
Poseidon2: A Faster Version of the Poseidon
Hash Function

Lorenzo Grassi1, Dmitry Khovratovich2, and Markus Schofnegger3

1 Ponos Technology (Switzerland)
2 Ethereum Foundation (Luxembourg)

3 Horizen Labs (United States)
lorenzo@ponos.technology, khovratovich@gmail.com,

mschofnegger@horizenlabs.io

Abstract. Zero-knowledge proof systems for computational integrity
have seen a rise in popularity in the last couple of years. One of the
results of this development is the ongoing effort in designing so-called
arithmetization-friendly hash functions in order to make these proofs
more efficient. One of these new hash functions, Poseidon, is extensively
used in this context, also thanks to being one of the first constructions
tailored towards this use case. Many of the design principles of Posei-
don have proven to be efficient and were later used in other primitives,
yet parts of the construction have shown to be expensive in real-word
scenarios.
In this paper, we propose an optimized version of Poseidon, called Po-
seidon2. The two versions differ in two crucial points. First, Poseidon
is a sponge hash function, while Poseidon2 can be either a sponge or a
compression function depending on the use case. Secondly, Poseidon2
is instantiated by new and more efficient linear layers with respect to
Poseidon. These changes allow to decrease the number of multiplica-
tions in the linear layer by up to 90% and the number of constraints
in Plonk circuits by up to 70%. This makes Poseidon2 the currently
fastest arithmetization-oriented hash function without lookups.
Besides that, we address a recently proposed algebraic attack and pro-
pose a simple modification that makes both Poseidon and Poseidon2
secure against this approach.

Keywords: Poseidon – Poseidon2 – ZK Application – Sponge/Compression Mode

1 Introduction

The area of zero-knowledge proof systems has seen a rise in popularity during the
last couple of years. Arithmetization techniques such as R1CS used in Groth16
[33], AIR used for FRI-based commitments [9,10], and Plonk [24] and Plonk-
style arithmetizations (e.g., [23] used in halo2 [52]) make it possible to efficiently
verify the correctness of a computation.

Most of these proof systems internally use hash functions for the purpose of
polynomial (Merkle tree) commitments. These hash functions are rather different

compared to more traditional primitives. Indeed, while the latter are often opti-
mized for plain performance in software or hardware implementations, construc-
tions for proof systems mostly focus on minimizing the number of constraints
(similar to gates) when writing them down in a specific circuit language. This
fact has led to new symmetric designs, exhibiting sometimes unusual symmetric
building blocks (e.g., sacrificing plain performance in order to obtain a simpler
description in a certain proof system).

In the literature, hash functions fulfilling these properties are often described
as being arithmetization-oriented, which refers to their focus towards use cases of
computational integrity. Besides Poseidon [26], examples of such constructions
include MiMC/GMiMC [3,2], Friday [5], Rescue [4],Neptune [30], Anemoi [17],
and Griffin [25]. In the last years, the knowledge of designing arithmetization-
oriented hash functions has evolved, and more specific design goals are known
today. For example, while minimizing the number of nonlinear operations was
deemed the main target several years ago, many more performance metrics are
taken into account now. Some of these metrics are the plain performance and
the circuit complexity, which can play a significant role in the final proof com-
position.

The Origin of Poseidon. In this paper, we mostly focus on the Posei-
don hash function. First described in 2019 [28], it is heavily based on the
HadesMiMC family of block ciphers [29]. The key property of HadesMiMC
is that is uses two different round functions, one containing a full nonlinear layer
with S-boxes applied to the entire state, and one containing a partial nonlinear
layer with the S-boxes only affecting part of the state. This approach was cho-
sen in order to provide convincing security arguments against statistical attacks
using the full rounds while at the same time increasing the degree efficiently
(i.e., by using a smaller number of S-boxes) using the partial rounds. However,
HadesMiMC was designed with MPC use cases in mind, which has very differ-
ent properties and optimization goals compared to modern proof systems. Most
importantly, all linear operations can be computed locally by every party in
an MPC protocol. Since the final efficiency of such a protocol depends on the
number of communication rounds and no communication is needed for linear
operations, the main optimization goal of HadesMiMC was to minimize the
number of nonlinear operations. As a result, the final number of linear opera-
tions turned out to be comparatively high, mainly due to many multiplications
with matrices of large sizes. In particular, each round of HadesMiMC contains
a multiplication of a t-element state with a dense and unstructured t× t matrix
over Fp, where p is a comparatively large prime. Hence, this operation results in
a number of multiplications in O(t2) over Fp.

Similar to MPC use cases, in some arithmetization techniques (e.g., R1CS
used in Groth16 [33]), the number of nonlinear operations is also the main bot-
tleneck. Hence, building a hash function based on the HadesMiMC permutation
seemed like an efficient approach. This idea led to the specification of Poseidon,
which is essentially a sponge hash function using an internal permutation similar

2

to the one used in HadesMiMC (with minor differences such as the omission
of a key addition). Poseidon has since been implemented and used in many
different proving frameworks, including e.g. Ginger-lib [34] and plonky2 [45].

Plain Performance and the Plonk Arithmetization. Since the design of
Poseidon, various new optimization goals emerged. For example, it became
clear that plain performance must not be neglected, since among other things
it plays a crucial role when building the commitments outside of the respective
circuits. Recent hash function designs in this area acknowledge this fact and try
to also optimize for plain performance.

Moreover, the variety of different arithmetization techniques has increased in
the last couple of years. While R1CS was the main target for the original Po-
seidon, nowadays also the so-called algebraic intermediate representation (AIR)
[11] for FRI-based proof systems [9] or Plonk [24] and “Plonkish” representations
are popular approaches. Particularly, in Plonk linear operations also contribute
to the final cost. Note that this is a clear distinction between Plonk and R1CS.

The Poseidon hash function, while widely used and arguably efficient in
some use cases, exhibits a large number of linear operations. This makes it
expensive in terms of plain performance and when considering a Plonk-style
arithmetization.

1.1 Our Goals

Our first goal for Poseidon2π is to achieve a simpler and more efficient version
of Poseidonπ. At the same time, we want to stay close to the original descrip-
tion, which allows us to benefit from years of third-party cryptanalysis applied
to Poseidonπ. In particular, our modifications allow us to achieve significant
performance improvements while keeping the same round numbers, i.e., the same
number of nonlinear operations. This is beneficial in concrete use cases in com-
putational integrity. Indeed, the number of constraints does not increase when
choosing Poseidon2π instead of Poseidonπ, while at the same time the plain
performance is better. For example, Merkle trees, a prominent building block in
many proof systems, can be computed significantly faster.

The updated Poseidon2π will show similarities to other primitives, for ex-
ample Neptune. Still, the algorithmic description is much closer to Poseidonπ.
We chose this approach since Poseidonπ is widely used in practice, and reusing
components from the original design reduces implementation efforts.

Remark 1. We emphasize that we do not propose changes to the original per-
mutation, and we do not propose a new security analysis for it either. Instead,
our modification Poseidon2π can be thought of as a new and optimized version
of Poseidonπ.

1.2 Our Contributions and Results

Security Issue for Poseidonπ. We address a security problem with the orig-
inal Poseidonπ permutation. Indeed, as has been observed in [8], the first two

3

nonlinear layers can be skipped when mounting an algebraic attack on Posei-
donπ. This results in equation systems of lower degrees and a more efficient
attack. This approach can be mitigated by adding an additional linear layer to
the beginning of the permutation. We discuss this issue in Section 7.3.

Poseidon2π. As the main contribution, we consider various optimizations in
order to make Poseidon faster and more efficient in recent proof systems. In
particular, compared to the original Poseidonπ permutation, our modification
called Poseidon2π has

(1) an additional linear layer at the beginning of the permutation,
(2) different linear layer matrices,
(3) round constants only applied to the first word in the internal rounds, and
(4) the same number of rounds for many instantiations used in practice.

Regarding the last point, we compare the statistical and the algebraic security of
Poseidon2π with that of Poseidonπ. We also emphasize that our new modified
permutation is very similar in nature to the original one, and thus inherits the
trust gained from the third-party cryptanalysis of Poseidon. A full specification
of the new linear layers and of Poseidon2π is given in Section 5 and Section 6.

Modes of Operation. In many computational integrity proof systems, the con-
struction of Merkle trees is a crucial part. For example, it is used to compute
commitments to polynomials or to prove membership. When building a Merkle
tree, the next hash is computed using a fixed number of previous (hash) outputs.
For this purpose, the sponge function has often been used in the past, albeit with
only one permutation call. In this paper, depending on the use case, we suggest
to use either the classical sponge hash function or a generic compression function
which computes a single new output using an arbitrary number of inputs and
only one permutation call. In our practical use case, its main advantage regards
the fact that it operates on a smaller size. For example, the inner part (capacity
elements) of a sponge is not necessary, and thus the permutation can become
smaller, with concrete advantages. We discuss both modes of operation specified
for Poseidon2π in Section 3.1.

Performance Comparison. Following the description of our new permutation
Poseidon2π, we discuss its performance characteristics in Section 8. We focus
on the plain performance and on the number of Plonk constraints, and provide
benchmarks from a Rust implementation for various state sizes. We also compare
Poseidon2π to the original version and to other similar primitives, and we
provide a new Plonkish arithmetization technique which is compatible with both
Poseidon2π and Poseidonπ.

