
A Holistic Security Analysis of Monero Transactions

Cas Cremers1 , Julian Loss1 , and Benedikt Wagner1,2

1CISPA Helmholtz Center for Information Security
2Saarland University

{cremers,loss,benedikt.wagner}@cispa.de

March 4, 2023, v1.0

Abstract

Monero is a popular cryptocurrency with strong privacy guarantees for users’ transactions.
At the heart of Monero’s privacy claims lies a complex transaction system called RingCT, which
combines several building blocks such as linkable ring signatures, homomorphic commitments,
and range proofs, in a unique fashion. In this work, we provide the first rigorous security analysis
for RingCT (as given in Zero to Monero, v2.0.0, 2020) in its entirety. This is in contrast to prior
works that provided security arguments for only parts of RingCT.

To this end, we provide the first holistic security model for Monero’s RingCT. In our model,
we then prove the security of RingCT. Our framework is modular in that it allows to view
RingCT as a combination of various different sub-protocols. This has the benefit that these
components can be easily updated in future versions of RingCT with only minor modifications
to our analysis. At a technical level, we introduce several new techniques that we believe to be
of independent interest. First, we need to make several subtle modifications to the syntax and
security properties of existing building blocks (e.g., linkable ring signatures), which result from
the unusual way in which they are combined within RingCT. Then, we show how these building
blocks can be combined in order to argue security of the top level transaction scheme. As a
technical highlight of our proof, we show that our security goals can be mapped to a suitable
graph problem. This allows us to take advantage of ideas from the theory of network flows in
our analysis.

1

https://orcid.org/0000-0003-0322-2293
https://orcid.org/0000-0002-7979-3810
https://orcid.org/0000-0002-4620-7264

Contents
1 Introduction 3

1.1 Our Contributions . 3
1.2 Technical Highlights and Findings . 4
1.3 Related Work . 5

2 Informal Overview of Monero Transactions 7

3 Preliminaries and Notation 11

4 Model for Private Transaction Schemes 12
4.1 Syntax . 12
4.2 Security Notion . 18

5 Security Notions for Components 23
5.1 Notions for Key Derivation . 23
5.2 Notions for the Verifiable Homomorphic Commitment 24
5.3 Notions for the Ring Signature . 25

6 System Level Security Analysis 30
6.1 Bounding Winning Condition win-steal . 32
6.2 Bounding Winning Condition win-create . 36

7 Component Level Security Analysis 47
7.1 The Components used in Monero . 47
7.2 Analysis of Key Derivation . 49
7.3 Analysis of the Verifiable Homomorphic Commitment 50
7.4 Analysis of the Ring Signature . 51

8 Other Models for RingCT-Like Systems 76

2

1 Introduction
In the rapidly growing zoo of cryptocurrencies, Monero1 [VS13, KAN20] is among the largest and
most well-known systems. One of Monero’s distinguishing features is its unique transaction scheme
RingCT (“Ring Confidential Transactions”) which offers users a high degree of privacy for on-chain
transactions. To this end, RingCT provides an efficient means of hiding how funds are transferred
between users. Crucially, this must be done in such a way that no user can spend funds twice or
create money out of thin air. To achieve this challenging goal, RingCT combines several simpler
building blocks such as linkable ring signatures, homomorphic commitments, and range proofs into a
highly complex protocol.

While prior work has studied the security of some of these building blocks in isolation [Ped92,
GNB19, BBB+18, GT21], no rigorous security argument has been given for RingCT as a whole.
Existing security models for RingCT-like transaction schemes [SALY17, YSL+20, LRR+19, EZS+19,
ESZ22] do not consider some relevant attack classes, e.g., related key attacks. Given Monero’s
prominence and market capitalization (over three billion USD at the time of writing), this is an
unsatisfactory state of affairs. Motivated by the above discussion, we address the following question:

Is Monero’s transaction scheme secure?

1.1 Our Contributions
In this work, we answer this question positively by providing the first rigorous security analysis
of Monero’s transaction system RingCT as a whole, under minor assumptions. Our framework is
modular and abstracts many of the components of RingCT into stand-alone building blocks. We
believe that these components naturally reflect the design ideas of RingCT, and lead to an improved
understanding of the ideas at its core. In addition, this approach makes it possible to easily replace
a given part of the scheme in future system updates. For example, should Monero decide to use
another ring signature scheme in the future, one just needs to redo the parts of our analysis that
deal with the ring signature component. Conversely, our results may also serve as guidelines for the
required security properties of the components in the event of such an update.
A Modular Analysis of RingCT. We begin by introducing syntax and model for the desired
security properties of the top-level transaction scheme (i.e., RingCT). We define a single security
experiment that can be summarized as follows:

1. Whenever an honest user receives coins, it can later spend these coins. That is, an adversary
can neither steal the coins of an honest user, nor prevent the honest user from spending them.

2. An adversary can not create coins out of thin air. That is, the adversary can never spend more
coins than he ever received.

Having defined the security properties we aim for, we then prove that our model of RingCT meets
these properties. This consists of the following steps:

1. Syntax and Security for Subcomponents. We identify the structural components of RingCT
and introduce appropriate syntax for them. Then, we define several new security notions that
are tailored to the interplay of these building blocks within RingCT. For example, due to
adversarially generated keys, it is necessary to define security of the ring signature component
with respect to the key derivation mechanism. This leads to security notions that differ from
well-established ones from the literature.

1See https://www.getmonero.org.

3

https://www.getmonero.org

2. System Level Analysis. The next step of our analysis is to prove the security of any top-level
transaction scheme that follows our syntax. Our proof is generic and only assumes that
subcomponents satisfy our novel security notions. A technical highlight of our proof is the
utilization of the theory of network flows. We expect our new technique to be applicable in the
context of other currencies as well.

3. Component Level Analysis. Finally, we instantiate the components as in Monero and prove that
they satisfy our security notions. Here, the biggest challenge lies with the linkable ring signature
component, for which we provide an analysis in the Algebraic Group Model (AGM) [FKL18].
While our proof follows the standard methodology of such arguments, we encounter several
subtle issues that arise from composing different building blocks. As such, we believe that our
proof sheds further light on the pitfalls of naively composing proofs in the AGM.

Limitations and Future Work. In our work, we only deal with standard Monero addresses and do
not consider the case of subaddresses or integrated addresses. We also do not cover multi-signatures
and multi-signature addresses. This work focuses on the security of Monero’s transaction scheme. In
particular, we do not consider the consensus layer, and we do not model privacy of the transaction
scheme. We plan to elaborate a model and analysis for privacy in future work. As it is standard in the
literature, we use the abstraction of a prime order group to analyze the components of Monero, while
it is actually implemented over curve Ed25519 [BDL+11]. We assume that transaction public keys
are never reused. Due to the modularity of our framework, one could extend our results to the setting
of Ed25519 (in spirit of e.g., [BCJZ21]) without the need of redoing the entire analysis. Finally, we
do not show that the Bulletproof component [BBB+18, BMM+21, GOP+22] of the system satisfies
the security notion we define for it. It has been shown in [GT21] that Bulletproofs satisfy a related
notion. After discussion with the authors of [GT21], we conjecture that their proof can be extended
to show that Bulletproofs satisfy our notion as well. We leave investigating all of these directions as
future work.

1.2 Technical Highlights and Findings
In this section, we give an overview of some of our findings from a technical perspective.
Composing Extractors in the Algebraic Group Model. To show that our security notions for
components imply security for the entire transaction scheme, we make use of knowledge extractors.
Namely, we consider each transaction that the adversary submits to the system, and run a knowledge
extractor to get the secret signing key that the adversary used to create the transaction. The existence
of such an extractor should be guaranteed by our notions for the linkable ring signature components.
As we extract for each submitted transaction, it is crucial that our extractor does not rewind the
adversary. A common way to design such a non-rewinding extractor for a given scheme is to leverage
the algebraic group model (AGM) introduced by Fuchsbauer, Kiltz, and Loss [FKL18]. In this model,
whenever an adversary submits a group element X ∈ G (e.g., as part of transaction), it also submits
exponents (γi)i such that X =

∏
iA

γi
i , where Ai ∈ G are all group elements the adversary ever

received. We say that (γi)i is a representation of X over basis (Ai)i. An online extractor can now
use the representation to compute the secret signing key the adversary used. Unfortunately, formally
defining under which conditions such an online extractor works turns out to be non-trivial. The naive
way of doing it would be to define an isolated notion for the linkable ring signature as follows: The
adversary gets system parameters as input (including a generator g ∈ G), and may output a signature
and algebraic representations of all group elements over basis g, and it wins if the extractor fails to
output a secret key, but the signature is valid. In fact, such an isolated approach has been used in

4

the literature for other primitives [MBKM19, CHM+20]. However, this extractor does not compose
well. Concretely, in the isolated notion, the extractor expects that all representations are over basis
g. On the other hand, if we use our extractor in the wider context, i.e., in the proof of RingCT,
the representations are over much more complicated bases, because the adversary receives group
elements in signatures, hash values, and keys. Formally, the security game would have to translate
all representations into a representation over basis g first. It turns out that such a translation is not
compatible with our subsequent proof steps. The solution we opt for is to change the isolated notion
for the linkable ring signature into a more involved notion, in which we give the adversary oracles
that output signatures, hash values, and keys. We require that the extractor is able to extract a valid
secret key only under certain conditions, e.g., if the adversary did not obtain the signature from an
oracle. While this makes our extractor usable in the proof of RingCT, it substantially complicates
the AGM proof of the extractor.
Notions of Linkability. A fundamental security notion for linkable ring signatures is linkability.
Informally, it states that there is an efficient algorithm Link, such that no adversary can compute
two signatures σ, σ′ using the same secret key, such that Link(σ, σ′) outputs false. In other words,
Link detects if two signatures are computed using the same secret key, and can not be cheated by an
adversary. This feature is used in Monero as follows. Each unspent transaction output is associated
to a fresh secret key, which implies that Link can detect double spending of outputs. Formally
defining linkability is a non-trivial task. As already noted in [GNB19], there are several somewhat
independent formal notions of linkability. Arguably one of the most established notions is so-called
pigeonhole linkability. It is defined in the following way: An adversary breaks pigeonhole linkability
if it outputs N + 1 valid non-linking signatures, where all rings have size at most N . Unfortunately,
pigeonhole linkability seems to be insufficient for our purposes. Concretely, suppose an adversary
uses a key ring (o1, o2) consisting of two outputs o1 and o2 in two distinct valid transactions. Now,
recall from our previous paragraph that we use a knowledge extractor that gives us the secret key
that the adversary used. Assume this knowledge extractor returns the secret key sk1 associated to o1

in both cases, but the two signatures do not link. Intuitively, linkability should say that this is not
possible, because the adversary used sk1 to compute both signatures. However, pigeonhole linkability
is not applicable, as we only have two signatures on rings of size two. Instead, we need a notion of
linkability that is tied to our knowledge extractor, and rules out this case. More precisely, it should
guarantee that if the extractor outputs the same secret key for two signatures, then the signatures
link.

1.3 Related Work
In this section, we give an overview of related work.
Related Security Models. Prior to our work, security models for systems similar to RingCT
have been given [SALY17, YSL+20, LRR+19, EZS+19, ESZ22]. Notably, all of them analyze new
constructions and not RingCT as it is. Further, some of these models [SALY17, YSL+20, EZS+19,
ESZ22] omit important non-trivial aspects of RingCT, e.g., adversarial key derivation. Some of
them [SALY17, YSL+20, LRR+19] fail to give a single security definition and instead present a set
of notions, somewhat similar to the component-wise notions we present as an intermediate step. It
remains unclear how these notions relate to each other and the security of the transaction scheme as
a whole. We provide a more detailed discussion on these models and how they relate to our model in
Section 8.
History of Monero. Monero’s transaction scheme RingCT originates in the CryptoNote pro-
tocol [VS13], which is based on a linkable ring signature presented in [FS07]. Noether [Noe15]

5

introduced a way to hide transaction amounts using Pedersen commitments [Ped92] and range proofs,
and also presented a compatible new ring signature component, called MLSAG. The construction of
MLSAG is mostly based on [LWW04]. Later, MLSAG was replaced by a more concise ring signature
component, called CLSAG [GNB19], and Bulletproofs [BBB+18, GT21] are now being used as range
proofs. Overviews of Monero and its transaction system can be found in [AJ18, KAN20].
New Constructions, Improvements, and Functionality Enhancements. Several works
presented new constructions of transaction schemes similar to RingCT. These range from efficiency
improvements [SALY17, YSL+20, LRR+19] to the use of post-quantum assumptions [EZS+19, ESZ22].
Also, some works modify RingCT with the motivation to increase compatibility with other protocols,
e.g., second-layer protocols [MBL+20] or proof of stake consensus [MCdS20]. A variety of protocols
has been designed add new functionality to the Monero ecosystem. Examples include proofs of
reserve [DV19, DBV21], payment channels [TMSS20, MBL+20, SLYQ22], and protocols atomic
swaps [Gug20, TMSS20].
Attacks on Monero. Researchers also studied attacks against Monero and related systems and their
mitigations. These target privacy [KFTS17, WLSL18, MSH+18, YAV19, Vij21, REL+21, DRR22,
ELR+22, Fro, Kle], centralization [CYD+20] and security aspects [mon, Nica, Nicb]. In terms of
privacy, attacks reach from passive attacks [MSH+18, Vij21] to active attacks [YAV19, WLSL18],
and temporal attacks [KFTS17] that make users traceable. These attacks are purely combinatorial
in nature. The works [REL+21, ELR+22] study how to mitigate such combinatorial attacks.
Related Currencies and Their Analysis. ZCash [HBHW] is one of the most prominent privacy-
focused cryptocurrencies. It is based on the Zerocash protocol [BCG+14], which comes with a
cryptographic security analysis. The current protocol specification of ZCash [HBHW] suggests that
ZCash deviates from Zerocash in multiple ways. Mimblewimble [Jed] is a currency prototype that
uses homomorphic commitments for efficiency reasons and to hide transaction amounts. In contrast
to Monero’s transaction scheme, Mimblewimble does not rely on ring signatures or stealth addresses.
A security model and analysis of Mimblewimble has been given in [FOS19, FO22].

6

2 Informal Overview of Monero Transactions
In this section, we give an informal overview of the Monero transaction scheme. The purpose of this
is twofold. On the one hand, it should explain the complex structure of transactions for readers not
familiar with Monero. On the other hand, Monero versed readers may use this section as a first
introduction to our modularization. In any case, familiarity with common cryptographic tools is
assumed. These include commitments, ring signatures, and zero-knowledge proofs.
User Addresses. Before diving into the structure of transactions, we first clarify what constitutes
an address of a user. Namely, each user holds a triple (ipk, ivk, isk). We call these the identity public
key, identity view key, and identity signing key, respectively. While ipk serves as a public address of
the user, the keys ivk and isk should remain secret and provide the following functionality:

• The identity view key ivk allows to identify payments that the user receives.

• The identity signing key isk allows to spend funds, i.e., sign transactions.

Readers familiar with simpler currencies such as Bitcoin should think of isk as a secret key as in
Bitcoin, and ivk as being an additional key related to privacy. Namely, leaking ivk should only
compromise the privacy, but not the security of users. In the concrete implementation of Monero,
the identity public key ipk contains two group elements Kv = gkv ∈ G and Ks = gks ∈ G, where
isk = ks ∈ Zp, and ivk = kv ∈ Zp.
Key Concepts of Transactions. Transactions in Monero follow the widely used UTXO (“unspent
transaction output”) model. In this model, each transaction spends some inputs into some outputs,
and all inputs are unused outputs of previous transactions. As our running example, we consider
the case of a transaction with two inputs and three outputs. A transaction is visualized in Figure 1.
We refer to the sender of a transaction as Alice, and to the recipient of an output as Bob. A naive
transaction (as used in other currencies) would simply contain references to the inputs, and a digital
signature per input. Each output would contain the address of the receiver Bob and the amount that
it is worth. In contrast, Monero uses the following core ideas:

• To hide the sender, the actual inputs are grouped with decoy inputs. Ring signatures are used
for each input.

• To hide the receiver, addresses contained in outputs are rerandomized. These rerandomized
addresses are also known as stealth addresses.

• Amounts contained in outputs are hidden in homomorphic commitments.

Next, we explain how these ideas are implemented in more detail.
Outputs. We start by describing what constitutes an output of a transaction, and how it is generated.
Recall that in a naive transaction, an output would just be the address of the recipient and an amount.
Roughly, Monero hides amounts in commitments com, and recipients by using rerandomizations pk
of their actual address ipk. To ensure that the recipient Bob can (1) recognize that he receives an
output, and (2) use that output, the randomness for commitments and rerandomization has to be
recovered by Bob. This is implemented using a Diffie-Hellman-style derivation of shared secrets:
The sender Alice first includes a public seed (also called transaction public key) pseed = gr in the
transaction. The public seed will be used for the entire transaction, and not just for one output.
Then, she derives ok = Kr

v , where Kv is part of Bob’s identity public key ipk = (Kv,Ks). Thus, ok
serves as a shared secret between Alice and Bob. The randomness for the rerandomization and the
the commitment is derived from ok and the position of the output. Namely, the first component

7

Inputs Pseudo Outputs Outputs

pkin1,1, com
in
1,1

pkin1,2, com
in
1,2

pkin2,1, com
in
2,1

pkin2,2, com
in
2,2

com1

com2

pkout1 , comout
1 , ct1

pkout2 , comout
2 , ct2

pkout3 , comout
3 , ct3

σ1

σ2 ∑
j comj

=
∑
i comouti

pseed π

Figure 1: Schematic overview of an example transaction in Monero with two inputs and three outputs.
Inputs are actually references to previous outputs. Signatures connect inputs and pseudo outputs.
The homomorphic property of commitments ties pseudo outputs to outputs. In addition to inputs,
outputs, and signatures, a transaction also contains a public seed pseed and a range proof π.

of an output is pk = Ks · gτ , where the exponent τ ∈ Zp is deterministically derived from ok. The
second component is a commitment com = Com(amt, cr), where the randomness cr is deterministically
derived from ok. Finally, the output also contains a symmetric encryption ct of the amount amt.
Most importantly, the values τ, cr, and the key for the encryption are all deterministically derived
from ok. Let us point out the implications of this: The recipient Bob can derive the shared secret
ok using his view key ivk = kv and the public seed pseed. Then, he can also derive τ and cr from
ok, decrypt ct, and check whether the equations pk = Ks · gτ and com = Com(amt, cr) hold. If so,
Bob knows that he just received amt coins. This is possible even if isk is unknown. If isk = ks is
known, then Bob can recover a secret key sk = ks + τ for pk. This allows Bob to spend the output in
a future transaction. To emphasize, ok is a shared secret between Alice and Bob, and no other party
learns τ, cr, or the decryption key for ct.
Inputs. Assume Alice owns an output o∗ = (pk∗, com∗, ct∗) of a previous transaction. Especially,
she knows the secret key sk∗ corresponding to pk∗. Assume she wants to use this output as an input
in the current transaction. A naive way for Alice to do that would be to include (a reference to) o∗,
and a signature with respect to pk∗ to prove ownership. In order to obfuscate the link between the
transaction and o∗, Monero uses a different approach. Namely, in a first step, Alice selects some
random outputs o′ = (pk′, ·, ·) of previous transactions in the system. These are not necessarily owned
by Alice, and will serve as decoys. For simplicity, assume she only selects one such decoy output.
Then, (references to) the outputs o∗ and o′ are included in the transaction. Finally, Alice does not
use a standard signature, but instead she uses a ring signature for ring R = {pk∗, pk′}. This signature
proves that Alice owns one of the outputs o∗, o′, but does not reveal which one. As the attentive
reader may have noticed, this can not be the end of the story. Especially, after the transaction is
accepted by the system, there has to be some mechanism that ensures that the output o∗ can no
longer be spent, while the decoy output o′ can. We will see how to solve this later.
Homomorphic Commitments. So far, we discussed how to include outputs in transactions, and
use previously received outputs as inputs for a transaction. However, we did not discuss how it is
ensured that combination of inputs and outputs is valid, i.e., no money is created. In other words,
we have to ensure that

∑
j amtinj =

∑
i amtouti , where amtinj and amtoutj are the amounts encoded in

inputs and outputs, respectively. To do this without revealing the amounts itself, Monero leverages
homomorphic properties of the commitment scheme (precisely, the Pedersen commitment scheme).
Namely, ignoring decoys for a moment, if comin

j are the commitments contained in the inputs, and
comout

i are the commitments in the outputs, then we would ensure that
∑
j com

in
j =

∑
i com

out
i .

8

Intuitively, the binding property of the commitment scheme should tell us that this equality implies
the equality over the amounts that we want. However, this only holds if we avoid overflows. To do
that, we ensure that the amtinj and amtouti are in a certain range. For that reason, Alice includes a
range proof π in the transaction.
Pseudo Outputs. In the previous paragraph, we oversimplified our explanation. Namely, the
following two obstacles remain:

• How can Alice ensure that the equation
∑
j com

in
j =

∑
i com

out
i holds? Namely, for the Pedersen

commitment, this not only requires
∑
j amtinj =

∑
i amtouti , but also

∑
j cr

in
j =

∑
i cr

out
i , where

com∗∗ = Com(amt∗∗, cr
∗
∗). Given the structure of outputs, Alice has no way to ensure this.

• If we insist on the equation
∑
j com

in
j =

∑
i com

out
i , then actual inputs are distinguishable from

the decoys, as they most like do not satisfy the equation.

To get around these two problems, a level of indirection, called pseudo outputs, is used. In a
nutshell, a pseudo output is just another commitment that Alice computes to connect inputs to
outputs. Namely, for each of her inputs with amount amtinj , Alice computes a new commitment
comj = Com(amtinj , crj), with freshly sampled randomness crj , and such that

∑
j crj =

∑
i cr

out
i .

Then, instead of homomorphically checking equality between inputs and outputs, we now check
equality between pseudo outputs and outputs using the equation

∑
j comj =

∑
i com

out
i . This works

out, because Alice now has the freedom to choose the values crj . In this way, we ensure that no
money is created on the transition from pseudo outputs to outputs. What remains is to ensure that
this also holds for the transition from inputs to pseudo outputs. To do that, for each input j, Alice
needs to prove that she indeed used amtinj to compute comj , where amtinj is the amount associated
to her input (pk∗, com∗, ct∗). Recall that in our running example, this input is grouped with a decoy
(pk′, com′, ct′) We can not just insist on com∗ = comj , because this reintroduces the two problems
from above. Instead, Alice could prove that com∗ − comj or com′ − comj is a commitment to 0. For
Pedersen commitments with basis g, h, this is equivalent to proving that Alice knows some r such
that com∗− comj = hr or com′− comj = hr. Interestingly, this proof can implemented as part of the
ring signature that is used: We introduce a second dimension to the public keys, and Alice signs for
the ring R = {(pk∗, com∗ − comj), (pk

′, com′ − comj)} using the secret key (sk∗, r). In this way, the
signature not only proves ownership of inputs, but also consistency between the amounts encoded in
input and pseudo output.
Double-Spending Detection. When we discussed the structure of inputs, we claimed that ring
signatures are used for each input. We already saw that this claim is just a simplification, because
pseudo outputs require us to use two-dimensional ring signatures. What we did not solve yet is the
problem raised in our discussion of inputs. Namely, after a transaction is accepted, the actual inputs
should no longer be spendable, while the decoy outputs should be. Intuitively, if we were able to
detect that two signatures are computed using the same secret key, than we could solve this problem.
Namely, we force that each pk is only used once, and a transaction is only accepted if no signature
conflicts with a previous one, in the above sense. Fortunately, there is a variant of ring signatures,
called linkable ring signatures, that allows us to do exactly that. More precisely, there is an algorithm
Link(σ, σ′) which outputs 1 if and only if σ and σ′ were computed using the same key sk. This does
not reveal which sk was used.
Summary: Transaction Generation. A user Alice can generate a transaction as follows:

1. Alice computes a public seed pseed = gsseed and includes it in the transaction.

2. Alice computes outputs. That is, for each recipient Bob with identity public key ipk = (Kv,Ks)
that should receive amt coins, she does the following:

9

(a) Derive the shared secret ok from Kv and sseed.

(b) Using ok, derive commitment randomness and a rerandomization term.

(c) Use these to compute a commitment com to amt and a rerandomization pk of Ks.

(d) Encrypt amt into a ciphertext ct using a key derived from ok.

(e) The output is (pk, com, ct).

3. For each of her inputs, Alice selects other outputs of previous transactions as decoys, and
groups her actual input with a these decoys.

4. For each of her inputs, Alice computes a pseudo output comj , such that the pseudo outputs
sum up to the sum of the output commitments.

5. Alice computes a range proof π showing that the amounts in output commitments and pseudo
outputs do not cause overflows.

6. For each of the inputs, Alice signs the transaction using a two-dimensional linkable ring
signature.

Summary: Transaction Verification. Throughout the last paragraphs, we introduced a lot of
conditions that a valid transaction has to satisfy implicitly. Now, we explicitly summarize them.
Namely, to verify the validity of a transaction, the following has to be checked:

1. All inputs (including the decoys) are outputs of previous transactions.

2. All signatures are valid with respect to the given rings.

3. There is no signature that links to another signature in this or a previous transaction.

4. We have
∑
j comj =

∑
i com

out
i , where comj are the pseudo outputs, and comout

i are the output
commitments.

5. The range proof for the commitments verifies.

10

3 Preliminaries and Notation
We introduce our notation, conventions, and basic preliminaries.
Monero Documentation. The version of Monero that we analyze is based on [GNB19, Noe15,
KAN20], as well as the source code2.
Sets and Probability. We define [K] := {1, . . . ,K} ⊆ N to be the set of the first K natural
numbers. Fix a finite set S and some probability distribution D. Then, the notation x←$S means
that x is sampled uniformly at random from S, and the notation x← D indicates that x is sampled
according to D. For an event E, and a probabilistic experiment G, we write PrG [E] to denote the
probability that the event E occurs if we run the experiment G. If G is clear from the context, we
omit it. A function f : N→ R≥0 is said to be negligble in its input λ, if it vanishes faster than the
inverse of any polynomial, i.e f ∈ λ−ω(1).
Algorithms. Throughout, we make the convention that every algorithm gets the security parameter
λ (encoded in unary as 1λ) at least implicitly as input. Let A be a probabilistic algorithm. We denote
the (upper bound of) the running time of A by T(A). We say that A is PPT, if T(A) is polynomial in
A’s input. We treat probabilistic algorithms similar to distributions and write y ← A(x) to indicate
that A is run on input x with uniform coins, and the result is y. If A is deterministic, we write
y := A(x). To make the random coins ρ of a probabilistic A explicit, we write y := A(x; ρ). The
notation y ∈ A(x) states that there is some ρ such that y = A(x; ρ). To distinguish algorithms with
the same name of different schemes, we may sometimes use the notation Sc.A to make explicit that
we are refering to algorithm A of scheme Sc.
Games. Let G be a security game, i.e., a probabilistic experiment used to define security notions.
We write G→b to indicate that G outputs b. Unless explicitly stated otherwise, lists, maps, and sets
are initialized empty by default, and numerical variables are initialized with 0. When we describe
algorithms, oracles, and games via pseudocode, we use the notation parse a := b to denote that
variable b is parsed according to the form of b. For example, we may write parse (pk, com) := b to
denote that variable b is parsed as a tuple (pk, com). This implicitly means that the algorithm, oracle,
or game aborts if o does not have this form. We may group multiple of these parsing statements
together, e.g. parse a := b, c := d means parsing b into a and d into c.
Idealized Models. Most of our proofs require to model certain hash functions as a random oracle.
In this case, the adversary gets access to an oracle computing a random function in a lazy fashion. For
some proofs, we make use of the algebraic group model [FKL18] over cyclic groups G. In this model,
we only consider algebraic algorithms. That is, whenever an algorithm outputs a group element
T ∈ G, it also outputs a representation (a1, . . . , ak) ∈ Zkp such that T =

∏k
i=1 h

ai
i , where h1, . . . , hk

are all group elements that the algorithm received so far (either as input or as oracle responses).
Hardness Assumptions. We make use of the standard discrete logarithm (DLOG) assumption. By
the description of a prime order group G of order p ≥ 2λ with generator g, we mean g, p, and the
group operation.

Definition 1 (DLOG Assumption). Let GGen be an algorithm that on input 1λ outputs the description
of a prime order group G of order p ≥ 2λ with generator g. We say that the DLOG assumption holds
relative to GGen, if for all PPT algorithms A, the following advantage is negligible:

AdvDLOG
A,GGen(λ) := Pr

G
[z = x],

where G is given as (G, g, p)← GGen(1λ), x←$Zp, z ← A(G, p, g, gx).

2See https://github.com/monero-project/monero, release-v0.18.1.2.

11

https://github.com/monero-project/monero

4 Model for Private Transaction Schemes
In this section, we present our formal model for a private transaction scheme. We will first specify the
components of a private transaction scheme. Then, we will define how transactions are constructed
using these components. Finally, we define the security of private transaction schemes.

4.1 Syntax
Throughout, we assume that some system system parameters par← Setup(1λ) are generated using a
setup algorithm Setup. These are given implicitly to all algorithms and define certain data types.
For our definition, we make tags tag ∈ N used for ordering and domain separation explicit.
Key Derivation Scheme. We start with the definition of a key derivation scheme. Recall from our
overview in Section 2, that when a user Alice wants to spend coins to a user Bob, Alice first samples
some seeds, and then uses these seeds and Bobs address to derive a stealth address for Bob. More
concretely, an output key ok is derived as a shared secret between Alice and Bob, and this output
key is used to derive the stealth address (among other things). The key derivation scheme specifies
how a user Bob generates its address, how seeds are sampled, and how the derivation of output keys
and stealth addresses works. Formally, a key derivation scheme (KDS) is a tuple KDS = (GenID,
Encaps,SendDecaps,RecDecapsDerPK,DerSK,Track) of PPT algorithms with the following syntax,
where the sets PSE , SSE , PK, and SK are specified by par:

• GenID(par)→ (ipk, ivk, isk) takes as input system parameters par and outputs an identity public
key ipk, an identity view key ivk, and an identity signing key isk.

• Encaps(par)→ (pseed, sseed) takes as input system parameters par and outputs a secret seed
sseed ∈ SSE and a public seed pseed ∈ PSE .

• SendDecaps(ipk, sseed)→ ok is deterministic, takes as input an identity public key and a secret
seed, and outputs an output key ok.

• RecDecaps(ivk, pseed) → ok is deterministic, takes as input an identity view key ivk, and a
public seed pseed ∈ PSE , and outputs an output key ok.

• DerPK(ipk, ok, tag)→ pk is deterministic, takes as input an identity public key ipk, an output
key ok, tag tag ∈ N, and outputs a public key pk ∈ PK.

