
SALSA PICANTE: a machine learning attack on LWE with binary secrets

Cathy Li ∗
Meta AI

Jana Sotáková∗
Meta AI

Emily Wenger
University of Chicago

Mohamed Malhou
Meta AI

Evrard Garcelon
ENSAE - CREST

Francois Charton †

Meta AI
Kristin Lauter†

Meta AI

Abstract
The Learning With Errors (LWE) problem is one of the major
hard problems in post-quantum cryptography. For example,
1) the only Key Exchange Mechanism KEM standardized by
NIST [14] is based on LWE; and 2) current publicly available
Homomorphic Encryption (HE) libraries are based on LWE.
NIST KEM schemes use random secrets, but homomorphic
encryption schemes use binary or ternary secrets, for effi-
ciency reasons. In particular, sparse binary secrets have been
proposed, but not standardized [2], for HE.

Prior work SALSA [49] demonstrated a new machine learn-
ing attack on sparse binary secrets for the LWE problem in
small dimensions (up to n = 128) and low Hamming weights
(up to h = 4). However, this attack assumed access to mil-
lions of LWE samples, and was not scaled to higher Hamming
weights or dimensions.

Our attack, PICANTE, reduces the number of samples re-
quired to just m = 4n samples. Moreover, it can recover se-
crets with much larger dimensions (up to 350) and Hamming
weights (roughly n/10, or h = 33 for n = 300). To achieve
this, we introduce a preprocessing step which allows us to
generate the training data from a linear number of samples
and changes the distribution of the training data to improve
transformer training. We also improve the distinguisher/secret
recovery methods of SALSA and introduce a novel cross-
attention recovery mechanism which allows us to read-off the
secret directly from the trained models.

1 Introduction

The race for post-quantum cryptography (PQC) is in full
steam. A large-scale quantum computer could solve the hard
math problems underpinning most deployed public-key cryp-
tographic systems, like RSA [40], in polynomial time, and
small-scale quantum computers have already been built. Con-
sequently, new post-quantum cryptographic systems were
∗Co-first authors
†Co-senior authors
Date of the document: March 7, 2023.

proposed and considered for standardization by US National
Institute of Standards and Technology (NIST) in the 5-year
PQC competition.

In July 2022, NIST standardized 4 schemes from the post-
quantum crypto competition [14]. The only key encapsulation
mechanism selected—CRYSTALS-Kyber [6]—and one of the
three signature schemes—CRYSTALS-Dilithium [25]—are
based on a mathematical hardness assumption known as
Learning With Errors (LWE) [39].

LWE works as follows: given an integer modulus q, a di-
mension n, and a secret vector s ∈ Zn

q, the Learning With
Errors problem is to recover the secret vector, given many
instances of a random vector along with their noisy inner
products with the secret vector. These noisy inner products
are computed by taking a random vector a ∈ Zn

q and produc-
ing b := a · s+ e mod q, where e is an “error” term sampled
from a narrow discrete Gaussian distribution (i.e. taking small
values). The adversary is then given the samples (a,b). LWE-
based encryption schemes encrypt messages by blinding them
via noisy inner products. Small secrets, such as binary or
ternary secrets, are used for homomorphic encryption.

The LWE problem is assumed to be hard for both classical
and quantum adversaries [9, 31, 33, 38, 39]. Classical attacks
on LWE typically rely on algebraic techniques for lattice
reduction to recover the secret s from pairs (a,b) [15, 30].
However, the error e added to a · s to compute noisy inner
products makes algebraic solutions difficult. At its core, the
LWE hardness assumption is that it is hard to learn from noisy
data. Ironically, the success of the whole field of Machine
Learning (ML) depends on the fact that it is possible to train
machines to learn from noisy data. One additional difficulty
in lattice-based cryptography is that all operations are done
modulo an integer q. [49] showed that it was possible to train
ML algorithms to handle modular arithmetic.

Current advances in AI systems rely on Deep Learning.
One of the most common large model architectures are trans-
formers. Transformers were introduced in [47] for natural
language processing (NLP) and machine translation. In recent
years, they have been applied to a wide range of problems,

from text and image generation [35–37] to image process-
ing [10] and speech recognition [23], where they now achieve
state-of-the-art performance [24, 48]. Transformers have also
been proposed for problems in mathematics, like symbolic
integration [29], theorem proving [34], and numerical com-
putations [11]. Transformers process sequences of tokens (in
NLP, sequences of words, making up sentences). They com-
bine a multi-head attention mechanism [7] that takes care
of relations between different tokens in the sequence, essen-
tially “decorrelating” it, and a fully-connected neural network
(FCNN), which processes the decorrelated sequences.

The first successful attempt to use ML to attack hard lattice
problems was presented in SALSA [49], showing the feasi-
bility of recovering sparse binary secrets for LWE problems
with relatively small parameters. SALSA trains ML models
to learn the underlying structure of the LWE problem given
many LWE samples, then leverages the trained model to re-
cover the LWE secret. If the models learn to predict b from a
(even with low accuracy), SALSA can recover the secret s.

Although promising, SALSA has significant limitations.
For the largest dimension n = 128, SALSA can only recover
Hamming weight h≤ 3. In comparison, real-world binary HE
schemes start at dimension n = 512 or n = 1024. SALSA also
requires millions of LWE samples (a,b) for model training,
but a real-world attacker would likely only have access to a
few samples. Making SALSA’s approach realistic requires
scaling up the parameters of solvable LWE problems (n,q,h)
while reducing the number of required samples.
Contributions. In this work, we propose PICANTE, an en-
hanced ML based attack on the LWE hardness assumption.
PICANTE leverages basic principles of the original SALSA at-
tack [49]—transformer training, secret recovery—while intro-
ducing several novel techniques. This enhanced attack allows
recovery of high-dimensional binary secrets with Hamming
weight roughly n/10, up to 33, requiring only 4n samples
for training. Table 1 shows the largest Hamming weights we
recover for each dimension.

Dimension 80 150 200 256 300 350

log q 7 13 17 23 27 32
highest h 9 13 22 31 33 26

Table 1. SALSA PICANTE’s highest recovered secret Hamming weights h

As in SALSA [49, Table 7], we observe that it is easier to
learn from vectors with a skewed distribution on the entries.
Therefore, we introduce a data preprocessing step that uses
lattice-reduction methods to produce samples with smaller
coefficients. Second, we start with a linear number of sam-
ples, m = 4n. To produce more samples for training, it was
suggested in SALSA [49, Appendix E] to take linear combina-
tions to produce more. However, combining samples changes
the error distribution, and larger errors are quickly amplified
with the lattice reduction step. To avoid the error explosion,

we simply take subsets of n out of the m initial samples and
then apply lattice reduction. This generates large quantities of
non-duplicate samples with skewed entries, and we show that
transformers can learn from such data equally well or better
than if we start from independent LWE samples.

Specifically, this work makes the following contributions:

• Linear number of samples: our method only requires a
linear number of samples, m = 4n in practice.

• Data preprocessing: we preprocess data with classical
lattice reduction techniques (e.g. LLL [30] or BKZ [15]),
using small block size. This helps transformers learn.

• Novel secret recovery: we recover secret bits from the
trained transformer, using its cross-attention mechanism.

We also improve the data encoding method, introduce
rounding to reduce the size of the vocabulary the transformer
must learn, improve the distinguisher secret recovery method,
and introduce novel combined secret recovery methods.
Mastermind. One way to think about the role of our novel
preprocessing step is in analogy with the game Mastermind.
In Mastermind, a secret made up of 4 pegs of 6 possible colors
is hidden from the guesser. The guesser makes queries of 4
pegs of different colors, where responses indicate how many
pegs were a correct match of color and position to the secret.
Binary secret LWE can be thought of as Mastermind with n
positions and 2 colors, ignoring error.