2 Preliminaries: Modern Arithmetization Techniques

Our focus in this paper is on use cases in the area of computational integrity
proof systems. In such a scenario, a prover wants to convince a verifier to have

4

correctly run an arbitrary computation, without making the verifier recompute
the result. Many such proof systems exist in practice [33,11,24], and they also
allow for zero-knowledge versions where the verifier does not learn any private
details of the provided proof.

In general, a proof can be split into two steps. First, the computation has to be
represented as a number of polynomials, which is usually called arithmetization.
Then, a polynomial commitment scheme is used in order to finalize the proof. In
this paper, we focus on the arithmetization step, and for this purpose we briefly
describe popular techniques. The aim when applying these is to keep the number
of constraints as low as possible.

R1CS. A rank-1 constraint satisfaction system (R1CS) consists of n equa-

tions in the variables v0, v1, . . . , vm defined by
(∑m

i=0 a
(n)
i vi

)
·
(∑m

i=0 b
(n)
i vi

)
=(∑m

i=0 c
(n)
i vi

)
, where vi are elements from a finite field F, v0 ∈ 0, 1, and

a
(n)
i , b

(n)
i , c

(n)
i are field elements describing the n-th constraint.

Note that these equations are of degree 2 in {vi}mi=0. They are derived from
the statement to prove, which in many cases is a hash function evaluation. Then,
minimizing the number of constraints generally leads to more efficient proofs.
As an example, using high-degree functions in the hash specification results in a
larger number of constraints, which is why many recent arithmetization-oriented
designs rely on low-degree components.

Plonk and Variants. The Plonk [24] arithmetization results in a table-like
representation for the execution trace. However, the constraints are not restricted
to describe entire state transitions, and in general more freedom is offered to the
designer. In particular, every constraint is of the form

qLi
· aLi

+ qRi
· aRi

+ qOi
· aOi

+ qMi
· (aLi

aRi
) + qCi

= 0,

where aLi , aRi , aOi are witness variables describing two inputs and an output
of a gate, and qLi

, qRi
, qOi

, qMi
, qCi

are set such that a specific gate constraint
(e.g., an addition or a multiplication) is enforced. Note that this is only a basic
description of Plonk, and subsequent variants such as [23] make it possible to
increase the “width” of the gate (e.g., the number of inputs).

A notable difference in Plonk when compared to R1CS is that linear gates
(e.g., additions) also require constraints of their own. Hence, linear operations
are not “for free” anymore. This can make expensive linear operations, such as
matrix multiplications, not only inefficient in a plain evaluation, but also with
regards to the arithmetization.

Plonkish and AIR. Both Plonkish [52] and AIR [11] are more powerful repre-
sentations compared to R1CS and regular Plonk. Like Plonk, both Plonkish and
AIR describe a computation trace as a matrix, but allow high-degree polynomial
relations to represent the state transformation.

5

The set of states is a T ×w matrix, where T is the number of states and w is
the width (or the number of registers). Focusing on a hash function evaluation,
for example w is set to the state size of the hash primitive and each new state
describes the values obtained after applying a round function to the previous
state. In contrast to R1CS, the constraint polynomials are not required to be of
degree 2, but the efficiency of the arithmetization still depends on the maximum
degree d in the constraint polynomials. The prover time is proportional to T ·w·d,
whereas the proof size is an affine function of the maximal number of variables
q in the constraints. Hence, more efficient Plonkish/AIR proofs are delivered by
smaller degrees and/or fewer variables in the constraints.

3 Preliminaries: ZK-Friendly Symmetric Primitives

3.1 Modes of Operation

Hash functions are crucial in the context of zero-knowledge protocols, e.g., to
build Merkle trees for a polynomial commitment. Given a hash function H :
F⋆
p → F∞

p for a prime p ≥ 2, it must be computationally hard to find

(collision resistance) x, x′ such that H(x) = H(x′),
(preimage resistance) x given y such that H(x) = y,
(second-preimage resistance) x′ given x ̸= x′ such that H(x′) = H(x).

In this paper, we mainly focus on the sponge mode, which has also been used in
many of the recent arithmetization-oriented designs.

While hash functions are perfectly usable and allow to make strong security
arguments, they are often more generic. For many classical applications (e.g.,
ordinary hashing of arbitrary-length inputs) this is not a major issue. However,
when building a Merkle tree with small fixed-size input lengths, we often only
need a single permutation call to process the entire input and compute the
desired output. In this case, the construction is not used as a hash function in a
traditional sense, but rather as a compression function.

The concept of compression functions is well-known in cryptography, and
they can also be used to build general-purpose hash functions [44,19]. For our
use case, however, we focus on single calls to compression functions, precisely
matching our need for building a Merkle tree and supporting so-called t-to-n
compressions, i.e., compressing a vector of size t into one of size n. As for the
case of hash functions, a compression function C : Ft

p → Fn
p must guarantee

resistance against collision and (second-)preimage attacks.

Sponge Hash Functions. A sponge hash function [12,13] is built using an
internal cryptographic permutation or function. It accommodates for both arbi-
trarily sized inputs and arbitrarily sized outputs. Let P be a permutation over
Ft
p, and let t = r + c, where c denotes the capacity and r the rate. A sponge

function then works as follows.

6

1. The input message m ∈ F∗
p is padded with 10∗ such that its size is a multiple

of r, that is, m = m0 || m1 || · · · || mµ−1 ∈ (Fr
p)

µ.
2. The capacity is initialized with IV ∈ Fc

p.
3. The message blocks are compressed one-by-one into a Ft

p state such that

∀i ∈ {0, 1, . . . , µ− 1} : hi = hi−1 + P (mi || 0c),

where 0c := 0 || · · · || 0 ∈ Fc
p and h−1 := 0r || IV ∈ Ft

p.
4. After processing the last message block, the output is of the form Trr(hµ) ||

Trr(hµ+1) || · · · , where the truncation function Trr yields the first r elements
of the input.

In this paper, we adapt the SAFE padding rule proposed in [7], consisting of
adding the smallest number < r of zeroes such that the size of m || 0∗ is a
multiple of r, where IV = H(IO,D) with H being a 128-bit hash function, IO
being the pattern of absorbing to and squeezing elements to the sponge (for plain
ℓ-input hashing one sets IO = 263 + ℓ232 +1), and D being a domain separator.

Security. As proven in [13], if the inner permutation resembles a random one,
the sponge construction is indifferentiable from a random oracle up to around
pc/2 queries. Equivalently, in order to provide κ bits of security, pc/2 ≥ 2κ.4

Cryptographic Compression Functions. Let P be a permutation over Ft
p

Several strategies can be used to construct a compression function. Here we focus
on compression functions defined by combining the truncation function with the
feed-forward operation, i.e.,

x ∈ Ft
p 7→ C(x) := Trn(P(x) + x) ∈ Fn

p ,

where Trn yields the first n elements of the inputs. Several schemes proposed in
the literature reduce to this model, including Haraka [39] and the Jivemode of op-
eration proposed in [17]. In such cases, the state x is multiplied via an invertible
t× t matrix MC before being added to P, that is, C′(x) := Trn(P(x)+MC ×x).
However, as discussed in [25], such multiplication does not have any effect on
the security of the compression function in the case in which no constraint is
imposed on the input x. For this reason, we simply consider the case MC = I
(i.e., identity matrix).

Security of C. As discussed e.g. in [25], this approach can be seen as a permutation-
based variant of the Davies-Meyer mode [46,16] which, like the latter, crucially
relies on a feed-forward operation for one-wayness. For a security level of κ bits
and assuming P behaves like a pseudo-random (known) permutation, C is a
secure compression function with respect to collisions and (second-)preimages if

(1) pn ≥ 22κ due to the birthday bound attack whose cost is in O(2−n/2 = 2−κ),
(2) pt−n ≥ 2κ in order to avoid a guessing attack on the truncated part.
4 We assume that the output consists of at least 2κ/ log2(p) elements in order to
prevent birthday bound attacks.

7

3.2 The Poseidonπ Permutation

Since our optimization is strongly based on the Poseidonπ permutation, we
recall its definition here. We refer to the original paper [26,28] for more details.

Remark 2. We emphasize that the round numbers given in the following are
based on the updated security analysis proposed in [28], where the designers
make corrections to the original bounds. However, for all instances we are aware
of, the round numbers do not change.

Let p > 230 be a prime number and let t ≥ 2 (in the following, let n ≈
log2(p)). The Poseidonπ permutation P over Ft

p is defined by

P(x) = ERF−1 ◦ · · · ◦ ERF /2 ◦ IRP−1 ◦ · · · ◦ I0 ◦ ERF /2−1 ◦ · · · ◦ E0(x),

where E is an external (full) round, I is an internal (partial) round, RF is the
number of external rounds, and RP is the number of internal rounds. For a
security level of κ bits with 280 ≤ 2κ ≤ min{2256, pt/3} (due to the security of
the sponge hash function and compression function given before),

RF = 2 ·Rf = 8,

RP ≥
⌈
1.125 ·

⌈
max

{
min{κ; log2(p)}

log2(d)
+ logd(t)− 5;RGB

}⌉⌉
,

(1)

where RGB is related to the Gröbner basis attack and it is given by

RGB ≥ max

{
logd(2) ·min {κ, log2(p)} ; t− 7 + logd(2) ·min

{
κ

t+ 1
,
log2(p)

2

}
;

κ

2 · log2(d)
− 5 · t− 6

}
.