• DerSK(isk, ok, tag)→ sk is deterministic, takes as input an identity signing key isk, an output
key ok, tag tag ∈ N, and outputs a secret key sk ∈ SK.

• Track(ipk, ok, pk, tag)→ b is deterministic, takes as input an identity public key ipk, an output
key ok, a public key pk ∈ PK, tag tag ∈ N, and outputs a bit b ∈ {0, 1}.

Further, we require that par specifies a efficiently decidable binary relation KR, the relation of valid
key pairs, and that these algorithms and the relation satisfy the following completeness property:
For all (ipk, ivk, isk) ∈ GenID(par) and all tag ∈ N, we have

Pr
G

[
ok = ok′ ∧ b = 1 ∧ (pk, sk) ∈ KR

]
= 1,

where G is given as

(pseed, sseed)← Encaps(par), ok := SendDecaps(ipk, sseed),

ok′ := RecDecaps(ivk, pseed), pk := DerPK(ipk, ok, tag),

b := Track(ipk, ok′, pk, tag), sk := DerSK(isk, ok′, tag).

12

Consider the experiment G that is given by sampling (pseed, sseed)← Encaps(par). We say that KDS
has h bits of entropy of public seeds, if for all pseed0 ∈ PSE we have PrG [pseed = pseed0] ≤ 2−h.

Verifiable Homomorphic Commitment Scheme. To hide transaction amounts while still
allowing to verify consistency of inputs and outputs of a transaction, a special kind of commitment
scheme, and an associated proof is used. Further, recall that when a transaction sender Alice commits
to an amount she sends to receiver Bob, then she deterministically derives the random coins used
for the commitment from the output key ok that is shared between Alice and Bob. We call the
set of algorithms specifying the commitment and the associated proof a verifiable homomorphic
commitment scheme. Formally, a verifiable homomorphic commitment scheme (VHC) is a tuple
VHC = (DerRand,Com,PProve,PVer) of PPT algorithms with the following syntax, where CR ⊆ N0

and a group C is specified by par:

• DerRand(ok, tag) → cr is deterministic, takes as input an output key ok, and a tag tag ∈ N,
and outputs a commitment randomness cr ∈ CR.

• Com(amt, cr) → com is deterministic, takes as input data amt ∈ D, and a commitment
randomness cr ∈ CR, and outputs a commitment com ∈ C.

• PProve(stmt,witn) → π takes as input a statement stmt = (comi)
K
i=1, and a witness witn =

(amti, cri)
K
i=1, and outputs a proof π.

• PVer(stmt, π)→ b is deterministic, takes as input a statement stmt = (comi)
K
i=1, and a prove

π, and outputs a bit b ∈ {0, 1}.

Further, we require that these algorithms satisfy the following completeness properties:

1. For all amt, amt′ ∈ D and all cr, cr′ ∈ CR we have

Com(amt, cr) + Com(amt′, cr′) = Com(amt + amt′, cr + cr′).

2. For all (polynomially bounded) integers K ∈ N, and all amti ∈ D, cri ∈ CR for i ∈ [K], we have

Pr
G

[PVer(stmt, π) = 1] = 1,

where G is given as comi := Com(amti, cri) for all i ∈ [K], stmt := (comi)
K
i=1, witn :=

(amti, cri)
K
i=1, and π ← PProve(stmt,witn).

Data Encryption Scheme. As amounts are hidden due to the use of a commitment scheme,
transaction senders need to communicate them privately to receivers. For that, an encryption scheme
is used. It makes use of the output keys derived using the key derivation scheme.

Formally, a data encryption scheme (DE) is a tuple DE = (Enc,Dec) of PPT algorithms with the
following syntax, where the set D ⊆ N0 is specified by par:

• Enc(ok, tag, amt) → ct is deterministic, takes as input an output key ok, tag tag ∈ N, data
amt ∈ D, and outputs a ciphertext ct.

• Dec(ok, tag, ct) → amt is deterministic, takes as input an output key ok, tag tag ∈ N, and a
ciphertext ct, and outputs data amt ∈ D.

13

We require that these algorithms satisfy the following completeness property: For all output keys ok,
amt ∈ D, and all tag ∈ N, we have Dec(ok, tag,Enc(ok, tag, amt)) = amt.
Key Conversion Scheme. The commitments output by the verifiable joint commitment scheme
can be converted into auxiliary keys for the special kind of linkable ring signature scheme that is used.
For that, we define a key conversion scheme (KCS) as a tuple KCS = (ConvertPublic,ConvertSecret)
of PPT algorithms with the following syntax, where the sets APK,ASK are specified by par:

• ConvertPublic(com, com′)→ auxpk is deterministic, takes as input commitments com, com′ ∈ C,
and outputs an auxiliary public key auxpk ∈ APK.

• ConvertSecret(cr, cr′)→ auxsk is deterministic, takes as input commitment randomness cr, cr′ ∈
CR, and outputs an auxiliary secret key auxsk ∈ ASK.

Further, we require that par specifies an efficiently decidable binary relation AKR and that these
algorithms and the relation satisfy the following completeness property: For every amt ∈ D, cr, cr′ ∈
CR, we have (auxpk, auxsk) ∈ AKR, where

com := Com(amt, cr), com′ := Com(amt, cr′),

auxpk := ConvertPublic(com, com′), auxsk := ConvertSecret(cr, cr′).

Two-Dimensional Linkable Ring Signature Scheme. The auxiliary keys and the keys derived
in the key derivation scheme can be used in a special kind of linkable ring signature scheme. Formally,
a two-dimensional linkable ring signature scheme (LRS) is specified by a tuple LRS = (Sig,Ver, Link)
of PPT algorithms with the following syntax, where the sets LRS.M, LRS.Σ are specified by par:

• Sig(R, sk, auxsk,m)→ σ takes as input a list R = (pki, auxpki)
N
i=1 of public keys pki ∈ PK and

auxiliary public keys auxpki ∈ APK, a secret key sk ∈ SK, an auxiliary secret key auxsk ∈ ASK,
and a message m ∈ LRS.M, and outputs a signature σ ∈ LRS.Σ. We assume that σ implicitly
contains R.

• Ver(R,m, σ) → b is deterministic, takes as input a list R = (pki, auxpki)
N
i=1 of public keys

pki ∈ PK and auxiliary public keys auxpki ∈ APK, a message m ∈ LRS.M, and a signature
σ ∈ LRS.Σ, and outputs a bit b ∈ {0, 1}.

• Link(σ, σ′) → b is deterministic, takes as input signatures σ, σ′ ∈ LRS.Σ and outputs a bit
b ∈ {0, 1}. We assume that Link is symmetric and outputs 0 whenever the lists R,R′ implicitly
contained in the signatures are disjoint.

We require that these algorithms satisfy the following completeness properties:

1. For all (polynomially bounded) integers N ∈ N, all i∗ ∈ [N], all R = (pki, auxpki)
N
i=1,

auxski∗ , ski∗ with (auxpki∗ , auxski∗) ∈ AKR and (pki∗ , ski∗) ∈ KR, and every m ∈ LRS.M, we
have

Pr
G

[Ver(R,m, σ) = 1] = 1,

where G is given as σ ← Sig(R, ski∗ , auxski∗ ,m).

2. For all (polynomially bounded) integersN,N ′ ∈ N, all i∗ ∈ [N], j∗ ∈ [N ′], all R = (pki, auxpki)
N
i=1 ,

R′ =
(
pk′j , auxpk

′
j

)N ′
j=1

, every auxski∗ , auxsk
′
j∗ , ski∗ , sk

′
j∗ with (auxpki∗ , auxski∗) ∈ AKR and

14

(pki∗ , ski∗) ∈ KR and (auxpk′j∗ , auxsk
′
j∗) ∈ AKR, (pk

′
j∗ , sk

′
j∗) ∈ KR, and every m,m′ ∈ LRS.M,

we have
Pr
G

[
ski∗ = sk′j∗ ⇐⇒ Link(σ, σ′) = 1

]
= 1,

where G is given as

σ ← Sig(R, ski∗ , auxski∗ ,m), σ′ ← Sig(R′, sk′j∗ , auxpk
′
j∗ ,m

′).

Private Transaction Scheme. Given the components we introduced so far, we define a private
transaction scheme. Namely, a private transaction scheme (PTS) is a tuple PTS = (LRS,KDS,VHC,
DE,KCS) with the following properties:

• KDS = (GenID,Encaps,SendDecaps,RecDecapsDerPK,DerSK,Track) is a key derivation scheme.

• DE = (Enc,Dec) is a data encryption scheme.

• VHC = (DerRand,Com,PProve,PVer) is a verifiable homomorphic commitment scheme.

• KCS = (ConvertPublic,ConvertSecret) is a key conversion scheme.

• LRS = (Sig,Ver, Link) is a linkable ring signature scheme.

Transactions. Next, we define the transaction data structure and how to compute transactions
using the components of a private transaction scheme. We define a transaction as a tuple Tx =
(In,Out, pseed, π), where

• In = (Refj , comj , σj)
L
j=1 is a list, where Refj = (pkinj,r, com

in
j,r)r is a list of public keys pkinj,r ∈

KDS.PK and commitments comin
j,r ∈ C, comj ∈ C is a commitment, and σj ∈ Σ is a signature.

We refer to an entry in this list as an input of the transaction.

• Out =
(
pkouti , comout

i , cti, tagi := i
)K
i=1

is a list of public keys pkouti ∈ KDS.PK, commitments
comout

i ∈ C, ciphertexts cti, and tags. We refer to the (pkouti , comout
i) for i ∈ [K] as outputs of

the transaction, keeping in mind that these outputs are always associated with a ciphertext
and a tag.

• pseed ∈ PSE is a public seed and π is a proof.

Algorithm GenTx
(

(Usej)
L
j=1, (Refj)

L
j=1, (ipki, amtouti)

K
i=1

)
generates such a transaction. We present

it formally in Figure 2. The resulting transaction spends amtouti coins to identity ipki. For each
input j ∈ [L], Refj denotes a list of existing outputs that are used to form the key ring, and Usej
is the actual output that is spend, including secrets needed to spend it. In other words, one entry
in Refj contains the public components of Usej , and the other entries are the decoys. Algorithm
VerTx(PSeeds,Outputs,Signatures,Tx) verifies the validity of such a transaction Tx with respect to
lists PSeeds,Outputs,Signatures. These lists hold all public seeds, outputs, and signatures from
previous transactions. We present the algorithm in Figure 3. We make the additional assumption
that public seeds are not repeated.

15

Alg GenTx
(

(Usej)j∈[L], (Refj)j∈[L], (ipki, amtouti)i∈[K]

)
01 for j ∈ [L] : parse (pkinj , com

in
j , amtinj , cr

in
j , skj) := Usej

02 for j ∈ [L] : parse (pkinj,r, com
in
j,r)
|Refj |
r=1 := Refj

// Compute output public keys and ciphertexts.
03 (pseed, sseed)← Encaps(par)
04 for i ∈ [K] :
05 tagi := i, oki := SendDecaps(ipki, sseed)
06 cti := Enc(oki, tagi, amtouti)
07 pkouti := DerPK(ipki, oki, tagi)

// Compute output commitments with proof and input commitments.
08 for i ∈ [K] :
09 crouti := DerRand(oki, tagi)
10 comout

i := Com(amtouti , crouti)
11 for j ∈ [L− 1] : crj←$ CR
12 crL :=

∑K
i=1 cr

out
i −

∑L−1
j=1 crj

13 for j ∈ [L] : comj := Com(amtinj , crj)

14 stmt :=
(

(comj)
L
j=1 , (com

out
i)

K
i=1

)
15 witn :=

((
amtinj , crj

)L
j=1

, (amtouti , crouti)
K
i=1

)
16 π ← PProve(stmt,witn)

// Compute signatures for the inputs.
17 m := Htrm

(
pseed, (Refj , comj)

L
j=1,

(
pkouti , comout

i , cti, tagi
)K
i=1

)
18 for j ∈ [L] :
19 for r ∈ [|Refj |] : auxpkr := ConvertPublic(comin

j,r, comj)

20 Rj :=
(
pkinj,r, auxpkr

)|Refj |
r=1

21 auxskj := ConvertSecret(crinj , crj)
22 σj ← LRS.Sig(Rj , skj , auxskj ,m)

// Define transaction.
23 In := (Refj , comj , σj)

L
j=1

24 Out :=
(
pkouti , comout

i , cti, tagi
)K
i=1

25 return Tx := (In,Out, pseed, π)

Figure 2: The transaction generation algorithm GenTx, where Htrm : {0, 1}∗ → {0, 1}` is a random
oracle. The algorithm generates a transaction spending amtouti coins to identity ipki, while using
inputs Usej . For each input j, the list Refj contains the actual input and the decoy inputs.

16

Alg VerTx(PSeeds,Outputs,Signatures,Tx)
01 parse (In,Out, pseed, π) := Tx
02 parse (Refj , comj , σj)j∈[L] := In

03 for j ∈ [L] : parse (pkinj,r, com
in
j,r)
|Refj |
r=1 := Refj

04 parse
(
pkouti , comout

i , cti, tagi
)K
i=1

:= Out

// The public seed should be fresh.
05 if pseed ∈ PSeeds : return 0

// Inputs should be previous outputs.
06 for j ∈ [L] :
07 for r ∈ [|Refj |] :
08 if (pkinj,r, com

in
j,r) /∈ Outputs :

09 return 0

// Signatures should be valid.
10 m := Htrm

(
pseed, (Refj , comj)

L
j=1,

(
pkouti , comout

i , cti, tagi
)K
i=1

)
11 for j ∈ [L] :
12 for r ∈ [|Refj |] : auxpkr := ConvertPublic(comin

j,r, comj)

13 Rj :=
(
pkinj,r, auxpkr

)|Refj |
r=1

14 if LRS.Ver(Rj ,m, σj) = 0 : return 0

// Commitments should be valid.
15 stmt :=

(
(comj)j , (com

out
i)i

)
16 if PVer(stmt, π) = 0 ∨

∑L
j=1 comj 6=

∑K
i=1 com

out
i : return 0

// Double spending detection.
17 if ∃j, j′ ∈ [L] s.t. j 6= j′ ∧ Link(σj , σj′) = 1 : return 0
18 if ∃j ∈ [L], σ ∈ Signatures s.t. Link(σj , σ) = 1 : return 0
19 return 1

Figure 3: The transaction verification algorithm VerTx, where Htrm : {0, 1}∗ → {0, 1}` is a random
oracle. The algorithm verifies validity of transaction Tx with respect to the current state of the
system, given by lists PSeeds,Outputs,Signatures.

17

4.2 Security Notion
Before we formally define security, we introduce data structures and oracles that model the state of
the world and the adversary’s capabilities for our security model. For the entire section, we fix a
private transaction scheme PTS = (LRS,KDS,VHC,DE,KCS) and a PPT adversary A.
State of the World. To model the current state of the world, our game holds several data structures.
First, the game should keep track of existing (honest) users. For that, the game should store identity
keys and information about the outputs the users own. Formally, we introduce the following data
structures.

• Identities: This list contains identity public keys ipk for users. These users are initially honest,
but may later be corrupted by the adversary.

• ivk[·], isk[·]: These maps contain the identity view key ivk[ipk] and the identity signing key
isk[ipk] for each ipk ∈ Identities.

• corr[·] : This map contains a value corr[ipk] ∈ {0, 1, 2} for each ipk ∈ Identities. It models the
corruption state of this user, i.e., corr[ipk] = 0 by default, corr[ipk] = 1 if A knows ivk[ipk], and
corr[ipk] = 2 if A knows ivk[ipk] and isk[ipk].

• Owned[·] : This map contains a list Owned[ipk] for each ipk ∈ Identities. This lists contains all
outputs that user ipk owns. Additionally, it contains necessary side information that is used to
spend these outputs. Namely, the lists contain entries of the form (pk, com, amt, cr, sk). It is
only kept consistent for users ipk with corr[ipk] < 2.

Second, the game should be able to generate and verify transactions. For that, the game has to know
all previous transactions, or more precisely, previous outputs and signatures. Therefore, we introduce
the following data structures.

• TXs: This list contains all transactions in the system, i.e., transactions that have been submitted
and verified.

• PSeeds: This list contains all public seeds pseed that are contained in transactions in the
system.

• Outputs: This list contains all outputs (pk, com) that are currently in the system. These may,
for example, be part of previous transactions.

• Signatures: This list contains all signatures σ that are part of previous transactions.

Finally, we want to keep track of the amount of coins that A obtained from the game, and the
amount of coins that it spent to honest users. This will be necessary to define security. Intuitively, A
breaks security if it can spend more than it ever received.

• received ∈ N0: This integer models how many coins the adversary obtained from the game, e.g.,
via transactions generated by honest users.

• spent ∈ N0: This integer models how many coins the adversary spent to the game, e.g., via
transactions received by honest users.

Adversary Capabilities. As usual, the capabilities of an adversary are modeled by a set of oracles
to which the adversary has access. When the adversary calls these oracles, the current state of the
world may change. This means that the oracles trigger changes to the data structures discussed

18

before. In addition to the following verbal description, all oracles are rigorously presented using
pseudocode in Figure 5 and Figure 6.

The first capability that adversary A has, is to interact with identities of honest users and corrupt
some of these users. It can populate the system with honest users, and we model two types of
corruption. This reflects that users may store their keys in different locations (e.g., hot and cold
wallets). Additionally, we will see that the adversary can always generate identity public keys on its
own and use them in transactions.

• NewIdentity() : This oracle generates (ipk, ivk, isk)← GenID(par). It inserts ipk into Identities,
and sets ivk[ipk] := ivk, isk[ipk] := ∅, corr[ipk] := 0. It returns ipk.

• PartCorr(ipk) : This oracle returns ⊥ if ipk /∈ Identities or corr[ipk] 6= 0. Otherwise, it sets
corr[ipk] := 1 and returns ivk[ipk].

• FullCorr(ipk) : This oracle returns ⊥ if ipk /∈ Identities or corr[ipk] 6= 1. Otherwise, it sets
corr[ipk] := 2. Then, it updates received accordingly, i.e.,

received := received +
∑

(pk,com,amt,cr,sk)∈Owned[ipk]

amt.

It returns isk[ipk].

Next, we need to be able to insert some initial supply of outputs into the system. Otherwise, all
transactions would be invalid. This corresponds to mining coins in the real world. In our model, we
let A arbitrarily create new outputs by calling one of the following two oracles. Recalling that an
output contains a public key and a commitment, we may allow A to compute the commitment on its
own, or to let the game compute it. However, we need to keep track of the amount of coins that A
spawned in this way. Therefore, if A submits a (potentially maliciously computed) commitment, it is
only considered valid if it can be received by an honest user.

• NewHonSrc(pk, pseed, com, tag, ct) : This oracle tries find an honest user to receive the given
output. Namely, it runs rcvd← Receive(ipk, pseed, pk, com, tag, ct) for each user ipk ∈ Identities
with corr[ipk] < 2. If for some user, rcvd > 0, it inserts (pk, com) into Outputs.

• NewSrc(pk, amt, cr) : This oracle inserts (pk, com) into Outputs, where com := Com(amt, cr).
It also updates received accordingly, i.e., received := received + amt.

Finally, it is clear that the adversary may put some transactions on the ledger, and we provide an
oracle for that. Additionally, honest parties should publish transactions. For that, we let adversary A
instruct honest users to generate transactions with some specified receivers. We give A the capability
to determine the distribution that the user uses to sample rings and coins that it uses to spend.

• AddTrans(Tx) : This oracle first verifies the given transaction via b := VerTx(PSeeds,Outputs,
Signatures,Tx). If b = 0, it returns. Otherwise, it updates TXs,PSeeds,Outputs, and Signatures
by running UpdateState(Tx). It also updates the owned outputs of all honest users by running
spentnow← UpdateBalances(Tx). Finally, it updates spent := spent + spentnow.

• AddHonTrans(ipk, (ipki, amtouti)
K
i=1 , ISamp,RSamp) : This oracle returns if ipk /∈ Identities or

corr[ipk] = 2. Otherwise, it generates a transaction as follows.

1. Sample inputs to use via

(Usej)
L
j=1 ← ISamp(Owned[ipk])

(Refj)
L
j=1 ← RSamp(Owned[ipk], (Usej)

L
j=1).

19

2. Check validity of the inputs. Namely, let Usej = (pkj , comj , amtj , crj , skj) for j ∈ [L].
If there is an index j ∈ [L] such that Usej /∈ Owned[ipk], or (pkj , comj) /∈ Refj , or
there is an entry (pk, com) ∈ Refj such that (pk, com) /∈ Outputs, return ⊥. Also, if∑L
j=1 amtj 6=

∑K
i=1 amtouti , return ⊥.

3. Generate the transaction via

Tx← GenTx
(

(Usej)
L
j=1, (Refj)

L
j=1,

(
ipki, amtouti

)K
i=1

)
.

If VerTx(PSeeds,Outputs,Signatures,Tx) = 0, return ⊥.

Next, the oracle updates Owned[ipk] := Owned[ipk] \ {Usej}j∈[L], and runs UpdateState(Tx)
and UpdateBalances(Tx). It also updates received accordingly, i.e., received := received+ amtouti

for each i ∈ [K] with ipki /∈ Identities or corr[ipk] = 2. Finally, it returns Tx.

Security Notion. Next, we define the security notion for a private transaction scheme PTS = (LRS,
KDS,VHC,DE,KCS). To this end, we introduce a security game UNFAPTS(λ) for an adversary A. In
the security game, A interacts with all the oracles defined above. Informally, A breaks the security
of the system, if it can create money out of thin air, or steal money from honest users. Therefore, we
say that A wins the security game, if at least one of the following events occur at any point during
the game:

1. Event win-create: We have spent > received.

2. Event win-steal: Adversary A instructs an honest user to generate a transaction using or-
acle AddHonTrans, a transaction Tx is generated accordingly, but does not verify, i.e.,
VerTx(PSeeds,Outputs,Signatures,Tx) = 0.

Consider a private transaction scheme PTS = (LRS,KDS,VHC,DE,KCS). For any algorithm A we
define the game UNFAPTS(λ) as follows:

1. Consider the oracles Oid := (NewIdentity,PartCorr,FullCorr), Osrc = (NewHonSrc,
NewSrc), and Otx = (AddTrans,AddHonTrans) described above.

2. Run A with access to oracles Oid,Osrc,Otx on input 1λ.

3. Output 1, if win-create = 1 or win-steal = 1. Otherwise, output 0.

We say that PTS is secure, if for every PPT algorithm A the following advantage is negligible:

AdvunfA,PTS(λ) := Pr
[
UNFAPTS(λ)→1

]
.

20

Alg UpdateState(Tx)

// Update seeds, outputs, and signatures.
01 parse Tx = (In,Out, pseed, π) := Tx
02 TXs := TXs ∪ {Tx}
03 PSeeds := PSeeds ∪ {pseed}
04 for (pk, com, ct, tag) ∈ Out :
05 Outputs := Outputs ∪ {(pk, com)}
06 for (Ref, com, σ) ∈ In :
07 Signatures := Signatures ∪ {σ}

Alg UpdateBalances(Tx)

// Update balances of honest users.
08 parse (In,Out, pseed, π) := Tx
09 totalrcvd := 0
10 for (pk, com, ct, tag) ∈ Out :
11 for ipk ∈ Identities s.t. corr[ipk] 6= 2 :
12 rcvd← Receive(ipk, pseed, pk, com, tag, ct)
13 totalrcvd := totalrcvd + rcvd
14 return totalrcvd

Alg Receive(ipk, pseed, pk, com, tag, ct)

// An honest user tries to receive an output.
15 if ipk /∈ Identities : return 0
16 ok := RecDecaps(ivk[ipk], pseed)
17 if Track(ipk, ok, pk, tag) = 0 : return 0
18 sk := DerSK(isk[ipk], ok, tag)
19 pk := DerPK(ipk, ok, tag)
20 amt := Dec(ok, tag, ct)
21 cr := DerRand(ok, tag)
22 if Com(amt, cr) 6= com : return 0
23 Owned[ipk] := Owned[ipk] ∪ {(pk, com, amt, cr, sk)}
24 return amt

Figure 4: The algorithms UpdateState,UpdateBalances, and Receive used in the security definition in
Section 4.2. Informally, these algorithms are called when outputs or transactions are added to the
system, see Figure 6.

Oracle NewIdentity()
01 (ipk, ivk, isk)← GenID(par)
02 Identities := Identities ∪ {ipk}
03 ivk[ipk] := ivk, isk[ipk] := isk
04 corr[ipk] := 0, Owned[ipk] := ∅
05 return ipk

Oracle PartCorr(ipk)
06 if ipk /∈ Identities∨corr[ipk] 6= 0 : return ⊥
07 corr[ipk] := 1
08 return ivk[ipk]

Oracle FullCorr(ipk)
09 if ipk /∈ Identities ∨ corr[ipk] 6= 1 : return ⊥
10 corr[ipk] := 2

// User is corrupted. Adversary can control its coins.
11 received := received +

∑
(pk,com,amt,cr,sk)∈Owned[ipk] amt

12 return isk[ipk]

Figure 5: The oracles Oid := (NewIdentity,PartCorr,FullCorr) that are used in the security
definition in Section 4.2.

21

Oracle NewHonSrc(pk, pseed, com, tag, ct)

// Check if non-corrupted user can receive the output.
01 for ipk ∈ Identities s.t. corr[ipk] < 2 :
02 rcvd← Receive(ipk, pseed, pk, com, tag, ct)
03 if rcvd > 0 : Outputs := Outputs ∪ {(pk, com)}
Oracle NewSrc(pk, amt, cr)
04 com := Com(amt, cr)
05 Outputs := Outputs ∪ {(pk, com)}

// Adversary can control this output.
06 received := received + amt

Oracle AddTrans(Tx)
07 if VerTx(PSeeds,Outputs,Signatures,Tx) = 0 : return
08 UpdateState(Tx)
09 spentnow← UpdateBalances(Tx)
10 spent := spent + spentnow
11 if spent > received : win-create := 1

Oracle AddHonTrans(ipk, (ipki, amtouti)i∈[K] , ISamp,RSamp)

12 if ipk /∈ Identities ∨ corr[ipk] = 2 : return ⊥

// Sample parameters for the transaction.
13 (Usej)

L
j=1 ← ISamp(Owned[ipk])

14 (Refj)
L
j=1 ← RSamp(Owned[ipk], (Usej)

L
j=1)

// Check that parameters can lead to valid transaction.
15 inputsum := 0
16 for j ∈ [L] :
17 if Usej /∈ Owned[ipk] : return ⊥
18 parse (pkj , comj , amtj , crj , skj) := Usej
19 inputsum := inputsum + amtj
20 if (pkj , comj) /∈ Refj : return ⊥
21 if ∃(pk, com) ∈ Refj s.t. (pk, com) /∈ Outputs : return ⊥
22 if inputsum 6=

∑K
i=1 amtouti : return ⊥

// Generate transaction, update state, check winning condition.
23 Tx← GenTx

(
(Usej)

L
j=1, (Refj)

L
j=1, (ipki, amtouti)

K
i=1

)
24 if VerTx(PSeeds,Outputs,Signatures,Tx) = 0 :
25 win-steal := 1, return ⊥
26 Owned[ipk] := Owned[ipk] \ {Usej}j∈[L]

27 UpdateState(Tx)
28 UpdateBalances(Tx)
29 for i ∈ [K] s.t. ipki /∈ Identities ∨ corr[ipk] = 2 :
30 received := received + amtouti

31 return Tx

Figure 6: The oracles Osrc = (NewHonSrc,NewSrc) and Otx = (AddTrans,AddHonTrans)
that are used in the security definition in Section 4.2. Algorithms UpdateState,UpdateBalances, and
Receive are given in Figure 4.

22

5 Security Notions for Components
In this section, we fix a private transaction scheme PTS = (LRS,KDS,VHC,DE,KCS). We define
security notions for different components of the scheme. Looking ahead, we will show that if all
components satisfy these notions, then PTS is secure. For each of the notions, we give some intuition
assuming that the reader carefully followed Section 2.

5.1 Notions for Key Derivation
We start with security notions regarding the key derivation scheme KDS. Later, we will see that KDS
also impacts the notions for the linkable ring signature scheme.
Tracking Soundness. Recall that an honest user recognizes received outputs using algorithm Track.
We want to ensure that when an honest user recognizes such an output (i.e., Track outputs 1), then
this output can later be spend without a problem. In other words, if Track outputs 1, then a valid
secret key will be derived. We capture this by the notion of tracking soundness.

Definition 2 (Tracking Soundness). Let A be an algorithm. We define the tracking soundness game
TR-SOUNDAKDS(λ) as follows:

1. Generate (ipk, ivk, isk)← GenID(par) and run A on input par, ipk, ivk, isk.

2. Obtain pseed, pk, tag from A and compute ok := RecDecaps(ivk, pseed) and sk := DerSK(isk, ok, tag).

3. Output 1 if Track(ipk, ok, pk, tag) = 1 and (pk, sk) /∈ KDS.KR. Otherwise, output 0.

We say that KDS satisfies tracking soundness, if for every PPT algorithm A the following advantage
is negligible:

Advtr-soundA,KDS (λ) := Pr
[
TR-SOUNDAKDS(λ)→1

]
.

Key Spreadness. The next notion states that different public seeds pseed, pseed′ or different tags
tag, tag′ also lead to different derived keys sk, sk′. Looking ahead, this ensures that no two signatures
generated by honest users link.

Definition 3 (Key Spreadness). Let A be an algorithm. We define the key spreadness game
SPREADAKDS(λ) as follows:

1. Initialize empty lists Lid and run A on input par with access to an oracle NewIdentity that
does not take any input, generates (ipk, ivk, isk)← GenID(par), insert (ipk, ivk, isk) into Lid, and
returns (ipk, ivk, isk).

2. Obtain an output ipk, ivk, isk, pseed, pseed′ ∈ PSE , tag, tag′ ∈ N from A.

3. Compute

sk := DerSK(isk,RecDecaps(ivk, pseed), tag),

sk′ := DerSK(isk,RecDecaps(ivk, pseed′), tag′).

4. Output 1 if (pseed, tag) 6= (pseed′, tag′), (ipk, ivk, isk) ∈ Lid, and sk = sk′. Otherwise, output 0.

We say that KDS satisfies key spreadness, if for every PPT algorithm A the following advantage is
negligible:

AdvspreadA,KDS(λ) := Pr
[
SPREADAKDS(λ)→1

]
.

