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Abstract
This is the second update of this report. In this update, we partially solve Open problem 2 and

completely solve Open problem 3 from the previous version. By doing this we address one modification
of the Panny’s attack done by Nils Langius.

In the first update we introduced conditions for choosing the parameters that render the attacks
(both classical and quantum algorithms attacks) proposed by Lorenz Panny in March 2023 on the
first variant, inapplicable. For the classical attack, we prove that the discrete logarithms that he was
basing his attack upon do not exist for the new parameters. For the quantum algorithm attacks where he
proposed computing a basis of a three-dimensional lattice, as proposed in Kitaev’s generalization of Shor’s
quantum algorithm, we prove that for our transformation, the rank of that lattice (the Abelian Stabiliser
in Kitaev’s terminology) has a rank one, which makes the Kitaev’s quantum algorithm inapplicable.

In this paper we construct algebraic structures where rising to the non-associative power indices is no
longer tied with the Discrete Logarithm Problem but with a variant of a problem that has been analysed
in the last two decades and does not have a quantum polynomial algorithm that solves it. The problem
is called Exponential Congruences Problem (ECP). By this, we disprove the claims presented in the
ePrint report 2021/583 titled "Entropoids: Groups in Disguise" by Lorenz Panny that "all instantiations
of the entropoid framework should be breakable in polynomial time on a quantum computer."

Additionally, we construct an Arithmetic for power indices and propose generic recipe guidelines
that we call "Entropic-Lift" for transforming some of the existing classical cryptographic schemes that
depend on the hardness of Discrete Logarithm Problem to post-quantum cryptographic schemes that will
base their security on the hardness of the Entropoid variant of the Exponential Congruences Problem
(EECP).

As concrete examples, we show how to transform the classical Diffie-Hellman key exchange, DSA and
Schnorr signature schemes.

We also post several open problems (two of them now are solved) in relation to EECP and the
"Entropic-Lift" transformation.

1 Mathematical preliminaries
We give here some basic definitions and prove some properties about the algebraic structures that we will
use. For more definitions reader can consult any standard textbook on abstract algebra topics.

In further text, using multiplicative notation, we will assume that (G, ·) is a finite commutative group
with operation · and a unit element 1G. Further, we will assume G has |G| = q2 elements. We will also
assume that q can be represented as a product of ν = 4 (in one case it will be ν = 3) distinct prime factors
q = q1 . . . qν , (sorted in ascending order).

In general case the number of prime factors ν can be arbitrary, but for our design we will assume that
ν = 4 (or ν = 3) and the biggest factor qν is as big as possible1 (for example qν > 2260). Thus, we will
work with a group G of order |G| = (q1 q2 q3 q4)2 or |G| = (q1 q2 q3)2. We will use a short notation [ν] to
annotate the set {1, . . . ν}.

The size of qν in this version of the document is mostly influenced by the fact that smaller instances of
the initial variant of Entropic-Lift instance called SEQUOA [7] were successfully broken by Lorenz Panny
and published in a form of a write-up for a CTF competition in [20]. In the meantime (May, June 2023) Nils
Langius has updated Panny’s attack [19], and launced an attack exloiting the fact that in the first variant
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1As the analysis of the Entropic-Lift will deepen in the forthcoming period, this design choice of the size of qν might turn
out to be too conservative, or too optimistic and will determine the parameters adjustments.
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we used small "vanishing" prime factors for q1 and q2. We did not know how the choice of small factors
q1 and q2 affects the security of the scheme, nor how to find generators with bigger q1 and q2, and that
was stated as Open Problem 2 and Open problem 3. Now after solving open problems 2 and 3 we have an
efficient algorithm for finding appropriate group generators for any choice of the prime factors.

Next assumption about the group G is that it is not cyclic, but is generated with two independent
elements g1, g2 ∈ G, i.e. ∀x ∈ G, ∃i, j ∈ Zq, s.t. x = gi1 · g

j
2 .

With other words we take that G is a direct product of two maximal cyclic subgroups G1 = ⟨g1⟩ and
G2 = ⟨g2⟩ i.e.

G ∼= G1 ×G2,

where the order of G1 and G2 is q i.e.
| ⟨g1⟩ | = | ⟨g2⟩ | = q.

From the properties of abelian groups, we have the following

Proposition 1. For every x ∈ G, there are unique i, j ∈ Zq, s.t. x = gi1 · g
j
2 .

Definition 1. An automorphism α on the group (G, ·) is a bijective homomorphism of G to itself i.e.

• α : G 7→ G is a bijection;

• α is homomorphism with the respect of the operation · i.e.

∀x, y ∈ G,α(x · y) = α(x) · α(y).

Definition 2. An involutive automorphism T on the group (G, ·) is an automorphism that is also an
involution i.e.

T : G 7→ G is bijection,

∀x, y ∈ G, T (x · y) = T (x) · T (y), and

∀x ∈ G, T (T (x)) = T (2)(x) = x.

From T being automorphism, the following property holds:

Corollary 1. For all x ∈ G,
(T (x))j = T (xj).

Proposition 2. If h ∈ G is an element such that h and T (h) are independent elements of order q, then for
every x ∈ G there is a unique pair (i, j) ∈ Zq ×Zq such that

x = hi · T (hj). (1)

Proof. Let us denote by H1 = ⟨h⟩ the subgroup generated by h and H2 = ⟨T (h)⟩ the subgroup generated
by T (h). Having h and T (h) being independent means that H1 ∩H2 = {1G}, |H1| = |H2| = q and that
G ∼= H1 ×H2. Then the uniqueness of the pair of indices (i, j) follows from the Proposition 1.

Definition 3. For every x, y ∈ G, let us define a non-commutative binary operation

x⊞ y ≡ x · T (y).

We call the algebraic structure Eq2 = (G,⊞, ·) a finite Entropoid with q2 elements.

We collect several properties of the operation ⊞ in the following Proposition.

Proposition 3.
• For x, y ∈ G, in general, x⊞ y ̸= y⊞ x;

• The multiplicative unit 1G acts as a a right zero in (G,⊞) i.e. for all x ∈ G, x⊞ 1G = x;

• From the left, 1G acts as the involution T on x i.e. for all x ∈ G, 1G ⊞ x = T (x);
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Algorithm: Finding a generator of an Entropoid
Input: An Entropoid Eq2 , and the prime factorization q = q1 . . . qν
Output: Generator g.

1. Choose a random element g ∈ G

2. Compute the sets
B = {b | b = g(q/qi), for i ∈ [ν]} and
BT = {b | b = T (g)(q/qi), for i ∈ [ν]}.

3. If 1G ∈ B or 1G ∈ BT then go to Step 1.

4. If B ∩BT ̸= ∅ then go to Step 1.

5. Return g.

Table 1: Finding a generator of and Entropoid.

• To define a consistent operation ⊟ that will act as "the opposite" operation to ⊞ in (G,⊞) we need
to define it as: For all x, y ∈ G, x⊟ y

def
= x · T (y−1) = x⊞ (y−1). In that case, if x⊟ y = z, then

x = z⊞ y.

Definition 4. We call an element g ∈ G a generator of the Entropoid Eq2 if g and T (g) are independent
elements of order q.

We adapt Algorithm 4.80 from [14] that finds a generator of a cyclic group for finding a generator of an
Entropoid.

Lemma 1. If g is an output of Algorithm defined in Table 1, then it is a generator for the Entropoid Eq2 .

Proof. Since G ∼= G1 ×G2 where the order of G1 and G2 is q the computation of the set B in Step 2, and
the check in Step 3 if 1G belongs to B ensure that g is a generator of a maximal cyclic subgroup of order q
i.e. | ⟨g⟩ | = q. Similar reasoning applies for the set BT , that ensures T (g) is a generator of a maximal cyclic
subgroup of order q i.e. | ⟨T (g)⟩ | = q.

The final check in Step 4 checks if g and T (g) are independent elements which from Definition 4 is the
necessary condition for g to be a generator for the Entropoid Eq2 .