The security level consists of 2 external/full rounds and 12.5% more inter-
nal/partial rounds. The external round E is defined by

Ei(x) = M ·
(
(x0 + c

(i)
0)d, (x1 + c

(i)
1)d, . . . , (xt−1 + c

(i)
t−1)

d
)

for i ∈ {0, 1, . . . , RF − 1}, where d ≥ 3 is the smallest positive integer that

satisfies gcd(d, p − 1) = 1 and where c
(i)
j is the j-th round constant in the i-th

external round. The internal round is defined by

Ii(x) = M ·
(
(x0 + c

(i)
0)d, x1 + c

(i)
1 , . . . , xt−1 + c

(i)
t−1

)
for i ∈ {0, 1, . . . , RP − 1}, where d is defined as before and where c

(i)
j is the j-th

round constant in the i-th internal round.
In both cases, M is a t×t MDS matrix fulfilling particular properties in order

to prevent arbitrarily long subspace trails. We refer to [32] and to Section 5.3
for more details regarding the condition for preventing arbitrarily long subspace

8

trails. Here we limit ourselves to recall that such a condition is satisfied if the
minimal polynomials of M,M2, . . . ,M ℓ are irreducible and of maximum degree.
One way to set up an MDS matrix is by using a Cauchy matrix, whose element
in the j-th column of the i-th row is defined by Mi,j = 1/(xi + yj) for pairwise
distinct {xi}ti=1 and {yi}ti=1, where xi + yj ̸= 0.

Before going on, we recall the definition of an MDS matrix.

Definition 1. The branch number of a matrix over Ft
p is defined as B(M) =

minx∈Ft
p\{0}{hw(x) + hw(M(x))}, where hw(·) is the bundle weight in wide trail

terminology [18]. A matrix M ∈ Ft×t
p is a maximum distance separable (MDS)

matrix if and only if B(M) = t+ 1. Equally, a matrix M is MDS if and only if
every submatrix of M is invertible.

Efficient Implementation. The Poseidonπ permutation allows for an op-
timized implementation, where the round constant additions and the matrix
multiplications in the partial rounds can be replaced by more efficient equiva-
lent operations. The approach is described in detail in [28, Appendix B]. We use
this method in our benchmarks for Poseidonπ.

Security Argument. The security argument of Poseidonπ is based on the
Hades design strategy [29]. In particular, the external rounds together with
the wide trail strategy are used to obtain simple and convincing arguments
against statistical attacks. On the other hand, the internal rounds are mainly
responsible for the security against algebraic attacks. The motivation is that the
degree grows equally in the external and the internal round, but internal rounds
are more efficient in the target use cases.

4 Security: Initial and Final Matrix Multiplications

In the case of a block cipher, it is well known that the initial and the final affine
layer do not (usually) affect the security. Indeed, it is sufficient to swap the
initial/final affine layer with the initial/final key addition. Having done that, one
can simply consider an equivalent version of the cipher without the initial/final
affine layer, which is applied directly to the plaintext/ciphertext.5

The situation is different for the case of a sponge function. In the following, we
discuss the impact of the initial and final linear layers in the case of a permutation
that instantiates a sponge hash function and/or a compression one.

Remark 3. The following considerations only hold for SPN schemes. They do
not hold in general for schemes in which a nonlinear diffusion takes place.

5 There are some cases in which this is not completely true, as e.g. attacks using details
of the key schedule (see e.g. [20] for the AES case).

9

Case: Sponge Hash Function. In the case of a sponge hash function, the inner
part is initialized with an initial value IV . Since the S-boxes of the nonlinear
layer work independently from each other over Fp, it is sufficient to replace IV
with the corresponding value IV ′ computed via the nonlinear layer in order to
remove the first nonlinear layer. In this case, the collision/preimage found for
the sponge hash function instantiated with the modified permutation without
the initial nonlinear layer can be easily extended to a collision/preimage for the
sponge hash function instantiated with the original permutation. This attack
has been discussed in [8] for the case of Poseidonπ and Rescue. Interestingly,
the recent sponge hash function Tip5 [51] exhibits a similar problem, since its
internal SPN permutation starts with a nonlinear layer instead of a linear one.

A similar conclusion holds for the final linear layer as well. We recall that in
the sponge hash function, a truncation takes place in the final step. The final
linear layer guarantees that the truncated part depends on all the outputs of
the final nonlinear layer. If the linear layer is omitted, then no diffusion takes
place. Working in the same way just described for the initial layer, it is simple to
observe that the final nonlinear layer does not have any impact on the security,
and it can simply be removed.

Case: Compression Function. The situation for the compression function is
slightly different. As discussed in [25], given invertible linear layers M ′,M

′′
, M̂ ,

the security of the two constructions

x 7→M ′ × P(M
′′
× x) + M̂ × x and x′ 7→ P ′(x′) + x′

is identical for P ′(·) := M ′×P(M ′′×M̂−1×·) and x′ := M̂×x. For this reason,
we are not aware of any concrete impact of the initial and/or final linear layer
on the security of the compression function x 7→ Trn(P(x) + x).

Conclusion. When designing an SPN permutation for a sponge hash function,
it is paramount that it starts and finishes with a linear layer that provides
diffusion. Since these linear layers do not decrease the security when used with
a compression function, we suggest to do the same in this case.

5 More Efficient Linear Layers

In this section, we propose several new linear layers to be used together with
the Poseidonπ permutation. All of these are built in order to provide the same
security level as the original specification. However, we take into account the
plain performance and the number of constraints in a Plonkish arithmetization
(for the latter, recall that linear constraints are not free and are indeed part of
the final cost). In particular,

(1) for the plain performance, we want to minimize the number of constant
multiplications, and

10

(2) we aim for small matrix entries, such that multiplications can be replaced
by addition chains in many cases.

Both of these optimizations also result in fewer reductions being necessary, fur-
ther speeding up the computation. To summarize, our main goals are to provide
the same security level of Poseidonπ, while at the same time having linear
layers which require significantly fewer operations to compute.

In the following, we show how to use non-MDS matrices for the external and
internal rounds, denoted respectively by ME and MI . Since Poseidonπ is de-
fined to use MDS matrices and hence this goes against the original specification
of Poseidon, we will later show that this modification has no impact regard-
ing the final security. We also give the efficiency in terms of Plonk constraints,
noting that even more efficient representations can be derived when supporting
extended versions of Plonk (e.g., Plonkish).

5.1 Matrix for the External Round

Let us focus on the case t = 4 · t′ for t′ ∈ N (the cases t ∈ {2, 3} are discussed
separately later). For the external rounds, we propose to instantiate ME via the
efficient matrices proposed for Griffin-π in [25] as

ME = circ(2 ·M4,M4, . . . ,M4) ∈ Ft×t
p ,

where M4 is a 4× 4 MDS matrix. We define M4 to be

M4 =


5 7 1 3
4 6 1 1
1 3 5 7
1 1 4 6

 ,

which corresponds to the matrix M8,4
4,4 from [21], setting α = 2. This matrix is

MDS for all primes we consider (that is, p > 231).
As shown in [21](and recalled in App. B), we can compute the multiplication

of 4 input elements with M4 by using only 8 additions and 4 constant multipli-
cations.

Plonk Arithmetization. We assume the use of 2-fan-in gates. The arithme-
tization in Plonk is then similar to the plain computation, with various small
differences. First, only 8 constraints are needed for each M4 computation. Sec-
ondly, only t constraints are needed for the finalization of ME . In total, we need
8 · (t/4) + t = 3t constraints.

5.2 Matrix for the Internal Round

In the original Poseidonπ specification, the security argument against statistical
attacks purely takes into account the external rounds and the number of active

11

S-boxes in these rounds. The main reason for this is that the wide trail design
strategy [18] is only applicable if the number of S-boxes in each round is at least
⌈t/2⌉ for a state size t. This is not the case for the partial rounds of Poseidonπ,
where only a single S-box is used.

Hence, for the partial rounds, the MDS property is not required anymore, and
we can set up the matrix MI focusing only on providing full diffusion, breaking
arbitrarily long subspace trails, and ensuring that the polynomial representation
of the scheme is dense. This is exactly the approach introduced in the Nep-
tune scheme [30]. For this reason, we suggest to instantiate MI with the matrix
proposed for Neptune, that is,

MI =


µ0 1 · · · 1
1 µ1 · · · 1
...

...
. . .

...
1 1 · · · µt−1

 ,

where µ0, µ1, . . . , µt−1 are random elements from Fp \ {0} such that the matrix
is invertible and no arbitrarily long subspace trails exist (see Section 5.3). We
suggest to choose these elements in order to make the multiplications efficient
(e.g., small values or powers of 2, which make multiplications fast).

Plain Efficiency. Note that we can store the sum of the input vector in a single
variable, which needs t−1 additions. Then, storing ri−1 for i ∈ {1, 2, . . . , t−1},
we can compute each vector element with one multiplication and one addition. In
total, we need t−1+t = 2t−1 additions and t multiplications. The performance
benefit is significant especially for larger t, which is a popular choice in STARK-
based proof systems (e.g., Plonky2 [45]).

Plonk Arithmetization. Again, we assume the use of 2-fan-in gates. The
matrix multiplication with a vector (x0, x1, . . . , xt−1) can be written down as

s = x0 + x1 + · · ·+ xt−1,

yi = (ri − 1)xi + s for i ∈ {0, 1, . . . , t− 1},

where s represents the precomputed sum and (y0, y1, . . . , yt−1) is the output
vector. This method needs t − 1 + t = 2t − 1 constraints. Note that instead of
storing r0, r1, . . . , rt−1, it is better to directly store r0− 1, r1− 1, . . . , rt−1− 1 as
public constants.

