world experiment. The ideal-world experiment is defined
with respect to an ideal functionality F , ideal adversary S, the environment Z and a set of dummy
parties P̃1, P̃2, P̃3. Similar to the previous case, Z writes to the input tapes, and read from the output
tapes of all dummy parties. As in the real-world experiment, here too Z interacts with the adversary S
throughout the execution. When S is activated for the first time, it activates an instance of A internally,
and relays communication between A and Z. This is useful when Z wants to interact with A to decide
corrupt party’s inputs; it does so via S. This means that S in the passive case is aware of the inputs of
the corrupted party even if they might be modified by A. Finally, when each dummy party receives its
input, it sends it to F to receive outputs. The corrupt party’s output is received by S who writes it on its
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output tape to be read by Z. Let IdealF,S,Z denote the output of the distinguisher Z when interacting in
the ideal-world experiment.

Definition 2. Let F be a three party functionality and Π be a three-party protocol. We say that Π
securely realizes functionality F in the presence of one passive corruption, if for all PPT adversaries A,
there exists a PPT algorithm S, such that, for all PPT Z,

{IdealF,S,Z(x, λ, z)}x,λ,z
c≡ {RealΠ,A,Z(x, λ, z)}x,λ,z

where Ideal and Real are experiments as described earlier, x = (x0, x1, x2), and xi ∈ {0, 1}∗ is the input
of party Pi, z ∈ {0, 1}∗ is the auxiliary input for A, and λ is the security parameter.

Each proof of security will follow the same pattern. First the simulator S starts by invoking an
instance of A and runs a simulated interaction of A with Z (by simply relaying messages between them).
S receives the adversary’s inputs from Z, and it writes them on A’s input tape. Similarly, every output
value written by A is copied by S on its output tape to be read by Z. The simulator S calls F on the
adversary’s input to receive the function’s output. It then continues to simulate A’s view using this
output. Since this is a common strategy for all simulators, we skip the explicit invocation of A in the
proofs. As is common practice, each new invocation of a functionality happens with a new session id. We,
however, will not explicitly mention this in our protocol descriptions or proofs.

A.2 Security Proof of Π3-OT

Theorem 1. Protocol Π3-OT UC-securely implements functionality F3-OT in presence of one passive
corruption.

Proof. The correctness of the protocol is immediate. Next, we will argue that our protocol is secure. Init
for Π3-OT is run once, while Access can run up to ℓ times. We consider all possible corruption scenario
and construct a simulator S for each of the case.

S corrupt: From Z, S receives command Init. It receives keys kC, kR, kPRP from S on behalf of C,R,
computes vector r just as S would in the protocol Π3-OT, and calls F3-OT on r. It receives no output in
return.

C corrupt: On receiving command (Access, indx) from Z, call F3-OT. S receives no output in return.
Simulate the view as follows. It simulates the transcript in the Init phase by sending randomly sampled
kPRP and kC to C. Note that, these keys are generated exactly as in the real world and hence are
indistinguishable. Since C receives no output and no incoming messages in the Access phase, S simulates
the transcript by accepting messages sent by C.

R corrupt: On receiving command (Init) from Z, S calls F3-OT. TO simulate the view, it samples and
returns a random key kR ← KPRF. This is exactly as in the real world and hence is indistinguishable. For
each iteration of Access, on receiving command (Access) from Z, the simulator works as follows:

1. Since R has no input, S simply calls F3-OT on input Access and receives x which is the output of the
current iteration.

2. Pick a random index indx′ ∈ [ℓ] that has not been picked in any of the previous iterations.
3. Set a := x− PRF(kR, indx

′).
4. Output (indx′, a) as the message that R receives from C.

This is indistinguishable from the real world view. We describe hybrids for one Init operation followed by
one iteration of Access, which can be replicated for all iterations.

– Hyb0: The real world view obtained by executing steps in Π3-OT.
– Hyb1: Same as Hyb0 except that S receives x from F3-OT and sets a as a := x − PRF(kR, π(indx)).

This is indistinguishable because of correctness of the protocol.
– Hyb2: Same as Hyb1 except that π(indx) is replaced by a uniformly random index indx′ ∈ [ℓ] such that

indx′ was not picked in any past iteration. This is indistinguishable from the previous hybrid because
of security of PRP scheme.

Observe that Hyb2 is exactly how S behaves for a corrupt R.
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Protocol Πf

Parameters: A next-step function NS. Each party inputs shares ⟨x⟩ , ⟨M⟩, and gets output
⟨stNS⟩ , ⟨M⟩ , rnd.
Run: 1. All parties initialize ⟨stNS⟩ := (start, ⟨x⟩), ⟨d⟩ := 0 and rnd := 0. Call FDORAM with (Init, ⟨M⟩).
2. Do:

(a) The parties call FMPC with inputs (⟨stNS⟩ , ⟨d⟩) to securely compute (⟨stNS⟩ , ⟨I⟩)← NS(⟨stNS⟩ , ⟨d⟩).
(b) Parse ⟨stNS⟩ as (⟨z⟩ , ·).
(c) Parties z as: For i ∈ {1, 2, 3}, Pi sends ⟨z⟩ to Pi−1, Pi+1. If z = stop, then break. Else if z = continue,

continue.
(d) Call FDORAM with input (Access, ⟨I⟩) to receive output ⟨d⟩.
(e) Update rnd := rnd+ 1.

3. Call FDORAM with input (GetM) to receive output ⟨M⟩.
4. Each party locally outputs (⟨stNS⟩ , ⟨M⟩ , rnd).

Fig. 11: Protocol for secure evaluation of a RAM program f .

A.3 Security Proof of Πf

Theorem 2. Protocol Πf UC-securely instantiates functionality Ff in presence of one passive corruption
in the (FDORAM,FMPC,FCheck)-hybrid model.

Simulator Sf

1. On receiving inputs of the corrupt party ⟨M⟩ , ⟨x⟩, call Ff to receive outputs outputs (⟨stNS,out⟩ , ⟨Mout⟩,
rnd). Simulate the view as follows.

2. Receive call to FDORAM(Init) from P1. Return nothing in response. Initialize current counter crnd := 0.
3. For crnd < rnd, do:

(a) Receive call to FMPC from P1. Sample and return random (⟨stNS⟩ , ⟨I⟩) (of appropriate length).
(b) Receive ⟨z⟩ from P1. Sample ⟨z⟩2 , ⟨z⟩3 such that z = continue. Send ⟨z⟩2 , ⟨z⟩3 to P1 on the behalf

of P2, P3.
(c) Receive call to FDORAM(Access) from P1. Return ⟨d⟩ ← Fp.
(d) Update crnd := crnd+ 1.