In our approach to binary secret LWE, the trained model
serves as an engine for answering queries, assuming the
transformer has started to learn. Consider two extreme types
of queries. If you submit a vector with all entries constant,
(f , f , ..., f), (i.e. very low entropy), you only get the Ham-
ming weight–no information about the position of the 1s.
At the other extreme, the Direct secret recovery approach of
SALSA makes queries of the form (0, ...,0,Ki,0, ...,0), which
gives information only about the ith bit of the secret. Submit-
ting queries with random entries (maximal entropy) does not
clearly give any particular type of information.

In our preprocessing step, we attempt to reduce the entropy
of our samples, thus making it more likely that queries such
as those in the Direct secret recovery method bear some simi-
larity to the training samples. So in some sense we can think
of our approach as ML for Mastermind (or Wordle).
Acknowledgements. We would like to give our thanks to
Mark Tygert, Zeyuan Allen-Zhu, Matteo Pirotta, Mingjie
Chen, and Antonio Orvieto for their help with the project.

2 Background on LWE

2.1 Lattice-based cryptography

Lattice-based cryptography is a major field in post-quantum
cryptography. Three out of the four schemes selected by
NIST [14] are lattice-based, and two are based on a variant of

2

the LWE problem [39], which will be our focus. Moreover,
homomorphic encryption libraries are based on LWE.

Lattices. An n-dimensional integer lattice is the set of all
integer linear combinations of n linearly independent vectors
in Zn. More formally, given n vectors v1, . . . ,vn ∈Zn, a lattice
is the integer span Λ = Λ(v1, ..vn) := {∑n

i=1 aivi | ai ∈ Z}.
The vectors v1, . . . ,vn are called a basis for the lattice Λ. The
lattice Λ inherits a norm simply by restriction of the Euclidean
norm from Rn to Λ: any vector v ∈ Λ has norm ∥v∥=

√
v · v.

Lattices give rise to several hard problems —problems for
which the best known algorithms require exponential time in
the dimension n for both classical and quantum computers.
The most famous and widely-studied is the Shortest Vector
Problem (SVP): for a lattice Λ, find a nonzero vector v ∈ Λ

with minimal norm. Currently, the best algorithms for SVP
take exponential space and time in n [32]. This makes lattices
attractive building blocks for post-quantum cryptography.

Learning with Errors. Fix a dimension n, modulus q, number
of samples m and a narrow Gaussian probability distribution χ.
The “Learning with Errors” (LWE) problem is to recover a
secret vector s ∈ Zn

q given a collection of m noisy samples
(ai,bi), where a1, . . . ,am←R Zn

q are random vectors, and bi =
ai · s+ ei mod q are noisy inner products, with the ei ∈ Zq
sampled independently from the error distribution χ.

A LWE instance is given by a matrix (A,b) ∈ Zm×n
q ×Zm

q
with A uniformly random in Zm×n

q and b = A · s+ e mod q
a column vector where s ∈ Zn

q is the secret vector and e ∈ Zm
q

with entries sampled from the probability distribution χ. We
call any of the pairs (ai,bi), or equivalently any of the rows
of the matrix (A,b), an LWE-sample or a sample

Hardness of LWE In 2005, Regev demonstrated a worst-case
quantum reduction from the SVP to LWE [39]. Regev also
showed that LWE-based cryptographic schemes were far more
efficient than existing lattice cryptography methods. Later
work demonstrated that LWE is classically as hard as worst-
case SVP-like problems [9,31,33]. Hence, LWE is considered
a solid foundation for (post-quantum) lattice cryptography.

LWE-based schemes LWE-based schemes are not only stan-
dardized for Post-Quantum Cryptography [6, 25] and Homo-
morphic Encryption [2], but also allow for a range of crypto-
graphic constructions beyond key exchange and signatures,
including group signatures, secret sharing, and multi-party
computation. The NIST standardization competition received
23 entries proposing schemes based on lattice assumptions
such as LWE. In CRYSTALS-Kyber [6], the dimension is
n = k×256 for k = 2,3,4. The LWE-based signature scheme
CRYSTALS-Dilithium [25] uses similar size of n. Both use se-
cret vectors with random entries mod q. Another LWE-based
NIST submission, LIZARD, suggests secure LWE dimen-
sions n ranging from 544 to 736 [17, Table 2].

Homomorphic encryption schemes [2] in publicly avail-
able libraries such as SEAL use dimension n = 512 only for
small computations, and generally require dimensions n =

1024,2048 and other powers of 2 up to 215. But HE implemen-
tations commonly use binary or ternary secrets for efficiency
reasons (see the standard HES [2]), and many implementa-
tions propose to use a sparse (binary) secret with Hamming
weight h << n. For instance, HEAAN uses n = 215, q = 2628,
ternary secret and Hamming weight 64 [13]. For more on the
use of sparse binary secrets in LWE, see [3, 16, 20].

We focus on the case of a binary secret with Hamming
weight h and the error distribution χ a centered Gaussian
with σ = 3. σ = 3.2 is the typical choice for homomorphic
encryption [2, 16, 20, 46].

2.2 Attacks on LWE

The LWE problem is assumed to be exponentially hard to
solve with classical algorithms [9, 31, 33] or with quantum
algorithms [38]. Due to its prominence as a hard problem in
post-quantum cryptography, a significant body of work has
been devoted to attacking it.
Classical Attacks. Most existing classical attacks leverage
lattice reduction techniques, and reduce the problem to that of
recovering the shortest vector in a lattice. The LLL [30] algo-
rithm runs in polynomial time in the dimension of the lattice
(specifically the optimized fplll [22] implementation runs in
time n4 log(q)2), but it recovers an exponentially bad approx-
imation to the shortest vector. LLL can be improved using
the block Korkine-Zolotarev method (BKZ) by Schnorr [43]
and Schnorr-Euchner [44]. The BKZ approach relies on an
exponential time sub-algorithm applied for increasing block
sizes, but can recover shorter vectors than LLL. The main 3
attacks used to estimate secure parameters for lattice-based
cryptography are: the uSVP, dual, decoding attacks, all of
which require finding a short vector in a particular lattice aris-
ing from the LWE instance. The uSVP attack uses Kannan’s
embedding [26] to embed the problem instance into a lattice
such that the (unique) shortest vector reveals the secret s. For
concrete choices for this embedding, see [12]. The Homo-
morphic Encryption Standard [2, Section 2.1.2] describes the
uSVP, dual, and decoding attacks in detail.
SALSA: a machine learning based attack. SALSA [49]
demonstrated the possibility of using machine learning mod-
els to attack the LWE hardness assumption when sparse binary
secrets are used. SALSA trains universal transformers to pre-
dict b from input a and develops secret recovery techniques
to extract the secret that is implicitly learned by the model.
This work successfully recovered secrets for LWE problems
with dimension n≤ 128 and Hamming weight ≤ 4.

SALSA pioneered the use of ML models in cryptanalysis
of LWE, but it only recovers secrets for small LWE problems.
Much work remains to be done to scale up this work to attack
real-world LWE problems with cryptographic sizes of parame-
ters. In this work, we extend the ideas of [49] and demonstrate
that ML models can be used to successfully recover secrets
from LWE problems with near real-world parameter settings.

3

Data preprocessing Model training Secret recovery

Produce 222

BKZ-reduced
samples

Direct

Distinguisher

Cross attention

127

35725

634 ...

