
LATKE: A Framework for Constructing

Identity-Binding PAKEs

Jonathan Katz
University of Maryland
jkatz2@gmail.com

Michael Rosenberg
University of Maryland
micro@cs.umd.edu

Version 0.5, March 16, 2024

Abstract
Motivated by applications to the internet of things (IoT), Cremers, Naor,
Paz, and Ronen (Crypto ’22) recently considered a setting in which mul-
tiple parties share a common password and want to be able to securely
authenticate to each other. They observed that using standard password-
authenticated key exchange (PAKE) protocols in this setting allows for
catastrophic impersonation attacks whereby compromise of a single party
allows an attacker to impersonate any party to any other. To address this,
they proposed the notion of identity-binding PAKE (iPAKE) and showed
constructions of iPAKE protocols CHIP and CRISP.

In this work we present LATKE, a new framework for iPAKE that
allows us to construct protocols offering features beyond what CHIP and
CRISP achieve. In particular, we can instantiate the components of
our framework to yield an iPAKE protocol with post-quantum security
and identity concealment, where one party hides its identity until it has
authenticated the other. To our knowledge, this is the first iPAKE protocol
with either property. We show that the iPAKEs produced by LATKE
UC-realize a slightly weakened version of the original iPAKE functionality
in the adaptive corruption model with erasure and programmable random
oracles.

To demonstrate the concrete efficiency of our framework, we implement
various instantiations and compare the resulting protocols to CHIP when
run on commodity hardware. We find some pre-quantum instantiations
have computation cost within 5% of CHIP and with a communication over-
head of 324B, and one post-quantum instantiation achieves computation
cost within 3% of CHIP with a communication overhead of 3kB.

Keywords: key agreement, password-based cryptography, IoT, post-
quantum cryptography

1 Introduction

A human-entered password is one of the most common methods of authentication
today. Passwords are used for logging into websites, performing secure file

1

https://orcid.org/0000-0001-6084-9303
https://orcid.org/0000-0001-9784-125X

transfers, connecting to WiFi, connecting to mesh networks, storing encrypted
backups, and logging into remote servers.

Special protocols are necessary to handle password-based authentication.
Many of the applications above require an encrypted channel to avoid sending
an unencrypted password over an untrusted network. For some protocols, such
as HTTPS, this is straightforward, since the server has a known public key
which can be used to bootstrap a secure session. But other use cases, such
as secure point-to-point file transfer like Magic Wormhole [mag], have no such
infrastructure upon which to build. To communicate securely, two clients need
some way of using their mutual knowledge of a low-entropy password to establish
a high-entropy shared secret, over an insecure channel. This is precisely the
setting that a password authenticated key exchange (PAKE) algorithm solves.

Since its introduction by Bellovin and Meritt [BM92], PAKE has been ex-
tended to offer stronger security in more diverse scenarios. Some widely deployed
internet of things (IoT) protocols already use PAKE and its extensions for
authentication between devices [Thr15, All22a]. Similarly, the WiFi specification
now includes the SAE PAKE [Har08] for mutual authentication of stations in a
network [All22b, wif21].

For IoT and mesh networks in general, the strongest notion of PAKE that
exists is identity-binding PAKE (iPAKE), introduced by Cremers, Naor, Paz,
and Ronen [CNPR22]. This form of PAKE allows each party to bind to its key
material a short identity string. If an adversary compromises an iPAKE party,
they can impersonate that party, but they cannot do much more. In particular,
if the adversary wants to determine the password, or impersonate another party
with the same password, they will have to mount a brute-force attack on the
password.

We identify shortcomings in existing iPAKE constructions and provide a
generic, efficient iPAKE framework that addresses these shortcomings at the
cost of a concretely small overhead in runtime and communication size. We will
prove LATKE iPAKEs secure in a security model slightly weaker than that of
CHIP, and will argue that this model is a natural one to use for any iPAKE.

1.1 Background

PAKE. The problem of communicating securely using mutual knowledge of a
low-entropy password was first addressed by Bellovin and Merritt [BM92], in the
form of PAKE. PAKE offers the security guarantees that 1) a passive adversary
learns nothing about the password; 2) an active adversary cannot guess the
password more than once per session; and 3) barring a correct password guess in
an active attack, the resulting session key has high entropy and is known only to
the participants. Unlike most other cryptographic constructions, the probability
of an adversary’s success is not bounded by a negligible function, but rather by
its ability to guess the password after some number of attempts. This is as good
a guarantee as is possible, given the constraint that honest users must be able
to establish a key using only the password.

2

PAKE is not ideal for all use cases. It requires both parties to have a plaintext
copy of the password on hand. This works in short-lived interactive protocols
with humans in the loop such as file transfer, or with a smartcard and a reader in
the loop, such as e-passport NFC protocols (where the machine-readable zone is
the password) [Hv22]. But this breaks down when one party is a server that runs
for long periods without interaction, e.g., a password-protected backup server.
While the client can type a password at authentication time, the long-lived
server needs to store something. If it stores the password, then an adversary
who compromises the server learns the password.

aPAKE ⊃ PAKE. Augmented password-authenticated key exchange (aPAKE)—
first proposed by Jablon [Jab97] and later formalized by Gentry, MacKenzie,
and Ramzan [GMR06]—extends PAKE to afford more security to the server
in the above scenarios. aPAKE protocols work by having the server store a
per-client password file, which is computed as some hard-to-invert function of
the password. If an adversary compromises the server and retrieves the password
file, they can impersonate the server to a client. To impersonate the client, the
adversary can do no better than a brute-force attack, specifically, guessing at the
password until its corresponding password file matches the retrieved one. Many
commonly used protocols rely on aPAKE, including iCloud key recovery [App,
p. 132], WhatsApp message history recovery [DFG+23], and 1Password user
authentication [Fil18].

A related security notion is strong aPAKE (saPAKE). With an ordinary
aPAKE, an adversary can precompute large tables of password hashes so that,
when they compromise a server, their brute-force attack becomes a simple table
lookup. More complex data structures, called rainbow tables, offer tunable time-
memory tradeoffs for such attacks [Oec03]. Strong aPAKE—first described by
Jarecki, Krawczyk, and Xu [JKX18]—prevents precomputation attacks by using
a secret (even to active adversaries) blinding factor to compute the password
file. In their paper, they describe generic saPAKE compiler which requires only
an oblivious pseudorandom function (OPRF) and an aPAKE.

Again, though, (s)aPAKE is not appropriate for all use cases. While the
server can run the protocol using just the password file, the client must have
the plaintext password. Thus, we have the same problem as before: if the client
stores its password, and the client is compromised, then its password is leaked.
An adversary can then use a leaked password to impersonate any client or server
with the same password. Concretely, this is a problem for devices connecting to
WiFi1 or for re-authenticating to (s)aPAKE-based services without prompting a
human.

dPAKE ⊃ aPAKE. Doubly augmented password-authenticated key exchange
(dPAKE)—first described by Hamburg [Ham15]—is an aPAKE where the client
also stores a password file, rather than a cleartext password. Thus, if either

1One possible solution is to have every pair of client and access point establish a long-term
key in their first session, which they will use to re-authenticate themselves in the future. But
this comes with the requirement that a mesh of WiFi access points using Wireless Distribution
System (WDS), i.e., pretending to be a single access point, will constantly sync the pairwise
keys with each other.

3

party is compromised, the adversary cannot do better than either impersonating
that party or else performing a brute-force search for the password. dPAKE
also has a strong variant, sdPAKE that, like saPAKE, prevents precomputation
attacks. As with aPAKE, it is possible to generically construct sdPAKE from
dPAKE using an OPRF.

At the time of writing, (s)dPAKE remains a folklore definition with no formal
security definition. But it is a useful conceptual extension of aPAKE, and has
been proposed as a replacement for SAE for WiFi stations [Tho22b].

Finally, even dPAKE is insufficient for some use cases. dPAKE has a coarse
notion of identity: every party is either a client, indistinguishable from any other
client, or a server, indistinguishable from any other server. This works in the
case of WiFi, where clients do not need to be distinguished from one another,
nor do access points. But this is unacceptable in mesh networks, where each
device may have unique capabilities and permissions.

iPAKE ⊃ dPAKE. Identity-binding password-authenticated key exchange
(iPAKE)—first described by Cremers, Naor, Paz, and Ronen [CNPR22]—is a
strengthening of dPAKE in which each party’s password file is bound to an
identity string of their choosing, and can be used to authenticate with any other
party. Similar to dPAKE, an attacker who compromises a party can impersonate
that party or be force to mount a brute-force attack on the password to create
their own password file.

The authors of [CNPR22] define iPAKE in the Universal Composability
(UC) framework [Can01] and construct CHIP, an efficient iPAKE protocol. The
CHIP construction is generic, requiring only a PAKE and an identity-based
key exchange protocol (IBKE) with certain properties (explained in the next
paragraph). Finally, the paper defines a notion of strong iPAKE (siPAKE) with
the same precomputation prevention properties as the aforementioned strong
constructions. The authors provide an efficient siPAKE protocol, called CRISP,
and prove it secure in the UC framework using the generic group model.

1.2 Limitations of Existing iPAKEs and dPAKEs

CHIP’s IBKE requirements limit the variety of scenarios in which the iPAKE
can be deployed. CHIP needs the underlying IBKE to be have key compromise
impersonation resistance (KCIR) and be msk-independent, i.e., the message
flow of the protocol must be statistically independent of msk. While there are
a handful of KCIR, msk-independent IBKE protocols [Oka88, Gün90, FG10,
Shi03, Wan13, CC07b, CC07a], they are insufficient to give CHIP some desirable
properties.

Quantum resistance. All the aforementioned IBKEs rely on ordinary or
bilinear Diffie-Hellman-type assumptions. Hence, there is no clear way to build
iPAKE from post-quantum assumptions, i.e., cryptographic assumptions that
plausibly hold for quantum computers. As the horizon for cryptographically
relevant quantum computers shortens [You22], it is important to have readily
available alternatives relying on different assumptions. This is especially relevant

4

in systems that handle data intended to be confidential for a long period of time,
and in systems that have a long migration or updating period for their devices
and firmware, as is common in industrial settings [Pau22].

Beyond post-quantum iPAKE, there also no clear way to construct an efficient
post-quantum dPAKE. The OPAQUE aPAKE compiler (not to be confused
with the same paper’s saPAKE compiler) [JKX18]—doubly augmented to be a
dPAKE [Ham15]—can be instantiated with entirely post-quantum primitives,
namely a post-quantum authenticated key exchange (AKE) protocol, and a post-
quantum oblivious pseudorandom function (OPRF). However, the only options
for post-quantum OPRF at the time of writing are either broken [BKW20,
BKM+21], or require two to four orders of magnitude greater computation time
and communication overhead than Diffie-Hellman-based OPRFs [FOO23, Dod23],
or have unknown concrete runtime [Bas22, Bas23]. Thus, practical use is limited.

Identity concealment. Another property not present in the listed IBKEs is
that of identity concealment, i.e., one of the parties remains anonymous until
the other party has successfully authenticated itself, and both parties remain
anonymous to a passive eavesdropper. This idea was introduced in the SIGMA-
I/SIGMA-R protocols [Kra03] and is available in IKEv2 which is used in the
widely deployed IPSec VPN protocol. If an iPAKE device responds to every
incoming request with its identity string, an attacker can wardrive, i.e., move
through a geographical area, attempt to connect to all the devices within range,
and map the network’s topology [SPT13]. This may be problematic in the case of
industrial IoT, e.g., leaking which building a specific sensor or controller resides
in.

1.3 Our contributions

We present Low-barrier identity-tied password-authenticated key exchange
(LATKE), a highly flexible framework for building identity-binding PAKE
(iPAKE). LATKE is built from an identity-based authenticated key exchange
(IBKE) protocol with key-compromise impersonation resistance (KCIR) and full
forward secrecy (full FS), and an ordinary PAKE. These IBKE assumptions
are achieved by a wide range of IBKEs, as opposed to the msk-independence
assumption that CHIP requires of its IBKE. In fact, as we show, it is possible
to construct a LATKE-compatible IBKE using only a signature scheme and an
authenticated key exchange (AKE) protocol.

Further extending the compatibility of LATKE with existing IBKEs, we split
the framework into two variants, LATKEpre and LATKEpost. The former is
intended to be used for pre-specified peer IBKEs, i.e., ones wherein the peers
know the identity of their intended partner in advance. The latter is intended
to be used for post-specified peer IBKEs, i.e., ones wherein that is not the case.
Since all identity-concealing key exchange protocols have post-specified peers by
definition, this allows us to achieve identity concealment.

Finally, a definitional contribution. In order to build LATKE, we slightly
weaken the ideal functionality FiPAKE given in [CNPR22]. We define our new
functionality Focw

iPAKE and argue for its naturalness.

5

We prove the iPAKEs our frameworks produce UC-realize Focw
iPAKE under

adaptive corruptions in the FRO-hybrid model with erasure. Since there exist post-
quantum AKEs/IBKEs and post-quantum PAKEs, we conclude that LATKE
can be instantiated as a post-quantum iPAKE.2 To the authors’ knowledge,
this is the first description or implementation of a post-quantum or identity-
concealing iPAKE. In addition, our construction also represents the most efficient
post-quantum dPAKE, since the only known post-quantum dPAKE currently
requires post-quantum OPRF, whose shortcomings were described above.

Finally, to demonstrate concrete efficiency, we instantiate LATKE and
CHIP using various building blocks—pre-quantum, post-quantum, and identity-
concealing—and benchmark them on a commodity WiFi router at the 128-bit
security level. We find some pre-quantum instantiations have computation cost
within 5% of CHIP and with a communication overhead of 324B, and one post-
quantum instantiation achieves computation cost within 3% of CHIP with a
communication overhead of 3kB.

2 Preliminaries

In this section we present the notation, definitions, and security models necessary
for the construction of LATKE.

2.1 Notation

We write probabilistic algorithms as Alg(x; r) where x denotes the input and
r denotes the random coins. We write y ← Alg(x) to denote sampling a value
from a probabilistic algorithm, and x←$ S to denote sampling a value uniformly
from a set S. For our security proofs we will consider probabilistic polynomial
time (PPT) adversaries, and denote them with calligraphic letters A. We denote
the output x, x′ of either side of an interactive protocol between parties A,B by
(x, x′)← (A⇔ B). For interactive protocols, we say a protocol round is the set of
all messages that can be sent in parallel from any point in the protocol [Gon93].3

We use λ to denote the security parameter.
In our pseudocode for ideal functionalities, retrieve denotes retrieval of a

record with a specific marking, which, upon failure, returns “no record”. assert
means the functionality ignores the query if the specified condition is not met.
We use framed boxes to mark where we elide full subprotocol executions. We

will write PAKEsid∥ssid to denote the execution of a PAKE protocol, with session

identifier sid∥ssid.
2While LATKE is built from assumptions that are plausibly quantum-hard, its reduction is

only stated for classical adversaries. Boneh et al. [BDF+11] show that if a security reduction
in the ROM is history-free, i.e., oracle queries do not depend on the values of other oracle
queries or the query number, then the reduction holds in the quantum ROM as well. We
believe our reductions are history-free, but leave the exploration of this path to future work.

3The number of messages is not the same as number of rounds. A protocol with 2 rounds
and 4 messages can be converted into one with 3 rounds and 3 messages by combining messages.

6

2.2 Universal composability

The Universal Composability (UC) model, introduced by Canetti [Can01], is
an alternative to the game-based model of security more commonly used in
cryptography. As the name suggests, protocols proven secure in the UC model
can be run in parallel with arbitrarily many copies of itself and other protocols.
The model frames cryptographic protocols as idealized functionalities, which can
be thought of as black boxes with a tightly constrained interface to the outside
world. In the security game showing Π UC-realizes the functionality F, the
goal of an interactive Turing machine called the environment Z is to distinguish
between the ideal world and the real world, which are defined as follows.

In the real world all the parties participate in Π, Z may view parties’ outputs,
and is permitted to give arbitrary instructions to a separate interactive Turing
machine, called the adversary A. The environment can arbitrarily ask the
adversary to view/modify/delay/drop messages between parties, corrupt parties,
and interact with any ideal functionalities F ′

i used to instantiate Π. In the
ideal world all the parties are dummies, speaking directly to F. In addition, the
adversary may also only interact to F, though it is still permitted to corrupt
parties.

Π UC-realizes F if for any A, there exists a simulator S of A such that any
Z has at most negligible advantage in distinguishing between A and S. That is,

IdealFS,Z
c≈ ExecA,Z

where the LHS refers to the probability ensemble consisting of the view of the
environment in the ideal world, and the RHS in the real world.

By [Can01, Theorem 11], it suffices to imagine that the adversary A is the
dummy adversary AD, which simply delivers backdoor messages generated by
the environment to the specified recipients, and delivers to the environment
all backdoor messages generated by the protocol parties, as well as the sender
machine’s identity.

There are two models in which the environment can corrupt parties. In
the static corruption model, the adversary may not corrupt any parties once
execution has started. In the adaptive corruption model, the adversary may
corrupt parties at any time. In this work, we will consider adversaries who are
allowed adaptive corruptions.