4. If crnd = rnd, do:
(a) Receive call to FMPC from P1. Sample ⟨I⟩ uniformly at random of appropriate length and return

(⟨stNS,out⟩ , ⟨I⟩).
(b) Receive call to FCheck from P1. Return stop to P1.

5. Receive call to FDORAM(GetM) from P1 and return ⟨Mout⟩.

Fig. 12: Simulator for Theorem 2 in the case of corrupt P1.

Proof. The correctness of Πf is clear from inspection. We argue security against a corrupt P1. The
simulation strategy for other corruption cases is analogous.

– Hyb0: Same as the real world execution except that, when FDORAM is called with input GetM, reply
with ⟨Mout⟩. This is indistinguishable because correctness.

– Hyb1 : When crnd = rnd, Sf returns random shares for ⟨I⟩, and ⟨stΠ,out⟩, where ⟨stΠ,out⟩ is received
from the functionality. This is indistinguishable because security of additive sharing, and correctness
of Πf .

– Hyb2 : When crnd ̸= rnd, Sf returns random shares for ⟨stΠ⟩ and ⟨I⟩ rather than the correctly computed
shares. Moreover, it returns calls to FDORAM(Access) with a random ⟨d⟩. This is indistinguishable
from the previous hybrid because of the security of the additive shares.

Notice that Hyb2 is the view generated by Sf .
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A.4 Security Proof of ΠDORAM

FDORAM

Init: On receiving (Init, ⟨M⟩) from all parties, reconstruct and store M locally.
Access: On receiving (Access, ⟨I⟩) from all parties, reconstruct instruction I := (op, adr, val), and do:
1. If I = (read, adr, 0), set d := M[adr].val.
2. Else if, I = (write, adr, val), set d := M[adr].val and M[adr] := I.val.
3. Output additive share ⟨d⟩i to party Pi.

Get Memory : On receiving (GetM) from all parties, output additive shares ⟨M⟩i to party Pi.

Fig. 13: Functionality for distributed ORAM between three parties P1, P2, P3 and executing instruction I
on M obliviously.

ΠDORAM

Parameters: A PRF : K × [1,m]→ Y, where m = n+
√
n.

Init/Refresh: Each party has input ⟨M⟩ which is parsed as set of tuples (indx, ⟨val⟩), where indx ∈ [1, n].

1. Set access counter c := 1, ⟨stash⟩ := [(0, 0, 0)]
√
n.

2. Set ⟨ststash⟩ := ⊥, where ⟨ststash⟩ is parsed as (⟨flag⟩ , ⟨loc⟩ , ⟨valst⟩).
3. Define ⟨M⟩ := ⟨M⟩ ||{(n+ 1, 0), . . . , (m, 0)}.
4. Call Fr-M with (Init, ⟨M⟩).Each party Pi receives (ki−1, ki+1), and list Li from Fr-M.
5. Each party Pi sets the list of addresses read adrreadi := ⊥.

Access: Each party inputs ⟨I⟩, and gets output ⟨d⟩ at the end. In iteration c,
1. Call FStash with input (Read, c, ⟨stash⟩ , ⟨I⟩) and receive ⟨ststash⟩.
2. Set ⟨c+ n⟩ as: P1 sets its share as c+ n and P2, P3 set their shares to be 0. Parties call FSelect with

(⟨flag⟩ , ⟨c+ n⟩ , ⟨I.adr⟩) to receive ⟨adrM⟩.
3. Each party Pi calls Fr-M with input (Access, ⟨adrM⟩ , adrreadi , ki−1, ki+1) and receives (⟨valM⟩ , adrreadi ).
4. Call FStash with (Write, ⟨valM⟩ , ⟨adrM⟩ , c, ⟨stash⟩ , ⟨ststash⟩ , ⟨I⟩). All parties receive an updated ⟨stash⟩.
5. Call FSelect with (⟨flag⟩ , ⟨valst⟩ , ⟨valM⟩) to receive ⟨d⟩.
6. If c =

√
n:

(a) Each party Pi calls Fw-M with (⟨M|n⟩ , ⟨stash⟩ , Li, adr
read
i , ki−1, ki+1) to receive updated shares of

⟨M⟩. Here, ⟨M|n⟩ represents the first n tuples in ⟨M⟩.
(b) Parties run Refresh(⟨M⟩).

7. Increment c := c+ 1 and locally output ⟨d⟩.
Get Memory: Each party receives output the updated share ⟨M⟩ at the end.
1. Each party Pi calls Fw-M with (⟨M|n⟩ , ⟨stash⟩ , Li, adr

read
i , ki−1, ki+1) to receive ⟨M⟩. Here, ⟨M|n⟩

represents the first n tuples in ⟨M⟩.
2. Parties locally output ⟨M⟩.

Fig. 14: Protocol for distributed ORAM, realizing FDORAM.

Theorem 3. Protocol ΠDORAM UC-securely instantiates functionality FDORAM in presence of one passive
corruption in the (Fr-M,FStash,FSelect,Fw-M)-hybrid model.

Proof. Correctness and security for the simulator are argued as follows.

Correctness. Note that the very first execution of Refresh in ΠDORAM acts as the instantiation of Init
command in FDORAM. The correctness of Init phase is obvious from inspection. Correctness of read
operations follow from the fact that the most up-to-date value is stored either in the stash or in M and
the protocol reads from both and obliviously selects the actual value. For write operations, correctness
follows from maintaining the updates into the stash. Since, the updates are pushed into M, correctness of
GetM is also immediate.
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Security. We argue the case where P2 is corrupt. The simulation strategy for the other two cases is
identical. The simulator for this case is in Fig.15. Observe that, the Init and GetM commands are invoked
only once in both real and ideal world, while Access can queried multiple times. However, we will describe
hybrids and argue indistinguishability considering Init, a single invocation of Access, followed by GetM.
This can be easily generalized by simply repeating the simulation steps and the indistinguishability
argument for multiple invocations of Access. The only constraint that will be maintained by the simulator
when repeating its steps for multiple iterations is that it will pick the new random address to be added to
the set adrread1 such that it is distinct from all previous addresses in the set. All other values are picked
independently of the previous iterations. Additionally, in case of multiple iterations, the steps for GetM are
executed before Access, and the i-th iteration Access is simulated is simulated before i− 1. The hybrids
are as follows.