If we know the prime factorization of the order of a group, another useful algorithm is for finding the
multiplicative order of an arbitrary element h of that group. Let us denote that algorithm with order(h).
In our particular case Eq2 = (G,⊞, ·), the order of G is q2, where q = q1 . . . qν , and since G is not
a cyclic, but generated by two independent elements, the order of every element h ∈ G is not bigger
than q, i.e. order(h) ≤ q. Let us assume that all prime factors of q are distinct, and let us denote by
Divisors(q) = {d1 ≡ 1, d2, d3, . . . , d2ν} the set of all divisors of q. Additionally, let us take that the set
Divisors(q) is sorted in ascending order.

Algorithm: order(h)
Input: A group G with q2 elements, the prime factorization q = q1 . . . qν , the sorted set Divisors(q) and
an element h ∈ G
Output: Integer d ∈ Divisors(q), where hd = 1G, and hi ̸= 1G,∀i, such that 0 < i < d.

1. For each d ∈ Divisors:
If hd = 1G:

Return d

Table 2: Finding the multiplicative order of h ∈ G. An implicit assumption is that the For loop checks
the elements from Divisors set in ascending order.

Definition 5. Let the two-dimensional exponents X = (x1,x2) be called power indices. For every g ∈ G
we define exponentiation with the power index X = (x1,x2) as:

gX = g(x1,x2) = gx1 · T (gx2).
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Lemma 2 (Arithmetic of power indices). Let X = (x1,x2) and Y = (y1, y2) be two power indices, and let
us define the following operations (where mod q acts component-wise):

addition: X + Y ≡ (x1,x2) + (y1, y2) = ((x1 + y1), (x2 + y2)) mod q

subtraction: X − Y ≡ (x1,x2)− (y1, y2) = ((x1 − y1), (x2 − y2)) mod q

multiplication: XY ≡ (x1,x2)× (y1, y2) = ((x1y1 + x2y2), (x1y2 + x2y1)) mod q

division: X
Y ≡

(x1,x2)
(y1,y2)

=
(
x1y1−x2y2
y2

1−y
2
2

, x2y1−x1y2
y2

1−y
2
2

)
mod q, assuming the following condition GCD(y2

1 −
y2

2 , q) = 1

Then, for every h ∈ G the following relations hold:

hX · hY = h(X+Y ),

hX · (hY )−1 = h(X−Y ),

(hX )Y = h(XY ).

For the division operation the following computational problem is solved: Given, h, X and Y find a power
index Z such that

hZ = h1 and hX = hY1 .

Proof. While it may seem that the arithmetic expressions are complicated, their consistency can be checked
with simple manipulations with algebraic expressions and taking in consideration Definition 2 and Corollary
1.

Lemma 3. Let the power index S = (s1, s2) is such that GCD(s2
1− s2

2, q) = 1. Then the mapping σ : G 7→ G
defined as σ(x) = xS is an automorphism of G.

Proof. The mapping σ is homomorphism since for all x, y ∈ G we have σ(x · y) = (x · y)S = (x · y)s1 · T ((x ·
y)s2) = xs1 · ys1 · T (xs2 · ys2) = xs1 · ys1 · T (xs2) · T (ys2) = xs1 · T (xs2) · ys1 · T (ys2) = σ(x) · σ(y).

We prove that σ is injection as follows. Let σ(x1) = σ(x2) i.e. x
(s1,s2)
1 = x

(s1,s2)
2 . Let us set h =

x1
x2

= x1 · x−1
2 and X = (1, 0). From the condition that GCD(s2

1 − s2
2, q) = 1 it follows that there is a

power index Z = X
S =

(
s1

s2
1−s

2
2
, −s2
s2

1−s
2
2

)
, such that h1 = hZ and hX = hS1 . Computing fist h1 we have:

h1 =
(
x1
x2

)Z
=
(
x1
x2

) s1
s2

1−s2
2 · T

((
x1
x2

) −s2
s2

1−s2
2

)
. Then replacing h and h1 in hX = hS1 we have:

(
x1
x2

)(1,0)
=

(x1
x2

) s1
s2

1−s2
2 · T

(x1
x2

) −s2
s2

1−s2
2

(s1,s2)

which is equivalent to (
x1
x2

)(1,0)
=

((
x1
x2

)
· T
((

x1
x2

)))(1,0)

which further reduces to
x1
x2

=
x1
x2
· T
(
x1
x2

)
and further to

1G = T

(
x1
x2

)
.

Since T is involutive automorphism, T (1G) = 1G, and by applying T on both sides of the last equality we
have

1G =
x1
x2

,

i.e. x1 = x2.
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In its most general form, Exponential Congruences Problem (ECP) is seeking for a solution of the
equation

agx1
1 + bgx2

2 = c (2)

in an algebraic structure defined over two operations (G,+, ∗), with q elements i.e., |G| = q, where
a, b, g1, g2, c ∈ G, g1 and g2 have respectively orders s and t i.e., | ⟨g1⟩ | = s and | ⟨g2⟩ | = t, and where
s, t < q but st ≥ q [26, 29].

Definition 6. Let g be the generator of the Entropoid Eq2 , and let the DLP be a computationally hard
problem over the cyclic subgroup (G1, ·) generated by g i.e. G1 = ⟨g⟩. With other words for a given y ∈ G1,
where y = gx we assume that there is no (classical) polynomial time algorithm that finds x ∈ Zq. Entropic-
Lift of the DLP is the transformation that replaces the exponents x ∈ Zq with two-dimensional power indices
X = (x1,x2) where x1,x2 ∈ Zq. More concretely, for a given y ∈ G, where y = gX find the power index
X = (x1,x2).

Lemma 4. The elevated DLP is a simplified Exponential Congruence Problem in the Entropoid Eq2 , where
a = b = 1 and g1 = g2 = g i.e. has the following form:

y = gx1 ⊞ gx2 (3)

Proof. The elevated DLP is the following problem: for a given y ∈ G it seeks to find x1,x2 ∈ Zq s.t. y =

g(x1,x2). Directly from the definition of exponentiation with power indices in Eq2 we have that y = gx1 ⊞ gx2 .
The most important part is the fact that g and T (g) are independent, which prevents neither g nor T (g)
to be represented as powers of each other. That prevents a collapse of the two-dimensionality of the power
indices to a one-dimensional case, which would be the Discrete Logarithm Problem. The obtained variant
of the Exponential Congruence expression is indeed a simplified variant of the general ECP where a = b = 1
and g1 = g2 = g.

Definition 7 (Entropic-Lift of a cryptographic scheme). Let g be the generator of the Entropoid Eq2 , and
let S(g,A) is a cryptographic scheme with a set of algorithms A = {A1,A2, . . . ,Aν} that bases its security
on DLP. Let DLP be a computationally hard problem over the cyclic subgroup (G1, ·) generated by g. Let
the set of algorithms A use in total µ exponent variables denoted with x(i) ∈ Zq, where i ∈ {1, . . . µ}.
Entropic-Lift of the scheme S is the transformation that replaces all used exponent variables x(i) ∈ Zq

in algorithms A, with two-dimensional power indices X(i) = (x
(i)
1 ,x(i)2 ), i ∈ {1, . . . µ}. The replacements

include all expressions: exponential expressions and arithmetic expressions with ordinary indices from Zq.

2 The rationale for using involutive automorphisms T : G 7→ G

The first attempt to use entropic non-commutative and non-associative quasigroups [5] was cryptanalyzed
by Panny in [18].

The design idea was to define a general class of groupoids (G, ∗) (sets G with a binary operation ∗ that
is both non-commutative and non-associative) that are "Entropic" i.e. for every four elements x, y, z and w,
a pseudo-associativity law is satisfied:

(x ∗ y) ∗ (z ∗w) = (x ∗ z) ∗ (y ∗w).