23

5.2 Notions for the Verifiable Homomorphic Commitment
Next, we define the security notions related to the verifiable homomorphic commitment scheme VHC,
and the key conversion scheme KCS.
Conversion Soundness. Recall that KCS allows to transform pairs of commitment randomness cr, cr′
for commitments com, com′ to the same data amt into auxiliary keys auxsk and auxpk. Intuitively,
when one then uses auxsk in the ring signature and cr′ in a pseudo output commitment, this should
prove that one knew cr. Our notion of conversion soundness roughly states that knowing auxsk and
cr′ implies (via a translation algorithm) knowing cr. In other words, if conversion soundness holds,
then it is enough to show that a generating a valid transaction requires knowledge of auxsk and cr′.

Definition 4 (Conversion Soundness). Let A and Translate be algorithms. We define the conversion
soundness game CONV-SOUNDAKCS,VHC,Translate(λ) as follows:

1. Run A on input par and obtain amt, cr′, com, com′, auxpk, auxsk in return.

2. Run cr← Translate(amt, cr′, com, com′, auxpk, auxsk).

3. Output 1 if both of the following two conditions hold, otherwise output 0:

(a) Com(amt, cr′) = com′, (auxpk, auxsk) ∈ AKR, and ConvertPublic(com, com′) = auxpk.

(b) Com(amt, cr) 6= com or ConvertSecret(cr, cr′) 6= auxsk.

We say that (KCS,VHC) satisfies conversion soundness, if there is a PPT algorithm Translate, such
that for every PPT algorithm A the following advantage is negligible:

Advconv-soundA,Translate,KCS,VHC(λ) := Pr
[
CONV-SOUNDAKCS,VHC,Translate(λ)→1

]
.

In this case, we say that Translate is the conversion translator of (KCS,VHC).

Binding Commitment. Clearly, the commitment scheme should satisfy the standard notion of
binding, to ensure that an adversary can not change the amount of an output.

Definition 5 (Binding). We say that VHC is binding, if for every PPT algorithm, the following
advantage is negligible:

AdvbindA,VHC(λ) := Pr
G

[
(amt, cr) 6= (amt′, cr′)

∧ Com(amt, cr) = Com(amt′, cr′)

]
,

where G is given as (amt, cr, amt′, cr′)← A(par).

Commitment Knowledge Soundness. The next notion states that the proofs π included in
transactions are proofs of knowledge. Precisely, if an adversary generates pseudo output commitments
and output commitments for a transaction along with a proof π, then the adversary must know the
corresponding amt and commitment randomness cr. Looking ahead, the technical reason why we
require a proof of knowledge is that we have to extract cr before we can reduce to binding in an
overall proof of security.

Definition 6 (Commitment Knowledge Soundness). Let A and ExtVHC be algorithms. We define the
commitment knowledge soundness game C-KN-SOUNDAVHC,ExtVHC(λ) as follows:

1. Set bad := 0. Let O be an oracle which does the following on input (stmt, π):

24

(a) Run witn← ExtVHC(stmt, π), where ExtVHC may inspect the random oracle queries (if any)
of A.

(b) Write stmt = (comi)i and witn = (amti, cri)i.

(c) If PVer(stmt, π) = 1 and there is some i such that Com(amti, cri) 6= comi, then set
bad := 1.

2. Run A on input par with access to oracle O. Then, output bad.

We say that VHC satisfies commitment knowledge soundness, if there is a PPT algorithm ExtVHC,
such that for every PPT algorithm A the following advantage is negligible:

Advc-kn-soundA,ExtVHC,VHC(λ) := Pr
[
C-KN-SOUNDAVHC,ExtVHC(λ)→1

]
.

In this case, we refer to algorithm ExtVHC as the commitment knowledge extractor of VHC.

5.3 Notions for the Ring Signature
In this section, we define security notions for the two-dimensional linkable ring signature scheme
LRS. Notably, these deviate from standard notions for linkable ring signature, and are related to
the key derivation scheme KDS. Intuitively, this is because key derivation may introduce additional
relations between keys that are not captured by the standard notions.
Non-Slanderability. A well-established notion for linkable ring signatures is non-slanderability.
This notion states that it is not possible for an adversary to come up with a signature that links to
an honest user’s signature. In our setting, this means that it can not happen that an honest user
computes a signature on a transaction using a valid secret key, and this transaction gets rejected
because the signature links to a previous signature. However, we can not just use the standard
non-slanderability notion, because the key derivation scheme KDS introduces non-trivial relations
between keys. Hence, we define a game that is similar to non-slanderability, but for keys that are
derived using KDS. When making signature queries, the adversary can specify the parameters with
which the secret key sk is derived from an identity signing key isk.

Definition 7 (Non-Slanderability). Let A be an algorithm. We define the non-slanderability game
NON-SLANDALRS,KDS(λ) as follows:

1. Initialize empty lists Lid,Ls,Lc,Signatures, and PKs, and define the following oracles:

• NewIdentity() : Generate (ipk, ivk, isk)← GenID(par) and insert (ipk, ivk, isk) into Lid.
Return (ipk, ivk).

• Corr(ipk) : If there is an entry of the form (ipk, ivk, isk) in Lid, then insert ipk into Lc
and return isk. Otherwise, return ⊥.

• Sign(pk, pseed, tag,R, auxsk,m) :

(a) Find an entry (ipk, ivk, isk) ∈ Lid such that Track(ipk, ok, pk, tag) = 1 for ok :=
RecDecaps(ivk, pseed). If no such entry is found, return ⊥.

(b) Run sk := DerSK(isk, ok, tag).
(c) Compute σ ← Sig(R, sk, auxsk,m). Then, insert (ipk, pk,R,m, σ) into Ls, σ into

Signatures, and pk into PKs.
(d) Return σ.

25

2. Run A on input par with access to oracles NewIdentity,Corr,Sign. Obtain an output
(R∗,m∗, σ∗) from A. Output 1 if all of the following conditions hold. Otherwise output 0:

(a) We have Ver(R∗,m∗, σ∗) = 1.

(b) There does not exists ipk, pk, σ such that (ipk, pk,R∗,m∗, σ) ∈ Ls.
(c) There exists an (ipk, pk,R,m, σ) ∈ Ls such that Link(σ, σ∗) = 1 and ipk /∈ Lc.

We say that (LRS,KDS) satisfies non-slanderability, if for every PPT algorithm A the following
advantage is negligible:

Advnon-slandA,LRS,KDS(λ) := Pr
[
NON-SLANDALRS,KDS(λ)→1

]
.

Key Onewayness. We also define a weaker notion related to non-slanderability. Namely, the
adversary should not be able to come up with secret keys without corrupting a user, given access to
the same oracles as in the non-slanderability game.

Definition 8 (Key Onewayness). Let A be an algorithm. We define the key onewayness game
K-OWA

LRS,KDS(λ) as follows:

1. Let the oracles NewIdentity,Corr,Sign be as in game NON-SLANDALRS,KDS(λ).

2. Run A on input par with access to oracles NewIdentity,Corr,Sign. Obtain an output
(ipk∗, pk∗, pseed∗, tag∗, sk∗) from A. Output 1 if both of the following conditions hold. Otherwise
output 0:

(a) We have (pk∗, sk∗) ∈ KR.
(b) There exists an entry (ipk∗, ivk, isk) ∈ Lid such that ipk∗ /∈ Lc, and Track(ipk∗, ok, pk∗, tag∗) =

1 for ok := RecDecaps(ivk, pseed∗).

We say that (LRS,KDS) satisfies key onewayness, if for every PPT algorithm A the following advantage
is negligible:

Advk-owA,LRS,KDS(λ) := Pr
[
K-OWA

LRS,KDS(λ)→1
]
.

Key Knowledge Soundness. If we want to use the notion of conversion soundness introduced above,
we first need to extract an auxiliary secret key auxsk from an adversary submitting a transaction.
Therefore, we introduce a strong property called key knowledge soundness. Roughly speaking, it
states that LRS is a signature of knowledge, i.e., the adversary can only come up with a valid signature,
if it knows a valid secret key (sk, auxsk). Before we give the definition, let us discuss one subtlety. A
natural way of defining this notion would be to allow the adversary to submit tuples (R,m, σ) to an
oracle O, and let this oracle try to extract suitable secret keys via an extractor in the algebraic group
model. If this extraction fails, the adversary wins. While this is a good start, it is not exactly what
we want. Namely, in our setting, the adversary also receives signatures from outside, e.g., when we
want to do a reduction breaking key onewayness. If the adversary simply submits these signatures
to O, there is no hope that the adversary knew any secret keys. On a technical level, we would
also encounter composition problems with the algebraic group model. This is because our definition
defines the basis for algebraic representations that the algebraic adversary submits, and that are
used by the extractor. If this basis is different when we want to apply key knowledge soundness (e.g.,
because the adversary received additional group elements as part of keys of honest users), then the
extractor is useless. This motivates why we give additional oracles to the adversary in our notion.

26

Definition 9 (Key Knowledge Soundness). Let A be an algebraic algorithm, and ExtLRS be an
algorithm. We define the key knowledge soundness game K-KN-SOUNDALRS,KDS,ExtLRS(λ) as follows:

1. Let the oracles NewIdentity,Corr,Sign be as in game NON-SLANDALRS,KDS(λ).

2. Let O be an oracle which does the following on input (R,m, σ):

(a) If there are some ipk, pk, σ′ such that an entry (ipk, pk,R,m, σ′) is in Ls, then return.

(b) If Ver(R,m, σ) = 0, then return.

(c) Run (i∗, ski∗ , auxski∗) ← ExtLRS(R,m, σ), where ExtLRS may inspect the random oracle
queries (if any) of A, but ExtLRS is not allowed to inspect the state or random oracle
queries of other oracles or the game. Further, ExtLRS is allowed to inspect all interfaces
(i.e., inputs and outputs) of oracles NewIdentity,Corr,Sign.

(d) Write R = (pki, auxpki)i. If (auxpki∗ , auxski∗) /∈ AKR or (pki∗ , ski∗) /∈ KR, then set
bad := 1.

3. Run A on input par with access to oracles NewIdentity,Corr,Sign,O. Then, output bad.

We say that (LRS,KDS) satisfies key knowledge soundness, if there is a PPT algorithm ExtLRS, such
that for every PPT algorithm A the following advantage is negligible:

Advk-kn-soundA,ExtLRS,LRS,KDS(λ) := Pr
[
K-KN-SOUNDALRS,KDS,ExtLRS(λ)→1

]
.

In this case, we refer to algorithm ExtLRS as the knowledge extractor of (LRS,KDS).

Remark 1. For the proof of key knowledge soundness (cf. Lemma 16), we encourage the interested
reader to identify the complexity that stems from the existence of oracles NewIdentity,Corr,Sign.
In a nutshell, the proof would be significantly less cumbersome if the adversary was not able to use
group elements output by these oracles as basis elements for the representation in the algebraic group
model.

Knowledge Linkability. Typically, linkable ring signatures should satisfy linkability. Informally,
this notion states that if one uses the same secret key to compute two signatures, then these will link.
The formalization of this intuition is non-trivial. Namely, we observe that the standard formalization
(sometimes called pigeonhole linkability) is not enough for our purposes (cf. Section 1.2). Instead,
we need a notion that is compatible with the extractor we defined for key knowledge soundness.
This is because, in some sense, the extractor already tells us which key was used to compute a
signature. Motivated by this, we define knowledge linkability, which roughly rules out that the
extractor extracted the same sk twice from two signatures σ, σ′ that do not link. In other words, it
guarantees that if the extractor extracts the same key twice, then the corresponding signatures must
link.

Definition 10 (Knowledge Linkability). Let A be an algebraic algorithm, and ExtLRS be an algorithm.
We define the knowledge linkability game KN-LINKALRS,KDS,ExtLRS(λ) as follows:

1. Let the oracles NewIdentity,Corr,Sign be as in game NON-SLANDALRS,KDS(λ).

2. Let O be an oracle which does the following on input (R,m, σ):

(a) If there are some ipk, pk, σ′ such that an entry (ipk, pk,R,m, σ′) is in Ls, then return.

27

(b) If Ver(R,m, σ) = 0, return. Otherwise, parse R = (pki, auxpki)i.

(c) Run (i∗, ski∗ , auxski∗) ← ExtLRS(R,m, σ), where ExtLRS may inspect the random oracle
queries (if any) of A, but ExtLRS is not allowed to inspect the state or random oracle
queries of other oracles or the game. Further, ExtLRS is allowed to inspect all interfaces
(i.e., inputs and outputs) of oracles NewIdentity,Corr,Sign.

(d) If (i∗, ski∗ , auxski∗) 6= ⊥, and all of the following conditions hold, then set bad := 1:

i. For all σ′ ∈ Signatures, we have Link(σ, σ′) = 0.
ii. The key pki∗ is in PKs (i.e., a corresponding secret key has been used to generate a

signature in Signatures).

(e) Insert pki∗ into PKs and σ into Signatures.

3. Run A on input par with access to oracles NewIdentity,Corr,Sign,O. Then, output bad.

Assume that (LRS,KDS) satisfies key knowledge soundness with knowledge extractor ExtLRS. We say
that (LRS,KDS) satisfies knowledge linkability, if for every PPT algorithm A the following advantage
is negligible:

Advkn-linkA,ExtLRS,LRS,KDS(λ) := Pr
[
KN-LINKALRS,KDS,ExtLRS(λ)→1

]
.

Knowledge Non-Slanderability. While we already defined non-slanderability, it will be convenient
to show non-slanderability by using the knowledge extractor. We capture the requirements that the
extractor needs to satisfy to be useful for this in the following notion. However, we highlight that
this notion is not used directly in the proof of the system. Instead, we will show that this notion,
in combination with key onewayness, implies non-slanderability, see Lemma 10. Intuitively, this
notion, which we call knowledge non-slanderability, serves as a counterpart to knowledge linkability:
Knowledge linkability states that if we extract the same key, then signatures will link. Knowledge
non-slanderability states that if two signatures link, then we extract the same key.

Definition 11 (Knowledge Non-Slanderability). Let A be an algebraic algorithm, and ExtLRS be
an algorithm. We define the knowledge non-slanderability game KN-N-SLANDALRS,KDS,ExtLRS(λ) as
follows:

1. Let the oracles NewIdentity,Corr,Sign be as in game NON-SLANDALRS,KDS(λ).

2. Let O be an oracle which does the following on input (R,m, σ):

(a) If there are some ipk, pk, σ′ such that an entry (ipk, pk,R,m, σ′) is in Ls, then return.

(b) If Ver(R,m, σ) = 0, return. Otherwise, parse R = (pki, auxpki)i.

(c) Run (i∗, ski∗ , auxski∗) ← ExtLRS(R,m, σ), where ExtLRS may inspect the random oracle
queries (if any) of A, but ExtLRS is not allowed to inspect the state or random oracle
queries of other oracles or the game. Further, ExtLRS is allowed to inspect all interfaces
(i.e., inputs and outputs) of oracles NewIdentity,Corr,Sign.

(d) If (i∗, ski∗ , auxski∗) 6= ⊥, and there is an entry (ipk′, pk′,R′,m′, σ′) in Ls such that following
conditions hold, then set bad := 1:

i. We have Link(σ, σ′) = 1.
ii. We have pki∗ 6= pk′.

(e) Insert pki∗ into PKs and σ into Signatures.

28

3. Run A on input par with access to oracles NewIdentity,Corr,Sign,O. Then, output bad.

Assume that (LRS,KDS) satisfies key knowledge soundness with knowledge extractor ExtLRS. We say
that (LRS,KDS) satisfies knowledge non-slanderability, if for every PPT algorithm A the following
advantage is negligible:

Advkn-n-slandA,ExtLRS,LRS,KDS(λ) := Pr
[
KN-N-SLANDALRS,KDS,ExtLRS(λ)→1

]
.

29

6 System Level Security Analysis
In this section, we prove the security of a private transaction scheme assuming the security of building
blocks. Before we give the formal statement and proof, we present the main ideas in an informal
overview. For both the informal overview and the formal analysis, we consider the two winning
conditions separately. We assume that the reader is familiar with the syntax and security definition
introduced in Section 4, the security notions for building blocks introduced in Section 5, and our
informal overview of Monero in Section 2.
Honest User Can not Spend. We start with winning condition win-steal. Formally, we bound
the probability that the adversary wins by triggering this condition in Lemma 1. Informally, the
adversary wins via winning condition win-steal, if it submits a transaction with an output o that
an honest user receives, and later the honest user can not spend this output. More concretely, the
adversary instructs the user to compute a transaction Tx using this output via algorithm GenTx, and
then Tx is invalid, i.e., VerTx outputs 0. To bound the probability of this event, we consider the
different conditions that make algorithm VerTx output 0, see Figure 3. Write Tx = (In,Out, pseed, π),
In = (Refj , comj , σj)

L
j=1, and Out =

(
pkouti , comout

i , cti, tagi
)K
i=1

. The cases are as follows.

• VerTx may output 0 because the public seed pseed contained in Tx is not fresh, i.e., there is a
previous transaction that has the same public seed. As pseed is generated freshly by the honest
user during generation of Tx (see algorithm GenTx in Figure 2), we can rely on the entropy of
pseed to rule this case out.

• VerTx may output 0 because some input contained in the transaction Tx is not a previous
output. However, an honest user would never include such an input in a transaction. Thus,
this case can not occur.

• VerTx may output 0 because commitments included in the transaction Tx are not valid, i.e.,
the proof π does not verify, or

∑L
j=1 comj 6=

∑K
i=1 com

out
i . Note that all involved commitments

and the proof π are computed honestly in GenTx, and it follows from the completeness of VHC
that this case never happens.

• VerTx may output 0 because one of the signatures σj is not valid.

• VerTx may output 0 because of double spending detection. That is, it may reject the transaction
because one of the signatures σj links to a previous signature.

For the last two cases, we observe that the secret key that is used to compute the signatures is derived
from the output o, which is provided by the adversary. Therefore, we can not use completeness
properties immediately and require additional arguments. Namely, for the case of invalid signatures,
we first apply the tracking soundness notion. This notion tells us that for any output o = (pk, com)
that an honest user receives from an adversary, it derives a valid secret key sk such that (pk, sk) ∈ KR.
Now, we can apply completeness of LRS to argue that the signature is always valid. The case of
linking signatures is a bit more challenging. Namely, we consider two sub-cases. If the signature
links to a maliciously generated signature, i.e., a signature that is contained in a transaction that
the adversary submitted, then the adversary breaks non-slanderability. On the other hand, if the
signature links to a signature that is also generated by an honest user, then we want to use the
completeness property of LRS again. Specifically, it states that signatures computed honestly using
different secret keys do not link. Now, it remains to argue that an honest party does not use the
same secret key twice. For that, we make use of the key spreadness notion, and the fact that public
seeds are not reused.

30

Adversary Creates Money. Consider the second winning condition win-create. Formally, the
probability that the adversary wins by triggering this condition is bounded in Lemma 3. Looking
ahead, our main strategy is to define a graph G and a flow network for G, which models the flow of
coins in the system. In such a flow network, we assign a flow value f(e) ≥ 0 to each edge e in the
graph, such that for each vertex (except a dedicated source and sink) the incoming flow equals the
outgoing flow. The proof proceeds in four main steps, which are as follows:

1. We consider each transaction and extract all hidden amounts and used secret keys. More
precisely, for each output and pseudo output of the transaction, we extract the hidden amount
and random coins for the commitments using commitment knowledge soundness. For each
signature contained in the transaction, we extract the secret key and auxiliary secret that have
been used to generate the signature. This is done using key knowledge soundness. Especially,
we are now able to distinguish real inputs from decoys.

2. Using the knowledge we gained from the first step, we define a directed graph G = (V,E), and
an assignment f(e) ≥ 0 to each edge e ∈ E. In this graph, there is dedicated source vertex
s ∈ V , and a dedicated sink vertex t ∈ V . Further, for each output and each transaction in the
system, there is an associated vertex. Whenever an output is used in a transaction, there is
an edge e from the output vertex to the transaction vertex, such that f(e) is the associated
amount. Further, there is an edge from each transaction to all of its outputs, with f(e) being
the amount of the output.

3. We show that this graph and the assignment f define a flow network. Namely, we show that for
each vertex v (except s and t) the incoming flow, i.e.,

∑
e=(u,v)∈E f(e), is equal to the outgoing

flow
∑
e=(v,w)∈E f(e). For that, we distinguish transaction and output vertices:

(a) For transaction vertices, we first show that the sum of amounts is preserved between
pseudo outputs and outputs. To do that, we use the homomorphic property and the
binding property of VHC. Then, we show that for each input, the amount is preserved
between the input (which is the output of a previous transaction) and the associated
pseudo output. For that, we first leverage conversion soundness, and then apply binding
of VHC once more. Note that we can only reduce from binding because we extracted
amounts and random coins for each commitment before.

(b) Each output vertex has in-degree one by definition. Thus, as long as we can show it also
has out-degree one, the flow preservation follows. The main tool to show this is knowledge
linkability.

4. For the final step, recall that an st-cut in G is a partition of V into two disjoint sets of vertices
Vs, Vt with s ∈ Vs and t ∈ Vt. We can define the value of any such st-cut as the net flow from
Vs to Vt. Our idea now is to leverage the fact that in any flow network, the value of any cut is
equal to the incoming flow of the sink vertex t. Defining such an st-cut appropriately, we can
prove that the winning condition can not be triggered, i.e., the adversary can not create coins.

Formal Security Result. We obtain the following security theorem, which follows directly from
Lemmas 1 and 3.

Theorem 1. Let PTS = (LRS,KDS,VHC,DE,KCS) be a private transaction scheme, and assume
that the following properties hold:

• KDS satisfies tracking soundness and key spreadness, and has ω(log λ) bits of entropy of public
seeds.

31

• (KCS,VHC) satisfies conversion soundness, and VHC is binding and satisfies commitment
knowledge soundness.

• (LRS,KDS) satisfies non-slanderability, key onewayness, key knowledge soundness, and knowl-
edge linkability.

• The relation KR is unique, i.e., for each pk ∈ PK there is at most one sk ∈ SK such that
(pk, sk) ∈ KR.

Then, PTS is secure.

6.1 Bounding Winning Condition win-steal
Lemma 1. Assume KDS has h bits of entropy of public seeds. Let A be a PPT algorithm that makes
at most Qaht, Qat, Qni, QHtrm queries to oracles AddHonTrans,AddTrans,NewIdentity,Htrm,
respectively. Then, there are PPT algorithms B,B′,B′′ with T(B) ≈ T(A),T(B′) ≈ T(A),T(B′) ≈
T(A) and

Pr [win-steal = 1] ≤ Qaht(Qat +Qaht)

2h
+
Q2

Htrm

2`

+2Qni · Advtr-soundB,KDS (λ) + AdvspreadB′,KDS(λ) + Advnon-slandB′′,LRS,KDS(λ).

Proof. Consider an adversary A and the game UNFAPTS(λ). Assume that win-steal occurs. By
definition, this means that during an oracle query AddHonTrans(ipk, (ipki, amtouti)

K
i=1 , ISamp,

RSamp) a transaction Tx = (In,Out, pseed, π) is generated using algorithm GenTx, and then it
holds that VerTx(PSeeds,Outputs,Signatures,Tx) = 0. Recall that algorithm VerTx outputs 0 due
to one of five reasons. For each of these, we define a corresponding event. Formally, write In =

(Refj , comj , σj)
L
j=1 and Refj = (pkinj,r, com

in
j,r)
|Refj |
r=1 for each j ∈ [L]. Also, define the variables

m, auxpkr,Rj as in the definition of algorithm VerTx. We define the following events, covering the
four reasons that lead to algorithm VerTx outputting 0. When we say that such an event occurs, we
mean that it occurs in any oracle call.

1. Event PSeedColl: This event occurs, if pseed ∈ PSeeds.

2. Event NoPrevious: This event occurs, if there is a j ∈ [L] and an r ∈ [|Refj |] such that
(pkinj,r, com

in
j,r) /∈ Outputs. This means that there is an input that is not a previous output.

3. Event InvalidSig: This event occurs, if there is a j ∈ [L] such that LRS.Ver(Rj ,m, σj) = 0. This
means that there is a signature that is not valid.

4. Event InvalidCom: This event occurs, if for stmt =
(

(comj)
L
j=1 , (com

out
i)

K
i=1

)
we have PVer(stmt, π) =

0, or if we have
∑L
j=1 comj 6=

∑K
i=1 com

out
i . This means that the commitments are not valid.

5. Event Linking: This event occurs if there are distinct j, j′ ∈ [L] such that Link(σj , σj′) = 1
or Link(σj , σ) = 1 for some σ ∈ Signatures. In such a case, we call σj and σj′ new linking
signatures, and σ an old linking signature.

32

Clearly, we have

Pr [win-steal = 1] ≤ Pr [PSeedColl] + Pr [NoPrevious] + Pr [InvalidSig]

+ Pr [InvalidCom]

+ Pr [Linking ∧ ¬InvalidSig ∧ ¬PSeedColl].

We bound the probability of these events separately.

Claim 1. Pr [PSeedColl] ≤ Qaht(Qat +Qaht) · 2−h.

To show the claim, consider a fixed call of the Qaht calls to oracle AddHonTrans. As the size
of list PSeeds is at most Qat + Qaht, the probability that in this call event PSeedColl occurs is at
most (Qat +Qaht) · 2−h, by a union bound and the entropy of public seeds. Another union bound
over the Qaht calls to oracle AddHonTrans shows the claim.

Claim 2. Pr [NoPrevious] = 0.

Recall that event NoPrevious can only occur in calls to oracle AddHonTrans. Thus, consider
such a call. Recall that oracle AddHonTrans checks for each j ∈ [L] if there is some entry (pk, com)
in Refj such that (pk, com) /∈ Outputs. If this is the case for any such j, oracle AddHonTrans does
not generate a transaction Tx at all. Therefore, we know that Pr [NoPrevious] = 0.

Claim 3. Pr [InvalidCom] = 0.

Recall the definition of (Usej)
L
j=1 from oracle AddHonTrans. For each j ∈ [L] we can write

Usej = (pkj , comj , amtj , crj , skj). We can assume that for each j ∈ [L], it holds that Usej ∈
Owned[ipk], as otherwise the oracle would return ⊥ and not generate Tx. Therefore, we know
that comj = Com(amtj , crj), as otherwise this entry would not have been added to list Owned[ipk].
Also, oracle AddHonTrans would return ⊥ and not generate Tx if

∑L
j=1 amtj 6=

∑K
i=1 amtouti . By

definition of algorithm GenTx, we have

comout
i = Com(amtouti , crouti) for all i ∈ [K], and

L∑
j=1

crj =

K∑
i=1

crouti .

The first property, in combination with the completeness of VHC, implies that PVer(stmt, π) = 1. The
second property, in combination with comj = Com(amtj , crj) for all j ∈ [L], and the homomorphic
property of VHC implies that

L∑
j=1

comj =

L∑
j=1

Com (amtj , crj) = Com

 L∑
j=1

amtj ,
L∑
j=1

crj

= Com

(
K∑
i=1

amtouti ,

K∑
i=1

crouti

)
=

K∑
i=1

Com
(
amtouti , crouti

)
=

K∑
i=1

comout
i .

Therefore, event InvalidCom does not occur.

To analyze event InvalidSig, we define the following event:

• Event InvalidKey: This event occurs whenever an entry (pk, com, amt, cr, sk) is added to
Owned[ipk] for some ipk ∈ Identities and (pk, sk) /∈ KR.

Claim 4. Pr [InvalidSig] ≤ Pr [InvalidKey].

33

To show this claim, we first note that

Pr [InvalidSig] ≤ Pr [InvalidKey] + Pr [InvalidSig | ¬InvalidKey].

Therefore, it is sufficient to show that InvalidSig can not occur, assuming that InvalidKey does not occur.
To see this, fix some j ∈ [L] and note that oracle AddHonTrans would return ⊥ and not generate
Tx, if (pkj , comj) /∈ Refj . Also, recall that σj is computed via σj ← LRS.Sig(Rj , skj , auxskj ,m). Let
r̂ be the index of (pkj , comj) in Refj . By definition of GenTx, we see that the r̂th entry in Rj is
(pkj , auxpkj) for auxpkj = ConvertPublic(comj ,Com(amtj , cr

′
j)) for some cr′j . Further, we have comj =

Com(amtj , crj) by definition of algorithm Receive. Also, we have auxskj = ConvertSecret(crj , cr
′
j). By

completeness of KCS, this implies that (auxpkj , auxskj) ∈ AKR. Also, as InvalidKey does not occur,
and oracle AddHonTrans checks that Usej ∈ Owned[ipk], we know that (pkj , skj) ∈ KR. Thus, it
follows by completeness of LRS that σj is a valid signature. This shows the claim.

Claim 5. For every PPT algorithm A, there exists a PPT algorithm B with T(B) ≈ T(A) and

Pr [InvalidKey] ≤ Qni · Advtr-soundB,KDS (λ).

To prove the claim, we describe algorithm B against the tracking soundness of KDS.

• B gets as input (par, ipk∗, ivk∗, isk∗). It first samples i∗←$ [Qni].

• B simulates game UNFPTS honestly for A, except for the i∗th query to oracle NewIdentity.
In this query, it inserts ipk∗ into Identities, and sets ivk[ipk∗] := ivk∗, isk[ipk∗] := isk∗ and returns
ipk∗.

• Whenever B runs Receive(ipk, pseed, pk, com, tag, ct) during this simulation for ipk = ipk∗, B
checks if InvalidKey occurs in this execution of Receive. Note that B can efficiently check that,
as KR is efficiently decidable. If InvalidKey occurs, B outputs pseed, pk, tag and terminates.

Clearly, the running time of B dominated by the running time of A, and B simulates game UNFPTS

perfectly until it terminates, and B terminates exactly when InvalidKey occurs. Further, if B
terminates, then it breaks tracking soundness of KDS. As A does not obtain any information about
i∗, the claim follows.

Claim 6. For every PPT algorithm A, there exist PPT algorithms B′ and B′′ with T(B′) ≈ T(A) ≈
T(B′′) and

Pr [Linking ∧ ¬InvalidSig ∧ ¬PSeedColl] ≤ AdvspreadB′,KDS(λ) + Pr [InvalidKey]

+ Advnon-slandB′′,LRS,KDS(λ) +
Q2

Htrm

2`
.

To prove the claim, we define two more events.

• Event LinkingHon: This event occurs, if Linking occurs, and the linking signatures σ, σ′ were
both computed by the game during queries to AddHonTrans.

• Event LinkingMal: This event occurs, if Linking occurs, and the old signature σ is part of a
transaction Tx submitted by A via oracle AddTrans.

34

Also, LinkingHon and LinkingMal cover event Linking, and thus we have

Pr [Linking ∧ ¬InvalidSig ∧ ¬PSeedColl] ≤ Pr [LinkingHon ∧ ¬InvalidSig ∧ ¬PSeedColl]
+ Pr [LinkingMal ∧ ¬InvalidSig ∧ ¬PSeedColl].