– Hyb0 : Same as the real world execution except that the outputs are set differently by SDORAM. It
replies to the call to Fw-M with ⟨Mout⟩. Additionally, it replies to the call for FSelect (Step 5) with dout,
where dout is the current iteration output received from the functionality. This is indistinguishable
because of correctness.

– Hyb1: SDORAM answers call to Fr-M with randomly sampled ⟨valM⟩ and a randomly sampled address
from L2 \ adrreadi . This is indistinguishable because of the security of PRF function.

– Hyb2: SDORAM replies with random additive shares in Access phase, i.e. a random ststash, adrM, ⟨stash⟩,
and ⟨M⟩ (when c =

√
n− 1). This is indistinguishable because of security of additive sharing.

– Hyb3 : During Init, the simulator samples list L2 at random from Y (without replacement) rather than
performing PRF evaluation on [m]. This is indistinguishable because of the security of PRF scheme,
and since it is assumed to have negligible probability of collision.

– Hyb4 : SDORAM replies calls to Fr-M(Init) by returning two randomly sampled PRF keys (k1, k3). This
is identical to the previous hybrid.

Observe that the view produced in the last hybrid is exactly the one generated by SDORAM.

A.5 Security Proof of Πstash

The functionality for reading and writing to stash (FStash) appears in Fig. 16.

Theorem 4. Protocol Πstash UC-securely instantiates functionality FStash in presence of one passive
corruption in the (FDOPRF,FSelect,FZero)-hybrid model.

Proof. Correctness and security for the simulator are argued as follows.

Correctness. First consider the correctness of read operation. The list Lstash maintained by P2, P3 is a list
of PRF evaluations of addresses that were read previously from the memory, i.e., adrM, under key kstash
that is known to P1. The correctness of Lstash is guaranteed by correctness of write operation. In each
iteration a new address is added to Lstash. In the start of read operation, suppose address adr needs to
be read. In case it was previously read, PRF(kstash, adr) is present in Lstash. adr

′ := PRF(kstash, adr) +R
is revealed to P1, where P2, P3 know R. P1 generates DPF keys which P2, P3 evaluate on Lstash after
shifting each entry in Lstash by R. Thus if PRF(kstash, adr) is present in Lstash, so is PRF(kstash, adr) +R,
and evaluating the key generates additive secret shares of 1 between P2, P3. Otherwise, it generates shares
of 0. This gives correct shares for flag. Similarly, since the evaluation of keys at each entry in Lstash is
multiplied by the corresponding index, if the address is present (say at index j) in Lstash, P2, P3 get secret
shares of loc := j, otherwise they receive shares of 0. Since, they select between this and c based on flag,
this gives them the correct shares of loc.

Before computing shares of valst, parties convert additive shares of stash.val to replicative shares. In
the following, let us consider the protocol from point of view of P2. After replicated sharing, P1, P3 hold a
common share ⟨stash.val⟩3. Suppose address to be read is present in stash. Then from previous argument,
the parties hold secret shares of loc := j, otherwise, they hold shares of loc := c. A shifted loc2 := loc2+ r2
is revealed to P2, where P1, P3 know r1. P2 generates DPF keys for loc, and P1, P3 execute it on their
common share ⟨stash.val⟩3 after shifting each index by ri. If loc := j, then they hold additive shares of
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SDORAM

Init/Refresh: On receiving corrupt party’s inputs ⟨M⟩, call FDORAM on (Init, ⟨M⟩). Simulate transcript
as follow.
1. On behalf of P1, P3, set access counter c := 0, ⟨stash⟩ := [(0, 0, 0)]

√
n, and set ⟨ststash⟩ := ⊥, where

ststash : (flag, loc, valst).
2. From P2, receive call to Fr-M with (Init, ⟨M⟩). Sample two PRF keys k1, k3 ← K.
3. Sample without replacement a list L2 ← Ym. Sort L2. Reply with (k1, k3), L2.
4. Set the list of addresses read adrread1 , adrread3 := ⊥.

Access: On receiving inputs of the corrupt party for the current iteration, ⟨I⟩, call FDORAM on Access to
receive output dout. Simulate transcript messages as follows:
1. From P2, receive call to FStash with (Read, c, ⟨stash⟩ , ⟨I⟩). Sample ⟨ststash⟩ uniformly at random from

the appropriate domain. Reply with ⟨ststash⟩.
2. From P2, receive call to FSelect with (⟨flag⟩ , ⟨c+ n⟩ , ⟨I.adr⟩). Set ⟨adrM⟩ ← Y, and reply with ⟨adrM⟩.
3. Receive call to Fr-M with (Access, ⟨adrM⟩ , adrread2 , k1, k3), and do:

(a) Sample adr← L2 \ adrread2 .
(b) Update adrread2 := adrread2 ∪ adr.
(c) Sample ⟨valM⟩ ← Fp.
(d) Reply with (⟨valM⟩ , adrread2 ).

4. Receive call to FStash with (Write, ⟨valM⟩ , ⟨adrM⟩ , c, ⟨stash⟩ , ⟨ststash⟩ , ⟨I⟩) from P2. Sample ⟨stash⟩ uni-
formly at random from the appropriate domain.

5. Receive call to FSelect with (⟨flag⟩ , ⟨valst⟩ , ⟨valM⟩) and reply with dout.
6. If c =

√
n− 1, do:

(a) Receive call to Fw-M with (⟨M⟩ , ⟨stash⟩ , L2, adr
read
2 , k1, k3)) from P2.

(b) Sample ⟨M⟩ ← Fn
p and send it.

(c) Run simulation steps for Refresh.
7. Increment c := c+ 1.

Get Memory: On receiving command GetM for the corrupt party, call FDORAM on GetM and
receive updated share ⟨Mout⟩. Simulate transcript as follows. Receive call to Fw-M with inputs
(⟨M⟩ , ⟨stash⟩ , adrread2 , k1, k3) from P2. Reply with ⟨Mout⟩.

Fig. 15: Simulator for Theorem 3 in the case of corrupted P2.

Functionality FStash

Parameters: Stash size
√
n, a memory size n.

Read Stash: On receiving (Read, c, ⟨stash⟩ , ⟨I⟩) from all the parties,
1. Reconstruct stash and I.
2. If ∃j such that stash[j].adr = I.adr, then set flag := 1, valst := stash[j].val, and loc := j. Else, set

flag := 0, valst := 0, and loc := c.
3. Set ststash = (flag, loc, valst) and output ⟨ststash⟩ to all the parties.