5.3 Preventing Arbitrarily Long Subspace Trails

Before going on, we discuss which conditions the matrix MI must satisfy to
prevent arbitrarily long subspace trails. We refer to [31] for a formal definition

12

of (invariant) subspace trails and limit ourselves to recall the following definition
here.6

Definition 2 ([31]). Let t ≥ 2 be an integer and let p ≥ 2 be a prime integer.
Let U0, . . . ,Ur ⊆ Ft

p be r + 1 subspaces such that dim(Ui) ≤ dim(Ui+1) < t for
each i ∈ {0, 1, . . . , r − 1}. (U0, . . . ,Ur) is a subspace trail of length r ≥ 1 for a
function F over Ft

p if for each i ∈ {0, . . . , r − 1} and for each φi ∈ Ft
p there

exists φi+1 ∈ Ft
p such that F (Ui +φi) := {F(x) | ∀x ∈ Ui +φi} ⊆ Ui +φi+1. We

say that it is an invariant subspace trail if Ui = Uj for each i, j ∈ {0, 1, . . . , r}.

Since the nonlinear layer in a partial round of Poseidonπ contains only
a single nonlinear S-box, there exists a subspace that is invariant through it.
More generally, independent of the details of the linear layer MI , there exists a
subspace that is invariant for up to t−1 rounds. Depending on the details of the
linear layer MI , such a subspace can be used as a starting point for a subspace
trail over an arbitrary number of rounds. In this case, an attack can be set up,
as concretely shown by Beyne et al. [14] at Crypto 2020, and by Keller et al. [37]
at Eurocrypt 2021.

Hence, it is crucial to choose the linear layer correctly. For a complete analysis
regarding this problem we refer to [32]. In there, the authors show that if the
minimal polynomials of the matrices MI ,M

2
I ,M

3
I , . . . are irreducible and of

maximum degree, no arbitrarily long subspace trail exists.7

We emphasize that this is a sufficient condition, but not a necessary one.
That is, there exist matrices that do not satisfy this condition, but for which no
arbitrarily long subspace trail exists. In the following, we always assume that MI
satisfies the given condition. In particular, we suggest to use the tools provided
in [32] for a given MI . We note that a suitable matrix can be found within
seconds.

6 Poseidon2π Specification

Poseidon2π is a permutation over Ft
p, where p as in Poseidonπ (that is, p >

230) and t ∈ {2, 3, 4, . . . , 4 · t′, . . . , 24} for t′ ∈ N. These values are sufficient for
our use case. The Poseidon2π permutation P2 over Ft

p is defined as

P2(x) = ERF−1 ◦ · · · ◦ ERF /2 ◦ IRP−1 ◦ · · · ◦ I0 ◦ ERF /2−1 ◦ · · · ◦ E0(ME · x),

6 The following definition is different from the one proposed in [40,41]. In there, the
function F depends on a secret key k, and the equality Fk(U+φ) = U+φ′ must hold
for some φ,φ′ ∈ Ft

p. Since here we only deal with key-independent hash functions,
the definition proposed in [31] is more suitable for our purposes.

7 Let M ∈ Ft×t
p be an invertible matrix. The characteristic polynomial Ψ ∈ Fp[x] is

defined as Ψ(x) = det(x · I − M). The minimal polynomial Φ ∈ Fp[x] is the monic
polynomial of minimal degree such that (i) Φ(M) × v = 0t = (0, 0, . . . , 0)T ∈ Ft

p

for each v ∈ Ft
p, and (ii), for each polynomial P ∈ Fp[x] that is annihilating (in the

sense that P (M)× v = 0t as before for each v ∈ Ft
p), Φ divides P .

13

AddRoundConstants(·)

S S S . . . S

M(·)

...

AddRoundConstants(·)

. . . S

M(·)

...

AddRoundConstants(·)

S S S . . . S

M(·)

Rf rounds

RP rounds

Rf rounds

ME(·)

AddRoundConstants(·)

S S S . . . S

ME(·)

...

AddRoundConstants(·)

. . . S

MI(·)

...

AddRoundConstants(·)

S S S . . . S

ME(·)

Rf rounds

RP rounds

Rf rounds

Fig. 1: Poseidonπ (left) and Poseidon2π (right) with changes in red.

where the number of rounds is the same as in Poseidonπ (see Eq. (1)). We
refer to Section 3.2 and the instance generation script provided by the authors.8

Similar to Poseidonπ, the external round is defined by

Ei(x) = ME ·
(
(x0 + c

(i)
0)d, (x1 + c

(i)
1)d, . . . , (xt−1 + c

(i)
t−1)

d
)
,

where d ≥ 3 is the smallest positive integer that satisfies gcd(d, p − 1) = 1 and

c
(i)
j is the j-th round constant in the i-th external round. The internal round is
defined by

Ii(x) = MI ·
(
(x0 + ĉ

(i)
0)d, x1, . . . , xt−1

)
,

where d ≥ 3 as before and ĉ
(i)
0 is the round constant in the i-th internal round.

All round constants are generated as in Poseidonπ.

Linear Layers. The linear layers of Poseidon2π are defined as follows.

Case: t = 4 · t′ ≥ 4. For t = 4k, the matrices ME and MI are set up using the
approach described in Section 5. We emphasize that MI must be chosen in order
to prevent arbitrarily long subspace trails, as described before.

Case: t ∈ {2, 3}. For t ∈ {2, 3} we first compute MI as before. By imposing
the additional condition that MI is MDS, we can simply set ME = MI , which

8 https://extgit.iaik.tugraz.at/krypto/hadeshash/-/blob/master/code/

generate_params_poseidon.sage

14

https://extgit.iaik.tugraz.at/krypto/hadeshash/-/blob/master/code/generate_params_poseidon.sage
https://extgit.iaik.tugraz.at/krypto/hadeshash/-/blob/master/code/generate_params_poseidon.sage

reduces code complexity. For MI to be MDS, we require all of its submatrices
to be invertible. For t = 2 this is achieved if µ0µ1 − 1 ̸= 0 and µ0, µ1 ̸= 0. For
t = 3, this is achieved if µ0µ1µ2 − µ0 − µ1 − µ2 + 2 ̸= 0 and

µ0, µ1, µ2 ̸= 0, µ0µ1 − 1 ̸= 0, µ0µ2 − 1 ̸= 0, µ1µ2 − 1 ̸= 0.

By choosing µi ∈ {2, 3, . . . , p/4}, the MDS condition is always fulfilled (indeed,
xy ̸= 1 for x, y ∈ {2, 3, . . . , p/4}).

Poseidonπ versus Poseidon2π. Compared to the original Poseidonπ speci-
fication recalled in Section 3.2, three differences arise.

1. A linear layer ME is applied at the input of Poseidon2π (see Section 4).
2. Two different linear layers are used in Poseidon2π for t ≥ 4.
3. Only one round constant is applied in each internal round.

A graphical overview of the differences between Poseidonπ and Poseidon2π

is given in Fig. 1.
From an implementation point of view, we emphasize that the optimized

representation of the internal rounds, as used in Poseidonπ, is not needed for
Poseidon2π. Indeed, it would make the computation slightly more expensive.
This makes Poseidon2π simpler and more memory-efficient than Poseidonπ.

7 Security Analysis

Changing the matrix, and especially removing the MDS requirement, may have
an impact on the final security of the permutation. In this section, we assess the
security level of the newly obtained Poseidon2π permutation.

Remark 4. Due to the similarities between Poseidonπ and Poseidon2π, we
emphasize that (almost) all the attacks work in the same way for the two
schemes. This means that we are going to adapt the security analysis of Posei-
donπ and Poseidon2π, focusing only on the possible differences that can arise
between the two cases.

Remark 5. For the cases t ∈ {2, 3}, Poseidon2π is just a special case of Po-
seidonπ in which the MDS matrix has been fixed for achieving optimal perfor-
mances. For this reason, we only focus on the case t ≥ 4 in the following.

7.1 Statistical Attacks

Differential Attacks. Given pairs of inputs with some fixed input differences,
differential cryptanalysis [15] considers the probability distribution of the cor-
responding output differences produced by the cryptographic primitive. Let
∆I , ∆O ∈ Ft

p be respectively the input and the output differences through a

15

permutation P over Ft
p. The differential probability (DP) of having a certain

output difference ∆O given a particular input difference ∆I is equal to

Prob(∆I → ∆O) = max
∆I ,∆O ̸=0

|{x ∈ Ft
p | P(x+∆I)− P(x) = ∆O}|

pt
.

In the case of iterated schemes, a cryptanalyst searches for ordered sequences
of differences over any number of rounds that are called differential character-
istics/trails. Assuming the independence of the rounds, the DP of a differential
trail is the product of the DPs of its one-round differences.

As in Poseidonπ, we make used of the wide trail design strategy on the
external rounds of Poseidon2π for ensuring security against this attack. As it
is well known, DPmax(x 7→ xd) = (d − 1)/p. Based on the result proposed in
[25, Prop. 1], the branch number of ME assuming an MDS matrix for M4 is
b = t/4 + 4 ≡ t′ + 4 ≥ 5. Hence, following the wide trail strategy at least b
S-boxes are active in 2 consecutive external (full) rounds of the permutation.
When considering two consecutive rounds three times,(

d− 1

p

)3(t′+4)

≤ (d− 1)3(t
′+4)

p12
· 2−9/4κ ≪ 2−2κ,

where p−t/3 = p−4t′/3 ≤ 2−κ and where d ≪ p (usually, log2(d) ≤ 4 compared
to log2(p) > 30). The factor 2 is crucial for avoiding clustering effects.