..
. ...

234

57552

982

...

..
. ...

15

265

62

3

2517

43

36

632234

123 ...

..
.

...
15

238225

963

534

23167

662 ...
..
.

...
834

16322

274

63

34842

634 ...

..
.

...
11

2725

952

127

35725

634 ...

..
.

...
234

57552

982

...

...

...

Generate
K = 221/N
matrices

2 3 Train transformer on
BKZ-reduced samples

4 Run secret recovery
on trained model

5

Every 2,000,00
training examples

If correct,
stop; else,

keep training

 6

Collect
4n LWE

pairs

1

(a
1
, b

1
)

(a
4n

, b
4n

)

(a
3
, b

3
)

(a
2
 b

2
)

...

Figure 1. An end-to-end overview of SALSA PICANTE’s attack methodology.

3 Introducing SALSA PICANTE

High level overview. SALSA PICANTE builds upon SALSA
and progresses in three stages: (1) data preprocessing, (2)
model training, and (3) secret recovery (see Figure 1). Each
run of SALSA PICANTE targets an LWE instance with fixed
dimension n, modulus q, and binary secret s with Hamming
weight h and error distribution χ with σ = 3.

SALSA PICANTE requires m original LWE pairs, sharing
the same secret s. These are of form (a,b), with b = a · s+ e.
In real world situations, these samples must be collected. In
experimental settings we choose m = 4n and generate these
samples randomly.
(1) Data preprocessing. During this step, n LWE pairs
are randomly selected from the set of original samples and
stacked into an n×n matrix A and vector b of length n. The
matrix A is processed by a basis-reduction algorithm (BKZ),
and the same linear operation is performed on b. This creates
reduced LWE pairs with smaller norms but larger errors. This
step is repeated to produce 222 reduced LWE pairs.
(2) Model Training. The reduced LWE samples (a,b) are
encoded as sequences of numbers, represented in base B, and
used to train a deep learning model M , a transformer. The
model M learns to predict b from a. Model training proceeds
in epochs, each using 2 million samples. The 4 million
training data are shuffled randomly every 2 epochs.
(3) Secret Recovery. At the end of each epoch, SALSA PI-
CANTE attempts to recover the secret using 3 techniques:
direct, distinguisher, and cross-attention. The methods are
used separately and can be combined to provide more secret
guesses. Secret guesses are evaluated. Model training stops if
the secret is recovered; else, another epoch begins.

4 Methods

4.1 LWE data reduction
Whereas SALSA could attack problems of dimension as high
as 128, it was limited to binary secrets with low Hamming
weights: up to 4 1-bits in the secret. SALSA authors ob-
served [49, Table 7] that, for n = 50, binary secrets with
Hamming weights up to 15 could be fully or partially re-
covered, if the coordinates of the samples a used to train the

model were bounded by αq, with α < 0.6.
Our initial experiments confirmed this for larger dimen-

sions, and different restrictions on the coordinates of a
(e.g. ai > αq). Unfortunately, this property cannot be directly
exploited to attack LWE. In all practical implementations,
the coordinates of a are sampled from a uniform distribution
over Zq. Therefore, vectors a with no coordinates exceeding
αq become exponentially rare as the dimension increases.

By taking linear combinations of samples, we can trans-
form LWE pairs (a,b = a · s+ e mod q) with a sampled uni-
formly from Zn

q into LWE pairs (a′,b′ = a′ · s+ e′ mod q)
using the same secret, but such that the coordinates of a′
take smaller values. Note that taking linear combinations of
samples changes the error distribution.

Specifically, given n LWE samples, stored as the rows of a
n×n matrix A, and a corresponding vector b of noisy inner
products with a fixed secret s, we can create a matrix A′ with
smaller entries than A, by applying standard basis-reduction
algorithms, such as LLL [30] and BKZ [43], to Λ, the n-
dimensional lattice defined by the rows of A. In PICANTE,
we run BKZ (from the fplll package [22]) on the matrix:[

ω ·1n An×n
0 q ·1n

]
,

with ω ∈ Z an error penalization parameter, discussed below.
Since the BKZ reduction is a change of basis, it is a linear
transformation, which we can represent as

[
R2n×n C2n×n

]
.

The BKZ reduction can be written as a matrix multiplication

[
R2n×n C2n×n

][ω ·1n An×n
0 q ·1n

]
=
[
ω ·R RA+qC

]
,

with matrices R and C are chosen so that
[
ω ·R RA+qC

]
has 2n rows with small norms, and the matrix qC adds an
integer multiple of q to each entry in RA, so that all entries
are in the range (−q/2,q/2).

Applying the linear transformation R to b, we create a
new LWE instance (RA,Rb) with the same secret s, smaller
coordinates of RA but a different error distribution. Let
e = b−A · s be the initial LWE error. After reduction, the
error becomes e′ = Rb− (RA) · s = R(b−A · s) = Re: the
larger the entries of R, the more LWE errors are amplified by
reduction. All these computations are performed mod q.

4

Error amplification can be controlled by the error penal-
ization parameter ω. Recall that BKZ computes R and C so
that the norms of the rows of

[
ω ·R RA+qC

]
are small.

A large ω encourages small entries in the rows of R. On the
other hand, it hinders the norm reduction of RA+ qC, and
therefore limits the extent to which the coordinates of A are
reduced. The choice of ω controls a trade-off between the
amount of reduction of a we can achieve, and the amount
of additional noise which gets injected in the transformed
samples. In practice, we set ω = 15.

The previous paragraphs describe the reduction of n LWE
pairs. Larger number of samples (e.g. the million of pairs
needed for SALSA) would be divided into batches of n, and
processed as above. In this setting, the n LWE pairs are trans-
formed into a matrix RA with 2n rows, which produces a little
less than 2n reduced LWE samples (for n≥ 256, we observe
about 1% zero rows; this fraction is larger for smaller n).
Algorithm choice. We experimented with the two most stan-
dard basis-reduction algorithms: LLL and BKZ. Note that we
are not pursuing the same goals as mainstream cryptographic
applications of BKZ and LLL. Our objective here is not to
find the shortest vector in the lattice defined by A, but to trans-
form A into a matrix with smaller coefficients. Experimen-
tally, we find that BKZ with small block size (β = 16−20)
achieves better reduction than LLL. We also note that BKZ
speed-ups, such as BKZ2.0 [15], do not seem to result in im-
proved reduction. For BKZ, the block sizes needed to achieve
reduction in PICANTE are significantly smaller than the block
sizes that would be required to perform a lattice-reduction
attack on problems of the same dimensions (see also § 7).

4.2 TINYLWE: linear number of samples
Transformers, the deep learning architecture used in SALSA
PICANTE, typically train on millions of examples. SALSA
assumed access to 4,000,000 ≈ 222 LWE pairs (A,b) with
the same secret – unrealistic in practice. To mitigate this,
PICANTE introduces TINYLWE, a technique that only re-
quires m = 4n LWE pairs – linear in the dimension n.

The goal of TINYLWE is to produce the large set of 4
million samples required to train our models, from a small
initial set of m = 4n LWE pairs. Previous works [5, 49] have
observed that a set of m LWE pairs (a1,b1) . . .(am,bm) can
always be expanded by considering the linear combinations
(a,b) = (∑i ciai, ∑i cibi), with ci ∈ Z and ∑i |ci| small. We
could, therefore, generate a large sample from a small initial
set of LWE pairs by creating many such linear combinations,
and reducing them using BKZ.