Write in Stash: On receiving (Write, ⟨valM⟩ , ⟨adrM⟩ , c, ⟨stash⟩ , ⟨ststash⟩ , ⟨I⟩) from all parties,
1. Reconstruct valM, adrM, stash, ststash, and I. Parse ststash as (flag, loc, valst).
2. Update stash[c].adr := adrM, stash[c].val := valM, and stash[c].valold := valM.
3. If I.op = write, update stash[loc].val := I.val.
4. Output shares ⟨stash⟩ to the parties.

Fig. 16: Functionality for three parties, P1, P2, P3, to read and write to the stash.

just one out of three shares of ⟨val⟩. Otherwise, it is a share of 0. This is done thrice, to obtain the final
share val.

For write operation, first Lstash is updated with the newest read address adrM by calling FDOPRF. Since
a new address adrM is always made, parties add this in stash at the fixed location c. If adr was read in
a previous iteration, from correctness of read (as argued above), flag := 1, loc := j, valst := stash[j].val,
and, flag := 0, loc := c, valst := 0, otherwise. If op = write, then stash[j].val should be updated to
I.val (if flag = 1), and otherwise, stash[c].val should be update to I.val (if flag = 0). In the first case
∆ := I.val− stash[j].val, while in the second case, ∆ := I.val− valM. Moreover, if op = read, then stash.val
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should remain unchanged, i.e., ∆ := 0. To compute ∆, parties obtain the old value (valst := stash[j].val or
valM) using the first select operation with flag. Using the second FSelect, they obtain the new value (I.val
or valold) depending on op. Observe that, if op = write, we have valold = stash[j].val (for flag = 1), and
valold = valM (for flag = 0), and valnew = I.val. This gives the right ∆ for op = write. On the other hand, if
op = read, we have valnew = valold which makes ∆ = 0. This gives the correct values to generate DPF keys.

Security. The simulator is described in Fig. 17. We argue security for the case when P2 is corrupt. The
case for P3 is analogous. In the hybrids, we start with replacing real protocol steps with simulation
steps for write, followed by steps for read. This is to maintain correctness of simulation output in each
hybrid. We give hybrids for just one read, and write operation. These steps can be repeated for multiple,
interleaved read and write operations. While repeating steps for multiple iteration, Sstash will internally
maintain the set Lstash, and in each iteration, it will sample the response for FDOPRF call (in Step 1 of
write) by excluding entries in Lstash. Other than this, Sstash does not need to record any other value across
iterations. Additionally, in case of interleaved read, write operations, it will first simulate write and then
read.

– Hyb0: Same as the real world execution except that Sstash computes outputs differently (steps 10 and
11). It answers calls to FZero with ⟨stashout⟩ − δi − ⟨stash.val⟩, where δi and ⟨stash.val⟩ are exactly as
in the real world execution.

– Hyb1: Sstash answers calls to FDOPRF by sampling a random x′ with the constraint that it was not
sampled in previous executions of write (Step 1). This is indistinguishable because PRF evaluations
look indistinguishable form random.

– Hyb2: Sstash replies to the calls to FSelect with randomly sampled y′ and z′ (steps 2 and 3). This is
identical to the previous hybrid as the functionalities return additive shares which look indistinguishable
from a random element.

– Hyb3 : Sstash sends random w0, w2 (step 5) instead of correctly masked values. This is indistinguishable
because the masks are random and unknown to P1.

– Hyb4 : Sstash generates DPF keys by running the simulator S (Step 6). This is indistinguishable from
real keys because of the security of the DPF scheme.

– Hyb5: Sstash computes outputs differently. Sstash answers the call to FSelect and replies with ⟨loc⟩
(Step 5). It then computes y as P1 would have (Step 5 in Πstash), and then answers call to FZero

with ⟨flag⟩ − y. It continues executing steps in Πr-st and computes v as P1 would have (Step 10d in
Πstash). It answers call FZero with ⟨val⟩ − v (Step 14). These changes are indistinguishable because of
correctness.

– Hyb6: Sstash answers the call to FDOPRF by sampling a random R (Step 2). This is indistinguishable
because of the security of additive shares.

– Hyb7: Sstash sends random u0, u2 (Step 10) instead of correctly masked values. This is indistinguishable
because the masks are random and unknown to P1.

– Hyb8: Sstash sends a random vector z to P1 (Step 8) This is indistinguishable, again, because of the
additive secret sharing.

– Hyb9: Sstash generates DPF keys by running the simulator S (steps 4 and 11). This is indistinguishable
from real keys because of the security of the DPF scheme.

Observe that the view generated in the last hybrid is identical to the one generated by Sstash.

A.6 Security Proof of Πr-M

Theorem 5. Protocol Πr-M UC-securely instantiates functionality Fr-M in the presence of one passive
corruption in the (FDOPRF,F3-OT)-hybrid model.

Proof. Correctness and Security are argued below.

Correctness. It follows from the correctness of F3-OT, FDOPRF, and that there are no collisions in PRF
evaluation of {1, . . . ,m}.
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Sstash

Parameters: Stash size
√
n, memory size n. A PRF : K× [m]→ Y. Three DPF schemes: Φ1 for functions

Y → {0, 1}, Φ2 for Fp → {0, 1}, and Φ3 for Fp → Fp. S is the simulator for the DPF schemes.
Read in Stash: On receiving corrupt party’s inputs c, ⟨stash⟩ , ⟨I⟩, call FStash with Read and the inputs
to receive outputs ⟨ststash⟩ = (⟨flag⟩ , ⟨loc⟩ , ⟨valst⟩). Parse ⟨I⟩ as (⟨op⟩ , ⟨adr⟩ , ⟨val⟩). Simulate transcript as
follows:
1. If c = 1: Sstash initializes an empty list Lstash on behalf of P3. Receives call to FDOPRF from P2 and

replies nothing. If P1 is corrupt, sample a PRF key kstash ← Y and reply to P1 with kstash.
2. Receive call to FDOPRF with input (Eval,masked, ⟨adr⟩) from P2, sample R ← Fp and send it. If P1

was corrupt, receive kstash in addition and send a random x← Fp.
3. Receive x+R1 from P2 on behalf of P1. If P1 is corrupt, sample w1, w2 ← Fp and send it to P1 on

behalf of P2, P3.
4. Run simulator k1

DPF ← S(1λ,YPRF, {0, 1}). Send k1
DPF to P2.