To represent different instances of the same scheme, the UC model uses
session identifiers. Each party is given a session identifier sid on activation and
will only interact with other parties with the same sid. To represent individual
protocol executions, we will use sub-session identifiers, denoted ssid (these can
be established by out-of-band means, or, e.g., by exchanging nonces [BLR04]). A
party in session sid may be engaged in multiple simultaneous protocol executions
ssid1, . . . , ssidn. Every protocol execution is uniquely identified by its (sid, ssid)
pair. For clarity of presentation, we will assume in our protocol definitions that
session and sub-session identifier establishment has already occurred.

7

Session management

On (NewSession, ssid,Pj , pwi, role) from Pi

send (NewSession, ssid,Pi,Pj) to S
if ∄(Session, ssid,Pi,Pj , pwi, role) :

record (Session, ssid,Pi,Pj , pwi, role)

Mark it fresh

Active session attack

On (TestPwd, ssid,Pi, pw
′) from S

retrieve (Session, ssid,Pi,Pj , pwi, role)

marked fresh

if pwi = pw′ :

Mark session compromised

send “correct” to S
else

Mark session interrupted

send “wrong” to S

Key generation and authentication

On (NewKey, ssid,Pi,K
′) from S

retrieve (Session, ssid,Pi,Pj , role, pwi)

not marked completed

if session is compromised :

Ki := K′

elseif session is fresh AND

∃(Key, ssid,Pj , pwj ,Kj) s.t. pwi = pwj :

Ki := Kj

else : Ki ←$ {0, 1}λ

if session is fresh :

record (Key, ssid,Pi, pwi,Ki)

Mark session completed

send (ssid,Ki) to Pi

Figure 1: The FPAKE ideal functionality, with the modifications suggested
in [AHH21].

2.3 PAKE and iPAKE

PAKE. We describe the function of a PAKE protocol and its intended security
properties. A (balanced) password authenticated key-exchange protocol is a two-
party key-exchange protocol where parties use mutual knowledge of a low-entropy
password pw to establish a high-entropy session key K. The security goals for a
PAKE are (1) to establish a high-entropy shared session key when both parties
are honest, (2) to prevent passive adversaries from learning anything about the
password, and (3) to limit active adversaries to one (or another small constant)
password guess(es) per protocol instance, even if given access to session keys.
We give the corresponding ideal functionality FPAKE in Figure 1. We include the
small modifications suggested in [AHH21], as do the authors of CHIP/CRISP.

Catastrophic impersonation in PAKE. PAKE protocols permit an attacker
who corrupts a party to learn pw and subsequently impersonate any party using
the same password. In a setting where multiple devices all share the same
password, this results in catastrophic impersonation following the compromise of
even a single device.

iPAKE. Identity-binding PAKE (iPAKE) [CNPR22] was introduced to mitigate
catastrophic impersonation. Each party runs a one-time initialization procedure
StorePwdFile that takes as input a (common) password pw and its (public)
identity id, and outputs a password file pwfile. That party then saves pwfile, and
deletes pw. At a later point in time, two parties who wish to authenticate run

8

the iPAKE protocol using their respective password files. The output is a tuple
(K, id) containing the session key and the identity of the other party.

As with PAKE, iPAKE provides a high-entropy shared key to the two
parties running the protocol, and limits active attackers to a single password
guess per instance. In contrast to PAKE, however, iPAKE also ensures some
measure of robustness following compromise of parties. Specifically, an attacker
who compromises Alice only learns Alice’s pwfile. With this, the attacker can
impersonate Alice to anyone, but does not immediately learn enough information
to impersonate any other party to anyone else (including Alice). The best the
attacker can do—which is clearly unavoidable in our setting—is to mount a
brute-force attack against Alice’s pwfile to derive pw; this can be made prohibitive
if the pw has moderate entropy and/or if StorePwdFile is relatively slow. The
latter can be achieved by incorporating into StorePwdFile a time-, memory-,
and/or cache-intensive password hashing function, such as Argon2 [BDK15] or
bscrypt [Tho22a].

We briefly describe the function of the remaining procedures of FiPAKE. The
formal definition is given in Figure 2.

Corruption. iPAKE permits two kinds of corruption queries:

StealPwdFile Returns the password file of a specific party P , and does not mark
P corrupted, i.e., the adversary does not get any ephemeral keys nor does
it gain control over P.4

Corrupt Returns the output of StealPwdFile in addition to all the ephemeral
data held by P, sends a message to the environment that the action was
performed on P, and does mark P corrupted.

We say that a party who is not corrupted but whose password file has been
stolen is compromised.

OfflineTestPwd. This is called by the adversary A to guess the password of a
stolen password file.5

OfflineComparePwd. This is called by A to compare the password files of
compromised parties. Through this, it learns which parties’ passwords are equal,
but does not learn the password itself.

NewSession. This is called by a party Pi to initiate a new iPAKE session
with Pj . At some point, Pj will have to call NewSession with Pi and the same
sid and ssid if they wish to complete the protocol execution.

NewKey. This is called by A with a session key K ′ and ID id′ to finalize the
key exchange in an active session. If the session is fresh, i.e., has not already
been interrupted with a different attack, then this outputs a uniformly random
key (independent of K ′) and actual peer identity to the relevant party, and it

4This is not explicitly described as a corruption query in its original formalization [GMR06],
but, as Hesse [Hes20] explains, this is the only definitionally sound way to treat this query.

5In order to prevent trivial simulators with arbitrary brute-force attack capability, we
bound the simulator’s usage of OfflineTestPwd by the runtime of the environment Z. See
Hesse [Hes20] for more detail.

9

Password Registration

On (StorePwdFile, sid, id, pw) from P
if ∄ a record (File,P, id, pw) :

record (File,P, id, pw)

Password Authentication

On (NewSession, sid, ssid,Pj) from Pi

if ∃ a record (Session, sid, ssid,Pj ,Pi, ·) :
retrieve (File,Pi, idi, pwi)

send (NewSession, ssid,Pi,Pj , idi) to A
if ∄ a record (Session, sid, ssid, ·, ·, ·) :

record (Session, sid, ssid,Pi,Pj , pwi)

Active Session Attacks

On (OnlineTestPwd, sid, ssid,Pi, pw
′) from A

retrieve (Session, sid, ssid,Pi, ·, pwi)

marked fresh or compromised

if pw′ = pwi :

record (Imp, ssid,Pi, ∗)
Mark the session compromised

send “correct” to A
else :

Mark the session interrupted

send “wrong” to A

On (Impersonate, sid, ssid,Pi,Pk) from A
retrieve (Session, sid, ssid,Pi, ·, pwi)

marked fresh or compromised

retrieve (File,Pk, idk, pwk)

marked compromised

if pwi = pwk :

record (Imp, ssid,Pi, idk)

Mark the session compromised

send “correct” to A
else :

Mark the session interrupted

send “wrong” to A

Key Generation and Authentication

On (NewKey, sid, ssid,Pi, id
′,K ′) from A

retrieve (Session, sid, ssid,Pi,Pj , pwi)

not marked completed

retrieve (File, Pj , idj , pwj)

assert ¬(session is fresh and id′ ̸= idj) and

¬(session is compromised and (Imp, ssid,Pi, i)

is not recorded for both i ∈ {id′, ∗})
if session is compromised : Ki := K′

elif session is fresh and ∃ a record

(Key, ssid,Pj , pwj ,Kj) with pwi = pwj :

Ki := Kj

else : Ki ←$ {0, 1}λ

if session is fresh :

record (Key, ssid,Pi, pwi,Ki)

Mark session completed

send (Key, ssid, id′,Ki) to Pi

Stealing Password Data

On corruption query (StealPwdFile,P) from A:
retrieve (File,P, id, pw)
Mark the file compromised

if ∃ a record (Offline,P, pw) :
send (Stolen, id, pw) to A

else : send (Stolen, id,⊥) to A

On (OfflineTestPwd,P, pw′) from A
retrieve (File,P, ·, pw)
if file marked compromised :

if pw′ = pw : send “correct” to A
else : send “wrong” to A

else : record (Offline,P, pw′)

On (OfflineComparePwd, sid,Pi,Pj) from A
retrieve (File,Pi, ·, pwi) is compromised

retrieve (File,Pj , ·, pwj) is compromised

if pwi = pwj : send “match” to A
else : send “no match” to A

On (OnlineComparePwd, sid, ssid,Pi,Pj) from A
retrieve (Session, sid, ssid,Pi, ·, pwi)

marked fresh or compromised

retrieve (File,Pj , ·, pwj) marked compromised

if pwi = pwj : send “match” to A
else :

Mark the session interrupted

send “no match” to A

Figure 2: The FiPAKE and Focw
iPAKE ideal functionalities. Everything outside the

dashed box belongs to FiPAKE. Everything including the dashed box belongs to
Focw

iPAKE.

will output the same key and actual peer identity to the other party when called
for them. The values K ′ and id′ are sent to the relevant party when certain
compromise conditions are met. These are described below.

OnlineTestPwd. This is called by the A to guess the password for an active
session. On success, the session is marked compromised, meaning the adversary
has full control over the session key and perceived identity at both parties. On
failure, the session is marked interrupted, meaning the session keys will be
random and distinct, i.e., the exchange will fail.

Impersonate. This is called by A to impersonate a compromised user in
an active session. If the compromised user’s pw matches the session peer’s pw,
then the adversary is given full control over the peer’s session key (not the
impersonated user’s session key), and the identity is set to the impersonated
party’s identity.

2.3.1 Adding OnlineComparePwd

In order to permit analysis of LATKE, we must slightly extend the FiPAKE

functionality. We add one procedure, OnlineComparePwd. This procedure allows
the adversary to check if a compromised user’s password matches the password
used in an active session. We call the new functionality Focw

iPAKE.
We argue that this additional procedure is natural in the sense that sim-

ilar attacks are already allowed in other PAKE extensions. The Ω-method
aPAKE [GMR06] begins with a PAKE over H(pw), and requires the client to
store pw and the server to store H(pw). Thus, an active attacker who compro-
mises a server can use the stolen hash to intercede in unrelated PAKE sessions
and thus determine whether or not the parties of a given session share a password.
The reason an OnlineComparePwd procedure is not included in aPAKE is because
aPAKE doesn’t a strong notion of identity—to perform the described attack,
it suffices to use Impersonate using the generic identities of “client” or “server”.
This isn’t so in iPAKE: an Impersonate query would force the attacker to use
the unique identity of the compromised user.

The procedure is natural in another sense. It is possible to emulate
OnlineComparePwd by calling Impersonate as described above, tearing down the
session with OnlineTestPwd(sid, ssid,P,⊥), and forcing the parties to attempt a
new session. The only step that is outside of the UC simulator’s capabilities is the
last. In reality, though, this is already possible. For example, WPA2-protected
WiFi connections can be injected with a deauthentication packet, thus forcing
the client to tear down the session and reconnect [SRV23]. Similar attacks in
other protocols such as Bluetooth are also documented [Lou21]. Thus, it is not
unreasonable to imagine ideal attacker being able to force a retry in just the key
exchange portion of a protocol.

2.4 Key exchange

We review notions of authenticated key exchange (AKE), and identity-based key
exchange (IBKE). We will include definitions for post-specified peer protocols,

11

i.e., protocols wherein the parties do not know the identity of their interlocutor
in advance.

2.4.1 Authenticated key exchange

An authenticated key exchange protocol (AKE) is a cryptographic protocol
wherein two parties interact over a public channel to produce a shared secret
key. The procedures of a post-specified peer AKE are as follows:

KeyGen(1λ)→ (upk, usk) Generates a long-term keypair.

Execute(skA)⇔ Execute(skB) Executes the interactive key exchange protocol.
The output is a shared session key K and the public key of the other party,
pkA or pkB .

Identity-based key exchange. Identity-based key exchange (IBKE) is a
generalization of AKE which introduces a trusted third party, called the key
generation center (KGC). The KGC is responsible for generating the main
keypair (mpk,msk), and for extracting secret keys for users. A user with an
identifier string id will request a secret key skid from the KGC that corresponds to
id. With this secret key, the user can participate in key establishment protocols
wherein the other participant knows only the global mpk and their id (and
optionally their own skid′ if mutual authentication is desired).

Concretely, the procedures of a post-specified peer IBKE are as follows:

Setup(1λ)→ (mpk,msk) Generates the main keypair.

Extractmsk(mpk, id, aux)→ skid Extracts a secret key for the given ID under the
given mpk, with auxiliary data aux.

Execute(skA, idA,mpk)⇔ Execute(skB , idB ,mpk) Executes the interactive key
exchange protocol. The output, on success, is the shared session key
K and the ID of the other party, idA or idB .

Identity concealment. A post-specified peer AKE or IBKE is said to have
passive responder concealment if the identity is hidden from a passive adversary,
and active responder concealment if from an active adversary (i.e., a malicious
initiator). Specifically, in a protocol with active responder concealment, the
responder will wait until the initiator has authenticated themselves before they
send any identifying information. Active initiator concealment is defined similarly.
A protocol may have both passive initiator concealment and active responder
concealment (as SIGMA-R does; Section 4) or vice-versa, but cannot have active
concealment for both parties, since one party must authenticate first.

2.4.2 Canetti-Krawczyk (CK) model

The Canetti-Krawczyk (CK) model [CK01] and its extension, the identity-based
CK model (id-CK) are common models for proving security of AKEs and IBKEs,

12

respectively. Their purpose is to model everything an adversary can reasonably
do in a real-world AKE or IBKE protocol execution. Within these models, it is
possible to define notions of ordinary session-key (SK) security, key-compromise
impersonation resistance (KCIR), maximal exposure resistance (MEX), forward
secrecy (FS), post-compromise security (PCS), and more. In order to capture
identity concealment, we will use the CK model adapted to the post-specified
peer setting, as presented in [CK02a].

For the security of LATKE, we will require an IBKE with SK security
with KCIR and full FS. In words, KCIR ensures that, if Mallory compromises
Alice, Mallory cannot impersonate anyone to Alice (aside from the other parties
Mallory has already compromised). FS ensures that if Mallory compromises Alice,
Mallory remains unable to learn the session keys from Alice’s past completed
sessions. IBKE has another notion of FS, which we call KGC-FS, which requires
that, if Mallory compromises the KGC, she is still unable to learn the session
keys of Alice’s past completed sessions. We say a protocol has full FS if it has
FS and KGC-FS. More detailed definitions can be found in Appendix A.3.

Finally, we note there are numerous, subtly different, variants of the CK
model, including CKHMQV, eCK, and CK+ [Kra05, LLM07, FSXY12] (their
id- variants being defined similarly, by adding KGC extraction and revelation).
In fact, it has been shown that security in the first three variants is pairwise
incomparable—security in one model does not imply security in any other
model [Cre11]. Nevertheless, these models have enough in common that our
main security reduction will be able to use any one of them.

2.5 Symmetric encryption

LATKE requires a symmetric encryption scheme that is secure under adaptive
corruptions. For this, we will use SIM*-AC-CCA encryption, introduced by
Jäger and Tyagi [JT20, Jae23].

We choose this security notion over, e.g., CCA2 security, for several practical
reasons. For our UC proof to go through, encryption needs to be non-committing—
a simulator must be able to open a ciphertext to whichever value it chooses,
so long as the adversary does not already know the key. This is a common
enough requirement that many UC protocols create their own non-committing
encryption scheme from a (programmable) random oracle or an ideal cipher.
These constructions have two problems: (1) they are not generalizable, i.e., it is
not clear which other authenticated encryption schemes can be plugged into the
protocol, and (2) the proofs of security of these bespoke constructions often have
subtle bugs (as demonstrated by Jäger and Tyagi). Thus, we opt for a generic
notion of simulatable authenticated encryption.

SIM*-AC-CCA security. Informally, an authenticated encryption scheme
AE is SIM*-AC-CCA-secure with respect to some ideal primitive P (e.g., pro-
grammable random oracle or ideal cipher), if there is a simulator Scca such
that no PPT adversary can distinguish between Scca and AE, even when given
the ability to encrypt messages, decrypt messages, expose keys, and program
the random oracle. We refer the reader to [Jae23] for the formal definition of

13

security. For this work, it will suffice to list the specific operations available to
the symmetric encryption scheme, AE, and the associated simulator Scca.

The procedures exposed by the symmetric encryption scheme AE are the
usual ones: KeyGen for key generation, EncP for encryption (with access to
primitive P), and DecP for decryption (also with access to P). The associated
simulator Scca exposes the following procedures. For brevity, we omit details
about initialization of ideal primitives.

Dec(u, c)→ m Simulates a party u decrypting a ciphertext c.

Exp(u,Mu)→ k Simulates the corruption, i.e., exposure of a key, of a party u.
Mu is the set of ciphertext-plaintext pairs that the simulator must behave
consistently with.

Since each step of each subsessions has a unique key, we will let a user u
represent a tuple containing a party identifier, all subsession information, and the
current step in the protocol execution (P, sid, ssid, step). When P is corrupted,
it will trigger the exposure of all its incomplete subsessions.