Unfortunately, LWE error is amplified by linear combina-
tions: e′ = b−a · s = ∑i ciei, with ei the error in the original
LWE sample. Assuming that the ci are centered, the standard
deviation of error grows as the square root of the number of
terms in the combination (

√
n in the general case) times the

standard deviation of the distribution of ci (which is
√

C/3 if

we assume the ci are uniformly distributed in [−C,C]). LWE
data reduction further amplifies errors, making transformer
training, and secret recovery, very difficult.

Instead of linear combinations, PICANTE uses subsampling:
we simply use subsets of n out of the m original LWE samples,
(a j1 ,b j1), . . .(a jn ,b jn), are randomly selected, and arranged
in a matrix A, with rows a j1 to a jn , which is then reduced as
per § 4.1. Because the original LWE pairs are merely copied
into A, the associated noisy inner products have the same error
distribution as the original samples. This technique allows us
to generate up to

(4n
n

)
unique matrices (≈ 9.48n ·0.46/

√
n)).

In PICANTE, we use subsampling to generate about 221/n
matrices, which, after reduction, will result in about 222 re-
duced LWE pairs. Even though subsampled matrices often
have rows in common, we experimentally observe that, after
reduction, there are almost no duplicate vectors. For n = 80,
we counted one duplicate in 50,000 examples; for n≥ 150,
we found no duplicates in 4 million examples.

4.3 Encoding LWE pairs

Prior to model training, PICANTE encodes the LWE samples
(i.e. (a,b) pairs) into sequences of tokens that the transformer
can process. After encoding, the integer coordinates of a and b
are represented using two digits in base B (with B≥√q). Our
experiments with different values of B (see § 6.1) suggest that
large values of B, which limit the most significant digit of ai
and b to a small number of values (i.e. B = O(q)), allow for
better performance. In our experiments, we use B = ⌊q/k⌋
with k = 2 · ⌈ n

100⌉+2.
Using large B creates a problem: for large values of q (for

n≥ 200, we have q > 100,000), the size of the vocabulary be-
comes too large to be learned by a transformer trained on only
4 million LWE pairs. To mitigate this, we encode the lowest
digits of a and b into B/r buckets of size r (i.e. divide them
by r). The value r is chosen so that the overall vocabulary size
B/r < 10,000 (see Table 2). The use of buckets helps train
models for large n but it also causes a loss of precision in the
values of a and b. We believe the impact on performance is
limited, because the low bits of a and b that are rounded off
by buckets are those most corrupted by LWE error.

4.4 Models and training

Model architecture. Our transformer architecture, summa-
rized in Figure 2, is strongly inspired by SALSA [49]. Follow-
ing [47], we use a sequence-to-sequence (seq2seq) model [18],
composed of two transformer stacks – an encoder and a de-
coder – connected by a cross-attention mechanism. The en-
coder processes the input sequence, the coordinates of a, rep-
resented as sequences of digits. The discrete input tokens are
first projected over a high-dimensional space (we use dimen-
sion d = 1024) by a Linear Embedding Layer with trainable

5

weights (i.e. embedding is learned during training). The result-
ing sequence is then processed by a single-layer transformer:
a self-attention layer with 4 attention heads, and a FFCN with
one hidden layer of 4096 neurons.

The decoder is an auto-regressive model. It predicts the
next token in the output sequence, given already decoded
output and the input sequence processed by the encoder. At
the beginning, the decoder is provided with a conventional
beginning of sequence token (BOS), and predicts b∗1, the first
digit of b. It is then fed the sequence BOS, b∗1, and decoding
proceeds until a specific token (EOS) is output.

Decoder input tokens are encoded as 512-dimensional vec-
tors, by a trainable embedding (which also serves to decode
the transformer output). The decoder has two layers. First it
uses a shared layer (as in [21]), which is iterated through 8
times, feeding layer output back into its input. This recurrent
process is controlled by a copy-gate mechanism [19], which
decides whether a specific token should be processed by the
shared layer or just copied as is, skipping the next iteration.
After 8 iterations, the output of the shared layer is fed into a
“regular” transformer layer. Finally, the output of the decoder
is processed by a linear layer, which computes the probabili-
ties that every word in the vocabulary is the next token. The
largest probability is selected by applying a softmax function
(a differentiable counterpart of the max function).

Both decoder layers are connected with the encoder via a
cross-attention mechanism with 4 attention heads. In each
cross-attention head, the output of the encoder E = (Ei)i∈Nl
(l the input sequence length) is multiplied by two trainable
matrices, WK and WV , yielding the Keys K =WKE and Values
V =WV E. The 512-dimensional vector to be decoded, D, is
multiplied by a matrix WQ, yielding the Query Q =WQD. The
l scores are then calculated from the query and keys:

scores(E,D) = Softmax((WQD)(WKE)T).

The scores measure how important each element in the en-
coder input is when decoding D (i.e. computing b). The cross-
attention value for this head is computed as the dot product
of scores and values. The values of different heads are then
processed by a final linear layer. Cross-attention scores quan-
tify the relation between input positions and output values.
PICANTE uses them to recover the secret bit by bit.
Model training. We train the model to predict b from a, and
frame this task as a supervised multi-classification problem:

min
θ∈Θ

N

∑
i=1

K

∑
j=1

V

∑
k=1

1[yi[j] = k−1]
e fθ(xi)[j,k]

∑
V
k′=1 e fθ(xi)[j,k′]

, (1)

where fθ(xi) ∈ RK×V are model logits evaluated at xi, θ ∈Θ

are the model parameters, N the training sample size, K = 2
the output sequence length and V = B/r the vocabulary size.

To solve (1), we minimize the cross entropy between model
predictions M (a) and the ground truth b, over all tokens in

FCNN

c2c1 c3

Encoder output

Self-attentionL
ay

er
1

x2x1 x3

Embedding

2 51

Encoder

Embedding

3BOS

Decoder

y2y1

Self-attention

Copy-gate

Cross-attention

FCNN L
ayer1

(shared)

Self-attention

Cross-attention

FCNN L
ayer2

Linear classifier

Softmax

5Embedding dimension

• Encoder: de = 1024
• Decoder: de = 512

Attention heads: 4
Fully connected neural
network (FCNN):

• 1 hidden layer
• 4de neurons

Shared layer iterated
up to 8 times.

Figure 2. Our transformer architecture.

the output sequence. An alternative approach would set this
as a regression problem. However, we believe classification
is better adapted to the modular case, and prior works report
that reformulating regression as classification leads to state-
of-the-art performance [1, 41, 42, 45].

Training is performed by batches of nb = 128 examples.
We compute the cross-entropy loss L(M ,a,b) over all batch
examples, and calculate its gradients ∇L with respect to the
model parameters (via back-propagation). Model parameters
are then updated, using the Adam optimizer [27], by lr∇L .
The learning rate, lr is set to 10−5, except during the 1000
first optimizer steps, where it is increased linearly from 10−8

to 10−5. Every 2 million examples (an epoch), model perfor-
mance is evaluated on a held-out sample, and we attempt to
recover the secret. If we fail, another epoch begins.

4.5 Secret Recovery

The intuition behind secret recovery goes as follows: if a
model M can predict b from a with larger than chance-level
accuracy, then M must somehow “know” the secret key s, and
we can recover s from M . SALSA PICANTE uses three meth-
ods—cross attention, direct, and distinguisher recovery—to
recover the secret. They can be combined for greater accuracy.
Checking correctness. Recovery methods make guesses s′
about the (unknown) secret s. The test whether s′ = s was

6

introduced in SALSA. On a test sample of Ntest LWE pairs
(ai,bi)1≤i≤Ntest , compute b′i = ai · s′, and consider the distribu-
tion r of ri = b′i− bi mod q. If s′ = s, then r ≈ e, the LWE
error, with standard deviation σ. If s′ ̸= s, then r will be ap-
proximately uniformly distributed over Zq, with standard de-
viation σ′ = q/

√
12. By estimating σ′ on a large enough test

sample, one can verify s′ = s to any confidence level.
Such a test can be done on the original LWE samples, that

is, with Ntest = m = 4n. In § A.2 we provide a statistical
analysis of this verification technique, which demonstrates
that this sample size is sufficient for all dimensions n≥ 80.