We bound these probability separately, starting with the former one. First, recall the event InvalidKey
from before. Assuming ¬InvalidSig ∧ ¬InvalidKey, completeness of LRS implies that LinkingHon can
only occur, if the two secret keys sk and sk′ that are used to compute the linking signatures are the
same. This leads to a straight-forward reduction B′ that breaks the key spreadness of KDS, assuming
¬InvalidSig ∧ ¬InvalidKey ∧ ¬PSeedColl ∧ LinkingHon. We get

Pr [LinkingHon ∧ ¬InvalidSig ∧ ¬PSeedColl] ≤ AdvspreadB′,KDS(λ) + Pr [InvalidKey].

To bound the probability of LinkingMal∧¬InvalidSig∧¬PSeedColl and finish the proof of the claim,
we sketch algorithm B′′ against the non-slanderability of (LRS,KDS), that is successful whenever
LinkingMal ∧ ¬InvalidSig ∧ ¬PSeedColl occurs.

• B′′ gets as input parameters par, and oracle access to oracles NewIdentity′,Corr,Sign. It
simulates game UNFPTS for A, except with the following changes.

• When A queries oracle NewIdentity, B′′ queries NewIdentity′ and obtains (ipk, ivk). It
inserts ipk into Identities and sets ivk[ipk] := ivk as the real game would do. Then, it returns
ipk.

• When A queries oracle FullCorr(ipk), B′′ queries Corr(ipk) to get isk[ipk]. It continues the
simulation of FullCorr as the real game does.

• Whenever B′′ needs to compute a key sk via DerSK(isk[ipk], ok, tag) during execution of al-
gorithm Receive, and it holds that corr[ipk] < 2, i.e., B′′ does not have isk[ipk], it postpones
the computation of sk. However, note that it can still compute pk := DerPK(ipk, ok, tag).
Later, when A queries oracle AddHonTrans(ipk, ·) such that this sk is needed to sign
in algorithm GenTx, B′′ uses oracle Sign to compute the signature. Concretely, it calls
Sign(pk, pseed, tag,R+, auxsk,m+), where pseed, tag,R+, auxsk,m+ are chosen appropriately
as in algorithm GenTx. If at this point event LinkingMal ∧ ¬InvalidSig occurs (which can be
efficiently verified), then we know that the resulting signature σ+ is a new linking signature
and there is an old linking signature σ∗, using the terminology introduced in event Linking. We
have Link(σ+, σ∗) = 1. Let R∗,m∗ be such that LRS.Ver(R∗,m∗, σ∗) = 1 during the verification
of the transaction that contained σ∗. In this case, B′′ terminates and outputs (R∗,m∗, σ∗)
as a forgery in the non-slanderability game, where σ∗ is the old linking signature (with the
terminology introduced in event Linking), and R∗,m∗ are such that LRS.Ver(R∗,m∗, σ∗) = 1

Clearly, the running time of B′′ dominated by the running time of A, and B′′ simulates game UNFPTS

perfectly until it terminates, and B′′ terminates exactly when LinkingMal occurs. Further, we claim
that if B′′ terminates, then it breaks non-slanderability of (LRS,KDS) with overwhelming probability.
As AddHonTrans only signs transactions for users that are not fully corrupted, we know that B′′
never queried Corr(ipk), where ipk is the first input of AddHonTrans that leads to termination
of B′′. By definition of LinkingMal ∧ ¬InvalidSig, the only winning condition that is left to check
is the freshness condition, i.e., R∗ and m∗ were never submitted as part of an input of a query to
oracle Sign. Assume towards contradiction that this does not hold. Then especially m∗ has been
submitted to Sign, which is only called by B′′ when it generates and signs honest transactions. Let
that transaction be Txhon. As we assume LinkingMal occurs, we know that R∗,m∗, σ∗ is associated to

35

a maliciously generated transaction Txmal. As we assume ¬PSeedColl, we know that the transactions
Txhon and Txmal have different public seeds, which are part of the random oracle input Htrm that
generated m∗ (cf. Figure 2). This implies that there is a collision for random oracle Htrm. A union
bound over all Q2

Htrm
pairs of queries to Htrm shows that the probability of such a collision for

random oracle Htrm is at most Q2
Htrm

/2`. Therefore, we have

Pr [LinkingMal ∧ ¬InvalidSig ∧ ¬PSeedColl] ≤ Advnon-slandB′′,LRS,KDS(λ) +
Q2

Htrm

2`
.

The claim follows, finishing the proof of the Lemma.

6.2 Bounding Winning Condition win-create
Before we can bound win-create, we need to define flow networks and prove a simple and well-known
fact about these. We start with some definitions.

Definition 12 (Flow Network). A flow network is a tuple (G, s, t, f) with the following properties:

• G = (V,E) be a connected directed graph, which has exactly one vertex s ∈ V with in-degree
zero and exactly one vertex t ∈ V \ {s} with out-degree zero.

• f : E → R≥0 is a function, such that

∀v ∈ V \ {s, t} :
∑

e=(u,v)∈E

f(e) =
∑

e=(v,w)∈E

f(e).

Definition 13 (st-Cut). Let (G = (V,E), s, t, f) be a flow network. An st-cut (Vs, Vt) is a partition
V = Vs ∪ Vt into disjoint sets Vs, Vt such that s ∈ Vs and t ∈ Vt. Further, the value of such an st-cut
with respect to f and G is defined as

val(Vs, Vt) :=
∑

e∈Vs×Vt∩E
f(e)−

∑
e∈Vt×Vs∩E

f(e).

Next, we show that any st-cut has the same value.

Lemma 2. Let (G = (V,E), s, t, f) be a flow network. Then all st-cuts have the same value. In
particular, for any st-cut (Vs, Vt), we have

val(Vs, Vt) = val(V \ {t}, {t}) =
∑

e=(v,t)∈E

f(e).

Proof. Let G, s, t, and f be as in the statement. We show that all st-cuts have the same value. To
do that, it is sufficient to show the following claim: For any st-cut (Vs, Vt) with |Vs| ≥ 2, i.e., there is
some vertex x ∈ Vs \ {s}, we have

val(V ′s , V
′
t) = val(Vs, Vt) for V ′s := Vs \ {x}, V ′t := Vt ∪ {x}.

36

To simplify notation, we define [X,Y] := X × Y ∩ E for any vertex sets X,Y ⊂ V . To show this
claim, fix such an st-cut (Vs, Vt) and such a vertex x. We have to compute

val(V ′s , V
′
t) =

∑
e∈[V ′s ,V

′
t]

f(e)−
∑

e∈[V ′t ,V
′
s]

f(e).

We can write the sets [V ′s , V
′
t] and [V ′t , V

′s] as follows.

[V ′s , V
′
t] = [Vs, Vt] ∪ [Vs \ {x}, {x}] \ [{x}, Vt],

[V ′t , V
′
s] = [Vt, Vs] ∪ [{x}, Vs \ {x}] \ [Vt, {x}],

where the unions are disjoint. Therefore, we can write∑
e∈[V ′s ,V

′
t]

f(e) =
∑

e∈[Vs,Vt]

f(e) +
∑

e∈[Vs\{x},{x}]

f(e)−
∑

e∈[{x},Vt]

f(e),

∑
e∈[V ′t ,V

′s]

f(e) =
∑

e∈[Vt,Vs]

f(e) +
∑

e∈[{x},Vs\{x}]

f(e)−
∑

e∈[Vt,{x}]

f(e).

In combination, we get that

val(V ′s , V
′
t) = val(Vs, Vt)+

 ∑
e∈[Vs\{x},{x}]

f(e) +
∑

e∈[Vt,{x}]

f(e)

−

 ∑
e∈[{x},Vt]

f(e) +
∑

e∈[{x},Vs\{x}]

f(e)

 .

Here, the second term is equal to
∑
e=(u,x)∈E f(e), and the third term is equal to

∑
e=(x,w)∈E f(e).

By the assumption about f , we know that these are equal. Therefore, the second and third term
cancel out, and we have val(V ′s , V

′
t) = val(Vs, Vt).

Lemma 3. Assume that the relation KR is unique, i.e., for each pk ∈ PK there is at most one
sk ∈ SK such that (pk, sk) ∈ KR. For any PPT algorithm A there are PPT algorithms Bi with
T(Bi) ≈ T(A) for i ∈ [7] and

Pr [win-create = 1] ≤
Q2

Htrm

2`
+ Advc-kn-soundB1,ExtVHC,VHC(λ) + 2 · AdvbindB2,VHC(λ)

+ Advk-kn-soundB3,ExtLRS,LRS,KDS(λ) +Qni · Advtr-soundB4,KDS(λ) + Advkn-linkB5,ExtLRS,LRS,KDS(λ)

+ Advconv-soundB6,Translate,KCS,VHC(λ) + Advk-owB7,LRS,KDS(λ).

Proof. Let A be a PPT algorithm as in the statement. To prove the lemma, we give a sequence of
games Gi.
Game G0: We start with game G0, which is defined exactly as UNFAPTS, but only outputs 1 if
win-create = 1 holds, and introduces an additional abort conditions. Namely, it aborts if two different
transaction sign the same message. We can easily bound the probability of this event. To this end, we
first note that no two transactions share the same public seed pseed. The message that is signed by a
transaction is the hash of a string that contains these public seeds. Therefore, two transactions only

37

sign the same message if a collision for random oracle Htrm occurs. A union bound over all Q2
Htrm

pairs of queries to Htrm shows that the probability of such a collision for random oracle Htrm is at
most Q2

Htrm
/2`. As a consequence, we can assume that each transaction signs a different message.

We have

Pr [win-create = 1] ≤
Q2

Htrm

2`
+ Pr [G0→1].

Game G1: Game G1 is as G0, but with the following change. The game holds maps d[·], r[·], and
stmt[·],witn[·]. At any time, the maps d[·], r[·] map all outputs o = (pk, com) ∈ Outputs in the
system to data amt = d[o] ∈ D and commitment randomness cr = r[o] ∈ CR. Further, the maps
stmt[·],witn[·] keep track of the statement and witness used to compute the proof π for any transaction
Tx ∈ TXs in the system. Recall that outputs are added to the list Outputs as a consequence of oracles
calls to NewHonSrc,NewSrc,AddHonTrans,AddTrans. When this happens, the game fills
the maps d[·], r[·] and stmt[·],witn[·] as follows:

• Queries NewHonSrc(pk, pseed, com, tag, ct): Recall that the output o = (pk, com) is only
added to Outputs if algorithm Receive(ipk, pseed, pk, com, tag, ct) returned a non-zero value for
some user ipk with ipk ∈ Identities with corr[ipk] < 2. Note that in this case, algorithm Receive
internally recovered amt and cr such that com = Com(amt, cr). The game sets d[o] := amt and
r[o] := cr.

• Queries NewSrc(pk, amt, cr): Recall that here, the output o = (pk, com) for com = Com(amt, cr)
is added to Outputs. The game sets d[o] := amt and r[o] := cr.

• Queries AddHonTrans(ipk, (ipki, amtouti)
K
i=1 , ISamp,RSamp): Here, recall that new outputs

are added to Outputs during the execution of algorithm UpdateState(Tx), where Tx = (In,Out,
pseed, π) is the transaction that the oracle generated before using algorithm GenTx((Usej)

L
j=1,

(Refj)
L
j=1, (ipki, amtouti)Ki=1). Concretely, recall that this algorithm derives public keys pkouti ,

commitment randomness crouti and commitments comout
i = Com(amtouti , crouti) for each i ∈ [K].

Then it includes oi := (pkouti , comout
i) for each i ∈ [K] in Out. Exactly these outputs are

then added to Outputs by algorithm UpdateState(Tx). Therefore, the game can simply set
d[oi] := amtouti and r[oi] := crouti for all i ∈ [K]. Further, recall that algorithm GenTx as above
computes a proof π ← PProve(stmt,witn) for

stmt :=
(

(comj)
L
j=1 ,

(
comout

i

)K
i=1

)
, witn :=

((
amtinj , crj

)L
j=1

,
(
amtouti , crouti

)K
i=1

)
.

The game sets stmt[Tx] := stmt and witn[Tx] := witn.

• Queries AddTrans(Tx): As in the previous case, recall that outputs are added to list Outputs
by algorithm UpdateState(Tx). Concretely, the transaction is parsed as Tx = (In,Out, pseed, π)

and In = (Refj , comj , σj)
L
j=1, and Out =

(
pkouti , comout

i , cti, tagi
)K
i=1

. Then, for each i ∈ [K],
the output oi = (pkouti , comout

i) is added to Outputs. Also, recall that algorithm UpdateBalances
is called, which calls Receive(ipk, ·) for each such output oi and each ipk ∈ Identities with
corr[ipk] 6= 2. If Receive returns a non-zero value (i.e., output o is received by an honest user),
then during its execution it computed amt

out
i and crouti such that Com(amt

out
i , crouti) = comout

i .
For these i, the game now sets d[oi] := amt

out
i and r[oi] := crouti . For the remaining i, we let

the game extract d[oi] := amtouti and r[oi] := crouti by setting

stmt :=
(

(comj)
L
j=1 ,

(
comout

i

)K
i=1

)
38

and running ((
amtinj , crj

)L
j=1

,
(
amtouti , crouti

)K
i=1

)
= witn← ExtVHC(stmt, π),

where ExtVHC is the commitment knowledge extractor of VHC. The game further sets stmt[Tx] :=
stmt and witn[Tx] := witn.

We introduce the bad event BadComExtr =
∨

Tx∈TXs BadComExtrTx that occurs if the above extraction
fails. More precisely:

• Event BadComExtrTx: This event occurs if Com(amtinj , crj) 6= comj or Com(amtouti , crouti) 6=
comout

i for some j or some i, with the notation stmt[Tx] =
(

(comj)j , (com
out
i)i

)
and witn[Tx]

=
((

amtinj , crj
)
j
, (amtouti , crouti)i

)
.

Clearly, if event BadComExtr does not occur, we have

∀o = (pk, com) ∈ Outputs : Com(d[o], r[o]) = com.

We let game G1 abort if event BadComExtr occurs. As long as this event does not occur, the view of
A in G1 is identical to its view in G0. Therefore, we have

|Pr [G0→1]− Pr [G1→1]| ≤ Pr [BadComExtr].

It is easy to see that the probability of event BadComExtr can be upper bounded using a reduction
that breaks commitment knowledge soundness of VHC. Intuitively, the event can only occur for
transactions added during a query AddTrans(Tx). For this query, if it occurs, this means that
algorithm ExtVHC did not extract a valid witness for the statement stmt. More formally, we can
construct a reduction B1 against the ommitment knowledge soundness of VHC that gets access to an
oracle O. The reduction simulates game G0 for A. For any query AddTrans(Tx), the reduction
first verifies Tx. Note that this includes verifying the proof π that is included. If verification is
successful, the reduction passes (stmt, π) to its oracle O, where stmt is as above. Then, it continues
the simulation as in G0. Note that O sets the flag bad if and only if event BadComExtr in game G1

would occur. Further, the running time of B1 is dominated by running A. Thus, we have

Pr [BadComExtr] ≤ Advc-kn-soundB1,ExtVHC,VHC(λ).

Game G2: We introduce another bad event and let the game abort if it occurs. Intuitively, we want
to ensure that for every transaction Tx, with pseudo outputs (comj)j and outputs (comout

i)i, the
sum of data is preserved from pseudo outputs to outptus. More formally, we define the bad event
BadSum =

∨
Tx∈TXs BadSumTx, where

• Event BadSumTx: This event occurs if for witn[Tx] =
((

amtinj , crj
)
j
, (amtouti , crouti)i

)
we have∑

j amtinj 6=
∑
i amtouti .

We bound the probability of event BadSum using a reduction B2 that breaks binding of VHC. The
reduction gets as input system parameters, and simulates game G1 for A. Notice that if the event
BadSumTx occurs for some transaction Tx, then Tx has been verified by algorithm VerTx before.
Especially, we have ∑

j

comj =
∑
i

comout
i

39

for stmt[Tx] =
(

(comj)j , (com
out
i)i

)
. By the homomorphic property of VHC, we therefore have

(assuming BadComExtrTx does not occur)

Com

∑
j

amtinj −
∑
i

amtouti ,
∑
j

crj −
∑
i

crouti

 =
∑
j

comj −
∑
i

comout
i = 0.

by the homomorphic property of VHC. This means that if BadSumTx occurs, the reduction B2 can
compute a non-zero preimage

(amt∗, cr∗) :=

∑
j

amtinj −
∑
i

amtouti ,
∑
j

crj −
∑
i

crouti

of com∗ = 0. It easily follows from the homomorphic properties of VHC that (0, 0) is also a preimage
of com∗ = 0. Thus, reduction B2 can identify the transaction Tx for which BadSumTx occurs, and
then return (amt∗, cr∗, 0, 0) as above to break binding. The running time of B2 is dominated by the
running time of A. It follows that we have

|Pr [G1→1]− Pr [G2→1]| ≤ Pr [BadSum] ≤ AdvbindB2,VHC(λ).

Game G3: In this game, we introduce another map I[·], and a bad event related to it. We let the
game abort if this event occurs. Concretely, the map I[·] maps transactions Tx ∈ TXs to lists of
quintuples. Informally, for each input of a transaction, it holds the index of the secret key that is used
to sign, the associated public key and commitment, and the auxiliary secret key that is used. Recall
that transactions are added to list TXs during oracle queries AddHonTrans and AddTrans. For
these queries, the map I[·] is populated as follows:

• For queries to AddHonTrans: Let Tx = (In,Out, pseed, π) be a transaction that is added to
TXs in AddHonTrans. Let In = (Refj , comj , σj)j . Recall that the oracle generates this trans-
action honestly using algorithm GenTx (cf. Figure 2). This algorithm takes as input lists (Usej)j
and (Refj)j . Let j be such an input index. Then, we know that oracle AddHonTrans ensures
that for Usej = (pkinj , com

in
j , amtinj , cr

in
j , skj), there is some index r∗j such that (pkinj , com

in
j)

is the r∗j th entry in the list Refj . Further, recall that algorithm GenTx defines some crj and
sets auxskj := ConvertSecret(crinj , crj). Then, it computes a signature σj using skj and auxskj .
With this notation, the game now sets I[Tx] = ((r∗j , auxskj , skj , pk

in
j , com

in
j))j .

• For queries to AddTrans: Let Tx = (In,Out, pseed, π) be a transaction that is added to
TXs in AddTrans. Let In = (Refj , comj , σj)j . Recall that Tx is added to TXs only if it
verifies. In this case, the game now first parses Refj = (pkinj,r, com

in
j,r)
|Refj |
r=1 and sets m and

Rj =
(
pkinj,r, auxpkj,r

)|Refj |
r=1

for all j as in the verification of Tx (algorithm VerTx). To recall,
auxpkj,r is defined as auxpkj,r = ConvertPublic(comin

j,r, comj). Then, it runs (r∗j , skj , auxskj)←
ExtLRS(Rj ,m, σj), where ExtLRS is the knowledge extractor of LRS. The game now sets I[Tx] =
((r∗j , auxskj , skj , pk

in
j,r∗j

, comin
j,r∗j

))j .

Further, we let the game abort if the following bad event occurs (with the notation as above):

• Event BadSigExtr: This event occurs if we have (auxpkj,r∗j , auxskj) /∈ AKR or (pkinj,r∗j , skj) /∈ KR
for some transaction added during AddTrans and some j, with the notation as above.

40

We can easily bound the probability of BadSigExtr using a natural reduction B3 against the key
knowledge soundness of (LRS,KDS). Namely, the reduction gets as input system parameters and access
to oracles NewIdentity,Corr,Sign,O. It simulates game G3 for A, using oracle NewIdentity
to generate new identities ipk and the corresponding ivk, oracle Corr to simulate oracle FullCorr,
and oracle Sign to simulate signatures needed in AddHonTrans. Whenever a transaction is added
to TXs in AddTrans, it calls oracle O for each j instead of running ExtLRS as above. Note that event
BadSigExtr occurs if and only if the oracle O sets the flag bad. Here, we use that each transaction
signs a different message (cf. G0). The running time of B3 is dominated by the running time of A.
Thus, we have

|Pr [G2→1]− Pr [G3→1]| ≤ Pr [BadSigExtr] ≤ Advk-kn-soundB3,ExtLRS,LRS,KDS(λ).

Game G4: We define another bad event related to the knowledge extractor ExtLRS, and let the game
abort if it occurs. Namely, we let the game abort if the following event occurs:

• Event DoubleSpend: This event occurs if some public key pk occurs twice as the fourth
component of a quintuple contained in I[·]. That is, either there are distinct Tx,Tx′ ∈ TXs
such that pk is the fourth component of a quintuple in the list I[Tx] and a quintuple in the list
I[Tx′], or there is a transaction Tx ∈ TXs such that pk is the fourth component of two different
entries in the list I[Tx].

We further partition the event DoubleSpend as DoubleSpend = DoubleSpendPureHon∨DoubleSpendMal,
where

• Event DoubleSpendPureHon: This event occurs if DoubleSpend and both of the two involved
transactions (which could be the same) are generated by oracle AddHonTrans.

• Event DoubleSpendMal: This event occurs if DoubleSpend occurs and DoubleSpendPureHon
does not, i.e., at least one of the two involved transactions is added via AddTrans.

We informally sketch how to bound event DoubleSpendPureHon. First, we can use tracking soundness
of KDS (as in Lemma 1) to argue that with high probability, all honest users derive valid secret keys.
By uniqueness of the key relation KR, if DoubleSpendPureHon occurs, then the same secret key is
used to compute two different signatures. By completeness of LRS these link, and thus one of the
transactions would have been rejected. A more formal argument similar to this can be found in the
proof of Lemma 1. We have a reduction B4 with

Pr [DoubleSpendPureHon] ≤ Qni · Advtr-soundB4,KDS(λ).

The probability of DoubleSpendMal can be upper bounded using knowledge linkability of LRS. Namely,
a reduction B5 gets as input system parameters and access to oracles NewIdentity,Corr,Sign,O,
and is as reduction B3 above. The key insight is that if event DoubleSpendMal occurs, then the
associated signatures are valid and do not link, because the involved transactions are valid. As at
least one of the involved transactions is added via AddTrans, oracle O is called. Therefore, oracle
O sets the flag bad. We have

Pr [DoubleSpendMal] ≤ Advkn-linkB5,ExtLRS,LRS,KDS(λ)

and
|Pr [G3→1]− Pr [G4→1]| ≤ Qni · Advtr-soundB4,KDS(λ) + Advkn-linkB5,ExtLRS,LRS,KDS(λ).

Game G5: In this game, we extend the map I[·] and let the game abort if some bad event related
to this occurs. Let Translate be the conversion translator of (KCS,VHC). Recall that in game

41

G4, we inserted lists of quintuples into the map I[·]. That is, for a transaction Tx game G4

defined I[Tx] := ((r∗j , auxskj , skj , pk
in
j,r∗j

, comin
j,r∗j

))j at some point during the game. Now, in game
G5, we instead insert lists of 7-tuples. Namely, whenever G4 would insert a list of quintuples
((r∗j , auxskj , skj , pk

in
j,r∗j

, comin
j,r∗j

))j , the game G5 first retrieves the entries(
(comj)j ,

(
comout

i

)
i

)
:= stmt[Tx],

((
amtinj , crj

)
j
,
(
amtouti , crouti

)
i

)
:= witn[Tx].

Then, for each j, it computes

cr∗j ← Translate(amtinj , crj , com
in
j,r∗j

, comj , auxpkj,r∗j , auxskj).

Finally, it defines I[Tx] := ((r∗j , auxskj , skj , pk
in
j,r∗j

, comin
j,r∗j

, amtinj , cr
∗
j))j . Further, it aborts if at any

point, the following bad event occurs:

• Event BadConv: This event occurs if we have Com(amtinj , cr
∗
j) 6= comin

j,r∗j
for some transaction

and some j, with the notation as above.

We can easily bound the probability of event BadConv using a straight-forward reduction B6 from
conversion soundness of (KCS,VHC). The reduction gets as input system parameters, simulates game
G5 for A, and outputs (amtinj , crj , com

in
j,r∗j

, comj , auxpkj,r∗j , auxskj) as soon as event BadConv occurs.
The running time of B6 is dominated by the running time of A, and we have

|Pr [G4→1]− Pr [G5→1]| ≤ Pr [BadConv] ≤ Advconv-soundB6,Translate,KCS,VHC(λ).

Game G6: We introduce another bad event Steal and let the game abort if it occurs. Intuitively,
it occurs if the adversary spends (according to map I) an output that is owned by an honest user.
Formally, the event is defined as follows:

• Event Steal: This event occurs if a transaction Tx is added to TXs during a query to
oracle AddTrans, such that I[Tx] := ((r∗j , auxskj , skj , pk

in
j,r∗j

, comin
j,r∗j

, amtinj , cr
∗
j))j and at

that time there is an ipk∗ ∈ Identities with corr[ipk∗] 6= 2 such that an entry of the form
(pkinj,r∗j , com

in
j,r∗j

, ·, ·, ·) is in Owned[ipk∗].

We bound the probability of Steal by sketching a reduction B7 agains the key onewayness of (LRS,KDS).
The reduction is as follows:

• B7 gets as input parameters par, and oracle access to oracles NewIdentity′,Corr,Sign. It
simulates game G5 for A, except with the following changes.

• When A queries oracle NewIdentity, B7 queries NewIdentity′ and obtains (ipk, ivk). It
inserts ipk into Identities and sets ivk[ipk] := ivk as the real game would do. Then, it returns
ipk.

• When A queries oracle FullCorr(ipk), B7 queries Corr(ipk) to get isk[ipk]. It continues the
simulation of FullCorr as game G5 does.

• Whenever B7 needs to compute a key sk via DerSK(isk[ipk], ok, tag) during execution of al-
gorithm Receive, and it holds that corr[ipk] < 2, i.e., B6 does not have isk[ipk], it postpones
the computation of sk. However, note that it can still compute pk := DerPK(ipk, ok, tag).
Later, when A queries oracle AddHonTrans(ipk, ·) such that this sk is needed to sign in

42

algorithm GenTx, the reduction uses oracle Sign to compute the signature. Concretely, it
calls Sign(pk, pseed, tag,R, auxsk,m), where pseed, tag,R+,m+ are chosen appropriately as in
algorithm GenTx. As soon as event Steal occurs for some ipk∗, B7 terminates and outputs
ipk∗, pk∗, pseed∗, tag∗, sk∗, where pk∗ := pkinj,r∗j as in the definition of Steal, pseed∗ and tag∗ were
part of the transaction in which ipk∗ received the output o∗ containing pk∗, and sk∗ := skj as
in the definition of Steal.

Clearly, the running time of B7 is dominated by the running time of A. Further, B7 simulates G5

perfectly3 Further, as we can assume that event BadSigExtr does not occur, we have (pk∗, sk∗) ∈ KR,
and we get

|Pr [G5→1]− Pr [G6→1]| ≤ Pr [Steal] ≤ Advk-owB7,LRS,KDS(λ).

Game G7: We introduce a final bad event BadBind =
∨

Tx∈TXs BadBindTx and let the game abort if
it occurs. The event is defined as follows:

• Event BadBindTx: This event occurs if we have (amtinj , cr
∗
j) 6= (d[oj], r[oj]) for I[Tx] =

((r∗j , auxskj , skj , pk
in
j,r∗j

, comin
j,r∗j

, amtinj , cr
∗
j))j , some j and oj := (pkinj,r∗j , com

in
j,r∗j

).

We bound the probability of event BadBind using a reduction B8 against the binding property of
VHC. Namely, assume this event occurs in G6 for some transaction Tx. Then, we have

Com(amtinj , cr
∗
j) = comin

j,r∗j
,

as we can assume that event BadConv does not occur. Further, as we can assume that event
BadComExtr does not occur, we have

Com(d[oj], r[oj]) = comin
j,r∗j

for oj = (pkinj,r∗j , com
in
j,r∗j

).

Thus, the reduction can simply output amtinj , cr
∗
j , d[oj], r[oj] as soon as event BadBind occurs. The

running time is dominated by the running time of A, and we have

|Pr [G6→1]− Pr [G7→1]| ≤ Pr [BadBind] ≤ AdvbindB8,VHC(λ).

We finish the proof using a purely combinatorial argument. Namely, we show that G7 never outputs 1.
To do that, we define a graph, show that we obtain a flow network from it, and use the Lemma about
st-cuts to finish the proof. Concretely, we start with an empty graph G and a cut H = ∅,M = ∅.
Then, throughout the game, we add vertices and edges to G, and define the function f : E → R≥0.
Roughly, the resulting flow network and the cut has the following structure:

• Vertices. The graph contains dedicated vertices s, t. For each transaction Tx ∈ TXs in the
system, it contains a vertex vTx. For each output o = (pk, com) ∈ Outputs in the system, it
contains a vertex vo.

• Edges. If o ∈ Outputs is an output of a transaction TXs, then there is an edge e from vTx to
vo. If o ∈ Outputs is used as an input of a transaction TXs, then there is an edge e from vo to
vTx. In both cases, we set f(e) to be d[o]. There are edges from s to all source outputs (i.e.,
outputs created by oracles NewHonSrc,NewSrc), and edges from all unused outputs to t.
These edges are also labeled according to d[·].

3Note that in the AGM, it is important that ExtLRS receives the correct format of representations. One can observe
that this holds, because the key knowledge soundness game provided exactly the same group elements to A as G5

does. This is the reason why the key knowledge soundness game provides more oracles than just oracle O.

43

Precisely, (G = (V,E), s, t, f) is constructed during the game as follows:

• Initialization. We set G = (V,E) with V = {s, t} and E = ∅. Here, s, t are the dedicated source
and sink of the flow network. Also, we initiate an st-cut (H,M), with H = {s} and M = {t}.

• Invariant. For each output o ∈ Outputs with vertex vo, the following invariant is ensured by
appropriately adding and removing edges: There is an edge e = (vo, t) if and only if there is no
edge e = (vo, vTx) to a transaction vertex for some Tx ∈ TXs. In both cases, f(e) := d[o].

• New Sources. For queries of the form NewHonSrc(pk, pseed, com, tag, ct) or NewSrc(pk,
amt, cr), if an output o = (pk, com) is inserted into Outputs in such a query, then a vertex vo is
added to V . Further, an edge e = (s, vo) with f(e) := d[o] is added. In the special case that o
already was in Outputs and thus the vertex vo already existed, a new dummy vertex is inserted
(with a similar edge, also satisfying above invariant). In both cases, the new vertex is inserted
into partition H (resp. M) in oracle NewHonSrc (resp. NewSrc).