Concrete instantiation. We can instantiate a SIM*-AC-CCA-secure en-
cryption scheme is via the encrypt-then-MAC (EtM) transform [JT20]. If SE
is SIM*-AC-CPA-secure with primitive P1 and MAC is UF-CMA-secure with
primitive P2, then EtM[SE,MAC] is SIM*-AC-CCA-secure with primitive P1×P2.

If AES is modeled as an ideal cipher, then AES-CTR is SIM*-AC-CPA-
secure with primitive FIC. And if the hash function H is modeled as a random
oracle, then HMAC[H] is UF-CMA-secure with primitive FRO. Thus, AES-CTR
+ HMAC is SIM*-AC-CCA-secure with primitive FIC ×FRO [JT20].

Similarly, if the ChaCha20 block function [Ber08] is modeled as a random
oracle, then it achieves SIM*-AC-PRF security with primitive FRO. This makes
the ChaCha20 stream cipher a SIM*-AC-CPA-secure encryption scheme that
can also be plugged into EtM.

3 Construction

In this section we present the LATKE framework for constructing iPAKE
protocols. The structure of LATKE can be viewed as a synthesis of an early
aPAKE known as the Ω-method [GMR06], with the CHIP iPAKE [CNPR22].
We introduce both of these constructions and then present ours.

3.1 Ω-method

Recall the purpose of an aPAKE is to permit a client who has a password pw
to establish a secure session with a server who holds a one-way function of the
password H(pw). The Ω-method aPAKE, introduced by Gentry, MacKenzie,
and Ramzan [GMR06], is a generic construction that relies only on an ordinary
PAKE, symmetric-key encryption, and digital signatures. The protocol can be
found in Figure 3.

14

Ω.StorePwdFile(sid, pw)→ pwfilesid

1 : (pk, sk)← Σ.Kg(1λ)

2 : (h0, h1) := (H0(sid, pw),H1(sid, pw))

3 : c← AE.Ench1(sk)

4 : pwfile := (pk, h0, c)

5 : delete pw, sk

6 : return pwfilesid

Client(sid, ssid, pw) Server(sid, ssid, pwfile)

H0(sid, pw) h0

K K′
PAKEsid∥ssid

K K′

h1 := H1(sid, pw) c̃ c̃← AE.EncK(c)

c := AE.DecK(c̃)

sk := AE.Dech1(c)

σ := Σ.Signsk(tr)
σ

if ¬Σ.Vfypk(σ, tr) :
abort

return K′ return K′

Figure 3: The Ω-method aPAKE [GMR06]. tr represents the protocol transcript
up to that point in time. Σ is a signature scheme. AE is an authenticated
encryption scheme.

Password file generation. A server with password pw first computes a
password identifier h0 := H0(sid, pw). Next, it computes a signing keypair (pk, sk)
and encrypts sk under the key h1 := H1(sid, pw) to get ciphertext c. It saves pk,
h0, and the c, and erases pw and sk. To frustrate brute-force attacks, H0 and H1

should be hard hash functions.

Key establishment. Both parties perform a fresh PAKE on H0(sid, pw) to
derive two keys (K,K ′). The parties use K to establish an encrypted channel
using the authenticated encryption scheme AE. In that channel, the server sends
c. Since the client knows pw, it can decrypt c to sk and use it to compute a
signature σ over the entire protocol transcript. The client sends σ to the server,
which verifies the signature. On success, both parties output K ′.

Key feature: Secure channel. Often, aPAKE constructions are highly
bespoke, tailoring themselves to the specific cryptographic assumptions they

15

target. Part of the reason this is true is because they operate under the strict
constraint of having a message flow that is statistically independent of the
password (otherwise, a passive adversary can collect transcripts and launch a
brute-force attack).

The Ω-method construction differs from this. Rather than relying on specific
algebraic methods to hide the password, it instead delegates this to a PAKE over
the hashed password, which is performed at the beginning of the protocol, and
uses the resulting key to set up a secure channel. The effect is twofold. Firstly,
this excludes all passive adversaries from the secure channel, since the PAKE is
secure against passive adversaries. Secondly, this permits the contents of the
secure channel to leak information about the hashed password. Here, information
about the hashed password is leaked because there’s an authenticated ciphertext
c encrypted under H1(sid, pw). This is permitted because any adversary who
can see the messages in this secure channel already knows H0(sid, pw) (since,
to see the messages, it must have successfully attacked the PAKE). Thus, if
the adversary has gotten so far as to break the secure channel, observing the
messages therein doesn’t help its brute-force efforts, so long as the hash function
H1 is at least as hard as H0.

Here, the protocol within the secure channel is extremely simple—it is just
one message—but there is nothing preventing this principle from being applied to
more complicated protocols which leak information about the hashed password.
This will be essential to the flexibility of our iPAKEs.

3.2 CHIP

We now look at the first iPAKE construction, CHIP, due to Cremers, Naor, Paz,
and Ronen [CNPR22]. Recall the purpose of an iPAKE is to permit parties
with mutual knowledge of a password to establish a secure connection while
identifying themselves to each other with unique identity strings. Further, if an
attacker compromises a device, they should not have the ability to impersonate
any identity other than that of the compromised devices (barring a successful
brute-force attack).

We give an overview of CHIP in Figure 4. Like the Ω-method, it uses a
generic PAKE as a building block. The other building block it requires is any
msk-independent identity-based key exchange (IBKE) with KCIR. More formally,
the messages of the IBKE must be statistically independent of not just msk, but
also the random coins used in the IBKE’s Setup procedure.

Password file generation. On initialization, a party with ID string id and
password pw hashes pw and uses the output as random coins to generate a fresh
IBKE keypair (msk,mpk). The party then extracts a secret key usk bound to id.
The party deletes pw and stores (id,mpk, usk).

Key establishment. The CHIP protocol runs in two phases. First, the parties
execute the IBKE protocol using their extracted secrets. Note their mpk is
guaranteed to be the same if they used the same password. Next, they use
the resulting key (plus the transcript of the protocol) as the “password” for an

16

CHIP.StorePwdFile(sid, pw, id)→ pwfile

1 : (mpk,msk) := IBKE.Setup(1λ;H0(sid, pw))

2 : usk← IBKE.Extractmsk(mpk, id)

3 : pwfile := (id,mpk, usk)

4 : delete pw, r,msk

5 : return pwfile

Alice(sid, ssid, pwfileA, idB) Bob(sid, ssid, pwfileB , idA)

pwfileA idB idA pwfileB

K
IBKE

K

K tr tr K

K′
PAKEsid∥ssid

K′

return K′ return K′

Figure 4: The CHIP iPAKE, using a generic IBKE and PAKE. tr represents the
protocol transcript up to that point.

ordinary PAKE. The output is their final session key.

Key feature: The self-KGC trick. The design choice that stands out most
in CHIP is that it uses IBKE, a cryptographic primitive which typically requires
a trusted third party. The purpose of the IBKE in this protocol is to establish
a key that simultaneously binds the ID and the password, while ensuring that
(1) the pwfile is bound to a specific ID, and (2) the password is not directly
stored. An IBKE is the natural solution to a key exchange with property (1).
And to bind the password to the session, it suffices to use the (hashed) password
to generate the main long-term key, constrain it to the id, and then discard the
intermediate values.

This trick is generic, requiring no specific property of the IBKE other than
the most basic notion of security, i.e., an adversary without the password cannot
produce msk by accident (though CHIP still needs other properties for the rest
of the construction to be secure). We will use this trick as the main identity
mechanism in LATKE.

Design limitations. As mentioned in Section 1, the construction of CHIP puts
limitations on which IBKEs can be used. Like many PAKE extensions, CHIP’s
message flow must be independent of the password (and hence the random coins

17

of Setup). This is because, unlike the Ω-method, CHIP’s key exchange is done
in the clear—it must be secure against passive adversaries looking to perform
an offline brute-force attack. The narrow choice of IBKE means that CHIP has
no plausible post-quantum instantiation. In addition, CHIP has no plausible
instantiation with an IBKE with identity concealment.

3.3 LATKE

LATKE combines the key features of CHIP and the Ω-method. The password
file generation procedure is identical to that of CHIP, using the self-KGC trick
to generate keys that are bound to the password and an identity string. The
protocol is similar in structure to the Ω-method, beginning with a PAKE over
a collision-resistant one-way function of the password, specifically mpk.6 The
resulting key is used to set up a secure channel for the rest of the protocol.
The parties execute an IBKE protocol inside the secure channel and output the
result. The full definition of LATKE can be found in Figure 5. The pre- and
post-specified peer variants only differ in what is included in the initial PAKE
step.

Since the framework permits a wider range of IBKEs than CHIP, we can
now achieve post-quantum iPAKE from post-quantum IBKE and PAKE, and
identity-concealing iPAKE from identity-concealing IBKE.

There are a handful of details to work out in order to determine the security
and efficiency of LATKE.

Secure channel: The EUE transform. We must specify what we mean
by secure channel. In the Ω-method, the payload of the channel was a single
message. In the case of LATKE, the payload is the entire transcript of an
IBKE. In order to achieve security under adaptive corruptions, we must pick
our notion of authenticated encryption carefully, and design a secure channel
protocol that can be simulated even for sessions between parties whose password
files are unknown to the UC simulator. We will design a simple transform, called
encrypt-and-unconditionally execute (EUE) to meet this specification.

Necessary security properties. Another detail is precisely what kind of
security we need from the PAKE and IBKE. The PAKE requirement does not
change from the Ω-method—all we require is a protocol that UC-realizes FPAKE.
The IBKE must have KCIR and full FS, which we note are common properties
of key exchange protocols. In the lead-up to our theorem statement, we will
explain why each property is necessary.

Building the IBKE from AKE. To further demonstrate the practicality of
LATKE, we will show that it is possible to generically achieve these properties
given just an AKE with KCIR (and no FS).

Round complexity. PAKE and IBKE constructions can both be achieved
using one round of communication each. So, like CHIP, the minimum round

6It would suffice to perform the PAKE over a hard hash of pw rather than mpk. However,
since parties already store mpk, and because mpk values do not collide (otherwise the IBKE
would be trivially insecure), it is just as good to use mpk.

18

LATKE.StorePwdFile(sid, pw, id)

1 : (mpk,msk) := IBKE.Setup(1λ;H0(sid, pw))

2 : usk← IBKE.Extractmsk(mpk, id)

3 : pwfile := (id,mpk, usk)

4 : delete pw, r,msk

5 : return pwfile

Alice(sid, ssid, idB , pwfileA) Bob(sid, ssid, idA , pwfileB)

idA idB mpk mpk idB idA

K
PAKEsid∥ssid

K

K pwfileA pwfileB K

K′ idB
EUE[IBKE]

idA K′

K′′ := H1(K
′, tr) K′′ := H1(K

′, tr)

return (idB ,K
′) return (idA,K

′)

Figure 5: The LATKE iPAKE framework. With the grey text excluded,
the above defines LATKEpost. With the grey text included, the above defines
LATKEpre. EUE[IBKE] is encrypt-and-unconditionally-execute transform of the
identity-based key agreement protocol IBKE (Section 3.3.1). tr is the transcript
of the entire protocol.

complexity for the LATKE framework is two rounds. While one-round PAKEs
and IBKEs exist (e.g., EKE [LLHG23] and Fiore-Gennaro [FG10], resp.), most
rely on a Diffie-Hellman-type assumption. In Section 5, we discuss ideas to
achieve post-quantum LATKE in two rounds.

3.3.1 Encrypt-and-unconditionally-execute transform

Recall we must use the PAKE-derived key to establish a secure channel in which
to perform the IBKE protocol. To hide IBKE messages and ensure correct
execution, we must carefully apply a symmetric encryption scheme so as to
avoid potential replay attacks. In addition, our security proof requires that the
protocol transcript look the same to a passive attacker regardless of whether
the initial PAKE succeeded. To achieve this, we must send ciphertexts even on
protocol failure. Finally, since we must be able to open ciphertexts to arbitrary

19

values, we require a simulation-secure notion of symmetric encryption. We call
the combination of these techniques the encrypt-and-unconditionally-execute
transform EUE[IBKE].

EUE definition. We require an IBKE with a fixed number of rounds and
fixed message sizes, an authenticated encryption scheme AE with SIM*-AC-CCA
security using ideal primitive P, and a random oracle H. We use the variable
rmode to denote whether the party is in real mode, i.e., is still encrypting real
messages. At the beginning of the protocol, rmode := true. We define the
behavior of a party P interacting with its peer P ′ in session (sid, ssid). We let
K represent the encryption key that P intends to use for the session.

1. Let the chain key Kch := H(sid, ssid, 0∥K). We will use the chain key to
derive all subsequent keys using a symmetric ratchet similar to the Signal
protocol [Mar16, CJSV22]. Once a chain key has been ratcheted forward,
the old keys are erased.

2. Protocol step i, where P is sending: Compute the step key and new
chain key (Kch, ki) := H(sid, ssid, 1∥Kch). If rmode = true, the IBKE
hasn’t aborted yet, so P has a specific IBKE message mi it wishes to
send. Compute ci := AE.EncPki

(m). Otherwise if rmode = false, let
ci := AE.Encki(0

ℓi), where 0ℓi is the all-zeros string of the known step i
message length ℓi. Finally send ci to P ′.

3. Protocol step i, where P is receiving: Compute the step key as described
above. If rmode = false, the IBKE has aborted, so simply return. Other-
wise, proceed as follows. To decrypt the incoming ciphertext ci, compute
m′

i := AE.DecPki
(ci). If a decryption failure occurred, set rmode := false

and return. Otherwise pass m′
i to P to continue the protocol execution. If

P aborts, then abort the protocol.

4. At the end of the protocol, if rmode = false, output ⊥. Otherwise, output
P’s output.

We will not prove any standalone security properties about the EUE protocol,
as it only makes sense when used in the broader context of LATKE.

3.3.2 Building the IBKE

We briefly recall results which make it possible to construct a satisfactory IBKE
from the smaller building block of authenticated key exchange (AKE). We start
with an AKE with just key compromise impersonation resistance (KCIR). We will
use these techniques to build several IBKEs which we benchmark in Section 4.

Forward secrecy for AKE. LATKE requires full forward secrecy from its
key exchange. There are a few well known methods to endow a generic AKE
with forward secrecy.

For generic AKEs, Boyd and Nieto [BN11] describe a transform wherein the
AKE is used to set up an authenticated channel, and with that channel the

20

parties perform an ordinary (unauthenticated) key exchange to derive the final
key. The resulting AKE has forward secrecy as long as the adversary is not
given the ability to perform ephemeral key revelations. This security meets the
preconditions of Theorem 1.

Another transform exists for AKEs with weak forward secrecy, i.e., FS when
the adversary does not tamper with the messages in the test session. For these
protocols it suffices to simply add key confirmation—each party sends a MAC
whose key is derived from the shared secret [Kra05, Section 8] [GGJJ23].

Both of these transforms add at least one round of communication.

AKE to IBKE. To convert an AKE into an identity-based AKE, we follow a
well-known schema, the certification approach, used for building identity-based
signatures from ordinary signatures [KN09]. In this construction, every user
has an AKE public key pk, and some ID string id. The key generation center
(KGC) issues identities by signing (id, pk) pairs with its signing key msk. The
user’s certificate is thus (id, pk, σ), where σ is the signature they received from
the KGC. At the very beginning of key exchange, users exchange and verify each
other’s certificates with respect to the KGC’s public key mpk. On success, they
proceed with AKE using the user-provided public keys.

We describe the transform more formally. Let Σ be an EUF-CMA-secure
signature scheme, and let AKE be an authenticated key exchange protocol in
the post-specified peer model. The new post-specified peer IBKE is defined as
follows:

Setup(1λ)→ (mpk,msk) Generates a signing keypair (mpk,msk)← Σ.KeyGen(1λ).

Extractmsk(id, upk)→ σ Computes the signature σ ← Σ.Signmsk(id∥upk).

Execute(uskA, idA, σA,mpk)⇔ Execute(uskB , idB , σB ,mpk) Each party first sends
each other certX := (upkX , idX , σX) where X ∈ {A,B}. Then, each party
verifies cert with respect to mpk. On success, the parties proceed with the
AKE. At the end, the parties check that the outputted upk matches the
one they received.

For a pre-specified peer IBKE from a pre-specified peer AKE, it suffices to
remove the last check and add a check that the received certificate’s ID matches
the expected ID.

We make some remarks on the certification approach. Firstly, the security
properties we desire, namely KCIR and FS, are preserved in this transform.
Secondly, this transform produces an IBKE with KGC-FS. This is because the
KGC keys are strictly used for authentication, and never for key derivation.
Thirdly, as stated above the transform is slightly stricter than necessary regarding
the ordering of events. In particular, certificates can be sent at any point in the
protocol. If AKE is responder-concealing, then the transformed protocol may
have the initiator send its certificate at the very beginning, and the responder
send their certificate at the very end of the protocol, encrypted with the session
key, thus preserving the responder-concealing property.7

7It is possible to go even further with this idea. Some protocols which are responder-

21

3.3.3 Security argument

We now informally discuss the security of LATKE before stating the main
security theorem. To build intuition, we explain why each security assumption
is necessary for LATKE.