As a result, 6 external rounds of Poseidon2π are sufficient for guaranteeing
security against differential attacks, exactly as in Poseidonπ, where 2 external
rounds are used as a security margin. Note that this is a pessimistic estimate.
Indeed, as has been shown in previous works (e.g., [37]), the internal rounds can
also be taken into account, which is ignored in this discussion.

Other Statistical Attacks. Due to the facts that no entry of ME is equal to
zero and ME provides full diffusion after one round, a similar conclusion holds
for other statistical attacks, such as linear attacks [42], truncated differential
attacks [38], rebound attacks [43], among others.

7.2 Algebraic Attacks

Changing the matrices in the linear layers may have an impact on the density
of the resulting polynomials. This may weaken the resistance against certain
attacks like interpolation attacks and Gröbner basis attacks, which also depend
on the number of monomials found in the final representations. For this purpose,
we first investigate the density and the degrees of the equations generated. Then,
we focus on the security with respect to Gröbner basis attacks.

Interpolation Attack: Degrees and Density. The interpolation attack [36]
aims to construct an interpolation polynomial that describes the function. Such

16

0 1 2 3 4 5 6

101

104

107

Number of rounds R

N
u
m
b
er

o
f
m
o
n
o
m
ia
ls t = 8, nv = 2

t = 4, nv = 4

Fig. 2: The number of monomials reached in Poseidon2π after R rounds, where
d = 3. We observed no significant difference between E and I. Moreover, the
numbers reached match the maximum theoretical number of monomials.

polynomial can be used in order to set up a distinguisher and/or an attack
on the symmetric scheme. The attack does not work if the number of unknown
monomials is sufficiently large (e.g., larger than the data available for the attack).
In the MitM scenario, the attacker constructs two polynomials, one that involves
the input(s) and one that involve the output(s), that must match in the middle.

The maximum possible degrees are reached for both Poseidonπ and Posei-
don2π. It remains to determine the density. For this purpose, we implemented
both permutations (including the four different round functions) in Sage and
tested the density after increasing numbers of rounds. The results of this exper-
iment for Poseidon2π are given in Fig. 2. We note that the reached number of
monomials corresponds to the maximum number of possible monomials #nv,d

for nv variables of total degree d, which is given by

#nv,d =

d∑
i=1

(
nv + i− 1

i

)
.

As a result, the security of Poseidonπ and Poseidon2π with respect to the
interpolation attack is comparable.

Gröbner Basis Attacks. In a Gröbner basis attack, the adversary first writes
down the function in consideration as an equation system and tries to solve this
system for the unknowns. Like in the original Poseidon paper, here we focus
on the CICO problem, and quickly recall it here.

Definition 3. A permutation P is (λ, x2, y1)-secure with respect to the CICO
problem if there is no algorithm with expected complexity less than lambda that
for given x2, y1 finds x1, y2 such that P(x1 || x2) = y1 || y2.

Usually, we set the number of elements in the x1 part to be the same as the
number of elements in the y1 part. In other words, we leave a certain size of the
input variable and require the same size in the output to fulfill some property.
Then, the expected complexity for a random permutation is proportional to the

17

size of x1. For the sponge mode using only a single permutation call, solving
the CICO problem directly translates to a preimage attack on the sponge, and
conversely a preimage attack on the sponge mode is a solution to the CICO
problem. Solving CICO is also sufficient to break the compression mode, but an
attack on the compression mode does not necessarily result in a solution to the
CICO problem. Still, the CICO problem gives a good estimate of the strength
of a cryptographic permutation, and of how much it deviates from a strong one.

The equations for the CICO problem can be written down in a straightfor-
ward way. First, we fix part of the input and use unknowns for the remainder.
Then, we apply the permutation to this input state, using an algebraic descrip-
tion of our choice. At the end, we enforce part of the output to fulfill a certain
property, for example to be equal to a known value. Then the attacker has to
follow three steps, which as a first step include computing the Gröbner basis (we
refer to [1,48] for a more detailed description of these steps). As is customary in
the literature [4,17] and has also been done in Poseidon, here we focus on this
first step. For this purpose, we compare the degrees reached during Gröbner ba-
sis computations between Poseidonπ and Poseidon2π. Similar degrees imply
a similar cost of the attacks for Poseidonπ and Poseidon2π.

In our experiments, we set p ≈ 216, t = 12, and we use two input variables. We
then apply two strategies. In the first one we represent the permutation with full-
round equations, hence reaching a maximum equation degree of dRF+RP . In the
second one, we introduce intermediate variables for each S-box, hence reaching
a maximum equation degree of only d. Further, we tested the external (full) and
internal (partial) rounds separately, in order to get a better understanding of
the impact of our new linear layers.

In none of the tested cases we could observe a significant difference between
Poseidonπ and Poseidon2π. In particular, the maximum degrees reached dur-
ing the Gröbner basis computation were the same, the degrees of the final uni-
variate polynomials (after conversion) were the same, and the FGLM [22] time
differences were negligible. We also tried solving the system in Sage, and again
the solving time differences we observed were negligible. This is particularly true
when testing only the internal (partial) rounds and introducing intermediate
variables in each step.

Following our experimental results from both the density and Gröbner basis
tests, we conclude that Poseidon2π is no less secure against algebraic attacks
than Poseidonπ. This means that the strongest attack vector remains the inter-
polation one, and that security against this one implies security against Gröbner
basis attacks also in the case of Poseidon2π.

7.3 Attack from Bariant et al. [8]

Finally, we point out a recent attack proposed by Bariant et al. [8] at ToSC 2022.
In there, the authors propose a strategy for skipping the first round of Posei-
donπ when attempting to solve the CICO problem. The idea is the following.
Given a permutation P, we split it into two parts s.t. P(·) = P2 ◦P1(·). The idea
is to find an affine subspace Z ⊆ Ft

p s.t. for each entry z ∈ Z, P−1
1 (z) satisfies the

18

input condition of the CICO problem with probability 1. Given such a subspace
Z, it is possible to reduce the CICO problem from P to P2. In an analogous way,
this approach can be exploited to reduce the interpolation attack from P to P2.

In the case of Poseidonπ, the authors present an attack if P1 is equal to
the first two rounds without the final linear operation (equivalently, the first full
round plus the next nonlinear layer). To be precise, the first nonlinear layer is
skipped by using the strategy recalled in Section 4. Hence, the attack reduces to
the case of one round defined as one linear layer followed by one nonlinear layer.
One crucial condition for the attack to work is that the S-box S over Fp satisfies

∀x, y ∈ Fp : S(x · y) = S(x) · S(y).

This is always the case if S is a power map, as for Poseidon and Rescue (but
not e.g. for Neptune, whose S-box is constructed via the Lai–Massey scheme).

In order to prevent the attack, one possibility is to consider an S-box that is
not a monomial. This includes S-boxes based on the Legendre functions and/or
the powers (−1)x described in [27], or a Dickson polynomial defined as

x 7→ Dd(x, α) =

⌊ d
2 ⌋∑

i=0

d

d− i

(
d− i

i

)
(−α)ixd−2i,

where α ∈ Fp. Both options are not suitable for our goals. First of all, the
S-boxes based on the Legendre functions and/or the powers (−1)x are more
expensive than simple power maps in ZK applications/protocols (see [50] for
details). Moreover, a Dickson polynomial is invertible if gcd(p2 − 1, d) = 1.
Then, if gcd(d, p − 1) = gcd(d, p + 1) = 1, the power map can be replaced
by a Dickson polynomial of the same degree. However, its computation requires
several additions which impact the cost in Plonk applications. If gcd(d, p−1) = 1
and gcd(d, p + 1) ̸= 1, the degree of the Dickson polynomial is higher than the
corresponding degree of the power map, and then more constraints are needed.

The attack from [8] affects the security of both Poseidonπ and Poseidon2π.
However, since we apply an initial linear layer in Poseidon2π, its advantage de-
creases to only 1 round. Moreover, the security margin of Poseidon2π consists
of two external rounds and 12.5% more internal rounds. Hence, even without
increasing the number of rounds of Poseidonπ or changing the nonlinear layer,
the scheme remains secure. Therefore, we decided that modifications of the non-
linear layer are not needed in our case.

8 Performance Evaluation

Here we first give a theoretical comparison with the original Poseidonπ per-
mutation in terms of the number of additions, multiplications, and Plonk con-
straints. Since we only change the linear layers, we focus only on the linear
layers, i.e., we ignore the impact of the nonlinear layer. Then, we present an
implementation of both the original Poseidonπ and our new Poseidon2π, and
we assess the impact of our optimizations. In all our comparisons we use the
efficient representation of Poseidonπ described in detail in [28, Appendix B].

19

8 12 16 20 24
0

5000

10000

State size t

C
o
st

Poseidonπ

(add. + mul.)

Poseidonπ

(Plonk constr.)

Poseidon2π

(add. + mul.)

Poseidon2π

(Plonk constr.)

Fig. 3: Number of operations and Plonk constraints needed for the linear layers
of Poseidonπ and Poseidon2π, where p ≈ 264.