In order to compute the powers xa where a ∈ Z+, of elements x ∈ G, due to the non-associativity, the
exact bracketing shape as is also required to be known, and Etherington called those general exponentiation
indices power indices. They can be denoted as pairs A = (a, as). Further, for those entropic groupoids
Etherington showed that they satisfy the "Palintropic" property i.e., xAB = (xA)B = (xB)A = xBA.
Those relations are exactly the Diffie-Hellman key exchange protocol relations used with groups. The work
[5] proposed a succinct notation of the exponentially large non-associative power indices. However, the
instances proposed there and later in [6] were successfully cryptanalyzed by Panny in [18].

Panny intelligently used a theorem proved by Murdoch [16], Toyoda [28] and Bruck [3]:

Theorem 1 (Theorem 1 in [18]). For every entropic quasigroup (G, ∗), there exist an abelian group (G, ·),
commutative automorphisms σ, τ of (G, ·), and an element c ∈ G, such that

x ∗ y = xσ · yτ · c .
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Two correct conclusions in the Panny’s cryptanalysis were given:

1. "the composition law in any entropic quasigroup comes from a multiplication in an abelian
group that is twisted by automorphisms and translated by a constant."

2. "any non-associative power of an element x ∈ G can in fact be written as a product combi-
nation in (G, ·) of elements of the form xψ and cγ where ψ, γ ∈ ⟨σ, τ⟩."

The second conclusion was supported by the following Lemma:

Lemma 5. For a binary operation x ∗ y = xσ · yτ · c as in Theorem 1 and any non-associative exponent A,
there exists γ ∈ Z[σ, τ ] such that for all x ∈ G

xA = x1+(σ+τ−1)γ · cγ . (4)

Moreover, if (4) holds for some x = g ∈ G, then (4) holds for all x ∈ ⟨g⟩∗ .

Luckily (for the concept of Entropoid cryptography), Panny made one implicit assumption that the
commutative automorphisms σ, τ of (G, ·) are defined exclusively with the group operation of (G, ·) and one
element g ∈ G. That assumption led to the following two incomplete conclusions

1. "The classification of finite abelian groups implies that there exists a small subset of such
elements that suffices to span the entire subquasigroup ⟨g⟩∗ generated by g ∈ G, and again,
recovery of the exponents corresponding to Alice’s private-key operation consists of a mul-
tidimensional discrete-logarithm computation (which is polynomial-time quantumly)."

2. "Therefore, all instantiations of the entropoid framework where a representation of ∗ using ·
and σ, τ , c can be found efficiently (cf. Section 2.2) should be breakable in polynomial time
on a quantum computer."

With other words, assuming that automorphisms σ, τ of (G, ·) are exclusively defined with the group
operation · and the generator g (basically taking that σ and τ are some fixed integer exponents), indeed the
statements in Lemma 1 suggest that the secret power index A of Alice can be represented in a form that
depends on another unknown fixed integer γ, and thus the nature of the problem remains the same: solving
the Discrete Logarithm Problem.

However, Theorem 1 does not specify the nature of the automorphisms σ, τ of (G, ·). For that matter,
the group of all automorphisms Aut(G) can be very reach, and we can definitely find automorphisms that
bijectively and homomorphically (regarding the group operation ·) are mapping the elements of G to G, but
they can not be represented as fixed number of applications exclusively of the internal operation · on g. We
used one such involutive automorphism in Definition 2.

In that case, the relation (4) still holds, but the recovery of the exponents corresponding to Alice’s private-
key operation becomes a search for a power index γ = (γ1, γ2). That problem as we showed in previous
section reduces to the problem of computing exponential congruences for which there is no polynomial-time
quantum algorithm.

Moreover, now we do not need to hide the abelian group (G, ·), nor the automorphisms σ and τ . Con-
cretely, as in Lemma 3 we select two power indices S = (s1, s2) and U = (u1,u2) where GCD(s2

1− s2
2, q) = 1

and GCD(u2
1 − u2

2, q) = 1 to define two commuting automorphisms σ, τ : G 7→ G. Then we can take some
c ∈ G, and we can again define a non-commutative and non-associative operation

x ∗ y = xσ · yτ · c .

Then we can apply the techniques from [5] to compute non-associative powers.
As a conclusion of this section, we want to give the following
Remark: It turns out that now, with the transformation Entropic-Lift from Definition 7 we actually

do not need the entropic quasigroups and the associated techniques for computing non-associative powers,
since we can directly use the arithmetic for the power indices from Lemma 2. Additionally we can try to
apply the Entropic-Lift recipe for many existing classical cryptographic schemes.

3 A suitable instance for a concrete Entropoid structure
For our concrete instantiation of the group (G, ·) with |G| = q2 elements we will use a subgroup of the
multiplicative group (G, ·) ≡ C(n, 2) of all non-singular n× n circulant matrices over F2. Circulant n× n
matrices over any field form a ring with the operations matrix addition and matrix multiplication. That
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ring is isomorphic with the quotient ring of polynomials R = F2[x]/(xn − 1). For further reading about
circulant matrices I suggest for example [11, 13] and the references there.

Let us introduce the following notations. Let n be a prime number such that the polynomial xn− 1 with
coefficients defined over F2 has the following factorization to irreducible polynomials:

xn − 1 = f0(x)f1(x)f2(x),

where f0(x) = x− 1, deg(f1) = deg(f2) =
n−1

2 = k and where polynomials f1(x) and f2(x) are mutually
reversible to each other i.e.{

f1(x) = a0 + a1x + a2x2 + . . . + ak−2x
k−2 + ak−1x

k−1 + akx
k,

f2(x) = ak + ak−1x + ak−2x
2 + . . . + a2xk−2 + a1xk−1 + a0xk,

or
f1(x) = xk f2(1/x).

The following result is known about the number of elements of the group C(n, 2).

Proposition 4 (see Corollary 13.2.34, p.505 of [15]). Assume 2 and n are co-prime. Then

|C(n, 2)| =
r−1∏
j=0

(2mj − 1), (5)

where m0, . . . ,mr−1 are the degrees of the irreducible factors of xn − 1 over F2.

In our particular case the expression (5) reduces to the following one:

|C(n, 2)| = (2k − 1)2. (6)

Let q0 = 2k − 1 = p1 p2 . . . pµ be the prime factorization of q0 = 2k − 1, where p1, . . . , pµ are primes
sorted in ascending order. We will be interested in instances where the number of prime factors µ is
relatively small, but the biggest factor pµ is a big prime number (for example pµ > 2260). Then we will
define q1 = pµ−3, q2 = pµ−2, q3 = pµ−1 and q4 = pµ, and we will be interested to work in a subgroup of R
with an order q = q1 q2 q3 q4. Note: In one case we will use only three prime factors i.e. q = q1 q2 q3 where
q3 = pµ. The reasons for making this exception are explained in the Section 6: "Open research questions
about Entropic-Lift".

In Table 3 we give 7 instances for different values of n. Note that the green highlighted values 1303, 1511
and 2423 are proposed to be instances that offer at least the security of NIST’s Level 1, 3 and 5. In the
software package for the NIST submission there are also four more instances as challenges. The instance
with n = 103 defines q as a small number, and it would be an easy challenge, while for challenges with
n = 271, 367, 463, I hope that the cryptology community will give a significant feedback and analysis.

n
q1 or

log2(q1)
q2 or

log2(q2)
q3 or

log2(q3)
q4 or

log2(q4)
Note

103 103 2143 11119 131071 Small n with smooth q

271 23311 262657 348031 45.5061 An n for a challenge
367 367 55633 261 − 1 94.9093 An n for a challenge
463 463 599479 59.0120 111.9404 An n for a challenge

1303 72.4086 78.3243 89.9449 260.5034 An n for NIST Level 1
1511 33.8112 48.0261 82.5920 506.6470 An n for NIST Level 3
2423 58.5731 77.0392 961.1956 An n for NIST Level 5

Table 3: We omit the exact numerical values for all factors of q in order to present a compact table.
For example for n = 271 we have that q = q1 q2 q3 q4 where q1 = 23311, q2 = 262657,
q3 = 348031 and q4 = 49971617830801 ≈ 245.5061. The table shows some concrete instances for
prime numbers n. Integer values for qi are the exact values, while floating point numbers are
power of 2 approximations.