SK-security. The base security of the IBKE prevents the most basic attacks,
e.g., determining the session key of a passively observed session, impersonating a
party who has not been compromised, or forcing two unrelated sessions to have
the same session key.

Key-compromise impersonation resistance. If an adversary, Mallory,
compromises Alice, then the only party Mallory should be able to impersonate
(barring a brute-force attack) is Alice herself. In particular, she should not be
able to impersonate Bob to Alice. This is captured by our KCIR requirement.

Full forward secrecy. Mallory can use a stolenmpk to corrupt the initial PAKE
and passively observe the cleartext IBKE execution between two uncompromised
parties, Alice and Bob. If Mallory records this execution, cracks the password
associated with mpk (thus getting msk), and later corrupts Alice and Bob, she
should still not be able to later determine the session key. This is captured by
our full FS requirement.

OnlineComparePwd. The above scenario also elucidates the reason
OnlineComparePwd is necessary in our ideal functionality. If the UC simulator is
to simulate the cleartext IBKE session, it must know whether the stolen mpk
matches one of the parties’ PAKE inputs. This is ordinarily captured by the
Impersonate procedure, which forces the target party to believe the stolen mpk’s
owner is their peer. However, it is not immediately clear when Mallory performs
the attack if she intends to impersonate a party or to merely pass messages
transparently. Since the latter case would not result in a change of perceived
peer, the UC simulator cannot call Impersonate at that moment, and must use
OnlineComparePwd instead.

SIM*-AC-CCA security and programmable ROM. As with
OnlineComparePwd, we require this symmetric security notion and ideal primitive
for UC simulatability reasons. Suppose Alice and Bob are both uncompromised
and executing the protocol. In this case, the simulator does not know anything
about the parties’ mpk: they may be unequal, equal to each other, equal to other
parties with known passwords/mpk, or none of the above. Suppose Mallory
waits until the first party, wlog Bob, outputs a session key K ′′ and sends the
final (encrypted) message c to Alice. Then Mallory may immediately corrupt
Alice, forcing the simulator to create an internal state which can explain c in the
context of the protocol, and also demonstrate that the session key is indeed K ′′.
The difficulty here is twofold: first, the simulator must find a message m that

concealing (resp. initiator-concealing) are also passively initiator-concealing (resp. passively
responder concealing). An example is SIGMA-R [Kra03]. The transform described here does
not preserve the passive concealing property. But if the protocol is modified so certificates
are sent at the exact same time and encrypted under the same key as the user-identifying
information in the underlying protocol, the both these properties are preserved. We will do
exactly this in our experiments (Section 4).

22

makes sense and results in the output K ′′, and second, the simulator must be
able to provide a decryption key that opens c to m. The first issue is resolved by
the random oracle at the end of the protocol: the simulator can construct any
transcript it wants, and simply program H1(K

′, tr) = K ′′.8 The second issue is
resolved by our choice of a non-committing encryption primitive, which achieves
SIM*-AC-CCA security.

Main theorem. We use three random oracles: H0 is used for hashing passwords,
H1 is used for the final session key computation, and H2 is used as for the
symmetric ratchet in EUE. Further, we require whichever ideal primitive P that
is required by the underlying SIM*-AC-CCA-secure authenticated encryption
scheme (for AES-CTR + HMAC, for example, this is an ideal cipher and a
random oracle). The proof can be found in Appendix B.

Theorem 1. Let IBKE be a post-specified peer IBKE with SK-security with KCIR
and full FS in the identity-based CK, eCK, CKHMQV, or CK+ model. Let AEP

be a SIM*-AC-CCA-secure symmetric encryption scheme with ideal primitive
P. Then the LATKEpost protocol realizes Focw

iPAKE in the (FPAKE,FRO,P)-hybrid
model with erasure and adaptive corruptions.

Similarly, if IBKE is a pre-specified peer IBKE with SK-security in these
models, then LATKEpre realizes Focw

iPAKE in the (FPAKE,FRO,P)-hybrid model with
erasure and adaptive corruptions.

We note that the theorem accepts a range of IBKE models whose security we
know to be incomparable ??. In our proof, we avoid issues by using the narrowest
set of adversary powers possible, a set which all models happen to share. In
fact, the proof does not even require an IBKE security model with a notion of
ephemeral key revelation. This permits a wider class of IBKE constructions,
e.g., those constructed from AKEs with the forward secrecy transform from
[BN11]. Our reduction is helped by the coarseness of the UC iPAKE model,
which has strong session identifiers and only two types of corruption—long-term
key corruption and total corruption.

Finally, our proof is written for LATKEpost, but it is not dependent on
the pre-specified peer model, and transfers with little modification (given in
Appendix B). Thus, we achieve a general result for any peer model and any
commonly used notion of IBKE security.

8This is resolved differently by Canetti and Krawczyk in their paper tying UC authenticated
key exchange to SK-security [CK02b]. They define the ACK property—an AKE has the ACK
property iff, once the first party outputs the session key, the internal states of both parties are
simulatable using only the session key and public information. They show that this property
is necessary to achieve UC simulatability, and describe a simple, generic transform to endow
an SK-secure AKE with the ACK property, at the cost of one communication round. We
are able to circumvent this overhead by using a programmable random oracle on our session
key outputs. Since we must use a programmable model for iPAKE regardless [Hes20], this is
essentially free.

23

4 Experiments

To demonstrate the practicality of LATKE, we instantiate it using a variety
of PAKEs and IBKEs with different cryptographic assumptions and round
complexities, and perform microbenchmarks on the resulting protocols. In
particular, we instantiate the first post-quantum, identity-concealing iPAKE. For
fair comparison, we also instantiate CHIP with the same underlying primitives
where applicable. All our primitives are chosen to meet 128-bit security.

4.1 Choosing Primitives

In this section we list the PAKEs, IBKEs, and other primitives we chose for
experimentation. For hashing, message authentication, and key derivation we
use the Blake2b [ANWW13], HMAC [BCK96], and HKDF [Kra10] functions, re-
spectively. For SIM*-AC-CCA-secure encryption, we use the encrypt-then-MAC
construction described in Section 2.5 with the ChaCha20 stream cipher [Ber08]
and the HMAC-Blake2b MAC. For simple Diffie-Hellman key agreement, we
use the X25519 key-exchange protocol [Ber06]. For any protocol requiring
prime-order group operations, we use the Ristretto255 group [VGH+23].

4.1.1 PAKEs

We now describe the PAKEs we used to instantiate LATKE and CHIP.

Cpace. For our pre-quantum PAKE, we use CPace [HL19, AHH21], a one-round
Diffie-Hellman-based construction. We also implemented and benchmarked KC-
SPAKE2 [Sho20], but found it had higher communication cost, higher round
complexity, and worse runtime efficiency. Thus, we omit KC-SPAKE2 entirely
from our analysis.

Cake. For our post-quantum PAKE, we use CAKE [BCP+23], a three-round
generic construction which can be instantiated from any fuzzy, key-anonymous
IND-CPA-secure KEM and any keyed permutation (standing in for an ideal
cipher). For the keyed permutation, we use Kravatte, an instantiation of the
Farfalle wide block cipher over the Keccak permutation [BDH+17]. For the KEM,
we use Saber (Lightsaber when using the 128-bit security parameters) [DKRV18],9

whose ciphertexts and public keys pack perfectly into bytes, and so is compatible
with CAKE with a wide-block cipher-based permutation.

4.1.2 IBKE

We now describe the IBKEs we used to instantiate LATKE and CHIP. We remark
that we benefit greatly from the generality of Theorem 1. The protocols used
below are proven in the id-CK, CK, eCK, and CKHMQV models, respectively.

9Saber is very similar to Kyber [BDK+18] in construction, with the only essential differences
being use of a power-of-two modulus rather than a prime modulus, and reliance on the Module
Learning with Rounding (MLWR) problem rather than Module Learning with Errors (MLWE).
Their similarity allows CAKE’s required fuzziness and key-anonymity properties proven about
Kyber in [BCP+23, Lemma 2] to transfer to Saber.

24

Fg(C). For more direct comparison with CHIP, we use the same Fiore-Gennaro
IBKE that CHIP uses [FG10]. However, the IBKE only provides weak forward
secrecy. To make it usable for LATKE, we add key confirmation to both sides
using a MAC, as described in Section 3.3.2. We call the key confirmation variant
FgC.

IdSigmaR(Ed25519/Dilithium2). For identity-concealing and post-quantum
security, we instantiate LATKE with the SIGMA-R responder-concealing proto-
col, due to Krawczyk [Kra03]. This is the only post-specified peer AKE we test.
We apply the modification described by Peikert [Pei14] to make the protocol
use a generic IND-CPA-secure KEM, rather than Diffie-Hellman. Finally, we
apply our AKE-to-IBKE transform to the protocol, while preserving responder
concealment. We illustrate the protocol in full in Figure 6. SIGMA-R and the
IBKE transform both require signatures, so we benchmark with respect to the
Ed25519 [BDL+12] and Dilithium [BDK+] signature schemes.10

IdSigDh. We also instantiate LATKE with the one-round AKE due to Bergsma
et al. [BJS15], which is, at its core, signed Diffie-Hellman. We apply the same
AKE-to-IBKE transform, using Ed25519 signatures, to this protocol.

HmqvC. Finally, we instantiate LATKE with the HMQV-C protocol (i.e., HMQV
with key confirmation), described by Krawczyk [Kra05]. We apply the same
transformation, also using Ed25519 signatures.

4.2 Experimental setup

We now describe the hardware, software, and methodology of our benchmarks.

Hardware. Since the intended use case for iPAKE is in mesh networking
protocols, we chose to conduct benchmarks on a commodity WiFi router. The
router, a Linksys E8450 AX3200, has a 64-bit ARM Cortex-A53 CPU (late
2012), and runs OpenWrt [ope] snapshot r17758-b118efa0d2 (late 2021).

Software. All benchmarks were written in Rust, in a total of 2.9kloc.11 We used
the Criterion benchmarking framework to measure performance, and disabled
SHA2 hardware acceleration. SIMD is not supported on the target chipset, and
we did not use any other form of parallel execution.

Methodology. For each combination of CHIP / LATKE with PAKE and IBKE,
we measured online runtime, i.e., how long it takes to run the online portion of the
protocol from beginning to end, ignoring any communication costs. We separately
measured communication costs. To have a fair comparison of the included pre-
and post-specified peer protocols, we exclude the communication costs that come
from sending identifier strings (this is at most 64B per protocol execution). We
also measure setup runtime, i.e., the time it takes to run StorePwdFile, which is
a one-time offline cost per device. To facilitate comparison between schemes, we

10There is good reason to consider using a pre-quantum signature scheme in an otherwise
post-quantum protocol. The store now, decrypt later threat model only applies to encryption
that may be broken in the future, not authentication. Thus, it suffices to use pre-quantum
signatures until a cryptographically relevant quantum computer is imminent.

11Code is available at https://github.com/rozbb/latke-ipake

25

https://github.com/rozbb/latke-ipake

StorePwdFile(pw, id)

1 : (mpk,msk) := SigKg(1λ;H0(pw))

2 : (upk, usk)← SigKg(1λ)

3 : σ ← Signmsk(upk∥id)
4 : cert := (upk, id, σ)

5 : pwfile := (mpk, cert, usk)

6 : return pwfile

Alice(pwfileA, sid, ssid) Bob(pwfileB , sid, ssid)

. Begin CAKE over mpk .

(epk, esk)← KemKg(1λ)

ẽpk← Empk∥sid∥ssid(epk) ẽpk

epk := Dmpk∥sid∥ssid(ẽpk)

(ek,K)← Encap(epk)

ẽk ẽk := Empk∥sid∥ssid(ek)

ek := Dmpk∥sid∥ssid(ẽk)

K := Decapesk(ek)

. Begin SIGMA-R, encrypted with K .

nonceA ← {0, 1}λ nonceB ← {0, 1}λ

(epk, esk)← KemKg(1λ)

EUEK

epk nonceA

ek nonceB (ek, ss)← Encap(epk)

ss := Decapesk(ek)

(K′,K(e),K(m)) := KDF(ss) (K′,K(e),K(m)) := KDF(ss)

σA ← SignuskA(0∥nonceB∥sid∥ssid σB ← SignuskB (1∥nonceA∥sid∥ssid
∥epk∥ek∥certA) ∥ek∥epk∥certB)

τA := MacK(m)(0∥sid∥ssid∥idA) τB := MacK(m)(1∥sid∥ssid∥idA)

cA := EncK(e)(certA∥σA∥τA) cA cB := EncK(e)(certB∥σB∥τB)

decrypt cA or abort

cB verify certA, σA, τA wrt mpk, upkA,K
(m)

decrypt cB or abort

verify certB , σB , τB wrt mpk, upkB ,K
(m)

K′′ := H1(K
′, tr) K′′ := H1(K

′, tr)

return (idB ,K
′′) or ⊥ on EUE err return (idA,K

′′) or ⊥ on EUE err

Figure 6: LATKEpost instantiated with the CAKE PAKE [BCP+23], and the
SIGMA-R AKE [Kra03, Pei14] with identity certificates (Section 3.3.2). E,D
represents a wide-block cipher.

iPAKE PQ? Hiding? Rounds Comm. Setup Online Online/CHIP
Chip[Cpace,Fg] [CNPR22] x x 2 208B 284µs 5.33ms 1×

Latkepre[Cpace,FgC] x x 4 404B 314µs 5.56ms 1.04×
Latkepre[Cpace,IdHmqvC] x x 4 532B 467µs 5.62ms 1.05×
Latkepre[Cpace,IdSigDh] x x 2 616B 615µs 8.32ms 1.56×

Latkepost[Cake,IdSigmaREd25519] enc. ✓ 6 3.53kB 813µs 5.46ms 1.03×
Latkepost[Cake,IdSigmaRDilithium2] enc.+auth. ✓ 6 15.5kB 2.55ms 10.1ms 1.89×

Table 1: Performance characteristics of CHIP and LATKE, instantiated with
varying IBKEs and PAKEs. Reported online latencies are for the full protocol,
excluding communication times.

do not use any hard password hashing functions in StorePwdFile (e.g., Argon2
or PBKDF2), though any realistic implementation must use one.

We report the medians of the recorded latencies. Across all benchmarks,
then maximum observed relative standard error of the median was 0.5%.

4.3 Discussion

We show the results of our benchmarks in Table 1.
As expected, LATKEpre with FgC performs closely to CHIP with Fg, both in

setup and online time. The additional communication overhead of 196B can be
attributed to the additional key confirmation information that CHIP does not
require, plus the ciphertext expansion due to EUE.

The HmqvC instantiation of LATKE performs similarly well, albeit with a
slightly higher setup time and communication cost. The round-optimal instanti-
ation with IdSigDh performs noticeably worse due to its reliance on signatures
for authentication, rather than the implicit authentication of FgC and HmqvC.

The IdSigmaREd25519 post-quantum encryption is surprisingly close to CHIP
in online runtime, albeit with nearly 17× the communication cost. And, as
expected, IdSigmaRDilithium2 post-quantum encryption and authentication
instantiation performed the worst across the board, with over 74× the com-
munication cost compared to CHIP, but surprisingly only 1.89× the online
runtime.

As a possible extension, we also measured an optimization whereby every user
saves the certificate of the other party. In future exchanges, the user does not
have to perform a signature verification. This saves 822µs on average, making
Latkepre[Cpace,IdHmqvC] and Latkepost[Cake,IdSigmaREd25519] faster than
Chip[Cpace,Fg] on every execution after the first (again, ignoring communica-
tion costs).

Finally, we note there are still performance gains to be had for the post-
quantum SIGMA-R instantiation. The reason we use Saber for IBKE is simply
for convenience in testing, since it’s already used in CAKE. But there are post-
quantum KEMs faster than Saber, such NTTRU [LS19] and Kyber [BDK+18].

27

5 Future work

Post-quantum siPAKE. Recall the CRISP protocol is a strong iPAKE
(siPAKE), meaning that it is robust to precomputation attacks. In CHIP and
LATKE, an adversary who precomputes a table of mpk values from various
password guesses can use it to speed up a brute-force attack, should they ever
retrieve an mpk from a user device. The CRISP construction uses algebraic
techniques which rely on bilinear pairings in order to locally rerandomize its pwfile
without breaking authenticity. It is not immediately clear if these properties
can be obtained generically with an AKE and PAKE, nor if there exists a
post-quantum analogue to the local rerandomization and pairing steps.

In addition, we reiterate the call for future work by the authors of CHIP/CRISP,
that it would be useful to find a local rerandomization step that produces a
problem for an attacker with tweakable hardness. Currently, CRISP forces the
attacker to compute 1 pairing per guess—on the order of 1ms—whereas an
OPRF-based strong construction like OPAQUE force an attacker to compute a
hard hash per guess—on the order of 100ms.

Hybrid iPAKE. We have described LATKE using entirely post-quantum
and entirely pre-quantum primitives, but the common path taken recently by
standardization bodies is to provide hybrid schemes, which combine two schemes
and enjoy the security of the harder of the two, even if we don’t yet know which
one that is. Since there already exist hybrid IBKEs with the properties necessary
for LATKE, all that remains to build a hybrid iPAKE is to find a hybrid PAKE.