8.1 Theoretical Comparison

For the theoretical comparison, we focus on the number of arithmetic operations
and on the number of Plonk constraints needed to evaluate all linear layers of
the permutation. The results are shown in Fig. 3. Taking these numbers, and
considering for example an instance where log2(p) ≈ 64, we observe that the
number of operations in the linear layers can be reduced significantly. This is
especially due to the larger number of operations needed for the external linear
layers in the original Poseidonπ.

8.2 Implementation and Benchmarks

We implemented the new Poseidon2π in Rust and compared it with other simi-
lar permutations using efficient implementations from [35]. The code is available
online.9 For the larger instances of GMiMC we apply an optimization further
explained in App. C. All benchmarks were run on an Intel i7-6700K CPU. More-
over, we focus only on primitives without any high-degree components. For ex-
ample, Rescue needs the computation of x 7→ x1/d in its nonlinear layer, which
is of high degree in large fields if d is small. Hence, these computations be-
come the bottleneck in the plain performance, which makes Rescue significantly
slower than Poseidonπ or Poseidon2π. The same is also true for Anemoi and
Griffin-π.

In our benchmarks we focus on three different primes, namely the 255-bit
BLS12 one pBLS12, the 64-bit Goldilocks one pGoldilocks (used in e.g. plonky2
[45]), and the 31-bit Babybear one pBabybear used in Risc0 [47].10 The results
for some instances are shown in Table 1, where we emphasize that we use the
optimized representation of Poseidonπ described in detail in [28, Appendix B].
We chose often used compression ratios such as 2-to-1, 4-to1, and 8-to-1 for

9 https://github.com/HorizenLabs/poseidon2
10

pBLS12 = 0x73eda753299d7d483339d80809a1d80553bda402fffe5bfeffffffff00000001,
pGoldilocks = 0xffffffff00000001, pBabybear = 0x78000001

20

https://github.com/HorizenLabs/poseidon2

Table 1: Plain performance of various permutations in µs using Rust, where
n = ⌈log2(p)⌉.

Permutation t = 2 t = 3 t = 4 t = 8 t = 12 t = 16 t = 20 t = 24

pBLS12, ⌈log2(p)⌉ = 255

Poseidonπ 11.78 16.99 22.26 53.46 – – – –
Neptune – – 17.45 30.05 – – – –
GMiMC 20.63 21.86 22.96 26.97 – – – –
Poseidon2π 6.49 7.30 13.30 22.12 – – – –

pGoldilocks, ⌈log2(p)⌉ = 64

Poseidonπ – – – 4.25 7.00 12.03 15.33 –
Neptune – – – 3.65 6.22 9.94 12.31 –
GMiMC – – – 3.26 7.01 13.57 26.72 –
Poseidon2π – – – 2.06 2.81 3.57 4.42 –

pBabybear, ⌈log2(p)⌉ = 31

Poseidonπ – – – – – 7.06 – 15.01
Neptune – – – – – 5.62 – 10.17
GMiMC – – – – – 10.33 – 23.59
Poseidon2π – – – – – 2.09 – 3.53

the various field sizes. From this comparison, we can see that we can improve
the performance of the original version by a factor of up to 4 for the 24-word
instance. We emphasize that the advantage increases for larger state sizes, which
is mainly due to the expensive matrix multiplication in the external rounds of
Poseidonπ. However, even in the 3-word case we can observe an improvement
by a factor of more than 2.

8.3 Efficient Plonkish Version

In this section we revisit the Plonkish representation of Poseidonπ in [28, Ap-
pendix E]. We demonstrate a more optimal version which requires (t− 1) poly-
nomial equations to express the state variables that do not undergo S-boxes, in
contrast to t equations in [28, Appendix E]. The resulting representation is suit-
able for both Poseidonπ and Poseidon2π and makes the prover’s work more
efficient due to fewer polynomials being used.

Let us introduce auxiliary notation. For round r we denote

(1) the input to AddRoundConstants by Ar
1, A

r
2, . . . , A

r
t ,

(2) the output of AddRoundConstants by Br
1 , B

r
2 , . . . , B

r
t , and

(3) the input to M by Cr
1 , C

r
2 , . . . , C

r
t .

Therefore we have that in full rounds Cr
i = S(Br

i) and in partial rounds

Cr
i =

{
Br

i i < t,

S(Br
i) i = t.

Now we proceed as follows.

1. Note that Cr−1
i are linear functions of {Ar

i }.

21

2. Going through the constant layer we obtain that Cr−1
i are affine functions

of {Br
i }.

3. Using the fact that Br
i = Cr

i for i < t we get that

{Cr−1
i }1≤i≤t are affine functions of {Cr

i }1≤i≤t−1 and Br
t . (2)

4. Repeatedly apply the same statement to {Cr−1
i }1≤i≤t and further up for

k = 1, 2, . . . , t− 1:

{Cr−k
i }1≤i≤t are affine functions of {Cr

i }1≤i≤t−1 and {Bj
t }r−k<j≤r. (3)

5. Restrict Eq. (3) to S-box outputs:

{Cr−k
t }1≤k≤t−1 are affine functions of {Cr

i }1≤i≤t−1 and {Br−k
t }0≤k<t−1.

(4)
6. Now rearrange (t − 1) equations Eq. (4) so that {Cr

i }1≤i≤t−1 are now ex-
pressed through the others:

{Cr
i }1≤i≤t−1 are affine functions of {Cr−k

t }1≤k≤t−1 and {Br−k
t }0≤k<t−1.

(5)
7. Now go further from round r. Similarly to Eq. (2), derive:

{Br+1
i }1≤i≤t are affine functions of {Br

i }1≤i≤t−1 and {Cr
t }. (6)

8. Recursively applying Eq. (6), we get that for any r′ > r

{Br′

i }1≤i≤t are affine functions of {Br
i }1≤i≤t−1 and {Cj

t }r≤j<r′ . (7)

9. Restraining Eq. (7) to i = t we get

{Br+k
t }1≤k≤t−1 are affine functions of {Br

i }1≤i≤t−1 and {Cr+k
t }0≤k<t−1.

(8)
10. Now rearrange (t − 1) equations Eq. (8) so that {Br

i }1≤i≤t−1 are now ex-
pressed through the others:

{Br
i }1≤i≤t−1 are affine functions of {Br+k

t }1≤k≤t−1 and {Cr+k
t }0≤k<t−1.

(9)
11. As {Br

i }1≤i≤t−1 and {Cr
i }1≤i≤t−1 are identical, we get

{Cr
i }1≤i≤t−1 are affine functions of {Br+k

t }1≤k≤t−1 and {Cr+k
t }0≤k<t−1.

(10)
12. Combining Eq. (5) and Eq. (10) we get that

t− 1 affine equations of {Br−k
t , Cr−k−1

t , Br+k+1
t , Cr+k

t }0≤k≤t−2. (11)

13. Replacing Ci
t variables with degree-d power functions of Bi

t we get (t − 1)
equations of degree d over 2t− 1 variables Br−t+1

t , Br−t+2
t , . . . , Br+t−1

t .

22

C
M

S

C

ARC

B

M

A

S

C

ARC

B

M

A

S

C

ARC

B

M

A

S

C

ARC

B

M

A

S

C

ARC

B

M

A

S

ARC

B

A

S

Fig. 4: Expressing the round state (pink) via S-box inputs and outputs as per
Eq. (5) (orange) and Eq. (10) (green).

So we get a group of (t− 1) constraints that link inputs and outputs of S-boxes
over (2t− 1) rounds. The process is illustrated in Fig. 4.

A reader should ask immediately whether we have derived Eq. (5) correctly,
as it could have happened that the system does not have rank t− 1 w.r.t. Cr

i .

Proposition 1. If the matrix M of Poseidon2π does not have an invariant
subspace trail, then the state {Cr

i }1≤i≤t is uniquely determined by S-box inputs
in t preceding rounds {Br−k

t }0≤k<t.

Proof. Obviously Br
t bijectively maps to Cr

t as it is the S-box mapping. Now
consider the rest of the state. Imagine the mapping is not bijective, then there
exist two executions of Poseidon2π with different substates {Cr

i }1≤i≤t−1 and
{Cr

i
′}1≤i≤t−1 but identical {Br−k

t }0≤k<t. Then the difference δ ̸= 0 between the
two states is contained in the elements 1, 2, . . . , t − 1. Moreover, as there is no
difference in {Br−k

t }0≤k<t, we get that all t− 1 vectors

M−1 · δ,M−2 · δ, . . . ,M−t+1 · δ

23

are 0 in the t-th component. This only happens if δ belongs to some invariant
subspace, which is forbidden, so we get a contradiction. This concludes the proof.

The natural question is how the constraint groups should overlap in order to
uniquely determine the state in Poseidon2π and Poseidonπ. For this we recall
that by Eq. (10) any t consecutive S-box inputs and outputs determine all C
variables in the round. Therefore, it is sufficient that constraint groups overlap
by t variables Bi

t.
Putting everything together, in order to cover RF full and RP partial rounds

we need (all constraints of degree d):

– tRF /2 constraints that link inputs and outputs of a single full round for the

first group of full rounds. In the last round we replace C
RF /2
j with degree-d

functions of B
RF /2+1
t , B

RF /2+2
t , . . . , B

RF /2+t−1
t as per Eq. (10).