5. Receive call to FSelect and reply with ⟨loc⟩ received from FStash.
6. For j ∈ [|stash|] compute y := x+ Eval(k1, Lstash[j] +R).
7. Receive call to FZero and reply with ⟨0⟩ := ⟨flag⟩ − y, where ⟨flag⟩ is the value received from FStash.

8. Receive ⟨stash.val⟩1 from P2 on behalf of P3. Sample z ← F|stash|
p and send it to P2.

9. Sample r3,1, r2,1 ← F2
p and send it to P2 on behalf of P3. Receive r2,3, r1,3 from P2 on behalf of P1.

10. Send u1, u3 ← F2
p to P2 on behalf of P1, P3, respectively. Receive ⟨loc⟩1 + r2,1, ⟨loc⟩1 + r2,3 from P2

on behalf of P1, P3, respectively.
11. Run simulator k1,2 ← S(1λ,Fp, {0, 1}), and k3,2 ← S(1λ,Fp, {0, 1}). Send k1,2, k3,2 to P2 on behalf of

P1, P3. Receive k2,1, k2,3 from P2 on behalf of P1, P3, respectively.
12. Define r1 := r3,1 + r2,1 and r3 := r2,3 + r1,3.
13. For j ∈ [|stash|], compute v := v + (Eval(k1,2, j + r1)× ⟨stash[j].val⟩1) + (Eval(k3,2, j + r3)× z[j]).
14. Receive call to FZero from P1. Reply with ⟨valst⟩ − v where ⟨valst⟩ is received from FStash.
Write in Stash: On receiving corrupt party’s inputs ⟨valM⟩ , ⟨adrM⟩ , c, ⟨stash⟩ , ⟨ststash⟩ , ⟨I⟩, call FStash

with the inputs to receive output ⟨stashout⟩. Simulate transcript as follows:
1. Receive call to FDOPRF from P2, and reply with x′ ← Y \ Lstash .
2. Receive call to FSelect from P2 and reply with y′ ← Fp.
3. Receive call to FSelect from P2 and reply with z′ ← Fp.
4. Sample ρ3,1, ρ2,1 ← F2

p and send it to P2 on behalf of P3. Receive ρ2,3, ρ1,3 from P2 on behalf of P1.
5. Send w1, w3 ← F2

p to P2 on behalf of P1, P3, respectively. Receive ⟨loc⟩1 + ρ2,1, ⟨loc⟩1 + ρ2,3 from P2

on behalf of P1, P3, respectively.
6. Run simulator k1,2 ← S(1λ,Fp, {0, 1}), and k3,2 ← S(1λ,Fp, {0, 1}). Send k1,2, k3,2 to P2 on behalf of

P1, P3. Receive k2,1, k2,3 from P2 on behalf of P1, P3, respectively.
7. Initialize a vector δ of length |stash| as (0, . . . , 0).
8. Define ρ1 := ρ2,1 + ρ3,1, and ρ3 := ρ2,3 + ρ1,3.
9. For j ∈ [|stash|], compute δ[j] := δ[j] + Eval(k1,2, j + ρ1) + Eval(k3,2, j + ρ3).

10. Receive call to FZero from P2. Reply with ⟨stashout.val⟩ − δ − ⟨stash.val⟩.
11. Receive two calls to FZero from P2. Reply with ⟨stashout.adr⟩ − ⟨stash.adr⟩ and ⟨stashout.valold⟩ −
⟨stash.valold⟩.

Fig. 17: Simulator for Theorem 4 for reading and writing to stash.

Security. Now, we argue security. W.l.o.g assume P2 is corrupt. The simulator for this case appears in
Fig. 19. In the real protocol execution, Init is called only once and Access can be called a number of times.
However, we describe the hybrids only for Init and a single invocation of Access, which can be replicated
for multiple invocations in a straight forward way. The simulator for the case of corrupt P2 appears in
Fig. 6. Sr-M generates an indistinguishable transcript because of the following hybrids.

– Hyb0: Same as the real world execution except that the simulator sets ⟨x⟩ as ⟨d⟩ − y, where ⟨d⟩ is
obtained from Fr-M. This is indistinguishable as in the real execution ⟨d⟩ := x+ y as well.

– Hyb1: Reply to FDOPRF is set as adr′ = adrread \ adrread2 , where adrread is obtained form Fr-M. Again,
this is indistinguishable from the previous hybrid because there too this set is updated similarly.

– Hyb3: Same as Hyb1 except M∗ is picked at random. This is indistinguishable from Hyb1 because the
output of F3-OT is a random vector which is unknown to P2 (since P1 acts as S and P1 is honest).

Observe that the view generated in the last hybrid is exactly the one generated by Sr-M.
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Functionality Fr-M

Parameters: A PRF : K × [m]→ Y.
Init: On receiving command (Init, ⟨M⟩) as input from all the parties,
1. Reconstruct and store tuple (M) locally.
2. For i ∈ {1, 2, 3},

(a) Sample a PRF key ki.
(b) Compute list Li := PRF(ki, j) for j ∈ [m], and sort it to obtain Li.
(c) Output ki to parties Pi−1, Pi+1, and Li to Pi.

Access: On receiving (Access, ⟨adrM⟩) from all parties, and adrreadi , ki−1, ki+1 from each party Pi,
1. Reconstruct adrM.
2. d := M[adrM].val, where M is stored at id.
3. For i ∈ {1, 2, 3}, update adrreadi := adrreadi ∪ PRF(ki, adrM). Output (⟨d⟩ , adrreadi ) to party Pi.

Fig. 18: Functionality for parties P1, P2, P3 to read from a secret address in memory M obliviously.

Sr-M

Parameters: A PRF : K × [m]→ Y.
Init: On receiving corrupt party’s inputs ⟨M⟩, call Fr-M on command Init and input to receive output
(k1, k3), L2. Simulate transcript messages as follows:
1. Receive calls to FDOPRF with input (KeyGen, P1) from P2. If P2 acts as K in call to FDOPRF, then return

nothing. Else, return (k1, k3), L2 to P2.
2. Receive call to F3-OT with input Init. If P2 acts as the sender S, accept vector r3.
3. From P2, accept ⟨M′⟩ on behalf of P3. Sample M∗ ← Fm

p . Send (L2[j],M
∗[j]) to P2, for j ∈ [m].