To the authors’ knowledge, there is no known hybrid PAKE, let alone a
generic method for creating one. Consider the concatenation transform, used in
KEMs, whereby two KEMs are hybridized by simply running them in parallel,
concatenating the final shared secrets, and hashing the concatenation. If the
PAKEs rely on a computational indistinguishability assumption for passive
security, as CAKE does (specifically, LWE for fuzziness and key anonymity),
then the hybrid PAKE’s passive security is only as secure as the least secure of
the two underlying PAKEs.

Round-optimal post-quantum LATKE. As demonstrated in Section 4,
pre-quantum LATKE can be achieved using only 2 rounds of communication,
though this was only shown using a pre-quantum PAKE and IBKE. It remains
an open question whether the lower bound can be achieved using post-quantum
building blocks.

One-round PAKEs from isogeny assumptions are known [AEK+22, IY23],
but they are only proved secure in (an extension of) the game-based model of
Bellare, Pointcheval, and Rogaway [BPR00]. It is not immediately clear if this
is sufficient for usage in LATKE, or if they can be proven to UC-realize FPAKE.

One-round post-quantum IBKEs are also difficult to instantiate. We can
consider just AKE in our round complexity analysis, since our AKE-to-IBKE
transform does not add rounds. Note a one-round AKE is equivalently a non-
interactive key exchange (NIKE), since we can simply make the first round an
exchange of the parties’ public keys.

28

The only post-quantum AKE considered in Section 4 is SIGMA-R [Kra03],
which has four rounds of communication. Schemes with two rounds are well
known [BCNS15, ADPS16], but there are few schemes with just one round
of communication. The CSIDH NIKE [CLM+18], based on an isogeny graph
walk assumption, appears to be the only plausibly efficient protocol in this
space. The only proposed lattice-based NIKE, Swoosh [GdKQ+23], requires
large lattice dimensions (hence large communication costs) and its actively secure
form requires each party to compute a non-interactive zero-knowledge proof
(which also must be post-quantum) for every key exchange.

Finally, we again reiterate the call for future work by the CHIP/CRISP
authors, that it would be useful to find a one-round iPAKE, or else prove that
one cannot be constructed.

6 Acknowledgements

Many thanks to Mark Schultz for inspiring conversations. Thanks to Levi Schuck,
Greg Rubin, Sanketh Menda, Doruk Gür, Cas Cremers, Shahar Paz, and Julia
Hesse for providing feedback and answering questions.

References

[ADPS16] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe.
Post-quantum key exchange - A new hope. In Thorsten Holz and
Stefan Savage, editors, USENIX Security 2016, pages 327–343.
USENIX Association, August 2016.

[AEK+22] Michel Abdalla, Thorsten Eisenhofer, Eike Kiltz, Sabrina Kun-
zweiler, and Doreen Riepel. Password-authenticated key exchange
from group actions. In Dodis and Shrimpton [DS22], pages 699–728.
doi:10.1007/978-3-031-15979-4_24.

[AHH21] Michel Abdalla, Björn Haase, and Julia Hesse. Security anal-
ysis of CPace. In Mehdi Tibouchi and Huaxiong Wang, edi-
tors, ASIACRYPT 2021, Part IV, volume 13093 of LNCS, pages
711–741. Springer, Heidelberg, December 2021. doi:10.1007/

978-3-030-92068-5_24.

[All22a] Connectivity Standards Alliance. Matter Specification v1.0, Septem-
ber 2022. URL: https://csa-iot.org/wp-content/uploads/

2022/11/22-27349-001_Matter-1.0-Core-Specification.pdf.

[All22b] The Wifi Alliance. WPA3 Specification v3.1. 2022. URL: https:
//www.wi-fi.org/system/files/WPA3%20Specification%20v3.

1.pdf.

29

https://doi.org/10.1007/978-3-031-15979-4_24
https://doi.org/10.1007/978-3-030-92068-5_24
https://doi.org/10.1007/978-3-030-92068-5_24
https://csa-iot.org/wp-content/uploads/2022/11/22-27349-001_Matter-1.0-Core-Specification.pdf
https://csa-iot.org/wp-content/uploads/2022/11/22-27349-001_Matter-1.0-Core-Specification.pdf
https://www.wi-fi.org/system/files/WPA3%20Specification%20v3.1.pdf
https://www.wi-fi.org/system/files/WPA3%20Specification%20v3.1.pdf
https://www.wi-fi.org/system/files/WPA3%20Specification%20v3.1.pdf

[ANWW13] Jean-Philippe Aumasson, Samuel Neves, Zooko Wilcox-O’Hearn,
and Christian Winnerlein. BLAKE2: Simpler, smaller, fast as
MD5. In Michael J. Jacobson Jr., Michael E. Locasto, Payman
Mohassel, and Reihaneh Safavi-Naini, editors, ACNS 13, volume
7954 of LNCS, pages 119–135. Springer, Heidelberg, June 2013.
doi:10.1007/978-3-642-38980-1_8.

[App] Apple. Apple Platform Security, May 2022.
URL: https://help.apple.com/pdf/security/en_US/

apple-platform-security-guide.pdf.

[Bas22] Andrea Basso. Poster: A post-quantum oblivious prf from isogenies.
In Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’22, page 3327–3329, New
York, NY, USA, 2022. Association for Computing Machinery. doi:
10.1145/3548606.3563542.

[Bas23] Andrea Basso. A post-quantum round-optimal oblivious PRF
from isogenies. Cryptology ePrint Archive, Report 2023/225, 2023.
https://eprint.iacr.org/2023/225.

[BCK96] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash
functions for message authentication. In Neal Koblitz, editor,
CRYPTO’96, volume 1109 of LNCS, pages 1–15. Springer, Hei-
delberg, August 1996. doi:10.1007/3-540-68697-5_1.

[BCNS15] Joppe W. Bos, Craig Costello, Michael Naehrig, and Douglas Stebila.
Post-quantum key exchange for the TLS protocol from the ring
learning with errors problem. In 2015 IEEE Symposium on Security
and Privacy, pages 553–570. IEEE Computer Society Press, May
2015. doi:10.1109/SP.2015.40.

[BCP+23] Hugo Beguinet, Céline Chevalier, David Pointcheval, Thomas Ri-
cosset, and Mélissa Rossi. Get a cake: Generic transformations
from key encaspulation mechanisms to password authenticated key
exchanges. In Mehdi Tibouchi and XiaoFeng Wang, editors, Applied
Cryptography and Network Security, pages 516–538, Cham, 2023.
Springer Nature Switzerland.

[BDF+11] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Chris-
tian Schaffner, and Mark Zhandry. Random oracles in a quan-
tum world. In Dong Hoon Lee and Xiaoyun Wang, editors, ASI-
ACRYPT 2011, volume 7073 of LNCS, pages 41–69. Springer, Hei-
delberg, December 2011. doi:10.1007/978-3-642-25385-0_3.

[BDH+17] Guido Bertoni, Joan Daemen, Seth Hoffert, Michaël Peeters,
Gilles Van Assche, and Ronny Van Keer. Farfalle: parallel
permutation-based cryptography. IACR Trans. Symm. Cryptol.,
2017(4):1–38, 2017. doi:10.13154/tosc.v2017.i4.1-38.

30

https://doi.org/10.1007/978-3-642-38980-1_8
https://help.apple.com/pdf/security/en_US/apple-platform-security-guide.pdf
https://help.apple.com/pdf/security/en_US/apple-platform-security-guide.pdf
https://doi.org/10.1145/3548606.3563542
https://doi.org/10.1145/3548606.3563542
https://eprint.iacr.org/2023/225
https://doi.org/10.1007/3-540-68697-5_1
https://doi.org/10.1109/SP.2015.40
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.13154/tosc.v2017.i4.1-38

[BDK+] Shi Bai, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim
Lyubashevsky, Peter Schwabe, Gregor Seiler, and Damien
Stehlé. CRYSTALS-Dilithium. URL: https://pq-crystals.org/
dilithium/data/dilithium-specification-round3-20210208.

pdf.

[BDK15] Alex Biryukov, Daniel Dinu, and Dmitry Khovratovich. Argon2: the
memory-hard function for password hashing and other applications.
2015.

[BDK+18] Joppe Bos, Leo Ducas, Eike Kiltz, T Lepoint, Vadim Lyubashevsky,
John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehle.
Crystals - kyber: A cca-secure module-lattice-based kem. In 2018
IEEE European Symposium on Security and Privacy (EuroS&P),
pages 353–367, 2018. doi:10.1109/EuroSP.2018.00032.

[BDL+12] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and
Bo-Yin Yang. High-speed high-security signatures. Journal of
Cryptographic Engineering, 2(2):77–89, September 2012. doi:10.

1007/s13389-012-0027-1.

[Ber06] Daniel J. Bernstein. Curve25519: New Diffie-Hellman speed records.
In Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin,
editors, PKC 2006, volume 3958 of LNCS, pages 207–228. Springer,
Heidelberg, April 2006. doi:10.1007/11745853_14.

[Ber08] Daniel J. Bernstein. The ChaCha family of stream ciphers, January
2008. URL: https://cr.yp.to/chacha.html.

[BJS15] Florian Bergsma, Tibor Jager, and Jörg Schwenk. One-round key
exchange with strong security: An efficient and generic construction
in the standard model. In Jonathan Katz, editor, PKC 2015, volume
9020 of LNCS, pages 477–494. Springer, Heidelberg, March / April
2015. doi:10.1007/978-3-662-46447-2_21.

[BKM+21] Andrea Basso, Péter Kutas, Simon-Philipp Merz, Christophe
Petit, and Antonio Sanso. Cryptanalysis of an oblivious PRF
from supersingular isogenies. In Mehdi Tibouchi and Huax-
iong Wang, editors, ASIACRYPT 2021, Part I, volume 13090
of LNCS, pages 160–184. Springer, Heidelberg, December 2021.
doi:10.1007/978-3-030-92062-3_6.

[BKW20] Dan Boneh, Dmitry Kogan, and Katharine Woo. Oblivious pseu-
dorandom functions from isogenies. In Shiho Moriai and Huax-
iong Wang, editors, ASIACRYPT 2020, Part II, volume 12492
of LNCS, pages 520–550. Springer, Heidelberg, December 2020.
doi:10.1007/978-3-030-64834-3_18.

31

https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://doi.org/10.1109/EuroSP.2018.00032
https://doi.org/10.1007/s13389-012-0027-1
https://doi.org/10.1007/s13389-012-0027-1
https://doi.org/10.1007/11745853_14
https://cr.yp.to/chacha.html
https://doi.org/10.1007/978-3-662-46447-2_21
https://doi.org/10.1007/978-3-030-92062-3_6
https://doi.org/10.1007/978-3-030-64834-3_18

[BLR04] Boaz Barak, Yehuda Lindell, and Tal Rabin. Protocol initializa-
tion for the framework of universal composability. Cryptology
ePrint Archive, Report 2004/006, 2004. https://eprint.iacr.

org/2004/006.

[BM92] Steven M. Bellovin and Michael Merritt. Encrypted key exchange:
Password-based protocols secure against dictionary attacks. In 1992
IEEE Symposium on Security and Privacy, pages 72–84. IEEE Com-
puter Society Press, May 1992. doi:10.1109/RISP.1992.213269.

[BN11] Colin Boyd and Juan González Nieto. On forward secrecy in one-
round key exchange. In Liqun Chen, editor, Cryptography and
Coding, pages 451–468, Berlin, Heidelberg, 2011. Springer Berlin
Heidelberg.

[Bon03] Dan Boneh, editor. CRYPTO 2003, volume 2729 of LNCS. Springer,
Heidelberg, August 2003.

[BPR00] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Au-
thenticated key exchange secure against dictionary attacks. In
Bart Preneel, editor, EUROCRYPT 2000, volume 1807 of LNCS,
pages 139–155. Springer, Heidelberg, May 2000. doi:10.1007/

3-540-45539-6_11.

[Can01] Ran Canetti. Universally composable security: A new paradigm
for cryptographic protocols. In 42nd FOCS, pages 136–145. IEEE
Computer Society Press, October 2001. doi:10.1109/SFCS.2001.
959888.

[CC07a] Zhaohui Cheng and Liqun Chen. On security proof of mccul-
laghbarreto’s key agreement protocol and its variants. Interna-
tional Journal of Security and Networks, 2(3-4):251–259, 2007.
doi:10.1504/IJSN.2007.013178.

[CC07b] Sherman S. M. Chow and Kim-Kwang Raymond Choo. Strongly-
secure identity-based key agreement and anonymous extension. In
Juan A. Garay, Arjen K. Lenstra, Masahiro Mambo, and René
Peralta, editors, Information Security, pages 203–220, Berlin, Hei-
delberg, 2007. Springer Berlin Heidelberg.

[CJSV22] Ran Canetti, Palak Jain, Marika Swanberg, and Mayank
Varia. Universally composable end-to-end secure messaging.
In Dodis and Shrimpton [DS22], pages 3–33. doi:10.1007/

978-3-031-15979-4_1.

[CK01] Ran Canetti and Hugo Krawczyk. Analysis of key-exchange proto-
cols and their use for building secure channels. In Birgit Pfitzmann,
editor, EUROCRYPT 2001, volume 2045 of LNCS, pages 453–474.
Springer, Heidelberg, May 2001. doi:10.1007/3-540-44987-6_

28.

32

https://eprint.iacr.org/2004/006
https://eprint.iacr.org/2004/006
https://doi.org/10.1109/RISP.1992.213269
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1504/IJSN.2007.013178
https://doi.org/10.1007/978-3-031-15979-4_1
https://doi.org/10.1007/978-3-031-15979-4_1
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/3-540-44987-6_28

[CK02a] Ran Canetti and Hugo Krawczyk. Security analysis of IKE’s
signature-based key-exchange protocol. In Moti Yung, editor,
CRYPTO 2002, volume 2442 of LNCS, pages 143–161. Springer,
Heidelberg, August 2002. https://eprint.iacr.org/2002/120/.
doi:10.1007/3-540-45708-9_10.

[CK02b] Ran Canetti and Hugo Krawczyk. Universally composable notions
of key exchange and secure channels. In Lars R. Knudsen, editor,
EUROCRYPT 2002, volume 2332 of LNCS, pages 337–351. Springer,
Heidelberg, April / May 2002. doi:10.1007/3-540-46035-7_22.

[CLM+18] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny,
and Joost Renes. CSIDH: An efficient post-quantum commuta-
tive group action. In Thomas Peyrin and Steven Galbraith, edi-
tors, ASIACRYPT 2018, Part III, volume 11274 of LNCS, pages
395–427. Springer, Heidelberg, December 2018. doi:10.1007/

978-3-030-03332-3_15.

[CNPR22] Cas Cremers, Moni Naor, Shahar Paz, and Eyal Ronen. CHIP
and CRISP: Protecting all parties against compromise through
identity-binding PAKEs. In Dodis and Shrimpton [DS22], pages
668–698. doi:10.1007/978-3-031-15979-4_23.

[Cre11] Cas Cremers. Examining indistinguishability-based security models
for key exchange protocols: the case of CK, CK-HMQV, and eCK.
In Bruce S. N. Cheung, Lucas Chi Kwong Hui, Ravi S. Sandhu,
and Duncan S. Wong, editors, ASIACCS 11, pages 80–91. ACM
Press, March 2011.

[DFG+23] Gareth T. Davies, Sebastian H. Faller, Kai Gellert, Tobias Hand-
irk, Julia Hesse, Máté Horváth, and Tibor Jager. Security
analysis of the WhatsApp end-to-end encrypted backup proto-
col. In Handschuh and Lysyanskaya [HL23], pages 330–361.
doi:10.1007/978-3-031-38551-3_11.

[DKRV18] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy,
and Frederik Vercauteren. Saber: Module-LWR based key
exchange, CPA-secure encryption and CCA-secure KEM. In
Antoine Joux, Abderrahmane Nitaj, and Tajjeeddine Rachidi,
editors, AFRICACRYPT 18, volume 10831 of LNCS, pages
282–305. Springer, Heidelberg, May 2018. doi:10.1007/

978-3-319-89339-6_16.

[Dod23] Lucas Dodgson. Post-Quantum Building Blocks for Secure Compu-
tation – the Legendre OPRF, September 2023. URL: https://ethz.
ch/content/dam/ethz/special-interest/infk/inst-infsec/

appliedcrypto/education/theses/Master_Thesis_Post_

Quantum_Building_blocks_for_secure_computation.pdf.

33

https://eprint.iacr.org/2002/120/
https://doi.org/10.1007/3-540-45708-9_10
https://doi.org/10.1007/3-540-46035-7_22
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-031-15979-4_23
https://doi.org/10.1007/978-3-031-38551-3_11
https://doi.org/10.1007/978-3-319-89339-6_16
https://doi.org/10.1007/978-3-319-89339-6_16
https://ethz.ch/content/dam/ethz/special-interest/infk/inst-infsec/appliedcrypto/education/theses/Master_Thesis_Post_Quantum_Building_blocks_for_secure_computation.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/inst-infsec/appliedcrypto/education/theses/Master_Thesis_Post_Quantum_Building_blocks_for_secure_computation.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/inst-infsec/appliedcrypto/education/theses/Master_Thesis_Post_Quantum_Building_blocks_for_secure_computation.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/inst-infsec/appliedcrypto/education/theses/Master_Thesis_Post_Quantum_Building_blocks_for_secure_computation.pdf

[DS22] Yevgeniy Dodis and Thomas Shrimpton, editors. CRYPTO 2022,
Part II, volume 13508 of LNCS. Springer, Heidelberg, August 2022.