– (t − 1)⌈ RP

t−1 − 1⌉ constraints Eq. (11) that link Br
t , B

r+1
t , . . . , Br+2t−1

t for
r = RF /2, RF /2 + 2t− 1, RF /2 + 4t− 2,

– tRF /2 constraints that link inputs and outputs of a single full round for the

last group of full rounds. In the first round of those we replace A
RF /2+RP+1
j

with degree-d functions of B
RF /2+RP

t , B
RF /2+RP−1
t , . . . , B

RF /2+RP−t+1
t as

per Eq. (5).

In total we need about t · RF + RP − t + 1 constraints of degree d. Note that
even though it is one constraint more than in [28, Appendix E], the constraints
for the partial rounds depend on fewer variables and are thus cheaper to build
overall.

Acknowledgements. We thank Nicholas Mainardi for having a look at the
code base and making improvements to the original code.

References

1. Albrecht, M.R., Cid, C., Grassi, L., Khovratovich, D., Lüftenegger, R., Rechberger,
C., Schofnegger, M.: Algebraic Cryptanalysis of STARK-Friendly Designs: Appli-
cation to MARVELlous and MiMC. In: ASIACRYPT 2019. LNCS, vol. 11923, pp.
371–397 (2019)

2. Albrecht, M.R., Grassi, L., Perrin, L., Ramacher, S., Rechberger, C., Rotaru, D.,
Roy, A., Schofnegger, M.: Feistel Structures for MPC, and More. In: ESORICS
2019. LNCS, vol. 11736, pp. 151–171 (2019)

3. Albrecht, M.R., Grassi, L., Rechberger, C., Roy, A., Tiessen, T.: MiMC: Efficient
Encryption and Cryptographic Hashing with Minimal Multiplicative Complexity.
In: ASIACRYPT 2016. LNCS, vol. 10031, pp. 191–219 (2016)

4. Aly, A., Ashur, T., Eli Ben-Sasson, Dhooghe, S., Szepieniec, A.: Design of
Symmetric-Key Primitives for Advanced Cryptographic Protocols. IACR Trans.
Symmetric Cryptol. 2020(3), 1–45 (2020)

24

5. Ashur, T., Dhooghe, S.: Marvellous: a stark-friendly family of cryptographic primi-
tives. Cryptology ePrint Archive, Paper 2018/1098 (2018), https://eprint.iacr.
org/2018/1098, https://eprint.iacr.org/2018/1098

6. Ashur, T., Kindi, A., Meier, W., Szepieniec, A., Threadbare, B.: Rescue-prime
optimized. IACR Cryptol. ePrint Arch. p. 1577 (2022)

7. Aumasson, J.P., Khovratovich, D., Mennink, B., Quine, P.: SAFE (sponge api for
field elements) - a toolbox for zk hash applications (2022), https://hackmd.io/
bHgsH6mMStCVibM_wYvb2w

8. Bariant, A., Bouvier, C., Leurent, G., Perrin, L.: Algebraic Attacks against Some
Arithmetization-Oriented Primitives. IACR Trans. Symmetric Cryptol. 2022(3),
73–101 (2022)

9. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Fast Reed-Solomon Interac-
tive Oracle Proofs of Proximity. In: 45th International Colloquium on Automata,
Languages, and Programming (ICALP 2018). Leibniz International Proceedings in
Informatics (LIPIcs), vol. 107, pp. 14:1–14:17. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik (2018)

10. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and
post-quantum secure computational integrity. Cryptology ePrint Archive, Report
2018/46 (2018)

11. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable Zero Knowledge with
No Trusted Setup. In: CRYPTO 2019. LNCS, vol. 11694, pp. 701–732 (2019)

12. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge functions (2007),
in: Ecrypt Hash Workshop 2007, http://www.csrc.nist.gov/pki/HashWorkshop/
PublicComments/2007_May.html

13. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the Indifferentiability of
the Sponge Construction. In: EUROCRYPT 2008. LNCS, vol. 4965, pp. 181–197
(2008)

14. Beyne, T., Canteaut, A., Dinur, I., Eichlseder, M., Leander, G., Leurent, G., Naya-
Plasencia, M., Perrin, L., Sasaki, Y., Todo, Y., Wiemer, F.: Out of Oddity - New
Cryptanalytic Techniques Against Symmetric Primitives Optimized for Integrity
Proof Systems. In: CRYPTO 2020. LNCS, vol. 12172, pp. 299–328 (2020)

15. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. In:
CRYPTO 1990. LNCS, vol. 537, pp. 2–21 (1990)

16. Black, J., Rogaway, P., Shrimpton, T.: Black-Box Analysis of the Block-Cipher-
Based Hash-Function Constructions from PGV. In: CRYPTO 2002. LNCS,
vol. 2442, pp. 320–335 (2002)

17. Bouvier, C., Briaud, P., Chaidos, P., Perrin, L., Salen, R., Velichkov, V., Willems,
D.: New Design Techniques for Efficient Arithmetization-Oriented Hash Functions:
Anemoi Permutations and Jive Compression Mode. IACR Cryptol. ePrint Arch.
p. 840 (2022)

18. Daemen, J., Rijmen, V.: The Wide Trail Design Strategy. In: Cryptography and
Coding - IMA International Conference 2001. LNCS, vol. 2260, pp. 222–238 (2001)

19. Damg̊ard, I.: A Design Principle for Hash Functions. In: CRYPTO 1989. LNCS,
vol. 435, pp. 416–427 (1989)

20. Dunkelman, O., Keller, N.: The effects of the omission of last round’s MixColumns
on AES. Inf. Process. Lett. 110(8-9), 304–308 (2010)

21. Duval, S., Leurent, G.: MDS Matrices with Lightweight Circuits. IACR Trans.
Symmetric Cryptol. 2018(2), 48–78 (2018)

22. Faugère, J., Gianni, P.M., Lazard, D., Mora, T.: Efficient Computation of Zero-
Dimensional Gröbner Bases by Change of Ordering. J. Symb. Comput. 16(4),
329–344 (1993)

25

https://eprint.iacr.org/2018/1098
https://eprint.iacr.org/2018/1098
https://eprint.iacr.org/2018/1098
https://hackmd.io/bHgsH6mMStCVibM_wYvb2w
https://hackmd.io/bHgsH6mMStCVibM_wYvb2w
http://www.csrc.nist.gov/pki/HashWorkshop/Public Comments/2007_May.html
http://www.csrc.nist.gov/pki/HashWorkshop/Public Comments/2007_May.html

23. Gabizon, A., Williamson, Z.J.: Turbo-PLONK (2022), https://docs.zkproof.

org/pages/standards/accepted-workshop3/proposal-turbo_plonk.pdf

24. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: permutations over
lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptology
ePrint Archive, Report 2019/953 (2019)

25. Grassi, L., Hao, Y., Rechberger, C., Schofnegger, M., Walch, R., Wang, Q.: A
New Feistel Approach Meets Fluid-SPN: Griffin for Zero-Knowledge Applications.
IACR Cryptol. ePrint Arch. p. 403 (2022)

26. Grassi, L., Khovratovich, D., Rechberger, C., Roy, A., Schofnegger, M.: Poseidon:
A new hash function for zero-knowledge proof systems. In: USENIX Security Sym-
posium. pp. 519–535. USENIX Association (2021)

27. Grassi, L., Khovratovich, D., Rønjom, S., Schofnegger, M.: The Legendre Symbol
and the Modulo-2 Operator in Symmetric Schemes over Fp

n Preimage Attack on
Full Grendel. IACR Trans. Symmetric Cryptol. 2022(1), 5–37 (2022)

28. Grassi, L., Khovratovich, D., Roy, A., Rechberger, C., Schofnegger, M.: Poseidon:
A New Hash Function for Zero-Knowledge Proof Systems. IACR Cryptol. ePrint
Arch. p. 458 (2019)

29. Grassi, L., Lüftenegger, R., Rechberger, C., Rotaru, D., Schofnegger, M.: On a Gen-
eralization of Substitution-Permutation Networks: The HADES Design Strategy.
In: EUROCRYPT 2020. LNCS, vol. 12106, pp. 674–704 (2020)

30. Grassi, L., Onofri, S., Pedicini, M., Sozzi, L.: Invertible Quadratic Non-Linear
Layers for MPC-/FHE-/ZK-Friendly Schemes over Fp

n Application to Poseidon.
IACR Trans. Symmetric Cryptol. 2022(3), 20–72 (2022)

31. Grassi, L., Rechberger, C., Rønjom, S.: Subspace Trail Cryptanalysis and its Ap-
plications to AES. IACR Trans. Symmetric Cryptol. 2016(2), 192–225 (2016)

32. Grassi, L., Rechberger, C., Schofnegger, M.: Proving Resistance Against Infinitely
Long Subspace Trails: How to Choose the Linear Layer. IACR Trans. Symmetric
Cryptol. 2021(2), 314–352 (2021)

33. Groth, J.: On the Size of Pairing-Based Non-interactive Arguments. In: EURO-
CRYPT 2016. LNCS, vol. 9666, pp. 305–326 (2016)

34. Horizen Labs: ginger-lib: a RUST library for recursive SNARKs using Darlin
(2022), https://github.com/HorizenOfficial/ginger-lib

35. IAIK: Hash functions for Zero-Knowledge applications Zoo. https://extgit.

iaik.tugraz.at/krypto/zkfriendlyhashzoo (Aug 2021), IAIK, Graz University
of Technology