Access: On receiving corrupt party’s inputs ⟨adrM⟩ , adrread2 , k1, k3, call Fr-M on Access and inputs to
receive outputs (⟨d⟩ , adrread). Simulate transcript as follows:
1. Receive call to FDOPRF with (Eval, unmasked, ⟨adrM⟩) from P2. If P2 acts as R2, reply adr′ := adrread \

adrread2 . Else, return nothing.
2. Receive calls to F3-OT with input Online. If P2 acts as the receiver R, set y := M∗[L−1

2 (adr′)]. Return
⟨x⟩ := ⟨d⟩ − y, where ⟨d⟩ is received form Fr-M. Else, return nothing.

Fig. 19: Simulator for Theorem 5 for reading from memory.

A.7 Security Proof of Πw-M

Theorem 6. Protocol Πw-M UC-securely instantiates functionality Fw-M in the presence of one passive
corruption in the (FZero)-hybrid model.

Functionality Fw-M

Update: On receiving (⟨M⟩ , ⟨stash⟩ , Li, adr
read
i , ki−1, ki+1) from each Pi,

1. Reconstruct M and stash.
2. For j ∈ [

√
n], set adr := stash[j].adr and val := stash[j].val. Update M[adr].val := val.

3. Output ⟨M⟩ to all parties.

Fig. 20: Functionality for parties P1, P2, P3 for updating memory M with stash entries.

Proof. Correctness and security are argued as follows.
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Sw-M

Parameter: An MPDPF scheme Φ = (Gen,Eval) for input domain [m] and output domain Fp. Let S be
the simulator for this scheme.
Update: On receiving corrupt party’s inputs ⟨M⟩ , ⟨stash⟩ , adrread2 , L2, k1, k3, call Fw-M on inputs to receive
output ⟨M⟩. Simulate transcript as follows.
1. Accept MPDPF keys mk2,1,mk2,3 on behalf of P1 and P3.
2. For i ∈ {1, 3} do:

(a) Run simulator mk2,i ← S(1λ,m,Fp).
(b) Send key mk2,i to P2 on behalf of Pi.

3. Receive call to FZero(n),
(a) For j ∈ [n], evaluate: x[j] := Φ.Eval(mk1,2, L

−1
1 (PRF(k1, j)))

and y[j] := Φ.Eval(mk3,2, L
−1
3 (PRF(k3, j))).

(b) For j ∈ [n], set α2[j] := ⟨M⟩2 [j]− ⟨M⟩2 [j]− x[j]− y[j].
(c) Return α2.

Fig. 21: Simulator for Theorem 6 in the case of corrupted P2.

Correctness. It follows if there are no collisions in the PRF evaluations of the addresses, and from the
correctness of the MPDPF scheme. Consider updating the memory with respect to just one party’s
share (say Pi’s share). Because of correctness of MPDPF primitive, the update for an actual address
adr is stored at (a unique) index L−1

i (PRF(ki, adr)) in the vector {Φ.Eval(mki−1,i, L
−1
i (PRF(ki, 0)))

+Φ.Eval(mki+1,i, L
−1
i (PRF(ki, 0))), . . . , Φ.Eval(mki−1,i, L

−1
i (PRF(ki,m−1)))+ Φ.Eval(mki+1,i, L

−1
i (PRF(ki,m−

1)))}. Also because of the correctness of MPDPF, this value is 0 in case this address was never accessed,
and the corresponding update otherwise. Finally, because of uniqueness of L−1 all updates are recorded in
this vector. Update to position j in M with one share, is then M[j].val+{Φ.Eval(mki−1,i, L

−1
i (PRF(ki, j)))+

Φ.Eval(mki+1,i, L
−1
i (PRF(ki, j))), which is exactly what happens in the protocol. Repeating the above

thrice updates the memory fully.

Security. Now we argue security of the protocol. We assume that P2 is corrupt. The simulator Sw-M
appears in Fig. 21, and we argue indistinguishability with the following hybrids.

– Hyb0 : Same as the real world execution except that the output of the call to the functionality FZero

is answered by setting α2 as ⟨M′⟩2− ⟨M⟩2−x− y, where ⟨M′⟩2 is the value received from Fw-M. This
is indistinguishable since in the real protocol as well, ⟨M′⟩2 := α2 + ⟨M⟩2 + x+ y.

– Hyb2 : Same as before except that the MPDPF simulator is called to generate keys mk1,0,mk1,2
instead of generating them keys honestly. This is indistinguishable because of the security of the
MPDPF scheme.

Observe that the view generated in the last hybrid is exactly as the one generated by Sw-M.

B Distributed PRF Evaluation

Theorem 7. Protocol ΠDOPRF UC-securely instantiates functionality FDOPRF for mode = unmasked in
the presence of one passive corruption.

Proof. Correctness and security for the simulator are argued as follows.

Correctness. Let x1, x2, x3 be K,R1,R2’s additive share of x, resp. From the protocol,

c1 = b · (s ◦ s)− b · (d)− c3

w = (s ◦ s) · (k + x1 + x2 +m)

Substituting these in z1,

z1 = (x3 −m− b) · (s ◦ s) + b · (s ◦ s)
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Protocol ΠDOPRF

Parameters : Output length ℓ, a Prg that expands a seed of length l to l′ field elements.
KeyGen: R1 samples k1 ← Fℓ

p, and sends it to K. R2 samples k2 ←, and sends it to K. K sets k := k1+k2.
Init: Parties sample pairwise PRG seeds: K samples kk,1 ← {0, 1}l, R1 samples k1,2 ← {0, 1}l, and R2

samples k2,k ← {0, 1}l, and sends it to R1, R2, and K, respectively.
Eval: Each party has input ⟨x⟩, and pairwise PRG seeds. K in addition has key k.
1. K and R1 compute s← PRG(kk,1), where s ∈ Fℓ

p.
2. R1,R2 compute m, b,d, c3 ← PRG(k1,2), where m, b ∈ Fp,d, c3 ∈ Fℓ

p.
3. R1 computes a := s ◦ s− d, and c1 := b · a− c3. Send c1 to K.
4. R1 computes and sends y2 := ⟨x⟩+m to K.
5. R2 computes y3 := ⟨x⟩ −m, e := y3 − b. R2 sends e to K.
6. K computes w := (s ◦ s) · (k + ⟨x⟩+ y2), and z1 := e · (s ◦ s) + c1 +w. K sends z1 to R2.
7. R2 computes z3 := d · y3 + c3 − d · e, and z := z1 + z3.
8. R2 computes, for j ∈ [1, ℓ], o[j] := 1

2

((z[j]
p

)
+ 1

)
mod p.