Cross-Attention. In this new recovery method, we guess the
secret from the parameters of a trained model, leveraging the
cross-attention scores of the first decoder layer (see Figure 2
and § 4.4). Intuitively, the cross-attention score measures
the relevance of input tokens (i.e. coordinates of a) for the
computation of b. Since b = a · s+e, the coordinates of a that
correspond to the 0 bits of s have no impact on b. On the
other hand, the coordinates associated to the 1 bits in s have
an impact proportional to their value. Therefore, we expect
that high cross-attention scores will be found for the input
positions that correspond to 1s in the secret.

In practice, we run the trained transformer on a test set of
10,000 reduced LWE samples, and sum the cross-attention
scores of all heads. Since a has n coordinates encoded on 2
tokens, this results a 2n-dimensional vector, from which we
keep the odd positions (i.e. the high digits of the coordinates
of a), to generate an n-dimensional score vector V . A secret
guess s’ is then produces by setting the h largest coordinates
of V to one, and the rest to 0.

Direct recovery. PICANTE uses the same direct recovery
method as SALSA. This technique leverages the fact that
trained transformers can generalize to input they have not
seen at training. The trained model is run for special vectors a,
with only one non-zero coordinate: a = Kei with ei the i-
th basis vector of the n-dimension space, and K ∈ Zq. For
these vectors, since b = a · s+ e, and e is small, we should
have b≈ 0 if the i-th bit in the secret si = 0, and b≈K if si = 1.
Details can be found in [49]. In practice, we choose different
values K j and run the transformer on K j · ei for every index
i = 1, . . . ,n, identifying potential 1-bits in the secret as above.
This gives us a guess for a secret for each K j.

To obtain a score for each bit to be used in combination
methods, for each index i, we compute a score by summing
the resulting values of M (K j · ei) (or, equivalently, taking the
mean). We then guess the secret s′ by assuming that the h
coordinates with the largest scores are 1 and the rest are 0.

Distinguisher. PICANTE’s version of distinguisher recovery
improves upon that of SALSA. This technique is predicated on
trained model consistency. The general idea is that if the i-th
bit of the secret si = 0 and ei is the i-th standard basis vector,
then the model should predict close values for a and a+K ·ei.

SALSA’s distinguisher took a LWE sample (a,b) and com-

pared b with the model prediction b′ = M (a + K · ei) for
some random K ∈ Zq. This presupposed good model accu-
racy, i.e. M (a)≈ b, which often does not happen in practice.
In PICANTE, instead of comparing b′ =M (a+K ·ei) to b, we
compare it to M (a). The rest of the method is unchanged. The
secret guess is determined as in the Direct recovery method.

This new method brings two benefits. First it exploits
trained model consistency without requiring prediction ac-
curacy. In practice, this means recovery can happen earlier
during training, and even in cases when the model never learns
to predict accurately. Second, the SALSA distinguisher needed
LWE samples (a,b). Since PICANTE’s method no longer uses
b, the distinguisher can use randomly generated a. This re-
duces the number of LWE samples necessary for the attack.

This recovery method relies on a large number of model
evaluations, which makes it very slow. To improve its speed,
we use the same a across all secret bits si, therefore halving
the number of model evaluations.
Combined secret recovery. In our three recovery methods, a
score is computed for every bit in the secret. The secret guess
is computed by setting to one the h bits with the largest scores.
By combining the scores from different methods, we create
four additional techniques, which improve secret recovery (i.e.
can recover secrets when all three methods fail).

• Aggregated rank. The scores of each method are sorted
from largest to smallest, and replaced by their rank. For
each bit, the aggregated rank is 1) the highest of the ranks
(Highest Rank) or 2) the sum of the ranks (Sum Rank). The
h bits with the highest aggregated ranks are set to 1.

• Aggregated normalized scores. The scores of each method
are normalized to [0,1]. The h bits with the maximum nor-
malized scores (Max Normalized) or the highest sum of
normalized scores (Sum Normalized) are set to 1.

These combination rules amount to setting secret bits to 1
bit positions where all, some, or any of the secret recovery
methods have a high score. We use aggregated scores from
all subsets of the secret recovery methods. Other combina-
tion rules could be considered. These mixing techniques are
cheap to implement, because they do not require additional
transformer evaluation.

4.6 Experimental setting

All PICANTE experiments use the following assumptions.

• For each n, the modulus q is selected after consulting Table
1 in [12]. We set our q such that log2q is smaller than the
smallest successful attack reported there (see Table 2).

• For BKZ reduction parameters, we set ω = 15 for the error
penalization parameter, for all n. Block size and the LLL
parameter δ in fplll are set to 20 and 0.99 for all n ≤ 200.
To keep preprocessing time reasonable, we decrease these
values for n = 256, 300 and 350 (see Table 8).

7

• The error in the original LWE pairs is sampled from a
discrete Gaussian distribution, centered at 0, and with σ= 3.

• We aim to recover binary secrets with sparsity h/n≈ 10%.
We usually present recovery data for seven consecutive
Hamming weights around n/10.

• TINYLWE uses 4n randomly generated samples (a,b).
• For each n and q, we perform the preprocessing step on

random matrices A only once. Then we use that reduced
data for experiments with many different secrets and Ham-
ming weights. The samples are generated from the reduced
matrices RA by first generating b = A · s+ e and then com-
puting Rb. In TINYLWE, the matrices A do not come from
independent LWE samples, but are subsampled from the m
original LWE pairs (a,b). To generate the values Rb cor-
rectly, we must keep track of which pairs we subsampled.
We first generate the values b for the original LWE pairs,
and then compute Rb for b subsampled the same way as A.

• All transformers have the same architecture and number
of parameters (see Figure 2), except for ablation results on
dimension and attention heads are presented in § 6.2.

n q log2 q δ β base r

80 113 7 0.99 20 29 1
150 6421 13 0.99 20 1071 1
200 130769 17 0.99 20 21795 22

256 6139999 23 0.96 18 767500 27

300 94056013 27 0.96 16 11757002 211

350 3831165139 32 0.93 14 383116514 216

Table 2. PICANTE parameters. n: dimension, q: modulus, δ: delta-LLL
(BKZ), β: block-size (BKZ), base: encoding base, r: bucket size for encoding.

5 SALSA PICANTE’s Performance

5.1 Overall Performance
For n < 350, PICANTE recovers LWE secrets with sparsity
h/n≈ 10%, a significant improvement over SALSA. Perfor-
mance is slightly worse for n = 350 so far: the best Hamming
weight PICANTE has achieved is h = 25 (sparsity 7%), or
h = 26 with a larger architecture (Table 11). We believe this
is due to the BKZ parameters selected for preprocessing (see
the last line of Table 2), which may not have been aggressive
enough. Better reduction parameters, and hence longer pre-
processing times, may allow recovery of secrets with higher h.
Results for a range of Hamming weights in many dimensions
n are presented in Table 3.