[FG10] Dario Fiore and Rosario Gennaro. Identity-Based Key Exchange
Protocols without Pairings, pages 42–77. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2010. doi:10.1007/978-3-642-17499-5_3.

[Fil18] Rick Fillion. Secure Remote Password (SRP): How 1Password uses
it, 2018. Section: 1Password. URL: https://blog.1password.
com/developers-how-we-use-srp-and-you-can-too/.

[FOO23] Sebastian Faller, Astrid Ottenhues, and Johannes Ottenhues. Com-
posable oblivious pseudo-random functions via garbled circuits. In
Abdelrahaman Aly and Mehdi Tibouchi, editors, Progress in Cryp-
tology – LATINCRYPT 2023, pages 249–270, Cham, 2023. Springer
Nature Switzerland.

[FSXY12] Atsushi Fujioka, Koutarou Suzuki, Keita Xagawa, and Kazuki
Yoneyama. Strongly secure authenticated key exchange from fac-
toring, codes, and lattices. In Marc Fischlin, Johannes Buch-
mann, and Mark Manulis, editors, PKC 2012, volume 7293 of
LNCS, pages 467–484. Springer, Heidelberg, May 2012. doi:

10.1007/978-3-642-30057-8_28.

[GdKQ+23] Phillip Gajland, Bor de Kock, Miguel Quaresma, Giulio Malavolta,
and Peter Schwabe. Swoosh: Practical lattice-based non-interactive
key exchange. Cryptology ePrint Archive, Report 2023/271, 2023.
https://eprint.iacr.org/2023/271.

[GGJJ23] Kai Gellert, Kristian Gjøsteen, H̊akon Jacobsen, and Tibor Jager.
On optimal tightness for key exchange with full forward secrecy via
key confirmation. In Handschuh and Lysyanskaya [HL23], pages
297–329. doi:10.1007/978-3-031-38551-3_10.

[GMR06] Craig Gentry, Philip MacKenzie, and Zulfikar Ramzan. A method
for making password-based key exchange resilient to server com-
promise. In Cynthia Dwork, editor, CRYPTO 2006, volume
4117 of LNCS, pages 142–159. Springer, Heidelberg, August 2006.
doi:10.1007/11818175_9.

[Gon93] Li Gong. Lower bounds on messages and rounds for network
authentication protocols. In Dorothy E. Denning, Raymond
Pyle, Ravi Ganesan, Ravi S. Sandhu, and Victoria Ashby, edi-
tors, ACM CCS 93, pages 26–37. ACM Press, November 1993.
doi:10.1145/168588.168592.

[Gün90] Christoph G. Günther. An identity-based key-exchange protocol.
In Jean-Jacques Quisquater and Joos Vandewalle, editors, EURO-
CRYPT’89, volume 434 of LNCS, pages 29–37. Springer, Heidelberg,
April 1990. doi:10.1007/3-540-46885-4_5.

34

https://doi.org/10.1007/978-3-642-17499-5_3
https://blog.1password.com/developers-how-we-use-srp-and-you-can-too/
https://blog.1password.com/developers-how-we-use-srp-and-you-can-too/
https://doi.org/10.1007/978-3-642-30057-8_28
https://doi.org/10.1007/978-3-642-30057-8_28
https://eprint.iacr.org/2023/271
https://doi.org/10.1007/978-3-031-38551-3_10
https://doi.org/10.1007/11818175_9
https://doi.org/10.1145/168588.168592
https://doi.org/10.1007/3-540-46885-4_5

[Ham15] Mike Hamburg. [curves] SPAKE2 and SPAKE2 Elligator Edition,
2015. URL: https://moderncrypto.org/mail-archive/curves/
2015/000424.html.

[Har08] Dan Harkins. Simultaneous authentication of equals: A secure,
password-based key exchange for mesh networks. In 2008 Sec-
ond International Conference on Sensor Technologies and Appli-
cations (sensorcomm 2008), pages 839–844, 2008. doi:10.1109/

SENSORCOMM.2008.131.

[HC09] Hai Huang and Zhenfu Cao. An ID-based authenticated key ex-
change protocol based on bilinear Diffie-Hellman problem. In Wan-
qing Li, Willy Susilo, Udaya Kiran Tupakula, Reihaneh Safavi-Naini,
and Vijay Varadharajan, editors, ASIACCS 09, pages 333–342.
ACM Press, March 2009.

[Hes20] Julia Hesse. Separating symmetric and asymmetric password-
authenticated key exchange. In Clemente Galdi and Vladimir
Kolesnikov, editors, SCN 20, volume 12238 of LNCS, pages
579–599. Springer, Heidelberg, September 2020. doi:10.1007/

978-3-030-57990-6_29.

[HL19] Björn Haase and Benôıt Labrique. AuCPace: Efficient verifier-based
PAKE protocol tailored for the IIoT. IACR TCHES, 2019(2):1–
48, 2019. https://tches.iacr.org/index.php/TCHES/article/
view/7384. doi:10.13154/tches.v2019.i2.1-48.

[HL23] Helena Handschuh and Anna Lysyanskaya, editors. CRYPTO 2023,
Part IV, volume 14084 of LNCS. Springer, Heidelberg, August 2023.

[Hv22] Feng Hao and Paul C. van Oorschot. SoK: Password-authenticated
key exchange - theory, practice, standardization and real-world
lessons. In Yuji Suga, Kouichi Sakurai, Xuhua Ding, and Kazue
Sako, editors, ASIACCS 22, pages 697–711. ACM Press, May / June
2022. doi:10.1145/3488932.3523256.

[IY23] Ren Ishibashi and Kazuki Yoneyama. Compact password au-
thenticated key exchange from group actions. In Leonie Simp-
son and Mir Ali Rezazadeh Baee, editors, ACISP 23, volume
13915 of LNCS, pages 220–247. Springer, Heidelberg, July 2023.
doi:10.1007/978-3-031-35486-1_11.

[Jab97] David P. Jablon. Extended password key exchange protocols im-
mune to dictionary attacks. In 6th IEEE International Workshops
on Enabling Technologies: Infrastructure for Collaborative Enter-
prises (WETICE 1997), pages 248–255, Cambridge, MA, USA,
June 18–20, 1997. IEEE Computer Society.

35

https://moderncrypto.org/mail-archive/curves/2015/000424.html
https://moderncrypto.org/mail-archive/curves/2015/000424.html
https://doi.org/10.1109/SENSORCOMM.2008.131
https://doi.org/10.1109/SENSORCOMM.2008.131
https://doi.org/10.1007/978-3-030-57990-6_29
https://doi.org/10.1007/978-3-030-57990-6_29
https://tches.iacr.org/index.php/TCHES/article/view/7384
https://tches.iacr.org/index.php/TCHES/article/view/7384
https://doi.org/10.13154/tches.v2019.i2.1-48
https://doi.org/10.1145/3488932.3523256
https://doi.org/10.1007/978-3-031-35486-1_11

[Jae23] Joseph Jaeger. Let attackers program ideal models: Modularity
and composability for adaptive compromise. In Carmit Hazay
and Martijn Stam, editors, EUROCRYPT 2023, Part III, volume
14006 of LNCS, pages 101–131. Springer, Heidelberg, April 2023.
doi:10.1007/978-3-031-30620-4_4.

[JKX18] Stanislaw Jarecki, Hugo Krawczyk, and Jiayu Xu. OPAQUE:
An asymmetric PAKE protocol secure against pre-computation
attacks. In Jesper Buus Nielsen and Vincent Rijmen, editors,
EUROCRYPT 2018, Part III, volume 10822 of LNCS, pages
456–486. Springer, Heidelberg, April / May 2018. doi:10.1007/

978-3-319-78372-7_15.

[JT20] Joseph Jaeger and Nirvan Tyagi. Handling adaptive compromise for
practical encryption schemes. In Daniele Micciancio and Thomas
Ristenpart, editors, CRYPTO 2020, Part I, volume 12170 of LNCS,
pages 3–32. Springer, Heidelberg, August 2020. doi:10.1007/

978-3-030-56784-2_1.

[KN09] Eike Kiltz and Gregory Neven. Identity-Based Signatures. 2009.

[Kra03] Hugo Krawczyk. SIGMA: The “SIGn-and-MAc” approach
to authenticated Diffie-Hellman and its use in the IKE pro-
tocols. In Boneh [Bon03], pages 400–425. doi:10.1007/

978-3-540-45146-4_24.

[Kra05] Hugo Krawczyk. HMQV: A high-performance secure Diffie-Hellman
protocol. In Victor Shoup, editor, CRYPTO 2005, volume 3621
of LNCS, pages 546–566. Springer, Heidelberg, August 2005. doi:
10.1007/11535218_33.

[Kra10] Hugo Krawczyk. Cryptographic extraction and key derivation:
The HKDF scheme. In Tal Rabin, editor, CRYPTO 2010, volume
6223 of LNCS, pages 631–648. Springer, Heidelberg, August 2010.
doi:10.1007/978-3-642-14623-7_34.

[LLHG23] Xiangyu Liu, Shengli Liu, Shuai Han, and Dawu Gu. EKE meets
tight security in the Universally Composable framework. In Alexan-
dra Boldyreva and Vladimir Kolesnikov, editors, PKC 2023, Part I,
volume 13940 of LNCS, pages 685–713. Springer, Heidelberg, May
2023. doi:10.1007/978-3-031-31368-4_24.

[LLM07] Brian A. LaMacchia, Kristin Lauter, and Anton Mityagin. Stronger
security of authenticated key exchange. In Willy Susilo, Joseph K.
Liu, and Yi Mu, editors, ProvSec 2007, volume 4784 of LNCS, pages
1–16. Springer, Heidelberg, November 2007.

[Lou21] Karim Lounis. Cut it: Deauthentication attack on bluetooth. In
2021 14th International Conference on Security of Information

36

https://doi.org/10.1007/978-3-031-30620-4_4
https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/978-3-030-56784-2_1
https://doi.org/10.1007/978-3-030-56784-2_1
https://doi.org/10.1007/978-3-540-45146-4_24
https://doi.org/10.1007/978-3-540-45146-4_24
https://doi.org/10.1007/11535218_33
https://doi.org/10.1007/11535218_33
https://doi.org/10.1007/978-3-642-14623-7_34
https://doi.org/10.1007/978-3-031-31368-4_24

and Networks (SIN), volume 1, pages 1–8, 2021. doi:10.1109/

SIN54109.2021.9699265.

[LS19] Vadim Lyubashevsky and Gregor Seiler. NTTRU: Truly fast
NTRU using NTT. IACR TCHES, 2019(3):180–201, 2019. https:
//tches.iacr.org/index.php/TCHES/article/view/8293. doi:

10.13154/tches.v2019.i3.180-201.

[mag] Magic Wormhole. URL: https://github.com/magic-wormhole/
magic-wormhole.

[Mar16] Moxie Marlinspike. The Double Ratchet Algorithm, 2016. URL:
https://signal.org/docs/specifications/doubleratchet/.

[Oec03] Philippe Oechslin. Making a faster cryptanalytic time-memory
trade-off. In Boneh [Bon03], pages 617–630. doi:10.1007/

978-3-540-45146-4_36.

[Oka88] Eiji Okamoto. Key distribution systems based on identification
information. In Carl Pomerance, editor, CRYPTO’87, volume
293 of LNCS, pages 194–202. Springer, Heidelberg, August 1988.
doi:10.1007/3-540-48184-2_15.

[ope] Welcome to the OpenWrt Project. URL: https://openwrt.org.

[Pau22] Sebastian Paul. On the Transition to Post-Quantum Cryptography
in the Industrial Internet of Things. May 2022.

[Pei14] Chris Peikert. Lattice cryptography for the internet. In Michele
Mosca, editor, Post-Quantum Cryptography - 6th International
Workshop, PQCrypto 2014, pages 197–219. Springer, Heidelberg,
October 2014. doi:10.1007/978-3-319-11659-4_12.

[SE15] Jae Hong Seo and Keita Emura. Revocable hierarchical identity-
based encryption: History-free update, security against insiders,
and short ciphertexts. In Kaisa Nyberg, editor, CT-RSA 2015,
volume 9048 of LNCS, pages 106–123. Springer, Heidelberg, April
2015. doi:10.1007/978-3-319-16715-2_6.

[Shi03] Kyungah Shim. Efficient id-based authenticated key agreement pro-
tocol based on weil pairing. Electronics Letters, 39:653–654(1), April
2003. URL: https://digital-library.theiet.org/content/

journals/10.1049/el_20030448.

[Sho20] Victor Shoup. Security analysis of SPAKE2+. In Rafael Pass and
Krzysztof Pietrzak, editors, Theory of Cryptography, pages 31–60,
Cham, 2020. Springer International Publishing.

37

https://doi.org/10.1109/SIN54109.2021.9699265
https://doi.org/10.1109/SIN54109.2021.9699265
https://tches.iacr.org/index.php/TCHES/article/view/8293
https://tches.iacr.org/index.php/TCHES/article/view/8293
https://doi.org/10.13154/tches.v2019.i3.180-201
https://doi.org/10.13154/tches.v2019.i3.180-201
https://github.com/magic-wormhole/magic-wormhole
https://github.com/magic-wormhole/magic-wormhole
https://signal.org/docs/specifications/doubleratchet/
https://doi.org/10.1007/978-3-540-45146-4_36
https://doi.org/10.1007/978-3-540-45146-4_36
https://doi.org/10.1007/3-540-48184-2_15
https://openwrt.org
https://doi.org/10.1007/978-3-319-11659-4_12
https://doi.org/10.1007/978-3-319-16715-2_6
https://digital-library.theiet.org/content/journals/10.1049/el_20030448
https://digital-library.theiet.org/content/journals/10.1049/el_20030448

[SPT13] Craig A. Shue, Nathanael Paul, and Curtis R. Taylor. From
an IP address to a street address: Using wireless signals to lo-
cate a target. In 7th USENIX Workshop on Offensive Technolo-
gies (WOOT 13), Washington, D.C., August 2013. USENIX As-
sociation. URL: https://www.usenix.org/conference/woot13/
workshop-program/presentation/shue.

[SRV23] Domien Schepers, Aanjhan Ranganathan, and Mathy Vanhoef.
Framing frames: Bypassing Wi-Fi encryption by manipulat-
ing transmit queues. In 32nd USENIX Security Symposium
(USENIX Security 23), pages 53–68, Anaheim, CA, August
2023. USENIX Association. URL: https://www.usenix.org/

conference/usenixsecurity23/presentation/schepers.

[Tho22a] Steve Thomas. bscrypt: A Cache Hard Password Hash, 2022. URL:
https://tobtu.com/files/bsideslv2022.pdf.

[Tho22b] Steve Thomas. Demystifying Key Stretching and
PAKEs. Black Hat 2022, Aug 2022. URL: https:

//www.blackhat.com/us-22/briefings/schedule/

#demystifying-key-stretching-and-pakes-27615.

[Thr15] Thread Group. Thread commissioning, July 2015. URL:
https://www.threadgroup.org/Portals/0/documents/

support/CommissioningWhitePaper_658_2.pdf.

[VGH+23] Henry de Valence, Jack Grigg, Mike Hamburg, Isis Lovecruft, George
Tankersley, and Filippo Valsorda. The ristretto255 and decaf448
Groups. Request for Comments RFC 9496, Internet Engineering
Task Force, December 2023. URL: https://datatracker.ietf.
org/doc/rfc9496.

[Wan13] Yongge Wang. Efficient Identity-Based and Authenticated Key
Agreement Protocol, pages 172–197. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2013. doi:10.1007/978-3-642-35840-1_9.

[wif21] Ieee standard for information technology–telecommunications and
information exchange between systems - local and metropolitan
area networks–specific requirements - part 11: Wireless lan medium
access control (mac) and physical layer (phy) specifications. IEEE
Std 802.11-2020 (Revision of IEEE Std 802.11-2016), pages 1–4379,
2021. doi:10.1109/IEEESTD.2021.9363693.

[You22] Shelanda D. Young. M-23-02 Memo on migrating to post-
quantum cryptography, Nov. 18 2022. Executive Office of
the President, Office of Management and Budget. URL:
https://www.whitehouse.gov/wp-content/uploads/2022/11/

M-23-02-M-Memo-on-Migrating-to-Post-Quantum-Cryptography.

pdf.