For the involutive automorphism T : C 7→ C it turns out that the operation of matrix transposition of
elements in C is a suitable operation. It is automorphism, and it is involution. When elements a ∈ C are
being presented as polynomials

a = a0 + a1x+ a2x
2 + . . . an−2x

n−2 + an−1x
n−1,
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the transposition of a is denoted as aT and

aT = a0 + an−1x+ an−2x + . . .+ a2x
n−2 + a1x

n−1.

Working with elements in the quotient ring R = F2[x]/(xn − 1) let us make the following casting
conversion convention between the set of integers Z2n = {0, 1, . . . , 2n − 1} and the elements or R: For
every i ∈ Z2n let i.bits() = [a0, a1, a2, . . . , an−2, an−1] be the little-endian binary representation of of
i. That means i = a0 + a1 × 2 + a2 × 22 + . . .+ an−2 × 2n−2 + an−1 × 2n−1. In that case, we say that
a = R(i.bits()) iff

a = a0 + a1x+ a2x
2 + . . . an−2x

n−2 + an−1x
n−1.

For the following definitions all the credits go to Lorenz Panny and his attack described in [20]. With the
irreducible polynomials f1(x) and f2(x) let us define two projection maps π1 and π2 that are homomorphisms
from R to F2k as follows:

π1 : R → F2/f1(x), where field F1 = F2/f1(x) ∼= F2k

π2 : R → F2/f2(x), where field F2 = F2/f2(x) ∼= F2k

For an element g ∈ R, q = q1 q2 q3 q4 and the set Divisors(q) let us define four sets:

B1(g) = {b | b = π1(g)
d, for d ∈ Divisors(q)},

B1T (T (g)) = {b | b = π1(T (g))
d, for d ∈ Divisors(q)},

B2(g) = {b | b = π2(g)
d, for d ∈ Divisors(q)},

B2T (T (g)) = {b | b = π2(T (g))
d, for d ∈ Divisors(q)}.

Now, we are interested in finding generators g ∈ R that satisfy the following conditions (7):

∃ g−1 ∈ R (7a)
order(g) = q (7b)

order(T (g)) = q (7c)
g and T (g) are mutually independent (7d)

order(π1(g)) < q and order(π1(g)) | q (7e)
order(π1(T (g))) < q and order(π1(T (g))) | q (7f)

order(π1(g)) ̸= order(π1(T (g))) (7g)
B1(g) ∩B1T (T (g)) = {1}, 1 ∈ F2k (7h)

order(π2(g)) < q and order(π2(g)) | q (7i)
order(π2(T (g))) < q and order(π2(T (g))) | q (7j)

order(π2(g)) ̸= order(π2(T (g))) (7k)
B2(g) ∩B2T (T (g)) = {1}, 1 ∈ F2k (7l)

if order(π1(T (g))) < order(π1(g)) then order(π2(g)) < order(π2(T (g))),
or (7m)

if order(π1(g)) < order(π1(T (g))) then order(π2(T (g))) < order(π2(g)),

The algorithm given in Table 4 is a simple (and very inneficient) search algorithm for finding a generator
that satisfies the conditions (7).

Lemma 6. If g ∈ R is an element returned by the algorithm defined in Table 4 then g is a generator of an
Entropoid Eq2 .

Proof. The relation g ← hq0/q from the Repeat-Until loop of the algorithm ensures that g has an order
not bigger than q. Then satisfying the conditions (7b) – (7d) ensures that g is a generator of an Entropoid
Eq2 .
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Algorithm: Finding a generator g ∈ R that satisfies the conditions (7)
Input: Starting value istart, q0, Divisors(q0), q and Divisors(q)
Output: Element g ∈ R that satisfies the conditions (7)

1. i← istart − 1
2. Repeat

i← i+ 1
h← R(i.bits())
g ← hq0/q

Until g satisfies conditions (7)
3. Return g, i

Table 4: A simple search algorithm for finding a generator satisfying the conditions (7). The sequential
search starts from some submitted value istart.

Remark: It might happen that there is a smaller subset of the conditions (7) that will give equivalent
algebraic structures, but finding that smaller set of conditions is left as a future work.

Two important questions raise naturally:

1. Do g ∈ R as output of the Algorithm in Table 4 exist?

2. What is the expected running time of the Algorithm in Table 4?

We do not know the answer of the second question, but we observe that for smaller values of q1 and q2
the algorithm finds the value i faster. For some small values of q1 and q2 there is a Table 5 in the previous
version of this document.

Before we describe an efficient algorithm for finding generators that satisfy the conditions (7), let us
introduce the following definition.

Definition 8. Let g be a generator of (G, ·), order(g) = q = q1 q2 q3 q4, where |G| = q2, and where G is the
subgroup of C(n, 2) which has q2

0 elements, where q0 = 2k − 1 = p1 p2 . . . pµ, as defined in this document.
For a factor qi of q we say it is a vanishing prime factor with respect to the projection πj , j ∈ {1, 2} of g
if qi ̸ | order(πj(g)) i.e. it vanishes as a prime factor of order(πj(g)). A vanishing set of prime factors
with the respect of the generator g or shortly a vanishing set V = {qi1 , qi2} is any two-element subset of
{q1, q2, q3, q4} where both qi1 and qi2 are vanishing prime factors either for π1 or for π2.

The algorithm SEQUOA-generator given in Table 5 is an efficient algorithm for finding a generator
satisfying the conditions (7) for a given vanishing set V . We can now choose any vanishing set, but for our
instances we choose V = {q1, q4}, i.e. consisting of the smallest and the biggest factor of q. The sequential
search starts from some submitted value istart.

4 Analysis of known attacks
4.1 Attacks on the Exponential Congruences Problem (ECP)
In this section we adapt the known algorithms for solving ECP given in [26, 29].

Let us first highlight the differences with the ECP addressed in the open literature and the ECP in this
work:

1. In [26, 29], the equation (2) is defined over finite field Fq, where q = pk, p a prime number and the
number of elements in the multiplicative group F∗q is q− 1 = pk − 1. In our case the equation is over a
ringoid structure called Entropoid, Eq2 = (G,⊞, ·) where (G, ·) is a group with q2 = q2

1 . . . q
2
ν elements,

q1, . . . , qν prime numbers, and the operation ⊞ is defined with an automorphism T : G 7→ G that can
not be expressed as an exponentiation in G.

2. In [26, 29], g1 and g2 are in general different (but the authors also discuss the situations where g1 = g2)
and have respectively orders s and t i.e., | ⟨g1⟩ | = s and | ⟨g2⟩ | = t, and where s, t < q but st ≥ q,
while in our case g1 = g2 = g and | ⟨g⟩ | = q.

3. Depending on chosen g1 and g2, in [26, 29] the equation can have zero, one or many solutions (x1,x2),
while in our case for g generator of the Entropoid, there exists one unique solution (x1,x2).

Lemma 7 (adaptation of Theorem 1 in [29]). Let g be a generator of Eq2 . Further, let y ∈ G be given such
that it is a solution of the equation y = gx1 ⊞ gx2 , for some (x1,x2) ∈ Zq ×Zq. One can find the solution
(x1,x2) in deterministic time O(q3/2(log q)).
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Algorithm: SEQUOA-generator. Finding a generator g ∈ R that satisfies the conditions (7)
Input: Starting value istart, q0, Divisors(q0), q, Divisors(q), vanishing set of factors V = {V0,V1}
Output: Element g ∈ R that satisfies the conditions (7)

1. i← istart − 1
2. Repeat

i← i+ 1
h← R(i.bits())

# Make sure that t in R has order not bigger than q
t← hq0/q

# (going from R to F1) Project t with π1 into F1
tπ1 ← π1(t)

# Make sure to produce an element in F1
# with an order that does not have V1 as its factor
t1 ← (tπ1 )

V1

# Come back to the ring R and update the value of t
# by subtracting tπ1 and adding t1
t← t−R(tπ1 ) +R(t1)

# Find out what is the multiplicative order of the latest value of t
ordt ← order(t)

# Make sure that t has order not bigger than q
t← tordt/q

# We have the first generator g1 ∈ R that has
# V1 as its vanishing factor
g1 ← t

# (going from R to F2) Project t with π2 into F2
tπ2 ← π2(t)

# Make sure to produce an element in F2
# with an order that does not have V0 as its factor
t2 ← (tπ1 )

V0

# Come back to the ring R and update the value of t
# by subtracting tπ2 and adding t2
t← t−R(tπ2 ) +R(t2)

# Find out what is the multiplicative order of the latest value of t
ordt ← order(t)

# Make sure that t has order not bigger than q
t← tordt/q

# We have the second generator g2 ∈ R that has
# V0 as its vanishing factor
g2 ← t

# Construct a candidate generator g by multiplying powers of g1 and g2
g ← (g1)V0 · (g2)V1

Until g satisfies conditions (7)
3. Return g, i

Table 5: SEQUOA-generator is an efficient algorithm for finding a generator satisfying the conditions (7)
for a given vanishing set V .