PICANTE recovers binary secrets with the TinyLWE
approach (§4.2) using a linear number of sam-
ples for various Hamming weights in dimensions
n = 80,150,200,256,300,350. For each dimension n,
we fix a modulus q which is smaller than the q for which
the concrete lattice attacks in [12, Table 1] can recover

n, log2 q Hamming weight h

80, 7 4 5 6 7 8 9 10

success 3/5 3/5 2/5 2/5 1/20 1/20 0/20
epoch 2,5,6 0,1,4 0,3 0,8 3 4

150, 13 9 10 11 12 13 14 15

success 4/5 2/5 3/5 1/5 1/20 0/20 0/20
epoch 1,1,3,6 2,2 8,8,11 9 13

200, 17 17 18 19 20 21 22 23

success 3/5 2/5 3/5 1/5 2/5 2/20 0/20
epoch 1,1,8 2,11 2,3,9 7 7,10 12,17

256, 23 26 27 28 29 30 31 32

success 4/5 1/5 1/5 3/5 3/5 4/20 0/20
epoch 2,3,4,7 10 5 5,9,11 17,20,32 6,12,26,27

300, 27 28 29 30 31 32 33 34

success 2/5 2/5 1/5 1/5 2/5 1/5 0/20
epoch 6,7 6,13 11 11 21,31 39

350, 32 20 21 22 23 24 25 26

success 2/5 4/5 2/5 2/5 3/20 1/20 0/20
epoch 4,5 5,6,6,9 5,9 9,15 18,21,38 19

Table 3. Success rates and number of epochs. Highest recovered Hamming
weight is in bold.

Figure 3. Number of training epochs before secret recovery. For different
dimensions and Hamming weights.

secrets with blocksize roughly 40. The size of q is listed as
log2 q in Table 3 for each n. For each dimension n, we test
a range of Hamming weights for the secrets to test. In each
case, we show the boundary of Hamming weights where
secrets are recovered, along with the trends for the number
of successes in each trial, and in which training epoch the
secret is recovered. For example, in dimension n = 350, we
recovered the secret for h = 25 in one out of 20 trials, each
trial with a different secret. In that case, the success was
achieved in epoch 19 of the training. Experiments running
trials for the same secret, but different initialization seeds for
the model training are presented in § 6.3.

Figure 3 presents the number of epochs needed for secret
recovery, for different n and h. Although 66% of the success-
ful secret recoveries occurred in the first 10 epochs for the
dimensions and hamming weights we tested so far, we see the
number of epochs go up for larger n and h. There is a large
variance and it is unclear how the number of epochs grows as
we vary n, h, and q. Specifically, about 75% of the successful

8

experiments succeeded by epoch 4 for n = 80; by epoch 8
for n = 150; by epoch 13 for n = 200,256,300; and by epoch
18 for n = 350. Training for more epochs does not seem to
improve the success probability for lower Hamming weights,
but may lead to recovery of higher Hamming weights. We
observed this for n = 300, for which we reached the highest
h = 32,33 with more than 30 epochs.

Note that for a specific value of h, the number of epochs
needed for recovery can vary from one experiment to another.
This might be due to two factors: different secrets, or different
random initializations of the transformers, see § 6.3. Running
more trials with different initializations may achieve success
in an earlier epoch. However, since training time is not the
dominant cost in our approach, we are not currently focused
on optimizing for minimizing the number of epochs required.

5.2 TinyLWE vs LWE: few or many samples

PICANTE uses the TINYLWE subsampling technique intro-
duced in §4.2 to recover secrets from only 4n collected LWE
samples. By comparison, SALSA used 4 million LWE sam-
ples. Table 1 compares the performance of PICANTE using
TINYLWE, with PICANTE using 2.2 million collected LWE
samples, which we call LWE.

Dimension 80 150 200 256 300 350

TINYLWE max h 9 13 22 31 33 26
LWE max h 9 12 21 32 32 25

Table 4. TINYLWE vs LWE. Values: highest h recovered for each n.

There is little difference between the highest Hamming
weight of recovered secrets for TINYLWE and LWE (Table 4).
Reducing the initial LWE sample size seems to result in no
performance loss. In fact, we observe that TINYLWE some-
times recovers larger Hamming weights than LWE. See more
detailed comparison results in Table 16 in Appendix A.1.

5.3 Resources needed for PICANTE

The total cost of PICANTE is the sum of the resources needed
to preprocess data, train the model, and recover the secret.

n log2(q)
Cost per matrix

CPU.hours
Matrices
needed

Total cost
CPU.years

80 7 0.01 34,800 0.05
150 13 3.1 14,600 5.3
200 17 15.9 10,800 19.4
256 23 51.9 8,300 48.1
300 27 105.8 7,100 85.6
350 32 152.0 6,000 105

Table 5. Resources needed for preprocessing. Total resources needed to
produce 222 reduced samples, by reducing 221/n matrices. This operation
can be run in parallel for each matrix.

Data preprocessing is the most resource intensive part of
PICANTE. To generate 222 reduced samples, 221/n matrices
must be reduced (one n×n matrix produces 2n reduced sam-
ples, see § 4.1). As the dimension increases, the number of
matrices scales down linearly. To avoid the exponential cost
of BKZ-reduction [43], we fix the block size at most β = 20
so that the preprocessing step scales polynomially with n and
logq. See discussion of the parameter choices for preprocess-
ing in § 5.4 below. In practice, to save resources, we choose
smaller β for larger dimensions.

Table 5 reports the preprocessing resources (in cpu hours)
for each n. Our preprocessing is fully parallelizable. Using
the number of CPUs equal to the number of matrices needed
(221/n), one can complete the preprocessing in the time re-
quired to reduce one matrix (e.g. 152 hours for n = 350).
Model training and secret recovery. The cost of training
and recovery is proportional to the number of epochs needed
to recover the secret. In § 5.1, we observe large variations
of this number, for fixed dimension and Hamming weight.
Table 6 reports the average duration of one training epoch and
associated secret recovery. All models use the same number
of parameters, batch size (128) and epoch size (2 million
examples), and are trained on one NVIDIA V100 GPU.

Training time increases with dimension. This is expected,
as input sequence length is 2n, i.e. linear in the dimension n.
For secret recovery, the time required for each method is pro-
portional to the number of transformer inferences needed,
multiplied by the time required for each inference. The cross-
attention method uses a constant number of inferences. Direct
recovery uses 15n inferences; distinguisher recovery uses
200n. Like training, the time for a single inference scales lin-
early with n. Overall, cross-attention recovery scales linearly
with n, and direct and distinguisher scale quadratically.

As a result, whereas for n = 80, secret recovery only rep-
resents 10% of the overall cost of an epoch (i.e. training and
recovery), it accounts for almost 50% of the total cost for
n = 350, and the distinguisher method is responsible for more
than 45%. Overall cost could be reduced by not running the
distinguisher for all epochs, e.g. waiting until the model has
reached a certain accuracy, or running the distinguisher every
other epoch. We report the total cost of training and recov-
ery on one GPU, but we can reduce the time significantly by
parallelizing across many GPUs. Secret recovery could be
run in parallel on a separate machine, and even on different
machines for different epochs.

5.4 Effect of preprocessing
Through extensive experimentation in many dimensions, we
observed that preprocessing was a critical step to help the
transformer to learn and to recover high Hamming weight
secrets. Preprocessing using BKZ changes the distribution of
both the size of the entries of A modulo q (shown for n = 150
in Figure 4) and the norm of its rows (see Figure 5). Note that

9

n 80 150 200 256 300 350
logq 7 13 17 23 27 32

Training 41.9 52.2 67.8 81.5 91.8 104.5

Total rec. 4.6 10.1 28.0 54.5 73.3 99.9
CA 0.4 0.8 1.1 1.6 2.0 2.5
Direct 0.4 0.8 2.0 3.0 5.0 6.4
Dist. 3.8 8.5 24.9 49.9 66.3 91.0

Total 46.5 62.3 95.8 135.9 165.0 204.4

Table 6. Training and recovery time per epoch (minutes). All models
are trained on a single NVIDIA V100 GPU. Total rec.: total time for Secret
recovery; CA: Cross attention; Dist.: Distinguisher method.

we are not trying to obtain the shortest vector in the lattice
like the classical uSVP, decoding, and dual attacks.