9. R2 outputs o.

Fig. 22: Protocol for secure evaluation of PRF.

− b · (d)− c3 + (s ◦ s) · (k + x1 + x2 +m)

= (x+ k) · (s ◦ s)− b · (d)− c3

Substituting value for z3,

z3 = d · y3 + c3 − d · e
= d · (x3 −m) + c3 − d · (x3 −m− b)

= c3 + d · b
z = z1 + z3 = (x+ k) · (s ◦ s)

The correctness of the final output is guaranteed by the multiplicative property of Legendre symbol, and
since Lp(s ◦ s) = 1ℓ, i.e., Lp((x + k) · (s ◦ s)) = Lp(x + k)Lp(s ◦ s). Note that, if for any j, there is
some sj ∈ s such that sj = 0, then the correctness guarantees fail. However, this happens with negligible
probability since s is chosen uniformly at random. Similarly, if for some j, (kj + x) = 0 then as well the
correctness cannot be guaranteed. However, if there is an environment that can select inputs ⟨x⟩ such that
this happens for a randomly chosen kj , then it can be used as an argument against hardness of computing
shifted Legendre symbol. This reduction is similar as shown in [GRR+16] for their construction based on
Legendre PRF.

Security. First, assume that K is corrupt. The simulator generates view in KGen as: on receiving output
k from the functionality, sample k1,k2 ← Fℓ

p such that k1 + k2 = k. Send k1,k2 to K on behalf of R1,R2.
The simulator, in the Init phase, samples common PRG seeds with K: it receives kk,1 on behalf of R1, and
sends k2,k to K on behalf of R2. Then it receives inputs of the corrupt party ⟨x⟩, and key k, and calls
FDOPRF on mode = unmasked. It receives no output in return. It simulates the transcript as follows. It
samples c1 ← Fℓ

p and y2 ← Fp, and sends them to K on behalf of R2. It samples e← Fℓ
p and sends it to K

on behalf of R2. Receive w, z1 from K on behalf of R2. This concludes the simulation. The transcript is
indistinguishable from the real world experiment because each of the vectors and elements sent to K are
masked with a secret random value, and thus look uniformly random to it: c1 is masked with c3, y2 is
masked with m, e is masked with b.

Now, assume that R1 is corrupt. The simulator, in the Init phase, samples common PRG seeds with R2:
it receives k1,2 on behalf of R2, and sends kK,1 to R1 on behalf of K. Then it receives the corrupt party’s
input ⟨x⟩ and calls FDOPRF with mode = unmasked. It receives no output in return. Since R1 receives no
message in the protocol, the simulator simulates the transcript by simply accepting all messages sent by
R1 on behalf of K and R2.

Finally, assume that R2 is corrupt. The simulator , in the Init phase, samples common PRG seeds with
R2: it receives k2,K on behalf of K, and sends k1,2 to R2 on behalf of R1. Then it receives the corrupt
party’s input ⟨x⟩ and calls FDOPRF with mode = unmasked to receive output o. It simulates the transcript
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as follows. Receive e from R2 on behalf of K. Locally compute z3 just as R2 would, i.e., since s,d,m, c3, b
are sampled by R2 using shared PRG seeds, the simulator can also obtain these values and compute y3, e,
and z3 just as R2 would. It then sets z1 := o− z3 and sends z1 to R2. This concludes the simulation.
Since the only message that R2 receives in the protocol execution is z1, which is set in the particular way
such that o = z1 + z3, it is distributed identically to the real world view.

Theorem 8. Protocol Πm
DOPRF UC-securely instantiates functionality FDOPRF for mode = masked in the

presence of one passive corruption.

Proof. Correctness and security for the simulator are argued as follows.

Correctness. Substituting all the values for c3,w, we get

z3 = (k + x1 −m− a) · (t) + (a) ◦ (t− e)− c1 + t · (x1 + x3 +m)

= (k + x) · t− a ◦ e− c1

Similarly, for z1, and z we get,

z = z1 + z3 = (k + x) · t

Consider a single bit rj ∈ r, and corresponding tj ∈ t, kj ∈ k, sj ∈ s, oj ∈ o. If rj = 0, then tj = s2j , and

Lp(tj) = 1. Thus, oj = Lp(kj + x), and oj ⊕ rj = Lp(kj + x) (since rj = 0). Else if rj = 1, tj = s2j · α.
If (kj + x) is a quadratic residue modulo p then tj · (kj + x) is not. Which means Lp(tj · (kj + x)) = 0.
Thus, oj ⊕ rj = Lp(kj + x) = 1. On the other hand, if (kj + x) is not a quadratic residue modulo p then
tj · (kj + x) is. Thus, Lp(tj · (kj + x)) = 1, and oj ⊕ rj = Lp(kj + x) = 0. This logic can be repeated for
each output bit. Here too, the correctness argument fails in the cases discussed in the unmasked version
of the protocol, and once again, it can be argued that it either happens with negligible probability or the
assumption that shifted Legendre symbol is hard to compute does not hold.

Security. The simulator generates view in KGen as: on receiving output k from the functionality, sample
k2,k3 ← Fℓ

p such that k2 + k3 = k. Send k2,k3 to K on behalf of R2,R2. In the Init phase, the simulator
sets up common PRG seeds just as in the unmasked version. We skip that detail here.

Suppose that K is corrupt. The simulator receives corrupt party’s input ⟨x⟩ ,k and calls FDOPRF

with mode = masked and obtains output y ⊕ r. Receive d on behalf of R2. Given common PRG seeds
and inputs of the corrupt party, the simulator can locally compute z1 just as K would have. It then
sets z3 := y ⊕ r − z1 and sends it to K. This is indistinguishable form the real world because of the
programming of z3 and because of correctness of the scheme.

Next, suppose that R1 is corrupt. The simulator receives input ⟨x⟩ and calls FDOPRF to receive r as
output. The simulator receives r1 from R1 on the behalf of R2, sets r2 := r − r1 and sends it to R1. This
concludes simulation and is clearly indistinguishable form the real world.

Finally, suppose R2 is corrupt. The simulator receives input ⟨x⟩ and calls FDOPRF to receive r as
output, and, just as in the previous case, fixes r1 := r − r2. It then samples y2 ← Fp, c3,d← Fℓ

P to R2.
This is indistinguishable as all three values are masked by m, c1 and a, resp.