Proof. For every x2 ∈ {0, 1, . . . , q− 1} we evaluate y⊟ gx2 and then we try to compute its discrete logarithm
to base g, that is an integer x1 with gx1 = y⊟ gx2 . A deterministic algorithm for this problem is the Shanks’
Baby Step-Giant Step method [23] which runs in time O(q1/2(log q)) and space O(q1/2). In our case the
Baby Step-Giant Step method will give us either a solution, or will return that there is no solution for that
particular x2. Combining the run time to go trough all cases for x2 and the time to solve each instance of the
discrete logarithm problem gives us the total worst case complexity of finding the solution of the equation
(3) which is O(q q1/2(log q)) = O(q3/2(log q)).
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n i order(π1(g)) order(π1(T (g))) order(π2(g)) order(π2(T (g)))

103 1013 q1 q2 q3 q2 q3 q4 q2 q3 q4 q1 q2 q3
271 1001 q1 q2 q3 q2 q3 q4 q2 q3 q4 q1 q2 q3
367 1006 q1 q2 q3 q2 q3 q4 q2 q3 q4 q1 q2 q3
463 1002 q1 q2 q3 q2 q3 q4 q2 q3 q4 q1 q2 q3

1303 1002 q1 q2 q3 q2 q3 q4 q2 q3 q4 q1 q2 q3
1511 1002 q1 q2 q3 q2 q3 q4 q2 q3 q4 q1 q2 q3
2423 1002 q1 q2 q2 q3 q2 q3 q1 q2

Table 6: The column i presents the values for which the generator g was computed with the algorithm
SEQUOA-generator. The serarch for i was started from i = 1001.

Corollary 2. There is a randomized algorithm for finding a solution of the equation y = gx1 ⊞ gx2 that
takes O(q5/2

ν ) group operations, where q = q1 . . . qν and the largest prime factor is qν > q1/2.

Proof. We replace the complexity O(q1/2(log q)) of the Baby Step-Giant Step method in Lemma 7, with a
randomized algorithm for computing the discrete logarithm that takes Ω(

√
qν) group operations proposed

in Shoup’s work [25]. That makes the total running time for solving (2) to be O(q q1/2
ν ) < O(q2

ν q
1/2
ν ) =

O(q5/2
ν ).

Lemma 8 (adaptation of Theorem 3 in [29]). Let g be a generator of Eq2 , and let y ∈ G be given such
that it is a solution of the equation y = gx1 ⊞ gx2 , for some (x1,x2) ∈ Zq ×Zq. One can find the solution
(x1,x2) on a quantum computer in time O(q1/2(log log q)).

Proof. For every x2 ∈ {0, 1, . . . , q− 1} we evaluate y⊟ gx2 and then we use Shor’s algorithm [24] to compute
its discrete logarithm to base g, that is an integer x1 with gx1 = y⊟ gx2 or to report that no such x1 exists.
The expected number of attempts before Shor’s algorithm gives us the the answer is O(log log q). Let denote
by S(x2) the subroutine that implements Shor’s quantum circuit.

We now use Grover’s search algorithm [8] over the subroutine S(x2) and the search space x2 ∈
{0, 1, . . . , q− 1}. The whole running time is then O(q1/2(log log q)).

4.2 Panny’s attacks on the first instance of the Entropic-Lift - SEQUOA
4.2.1 Classical attack

Let us first address the classical attack on the initial version of the Entropic-Lift with the instance named
SEQUOA [7] (March 2023 version of this report). Lorenz Panny described his attack in [20]. A brief
summary is as follows:

Let g be a generator of an Entropoid structure Eq2 = (G,⊞, ·), where the order of G is q2 and q =

2
n−1

2 − 1.
Let the private key is (a1, a2), and let y = g(a1,a2) = ga1T (ga2) be the public key. If we apply the

projections π1 and π2 on both sides of the equation y = ga1T (ga2) we get the following system:

π1(y) = π1(g)
a1π1(T (g))

a2 (8a)
π2(y) = π2(g)

a1π2(T (g))
a2 (8b)

We want to express all terms of the projection π1 in (8a) as exponents of π1(g), and all terms of the
projection π2 in (8b) as exponents of π2(g). More concretely by finding four discrete logarithms in finite
fields isomorphic to F2k

π1(y) = π1(g)
u1 (9a)

π1(T (g)) = π1(g)
c1 (9b)

π2(y) = π2(g)
u2 (9c)

π2(T (g)) = π2(g)
c2 (9d)

we obtain the following system

π1(g)
u1 = π1(g)

a1+a2c1

π2(g)
u2 = π2(g)

a1+a2c2
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or the following linear system

u1 = a1 + a2c1 mod q (11a)
u2 = a1 + a2c2 mod q (11b)

We now analyse the described attack in the case when g is a generator computed by the Algorithm in
Table 4.

Lemma 9. If g is a generator computed by the Algorithm in Table 4, then the equations (9b) and (9d) do
not have solutions.

Proof. Let us suppose that there exist solutions c1 and c2 of (9b) and (9d).
Since π1(T (g)) = π1(g)c1 , it follows that order(π1(T (g))) ≤ order(π1(g)). Due to the condition (7g) it

must be order(π1(T (g))) < order(π1(g)).
Similarly, from π2(T (g)) = π2(g)c2 we conclude that order(π2(T (g))) < order(π2(g)).
Thus we have  order(π1(T (g))) < order(π1(g))

and
order(π2(T (g))) < order(π2(g)).

But this violates the condition (7m).

4.2.2 Quantum attack

Panny’s quantum attack on SEQUOA in [20] is in a form of a brief idea how that attack would be designed.
His main argument is the fact that involution T : R→ R is automorphism i.e. T (hb) = T (h)b for any h

and b. From there, Panny infers that having the public key y = ga1T (g)a2 , a basis of a period latice Λ of
the map

(Z3,+) −→ R, where (u, v,w) 7→ guT (g)vyw,

can be computed in quantum polynomial time using the approaches given by Boneh and Lipton in [2] or by
Kitaev in [9] (these approaches generalize Shor algorithm for finding discrete logarithms). Then, finding a
vector in Λ of the form (a1, a2,−1) will recover the secret key (a1, a2).

We give arguments why neither Boneh-Lipton nor Kitaev methodologies are applicable on Entropic-Lift
schemes with parameters chosen by the principles described in this paper.

4.2.2.1 Boneh-Lipton approach First we briefly describe the approach of Boneh and Lipton given in
[2]. They introduced a function h : Z→ S that had a period q i.e. for any x ∈ Z the relation h(x+ q) = h(x)
holds. Thus, the function h could be considered as a function h : Zq → S. Then, they defined the property
of "hidden linear layer over q" for a function f : Zk → S. That is, there are integers α2, . . . ,αk and a
function h with a period q, such that

f(x1, . . . ,xk) = h(x1 + α2x2 + . . .+ αkxk)

for all integers x1, . . . ,xk. Under the restrictions that k is linear on n = log q and the maximal number of
preimages is m for any element z ∈ S i.e. m = maxz∈S |h−1(z) mod q| and is upper bounded by p, i.e.,
m < p, where p is the smallest prime divisor of q, they proved that there is a quantum algorithm that in
random quantum polynomial time in n can recover the values α2, . . . ,αk (all of them computed mod q).
They called value m the order of h. Additionally they constructed another random quantum polynomial
time algorithm for recovering the period of the periodic function h : Z→ S.