38

https://www.usenix.org/conference/woot13/workshop-program/presentation/shue
https://www.usenix.org/conference/woot13/workshop-program/presentation/shue
https://www.usenix.org/conference/usenixsecurity23/presentation/schepers
https://www.usenix.org/conference/usenixsecurity23/presentation/schepers
https://tobtu.com/files/bsideslv2022.pdf
https://www.blackhat.com/us-22/briefings/schedule/#demystifying-key-stretching-and-pakes-27615
https://www.blackhat.com/us-22/briefings/schedule/#demystifying-key-stretching-and-pakes-27615
https://www.blackhat.com/us-22/briefings/schedule/#demystifying-key-stretching-and-pakes-27615
https://www.threadgroup.org/Portals/0/documents/support/CommissioningWhitePaper_658_2.pdf
https://www.threadgroup.org/Portals/0/documents/support/CommissioningWhitePaper_658_2.pdf
https://datatracker.ietf.org/doc/rfc9496
https://datatracker.ietf.org/doc/rfc9496
https://doi.org/10.1007/978-3-642-35840-1_9
https://doi.org/10.1109/IEEESTD.2021.9363693
https://www.whitehouse.gov/wp-content/uploads/2022/11/M-23-02-M-Memo-on-Migrating-to-Post-Quantum-Cryptography.pdf
https://www.whitehouse.gov/wp-content/uploads/2022/11/M-23-02-M-Memo-on-Migrating-to-Post-Quantum-Cryptography.pdf
https://www.whitehouse.gov/wp-content/uploads/2022/11/M-23-02-M-Memo-on-Migrating-to-Post-Quantum-Cryptography.pdf

A Deferred preliminaries

Here we include the preliminaries necessary for our main proof in Appendix B.

A.1 Notation

We say a function f : N → R is negligible in n, denoted f(n) = negl(n),
iff |f(n)| = n−ω(1) or, equivalently, for any c > 0, there is an n0 such that
f(n) > n−c for all n > n0. We say a function f : N → R is polynomial in
n, denoted f(n) = poly(n), iff for some M,d > 0, there is an n0 such that
|f(n)| ≤Mnc for all n > n0.

A.2 Probability

A probability ensemble S is an infinite sequence of probability distributions
S1,S2, . . . , where each Si is over a set Ai ⊂ {0, 1}ℓ(i), where ℓ(n) = poly(n) is
some length function. The statistical distance between two probability distribu-
tions S,S ′ over sets A,A′ is

∆(S,S ′) = 1

2

∑
x∈A∪A′

|Pr[y = x | y ← S]− Pr[y = x | y ← S ′]|.

We say that two probability ensembles S,S ′ are statistically indistinguishable,
denoted S s≈ S ′ iff ∆(Sn,S ′n) = negl(n). We say that two probability ensembles
S,S ′ are computationally indistinguishable, denoted S c≈ S ′, if for any PPT
distinguisher |Pr[D(S) = 0]−Pr[D(S ′) = 0]| is negligible. We say an event X in
some probability ensemble S occurs with overwhelming probability if the event
fails to occur with negligible probability.

A.3 Canetti-Krawczyk model

The authors of [CK02a] present a game-based approach to modeling adaptive
adversaries in an authenticated key agreement protocol in the post-specified peer
setting. The adversary is permitted to activate new sessions between honest
parties, intercept their messages, inject messages, and corrupt them in various
ways. We describe in more detail the post-specified peer CK model. Similar
definitions exist for pre-specified peers, and can be found in [CK01].

A session activated at party Pi (the owner) is denoted by the tuple (Pi, role, s, d),
where role is the role (initiator or responder) of Pi; s is the unique session
identifier; and d is the destination address of the intended peer, i.e., an abstract
identifier that may define a network location or shared address where the in-
tended peer may be found. For brevity, we omit role and d when referring to
a session. At the end of a successful session, the party outputs a public triple
(Pi, s,Pj) where Pj is the (discovered) peer to the session, and a private session
key K. It also erases all its session state, i.e., all the ephemeral data used to
conduct the protocol. A session that has output its peer-key tuple is called
completed. A session that has failed is called aborted and returns ⊥.

39

The model permits the adversary A to query the following oracles regarding
the state of protocol sessions and participating parties.

NewSession(Pi, s, d, role) Creates a new session for party Pi with destination
address d. If role = initiator, then Pi will send an initiating message to
the given address. If s is given, the new session is given ID s. If s = ⊥,
then a fresh ID is generated and returned to the caller.

Send(Pi, s,m) Sends a message m to Pi in session s. Returns the response of
Pi after processing the message according to the protocol.

Corrupt(Pi) Reveals to A the long-term keys of Pi, the session keys of all its
(unexpired) completed sessions, and the state of all its incomplete sessions.

RevealKey(Pi, s) Reveals to A the session key derived by Pi in the completed
session s.

RevealLtk(Pi, s) Reveals to A the long-term keys of Pi.
12

RevealState(Pi, s) Reveals to A the session state of Pi in the given incomplete
session s.

Expire(Pi, s) Expires the completed session at the given party, i.e., erases the
session key of s from Pi’s memory.

Test(Pi, s) Can only be called on a completed, unexpired session. Flips a coin b.
If b = 0, reveals to A the session key of s held by Pi. If b = 1, sends to A
a uniform value from the session key space.

In order to rule out trivial attacks, we must prevent the adversary from
corrupting a session’s peer and using it to win the test session at the owner. We
give the definition of matching session from [CK02a].

Definition (Matching session). Let (Pi, s) be a completed session with public
output (Pi, s,Pj). The session (Pj , s) is called the matching session of (Pi, s) if
either

1. (Pj , s) is not completed, or

2. (Pj , s) is completed and its public output is (Pj , s,Pi).

Definition (Session exposure). A completed session (Pi, s) with public output
(Pi, s,Pj) is exposed if any of the following holds:

1. RevealKey was called on the session or its matching session (if it exists),

2. RevealState was called on the session or its matching session (if it exists),

3. Corrupt or RevealLtk was called on Pi or the owner of its matching session
(if it exists) at any point.

12This oracle is not actually in the CK model. We show our extended model’s equivalence
to the base model in Appendix C

40

We now give the basic notion of security in this model. We will build on this
by adding notions of KCIR and full FS.

Definition (Session key (SK) security). An authenticated key exchange protocol
Π has session key security if the following hold

1. Π is correct, i.e., if two uncorrupted parties complete matching sessions,
then their session keys are equal with overwhelming probability.

2. The advantage of an adversary in distinguishing b = 0 versus b = 1 in an
unexposed Test session is negligible.

Definition (Key compromise impersonation resistance (KCIR)). An adversary
A breaks SK-security with KCIR against an AKE protocol iff it wins the SK-
security game with the following extra capability: A may learn the long-term
key of the owner of the test session at any time (via, e.g., RevealLtk or Corrupt
outside the lifetime of s).

Definition (Forward secrecy (FS)). An adversary A breaks SK-security with FS
against an AKE protocol iff it wins the SK-security game with the following extra
capabilities: (1) A may learn the long-term key of the owner of the test session
after it is expired; (2) similarly, if the test session has a matching session, A
may learn the long term key of the owner of that session after it is expired.

SK-security with KCIR and full FS is the combination of the above three
definitions. Note that the combination of capabilities afforded by KCIR and FS
gives the attacker the novel ability to get the long-term key of the owner of the
test session, expire the session, and call Corrupt on the test session peer.

A.3.1 The id-CK model

The CK model has been extended in prior works to apply to identity-based
authenticated key exchange protocols [SE15, HC09, FSXY12]. The changes to
CK are minimal:

1. Every party is given a unique identifier id, chosen by the adversary. In
protocol outputs and session tuples, idi replaces Pi.

2. At the beginning of the game, the main keypair (mpk,msk) is generated.
mpk is given to the adversary.

3. There an additional oracle, RevealMsk, which reveals to A the value of msk.
The notion of exposure is extended to include: RevealMsk was called at
any point.

Finally, since there is a new type of secret, msk, we extend FS to the id-CK
setting.

Definition (Key generation center forward secrecy (KGC-FS)). An adversary
A breaks SK-security with KGC-FS against an IBKE protocol iff it wins the
SK-security game with the following extra capability: A may call RevealMsk after
both the test session is expired, and its matching session (if it exists) are expired.

41

Note that the above definition is equivalent to the ordinary FS, treating
RevealMsk as if it were a call to RevealLtk on both the owner of the test session
and the owner of its matching session (if it exists).

Finally, we combine our notions of FS:

Definition (Full FS). An IBKE achieves full FS iff it has FS and KGC-FS.

B Proof of main theorem

We prove the main theorem of the paper, Theorem 1, which claims LATKE
UC-realizes FiPAKE given an IBKE and a symmetric encryption scheme. The
proof consists of multiple game hops, beginning with the real world, i.e., the
protocol itself, and ending in the ideal world, i.e., where the simulator may only
make calls to FiPAKE. For brevity we do not write out each game’s simulator in
full, but we include the final simulator in Figure 7.

We state the proof below for LATKEpost. The argument for LATKEpre for
pre-specified peer IBKEs is nearly identical. The only difference is that the
simulator must use the IDs given in the initial PAKE to activate IBKE sessions
in its SK-security reduction. This is a procedural change, and does not affect
the soundness of any reduction.

Beyond CK. The below proof references the id-CK∗ model as a stand-in for
any of the identity-based variants of CK, eCK, CKHMQV, or CK

+ (adding the
RevealLtk oracle as necessary, as explained in Appendix C). It is known that
these models all differ [Cre11], but the differences are subtle and are finer than
the somewhat coarse UC definitions we target. More specifically, the models
differ in their notions of matching sessions (and hence, who is allowed to be
compromised and which session keys can be revealed) and permissiveness of
attack scenarios.

The differences in matching sessions lie in whether sessions match when their
transcripts match, or their ssid’s and roles match, or some combination thereof.
Our reduction does not corrupt or reveal the session key to sessions that satisfy
any of these definitions. We also avoid a correctness issue—whether sessions
with matching ssid but non-matching transcripts will output the same key—by
simply hashing the transcript into the final key.

The differences in attack permissiveness in these models comes down to the
adversary’s ability to use short-term state revelation (called “state revelation”
in CK-type models, and “ephemeral key revelation” in eCK-type models). Since
our reduction never uses short-term state revelation, we are able to use the
weakest notion of security, i.e., the least permissive to the adversary, in any
of these models. In particular, this means that our notion of key compromise
impersonation resistance and full forward secrecy are covered by those in any of
these models.

Proof. Game 0. Real world

42

Game 1. S simulates FPAKE and P. S also simulates FRO using hash tables
H0,H1,H2. This is perfectly indistinguishable from Game 0.

Game 2. We introduce FiPAKE and have parties call FiPAKE.StorePwdFile on
initialization instead of directly generating its mpk. Instead, a party will generate
its mpk lazily via IBKE.Setup on its first session initiation. After the setup, the
simulator will simulate the rest of the session. In this game, the simulator
must do two things: (1) consistently respond to corruption queries even for
parties that haven’t participated in an active session, and (2) simulate honest
parties in a session. For an honest party Pi with password pwi, we denote its
IBKE.Setup randomness by coinsi. S will read from and program H0 in order to
make consistent choices for coinsi.

For StealPwdFile (resp. Corrupt) queries on parties who have not yet begun a
session, S calls FiPAKE.StealPwdFile (resp. Corrupt) and receives (Stolen, idi, pwi),
where pwi = ⊥ if the password has not yet been guessed. S must now determine
that party’s randomness, coinsi. If pwi ≠ ⊥, S sets coinsi := H0[sid, pwi]. Other-
wise S performs FiPAKE.OfflineComparePwd queries to see if the stolen password
file matches any other known stolen password files. If there are any matches, then
coinsi is set to the other party’s coins. Otherwise, this a fresh compromise, so
coinsi ←$ {0, 1}m. S then saves a record (KnownCoins,Pi, idi, coinsi). Now that
coinsi is set, S may generate the main keypair mski,mpki and extract the user
keys uski, upki with respect to idi. S returns all these values to the environment.

To maintain consistency of coins, we must also modify how S simulates H0

queries. On query (sid, pw), S calls FiPAKE.OfflineTestPwd for each compromised
party to test if pw produces their stolen password. If there is a match on
party Pj , then S sets H0[sid, pw] := coinsj , where coinsj comes from the record
(KnownCoins,Pj , ·, coinsj).

Finally, S simulates honest parties in the protocol as follows. For a session
with an honest party Pi, S receives mpki via its simulation of FPAKE.NewSession.
From mpki, S can find the corresponding pwi by testing which pw′ yields
(mpki, ·) = IBKE.KeyGen(1λ;H0[sid, pw

′]). This is guaranteed to exist because an
honest party in an active session must have called IBKE.KeyGen on a password.
If the user keypair uski, upki has not yet been extracted for the party, S does so
now via IBKE.Extract, and save it for future simulations. S then compares the
mpk provided by both parties in the PAKE session. If the PAKE fails, S does
not need to know the parties’ secrets in order to simulate. If the PAKE succeeds,
then the mpk values are the same, and if one of them is honest, then S knows the
msk for both, and can thus generate user keypairs for both sides and use them for
a complete IBKE simulation A(mpk, upkA, uskA)⇔ B(mpk, upkB , uskB). Since
the functionality is symmetric, we assume for simplicity that the first party to
NewSession is the initiator in the IBKE.

This simulation is perfect.

Game 3. Rather than returning the session key directly to the parties, S
now uses FiPAKE.NewKey. Since this procedure will only use the provided key
if the session is marked compromised, the simulator must call the appropriate
compromising functions, Impersonate and OnlineTestPwd, when possible.

43

We define the simulator to mark a compromise at multiple points. Firstly,
any time an mpk is provided to the protocol by a corrupted party (in the next
step uncorrupted parties will not provide mpk at all), S checks if there is a
pw such that (mpk, ·) = IBKE.KeyGen(1λ; coins), where coins = H0[sid, pw]. If
there is a match, S calls FiPAKE.OnlineTestPwd with that password. This is done
in the simulation of FPAKE.TestPwd and FPAKE.NewKey. Secondly, if an party
uses a compromised mpk, i.e., one that is the result of IBKE.KeyGen(1λ; coinsk)
for some recorded coinsk belonging to party Pk, and the session is tampered
with by the adversary, then S calls FiPAKE.Impersonate on the corresponding
party as Pk.

13 Similarly, if both parties are compromised, then Impersonate is
called on both. Impersonate is also done in the simulation of FPAKE.TestPwd and
FPAKE.NewKey. Finally, if an honest party Pi is corrupted during a session with
another honest party, S calls FPAKE.Impersonate as Pi, “impersonating” itself.

Game 2
c≈ Game 3. We argue that this is indistinguishable from the last

game, assuming IBKE is SK-secure with KCIR and full FS.
Let Z be an environment that can distinguish between the two games. We

will use Z to construct an adversary A against the SK-security game with KCIR
and full FS. We will show the reduction for a sequence of hybrids. In hybrid i,
all sessions j ≥ i return the key directly to the user, and all sessions j < i call
FiPAKE.NewKey. Hybrid 0 is game 2, and hybrid N is game 3, where N is the
(polynomial) number of sessions in the experiment.

Note that, between these two games, the only time NewKey behaves differently
(i.e., sending a random key) is when, at the end of the protocol execution, both
parties are uncorrupted and at most one is compromised.14 In addition, NewKey
is only different when mpk doesn’t come from a known password (else S runs
OnlineTestPwd and wins). Finally, NewKey is only different when the initial
PAKE succeeds, i.e., both parties submitted the same mpk (otherwise both
parties output randomness). Thus, for hybrid i, we may assume wlog that
the session in question ends with both parties uncorrupted, at most one party
compromised, H0[sid, pw] belonging to the mpk not queried, and both parties
submitted the same mpk to the PAKE. We can safely assume this because,
outside of this scenario, the simulator’s success probability is 1.

We reduce hybrid i from id-CK∗ now, defining an adversary A. Let mpk∗ be
the main public key provided by the id-CK∗ challenger. Let session i be a session
between parties P and P ′. This will be the Test session. We program the mpk of
both P and P ′ to be mpk∗. We use the id-CK∗ Send oracle when simulating the
sending of messages in every session using mpk∗ as P and P ′, CK.RevealLtk for
StealPwdFile queries, CK.Corrupt for Corrupt queries (by hypothesis, on parties

13The tampering condition is to handle the following scenario. If Alice is compromised and
Mallory breaks the PAKE session between Alice and Bob, but otherwise does not tamper with
any messages, then the session should succeed. That is, NewKey must produce the same key
for both parties. If Mallory modifies or injects messages, though, then Bob’s output must be
consistent with Mallory’s view, so S must Impersonate to Bob. If Bob is not compromised, then
this breaks the symmetry of the keys. The final transcript hash helps us break this symmetry.

14Note that this still permits an adversary to participate in the encrypted portion of the
protocol, assuming they passed the PAKE using a stolen mpk.

44

other than P and P ′), and RevealKey to determine the final key of all other
sessions. If the adversary did not modify the IBKE messages during a session
(either by knowing the PAKE key and modifying the messages, or not knowing
the PAKE key and modifying the ciphertext), then the iPAKE output key for
both parties is the one given by Test. This corresponds to the condition that
matching completed sessions between honest parties must produce the same
key, and non-matching sessions overwhelmingly do not produce the same key
(otherwise an adversary wins by simply calling RevealKey on the non-matching
session). We return these as described above, based on the session number. For
the test session (which is clean by hypothesis), we simply return the challenge
to P and P ′. Clearly, b = 0 is hybrid i − 1 and b = 1 is hybrid i. A returns
whatever Z guesses at the end of the UC game. Thus the advantage is precisely
the SK-security with KCIR and full FS advantage.