• New Transactions. For queries AddTrans(Tx) and AddHonTrans(ipk, (ipki, amtouti)i∈[K] ,

ISamp,RSamp), recall that a transaction Tx may be added to list TXs by algorithm UpdateState.
In this case, a vertex vTx is added to V . For queries of oracle AddHonTrans (resp.
AddTrans), this vertex is inserted into partition H (resp. M). Next, we consider out-
puts and inputs. First, for each output o = (pk, com) that is inserted into list Outputs (also by
algorithm UpdateState), a vertex vo is added to V , in combination with an edge e = (vTx, vo)
with f(e) := d[o]. Also, recall that algorithm UpdateBalances is called, which calls Receive(ipk, ·)
for each such output o and each ipk ∈ Identities with corr[ipk] 6= 2. If Receive returns a non-
zero value (i.e., output o is received by an honest user), then we insert vo into partition H.
Otherwise, it is inserted into partition M . In the special case that o already was in Outputs
and thus the vertex vo already existed, a new dummy vertex is inserted instead of vo (with
a similar edge, in the same partition, and also satisfying above invariant). Second, write
I[Tx] = ((r∗j , auxskj , skj , pk

in
j,r∗j

, comin
j,r∗j

, amtinj , cr
∗
j))j . Then, we set oj = (pkinj,r∗j , com

in
j,r∗j

) and
add edges ej = (voj , vTx) with f(ej) := d[oj] for each j. Note that the validity of Tx ensures
that voj exists.

• Corruptions. For queries FullCorr(ipk) for which the oracle does not return ⊥, we consider
all outputs o = (pk, com) ∈ Outputs with (pk, com, ·, ·, ·) ∈ Owned[ipk]. For each such output,
we do the following: A new vertex v′o is added to V and inserted into partition H. The vertex
vo is inserted into partition M . All ingoing edges e = (w, vo) for w ∈ V are replaced by edges
e′ = (w, v′o) (while setting f(e′) to the value of f(e) before). Further, an edge ē = (v′o, vo) is
added to E, with f(ē) := d[o].

We show that (G, s, t, f) indeed is a flow network in Lemma 4. Next, we show how the value of the
st-cut (H,M) is related to the winning condition of G7. This will allow us to finish the proof.

Claim 7. As long as G7 does not abort, we have∑
e∈H×M∩E

f(e) ≤ received +
∑

e∈H×{t}∩E

f(e).

To show the claim, it is sufficient to observe that for each edge e ∈ H ×M ∩ E which is not of
the form e = (·, t) that is added to G during the game, the game also increases the value received by
f(e). Indeed, edges from H to M belong to one of the following classes:

44

• Edges e = (v′o, vo) for some output o ∈ Outputs: Such edges are added when oracle FullCorr(ipk)
is called. By definition of this oracle, for each such edge the value received is increased by
d[o] = f(e).

• Edges e = (s, vo) for some output o ∈ Outputs (or edges e from s to a dummy): Such edges are
added on an oracle query NewSrc(pk, amt, cr). By definition of this oracle, variable received is
increased by amt = d[o] = f(e).

• Edges e = (vTx, vo) for some transaction Tx ∈ TXs and some output o ∈ Outputs. For such
edges, we know that Tx was added to TXs during a query of oracle AddHonTrans (because
vTx ∈ H), and o was added to Outputs in the same query. One can observe that because
vo ∈M , the output o was not received by an honest user, in which case the value received is
increased by d[o] in oracle AddHonTrans.

• Edges e = (vo, vTx) for some transaction Tx ∈ TXs and some output o ∈ Outputs: Such edges
can not exists for vo ∈ H and vTx ∈M , as we assume that event Steal does not occur.

Claim 8. As long as G7 does not abort, we have∑
e∈M×H∩E

f(e) ≥ spent.

To prove this claim, it is sufficient to notice that whenever the variable spent is encreased by
some amount in the game, then new edges ei from M to H are added such that

∑
i f(ei) equals that

amount. Indeed, the variable spent is only increased in oracle AddTrans(Tx). It is increased by the
amount that honest users (formally, ipk ∈ Identities with corr[ipk] 6= 2) received. At the same time,
for each such received output oi, an edge ei from vTx to voi ∈ H is added, with f(ei) = d[oi] = amt

out
i

(with the notation of G1). By definition of oracle AddTrans, the variable amt
out
i is increased by

the sum of these amt
out
i , which proves the claim.

Claim 9. Pr [G7→1] = 0.

Assume that G7 does not abort. Then, using the previous claims, and Lemmas 2 and 4, we get∑
e∈H×{t}∩E

f(e) + received− spent ≥
∑

e∈H×M∩E
f(e)−

∑
e∈M×H∩E

f(e)

= val(H,M) = val(V \ {t}, {t})

=
∑

e=(v,t)∈E

f(e) ≥
∑

e∈H×{t}∩E

f(e).

Rearranging, this leads to received ≥ spent. Therefore, the winning condition of G7 (i.e., spent >
received) can never hold.

Lemma 4. With the notation from the proof of Lemma 3, as long as G7 does not abort, the tuple
(G, s, t, f) is a flow network as defined in Definition 12.

Proof. We show the properties of a flow network separately. For each of these, we assume that G7

does not abort.

Claim 10. Vertex s is the only vertex with in-degree zero, and t is the only vertex with out-degree
zero.

45

Each transaction has both at least one output and at least one input. For each output o ∈ Outputs,
vo has an ingoing edge (either from s, from some vTx, or from v′o), and vo has an outgoing edge (by
the invariant, either to t or to some vTx). The same holds for dummy vertices. This shows the claim.

Claim 11. For each Tx ∈ TXs, we have∑
e=(u,vTx)∈E

f(e) =
∑

e=(vTx,u)∈E

f(e).

Let Tx = (In,Out, pseed, π) ∈ TXs and vTx ∈ V . Write I[Tx] = ((r∗j , auxskj , , skj , pk
in
j,r∗j

, comin
j,r∗ ,

amtinj , cr
∗
j))j , oj = (pkinj,r∗j , com

in
j,r∗j

) for each j. Further, write witn[Tx] =
((

amtinj , crj
)
j
, (amtouti , crouti)i

)
and Out =

(
pkouti , comout

i , cti, tagi
)
i∈[K]

. Set o′i := (pkouti , comout
i) for all i. Then, by definition of f ,

we have ∑
e=(u,vTx)∈E

f(e) =
∑
j

d[oj].

As we can assume that events BadBindTx and BadSumTx do not occur, we have∑
j

d[oj] =
∑
j

amtinj =
∑
i

amtouti .

By definition of d[·] and f , we have∑
i

amtouti =
∑
i

d[o′i] =
∑

e=(vTx,u)∈E

f(e).

In combination, we showed the claim.

Claim 12. For each o = (pk, com) ∈ Outputs, we have∑
e=(u,vo)∈E

f(e) =
∑

e=(vo,u)∈E

f(e)

The same holds true for each dummy vertex.

By definition, vo has exactly one ingoing edge e. For this edge, it holds that f(e) = d[o]. Then,
by the invariant, there are two cases to consider. Either, vo has an outgoing edge to at least one
transaction vertex vTx, or it has an outgoing edge e′ to t and no other outgoing edge. In the latter
case, we have f(e′) = d[o] by definition, and we are done. In the former case, by definition, all
outgoing edges e′ satisfy f(e′) = d[o]. This means that we have to argue that there is at most one
outgoing edge. Indeed, this follows directly from the assumption that event DoubleSpend does not
occur.

Claim 13. For each o = (pk, com) ∈ Outputs for which v′o exists in V , we have∑
e=(u,v′o)∈E

f(e) =
∑

e=(v′o,u)∈E

f(e)

By definition, vertex v′o has one ingoing edge e (either from s or from some vTx), and one outgoing
edge ē (to vo). They satisfy f(e) = d[o] = f(ē).

46

Alg GenID(par)
01 ks←$Zp
02 kv←$Zp
03 ivk := kv, isk := ks
04 ipk := (Kv,Ks) := (gkv , gks)
05 return (ipk, ivk, isk)

Alg DerPK(ipk, ok, tag)
06 parse (Kv,Ks) := ipk
07 Ko := gH(ok,tag) ·Ks

08 return pk := Ko

Alg Encaps(par)
09 sseed := r←$Zp
10 pseed := R := gr

11 return (pseed, sseed)

Alg RecDecaps(ivk, pseed)
12 parse kv := ivk, R := pseed
13 return ok := Rkv

Alg SendDecaps(ipk, sseed)
14 parse (Kv,Ks) := ipk, r := sseed
15 return ok := Kr

v

Alg Track(ipk, ok, pk, tag)
16 parse Ko := pk, (Kv,Ks) := ipk
17 if Ko = Ks · gH(ok,tag) : return 1
18 return 0

Alg DerSK(isk, ok, tag)
19 parse ks := isk
20 ko := H(ok, tag) + ks
21 return sk := ko

Figure 7: The key derivation scheme KDS = (GenID,Encaps,SendDecaps,RecDecapsDerPK,DerSK,
Track) used in Monero.

7 Component Level Security Analysis
In this section, we present the components used in Monero, and their analysis. We do not cover the
Bulletproof [BBB+18] component, as a detailed analysis of it in the algebraic group model would not
fit the scope of this work. For an analysis in a similar model the reader may consult [GT21].

7.1 The Components used in Monero
Let GGen be an algorithm that on input 1λ outputs the description of a prime order group G of order
p ≥ 2λ with generator g. We assume that the description of G, g, and p are given to all algorithms as
system parameters par. Further, we assume random oracles Hp,Hh : {0, 1}∗ → G, ,Hc : {0, 1}∗ → Zp,
Ha,H : {0, 1}∗ → Z2

p, and Henc : {0, 1}∗ → {0, 1}λ. We define the key relations KR,AKR as

KR := {(pk, sk) ∈ G2 | pk = gsk}, AKR := {(auxpk, auxsk) ∈ G2 | auxpk = gauxsk}.

Finally, the instantiations are given as follows.

• The key derivation scheme KDS = (GenID,Encaps,SendDecaps,RecDecapsDerPK,DerSK,Track)
is presented in Figure 7.

• The data encryption scheme DE = (Enc,Dec) is given in Figure 8.

• The verifiable homomorphic commitment scheme VHC = (DerRand,Com,PProve,PVer) is given
in Figure 8, without specifying algorithms PProve and PVer. Algorithms PProve and PVer
implement Bulletproofs, and we do not give an analysis for them.

• The key conversion scheme KCS = (ConvertPublic,ConvertSecret) and the linkable ring signature
scheme LRS = (Sig,Ver, Link) are given in Figure 9.

47

Alg Enc(ok, tag, amt)
01 return ct := amt⊕ Henc(ok, tag)

Alg Com(amt, cr)
02 h := Hh(g)
03 return com := gcr · hamt

Alg Dec(ok, tag, ct)
04 return amt := ct⊕ Henc(ok, tag)

Alg DerRand(ok, tag)
05 return cr := Hcom(ok, tag)

Figure 8: The data encryption scheme DE = (Enc,Dec) and the verifiable homomorphic commitment
scheme VHC = (DerRand,Com,PProve,PVer) used in Monero. Algorithms PProve and PVer are
implemented using Bulletproofs [BBB+18], and are omitted here.

Alg Sig(R, sk, auxsk,m)

01 parse (pki, auxpki)
N
i=1 := R

02 Let i∗ ∈ [N] s.t. pki∗ = gsk

∧ auxpki∗ = gauxsk

03 if no such i∗ : abort
04 hi∗ := Hp(pki∗), K̃1 := hski∗ , K̃2 := hauxski∗

05 ((Wi)
N
i=1, W̃) := AggPub(R, K̃1, K̃2)

06 w := AggSec(R, K̃1, K̃2, sk, auxsk)
07 ri∗←$Zp, Ri∗ := gri∗ , R̃i∗ := hri∗i∗
08 next := i∗ mod N + 1
09 cnext := Hc(R,m, Ri∗ , R̃i∗)
10 for i ∈ {i∗ + 1, . . . , N, 1, . . . , i∗ − 1} :
11 hi := Hp(pki)

12 si←$Zp, Ri := gsiW ci
i , R̃i := hsii W̃

ci

13 next := i mod N + 1
14 cnext := Hc(R,m, Ri, R̃i)
15 si∗ := ri∗ − ci∗w
16 return σ := (R, c1, (si)

N
i=1, K̃1, K̃2)

Alg AggPub(R, K̃1, K̃2)

17 parse (pki, auxpki)
N
i=1 := R

18 (a1, a2) := Ha(R, K̃1, K̃2)
19 for i ∈ [N] : Wi := pka1i · auxpk

a2
i

20 W̃ := K̃a1
1 · K̃

a2
2

21 return ((Wi)
N
i=1, W̃)

Alg AggSec(R, K̃1, K̃2, sk, auxsk)

22 (a1, a2) := Ha(R, K̃1, K̃2)
23 return w := a1 · sk + a2 · auxsk

Alg Link(σ, σ′)

24 parse (R, c1, (si)
N
i=1, K̃1, K̃2) := σ

25 parse (R′, c′1, (s
′
i)
N ′

i=1, K̃
′
1, K̃

′
2) := σ′

26 if R ∩ R′ = ∅ : return 0
27 if K̃1 = K̃ ′1 : return 1
28 return 0

Alg Ver(R,m, σ)

29 parse (R, c1, (si)
N
i=1, K̃1, K̃2) := σ

30 if R′ 6= R : return 0
31 parse (pki, auxpki)

N
i=1 := R

32 ((Wi)
N
i=1, W̃) := AggPub(R, K̃1, K̃2)

33 for i ∈ [N − 1] :
34 hi := Hp(pki)

35 Ri := gsiW ci
i , R̃i := hsii W̃

ci

36 ci+1 := Hc(R,m, Ri, R̃i)
37 hN := Hp(pkN)

38 RN := gsNW cN
i , R̃N := hsNN W̃ cN

39 if c1 = Hc(R,m, RN , R̃N) : return 1
40 return 0

Alg ConvertSecret(cr, cr′)

41 d := cr − cr′

42 return auxsk := d

Alg ConvertPublic(com, com′)

43 D := com/com′

44 return auxpk := D

Figure 9: The two-dimensional linkable ring signature scheme LRS = (Sig,Ver, Link) (known as
CLSAG) and the key conversion scheme KCS = (ConvertPublic,ConvertSecret) used in Monero.

48

7.2 Analysis of Key Derivation
Lemma 5. The scheme KDS (given in Figure 7) satisfies tracking soundness. Concretely, for any
algorithm A, we have

Advtr-soundA,KDS (λ) = 0.

Proof. Let A be an adversary against the tracking soundness of KDS. We first recall the tracking
soundness game for the specific scheme at hand. First, keys (ipk = (Kv,Ks), ivk = kv, isk = ks) are
generated, where Kv = gkv ,Ks = gks . Then, A gets par, ipk, ivk, isk, and outputs pseed = R,pk = Ko,
and tag. The game now derives ok := RecDecaps(ivk, pseed) and sk := DerSK(isk, ok, tag). Concretely,
it computes sk = ko = H(ok, tag)+ks. The game outputs 1 if Track(ipk, ok, pk, tag) = 1, but (pk, sk) /∈
KR, i.e., Ko 6= gko . By definition, Track(ipk, ok, pk, tag) outputs 1 if and only if Ko = Ks · gH(ok,tag).
We claim that the game never outputs 1. To this end, assume that Track outputs 1. Then, note that

gko = gks+H(ok,tag) = Ks · gH(ok,tag) = Ko,

where the first equation follows from the definition of ko, the second from the definition of Ks, and
the third one is given assuming that Track outputs 1. Thus, we always have (pk, sk) ∈ KR.

Lemma 6. Let H : {0, 1}∗ → Zp be a random oracle. Then, KDS (given in Figure 7) satisfies
key spreadness. Concretely, for any algorithm A that makes at most QH, Qni queries to oracles H,
NewIdentity, respectively, we have

AdvspreadA,KDS(λ) ≤ Q2
H

p
+
Qni
p
.

Proof. Recall that in the key spreadness game, adversary A gets access to an oracle NewIdentity,
that does not take any input, and outputs key triples (ipk, ivk, isk)← GenID(par). Then, A outputs a
triple ipk, ivk, isk, public seeds pseed = R ∈ G, pseed′ = R′ ∈ G and tags tag, tag′ ∈ N. The adversary
A wins, if ipk, ivk, isk was output by the oracle NewIdentity before, (R, tag) 6= (R′, tag′), and sk =
sk′ for sk := DerSK(isk,RecDecaps(ivk, pseed), tag) and sk′ := DerSK(isk,RecDecaps(ivk, pseed′), tag′).
For the concrete scheme at hand, this means that sk = H(Rkv , tag) + ks and sk′ = H(R′

kv , tag′) + ks,
where ivk = kv ∈ Zp and isk = ks ∈ Zp. Therefore, A can only win the game if H(Rkv , tag) =

H(R′
kv , tag′). To rule this out, we define two bad events:

• Event Coll: This event occurs if there are two random oracle queries x 6= x′ during the game,
such that H(x) = H(x′).

• Event Zero: This event occurs if for some query to NewIdentity that returns (ipk, ivk, isk),
we have ivk = kv = 0 ∈ Zp.

Via a union bound over the (pairs of) hash queries, and the queries to NewIdentity, we get

Pr [Coll] ≤ Q2
H

p
, Pr [Zero] ≤ Qni

p
.

Further, we define the event that the key spreadness game outputs 1 as Win. Then, have

AdvspreadA,KDS(λ) = Pr [Win ∧ Zero] + Pr [Win ∧ ¬Zero]

≤ Pr [Zero] + Pr [Win ∧ ¬Zero] ≤ Pr [Zero] + Pr [Coll],

where we used that the event Win ∧ ¬Zero implies event Coll. This is because kv 6= 0 and R 6= R′

implies Rkv 6= R′
kv .

49

7.3 Analysis of the Verifiable Homomorphic Commitment
Lemma 7. Let Hh : {0, 1}∗ → G be a random oracle. If the DLOG assumption holds relative to
GGen, then VHC (given in Figure 8) is binding. Concretely, for any PPT algorithm A, there is a
PPT algorithm B with T(A) ≈ T(B) and

AdvbindA,VHC(λ) ≤ AdvDLOG
B,GGen(λ).

Proof. The proof is identical to the classical proof of the binding property of Pedersen commitment
[Ped92]. Let A be an adversary against the binding property of VHC. We construct an algorithm B
that solves DLOG in G. Namely, B gets as input g, h ∈ G. It uses g to define system parameters par,
and programs Hh(g) := h. It runs A on input par. Assume that adversary A breaks binding, i.e., it
outputs (amt, cr, amt′, cr′) such that amt 6= amt′ but Com(amt, cr) = Com(amt′, cr′). This means that

gcr · hamt = Com(amt, cr) = Com(amt′, cr′) = gcr
′
· hamt′ .

Writing h = gx, this implies

cr + x · amt = cr′ + x · amt′ =⇒ x =
cr − cr′

amt′ − amt
,

where amt′−amt 6= 0. Algorithm B simply outputs (cr−cr′)/(amt′−amt). This shows the claim.

Lemma 8. The pair (KCS,VHC) (given in Figures 8 and 9) satisfies conversion soundness. Con-
cretely, there is a PPT algorithm Translate, such that for every algorithm A, we have

Advconv-soundA,Translate,KCS,VHC(λ) = 0.

Proof. We define algorithm Translate as follows

Translate(amt, cr′, com, com′, auxpk, auxsk) = auxsk + cr′ ∈ Zp.

Clearly, Translate runs in polynomial time. Next, we show that for any PPT algorithm A, the
probability that the conversion soundness game (with respect to Translate) outputs 1 is negligible.
Recall that in this game, A gets parameters par, and outputs amt, cr′, commitments com, com′ ∈ G,
and keys auxpk ∈ G, auxsk ∈ Zp. By definition of the game and the concrete scheme at hand, if the
game outputs 1, then the following must hold

Com(amt, cr′) = com′, i.e., gcr
′
· hamt = com′,

(auxpk, auxsk) ∈ AKR, i.e., auxpk = gauxsk,

ConvertPublic(com, com′) = auxpk, i.e., auxpk = com/com′.

Further, it must hold that Com(amt, cr) 6= com, or ConvertSecret(cr, cr′) 6= auxsk for cr output
by Translate, i.e., cr = auxsk + cr′. The latter condition can not hold by definition of algorithm
ConvertSecret. Namely, we have

ConvertSecret(cr, cr′) = cr − cr′ = auxsk + cr′ − cr′ = auxsk.

Next, we argue that the former can not hold. Namely, we show that Com(amt, cr) = com, i.e.,
gcr · hamt = com. Using the equations derived above, we have

gcr · hamt = gauxsk+cr′ · hamt = auxpk · gcr
′
· hamt = auxpk · com′ = com.

50

7.4 Analysis of the Ring Signature
Lemma 9. Let Hp : {0, 1}∗ → G, ,Hc : {0, 1}∗ → Zp be random oracles. If the DLOG assumption holds
relative to GGen, then (LRS,KDS) (given in Figures 7 and 9) satisfies key onewayness. Concretely,
for any PPT algorithm A that makes at most QS , Qni, QHc queries to oracles Sign,NewIdentity,
Hc, respectively, there is a PPT algorithm B with T(B) ≈ T(A) and

Advk-owA,LRS,KDS(λ) ≤ QSQHc

p
+Qni · AdvDLOG

B,GGen(λ).

Proof. We prove the statement using a sequence of games.
Game G0: This is the real key onewayness game. That is, A gets access to oracles NewIdentity,
Corr,Sign, and is run on input par. In the end, it terminates with an output (ipk∗, pk∗, pseed∗, tag∗,
sk∗). The game outputs 1 if pk∗ = gsk

∗
, and there is an identity (ipk∗, ivk) output by NewIdentity,

such that ipk∗ was never queried to Corr and Track(ipk∗, ok, pk∗, tag∗) = 1 for ok := RecDecaps(ivk,
pseed∗). In other words, A wins if it can find a secret key for a public key that is tracked by an
non-corrupted identity.
Game G1: This is as G0, but we change the way random oracle Hp is simulated. Namely, for each
undefined hash value, the game now first samples ϑ←$Zp, then sets the hash value to h := gϑ, and
stores ϑh := ϑ for later use. Clearly, the view of A does not change, and we have

Pr [G0→1] = Pr [G1→1].

Game G2: This game is as G1, but we change how oracle Sign is executed. Recall that in
G1, oracle Sign works as follows on input pk, pseed, tag,R, auxsk,m: It first finds an identity
(ipk, ivk, isk) such that Track(ipk, ok, pk, tag) = 1 for ok := RecDecaps(ivk, pseed). Then, it derives
sk := DerSK(isk, ok, tag) and computes a signature σ ← Sig(R, sk, auxsk,m). In G1, we instead
compute σ without knowledge of sk and thus without knowledge of isk. This is done by replacing
algorithm Sig with algorithm Sig′′, which is presented in Figure 10. Note that in Line 06, this
algorithm makes use of the change we introduced in G1. It follows from standard honest-verifier
zero-knowledge properties that the view of A does not change from G1 to G2, unless the random
oracle value that is programmed in Line 12 of Figure 10 is already defined. As the value RN is
distributed uniformly at random, this occurs with probability at most QHc/p for every execution of
Sig′′. Therefore, a union bound of the number of signing queries shows

|Pr [G1→1]− Pr [G2→1]| ≤ QSQHc

p
.

Finally, we bound the probability that G2 outputs 1 using a reduction B breaking the DLOG
assumption. Informally, the reduction guesses the non-corrupted identity ipk∗. Formally, the reduction
is as follows

1. B gets as input a DLOG instance g, y = gx. It samples an index i0←$ [Qni].

2. B simulates G2 for A, except for the i0th query to oracle NewIdentity, and related queries
to Corr. Namely, on the i0th query to NewIdentity, B defines ipk = (Kv,Ks) as it is done
in G2, except that it sets Ks := y. Whenever A queries Corr on this ipk, the reduction B
aborts its execution. Note that oracle Sign can be simulated without knowing the discrete
logarithm of y, due to the changes we introduced.

51

3. When A terminates with output (ipk∗, pk∗, pseed∗, tag∗, sk∗) such that G2 would output 1, then
we have pk∗ = gsk

∗
, and there is an identity (ipk∗, ivk) output by NewIdentity, such that ipk∗

was never queried to Corr and Track(ipk∗, ok, pk∗, tag∗) = 1 for ok := RecDecaps(ivk, pseed∗).
Let ipk∗ = (Kv,Ks). If Ks 6= y, i.e., the query was not guessed correctly, B aborts its execution.
Otherwise, we know that (by definition of Track)

gsk
∗

= pk∗ = Ks · gH(ok,tag) = y · gH(ok,tag).

The reduction outputs x := sk∗ − H(ok, tag) as the discrete logarithm of y.

Clearly, the running time of B is dominated by the running time of A. Further, reduction B simulates
G2 perfectly for A until a potential abort, and the view of A is independent of index i0. Further, if
the index is guessed correctly, and G2 outputs 1, then B computes a correct discrete logarithm. We
have

Pr [G2→1] ≤ Qni · AdvDLOG
B,GGen(λ).

Lemma 10. Assume that (LRS,KDS) satisfies key onewayness, key knowledge soundness, and
knowledge non-slanderability. Then, (LRS,KDS) satisfies non-slanderability in the algebraic group
model. Concretely, for any algebraic PPT algorithm A, there is are PPT algorithms B1, B2, B3 with
T(Bi) ≈ T(A) for all i ∈ {1, 2, 3}, and

Advnon-slandA,LRS,KDS(λ) ≤ Advk-kn-soundB1,ExtLRS,LRS,KDS(λ) + Advkn-n-slandA,ExtLRS,LRS,KDS(λ) + Advk-owB3,LRS,KDS(λ).

Proof. Let A be an algebraic algorithm against the non-slanderability of (LRS,KDS). Let ExtLRS be
the knowledge extractor of (LRS,KDS). We show the statement via a sequence of games G0,G1,G2,
and a final reduction breaking key onewayness.
Game G0: We start with G0, which is the non-slanderability game. To recall, A gets as input
system parameters par and access to oracles NewIdentity,Corr,Sign. Then, it outputs a forgery
(R∗,m∗, σ∗), and the game outputs 1 if the following three conditions hold: The signature verifies,
i.e., Ver(R∗,m∗, σ∗) = 1. The signature is fresh, i.e., A never submitted R∗ and m∗ as part of the
input of a query to Sign. There is a signature σ returned by Sign such that σ∗ links to σ, and
the identity ipk that generated σ is not corrupted. More formally, this means that there is an entry
(ipk, pk,R,m, σ) ∈ Ls with Link(σ, σ∗) = 1 and ipk /∈ Lc. By definition, we have

Advnon-slandA,LRS,KDS(λ) = Pr [G0→1].

Game G1: We define G1 to be exactly as G0, but we introduce an additional step and potential
abort after the game receives A’s forgery (R∗,m∗, σ∗). Namely, we run the knowledge extractor
ExtLRS to extract secret keys and an index from the forgery. More precisely, before G0 would output
1, we run write R∗ = (pki, auxpki)i and run (i∗, ski∗ , auxski∗)← ExtLRS(R∗,m∗, σ∗). Here, ExtLRS can
inspect all random oracle queries that A makes. Then, we abort if (auxpki∗ , auxski∗) /∈ AKR or
(pki∗ , ski∗) /∈ KR. Otherwise, the game outputs 1, as G0 would do. Note that G0 and G1 only differ
if the newly introduced abort is triggered.

We can bound the probability of this event easily using a reduction B1 that breaks key knowledge
soundness. Namely, the reduction gets as input par, and access to the same oracles as in the
non-slanderability game. Further, it gets access to an oracle O. The reduction passes par to A and
simulates game G0 by forwarding oracle queries to its own oracles. Before the game would output

52

1, it submits the forgery (R∗,m∗, σ∗) to oracle O. Clearly, the running time of B1 is dominated by
the running time of A, and B1 perfectly simulates game G0 for A. Further, note that if G0 would
output 1, then the oracle O does not return early, i.e., it runs ExtLRS. This is because the winning
condition states that the forgery verifies and is fresh. Once the oracle O runs ExtLRS, it sets the flag
bad exactly when G1 would abort. Thus, if the event separating G0 and G1 occurs, B1 breaks key
knowledge soundness. We have

|Pr [G0→1]− Pr [G1→1]| ≤ Advk-kn-soundB1,ExtLRS,LRS,KDS(λ).

Game G2: In game G2, we add an additional abort event related to the extracted secret keys ski∗
that we introduced in G1. Then, we will bound the Assume that G1 would output 1. Then, let
(R∗,m∗, σ∗) be A’s forgery with R∗ = (pki, auxpki)i. Let (i∗, ski∗ , auxski∗) be the output of ExtLRS as
written in G1. Further, let (ipk, pk,R,m, σ) ∈ Ls be the entry in Ls such that Link(σ, σ∗) = 1 and
ipk /∈ Lc. Then, we let G2 abort if pki∗ 6= pk. It is easy to see that the probability of this event can
be bounded using a reduction B2 that breaks knowledge non-slanderability. The reduction is basically
identical to the reduction breaking key knowledge soundness we described before, and we just have
to observe that the winning condition of the knowledge non-slanderability game is equivalent to the
event that we want to bound here. We have

|Pr [G1→1]− Pr [G2→1]| ≤ Advkn-n-slandA,ExtLRS,LRS,KDS(λ).

In the final step of the proof, we bound the probability that G2 outputs 1 using a reduction B3

that breaks key onewayness. The reduction is as follows:

1. Reduction B3 gets as input par, it gets access to oracles NewIdentity,Corr,Sign.

2. The reduction runs A on input par, and provides the same oracles NewIdentity,Corr,
Sign to A by forwarding. Note that B3 can keep the lists Lid,Ls, and Lc up-to-date during
forwarding. It also provides all random oracles (if any) to A by forwarding.

3. When A outputs a forgery (R∗,m∗, σ∗), the reduction first verifies the forgery as in the non-
slanderability game, i.e., it checks if Ver(R∗,m∗, σ∗) = 1, there does not exists ipk, pk, σ such
that (ipk, pk,R∗,m∗, σ) ∈ Ls, and there there exists an entry (ipk∗, pk∗,R,m, σ) ∈ Ls such that
Link(σ, σ∗) = 1 and ipk∗ /∈ Lc.

4. If all of these checks pass, the reduction runs (i∗, ski∗ , auxski∗) ← ExtLRS(R∗,m∗, σ∗), where
ExtLRS can inspect all random oracle queries that A makes. The reduction B3 then aborts if
(auxpki∗ , auxski∗) /∈ AKR, (pki∗ , ski∗) /∈ KR, or pki∗ 6= pk∗. Otherwise, let Sign(pk∗, pseed∗,
tag∗,R, auxsk,m) be the signing query that lead to inserting (ipk∗, pk∗,R,m, σ) into Ls. The
reduction B3 outputs (ipk∗, pk∗, pseed∗, tag∗, ski∗) to the key onewayness game.