Then, they applied the developed quantum polynomial time algorithms to compute the discrete logarithm
over an arbitrary group G as follows. The role of function h is given to a homomorphism h : Z→ G. Given
a value β ∈ G where β = h(α) the goal is to compute the smallest positive integer x such that β = h(x).
Taking that a concrete element h(1) ∈ G has some order d, leads to the conclusion that homomorphism h
has a period d. Finding the period d can be performed by one of the developed quantum algorithms.

Next, they defined a function f : Z2 → G as f(x, y) = h(x+ αy). Apparently, the function f has a
hidden linear form over d of order 1. Additionally, having access to function h, the computation of f is
efficiently doable

f(x, y) = h(x+ αy) = h(x)h(αy) = h(x)h(α)y = h(x)βy .

Then, invoking the quantum polynomial time algorithm for finding a value α mod d solves the discrete
logarithm problem.

12



Let us see how Boneh-Lipton approach applies to SEQUOA. The first difference is that now the homomor-
phism function h is h : Z2 → G (more concretely for a given g ∈ G hg : (a1, a2) 7→ ga1T (g)a2). The function
h has a two-dimensional period (q, q) i.e. for any x = (x1,x2) ∈ Z2 the relation h((x1,x2) + (q, q)) =
h((x1,x2)) holds. Thus, the function h could be considered as a function h : Zq ×Zq → G. An analogous
definition for a "hidden layer over (q, q)" for a function f : (Zq ×Zq)k → G is that there are pairs α2, . . . ,αk
where αi = (αi,1,αi,2) and a function h with a period (q, q), such that

f((x1,1,x1,2), . . . , (xk,1,xk,2)) = h((x1,1,x1,2) + α2(x2,1,x2,2) + . . .+ αk(xk,1,xk,2))

for all pairs (x1,1,x1,2), . . . , (xk,1,xk,2). Note that multiplications of pairs modulo q is defined in Lemma 2.
The main difficulty now for applying Boneh-Lipton algorithm for finding αi is that they are two-

dimensional vectors with two independent degrees of freedom. The proof technique of their main theorem
first shows how to find one-dimensional α, which then is extended sequentially for cases with more alphas.
In the case of SEQUOA the simplest case with one α1 is that α1 = (α1,1,α1,2). Note that we can not
simply replace the problem of finding k − 1 two-dimensional vectors αi = (αi,1,αi,2) for h : Zq ×Zq → G
with a problem of finding 2(k− 1) one-dimensional values α2, . . . ,α2(k−1).

4.2.2.2 Kitaev approach We now briefly describe the approach of Kitaev given in [9]. Kitaev intro-
duced the Abelian Stabilizer Problem. It is defined for Abelian groups G acting on a finite set M ⊆ {0, 1}n.
Additionally, since any finitely generated Abelian group is a homomorphic image of Zk the group can be
taken to be G = Zk. The pair (k,n) is called the size of the problem, and for any element x ∈M an action
(a function) F : Zk ×M →M is defined such that

F (0,x) = x, F (g+ h,x) = F (g,F (h,x)), for any g,h ∈ Zk, x ∈M .

A stabilizer of an element a ∈M with respect to the function F is the set StF (a) = {g ∈ Zk : F (g, a) =
a}. The stabilizer StF (a) is a subgroup in Zk and is isomorphic to Zk. It has a basis (g1, . . . , gk). Abelian
Stabilizer Problem is to find a basis of StF (a).

How discrete logarithm is reduced to the ASP? The role of the setM is given to the ring of integers modulo
q, and G is the group of invertible elements of M . Then, if g1, . . . , gk ∈ G, the function F : Zk ×M → M
is defined as the action

F ≡ Fg1,...,gk
: (m1, . . . ,mk,x) 7→ gm1

1 · · · gmk
k x,

where mi ∈ Z, x ∈M .
More concretely, for q being a prime number, ζ ∈ G ∼= Zq−1 being a primitive element, and g ∈ G an

arbitrary element, we can find the discrete logarithm m such that ζm = g in the following way. We search
for a basis of the stabilizer of 1 with the respect to Fζ,g. The stabilizer is the set P = StFζ,g (1) = {(m, r) ∈
Z2 : ζmgr1 = 1}. Given a basis for the stabilizer P ⊆ Z2, it is easy to find an element (m,−1) ∈ P . Then,
m is the solution to the discrete logarithm problem ζm = g.

Kitaev’s quantum algorithm that finds the basis of the stabilizer StF (a) = {g ∈ Zk : F (g, a) = a}
for any instance (k,n, a,F ) is an algorithm that produces random elements of StF (a) (actually random
elements of homomorphically equivalent sets to StF (a)). He showed that collecting l = n+ 4 such random
elements with high probability ensures finding a basis of StF (a).

Let us see how Kitaev approach applies to SEQUOA. The role of M we give to R = F2[x]/(xn − 1),
and the action F : Zk ×R→ R is defined with respect to g, T (g) and y as

F ≡ Fg,T (g),y : (m1,m2,m3, z) 7→ ga1T (g)a2ya3z

where mi ∈ Z, g,T (g), y, z ∈M .
In this case the stabilizer of 1 is the set P = StFg,T (g),y (1) = {(m1,m2,m3) ∈ Z3 : gm1T (g)m2ym31 = 1}.

Once we find a basis for P , we can compute the vector (m1,m2,−1) ∈ P , and thus we have computed the
discrete logarithm (a1, a2) = (m1,m2) of y = ga1T (g)a2 . But the following Theorem proves that collecting
random elements of P will not help finding the vector (m1,m2,−1) ∈ P .

Theorem 2. The rank of the set P = StFg,T (g),y (1) = {(m1,m2,m3) ∈ Z3 : gm1T (g)m2ym31 = 1} is 1.

Proof. Let us start with the fact that GCD(a1, q) = 1 and GCD(a2, q) = 1. The consequence of that for
the element y = ga1T (g)a2 is: order(y) = q (elements can not have orders bigger than q). Let us now
analyse the set Γ = {ym3 : m3 ∈ {0, . . . q − 1}}. For every element z = ym3 ∈ Γ due to Proposition
1 there exist unique pair (o1, o2) such that go1T (g)o2 = ym3 . Let us look at the set of those triplets
O = {(o1, o2,m3) : go1T (g)o2 = ym3}. Apparently, O ⊆ P , and O ∼= P mod q. Moreover, since m3
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takes all the values from the range {0, . . . q − 1}, it follows that the values o1 must also take all the values
from the range {0, . . . q− 1} (otherwise there would be a repetition for o1 which would violate the condition
GCD(a1, q) = 1), and the same applies for o2. Let us now look at the element b1 = (1,m′2,m′3) ∈ O.
Knowing b1 we can generate all elements in O (and thus all elements in P ) by simply multiplying it with
every α ∈ {0, . . . q − 1} i.e. O = {α× (1,m′2,m′3) : α ∈ {0, . . . q − 1}}. That proves that the rank of P is
one.

A direct consequence of Theorem 2 and adaptation of Lemma 8 is the following

Corollary 3. One can find the vector b1 = (1,m′2,m′3) ∈ O on a quantum computer in time
O(q1/2(log log q)).

Proof. For every m′3 ∈ {0, 1, . . . , q− 1} we evaluate g−1y−m
′
3 and then we use Shor’s algorithm to compute

its discrete logarithm to base g, that is an integer m′2 with gm
′
2 = g−1y−m

′
3 or to report that no such m′2

exists. The expected number of attempts before Shor’s algorithm gives us the the answer is O(log log q).
Let denote by S(x2) the subroutine that implements Shor’s quantum circuit.