Game 4. We replace AE with the simulator Scca whenever a PAKE completed
and at most one of the parties is compromised. Recall, rather than using just the
party Pi as a user identifier for Scca, we use (Pi, ssid, step), where step refers to
the current step in the protocol. This corresponds to the fact that the real-world
protocol uses a unique key for every message.

Recall the simulator knows the msk and usk of any party in a session where
at least one compromise has occurred. Thus, it knows the output of the PAKE
in these scenarios and does not need to use any indistinguishability property.
Similarly, the simulator learns the value of the PAKE if FPAKE.TestPwd is called
on the session. The only case we must handle is where, during the EUE phase
of a session with two honest parties and an uncompromised PAKE session, one
party is corrupted.

When Corrupt is called on Pi, S uses the long term keys to check if the
PAKE failed or if any messages were modified by the adversary. Either of these
events imply a decryption error in the real world. Thus, the simulator creates a
valid IBKE transcript between Pi and its peer Pj , up until the point of failure
(if at all), and then, per EUE, pads the rest of the transcript with zeros. The
simulator selects a random chain key Kch and programs the decryption key
k = AE.Exp(m, c), where c is the last ciphertext to be received by Pi in the
protocol and m last message to be received by Pi in the fabricated transcript.

After corruption, S switches to using AE and the revealed key. If the
corruption occurred after the last message was sent, then S programs H1(K

′, tr)
to be the random session key previously chosen.

In order to make the keys consistent, we must also program H2 so that

H2(sid, ssid, 1∥K(i)
ch) = (K

(i+1)
ch , ki+1) for every chain key K

(i)
ch and exposed en-

cryption key ki, and H2(sid, ssid, 0∥K) = K0
ch for the initial key.

Game 3
c≈ Game 4. We reduce this hop to the SIM*-AC-CCA security

of AE. The only bad situation to handle is if H2 has already been called on
one of the chain keys. Since the PAKE keys are unknown to the adversary
by hypothesis, and all keys are defined in a random oracle hash chain, this
probability is negligible.

We can show this game reduces to SIM*-AC-CCA using a sequence of hybrids.

45

We define hybrid i as the world where every iPAKE subsession ≤ i is defined
without the simulator, and each > i is. Each game hop goes from defining
a ciphertext c := AE.Enck(m) for a known key k and message m, to defining
c := Scca.Enc and later generating k as the opening of c to m. Further, all
tampered ciphertexts are assumed by the simulator to trigger a decryption error.
This is precisely the SIM*-AC-CCA security game. Thus, the advantage of any
adversary in the larger game hop is bounded above by N ·Advsim∗−ac−cca

A , where
N is the number of sessions in the game.

Game 5. We now remove the ability of S to see the PAKE keys for sessions with
participants who are honest up to and including FPAKE.NewKey. On activation,
each party calls FiPAKE.NewSession instead of directly calling FPAKE.NewSession.
Using NewSession means that OnlineTestPwd can return meaningful answers.

Since the specific value of the PAKE keys no longer matters (since Scca allows
S to generate the appropriate hash chain key), the thing S loses in this hop is
knowing whether a PAKE session succeeded, i.e., both parties got the same key.
Specifically, S must know this for sessions with at least one compromised party
in order for the above steps to work. Thus, it will suffice to define a way for S
to determine the success of any such PAKE session.

We define S to check every possible value to determine whether the PAKE
between Pi and Pj succeeded. If the parties are both corrupted, then they
provided their own mpk values, and those can be compared directly. If only one
of them is corrupted, then that supplied mpk value is checked against known
compromised users (use OnlineComparePwd) and compromised passwords (use
OnlineTestPwd). Finally, if one party is compromised and not corrupted then
its mpk is checked against the other’s (use OnlineTestPwd). This new simulator
covers every edge case using just Focw

iPAKE functionality, and so this hop is perfectly
indistinguishable from the last. This completes our proof.

46

On corruption query (StealPwdFile, sid,Pi) from Z
send (StealPwdFile, sid,Pi) to FiPAKE

if received “no record” :

send “no record” to Z and exit

elsereceived (Stolen, sid, idi, pwi)

if pwi ̸= ⊥, coinsi := H0[sid, pwi]

else : coinsi ←$ {0, 1}m

for each record (KnownCoins,Pj , ·, coinsj) :
send (OfflineComparePwd,Pi,Pj) to FiPAKE

if received “match”, coinsi := coinsj

record (KnownCoins,P, id, coinsi)

(mski,mpki) := IBKE.Setup(1λ; coinsi)

(uski, upki)← IBKE.Extractmski(idi)

ibkeStates[sid, ·,Pi, 0] := (begin,mski, uski)

Mark Pi compromised

for each (Session, sid, ssid,Pi,Pj , ·, role)
marked pakecompleted and not complete :

EueCatchup(sid, ssid)

record (Pwfile, sid,Pi,mpki, upki, uski)

send (mpki, upki, uski) to Z

On corruption query (Corrupt,Pi) from Z
(mpki, upki, uski) := S.StealPwdFile(Pi)

curKeys := {}
for each (Session, sid, ssid,Pi, ·, ·, ·)not completed :

(Kch, k) := eueKeys[sid, ssid,Pi]

curKeys.append((sid, ssid,Kch, k))

Mark P corrupted and compromised

send (mpki, upki, uski, curKeys) to Z

On (TestPwd, sid, ssid,Pi,mpk) from Z to FPAKE

retrieve (Session, sid, ssid,Pi,Pj , ·,mpki)

retrieve (Session, sid, ssid,Pj ,Pi, ·,mpkj , ·)
succ := false

if mpk = mpki ̸= ⊥ :

succ := true

else :

if received “correct” : succ := true

if succ :

Mark session compromised

return “correct”

else :

Mark session interrupted

return “wrong”

On (NewSession, sid, ssid,Pj ,mpk) from corrupt Pi to FPAKE

if ∄ a record (Session, sid, ssid,Pi,Pj , ·, ·, ·)
role := if ∄(Session, sid, ssid,Pj ,Pi, · · ·) : init else resp
record (Session, ssid,Pi,Pj , id = ⊥,mpk, role)

marked fresh

On (NewSession, sid, ssid,Pi,Pj , idi, role) from FiPAKE

role := if ∄(Session, sid, ssid,Pj ,Pi, · · ·) : init else resp
record (Session, ssid,Pi,Pj , idi,mpk = ⊥, role)
marked fresh

On (NewKey, sid, ssid,Pi,K
′) from Z to FPAKE

retrieve (Session, ssid,Pi,Pj , ·,mpki, role)

retrieve (Session, ssid,Pj ,Pi, ·,mpkj , ·)
not marked pakecompleted

if session is compromised :

Ki := K′

elif session is fresh and

∃(FreshKey, sid, ssid,Pj ,Kj) :

iseq := SessMpkEq(ssid)

if iseq = true : Ki := Kj

elif iseq = false : Ki ←$ K
else : Ki := indeterminate

else : Ki ←$ K
if fresh : record (FreshKey, sid, ssid,Pi,Ki)

Mark session pakecompleted

if Ki ̸= indeterminate :

record (ChoseKey, ssid,Pi,Ki)

if both pakecompleted :

retrieve (ChoseKey, ssid,Pj ,Kj)

eueKeys[sid, ssid,Pi] := H2(sid, ssid,Ki)

eueKeys[sid, ssid,Pj] := H2(sid, ssid,Kj)

if Pi corrupted : send (ssid,Ki) to Pi

On (Hash, sid, (i, x)) from Z to FRO

if i = 0, for each party P : // program keygen coins

pw := x

send (OfflineTestPwd, ssid,P, pw) to FiPAKE

if received “correct” : // “correct” =⇒ compromised

retrieve (Compromised,P, ·, coins)
H0[sid, pw] := coins

return Hi[sid, x]

Figure 7: The final UC simulator S for the LATKEpost protocol. S maintains
hash tables, H0,H1,H2. Hash queries Hi[x] are defined to be uniform and
consistent when not otherwise specified.

On msg (Pj → Pi, c, sid, ssid)

assert all (Session, sid, ssid, · · ·) are pakecompleted

retrieve (Session, sid, ssid,Pi,Pj , ·, idi, role)
step := |sentMsgs[sid, ssid,Pi, ·]|
recvdMsgs[sid, ssid,Pi, step] := c

if ∃(KnownCoins,Pi, idi, coinsi) :

(k,Kch) := eueKeys[sid, ssid,Pi]

st := ibkeStates[sid, ssid,Pi]

inCt := recvdMsgs[sid, ssid,Pi, step− 1] or begin

if st ̸= ⊥ :

inMsg := AE.DecPk(inCt)

if inMsg ̸= ⊥ :

(outMsg, st′) := IBKE.next(st, inMsg)

if st′ = (Done, ·, ·) :
FinishIbke(sid, ssid, st′)

return ⊥
ibkeStates[sid, ssid,Pi] := st′

else : outMsg := 0msgSizestep

else : outMsg := 0msgSizestep

outCt := AE.EncPk(outMsg)

(k′,K′
ch) := H1(Kch)

eueKeys[sid, ssid,Pi] := (k′,K′
ch)

else :

outCt←$ {0, 1}msgSizestep+τ

send (Pi → Pj , ssid, outCt)

sentMsgs[sid, ssid,Pi, step] := outCt

Procedure EueCatchup(sid, ssid)

// assume wlog i is the compromised party

retrieve (Session, sid, ssid,Pi,Pj , idi,mpki, role)

retrieve (Session, sid, ssid,Pj ,Pi, ·,mpkj , ·)
steps = |sentMsgs[ssid,Pi, ·]|
if SessMpkEq(ssid) :

if ∃(FreshKey, sid, ssid,Pi,Ki) : K := Ki

else : K ←$ {0, 1}λ

Kch := H2(sid, ssid, 0∥K)

eueKeys[sid, ssid,Pi] := H2(sid, ssid, 1∥Kch)

ibkeStates[sid, ssid,Pj , step] := (begin,msk, uskj)

outMsg := ∅
for step in 0 . . . steps :

st := ibkeStates[sid, ssid,Pk, step] or ⊥
if step is even :

ℓ := if role = init : i else j

else :

ℓ := if role = init : j else i

if st = ⊥ or

recvdMsgs[sid, ssid,Pk, step− 1]

̸= sentMsgs[sid, ssid,Pk, step− 1] :

outMsg := 0msgSizestep

st′ := ⊥
else :

outCt := sentMsgs[ssid,Pk, step]

(outMsg, st′) := IBKE.next(st)

k := Scca.Exp((sid, ssid,Pk, step), (outMsg, outCt))

K′
ch ←$ {0, 1}λ

H2[sid, ssid, 1∥Kch] := (K′
ch, k)

ibkeStates[sid, ssid,Pk, step] := st′

eueKeys[sid, ssid,Pk] := (K′
ch, k)

Procedure FinishIbke(sid, ssid,Pi, st)

retrieve (Session, sid, ssid,Pi, ·, ·, idi, ·)
(Done,K, id′) = st

sessTampered :=

sentMsgs[sid, ssid, ·, ·] ̸= recvdMsgs[sid, ssid, ·, ·]
if id′ ̸= idi or sessTampered :

if id is compromised

send (Impersonate, sid, ssid,Pi,Pid)

elif ∃sid′, pw s.t.mpki = IBKE.Kg(1λ;H0(sid
′, pw)) :

send (OnlineTestPwd, sid, ssid,Pi, pw)

else : abort

send (NewKey, sid, ssid,Pi, id
′,K′)

Procedure SessMpkEq(sid, ssid)

retrieve (Session, sid, ssid,Pi,Pj , idi,mpki, role)

retrieve (Session, sid, ssid,Pj ,Pi, ·,mpkj , ·)
if mpki ̸= ⊥ ∧mpkj ̸= ⊥ :

return mpki = mpkj

out := indeterminate

coins := ⊥
if ∃ℓ s.t.mpkℓ ̸= ⊥ :

ℓ̂ := i if ℓ = j else j

if mpkℓ has owner Pℓ :

send (OnlineComparePwd, sid, ssid,Pℓ̂,Pℓ)

out := resp = “correct” :

if Pℓ̂ honest :

coins := coins of mpkℓ

elif mpkℓ is derived from pwℓ :

if Pℓ̂ honest :

coins := coins of pwℓ

send (OnlineTestPwd, sid, ssid,Pℓ̂, pwℓ)

out := resp = “correct” :

elif ∃ℓ s.t.Pℓ compromised :

ℓ̂ := i if ℓ = j else j

if Pℓ̂ honest :

coins := coins of mpkℓ

send (OnlineComparePwd, sid, ssid,Pℓ̂,Pℓ)

out := resp = “correct”

if out = true :

record (KnownCoins,P, idi, coins)
return out

Figure 8: (cont.) the LATKEpost UC simulator

C RevealLtk in the CK model

In our presentation of the CK model in Appendix A.3, we include the oracle
RevealLtk, which, unlike Corrupt, reveals the long-term key of the given party
without revealing any internal state. While RevealLtk is included in the extended
Canetti-Krawczyk model (eCK) [LLM07], it does not appear in the original CK or
CKHMQV models [CK01, CK02a, Kra05], which Theorem 1 claims compatibility
with.

We also note that the SK-with-RevealLtk game was implicitly used in the
security proof of CHIP in version 3.0 of the CHIP paper [CNPR22]. Thus, this
section is not only necessary for LATKE, but also fills a gap in the security proof
of CHIP.

We claim that this new model is equivalent to the base model. An adversary
against the SK-without-RevealLtk game is trivially an adversary against the
SK-with-RevealLtk game. So it only remains to show the converse. The theorem
applies to protocols in both the CK or CKHMQV model.

Theorem 2. Let Π be an authenticated key exchange protocol . If B is an
adversary with advantage ϵ against the SK-security game with access to the
RevealLtk oracle, then there exists an adversary A against the ordinary SK-
security game with advantage at least ϵ/4. This also applies to SK-security with
KCIR, FS, and KCIR+FS.

Proof. Let N = poly(λ) denote the number of parties that B initializes in its
game. We define A as follows. At the very beginning of the SK-security game,
A selects N/2 parties at random and calls Corrupt on them, thus receiving all
their long term keys. Let C denote the set of the initially corrupted parties, and
U the set of initially uncorrupted parties. Let ski denote the long-term key of
party Pi.

Then, A runs B. For every oracle query B makes, A makes the same query
(if it exists), including when choosing the test session. When B makes a query of
the form RevealLtk(Pi), then A (1) checks if it has stored ski and, if so, returns
it; or (2) calls Corrupt on Pi, saves the long-term key as ski, and returns ski.
For its test session, A outputs whichever bit B outputs. If any of the previous
instructions lead A to expose the test session, a failsafe will trigger and A will
instead respond to the test session with a random bit.

It will suffice to consider a specific condition E under which A is guaranteed
to win its game when B wins its game, i.e.,

Pr[A wins | E] = Pr[B wins].

In other words, when E holds, then A’s test session is unexposed.
In all of the SK-security variants, RevealLtk and Corrupt are treated equally

in terms of exposure except during the test session (i.e., after it is initiated and
before it is expired). In the KCIR variant, the adversary is permitted to call
RevealLtk on the owner Pi of the test session during the test session . If B does
this, then A may have to call Corrupt on the owner, exposing the session. Thus,
A’s test session remains unexposed if both

49

1. Pi ∈ C (so A can respond with ski), and

2. the peer of the session Pj (if it exists) is in U (so at least one party is
uncorrupted).

Let E be the event in which both statements are true. It is clear that the above
equality holds with respect to E in every SK-security variant. Since both (1) and
(2) occur independently and with even odds, Pr[E] = 1/4.

When E does not occur, then A’s failsafe may trigger. We may lower bound
Pr[A wins | ¬E] ≥ 1/2.

Thus, the advantage of A is∣∣∣∣Pr[A wins]− 1

2

∣∣∣∣ = ∣∣∣∣Pr[A wins | E] Pr[E] + Pr[A wins | ¬E] Pr[¬E]− 1

2

∣∣∣∣
≥

∣∣∣∣Pr[B wins]

4
− 1

8

∣∣∣∣
=

1

4

∣∣∣∣Pr[B wins]− 1

2

∣∣∣∣
= ϵ/4

50

	Introduction
	Background
	Limitations of Existing iPAKEs and dPAKEs
	Our contributions

	Preliminaries
	Notation
	Universal composability
	PAKE and iPAKE
	Adding OnlineComparePwd

	Key exchange
	Authenticated key exchange
	Canetti-Krawczyk (CK) model

	Symmetric encryption

	Construction
	-method
	CHIP
	LATKE
	Encrypt-and-unconditionally-execute transform
	Building the IBKE
	Security argument

	Experiments
	Choosing Primitives
	PAKEs
	IBKE

	Experimental setup
	Discussion

	Future work
	Acknowledgements
	Deferred preliminaries
	Notation
	Probability
	Canetti-Krawczyk model
	The id-CK model

	Proof of main theorem
	RevealLtk in the CK model