36. Jakobsen, T., Knudsen, L.R.: The Interpolation Attack on Block Ciphers. In: FSE
1997. LNCS, vol. 1267, pp. 28–40 (1997)

37. Keller, N., Rosemarin, A.: Mind the Middle Layer: The HADES Design Strategy
Revisited. In: EUROCRYPT 2021. LNCS, vol. 12697, pp. 35–63 (2021)

38. Knudsen, L.R.: Truncated and Higher Order Differentials. In: FSE 1994. LNCS,
vol. 1008, pp. 196–211 (1994)

39. Kölbl, S., Lauridsen, M.M., Mendel, F., Rechberger, C.: Haraka v2 - efficient short-
input hashing for post-quantum applications. IACR Trans. Symmetric Cryptol.
2016(2), 1–29 (2016)

40. Leander, G., Abdelraheem, M.A., AlKhzaimi, H., Zenner, E.: A Cryptanalysis
of PRINTcipher: The Invariant Subspace Attack. In: CRYPTO 2011. LNCS,
vol. 6841, pp. 206–221 (2011)

41. Leander, G., Minaud, B., Rønjom, S.: A Generic Approach to Invariant Subspace
Attacks: Cryptanalysis of Robin, iSCREAM and Zorro. In: EUROCRYPT 2015.
LNCS, vol. 9056, pp. 254–283 (2015)

26

https://docs.zkproof.org/pages/standards/accepted-workshop3/proposal-turbo_plonk.pdf
https://docs.zkproof.org/pages/standards/accepted-workshop3/proposal-turbo_plonk.pdf
https://github.com/HorizenOfficial/ginger-lib
https://extgit.iaik.tugraz.at/krypto/zkfriendlyhashzoo
https://extgit.iaik.tugraz.at/krypto/zkfriendlyhashzoo

42. Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: EUROCRYPT 1993.
LNCS, vol. 765, pp. 386–397 (1993)

43. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The Rebound Attack:
Cryptanalysis of Reduced Whirlpool and Grøstl. In: FSE 2009. LNCS, vol. 5665,
pp. 260–276 (2009)

44. Merkle, R.C.: A Certified Digital Signature. In: CRYPTO 1989. LNCS, vol. 435,
pp. 218–238 (1989)

45. Polygon: Introducing Plonky2 (2022), https://blog.polygon.technology/

introducing-plonky2/

46. Preneel, B., Govaerts, R., Vandewalle, J.: Hash Functions Based on Block Ciphers:
A Synthetic Approach. In: CRYPTO 1993. LNCS, vol. 773, pp. 368–378 (1993)

47. RISC Zero: RISC Zero : General-Purpose Verifiable Computing (2023), https:
//www.risczero.com/

48. Sauer, J.F., Szepieniec, A.: SoK: Gröbner Basis Algorithms for Arithmetization
Oriented Ciphers. IACR Cryptol. ePrint Arch. p. 870 (2021)

49. Schneier, B., Kelsey, J.: Unbalanced Feistel Networks and Block Cipher Design.
In: FSE. LNCS, vol. 1039, pp. 121–144. Springer (1996)

50. Szepieniec, A.: On the Use of the Legendre Symbol in Symmetric Cipher Design.
IACR Cryptol. ePrint Arch. p. 984 (2021)

51. Szepieniec, A., Lemmens, A., Sauer, J.F., Threadbare, B.: The Tip5 Hash Function
for Recursive STARKs. Cryptology ePrint Archive, Paper 2023/107 (2023), https:
//eprint.iacr.org/2023/107

52. Zcash: halo2 (2022), https://zcash.github.io/halo2/index.html

A Efficient Circulant MDS Matrices

A t× t circulant matrix is given by circ(c0, c1, . . . , ct−1) and defined by

M =


c0 c1 · · · ct−1

ct−1 c0 · · · ct−2

...
...
. . .

...
c1 c2 · · · c0

 .

At first sight, the multiplication of a dense t × t circulant matrix with a t-
element vector may seem to need a number of operations in O(t2). However,
with R = Fp[X]/(Xt − 1) denoting the ring of univariate polynomials modulo
Xt−1, note that there is an isomorphism between R and t×t circulant matrices.
This link is also described in [6, Section 4], where the authors propose circulant
matrices to make the Rescue hash function more efficient. In particular, the
isomorphism is given by

at−1X
t−1 + at−2X

t−2 + · · ·+ a1X + a0 ←→


a0 at−1 · · · a1
a1 a0 · · · a2
...

...
. . .

...
at−1 at−2 · · · a0

 ,

where ai ∈ Fp. Hence, a fast method for polynomial multiplication moduloXt−1
can be used to efficiently compute matrix-vector product for a circulant matrix.

27

https://blog.polygon.technology/introducing-plonky2/
https://blog.polygon.technology/introducing-plonky2/
https://www.risczero.com/
https://www.risczero.com/
https://eprint.iacr.org/2023/107
https://eprint.iacr.org/2023/107
https://zcash.github.io/halo2/index.html

For example, using FFT (or NTT for a finite field) we obtain an algorithm with a
complexity in O(t log2(t)), which in total computes two FFTs (split into an NTT
and an inverse NTT). We refer to [6, Section 4.2.1] for a description of various
polynomial multiplication algorithms which can be used for this purpose.

B Efficient Computation of ME

Consider an input vector x = (x0, x1, x2, x3). Let

t0 = x0 + x1, t1 = x2 + x3,

t2 = 2x1 + t1, t3 = 2x3 + t0,

t4 = 4t1 + t3, t5 = 4t0 + t2,

t6 = t3 + t5, t7 = t2 + t4,

then

x′
0 = t6, x′

1 = t5,

x′
2 = t7, x′

3 = t4

for an output vector x′ = (x′
0, x

′
1, x

′
3, x

′
4). This finalizes the computation of x′ =

M4 · x.
Note that this only covers a 4-word input vector. For a state size t (where

t/4 ∈ N), we need to repeat this step t/4 times. Moreover, to get the entire
multiplication by ME , we need another 2t additions.

For example, let x′ = (x′
0, x

′
1, . . . , x

′
t−1) be the output after applying the

matrix M4 individually to each 4-word part of the original t-word input x =
(x0, x1, . . . , xt−1). In this case, the multiplication by M4 is computed t/4 times.
Then, the final output y = (y0, y1, . . . , yt−1) is given by

yi =


2x′

i + x′
i+4 + · · ·+ x′

i+(t−4) if i ∈ {0, 1, 2, 3},
x′
i−4 + 2x′

i + · · ·+ x′
i+(t−8) if i ∈ {4, 5, 6, 7},

...
...

x′
i−(t−4) + x′

i−(t−8) + · · ·+ 2x′
i if i ∈ {t− 4, t− 3, t− 2, t− 1}.

Note that in the method shown above, the only constant factors greater than
1 are 2 and 4. Given the circuit, the 4 multiplications can be replaced by 6
additions if this is deemed more appropriate.

C Optimized Feistel-ERF Implementation

In GMiMCerf [2], an unbalanced Feistel network [49] of the form

R(x0, x1, . . . , xt−1) = (x1 + f(x0), x2 + f(x0), . . . , xt−1 + f(x0), x0),

28

is used. In other words, in each round the nonlinear S-box function f is applied
to the first element of the state and the result of this computation is then added
to all other elements. Since t− 1 additions are used in each round, the number
of additions can become a bottleneck if t is large.

Instead of adding the result of f(x0) to each other element in each round, we
apply the following approach. First, we initialize an accumulator a = 0 and an
accumulator queue q with t− 1 zeroes defined by

q = (q0, q1, . . . , qt−2) = (0, 0, . . . , 0)︸ ︷︷ ︸
t−1 zeroes

.

Then, denoting the right rotation of a vector by n elements as RotateRightn,
in each round we compute

s← f(x0),

q ← RotateRight1(q),

a← a− q0,

q0 ← s,

a← a+ s,

followed by the Feistel rotation and the addition of a to the first state element.
The idea behind this approach is to build a queue containing the accumulating
results of the last t− 1 nonlinear operations, and to only add the most current
accumulation to a state element before it enters the nonlinear operation in the
next round. After the last Feistel round, all the remaining accumulations need
to be added to the entire state, which takes a number of operations in O(t). This
representation is equivalent to the original (unoptimized) representation of the
GMiMCerf .

Using this approach, we can reduce the number of operations required for an
unoptimized GMiMCerf round to a constant amount, independent of the state
size t. For this purpose, all the operations used in the optimized description also
need to be implemented efficiently. This particularly applies to the RotateRight
operation, which for example can be done using a linked list.

29

	Poseidon2: A Faster Version of the Poseidon Hash Function
	Introduction
	Our Goals
	Our Contributions and Results

	Preliminaries: Modern Arithmetization Techniques
	Preliminaries: ZK-Friendly Symmetric Primitives
	Modes of Operation
	The Poseidon Permutation

	Security: Initial and Final Matrix Multiplications
	More Efficient Linear Layers
	Matrix for the External Round
	Matrix for the Internal Round
	Preventing Arbitrarily Long Subspace Trails

	Poseidon2 Specification
	Security Analysis
	Statistical Attacks
	Algebraic Attacks
	Attack from Bariant et al. DBLP:journals/tosc/BariantBLP22

	Performance Evaluation
	Theoretical Comparison
	Implementation and Benchmarks
	Efficient Plonkish Version

	Efficient Circulant MDS Matrices
	Efficient Computation of ME
	Optimized Feistel-ERF Implementation