Clearly, B3’s running time is dominated by the running time of A. Further, B3 simulates game G2

perfectly for A4. Finally, we claim that if G2 outputs 1, then B3 breaks key onewayness. First, it
follows from the winning condition of non-slanderability (which is still present in G2) that ipk∗ /∈ Lc.
Second, we have Track(ipk∗, ok, pk∗, tag∗) = 1 for ok := RecDecaps(ivk, pseed∗), because otherwise
oracle Sign would not have returned a signature. Third, we know that (cf. G1) (pki∗ , ski∗) ∈ KR.
As (cf. G2) pk∗ = pki∗ , we also have (pk∗, ski∗) ∈ KR. Thus, we have

Pr [G2→1] ≤ Advk-owB3,LRS,KDS(λ).

4The only subtlety here is that we need to observe that the algebraic representations that ExtLRS gets have the
same structure as in G2. Otherwise, B3 could not provide the input for ExtLRS correctly. This is one reason why the
definition of key knowledge soundness needs to contain the other oracles, and not just oracle O.

53

Lemma 11. Let GGen be an algorithm that on input 1λ outputs the description of a prime order
group G of order p ≥ 2λ with generator g. Let Ô be an oracle that does not take any input, and when
queried the ith time it samples hi←$G and returns it. Let A be any algorithm making at most Q
queries to Ô in the experiment G, which is given as

(G, g, p)← GGen(1λ), (α, (γi)
Q
i=1, α

′, (γ′i)
Q
i=1)← AÔ(g).

Then, there is a PPT algorithm B with T(B) ≈ T(A) such that

Pr
G

[
(α, (γi)

Q
i=1) 6= (α′, (γ′i)

Q
i=1)

∧ gα
∏Q
i=1 h

γi
i = gα

′∏Q
i=1 h

γ′i
i

]
≤ AdvDLOG

B,GGen(λ) +
1

p
.

Proof. Before we describe the reduction B against the DLOG assumption, we first make some
observations. We can write every hi returned by oracle Ô as hi = hνi · gτi for some fixed h = gϑ ∈
G, ϑ ∈ Zp and independent and uniformly random νi, τi ∈ Zp. Next, assume the event we want to
bound holds. Define ∆α := α− α′ and ∆i := γi − γ′i for all i ∈ [Q]. At least one of these is non-zero.
We have

g0 = g∆α ·
Q∏
i=1

h∆i
i = g∆α+

∑Q
i=1 ∆i(τi+νiϑ)

=⇒−∆α −
Q∑
i=1

∆iτi = ϑ

Q∑
i=1

∆iνi.

Therefore, as long as
∑Q
i=1 ∆iνi 6= 0, the reduction can solve for ϑ. More precisely, the reduction

works as follows.

1. Reduction B gets as input g, h ∈ G and runs A on input g, while simulating oracle Ô for A as
follows: When A queries Ô for the ith time, B samples νi, τi←$Zp, sets hi := hνi · gτi , and
returns hi.

2. When A terminates with output (α, (γi)
Q
i=1, α

′, (γ′i)
Q
i=1), the reduction defines ∆α := α − α′

and ∆i := γi − γ′i. If
∑Q
i=1 ∆iνi = 0, the reduction aborts. Otherwise, it outputs

ϑ :=
−∆α −

∑Q
i=1 ∆iτi∑Q

i=1 ∆iνi
.

Clearly, the running time of B is dominated by the running time of A. Further, B perfectly simulates
the game for A. By the above discussion, if the event we want to bound holds and

∑Q
i=1 ∆iνi 6= 0,

then B computes a correct discrete logarithm of h with respect to g. It remains to argue that∑Q
i=1 ∆iνi 6= 0 holds except with negligible probability. To see this, first note that A’s view is

independent of the νi, due to the uniformity of the τi. Further, the matrix D := (∆1, . . . ,∆Q) ∈ Z1×Q
p

is non-zero, because otherwise ∆α also has to be zero, which contradicts the event that we want to
bound. Therefore, the kernel of D has dimension at most Q − 1. Thus, with probability at most
pQ−1/pQ = 1/p, the random vector (ν1, . . . , νQ)> is in the kernel of D.

54

Lemma 12. Let GGen be an algorithm that on input 1λ outputs the description of a prime order
group G of order p ≥ 2λ with generator g. Let Ĥ : {0, 1}∗ → Z2

p be a random oracle and A be any
algorithm making at most QĤ queries to Ĥ in the experiment G, which is given as

(G, g, p)← GGen(1λ), h←$G \ {g0},

(St,R, R̃, pk, auxpk)← AĤ(g, h), c←$Zp \ {0},

(s, K̃1, K̃2, idx)← AĤ(St, c), (a1, a2) := Ĥ(idx, K̃1, K̃2),

W := pka1auxpka2 , W̃ := K̃a1
1 K̃a2

2 .

Then, we have

Pr
G

[
R = gsW c ∧ R̃ = hsW̃ c ∧ ∀w ∈ Zp : ¬(Wi∗ = gw ∧ W̃ = hw)

]
≤

2QĤ

p
.

Proof. To prove the lemma, we first introduce notation. Namely, write W = gw, W̃ = hw̃ and
R = gr, R̃ = hr̃ for uniquely determined exponents w, w̃, r, r̃ ∈ Zp. We have to bound the probability
of the following event:

• Event Win: This event occurs, if r = s+ cw, r̃ = s+ cw̃, and w 6= w̃.

Let i∗ ∈ [QĤ] be the index of the first query of the form Ĥ(idx, K̃1, K̃2), where idx, K̃1, K̃2 are part
of A’s final responses. Then, we can partition event Win into QĤ events:

• Event Wini: This event occurs, if Win occurs and i∗ = i.

By a union bound, we have

Pr [Win] ≤
QĤ∑
i=1

Pr [Wini].

To bound Wini, we distinguish two cases, depending on whether A first queries Ĥ(idx, K̃1, K̃2) or
returns R, R̃, pk, auxpk. Namely, define the following events:

• Event HashFirst: This event occurs, ifA queries Ĥ(idx, K̃1, K̃2) for the first time before returning
R, R̃, pk, auxpk, i.e., the i∗th query occurs before A returns R, R̃, pk, auxpk.

• Event RsFirst: This event occurs, if A queries Ĥ(idx, K̃1, K̃2) for the first time after returning
R, R̃, pk, auxpk, i.e., the i∗th query occurs after A returns R, R̃, pk, auxpk.

Clearly, these events are complementary, and for all i ∈ [QĤ] we have

Pr [Wini] ≤ Pr [Wini | HashFirst] + Pr [Wini | RsFirst].

We first bound the probability of the former term. Assuming that the query i∗ = i occurs before A
returns R, R̃, pk, auxpk, the values w and w̃ are fixed before c is sampled and given to A. We argue
that under these assumptions there can be at most one c, for which a response s exists, such that
Wini occurs. Namely, suppose there are two distinct c, c′ ∈ Zp, and corresponding s, s′ ∈ Zp such that
Wini occurs. Then, we have r = s+ cw and r = s′+ c′w, implying w = (s− s′)/(c′− c). Similarly, we
get w̃ = (s− s′)/(c′− c) = w, and thus event Wini can not occur. Therefore, we know that the former
term is at most 1/p. Next, we bound the probability of the latter term, i.e., the probability that

55

Wini occurs given that A first outputs R, R̃, pk, auxpk, and then makes the i∗th query Ĥ(idx, K̃1, K̃2).
Let z1, z2, sk, auxsk ∈ Zp be the uniquely determined exponents satisfying K̃1 = hz1 , K̃2 = gz2 , and
pk = gsk, auxpk = gauxsk. Note that if Wini occurs, it must hold that s = r − cw and s = r̃ − cw̃.
Rearranging and substituting the definition of w and w̃, this implies

a1(z1 − sk) + a2(z2 − auxsk) =
r − r̃
c

.

Assuming event RsFirst occurs, we know that the right-hand side of this equation, as well as
(z1− sk, z2− auxsk) are fixed before a1 and a2 are sampled uniformly at random by Ĥ. If Wini occurs,
it can not happen that (z1 − sk, z2 − auxsk) is equal to (0, 0) (as otherwise w = w̃), and therefore the
left-hand side is uniformly distributed over Zp. Thus, the probability that the equation holds is at
most 1/p, finishing the proof.

Lemma 13. Let GGen be an algorithm that on input 1λ outputs the description of a prime order
group G of order p ≥ 2λ with generator g. Let Ô be an oracle that does not take any input, and when
queried the ith time it samples hi←$G and returns it. Let A be any algorithm making at most Q
queries to Ô in the experiment G, which is given as

(G, g, p)← GGen(1λ), h←$G \ {g0},

(W, W̃ , α, β, (γi)
Q
i=1, α̃, β̃, (γ̃i)

Q
i=1, c, s)← A

Ô(g, h)

Then, there is a PPT algorithm B with T(B) ≈ T(A) such that

Pr
G

 gαhβ
∏Q
i=1 h

γi
i = gsW c ∧ gα̃hβ̃

∏Q
i=1 h

γ̃i
i = hsW̃ c

∧ ∃w ∈ Zp : W = gw ∧ W̃ = hw

∧ (β 6= 0 ∨ α̃ 6= 0 ∨ α 6= β̃ ∨
∨Q
i=1 γi 6= 0 ∨ γ̃i 6= 0)

 ≤ AdvDLOG
B,GGen(λ) +

1

p
.

Proof. Before giving the reduction B as stated in the lemma, we make some observations. For that,
write h = gϑ. The goal of the reduction will be to find this ϑ ∈ Zp. Assume that the reduction
defines each hi returned by Ô as hi := hxigyi for uniformly random and independent xi, yi ∈ Zp,
i ∈ [Q]. Write x := (x1, . . . , xQ)> ∈ ZQp and y := (y1, . . . , yQ)> ∈ ZQp . Assuming that the event that
we want to bound occurs, we can look at the equations in the exponent of g, and get the equation

s

(
1
ϑ

)
+ cw

(
1
ϑ

)
=

(
α β

α̃ β̃

)
︸ ︷︷ ︸

=:M

(
1
ϑ

)
+

(
γ1 · · · γQ
γ̃1 · · · γ̃Q

)
︸ ︷︷ ︸

=:L

[y | x]

(
1
ϑ

)
.

In other words, we observe that the vector v := (1, ϑ)> ∈ Z2
p is an eigenvector of the matrix

M + L[y | x] with eigenvalue v = s+ cw. We claim that the corresponding eigenspace has dimension
1 with overwhelming probability. Clearly, it has dimension 0, 1, or 2. As v 6= 0 is in this eigenspace,
it does not have dimension 0. Further, this eigenspace is exactly the kernel of the matrix

E := M + L[y | x]− vI2,

where I2 is the 2 × 2 identity matrix. The only way this kernel could have dimension 2 is if the
matrix E was the zero matrix. Now, consider two cases. In the first case, assume L = 0. Then,
E = 0 can only happen if β = 0, α̃ = 0, and α = β̃, which is ruled out by the event we want to
bound. In the second case, assume L 6= 0. Then, E = 0 implies that

L[y | x] = vI2 −M.

56

In particular, the second columns of these matrices are equal. By the way we defined the hi, no
information about x is ever leaked to A, due to uniformity of y. Thus, from A’s view, x remains
uniformly random for the entire experiment. Further, if L is non-zero, it has a kernel of dimension
at most Q − 1, meaning that the probability that above equation holds (for the uniform x) is at
most pQ−1/pQ = 1/p. In summary, we obtain that with overwhelming probability the eigenspace
has dimension 1, i.e., it is generated by some non-zero vector a ∈ Zp. Note that given a, one can
efficiently find a scalar ν ∈ Zp such that νa = v, and therefore one can efficiently find ϑ.

Thus, the reduction B works as follows: It gets as input a DLOG challenge G, p, g, h = gϑ, and runs
AÔ(g, h) while simulating the ith query to Ô by sampling xi, yi←$Zp and returning hi := hxigyi .
When A terminates, B obtains (W, W̃ , α, β, (γi)

Q
i=1, α̃, β̃, (γ̃i)

Q
i=1, c, s). It forms matrices M,L as

above, and determines the eigenvalues and basis vectors for the eigenspaces of M + L[y | x]. If the
event in doubt occurs, at least one of the eigenspaces has dimension 1 with overwhelming probability
and contains v as above. The reduction can now find ϑ by appropriately scaling the basis vector of
this eigenspace.

Lemma 14. Let GGen be an algorithm that on input 1λ outputs the description of a prime order
group G of order p ≥ 2λ with generator g. Let Ô be an oracle that does not take any input, and when
queried the ith time it samples ϑi←$Zp and returns hi := gϑi . Let A be any algorithm making at
most Q queries to Ô in the experiment G, which is given as

(G, g, p)← GGen(1λ),
(
(δj)j∈[L], (ηi,j)i∈[Q],j∈[L]

)
← AÔ(g).

Then, there is a PPT algorithm B with T(B) ≈ T(A) such that

Pr
G

[
(∃j ∈ [L] : δj 6= 0 ∨ ∃(i, j) ∈ [Q]× [L] : ηi,j 6= 0)

∧
(
∀j ∈ [L] : δj +

∑Q
i=1 ϑiηi,j = 0

)]
≤ AdvDLOG

B,GGen(λ) +
1

p
.

Proof. The lemma follows immediately from Lemma 11, which rules out that one can efficiently find
two distinct representations of the same group element with respect to basis g, hi. Note that if the
event we want to bound here occurs, then we have

g0 = gδj
∏
i

h
ηi,j
i ,

which are two distinct representations of the element g0. The formal reduction is trivial.

Lemma 15. Let GGen be an algorithm that on input 1λ outputs the description of a prime order
group G of order p ≥ 2λ with generator g. Consider the following oracles, where LC is an initially
empty set:

• An oracle OI that does not take any input. On the jth query, it samples kj←$Zp and returns
Kj := gkj .

• An oracle OC that takes as input j ∈ N. If kj is not yet defined, it returns ⊥. Otherwise, it
inserts j into LC and returns kj.

• A random oracle Ĥ : {0, 1}∗ → Z2
p.

Let A be an algebraic PPT algorithm making at most QĤ, Q,QC queries to oracles Ĥ,O,OC , respec-
tively, in the experiment G, which is given as follows:

57

1. Generate (G, g, p)← GGen(1λ) and run (St,R, pk, auxpk)← AĤ,OI ,OC (g).

2. Let α(R), α(pk), α(auxpk), (δ
(R)
j , δ

(pk)
j , δ

(auxpk)
j)Qj=1 be the algebraic representation that A output

along with R, pk, auxpk, i.e.,

R = gα
(R)

Q∏
j=1

K
δ
(R)
j

j , pk = gα
(pk)

Q∏
j=1

K
δ
(pk)
j

j , auxpk = gα
(auxpk)

Q∏
j=1

K
δ
(auxpk)
j

j .

3. Sample c←$Zp \ {0} and run (s,R, idx)← AĤ,OI ,OC (St, c).

4. Set (a1, a2) := Ĥ(R, idx) and define W := pka1auxpka2 .

5. Set Win := 1 if R = gsW c, (pk, auxpk) ∈ R, and there is a j ∈ [Q] \ LC such that (δ
(R)
j 6=

0 ∨ δ(pk)
j 6= 0 ∨ δ(auxpk)

j 6= 0). Otherwise, set it to Win := 0.

Then, there is a PPT algorithm B with T(B) ≈ T(A), and

Pr
G

[Win] ≤ 2Q · AdvDLOG
B,GGen(λ) +

(Nmax + 1)QQĤ +Q

p
,

where Nmax is the maximum size of key rings R that are submitted to random oracle Ĥ.

Proof. We first introduce some notation. Consider all variables as in the definition of the game.
We define the vector k ∈ ZQp to be k := (k1, . . . , kQO)>. Further, we define the vector d ∈ ZQp to
be d := (δ

(R)
1 , . . . , δ

(R)
Q)>, the vector p ∈ Z2

p to be p := (α(pk), α(auxpk))>, the vector a ∈ Z2
p to be

a := (a1, a2)>, and the matrix D ∈ ZQ×2
p as

D :=

δ

(pk)
1 δ

(auxpk)
1

...
...

δ
(pk)
Q δ

(auxpk)
Q

 =

D>1
...

D>Q

 ,

where D>j ∈ Z1×2
p denote the rows of D. Further, let sk, auxsk ∈ Zp be exponents satisfying

pk = gsk, auxpk = gauxsk. By definition of pk and auxpk, we have(
sk

auxsk

)
= p + D>k.

Thus, the equation R = gsW c becomes

gα
(R)+k>d = R = gsW c = gs

(
gsk·a1+auxsk·a2

)c
= gs

(
g(p+D>k)>a

)c
= gs+c(p+D>k)>a.

Looking at exponents and rearranging terms, this is equivalent to the equation

α(R) − s− c · p>a = c · k>Da− k>d = k> (c ·Da− d) .

If we consider this equation, our intuition is that we can compute a non-corrupted coordinate kj of
k, if the jth coordinate of z := c ·Da−d is non-zero. More formally, we define an event Zero. Recall
that event Win is the event that we want to bound in the lemma. We will bound the probability of
Win using the DLOG assumption, as long as Zero does not occur. Later, we bound the probability of
Zero. Let us rephrase the definition of event Win using above notation, and introduce event Zero.

58

• Event Win: This event occurs, if α(R) − s − c · p>a = k> (c ·Da− d), (pk, auxpk) ∈ R, and
there is some j ∈ [Q] \ LC such that the jth coordinate of d is non-zero, or the jth row of D is
non-zero.

• Event Zero: This event occurs, if there is some j ∈ [Q] \ LC such that the jth coordinate of d
is non-zero, or the jth row of D is non-zero, but coordinate zj of z := c ·Da− d is zero, i.e.,
zj = 0. For each j, we denote by Zeroj the event that Zero occurs for this j.

We have to bound the probability of event Win. We have

Pr [Win] = Pr [Win ∧ ¬Zero] + Pr [Zero].

We first bound the probability of Win∧¬Zero using a reduction B that breaks the DLOG assumption.
Note that if this event occurs, then by definition we know that for some non-corrupted j ∈ [Q] \ LC ,
the coordinate zj is non-zero. The reduction now guesses this j, and finds kj . Formally, reduction B
is as follows:

1. B gets as input a DLOG challenge G, p, g, h = gk and aims to find k ∈ Zp.

2. To do that, B first samples j∗←$ [Q], and simulates the game from the lemma honestly for A,
except the j∗ query to OI . For that query, B sets Kj∗ := h, thereby implicitly setting kj∗ = k.
If A ever queries OC on input j∗, the reduction aborts its execution.

3. Once A terminated, reduction B checks if event Win ∧ ¬Zero occurs. Note that this can be
done efficiently. If the event does not occur, B aborts its execution. Otherwise it returns

α(R) − s− c · p>a−
∑
j∈[Q]\{j∗} zjkj

zj∗
,

which is equal to k and well defined by above observations.

Clearly, the running time of B is dominated by the running time of A, and B simulates the game
perfectly for B, unless the guessed index j∗ was not correct, and B has to abort. Until such an abort,
the view of B does not depend on j∗. Further, if Win ∧ ¬Zero occurs, then the probability that the
guess is correct is at least 1/Q, and we have

Pr
G

[Win ∧ ¬Zero] ≤ Q · AdvDLOG
B,GGen(λ).

It remains to bound the probability of event Zero. For that, we use a sequence of gamesG0,G1,G2,G3.
Game G0: This game is as game G in the lemma, but it outputs 1 if event Zero occurs. By definition,
if Zero occurs, then there is some j ∈ [Q] \ LC such that

(Dj 6= 0 ∨ dj 6= 0) ∧ c ·D>j a− dj = 0.

We have
Pr [G0→1] = Pr

G
[Zero].

Game G1: Game G1 is as G0, with an additional abort. Namely, the game aborts if A submits two
representations of the same group element that differ for some non-corrupted basis element. More
formally, we define the event RepAmbig and let the game abort if it occurs. The event is as follows.

59

• Event RepAmbig: This event occurs, if the algebraic algorithm A ever submits a group element
X ∈ G (to oracle Ĥ, as part of R, pk, auxpk, or as part of R) twice with two representations

(α(X), (δ
(X)
j)Qj=1) and (ᾱ(X), (δ̄

(X)
j)Qj=1) such that gα

(X) ∏Q
j=1K

δ
(X)
j

j = X = gᾱ
(X) ∏Q

j=1K
δ̄
(X)
j

j ,

and there is some j ∈ [Q] \ LC such that δ(X)
j 6= δ̄

(X)
j .

We can easily bound the probability of RepAmbig using the DLOG assumption. The reduction B′
is very similar to the reduction B described above, and we only sketch it. It gets as input a DLOG
challenge G, p, g, h = gk and aims to find k ∈ Zp. Then, it embeds h into a randomly selected oracle
query j∗ for oracle OI as B described above does. If RepAmbig occurs and δ(X)

j∗ 6= δ̄
(X)
j∗ , the reduction

can compute k as k = (α(X) − ᾱ(X) +
∑
j∈[Q]\{j∗} kj(δ

(X)
j − δ̄(X)

j))/(δ̄
(X)
j∗ − δ

(X)
j∗). We have

|Pr [G0→1]− Pr [G1→1]| ≤ Pr [RepAmbig] ≤ Q · AdvDLOG
B′,GGen(λ).

Game G2: Game G2 is as G1, with an additional abort. Before we introduce the event that triggers
the abort, we introduce more notation. Namely, consider a random oracle query of the form Ĥ(R, idx)

submitted by A, where R = (pki, auxpki)
N
i=1 is a list of pairs of group elements. As A is algebraic, it

also submits representations (α(pki), (δ
(pki)
j)j∈[Q]) and (α(auxpki), (δ

(auxpki)
j)j∈[Q]) for each i ∈ [N] such

that

pki = gα
(pki)

Q∏
j=1

K
δ
(pki)
j

j , auxpki = gα
(auxpki)

Q∏
j=1

K
δ
(auxpki)
j

j .

Now, given a fixed query as above, say the lth, and fixed i, j as above, we define d̂l,i,j :=

(δ
(pki)
j , δ

(auxpki)
j)> ∈ Z2

p. Game G2 aborts if the following event occurs.

• Event ROProdZero: This event occurs, if there is a query l ∈ [QĤ] of the form Ĥ(R, idx) for
R = (pki, auxpki)

N
i=1, that query outputs some al ∈ Z2

p, and there are i ∈ [N] and j ∈ [Q] \ LC
with

d̂l,i,j 6= 0 ∧ d̂>l,i,jal = 0.

We bound the probability of ROProdZero as follows. First, fix some l, i, j as in the definition of the
event. Then, we can consider two cases. In the first case, the hash value on the lth query is not
yet defined. Then this means that vector d̂l,i,j ∈ Z2

p \ {0} is fixed before al is sampled. As d̂l,i,j

is non-zero, its kernel has dimension at most 1. Thus, the probability that d̂>l,i,jal = 0 is at most
p/p2 = 1/p. In the second case, the hash value on the lth query is already defined. Say it has been
defined in query l′ < l, and so al = al′ . Then we know that d̂l,i,j = d̂l′,i,j as otherwise G1 would
have aborted. Thus, if d̂>l,i,jal = 0, then d̂>l′,i,jal′ = 0 and we are in the first case. Finally, we can use
a union bound over all l, i, j as above, and get

|Pr [G1→1]− Pr [G2→1]| ≤ Pr [ROProdZero] ≤
QQĤNmax

p
.

Next, we bound the probability that G2 outputs 1 using a statistical argument and by distinguishing
two cases. For that let (s,R, idx) be the final output of A, and define l∗ ∈ [QĤ] to be the index of
the first query Ĥ(R, idx). Note that if A never makes that query, the game does. We introduce the
following events.

• Event RFirst: This event occurs, if query l∗ occurred after A received c.

60

• Event HashFirst: This event occurs, if query l∗ occurred before A received c.

Fix a j ∈ [Q] \ LC for the rest of the proof. If Zeroj occurs, then by definition

(Dj 6= 0 ∨ dj 6= 0) ∧ c ·D>j a− dj = 0.

If Dj = 0 and c ·D>j a− dj = 0, we must have dj = 0. Therefore, event Zeroj implies that

Dj 6= 0 ∧ c ·D>j a = dj .

Now, if the game outputs 1 and event RFirst occurs, then this means c ·Dj 6= 0 and dj were fixed
before a was sampled uniformly at random. Thus the probability that this happens is at most 1/p for
each fixed hash query of A that may have returned a. This is because if c ·Dj 6= 0, then the kernel
of c ·Dj has dimension at most 1, and therefore at most p of the p2 possible a’s lead to c ·D>j a = dj .
Therefore, we get that the probability that G2 outputs 1 and RFirst is at most QĤ/p. On the other
hand, if the game outputs 1 and event HashFirst occurs, then this means that D>j a and dj were
fixed before c was sampled uniformly at random. Also, note that due to the abort introduced in G1,
we can assume that Dj = d̂l∗,i,j and a = al∗ , for some i and our fixed j ∈ [Q] \ LC . Thus, due to
the abort introduced in G2 and the fact that Dj 6= 0, we know that 0 6= d̂>l∗,i,jal∗ = D>j a. Thus,
D>j a 6= 0 and dj were fixed before c was sampled uniformly at random, which means that the game
outputs 1 with probability at most 1/p. In summary, we bounded the probability that G2 outputs 1
by

Pr [G2→1] ≤ Pr [G2→1 ∧ RFirst] + Pr [G2→1 ∧ HashFirst] ≤
QQĤ +Q

p
.

Lemma 16. Let Hp,Hh : {0, 1}∗ → G, ,Hc : {0, 1}∗ → Zp,Ha : {0, 1}∗ → Z2
p be random oracles. If

the DLOG assumption holds relative to GGen, then (LRS,KDS) (given in Figures 7 and 9) satisfies
key knowledge soundness in the algebraic group model. Concretely, there is a PPT algorithm ExtLRS,
such that for any algebraic PPT algorithm A that makes at most Qni, QS , QHp , QHh , QHc , QHa , QO
queries to oracles NewIdentity,Sign,Hp,Hh,Hc,Ha,O, respectively, there is a PPT algorithm B
with T(A) ≈ T(B) and

Advk-kn-soundA,ExtLRS,LRS,KDS(λ) ≤
(2 +QHa)Qni +QHp +QHh + (QS + 1)QHc + (2QHpQ

2
Hc

+Qni + 1)QHaNmax + 3

p

+ (3 + 2Qni) · AdvDLOG
B,GGen(λ).

Here, Nmax is the maximum size of key rings R that are submitted to random oracles Ha,Hc.

Proof. We first introduce terminology, then describe the extractor ExtLRS, and then analyze the game
K-KN-SOUNDALRS,KDS,ExtLRS(λ) for any algebraic PPT algorithm A. Recall that in this game, such
an adversary A gets as input system parameters par. It gets access to random oracles Ha,Hc,Hh,
Hp, oracles NewIdentity,Corr,Sign, and an oracle O. Throughout the game, A receives the
following group elements:

• Group elements contained in the system parameters par. This is only the generator g ∈ G.

• Group elements returned by random oracles Hp and Hh. Throughout this proof, we let LH be
the set of group elements h ∈ G that A received from these oracles.

61

• Pairs of group elements ipk = (Kv,Ks) ∈ G2 returned by oracle NewIdentity. We denote
the set of all such group elements Ks by LI.

• Pairs of group elements (K̃1, K̃2) contained in signatures σ = (R, c1, (si)
N
i=1, K̃1, K̃2) returned

by oracle Sign.

This means whenever an algebraic algorithm A outputs a group element X ∈ G, it also outputs
exponents in Zp to represent X in terms of these basis elements.
Preprocessed Representation. Before we continue, we introduce an initial preprocessing of this
representation that the extractor will do. The idea is to simplify the representation by removing
certain parts, and introducing artificial parts to have a unified format. This is done using the following
rules:

• Note that oracle NewIdentity returns ipk = (Kv,Ks) ∈ G2 but also ivk = kv such that
Kv = gkv . Therefore, whenever a representation contains an exponent x ∈ Zp for Kv, the
extractor (knowing kv by inspecting oracle interfaces) can remove this part of the representation
and instead add x · kv to the exponent of g.

• When the adversary receives group elements K̃1, K̃2 from Sign, then by definition we have
K̃2 = hauxsk for some h ∈ LH. Note that the extractor can identify this h, and also knows auxsk,
as it is part of the input of Sign. Therefore, the extractor can remove any such part of the
representation as well.

• When the adversary receives group elements K̃1, K̃2 from a query Sign(pk, pseed, tag,R, auxsk,m),
then recall that Sign first found some (ipk = (Kv,Ks), ivk) returned by NewIdentity such
that Track(ipk, ok, pk, tag) = 1 for ok := RecDecaps(ivk, pseed). Note that the extractor has all
information to do this as well, because it can observe ivk as NewIdentity outputs it. Then,
the oracle computes sk := H(ok, tag) + ks, where ks ∈ Zp is such that Ks = gks . Finally, K̃1

is defined as hsk = hH(ok,tag) · hks for some h ∈ LH that can be identified by the extractor. As
the extractor can compute H(ok, tag), it can translate the representation containing K̃1 into a
representation containing hks as a new basis.

• Note that due to the previous rule, the representation will now contain hks for some h ∈ LH
and some Ks = gks ∈ LI. To simplify notation, we assume that the representation contains
such a basis element for every such pair. This is justified by setting the appropriate exponents
to zero. We define the notation

∀h ∈ LH : ∀K = gk ∈ LI : (h �K) := hk.

As a result of these rule, whenever an algebraic algorithm A outputs a group element X ∈ G, and
the extractor already preprocessed the representation, the extractor now knows exponents α(X), γ

(X)
h

(for each h ∈ LH), δ
(X)
K (for each K ∈ LI), and η

(X)
h,K (for each h ∈ LH,K ∈ LI) such that

X = gα
(X) ∏

h∈LH

hγ
(X)
h

∏
K∈LI

Kδ
(X)
K

∏
h∈LH,K∈LI

(h �K)η
(X)
h,K .

From now on for the rest of the proof, we will only talk about preprocessed representations. Without
loss of generality, we can assume that this representation is unique. This is because the extractor
can just ignore a second representation and only consider the first representation that the adversary
submitted.

62

Terminology. Before we describe ExtLRS, we introduce some terminology. For that, we consider
a tuple (R,m, σ), where R = (pki, auxpki)

N
i=1 and σ = (R, c1, (si)

N
i=1, K̃1, K̃2). As in the verification

algorithm, define ((Wi)
N
i=1, W̃) := AggPub(R, K̃1, K̃2).

• For any element group element X ∈ G output by A, we say that the representation of X is
pure, if for all K ∈ LI and all h ∈ LH we have δ(X)

K = 0 and η(X)
h,K = 0. That is, an element X

has a pure representation, if its representation has the form

X = gα
(X) ∏

h∈LH

hγ
(X)
h .