We then use Grover’s search algorithm [8] over the subroutine S(x2) and the search space m′2 ∈
{0, 1, . . . , q− 1}. The whole running time is then O(q1/2(log log q)).

We will demonstrate Theorem 2 for small n = 71. Beside the example given below, there is an accom-
panied Jupyter notebook SEQUOA_n_71_demo_Kitaev_rank_1.ipynb in the NIST submission package (in
the folder /Additional_Implementations/SageMath/). To run the script you should have SageMath [27]
installed as well as Jupyter [10] to run the SageMath script in a browser.

Example 1. For n = 71 we have that{
f1(x) = x35 + x33 + x28 + x27 + x26 + x25 + x24 + x17 + x13 + x8 + x7 + x5 + x4 + x + 1
f2(x) = x35 + x34 + x31 + x30 + x28 + x27 + x22 + x18 + x11 + x10 + x9 + x8 + x7 + x2 + 1

Thus, we work with the multiplicative group C(71, 2) of the ring of non-singular 71× 71 circulant matrices
over F2, i.e. with the quotient ring of polynomials R = F2[x]/(x71 − 1). According to expression (6) the
number of elements in C(71, 2) is C(71, 2) = q2

0 , where q0 = 235 − 1. The prime factorization of q0 is:
q0 = 31× 71× 127× 122921.

For demonstration purpose, we will choose the three smallest factor to define the subgroup where we will
work. Namely we choose q = 31× 71× 127.

After running the Algorithm for finding an appropriate generator that will satisfy conditions (7) starting
from i = 1, the algorithm will return the value i = 632, for which g = R(i.bits())q0/q. More concretely,

g =x70 + x66 + x64 + x62 + x61 + x60 + x58 + x54 + x52 + x51+

+ x50 + x46 + x43 + x42 + x40 + x38 + x33 + x32 + x31 + x29+

+ x28 + x25 + x24 + x22 + x21 + x19 + x17 + x16 + x15 + x13+

+ x12 + x11 + x7 + x6 + x3

Let a = (a1, a2) = (51205, 232032) be a secret power index. In that case

y = ga =x70 + x68 + x67 + x65 + x64 + x61 + x58 + x56 + x55 + x54+

+ x52 + x51 + x49 + x41 + x40 + x39 + x36 + x28 + x26 + x24+

+ x23 + x22 + x21 + x20 + x19 + x17 + x13 + x11 + x6 + x4+

+ x3 + x2 + 1

We are interested in the stabilizer of 1 which is the set of triplets P = StFg,T (g),y (1) = {(m1,m2,m3) ∈
Z3 : gm1T (g)m2ym31 = 1}. Even for these small parameters, if we nest three for loops, we would need
around 254 tests, which is too costly for a small laptop.

But we can start by fixing m1 = 1 and by computing two lists{
all_y_powers = [y−m3 : for m3 ∈ Zq ]

all_g_gT _produtcs = [g ∗ T (g)m2 : for m2 ∈ Zq ].

Then we can find the intersection between these two lists. According to Theorem 2, the intersection should
have only one element, and we can determine the index of the intersection in the all_y_powers list.

Running that part of the script gives that the basic triplet is b1 = (1, 5731, 59219) = (1,m′2,m′3)
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We can then update the list all_g_gT_produtcs by multiplying all its elements by g and again find
all intersection elements between the lists all_y_powers and all_g_gT_produtcs. Again, the intersection
should have only one element and that element would be b2 = (2, 11462, 118438). We can check that
b2 = 2× b1 mod q. In a similar manner we will find b3 = (3, 17193, 177657) = 3× b1 mod q and so on.

Also, having b1 = (1, 5731, 59219) = (1,m′2,m′3) we can compute a1 = (q−m′3)−1 mod q = 51205 and
a2 = m′2 ∗ a1 mod q = 232032.

4.2.3 Panny-Langius attack

After publishing the second version of SEQUOA, Nils Langius sent me an email [12] with a description of
an updated Panny’s attack. We describe his attack briefly here (but with the terminology of vanishing sets
introduced in this version).

Let g be a generator of (G, ·), order(g) = q = q1 q2 q3 q4, where |G| = q2, and where G is the subgroup
of C(n, 2) which has q2

0 elements, where q0 = 2k − 1 = p1 p2 . . . pµ. For simplicity of notation let us take
that the vanishing set with respect of g is V = {q1, q2}. Let a = (a1, a2) be a secret power exponent, and
let y = g(a1,a2) is a public value.

The Panny-Langius attack for recovering a = (a1, a2) from the knowledge of g, y, order(g) = q and
V = {q1, q2} goes like this:

1. Produce a new generator gnew = gq1q2 and a new ynew = yq1q2

2. Now gnew has order order(gnew) = q3q4, and with big probability there is no vanishing set for gnew i.e.
order(gnew) = order(π1(gnew)) = order(π1(T (gnew))) (also a similar relation holds for π2). Thus,
the original Panny’s attack can be applied on gnew and ynew to find (c1, c2) in Zq3q4 . Solving the
discrete logarithms for Panny’s attack in this case will be in a subgroup of R with q3q4 elements.
Panny’s attack will recover (b1, b2) = (a1, a2) mod q3q4. The last relation can be written as follows:{

a1 = b1 + k1 q3q4, where k1 < q1q2
a2 = b2 + k2 q3q4, where k2 < q1q2

3. To recover (a1, a2) mod q we need to search trough a space of O(q1, q2) elements.

For the previous instance of SEQUOA we did not know how to find Entropoid generators with arbitrary
vanishing set. The simple search algorithm in Table 4 could find in a very slow manner only generators with
elements in the vanishing set V = {q1, q2} where the prime numbers q1 and q2 were very small.

On the other hand, now, with the algorithm SEQUOA-generator we can find generators with a vanishing
set V = {q1, q4} where q4 > 2260. This, addresses the Panny-Langius attack.

5 Examples of Entropic-Lift
Example 2. Entropic-Lift for classical Diffie-Hellman key exchange protocol is just a straightforward vari-
ables replacement. For the classical case, Alice and Bob agree on a finite cyclic group (G, ·) of order n and
a generating element g ∈ G. For the Entropic Diffie-Hellman, Alice and Bob agree on a finite Entropoid
Eq2 = (G,⊞, ·) with q2 elements and a generating element g ∈ G.
Example 3. Entropic-Lift for Schnorr signature scheme [22] is also a straightforward variables replacement.
In the classical case all users agree on a finite cyclic group (G, ·) of prime order q and a generating element g ∈
G, in which the Discrete Logarithm Problem is assumed to be hard. Also, all users agree on a cryptographic
hash function H : {0, 1}∗ 7→ Zq.

In the Entropic Schnorr case, all users agree on a finite Entropoid Eq2 = (G,⊞, ·) with q2 elements and
a generating element g ∈ G, in which the Exponential Congruences Problem is assumed to be hard. All
users also agree on a cryptographic hash function H : {0, 1}∗ 7→ Zq ×Zq.

In Table 9 we present a variant of Entropic Schnorr signature implemented in C++ and submitted for
inclusion in Supercop [1] for testing and measurement. Three different instances are submitted to Supercop
with prime number n = 1303, 1511, 2423. The design goal for this variant was to offer some of the desirable
features for signature schemes named as "BUFF - Beyond UnForgeability Features" [4].

Additional motivation was to offer a randomized signature scheme which in a case of complete deterio-
ration of the entropy pool for its randomness, the scheme will become a deterministic scheme. That part is
the step "Set k = (k1, k2) ← H(rand||PrivateKey||M), where rand $←− {0, 1}n is a sequence of at least n
randomly generated bits" in the signing part.

A more detailed description about the concrete implementation of SEQUOA is given in the NIST sub-
mission package.
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(a) Classical Diffie–Hellman key exchange

1. Alice picks a random natural number a where
1 < a < n, and sends the element ga of G to Bob.

2. Bob picks a random natural number b where
1 < b < n, and sends the element gb of G to Alice.

3. Alice computes the element
SharedKey =

(
gb
)a

= gba of G.