C Other Functionalities

Functionality FSelect

Select: On receiving (⟨flag⟩ , ⟨x⟩ , ⟨y⟩) from all the parties,
1. Reconstruct x, y, and flag.
2. d = flag · x+ (1− flag) · y.
3. Output ⟨d⟩ to all parties.

Fig. 23: Functionality for parties P1, P2, P3 for obliviously selecting between one out of two values.
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Functionality FMPC

Parameter: Function description f .
Run: On receiving ⟨x⟩ from all parties, do:
1. Reconstruct x.
2. Compute y := f(x).
3. Output ⟨y⟩ to all parties.

Fig. 24: Functionality for parties P1, P2, P3 for securely computing a function f on additive shares.

Functionality FZero

Zero(n): On receiving command and input n from all parties, generate random additive shares of α = 0n,
and output ⟨α⟩ to all parties.

Fig. 25: Functionality for parties P1, P2, P3 to obtain random additive shares of 0.

D Further Benchmark Results
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Table 4: Amortized runtimes for our protocol and for Duoram [VHG22] in ms per access for memory
sizes n = 28 to n = 226 in the LAN and WAN setting with 16 threads for the preprocessing and 1 thread
for the online phase. For each memory size and phase of the protocol, we marked the better runtimes
with bold font.

log2 n
Time per Access in ms

LAN WAN

Online Prep. Total Online Prep. Total

Ramen (This Work)

8 3.96 0.56 4.52 328.95 10.22 339.17
9 4.60 0.60 5.20 336.38 7.45 343.83

10 3.02 0.74 3.77 332.19 5.39 337.58
11 2.16 0.47 2.63 331.28 4.46 335.74
12 2.62 0.94 3.56 334.08 4.32 338.39
13 2.11 0.90 3.01 336.85 3.49 340.35
14 3.77 1.24 5.01 335.88 3.56 339.45
15 3.84 1.42 5.26 336.92 3.76 340.68
16 7.85 2.00 9.85 338.22 4.12 342.34
17 10.23 2.87 13.10 340.09 4.62 344.71
18 16.10 4.04 20.14 342.52 5.66 348.18
19 15.86 5.58 21.44 346.01 7.16 353.18
20 19.40 8.45 27.84 350.47 9.48 359.95
21 26.06 12.86 38.92 356.94 13.69 370.62
22 32.98 18.59 51.56 365.98 20.05 386.03
23 37.23 26.71 63.94 379.75 28.63 408.37
24 42.90 38.52 81.43 400.84 42.58 443.42
25 52.09 55.28 107.37 432.86 62.28 495.14
26 64.90 79.57 144.47 473.70 90.74 564.44

Three-Party Duoram [VHG22]

8 0.28 1.60 1.89 62.76 138.54 201.30
9 0.16 2.12 2.29 62.74 147.40 210.13

10 0.16 2.09 2.24 62.82 159.45 222.27
11 0.19 2.16 2.35 62.84 171.60 234.44
12 0.21 1.75 1.95 62.85 183.56 246.41
13 0.23 2.56 2.79 62.88 196.18 259.06
14 0.39 3.88 4.27 62.94 209.51 272.44
15 1.07 2.61 3.68 63.09 224.40 287.48
16 1.41 4.03 5.44 63.96 238.19 302.15
17 3.64 7.64 11.28 65.41 253.89 319.30
18 6.89 13.82 20.71 68.44 270.19 338.63
19 11.67 31.24 42.92 74.36 304.04 378.40
20 17.01 56.84 73.85 85.92 350.37 436.29
21 31.44 114.70 146.14 111.58 464.25 575.83
22 63.67 223.57 287.24 156.06 543.40 699.46
23 124.57 444.66 569.22 216.42 784.49 1 000.91
24 238.60 888.97 1 127.57 303.40 1 235.31 1 538.71
25 464.33 1 774.95 2 239.29 521.04 2 129.11 2 650.15
26 922.67 3 550.03 4 472.70 978.71 3 907.21 4 885.92
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Table 5: Amortized runtimes in ms per access for 16 threads and memory size n = 222 in different network
settings having either a bandwidth limit or a certain enforced latency.

(a) With varying bandwidth.

Bandwidth in Mbit/s Online Prep. Total

10 58.23 34.77 93.00
50 24.50 21.02 45.52

100 20.21 19.75 39.96
1000 17.24 18.68 35.92
9420 17.06 18.57 35.63

(b) With varying latency.

Latency in ms Online Prep. Total

1.0 16.91 18.57 35.48
5.0 74.64 18.59 93.23

10.0 127.92 18.64 146.56
20.0 235.76 18.79 254.55
30.0 341.18 18.92 360.10

Table 6: Amortized runtimes in ms per access as well as speedup and efficiency of the parallelization for
1 to 16 threads in the LAN setting with memory size n = 222.

Threads
Online Prep. Total

Time Speedup Efficiency Time Speedup Efficiency Time Speedup Efficiency

1 27.92 1.00 1.00 157.13 1.00 1.00 185.06 1.00 1.00
2 25.34 1.10 0.55 79.38 1.98 0.99 104.71 1.77 0.88
3 24.65 1.13 0.38 66.17 2.37 0.79 90.82 2.04 0.68
4 21.36 1.31 0.33 41.35 3.80 0.95 62.70 2.95 0.74
5 20.79 1.34 0.27 38.74 4.06 0.81 59.53 3.11 0.62
6 19.87 1.41 0.23 32.38 4.85 0.81 52.25 3.54 0.59
7 18.93 1.47 0.21 27.92 5.63 0.80 46.85 3.95 0.56
8 15.44 1.81 0.23 23.96 6.56 0.82 39.40 4.70 0.59
9 15.35 1.82 0.20 23.43 6.71 0.75 38.79 4.77 0.53

10 17.81 1.57 0.16 23.31 6.74 0.67 41.12 4.50 0.45
11 17.78 1.57 0.14 22.65 6.94 0.63 40.43 4.58 0.42
12 17.48 1.60 0.13 21.05 7.46 0.62 38.53 4.80 0.40
13 17.36 1.61 0.12 20.84 7.54 0.58 38.20 4.84 0.37
14 16.99 1.64 0.12 19.63 8.00 0.57 36.62 5.05 0.36
15 16.87 1.66 0.11 19.11 8.22 0.55 35.98 5.14 0.34
16 16.91 1.65 0.10 18.57 8.46 0.53 35.48 5.22 0.33
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