N
u
m

b
er

 o
f
en

tr
ie

s

1e5

4e5

3e5

2e5

No reduction BKZ (0.96, 16)

BKZ (0.99, 20)

Entry values Entry values
0 2000 4000 6000

1e5

4e5

3e5

2e5

0 2000 4000 6000

N
u
m

b
er

 o
f
en

tr
ie

s BKZ (0.96, 20)

Figure 4. Distribution of sample entry values as strength of norm reduc-
tion increases (n = 150, q = 6421). BKZ parameters listed as BKZ (β,δ).

Sample norm

BKZ
BKZ
BKZ
No reduction

N
u
m

b
er

 o
f
sa

m
p
le

s 3000

1000

1500

2000

2500

500

0
10000 15000 20000 25000

Figure 5. Distribution of sample norms as strength of norm reduction
increases (n = 150). BKZ parameters listed as BKZ (β,δ).

To determine how much preprocessing to do, we experi-
mented with setting targets for the standard deviation of the
entries of the rows. For random matrices Arandom, the standard
deviation of the entries is std(Arandom) ≈ q/

√
12 ≈ 0.29q.

Empirically we observed that if we reduce the standard devia-
tion of the entries to about 35% of that of a random matrix,
i.e. std(A)≈ 0.35std(Arandom)≈ 0.1q, we achieved success
in transformer learning and secret recovery. In practice we

decide which parameters β and δ to use in BKZ in fplll by pro-
cessing a single matrix A with various choices and selecting
the parameters which give us std(A)/std(Arandom)≤ 0.35 to
process the rest of the 221/n matrices.

For n= 150 and q= 6421 we show the effect of preprocess-
ing — starting with no preprocessing and increasing δ, β pa-
rameters until we reach those used in PICANTE. Table 7 shows
the highest h secret recovered. With no preprocessing, we
were not able to recover any of the secrets for h ∈ {3, . . . ,6};
PICANTE succeeds in recovering secrets with h = 12.

δ - 0.96 0.96 0.99
β - 16 20 20

highest h - 5 8 12
std(A)/std(Arandom) 1 0.667 0.578 0.526
norm(A)/norm(Arandom) 1 0.669 0.581 0.528
entropy(A)/entropy(Arandom) 1 0.973 0.957 0.946
cost / matrix (minutes) 0 30 54 188
time out (minutes) - 60 120 333

Table 7. Highest Hamming weight secret recovered for varying δ and β

(n = 150, q = 6421). std(A): standard deviation of A’s coefficients post-
reduction; norm(A): average norm of A’s rows post-reduction; entropy:
entropy of A’s coefficients. The last column are PICANTE’s parameters.

Table 8 presents the highest Hamming weight recovered
and standard deviations of reduced A for different n. We
observe that, contrary to BKZ-based lattice attacks on LWE,
we can reduce block size and δ for larger dimensions (n= 256
and 300), yet recover secrets with ≥ 10% sparsity. On the
other hand, the n = 350 results (sparsity 7%) may be caused
by low β and δ values, chosen to reduce preprocessing time.

n log2 q δ β std(A)/std(Arandom) max h

80 7 0.99 20 0.776 9
150 13 0.99 20 0.527 13
200 17 0.99 20 0.399 22
256 23 0.96 18 0.331 31
300 27 0.96 16 0.320 33
350 32 0.93 14 0.335 25

Table 8. Preprocessing parameters for BKZ in fplll for PICANTE’s best
secret recoveries. β : block size, δ : LLL_DELTA.

6 Additional Results

6.1 Effect of encoding base
In this section, we discuss the impact of B, the base we use
to encode b and the coordinates of a (§ 4.3). Table 9 presents
the impact of different base choices, for n = 150. For this
dimension, no buckets are used, i.e. r = 1. To keep input
sequences short, we want all integers up to q to be encoded on
two tokens, i.e. B≥√q. However, we note that values of B
close to

√
q result in worse secret recovery. Experimentally,

10

base h = 9 h = 10 h = 11 h = 12

81≈√q 1/5 0/5 0/5 0/5
402≈ q/16 3/5 2/5 0/5 0/5
803≈ q/8 3/5 2/5 2/5 2/5

1071≈ q/6 4/5 2/5 3/5 1/5
1606≈ q/4 3/5 2/5 0/5 0/5

Table 9. Secret recovery rate for different bases B. n = 150, q = 6421.
PICANTE parameters and results are in bold.

Encoding Hamming weight h
base B r 26 27 28 29

2478≈√q 1 0/5 0/5 0/5 0/5

383750≈ q/16
32 4/5 1/5 1/5 0/5

128 3/5 2/5 1/5 3/5
512 4/5 2/5 1/5 3/5

767500≈ q/8
32 4/5 1/5 1/5 1/5

128 4/5 1/5 1/5 3/5
512 4/5 2/5 1/5 3/5

1535000≈ q/4
32 0/5 0/5 0/5 0/5

128 0/5 0/5 0/5 0/5
512 1/5 0/5 0/5 0/5

Table 10. Secret recovery rates for different bases B and bucket sizes r.
n = 256, q = 6139999. PICANTE parameters are in bold.

we observe that the highest recovery rates are achieved when
B = ⌊q/k⌋ with k = 6 or 8.

We now study the impact of base B and bucket size r for n=
256 and q = 6139999. Our choice of base B = ⌊q/k⌋ would
result in a vocabulary that is too large for the transformer.
Hence, we need to tokenize the low order digits in buckets
of size r as in § 4.3. We notice that a low value of B ≈ √q
prevents secret recovery, as does B = q/4. For B = q/8 and
q/16, we note the comparable performance for r = 128 (our
choice on the basis of vocabulary size) and r = 512.

6.2 Effect of model architecture

All PICANTE experiments use the same transformer archi-
tecture (see § 4.4 for details). For large problem dimension,
SALSA reported improved performance with larger models,
specifically increased embedding dimensions. Also, the num-
ber of attention heads used in PICANTE, 4 in the encoder and
decoder, is low, compared to common transformer architec-
tures. Most transformers with 512 dimensions use 8 heads. In
this section, we investigate the impact of larger dimensions
and number of heads in the encoder and decoder, on secret
recovery rate (Table 11), for n = 350. We note that increas-
ing dimension and heads do not result in better performance.
This contrasts with results in NLP, where performance usually
increases with model size.

embedding size
encoder/decoder

number of attention heads
encoder/decoder/cross attention

4/4/4 4/4/8 4/4/16 8/8/8 8/8/16

1024 / 512 25 23 24 - -
1024 / 768 - 26 24 24 23
1280 / 512 - 24 23 26 22
1280 / 768 - 24 23 23 23

Table 11. Effect of model architecture on PICANTE’s performance. Data
shown is the highest Hamming weight recovered over n = 350 TINYLWE.
PICANTE’s parameters are in bold.

Experiment Success Mean epoch Min, max epochs

1 20/20 4.2 2, 7
2 12/20 12.1 8, 25
3 15/20 9.1 6, 16
4 0/20 - -

Table 12. Effect of model initialization on secret recovery. n= 200, h= 19.