• We define the dominant index of (R,m, σ) to be the unique i ∈ [N] for which the query
Hc(R,m, Ri, R̃i) for hi := Hp(pki) and Ri := gsiW ci

i , R̃i := hsii W̃
ci occurred first among all

such queries made by the adversary. To emphasize, this does not consider queries made by
oracle Sign (as these can not be observed by the extractor anyways). Recall that if A made
this query, then it also submitted a representation of Ri and R̃i. Also, if A never made such
a query, then the extractor can run Ver, and gets a representation of Ri and R̃i using the
representations of pki, auxpki and K̃1, K̃2, and the definition of Wi and W̃ . Note that the
extractor can always identify the dominant index by identifying the query Hc(R,m, Ri, R̃i) as
above. We highlight that the extractor is only executed if (R,m) have never been signed by
oracle Sign. Therefore, Sign never makes the query Hc(R,m, Ri, R̃i), and therefore the first
such query is made by A, or the extractor itself while running Ver.

• Let i∗ be the dominant index of a tuple (R,m, σ) that A submitted to O. Let hi∗ := Hp(pki∗).
We say that the dominant index of (R,m, σ) has admissible R’s, if the representations of Ri∗ , R̃i∗
are pure, and for these representations

Ri∗ = gα
(Ri∗) ·

∏
h∈LH

hγ
(Ri∗)
h , R̃i∗ = gα

(R̃i∗) · h
γ
(R̃i∗)
hi∗
i∗

∏
h∈LH\{hi∗}

hγ
(Ri∗)
h ,

it holds that(
∀h ∈ LH : γ

(Ri∗)
h = 0

)
∧ α(R̃i∗) = 0 ∧

(
∀h ∈ LH \ {hi∗} : γ

(R̃i∗)
h = 0

)
∧ α(Ri∗) = γ(R̃i∗).

In other words, the dominant index of (R,m, σ) has admissible R’s, if Ri∗ and R̃i∗ are represented
as Ri∗ = gri∗ , R̃i∗ = hri∗i∗ for some ri∗ ∈ Zp.

• Let i∗ be the dominant index of a tuple (R,m, σ) that A submitted to O. Assume pure
representations

pki∗ = gα
(pki∗) ·

∏
h∈LH

hγ
(pki∗)
h , auxpki∗ = gα

(auxpki∗) ·
∏
h∈LH

hγ
(auxpki∗)
h

that A submitted along with pki∗ , auxpki∗ . If the representations are not pure, or there is an
h ∈ LH such that γ(pki∗)

h 6= 0 or γ(auxpki∗)
h 6= 0, we say that the dominant index of (R,m, σ) is

badly represented. In other words, the dominant index of (R,m, σ) is badly represented, if pki∗
and auxpki∗ are represented differently than pki∗ = gα

(pki∗) and auxpki∗ = gα
(auxpki∗) .

63

Extractor. The extractor simply checks whether the dominant index of a submitted tuple is not
badly represented and has admissible R’s. If so, it can extract trivially from the representation.
More formally, whenever A submits a tuple (R,m, σ) with R = (pki, auxpki)

N
i=1 to oracle O, extractor

ExtLRS works as follows:

1. If Ver(R,m, σ) = 0, return ⊥.

2. If for some query x ∈ {0, 1}∗ made by A or in Ver, we have Hc(x) = 0, or Hh(x) = g0, or
Hp(x) = g0, then return ⊥.

3. Let i∗ be the dominant index of (R,m, σ). If the (preprocessed) representations of pki∗ or
auxpki∗ are not pure, return ⊥.

4. Otherwise, let

pki∗ = gα
(pki∗) ·

∏
h∈LH

hγ
(pki∗)
h , auxpki∗ = gα

(auxpki∗) ·
∏
h∈LH

hγ
(auxpki∗)
h

be the pure representations that A submitted along with pki∗ , auxpki∗ .

5. If the dominant index of (R,m, σ) is badly represented or does not have admissible R’s, then
return ⊥.

6. Otherwise, set ski∗ := α(pki∗), auxski∗ := α(auxpki∗) and return (i∗, ski∗ , auxski∗).

Analysis. Next, we analyze the key knowledge soundness game with respect to ExtLRS as defined
above and an algebraic PPT algorithm A. Informally, our strategy is as follows:

1. Consider a tuple (R,m, σ) submitted to O.

2. We use the honest-verifier zero-knowledge property of the scheme, and patching of the random
oracle, we simulate the signing oracle. As a result, we only need the secret keys for corruption
queries and to compute the K̃1-part of signatures.

3. Using a statistical argument, we show that there has to be some w ∈ Zp such that Wi∗ = gw

and W̃ = Hp(pki∗)
w, where i∗ is the dominant index of the tuple.

4. Using the DLOG assumption, we argue that involved Ri∗ , R̃i∗ and pki∗ , auxpki∗ have pure
representations. This will exploit the fact that random oracle queries of the signing oracle and
submitted signatures are distinct.

5. Once this is established, we use another reduction to the DLOG assumption, to show that the
values Ri∗ and R̃i∗ are represented as Ri∗ = gri∗ and R̃i∗ = Hp(pki∗)

ri∗ , i.e., the dominant
index has admissible R’s.

6. Using this representation, we show how to efficiently compute the aforementioned w. Then, we
argue that the dominant index can not be badly represented, as otherwise, we would have two
different representations of Wi∗ , violating the DLOG assumption.

We now make this strategy more formal using a sequence of games and bad events.
Game G0: We define game G0 to be the game K-KN-SOUNDALRS,KDS,ExtLRS(λ) for algebraic ad-
versary A and ExtLRS as above. The game outputs 1 if A submits a tuple (R,m, σ) to oracle O, such
that extraction fails. By definition, we have

Advk-kn-soundA,ExtLRS,LRS,KDS(λ) = Pr [G0→1].

64

Game G1: We define game G1 to be as G0, but additionally let the game abort if one of the
following bad events occur:

• Event KeyZero: This event occurs, if some K ∈ LI satisfies K = g0.

• Event ROZero: This event occurs, if for some query x ∈ {0, 1}∗, we have Hc(x) = 0, or
Hh(x) = g0, or Hp(x) = g0.

• Event BadA: This event occurs, if A queries Ha(R, K̃1, K̃2) for R = (pki, auxpki)
N
i=1, this query

returns (a1, a2) ∈ Z2
p, and there is some i ∈ [N] such that

Γi 6= 0 ∧ Γi

(
a1

a2

)
= 0 for Γi :=

γ

(pki)
h1

γ
(auxpki)
h1

...
...

γ
(pki)
h|LH|

γ
(auxpki)
h|LH|

 ,

where h1, . . . , h|LH| is an arbitrary ordering of LH.

Next, we bound the probability of these events. Using a union bound over all queries to NewIdentity,
we can bound the probability of KeyZero by Qni/p. Using a union bound over all random oracle
queries, we can bound the probability of ROZero by (QHp + QHh + QHc)/p. Further, note that
whenever A makes query Ha(R, K̃1, K̃2) as in event BadA for the first time, the matrices Γi are
fixed by the representations that A provides. Fix such a query, fix some i ∈ [N], and assume that
Γi 6= 0. Then the kernel of Γi has dimension at most 1. Therefore, the probability that the random
vector (a1, a2)> ∈ Zp is in this kernel is at most p/p2 = 1/p. This holds because, as said, Γi is fixed
before (a1, a2)> is sampled. Taking a union bound over all i and all queries, we can then bound the
probability of BadA. In summary, we have

|Pr [G0→1]− Pr [G1→1]| ≤ Pr [KeyZero] + Pr [ROZero] + Pr [BadA]

≤
Qni +QHp +QHh +QHc +QHaNmax

p
.

Game G2: Game G2 is as G1, but we change how the signing oracle Sign works. Namely, the
oracle replaces the signing algorithm Sig by a signing algorithm Sig′. This algorithm is exactly as
Sig, but computes the components c1, (si)i of the signature by programming the random oracle Hc.
Note that key image K̃1 is still computed using the secret key. Formally, algorithm Sig′ is given in
Figure 10. It follows from standard honest-verifier zero-knowledge properties that the view of A
does not change from G1 to G2, unless the random oracle value that is programmed in Line 12 of
Figure 10 is already defined. As the value RN is distributed uniformly at random, this occurs with
probability at most QHc/p for every execution of Sig′. Therefore, a union bound of the number of
signing queries shows

|Pr [G1→1]− Pr [G2→1]| ≤ QSQHc

p
.

Game G3: Game G3 is as game G2, but it additionally aborts if the following event occurs:

• Event BadTrans: This event occurs, if A ever outputs a group element X with representation
X = gα

(X) ∏
h∈LH

hγ
(X)
h

∏
K∈LI

Kδ
(X)
K
∏
h∈LH,K∈LI

(h �K)η
(X)
h,K such that(

∃K ∈ LI, h ∈ LH : δ
(X)
K 6= 0 ∨ η(X)

h,K 6= 0
)
∧ gδ

(X)
K

∏
h∈LH

hη
(X)
h,K = g0.

65

We bound the probability of BadTrans using Lemma 14. Namely, a reduction in the game in Lemma 14
gets g as input, simulates G2, and outputs (δ

(X)
K)K , (η

(X)
h,K)h,K if event BadTrans occurs. Then, by

Lemma 14, there exists a reduction B such that

|Pr [G2→1]− Pr [G3→1]| ≤ Pr [BadTrans] ≤ AdvDLOG
B,GGen(λ) +

1

p
.

Game G4: Game G4 is as G3, but additionally aborts if at least one of the following two events
occurs:

• Event NotPure: This event occurs, if A submits a tuple (R,m, σ) with R = (pki, auxpki)i and
dominant index i∗, such that Ver(R,m, σ) = 1, and one of the representations of Ri∗ , R̃i∗ , pki∗ ,
auxpki∗ is not pure, where Ri∗ , R̃i∗ are as in the definition of admissible R’s. We denote the
event that NotPure occurs in the jth query to oracle O by NotPurej .

• Event NonAdmRs: This event occurs, if A submits a tuple (R,m, σ) with Ver(R,m, σ) = 1,
and the dominant index of (R,m, σ) does not have admissible R’s. We denote the event that
NonAdmRs occurs in the jth query to oracle O by NonAdmRsj .

Clearly, it holds that

|Pr [G3→1]− Pr [G4→1]| ≤ Pr [NotPure ∨ NonAdmRs].

For the sake of analyzing this probability, we define another event as follows.

• Event NoGoodW: This event occurs, if A submits a tuple (R,m, σ) with dominant index i∗, and
R = (pki, auxpki)

N
i=1 and σ = (R, c1, (si)

N
i=1, K̃1, K̃2) to oracle O, such that Ver(R,m, σ) = 1

and for ((Wi)
N
i=1, W̃) := AggPub(R, K̃1, K̃2), we have

∀w ∈ Zp : ¬(Wi∗ = gw ∧ W̃ = Hp(pki∗)
w).

We denote the event that NoGoodW occurs in the jth query to oracle O by NoGoodWj .

Now, we can write

Pr [NotPure ∨ NonAdmRs] ≤ Pr [NoGoodW]

+ Pr [NotPure ∧ ¬NoGoodW]

+ Pr [NonAdmRs ∧ ¬NotPure ∧ ¬NoGoodW].

We bound these terms individually in the three claims at the end of the proof, using Lemmas 12, 13
and 15, respectively.

It remains to bound the probability that G4 outputs 1. For that, assume that G4 outputs 1. This
means that neither of the introduced aborts occurs and extraction fails. By definition of ExtLRS, it is
clear that extraction can only fail if the dominant index i∗ of a submitted tuple is badly represented
or does not have admissible R’s. Due to the bad events ruled out in G4, the only way this can
happen is that the adversary outputs a representation of pki∗ , auxpki∗ with an exponent γ(pki∗)

h 6= 0

or γ(auxpki∗)
h 6= 0 for some h ∈ LH. As we will see, this violates the DLOG assumption. More formally,

we bound the probability that G4 outputs 1 using Lemma 11. For that, we give a reduction B that
runs in the game described in Lemma 11, such that the event bounded in Lemma 11 occurs if G4

outputs 1. Namely, the reduction B is as follows:

66

1. The reduction B gets as input a generator g ∈ G, and simulates game G4 for A. Whenever
a new element for oracles Hp and Hh has to be sampled, the reduction uses the oracle Ô (as
defined in Lemma 11).

2. When G4 would output 1 because extraction fails, this means that A submitted a tuple (R,m, σ)

with R = (pki, auxpki)
N
i=1 to oracle O such that Ver(R,m, σ) = 1 and the dominant index i∗

of (R,m, σ) is badly represented. Further, it has admissible R’s and the representation of
pki∗ , auxpki∗ is pure, as otherwise G4 would have aborted. Write σ = (R, c1, (si)

N
i=1, K̃1, K̃2).

By definition, this means that the adversary output a representation

pki∗ = gα
(pki∗) ·

∏
h∈LH

hγ
(pki∗)
h , auxpki∗ = gα

(auxpki∗) ·
∏
h∈LH

hγ
(auxpki∗)
h

with γ(pki∗)
h 6= 0 or γ(auxpki∗)

h 6= 0 for some h ∈ LH. As the dominant index i∗ has admissible
R’s, the reduction knows exponent ri∗ ∈ Zp such that Ri∗ = gri∗ and R̃i∗ = Hp(pki∗)

ri∗ . The
reduction computes w := (ri∗ − si∗)/ci∗ . Because Ver(R,m, σ) = 1, we have gri∗ = Ri∗ =
gsi∗W ci∗

i∗ and therefore gw = Wi∗ . Further, the reduction sets (a1, a2) := Ha(R, K̃1, K̃2) as in
algorithm Ver. Then, we have

gw = Wi∗ = pka1i∗ · auxpk
a2
i∗

= ga1α
(pki∗)+a2α

(auxpki∗) ·
∏
h∈LH

ha1γ
(pki∗)
h +a2γ

(auxpki∗)
h .

Since G1 we can assume that event BadA does not occur, and therefore for at least one
h ∈ LH the exponent a1γ

(pki∗)
h + a2γ

(auxpki∗)
h is non-zero. Thus, B can output two different

representations of gw to the game in Lemma 11.

Reduction B perfectly simulates G4 for A. Further, if G4 outputs 1 (i.e., extraction fails), then B
computed two different representations of pki∗ . Thus, Lemma 11 implies that there is a reduction B2

with
Pr [G4→1] ≤ AdvDLOG

B2,GGen(λ) +
1

p
.

Claim 14. In game G3, we have

Pr [NoGoodW] ≤ QOQHpQ
2
HcNmax ·

2QHa

p
.

To prove the claim, we first use a union bound to get

Pr [NoGoodW] ≤
QO∑
j=1

Pr [NoGoodWj].

Now, fix some j ∈ [QO]. Then we bound Pr [NoGoodWj] using a reduction B running in the game of
Lemma 12. The idea is to guess the involved random oracle queries. Precisely, the reduction is as
follows.

1. Reduction B gets as input generators g, h ∈ G, and access to a random oracle Ĥ.

2. Reduction B samples the following indices: i0←$ [QHh], i1←$ [QHc], i2←$ [QHc]. If i1 > i2, it
aborts.

67

3. Reduction B simulates game G3 for A, while simulating oracles NewIdentity,Corr,Sign
as in G2 and random oracle Ha via forwarding to Ĥ. It simulates the other random oracles
honestly, except the i0th query to Hh, and the i1th and i2th query to Hc. These are simulated
as follows:

• Let the i0th query to Hh be Hh(pk). If the hash value is already defined, the reduction
aborts. Otherwise, it aborts with probability 1/p (cf. event ROZero), and sets the hash
value to be h with probability 1− 1/p.

• Let the i1th query to Hc be Hc(R,m, R, R̃). The reduction parses R = (pki, auxpki)
N
i=1, and

samples i3←$ [N]. Then, it outputs its state, R, R̃, pki3 , auxpki3 to the game in Lemma 12.
It gets back a c ∈ Zp. Then, it simulates the answering of the query honestly. Later, when
the i2th query to Hc occurs, and the hash value is already defined, it aborts. If it is not
yet defined, it aborts with probability 1/p (cf. event ROZero), and sets the hash value to
c with probability 1− 1/p.

4. When A submits a tuple (R,m, σ) with dominant index i∗, and R = (pki, auxpki)
N
i=1 and

σ = (R, c1, (si)
N
i=1, K̃1, K̃2) to oracle O in the jth query, B first checks if all the guessed indices

are correct, i.e.,(using notation as in Ver)

• The first query Hp(pki∗) was the i0th query to Hp.

• The first query Hc(R,m, Ri∗ , R̃i∗) was the i1th query to Hc.

• The first query of Hc(R,m, Ri′ , R̃i′) was the i2th query to Hc, where i′ ∈ [N] is such that
i′ mod N + 1 = i∗.

• We have i3 = i∗.

Note that if all guesses are correct in the sense above, then especially the programming that
the reduction did for the i1th and i2th query to Hc does not conflict with the programming
that oracle Sign does as introduced in game G2. If one of the indices is not guessed correct, B
aborts. Otherwise, B outputs si∗ , K̃1, K̃2, idx := R to the game in Lemma 12 and terminates.
If NoGoodWj does not occur, B aborts.

We see that until a potential abort occurs, A’s view is independent of the indices i0, i1, i2, i3, and B
perfectly simulates G3 for A. Further, assume that B samples the correct indices and NoGoodWj

occurs. In this case, one can easily observe that, by definition of Ver and the event NoGoodWj , the
event that is bounded in Lemma 12 occurs. Therefore, we have

Pr [NoGoodWj] ≤ QHpQ
2
HcNmax ·

2QHa

p
,

and the claim is proven.

Claim 15. In game G3, we have

Pr [NotPure ∧ ¬NoGoodW] ≤ 2Qni · AdvDLOG
B0,GGen(λ) +

(Nmax + 1)QniQHa +Qni
p

,

for some reduction B0 with T(B0) ≈ T(A).

68

To prove the claim, we first explain the main observations that allow us to use Lemma 15. Assume
the representation

Ri∗ = gα
(Ri∗) ·

∏
h∈LH

hγ
(Ri∗)
h ·

∏
K∈LI

Kδ
(Ri∗)
K ·

∏
h∈LH,K∈LI

(h �K)η
(Ri∗)
h,K

is not pure. This means that some δ(Ri∗)
K or some η(Ri∗)

h,K is non-zero. Our reduction to the game in
Lemma 15 programs the random oracles such that it knows ϑh ∈ Zp for each h = gϑh ∈ LH. With
this, it transforms above representation into a representation

Ri∗ = g
α(Ri∗)+

∑
h∈LH

ϑhγ
(Ri∗)
h ·

∏
K∈LI

K
δ
(Ri∗)
K +

∑
h∈LH

ϑhη
(Ri∗)
h,K .

Due to the abort we introduced in game G3, we know that there is some K ∈ LI for which the
transformed exponent δ(Ri∗)

K +
∑
h∈LH

ϑhη
(Ri∗)
h,K is non-zero, which is what we need to apply Lemma 15.

If the representations of pki∗ or auxpki∗ are not pure, we can do an analogous translation.
Next, assume the representation of R̃i∗ is not pure. Then we need to do an additional translation,

because the game in Lemma 15 does not consider such a value R̃i∗ . Namely, we show that the
reduction can derive a non-pure representation of Ri∗ in this case, using the assumption that
NoGoodW does not occur. Once we showed this, Lemma 15 can be applied as before. If the event
NoGoodW does not occur, then it is easy to see that

W̃ = Wϑ∗

i∗ for ϑ∗ ∈ Zp s.t. Hp(pki∗) = gϑ
∗
.

Again, note that the reduction knows ϑ∗. As we assume that the submitted signature is valid, i.e.,
Ver(R,m, σ) = 1, we have (with notations as in Ver)

R̃i∗ = Hp(pki∗)
si∗ W̃ ci∗ = gsi∗ϑ

∗
W ci∗ϑ

∗

i∗ = Rϑ
∗

i∗ .

Therefore, the reduction can first transform a non-pure representation of R̃i∗ into a non-pure
representation

R̃i∗ = gα ·
∏
K∈LI

KδK ,

given by α, (δK)K∈LI with some non-zero δK , as done for Ri∗ . Then, the reduction transform this
representation into a non-pure representation

Ri∗ = R̃
1/ϑ∗

i∗ = gα/ϑ
∗
·
∏
K∈LI

KδK/ϑ
∗

of Ri∗ . Here, we used that ϑ∗ 6= 0, see G1. We now formally describe the reduction B that runs in
the game defined in Lemma 15, and uses above techniques.

1. B gets as input generator g ∈ G, and access to oracles Ĥ,OI ,OC . It first samples indices
i1, i2←$ [QHc]. If i1 > i2, B aborts its execution. Then, B simulates game G3 for A, while
simulating the oracles NewIdentity,Corr,Sign, and the random oracles Ha,Hp,Hh,Hc as
follows:

• Random oracles Hp,Hh are simulated in the standard lazy way, but such that B knows for
each returned group element h ∈ LH an exponent ϑh ∈ Zp with h = gϑh . This can easily
be achieved by sampling ϑh at random and defining h := gϑh whenever a new hash value
is needed.

69

• Random oracle Ha is simulated by forwarding to random oracle Ĥ. Before forwarding
group elements to Ĥ, the reduction first translates them into a suitable representation,
exactly as it is explained for the values Ri∗ above. That is, it removes all components
with basis h or (h �K) for all h ∈ LH,K ∈ LI using the values ϑh.

• Random oracle Hc is simulated honestly, except the i1th and the i2th query. These are
simulated as follows: Let the i1th query to Hc be Hc(R,m, R, R̃). The reduction parses
R = (pki, auxpki)

N
i=1, and samples i3←$ [N]. As in the above discussion, it can translate the

representations of R, R̃, pki3 , auxpki3 into representations with basis g and K,K ∈ LI. If
all four representations are pure, it aborts the execution. If one of these representations for
R, pki3 , auxpki3 is not pure, it outputs its state, and these representations of R, pki3 , auxpki3
to the game in Lemma 15. If only the representation of R̃ is not pure, then it first identifies
ϑ∗ such that Hp(pki3) = gϑ

∗
, and translates the non-pure representation of R̃ into a

non-pure representation of R (as explained above), and then outputs this representation
of R and the representations of pki3 , auxpki3 to the game in Lemma 15. In either case, it
gets back a c ∈ Zp. Then, it simulates the answering of the query honestly. Later, when
the i2th query to Hc occurs, and the hash value is already defined, it aborts. If it is not
yet defined, it aborts with probability 1/p (cf. event ROZero), and sets the hash value to
c with probability 1− 1/p.

• Oracle queries to NewIdentity are answered as in G3, but Ks is obtained from a query
to oracle OI . Corresponding oracle queries to Corr are answered by appropriately
forwarding to oracle OC .

• Oracle queries to Sign are answered as in G3, with the following change. Recall that
G3, the oracle first computes a secret key sk = H(ok, tag) + k, where ok, tag are part
of the oracle’s input, and k is an identity secret key for some identity ipk, i.e., there is
some K ∈ LI such that K = gk. The reduction B first identifies this K (by checking
sk = H(ok, tag) + k in the exponent of g). Further, recall that the oracle in G3 then uses
algorithm Sig′ given in Figure 10 to compute signatures, and that this algorithm makes
use of sk only in Line 05 to compute the key image K̃1 = hski∗ , where hi∗ ∈ LH. The
reduction B instead computes this value without using k. This is done using

K̃1 = hski∗ = h
H(ok,tag)
i∗ · hki∗ = h

H(ok,tag)
i∗ ·Kϑhi∗ .

2. Whenever A submits (R,m, σ) with dominant index i∗, and R = (pki, auxpki)
N
i=1 and σ =

(R, c1, (si)
N
i=1, K̃1, K̃2) to oracle O, B first checks if event NotPure ∧ ¬NoGoodW occurs in this

query. Note that it can efficiently check NoGoodW using knowledge of the discrete logarithm of
Hp(pki∗). If this event does not occur, it continues as in G3 to simulate the oracle. If it occurs,
B checks if all the guessed indices are correct, i.e., (using notation as in Ver)

• The first query Hc(R,m, Ri∗ , R̃i∗) was the i1th query to Hc.

• The first query of Hc(R,m, Ri′ , R̃i′) was the i2th query to Hc, where i′ ∈ [N] is such that
i′ mod N + 1 = i∗.

• We have i3 = i∗.

Note that if all guesses are correct in the sense above, then especially the programming that
the reduction did for the i1th and i2th query to Hc does not conflict with the programming
that oracle Sign does as introduced in game G2. If one of the indices is not guessed correct, B
aborts. Otherwise, it outputs si∗ , R, and idx := (K̃1, K̃2) to the game in Lemma 15.

70

Until a potential abort occurs, B perfectly simulates G3 for A, and the view of A is independent of
i1, i2, i3. If these indices are guessed correctly and the event NotPure ∧ ¬NoGoodW occurs, then B
triggers the event that is bounded in Lemma 15, which follows from above discussion. By Lemma 15,
we therefore have a reduction B0 with

Pr [NotPure ∧ ¬NoGoodW] ≤ 2Qni · AdvDLOG
B0,GGen(λ) +

(Nmax + 1)QniQHa +Qni
p

.

Claim 16. In game G3, we have

Pr [NonAdmRs ∧ ¬NotPure ∧ ¬NoGoodW] ≤ AdvDLOG
B1,GGen(λ) +

1

p
,

for some reduction B1 with T(B1) ≈ T(A).

To prove the claim, we bound the probability using Lemma 13. Namely, we sketch a reduction B
running in the game defined in Lemma 13.

1. Reduction B gets as input g, h, and access to an oracle Ô.

2. It samples a random i0←$ [QHp] and uses h as the hash value in the i0th query to Hp (except
with an abort probability of 1/p, see event ROZero). To answer the remaining queries to oracles
Hp and Hh, it uses Ô.

3. Whenever NotPure occurs, B aborts its execution.

4. Whenever A submits a tuple (R,m, σ) to O, B checks if NonAdmRs occurs, i.e., Ver(R,m, σ) = 1,
and the dominant index i∗ of (R,m, σ) does not have admissible R’s. If it does not occur on this
query, B simulates the query as in G3. Otherwise, if it occurs, B checks if h = Hp(pki∗), i.e., the
guessed query was correct. If it was, B outputs the representation of Ri∗ and R̃i∗ (as given in the
definition of admissible R’s),Wi∗ , W̃ , ci∗ , si∗ (as in Ver). Note that the representation of Ri∗ , R̃i∗
is pure (otherwise event NotPure would have occurred), and therefore the representations have
the correct format for the game in Lemma 13.

Clearly, B perfectly simulates game G3 for A, and if NonAdmRs occurs, and neither NoGoodW nor
NotPure occur, then the event bounded in Lemma 13 occurs. Thus, we get a reduction B1 with the
desired property.

Lemma 17. Let Hp,Hh : {0, 1}∗ → G, ,Hc : {0, 1}∗ → Zp,Ha : {0, 1}∗ → Z2
p be random oracles.

Then, (LRS,KDS) (given in Figures 7 and 9) satisfies knowledge linkability in the algebraic group
model. Concretely, with ExtLRS as in Lemma 16, we have that for any algebraic algorithm A that
makes at most QHa queries to oracle Ha, we have

Advkn-linkA,ExtLRS,LRS(λ) ≤ QHaNmax

p
.

Here, Nmax is the maximum size of key rings R that are submitted to random oracles Ha,Hc.

Proof. Before reading this proof, the reader is first encouraged to recall the terminology and the
extractor ExtLRS from the proof of Lemma 16. Recall that if an adversary A wins the knowledge
linkability game, then this means that one of the following two cases holds:

71

Alg Sig′(R, sk, auxsk,m),Sig′′(R, auxsk,m)

01 parse (pki, auxpki)
N
i=1 := R

02 Let i∗ ∈ [N] s.t. pki∗ = gsk ∧ auxpki∗ = gauxsk

03 if no such i∗ : abort
04 hi∗ := Hp(pki∗), K̃2 := hauxski∗

05 K̃1 := hski∗ // Sig′

06 K̃1 := pk
ϑhi∗
i∗ , where hi∗ = gϑhi∗ // Sig′′

07 ((Wi)
N
i=1, W̃) := AggPub(R, K̃1, K̃2)

08 c1←$Zp, s1←$Zp, R1 := gs1W c1
1 , R̃1 := hs11 W̃

c1

09 for i ∈ {2, . . . , N} :
10 ci := Hc(R,m, Ri−1, R̃i−1), hi := Hp(pki)

11 si←$Zp, Ri := gsiW ci
i , R̃i := hsii W̃

ci

12 Program Hc(R,m, RN , R̃N) := c1
13 return σ := (R, c1, (si)

N
i=1, K̃1, K̃2)

Figure 10: The modified signing algorithms Sig′ and Sig′′, used in the proof of Lemma 16 and
Lemma 9, respectively.

1. A submitted two triples (R,m, σ), (R′,m′, σ′), for R = (pki, auxpki)i, R′ =
(
pk′i, auxpk

′
i

)
i

such that for both of them, ExtLRS extracts successfully, i.e., it returns (i∗, ski∗ , auxski∗),
(i∗′, sk′i∗ , auxsk

′
i∗), respectively, and we have

pki∗ = pk′i∗′ ∧ Link(σ, σ′) = 0.

2. A submitted a triple (R,m, σ), for R = (pki, auxpki)i, such that ExtLRS extracts successfully, i.e.,
it returns (i∗, ski∗ , auxski∗), and the oracle Sign returned a valid signature σ′ on some input
pk′, pseed, tag,R′, auxsk,m such that

pki∗ = pk′ ∧ Link(σ, σ′) = 0.

Now, we first make a simple observation about the extractor ExtLRS. Then, we will define a bad
event that occurs with negligible probability. Finally, we will argue that if this event does not occur,
then A can not win the knowledge linkability game. We observe the following. Assume ExtLRS
returns (i∗, ski∗ , auxski∗) when A submits (R,m, σ) with R = (pki, auxpki)

N
i=1 and in a query. Write

σ = (R, c1, (si)
N
i=1, K̃1, K̃2) and define ((Wi)

N
i=1, W̃) := AggPub(R, K̃1, K̃2) as in algorithm Ver. Then,

we have
∃w ∈ Zp : Wi∗ = gw ∧ W̃ = Hp(pki∗)

w.