4. Bob computes the element
SharedKey = (ga)b = gab of G.

(b) Entropic Diffie–Hellman key exchange

1. Alice picks a random power index a = (a1, a2)
where GCD(a1, q) = 1 and GCD(a2, q) = 1, and
sends the element ga of G to Bob.

2. Bob picks a random power index b = (b1, b2)
where GCD(b1, q) = 1 and GCD(b2, q) = 1, and
sends the element gb of G to Alice.

3. Alice computes the element
SharedKey =

(
gb
)a

= gba of G.

4. Bob computes the element
SharedKey = (ga)b = gab of G.

Table 7: Classical and Entropic Diffie-Hellman key exchange protocol. The Entropic variant is just a
straightforward variables replacement

(a) Classical Schnorr signature scheme

KeyGen
PrivateKey ≡ x $←− Z∗q , PublicKey ≡ y = gx

Sign a message M
Choose random k

$←− Z∗q
r = gk

e = H(r||M )
s = k− xe
Signature = (s, e)

Verify
rv = gsye;
ev = H(rv||M )
Return True if ev = e else Return False

(b) Entropic Schnorr signature scheme

KeyGen
PrivateKey ≡ x = (x1,x2)

$←− Zq ×Zq, where
GCD(x1, q) = 1 and GCD(x2, q) = 1
PublicKey ≡ y = gx

Sign a message M
Choose random k = (k1, k2)

$←− Zq ×Zq, where
GCD(k1, q) = 1 and GCD(k2, q) = 1
r = gk

e = H(r||M )
s = k− xe
Signature = (s, e)

Verify
rv = gsye;
ev = H(rv||M )
Return True if ev = e else Return False

Table 8: Classical and Entropic Schnorr signature scheme. The Entropic variant is just a straightforward
variables replacement.

Example 4. Entropic-Lift for DSA scheme is not so straightforward. The definition of the scheme involves
variables that in one part play a role in one group, and later they are interpreted as members of another
group. That would cause incompatible arithmetic operations between power indices and group elements in
the Entropoid structure.

If we face a situation of incompatible operation in the Entropoid case, as suggested in the Entropic-Lift
recipe, we can try to replace the involved group element variable with a cryptographic hash of that variable
that maps it to a power index, thus enabling a proper arithmetic operation between power indices. We
should also re-evaluate the lifted scheme to check if that altered expression still makes sense and is secure.

We describe here the classical DSA, without much details of the bit sizes of some of the variables since
they are not crucially important for the purpose of this example of Entropic-Lift transformation. For more
details we redirect the user to see the detailed definition of DSA [21].

In the classical DSA case all users agree on an N -bit prime q and L-bit prime p such that p− 1 is multiple
of q. A generator g is chosen to be in a form of g = h(p−1)/q mod p. Also, all users agree on a cryptographic
hash function H : {0, 1}∗ 7→ Zq.
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KeyGen
PrivateKey ≡ x = (x1,x2)

$←− Zq ×Zq, where
GCD(x1, q) = 1 and GCD(x2, q) = 1
PublicKey ≡ y = gx

Sign a message M
Set k = (k1, k2) ← H(rand||PrivateKey||M ),
where GCD(k1, q) = 1 and GCD(k2, q) = 1 and
where rand $←− {0, 1}n is a sequence of at least n
randomly generated bits.
r = gk

e = H(r||PublicKey||M )
s = k− xe
Signature = (s, e)

Verify
rv = gsye;
ev = H(rv||PublicKey||M)
Return True if ev = e else Return False

Table 9: SEQUOA variant of Entropic Schnorr signature scheme. This variant is BUFF friendly.

In the Entropic DSA case, all users agree on a finite Entropoid Eq2 = (G,⊞, ·) with q2 elements and
a generating element g ∈ G, in which the Entropoid Exponential Congruences Problem is assumed to be
hard. All users also agree on a cryptographic hash function H : {0, 1}∗ 7→ Zq ×Zq.

Notice that in the Entropic variant the arithmetic expression for s does not have the term x · r, but
x ·H(r). That is because in this case x ∈ Zq ×Zq, while r ∈ G, so the multiplication x · r is not well
defined. On the other hand, H(r) ∈ Zq ×Zq, so the expression x ·H(r) is a valid arithmetic operation.

(a) Classical DSA scheme

KeyGen
PrivateKey ≡ x $←− Z∗q ,
PublicKey ≡ y = gx mod p

Sign a message M
Choose random k

$←− Z∗q
r =

(
gk mod p

)
mod q

s =
(
k−1 (H(M ) + x · r)

)
mod q

Signature = (r, s)

Verify
w = s−1 mod q;
u1 = H(M ) ·w mod q; u2 = r ·w mod q
v = (gu1yu2 mod p) mod q;
Return True if v = r else Return False

(b) Entropic DSA scheme

KeyGen
PrivateKey ≡ x = (x1,x2)

$←− Zq ×Zq, where
GCD(x1, q) = 1 and GCD(x2, q) = 1
PublicKey ≡ y = gx

Sign a message M
Choose random k

$←− Zq × Zq, where
GCD(k1, q) = 1 and GCD(k2, q) = 1
r = gk

s = k−1 (H(M ) + x ·H(r))
Signature = (r, s)

Verify
v1 = rs

v2 = gH(M) · yH(r)

Return True if v1 = v2 else Return False

Table 10: Classical and Entropic DSA scheme.
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6 Open research questions about Entropic-Lift
The biggest and most important question is
Open Problem 1. Is the Entropoid variant of the Exponential Congruences Problem (EECP) as hard as
the the original ECP?

The arguments presented in this document support the conjecture that the answer is affirmative. But
more analysis is needed.

All instances discussed in this document (see Table 3) work with groups of order q = q1 q2 q3 q4 except
for the case for n = 2423, where we work with a group of order q = q1 q2 q3.
Open Problem 2 (partially solved). Does the used number of prime factors of q affects the security of the
scheme? Can we use three prime factors (two small, and one big) without significant loss of security?

The answer to the first question is: Yes. If the vanishing set V = {qi1 , qi2} consist of two small prime
factors, then the Panny-Langius attack breaks the system with complexity O(qi1qi2) after computing several
discrete logarithms in a subgroup of R with q3q4 elements.

An affirmative answer to the second question could lead to reduction of the size of the signatures.

Remark: The following discussion about the next open problem remains here just for a reference and
a context.

A related question can be posted about the size of q1 and q2. In Table 6 (the Table in the previous eprint
submission) we showed the outputs for i by which we can compute the appropriate generators g. However,
those cases are obtained when we used relatively small prime factors of q. On the other hand, if q1 and q2
are some of the bigger prime factors of q, then the simple sequential search takes too much time to find the
values i.
Open Problem 3 (solved with the algorithm SEQUOA-generator). Is there an efficient algorithm for finding
a generator g ∈ R that satisfies the conditions (7), for big prime factors of q?

Open Problem 4. From the perspective of provable security, and specifically from the perspective of security
of post-quantum cryptographic schemes, precisely formalize and analyze the potentials and limits of the
Entropic-Lift transformation.

7 Conclusions
We offered a construction of algebraic structures, where rising to the non-associative power indices is no
longer tied with the Discrete Logarithm Problem, but with a variant of a problem that in the last two
decades has been analyzed and does not have a quantum polynomial algorithm that solves it. The problem
is called Exponential Congruences Problem.

We also developed Arithmetic for the power indices. As a result, we proposed a generic recipe guidelines
that we named "Entropic-Lift" for transforming some of the existing classical cryptographic schemes that
depend on the hardness of Discrete Logarithm Problem to post-quantum cryptographic schemes that will
base their security on the hardness of the Entropoid Exponential Congruences Problem (EECP).

We demonstrated the Entropic-Lift on three concrete examples: transforming the classical Diffie-Hellman
key exchange, Schnorr and DSA signature schemes.

We also posted several open problems in relation to Entropic-Lift transformation.
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