This can be seen as follows: If ExtLRS does not output ⊥, then by definition of ExtLRS, the dominant
index i∗ of (R,m, σ) is not badly represented and has admissible R’s. This means that (using notation
as in Ver) we have Ri∗ = gri∗ , R̃i∗ = hri∗i∗ for some ri∗ ∈ Zp. Further, if ExtLRS does not output ⊥,
then especially the verification equation holds and we have

gri∗ = Ri∗ = gsi∗W ci∗
i∗ , Hp(pki∗)

ri∗ = R̃i∗ = Hp(pki∗)
si∗ W̃ ci∗

=⇒ Wi∗ = gw ∧ W̃ = Hp(pki∗)
w for w =

ri∗ − si∗
ci∗

,

72

where we also used that ExtLRS would have output ⊥ if ci∗ = 0. It is clear that such a w also exists
for signatures that were computed honestly by oracle Sign.

Next, we define a bad event and bound its probability. Informally, we want to rule out that the
aggregations Wi∗ , W̃ form a Diffie-Hellman tuple, but pki∗ , K̃1 do not.

• Event SpanColl: This event occurs, if for a query Ha(R, K̃1, K̃2) with R = (pki, auxpki)
N
i=1 that

returns (a1, a2), there is some i ∈ [N] such that

∀z ∈ Zp : ¬
(
pki = gz ∧ K̃1 = Hp(pki)

z
)

∧ ∃w ∈ Zp :
(
pka1i · auxpk

a2
i = gw ∧ K̃a1

1 · K̃
a2
2 = Hp(pki)

w
)
.

To bound the probability of SpanColl, consider a fixed query Ha(R, K̃1, K̃2) as in the definition
of the event and a fixed i ∈ [N]. Now, let ϑ, ski, auxski, c, d ∈ Zp be the uniquely determined
exponents satisfying gϑ = Hp(pki), g

ski = pki, g
auxski = auxpki, g

c = K̃1, g
d = K̃2. Set v := (1, ϑ)>,

w1 := (ski, c)
>, and w2 := (auxski, d)> ∈ Z2

p. Then, the event occurs for this query and this i if

w1 /∈ Zpv ∧ a1w1 + a2w2 ∈ Zpv.

In particular, projecting these vectors to the one dimensional vector space Z2
p/Zpv ∼= Zp, and denoting

the respective elements by w1, w2 ∈ Zp, the event implies the equation

w1 6= 0 ∧ a1w1 + a2w2 = 0.

As w1, w2 are fixed before a1, a2 are sampled uniformly, and the linear map (a1, a2) 7→ a1w1 + a2w2

is surjective given that w1 6= 0, this can only happen with probability 1/p. In summary, for a fixed
query and a fixed i, the event occurs with probability 1/p. A union bound now implies

Pr [SpanColl] ≤ QHaNmax

p
.

Finally, assume that SpanColl does not occur. We argue that conditioned on that, the knowl-
edge linkability game never outputs 1. To see this, consider two triples (R,m, σ), (R′,m′, σ′), for
R = (pki, auxpki)i, R

′ =
(
pk′i, auxpk

′
i

)
i
as in the two cases outlined in the beginning of the proof.

That is, ExtLRS returns (i∗, ski∗ , auxski∗) for (R,m, σ), and for (R′,m′, σ′), either ExtLRS returns
(i∗′, sk′i∗ , auxsk

′
i∗) (Case 1), or there is such a tuple (i∗′, sk′i∗ , auxsk

′
i∗) because σ′ is computed honestly

by Sign. Further, write σ = (R, c1, (si)i, K̃1, K̃2) and σ′ = (R′, c′1, (s
′
i)i, K̃

′
1, K̃

′
2). As in algorithm

Ver, define ((Wi)i, W̃) := AggPub(R, K̃1, K̃2) and ((W ′i)i, W̃
′) := AggPub(R′, K̃ ′1, K̃

′
2). Using the

observation we made above, we know that

∃w ∈ Zp : Wi∗ = gw ∧ W̃ = Hp(pki∗)
w

∧ ∃w′ ∈ Zp : W ′i∗′ = gw
′
∧ W̃ ′ = Hp(pk

′
i∗′)

w′ .

Recall that AggPub internally uses random oracle Ha to compute its output. As SpanColl does not
occur, this means that

∃z ∈ Zp : pki∗ = gz ∧ K̃1 = Hp(pki∗)
z

∧ ∃z′ ∈ Zp : pk′i∗′ = gz
′
∧ K̃ ′1 = Hp(pk

′
i∗′)

z′ .

73

Recall that algorithm Link just compares K̃1 and K̃ ′1. This means that we have to show that

pki∗ = pk′i∗′ ∧ K̃1 6= K̃ ′1

can not hold. To this end, assume that pki∗ = pk′i∗′ . Then, we see that z = z′, and therefore

K̃1 = Hp(pki∗)
z = Hp(pk

′
i∗′)

z = Hp(pki∗)
z = K̃ ′1,

finishing the proof.

Lemma 18. Let Hp,Hh : {0, 1}∗ → G, ,Hc : {0, 1}∗ → Zp,Ha : {0, 1}∗ → Z2
p be random oracles. If

the DLOG assumption holds relative to GGen, then (LRS,KDS) (given in Figures 7 and 9) satisfies
knowledge non-slanderability in the algebraic group model. Concretely, with ExtLRS as in Lemma 16,
we have that for any algebraic PPT algorithm A that makes at most QHa queries to oracle Ha there
is a PPT algorithm B with T(B) ≈ T(A), such that

Advkn-n-slandA,ExtLRS,LRS,KDS(λ) ≤ QHaNmax + 1

p
+ AdvDLOG

B,GGen(λ),

where Nmax is the maximum size of key rings R that are submitted to random oracles Ha,Hc.

Proof. The reader is encouraged to recall the terminology and the extractor ExtLRS from the proof
of Lemma 16, as well as the proof of Lemma 17. Consider the knowledge non-slanderability
game for an adversary A. By definition, the adversary wins this game, if it submits a triple
(R,m, σ), for R = (pki, auxpki)

N
i=1 and σ = (R, c1, (si)

N
i=1, K̃1, K̃2) to oracle O, such that ExtLRS

extracts successfully, i.e., it returns (i∗, ski∗ , auxski∗), and the oracle Sign returned a valid signature
σ′ = (R′, c′1, (s

′
i)
N
i=1, K̃

′
1, K̃

′
2) computed as σ′ ← Sig(R′, sk′, auxsk,m) on some input pk′, pseed, tag,R′,

auxsk,m such that
pki∗ 6= pk′ ∧ Link(σ, σ′) = 1.

Using notation as in algorithm Ver, we can first show that in this case, there exists some w ∈ Zp
such that Wi∗ = gw and W̃ = Hp(pki∗)

w. This is done exactly as in the proof of Lemma 17. Then,
we introduce and bound the event SpanColl exactly as in Lemma 17, and have

Pr [SpanColl] ≤ QHaNmax

p
.

If SpanColl does not occur, we can argue as in the proof of Lemma 17 to show that there must be
some z ∈ Zp such that pki∗ = gz and K̃1 = Hp(pki∗)

z. By definition of ExtLRS, this z is exactly equal
to ski∗ . Now, the winning condition pki∗ 6= pk′ ∧ Link(σ, σ′) = 1 translates to

pki∗ 6= pk′ ∧ Hp(pki∗)
ski∗ = K̃1 = K̃ ′1 = Hp(pk

′)sk
′
.

This means, that A can only win the knowledge non-slanderability game, if the following event
occurs.

• Event KeyHashColl: This event occurs, if A submits triple (R,m, σ) with R = (pki, auxpki)
N
i=1

and σ = (R, c1, (si)
N
i=1, K̃1, K̃2) to oracle O, such that ExtLRS extracts successfully, i.e., it returns

(i∗, ski∗ , auxski∗), and before that, Sign returned a valid signature σ′ = (R′, c′1, (s
′
i)
N
i=1, K̃

′
1, K̃

′
2)

computed as σ′ ← Sig(R′, sk′, auxsk,m) on some input pk′, pseed, tag,R′, auxsk,m such that

pki∗ 6= pk′ ∧ Hp(pki∗)
ski∗ = Hp(pk

′)sk
′
.

74

To finish the proof, it remains to bound the probability of event KeyHashColl. This is easily done
using Lemma 11. Namely, a reduction running in the game defined in Lemma 11 gets as input
generator g ∈ G and access to an oracle Ô that outputs uniform group elements. It simulates
the knowledge non-slanderability game for A, while simulating random oracle Hp using oracle Ô.
Then, once KeyHashColl occurs, it outputs the two distinct representations sk and ski∗ such that
Hp(pki∗)

ski∗ = Hp(pk
′)sk
′
. Note that the reduction knows sk′ as it simulates the signing oracle

honestly, and Hp(pki∗) and Hp(pk
′) are output by Ô on distinct queries. Thus, if KeyHashColl occurs,

the event bounded in Lemma 11 is triggered. Therefore, Lemma 11 tells us that there is a reduction
B such that

Pr [KeyHashColl] ≤ AdvDLOG
B,GGen(λ) +

1

p
.

75

8 Other Models for RingCT-Like Systems
While no previous work analyzes Monero’s transaction scheme RingCT as it is, some previous
works [SALY17, YSL+20, LRR+19, EZS+19, ESZ22] introduce models for protocols similar to
RingCT. In this section, we elaborate on the shortcomings of these models. We also encourage the
reader to consult the discussion on different models in [LRR+19, EZS+19]. As our work is only about
security and not about privacy, we omit discussing the privacy aspects of these previous models. We
assume that the reader is familiar with our overview in Section 2.
Fragmented Security Notions. In our work, we provide a single experiment defining security.
Informally, security means that an adversary can only spend what it owns, and not steal users coins.
Unfortunately, most previous models [SALY17, YSL+20, LRR+19] fail to give a single security model
for that. Instead, they provide a set of notions. Mostly, these mimic the standard notions of a
linkable ring signature scheme, e.g., non-slanderability, linkability, unforgeability, and the notions
of a commitment scheme, e.g., binding. We call such a model fragmented. The problem of such a
model is that it is not clear how the notions relate, whether they compose, and how they imply
security for the entire transaction scheme. For example, in [LRR+19], it is not obvious how and
why the notions of binding, balance, and non-slanderability imply security of the entire transaction
scheme when combined. Comparing to our work, fragmented models are somewhat similar to the
set of security notions we define for our components. For example, we also have a binding and a
non-slanderability notion for the components. Arguing that such a set of notions implies the security
of the entire transaction scheme is highly non-trivial, as our analysis shows.
Adversarial Outputs. Recall that in Monero, each output of a transaction corresponds to a public
key pk and a commitment com. If an adversary creates a transaction spending coins to an honest user,
it derives this public key pk and the commitment com based on the public seed pseed of a transaction,
and the recipients identity public key ipk. As a consequence, the adversary may know relations
between different outputs of the same honest user, possibly leading to related key attacks. This means
that any reasonable security model has to give the adversary the ability to derive outputs for honest
users. We will see that several security models in previous works [SALY17, YSL+20, EZS+19, ESZ22]
do not have this feature.
Sun et al.’s RingCT 2.0. Sun et al. introduce [SALY17] a model for protocols similar to RingCT
and give a new construction based on pairings. Their model has several shortcomings. First, by
defining security via two notions called balance and non-slanderability, they obtain a fragmented
model in the above sense. Second, in terms of adversarial capabilities, their model is restricted.
For example, as already noted in [LRR+19], their notions do not model adversarially generated
outputs (aka stealth addresses). Instead, they only consider honestly generated outputs, which can
not be assumed in the case of Monero. Moreover, the adversary does not have the ability to submit
an arbitrary transaction to the chain. Instead, it can only add transactions by calling an oracle
that honestly creates the transaction. Overall, these aspects limit the expressiveness of the model
significantly. Third, the authors of [SALY17] informally claim that linkability follows from their
non-slanderability notion. As explained in [LRR+19], this is not true in general. In the context of
Monero, this means that there can be counterexamples in which the given non-slanderability notion
holds but double spending is possible.
Yuen et al.’s RingCT 3.0. Yuen et al. [YSL+20] also provide a model for protocols similar to
RingCT and give a construction based on a new ring signature scheme. In terms of security, Yuen et
al. provide three notions, called unforgeability, equivalence, likability, and non-slanderability, which
is fragmented in the above sense. Similar to the model by Sun et al. [SALY17], the adversary can
only add transactions via an oracle that generates these transactions honestly, and all outputs of

76

honest parties are derived honestly.
Lai et al.’s Omniring. Lai et al. [LRR+19] introduce a model for transaction schemes and propose
a new scheme that is more efficient than Monero’s current transaction scheme. Then, they give an
analysis of this new scheme with respect to their notions. In their model, Lai et al. first introduce two
security properties, called balance and binding. Binding is defined in a natural way, and balance is
formalized via an extractor that can extract all witnesses from an adversarially generated transaction.
In addition to that, non-slanderability is defined as a separate notion. This leads to a fragmented
model and it is not clear how these three notions relate to each other and what they mean in
combination. For example, while the non-slanderability notion gives the adversary access to oracles
that allow to add transactions to the system arbitrarily, this is not the case for the balance and
binding notions. Also, while having an extractor seems to be close to one of the security notions we
introduce for components, the extractor in [LRR+19] only has to work for a single transaction. It
is not clear what happens if we run such an extractor for multiple transactions. For example, the
extractor is allowed to use rewinding, leading to an exponential blowup in running time when done
naively on multiple transactions. Finally, the model of Lai et al. does not capture that honest users
reuse randomness within one transaction for creating the outputs.
MatRiCT and MatRiCT+. In [EZS+19, ESZ22], constructions of transaction schemes based
on lattice assumptions are presented. Contrary to previous works, both works provide a single
experiment for security instead of giving fragmented security models. On the downside, both
works [EZS+19, ESZ22] do not model adversarially generated outputs (aka stealth addresses). It
is mentioned in Appendix C.A of [ESZ22] that stealth addresses can be added to their lattice-
based scheme in an easy way. However, it is clear that not modeling stealth addresses formally
completely removes the challenge of dealing with related key attacks as discussed before. Finally,
both works [EZS+19, ESZ22] do not model the reuse of randomness for output generation of honest
users.

References
[AJ18] Kurt M. Alonso and Jordi Herrera Joancomartí. Monero - privacy in the blockchain.

Cryptology ePrint Archive, Report 2018/535, 2018. https://eprint.iacr.org/2018/
535. (Cited on page 6.)

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg
Maxwell. Bulletproofs: Short proofs for confidential transactions and more. In 2018
IEEE Symposium on Security and Privacy, pages 315–334. IEEE Computer Society
Press, May 2018. (Cited on page 3, 4, 6, 47, 48.)

[BCG+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran
Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments from bitcoin.
In 2014 IEEE Symposium on Security and Privacy, pages 459–474. IEEE Computer
Society Press, May 2014. (Cited on page 6.)

[BCJZ21] Jacqueline Brendel, Cas Cremers, Dennis Jackson, and Mang Zhao. The provable security
of Ed25519: Theory and practice. In 2021 IEEE Symposium on Security and Privacy,
pages 1659–1676. IEEE Computer Society Press, May 2021. (Cited on page 4.)

[BDL+11] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. High-
speed high-security signatures. In Bart Preneel and Tsuyoshi Takagi, editors, CHES 2011,

77

https://eprint.iacr.org/2018/535
https://eprint.iacr.org/2018/535

volume 6917 of LNCS, pages 124–142. Springer, Heidelberg, September / October 2011.
(Cited on page 4.)

[BMM+21] Benedikt Bünz, Mary Maller, Pratyush Mishra, Nirvan Tyagi, and Psi Vesely. Proofs
for inner pairing products and applications. In Mehdi Tibouchi and Huaxiong Wang,
editors, ASIACRYPT 2021, Part III, volume 13092 of LNCS, pages 65–97. Springer,
Heidelberg, December 2021. (Cited on page 4.)

[CHM+20] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely, and
Nicholas P. Ward. Marlin: Preprocessing zkSNARKs with universal and updatable SRS.
In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume 12105
of LNCS, pages 738–768. Springer, Heidelberg, May 2020. (Cited on page 5.)

[CYD+20] Tong Cao, Jiangshan Yu, Jérémie Decouchant, Xiapu Luo, and Paulo Veríssimo. Explor-
ing the monero peer-to-peer network. In Joseph Bonneau and Nadia Heninger, editors,
FC 2020, volume 12059 of LNCS, pages 578–594. Springer, Heidelberg, February 2020.
(Cited on page 6.)

[DBV21] Arijit Dutta, Suyash Bagad, and Saravanan Vijayakumaran. Mprove+: Privacy enhancing
proof of reserves protocol for monero. IEEE Trans. Inf. Forensics Secur., 16:3900–3915,
2021. (Cited on page 6.)

[DRR22] Dominic Deuber, Viktoria Ronge, and Christian Rückert. SoK: Assumptions underlying
cryptocurrency deanonymizations. PoPETs, 2022(3):670–691, July 2022. (Cited on
page 6.)

[DV19] Arijit Dutta and Saravanan Vijayakumaran. Mprove: A proof of reserves protocol
for monero exchanges. In 2019 IEEE European Symposium on Security and Privacy
Workshops, EuroS&P Workshops 2019, Stockholm, Sweden, June 17-19, 2019, pages
330–339. IEEE, 2019. (Cited on page 6.)

[ELR+22] Christoph Egger, Russell W. F. Lai, Viktoria Ronge, Ivy K. Y. Woo, and Hoover H. F.
Yin. On defeating graph analysis of anonymous transactions. PoPETs, 2022(3):538–557,
July 2022. (Cited on page 6.)

[ESZ22] Muhammed F. Esgin, Ron Steinfeld, and Raymond K. Zhao. Matrict+: More efficient
post-quantum private blockchain payments. In 43rd IEEE Symposium on Security and
Privacy, SP 2022, San Francisco, CA, USA, May 22-26, 2022, pages 1281–1298. IEEE,
2022. (Cited on page 3, 5, 6, 76, 77.)

[EZS+19] Muhammed F. Esgin, Raymond K. Zhao, Ron Steinfeld, Joseph K. Liu, and Dongxi
Liu. MatRiCT: Efficient, scalable and post-quantum blockchain confidential transactions
protocol. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz,
editors, ACM CCS 2019, pages 567–584. ACM Press, November 2019. (Cited on page 3,
5, 6, 76, 77.)

[FKL18] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model and its
applications. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018,
Part II, volume 10992 of LNCS, pages 33–62. Springer, Heidelberg, August 2018. (Cited
on page 4, 11.)

78

[FO22] Georg Fuchsbauer and Michele Orrù. Non-interactive mimblewimble transactions, revis-
ited. Cryptology ePrint Archive, Report 2022/265, 2022. https://eprint.iacr.org/
2022/265. (Cited on page 6.)

[FOS19] Georg Fuchsbauer, Michele Orrù, and Yannick Seurin. Aggregate cash systems: A
cryptographic investigation of Mimblewimble. In Yuval Ishai and Vincent Rijmen,
editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages 657–689. Springer,
Heidelberg, May 2019. (Cited on page 6.)

[Fro] Liam Frost. Monero developers disclose ‘significant’
bug in privacy algorithm. https://decrypt.co/76938/
monero-developers-disclose-significant-bug-privacy-algorithm. Accessed:
2023-02-14. (Cited on page 6.)

[FS07] Eiichiro Fujisaki and Koutarou Suzuki. Traceable ring signature. In Tatsuaki Okamoto
and Xiaoyun Wang, editors, PKC 2007, volume 4450 of LNCS, pages 181–200. Springer,
Heidelberg, April 2007. (Cited on page 5.)

[GNB19] Brandon Goodell, Sarang Noether, and Arthur Blue. Concise linkable ring signatures
and forgery against adversarial keys. Cryptology ePrint Archive, Paper 2019/654, 2019.
https://eprint.iacr.org/2019/654. (Cited on page 3, 5, 6, 11.)

[GOP+22] Chaya Ganesh, Claudio Orlandi, Mahak Pancholi, Akira Takahashi, and Daniel Tschudi.
Fiat-shamir bulletproofs are non-malleable (in the algebraic group model). In Orr
Dunkelman and Stefan Dziembowski, editors, EUROCRYPT 2022, Part II, volume
13276 of LNCS, pages 397–426. Springer, Heidelberg, May / June 2022. (Cited on
page 4.)

[GT21] Ashrujit Ghoshal and Stefano Tessaro. Tight state-restoration soundness in the algebraic
group model. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part III, volume
12827 of LNCS, pages 64–93, Virtual Event, August 2021. Springer, Heidelberg. (Cited
on page 3, 4, 6, 47.)

[Gug20] Joël Gugger. Bitcoin-monero cross-chain atomic swap. Cryptology ePrint Archive,
Report 2020/1126, 2020. https://eprint.iacr.org/2020/1126. (Cited on page 6.)

[HBHW] Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox. Zcash protocol speci-
fication, version 2022.3.8. https://zips.z.cash/protocol/protocol.pdf. Accessed:
2023-02-15. (Cited on page 6.)

[Jed] Tom Evlis Jedusor. Mimblewimble. https://download.wpsoftware.net/bitcoin/
wizardry/mimblewimble.txt. Accessed: 2023-02-15. (Cited on page 6.)

[KAN20] Koe, Kurt M. Alonso, and Sarang Noether. Zero to monero v2.0.0, 2020. https:
//web.getmonero.org/library/Zero-to-Monero-2-0-0.pdf (visited on 2022-11-21).
(Cited on page 3, 6, 11.)

[KFTS17] Amrit Kumar, Clément Fischer, Shruti Tople, and Prateek Saxena. A traceability analysis
of monero’s blockchain. In Simon N. Foley, Dieter Gollmann, and Einar Snekkenes,
editors, ESORICS 2017, Part II, volume 10493 of LNCS, pages 153–173. Springer,
Heidelberg, September 2017. (Cited on page 6.)

79

https://eprint.iacr.org/2022/265
https://eprint.iacr.org/2022/265
https://decrypt.co/76938/monero-developers-disclose-significant-bug-privacy-algorithm
https://decrypt.co/76938/monero-developers-disclose-significant-bug-privacy-algorithm
https://eprint.iacr.org/2019/654
https://eprint.iacr.org/2020/1126
https://zips.z.cash/protocol/protocol.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.txt
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.txt
https://web.getmonero.org/library/Zero-to-Monero-2-0-0.pdf
https://web.getmonero.org/library/Zero-to-Monero-2-0-0.pdf

[Kle] Christopher Klee. Monero xmr: “signifikanter” privacy
bug entdeckt. https://www.btc-echo.de/schlagzeilen/
monero-xmr-signifikanter-privacy-bug-entdeckt-123001/. Accessed: 2023-
02-14. (Cited on page 6.)

[LRR+19] Russell W. F. Lai, Viktoria Ronge, Tim Ruffing, Dominique Schröder, Sri Aravinda Kr-
ishnan Thyagarajan, and Jiafan Wang. Omniring: Scaling private payments without
trusted setup. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan
Katz, editors, ACM CCS 2019, pages 31–48. ACM Press, November 2019. (Cited on
page 3, 5, 6, 76, 77.)

[LWW04] Joseph K. Liu, Victor K. Wei, and Duncan S. Wong. Linkable spontaneous anonymous
group signature for ad hoc groups (extended abstract). In Huaxiong Wang, Josef
Pieprzyk, and Vijay Varadharajan, editors, ACISP 04, volume 3108 of LNCS, pages
325–335. Springer, Heidelberg, July 2004. (Cited on page 6.)

[MBKM19] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. Sonic: Zero-
knowledge SNARKs from linear-size universal and updatable structured reference strings.
In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors,
ACM CCS 2019, pages 2111–2128. ACM Press, November 2019. (Cited on page 5.)

[MBL+20] Pedro Moreno-Sanchez, Arthur Blue, Duc Viet Le, Sarang Noether, Brandon Goodell,
and Aniket Kate. DLSAG: Non-interactive refund transactions for interoperable payment
channels in monero. In Joseph Bonneau and Nadia Heninger, editors, FC 2020, volume
12059 of LNCS, pages 325–345. Springer, Heidelberg, February 2020. (Cited on page 6.)

[MCdS20] Rui Morais, Paul Crocker, and Simao Melo de Sousa. Delegated RingCT: faster
anonymous transactions. Cryptology ePrint Archive, Report 2020/1521, 2020. https:
//eprint.iacr.org/2020/1521. (Cited on page 6.)

[mon] Disclosure of a major bug in cryptonote based currencies. https://www.getmonero.
org/2017/05/17/disclosure-of-a-major-bug-in-cryptonote-based-currencies.
html. Accessed: 2023-02-14. (Cited on page 6.)

[MSH+18] Malte Möser, Kyle Soska, Ethan Heilman, Kevin Lee, Henry Heffan, Shashvat Srivastava,
Kyle Hogan, Jason Hennessey, Andrew Miller, Arvind Narayanan, and Nicolas Christin.
An empirical analysis of traceability in the monero blockchain. PoPETs, 2018(3):143–163,
July 2018. (Cited on page 6.)

[Nica] Jonas Nick. Exploiting low order generators in one-time ring
signatures. https://jonasnick.github.io/blog/2017/05/23/
exploiting-low-order-generators-in-one-time-ring-signatures/. Accessed:
2023-02-14. (Cited on page 6.)

[Nicb] Jonas Nick. A problem with monero’s ringct. https://jonasnick.github.io/blog/
2016/12/17/a-problem-with-ringct/. Accessed: 2023-02-14. (Cited on page 6.)

[Noe15] Shen Noether. Ring signature confidential transactions for monero. Cryptology ePrint
Archive, Report 2015/1098, 2015. https://eprint.iacr.org/2015/1098. (Cited on
page 5, 11.)

80

https://www.btc-echo.de/schlagzeilen/monero-xmr-signifikanter-privacy-bug-entdeckt-123001/
https://www.btc-echo.de/schlagzeilen/monero-xmr-signifikanter-privacy-bug-entdeckt-123001/
https://eprint.iacr.org/2020/1521
https://eprint.iacr.org/2020/1521
https://www.getmonero.org/2017/05/17/disclosure-of-a-major-bug-in-cryptonote-based-currencies.html
https://www.getmonero.org/2017/05/17/disclosure-of-a-major-bug-in-cryptonote-based-currencies.html
https://www.getmonero.org/2017/05/17/disclosure-of-a-major-bug-in-cryptonote-based-currencies.html
https://jonasnick.github.io/blog/2017/05/23/exploiting-low-order-generators-in-one-time-ring-signatures/
https://jonasnick.github.io/blog/2017/05/23/exploiting-low-order-generators-in-one-time-ring-signatures/
https://jonasnick.github.io/blog/2016/12/17/a-problem-with-ringct/
https://jonasnick.github.io/blog/2016/12/17/a-problem-with-ringct/
https://eprint.iacr.org/2015/1098

[Ped92] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret
sharing. In Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 129–140.
Springer, Heidelberg, August 1992. (Cited on page 3, 6, 50.)

[REL+21] Viktoria Ronge, Christoph Egger, Russell W. F. Lai, Dominique Schröder, and Hoover
H. F. Yin. Foundations of ring sampling. PoPETs, 2021(3):265–288, July 2021. (Cited
on page 6.)

[SALY17] Shi-Feng Sun, Man Ho Au, Joseph K. Liu, and Tsz Hon Yuen. RingCT 2.0: A compact
accumulator-based (linkable ring signature) protocol for blockchain cryptocurrency mon-
ero. In Simon N. Foley, Dieter Gollmann, and Einar Snekkenes, editors, ESORICS 2017,
Part II, volume 10493 of LNCS, pages 456–474. Springer, Heidelberg, September 2017.
(Cited on page 3, 5, 6, 76.)

[SLYQ22] Zhimei Sui, Joseph K. Liu, Jiangshan Yu, and Xianrui Qin. Monet: A fast payment
channel network for scriptless cryptocurrency monero. In 42nd IEEE International
Conference on Distributed Computing Systems, ICDCS 2022, Bologna, Italy, July 10-13,
2022, pages 280–290. IEEE, 2022. (Cited on page 6.)

[TMSS20] Sri Aravinda Krishnan Thyagarajan, Giulio Malavolta, Fritz Schmidt, and Dominique
Schröder. PayMo: Payment channels for monero. Cryptology ePrint Archive, Report
2020/1441, 2020. https://eprint.iacr.org/2020/1441. (Cited on page 6.)

[Vij21] Saravanan Vijayakumaran. Analysis of CryptoNote transaction graphs using the dulmage-
mendelsohn decomposition. Cryptology ePrint Archive, Report 2021/760, 2021. https:
//eprint.iacr.org/2021/760. (Cited on page 6.)

[VS13] Nicolas Van Saberhagen. Cryptonote v 2.0. 2013. https://www.bytecoin.org/old/
whitepaper.pdf (visited on 2022-11-21). (Cited on page 3, 5.)

[WLSL18] Dimaz Ankaa Wijaya, Joseph K. Liu, Ron Steinfeld, and Dongxi Liu. Monero ring
attack: Recreating zero mixin transaction effect. In 17th IEEE International Conference
On Trust, Security And Privacy In Computing And Communications / 12th IEEE
International Conference On Big Data Science And Engineering, TrustCom/BigDataSE
2018, New York, NY, USA, August 1-3, 2018, pages 1196–1201. IEEE, 2018. (Cited on
page 6.)

[YAV19] Jiangshan Yu, Man Ho Allen Au, and Paulo Jorge Esteves Veríssimo. Re-thinking
untraceability in the CryptoNote-style blockchain. In Stephanie Delaune and Limin
Jia, editors, CSF 2019 Computer Security Foundations Symposium, pages 94–107. IEEE
Computer Society Press, 2019. (Cited on page 6.)

[YSL+20] Tsz Hon Yuen, Shifeng Sun, Joseph K. Liu, Man Ho Au, Muhammed F. Esgin, Qingzhao
Zhang, and Dawu Gu. RingCT 3.0 for blockchain confidential transaction: Shorter size
and stronger security. In Joseph Bonneau and Nadia Heninger, editors, FC 2020, volume
12059 of LNCS, pages 464–483. Springer, Heidelberg, February 2020. (Cited on page 3,
5, 6, 76.)

81

https://eprint.iacr.org/2020/1441
https://eprint.iacr.org/2021/760
https://eprint.iacr.org/2021/760
https://www.bytecoin.org/old/whitepaper.pdf
https://www.bytecoin.org/old/whitepaper.pdf

	Introduction
	Our Contributions
	Technical Highlights and Findings
	Related Work

	Informal Overview of Monero Transactions
	Preliminaries and Notation
	Model for Private Transaction Schemes
	Syntax
	Security Notion

	Security Notions for Components
	Notions for Key Derivation
	Notions for the Verifiable Homomorphic Commitment
	Notions for the Ring Signature

	System Level Security Analysis
	Bounding Winning Condition win-steal
	Bounding Winning Condition win-create

	Component Level Security Analysis
	The Components used in Monero
	Analysis of Key Derivation
	Analysis of the Verifiable Homomorphic Commitment
	Analysis of the Ring Signature

	Other Models for RingCT-Like Systems