6.3 Effect of model initialization
Transformer parameters are randomly initialized before train-
ing, and their initial values may impact their performance,
a phenomenon known as “lottery tickets”: models learning
better, or faster, for some initial parameter values. We explore
this effect in 4 experiments, with different secrets, for n = 200
and h = 19. Each experiment in Table 12 has a different se-
cret; for each secret we train 20 transformers, each initialized
with a different seed.

In experiment 1, the secret is recovered for all 20 different
seeds, in epochs 2 to 7. For experiments 2 and 3, the secret is
recovered about 3/4 of the time, between 6 and 25 epochs. In
experiment 4, the secret is never recovered.

This sheds light on results from § 5.1: we observed that,
for given n and h, the number of epochs needed for secret
recovery varied a lot. Initialization seems an important factor.

This suggests a possible improvement to PICANTE in sit-
uations where large computing resources are available. By
training several transformers, with different initialization, on
the same reduced data, we not only increase our chances of se-
cret recovery, but can also improve training speed, by ending
training on all models as soon as one recovers the secret.

6.4 Secret recovery methods
PICANTE leverages 4 secret recovery methods (§ 4.5): distin-
guisher, direct, cross-attention, and combined. The first three
methods output bit scores and secret guesses s′. The bit scores
rank the likelihood of individual secret bits having value 1.
The combined secret recovery method allows PICANTE to
create additional secret guesses by aggregating the scores of
the previous methods. Table 13 reports the successes/attempts
of all secret recovery methods for TINYLWE. We only report

11

the method(s) that succeed first: we terminate the experiment
after successful recovery. We say that the combined method
is successful if and only if it recovered the secret when no
individual method would. If an individual method succeeds,
the combined method typically succeeds as well.

n, log2 q Hamming weight h

80, 7 4 5 6 7 8 9 10

success 3/5 3/5 2/5 2/5 1/20 1/20 0/20
Distinguisher 3/5 3/5 2/5 2/5 1/20 1/20 0/20
Direct 2/5 1/5 1/5 1/5 1/20 1/20 0/20
Cross-attention 3/5 1/5 2/5 0/5 1/20 0/20 0/20
Combined 0/5 0/5 0/5 0/5 0/20 0/20 0/20

150, 13 9 10 11 12 13 14 15

success 4/5 2/5 3/5 1/5 1/20 0/20 0/20
Distinguisher 2/5 1/5 2/5 0/5 0/20 0/20 0/20
Direct 2/5 0/5 0/5 0/5 1/20 0/20 0/20
Cross-attention 1/5 0/5 1/5 1/5 0/20 0/20 0/20
Combined 0/5 1/5 0/5 0/5 0/20 0/20 0/20

200,17 17 18 19 20 21 22 23

success 3/5 2/5 3/5 1/5 2/5 2/20 0/20
Distinguisher 2/5 1/5 2/5 1/5 0/5 0/20 0/20
Direct 0/5 0/5 1/5 0/5 0/5 0/20 0/20
Cross-attention 1/5 0/5 0/5 0/5 0/5 1/20 0/20
Combined 0/5 1/5 1/5 0/5 2/5 1/20 0/20

256, 23 26 27 28 29 30 31 32

success 4/5 1/5 1/5 3/5 3/5 4/20 0/20
Distinguisher 3/5 1/5 1/5 1/5 1/5 0/20 0/20
Direct 0/5 0/5 0/5 0/5 0/5 0/20 0/20
Cross-attention 2/5 0/5 1/5 3/5 2/5 2/20 0/20
Combined 1/5 0/5 0/5 0/5 0/5 2/20 0/20

300, 27 28 29 30 31 32 33 34

success 2/5 2/5 1/5 1/5 2/5 1/5 0/20
Distinguisher 2/5 0/5 0/5 0/5 0/5 0/5 0/20
Direct 0/5 0/5 0/5 0/5 0/5 0/5 0/20
Cross-attention 1/5 2/5 1/5 0/5 1/5 1/5 0/20
Combined 0/5 0/5 0/5 1/5 1/5 0/5 0/20

350, 32 20 21 22 23 24 25 26

success 2/5 4/5 2/5 2/5 3/20 1/20 0/20
Distinguisher 1/5 2/5 2/5 1/5 0/20 0/20 0/20
Direct 0/5 0/5 0/5 0/5 0/20 0/20 0/20
Cross-attention 1/5 1/5 1/5 1/5 1/20 1/20 0/20
Combined 1/5 2/5 0/5 0/5 2/20 0/20 0/20

Table 13. Secret recovery successes/attempts for PICANTE’s four recov-
ery methods. For each (n, q, h) setting, we report the number of secrets
PICANTE recovers out of attempted attacks (“success” row) and the number
of recoveries by each individual method (“Distinguisher” through “Combined”
rows). If two methods succeed in the same training epoch, we report both
successes, so individual recoveries may exceed the number of total successes.
Combined method successes are only reported when all other methods fail.

Two trends are evident in Table 13. First, the direct recovery
method is outperformed by other methods as n increases. It
works well at n = 80, but for n≥ 256, it is either slower than
other methods or fails to recover the secret. Recall that direct
recovery works when for every bit of the secret, the model
predictions M (K ·ei) corresponds to the secret bit: large when
the secret bit is 1 and small otherwise. This happens with
lower probability as n grows. Second, the combined recovery
method performs better as n increases. Probably for larger n,
individual methods cannot glean information about all secret
bits, but each gains some information about certain bits. Thus,
combining their scores may lead to additional recoveries.

7 Comparison to Existing Attacks on LWE

In practice, the training stage of PICANTE takes less time than
pre-processing the data (see Table 5 and Table 6 in § 5.3),
so we focus on comparing the cost of preprocessing with
the cost of classical lattice reduction attacks such as uSVP,
decoding, and dual attacks. As PICANTE uses the fplll package
for lattice reduction algorithms, we compare the running times
of PICANTE with the uSVP attack, run using fplll.

The LWE Estimator software package [5] is used to esti-
mate the cost of classical lattice reduction attacks. The LWE
Estimator uses theoretical formulas and heuristic estimates to
predict which block size will be required for BKZ to recover
the secret for a given lattice parameter size. These estimates
are widely used to set parameters and estimate security at pa-
rameter sizes for which it is impossible to actually run these
classical attacks (they would not terminate in our lifetimes).
Concrete running times for actual successful attacks can be
found in a few places in the literature, e.g. in [4,8,12,28], and
we find those useful for comparison here. In particular, for
dimensions n≤ 200, we chose values of logq strictly smaller
than those used in [12]; for dimensions n = 256,300 and 350,
we use much smaller values of logq than [28]: for instance,
for n = 350, we use logq = 32, much smaller than the value
logq = 52 in [28].

We present here 3 ways to quantify, estimate, and compare
with pure lattice reduction attacks: the LWE estimator, con-
crete timings for running the uSVP attack at small sizes, and
theoretical and heuristic formulas.
LWE Estimator. Table 14 presents the block size and es-
timated cost for classical attacks, to compare against PI-
CANTE’s successful secret recoveries (using the highest h
achieved by PICANTE). LWE Estimator [5] costs are listed
in terms of the number of operations in Zq, the cost of which
can be approximated by (logq)2.

For example, for n = 256, the LWE estimator predicts that
the uSVP attack should succeed with block size 40 and cost
about 241.8 operations in Zq. PICANTE uses block size 18.
Concrete running times. Table 15 presents concrete running
times for the following attack: We run the primal uSVP attack,

12

n q best attack cost block size

80 113 BDD 248.0 β = 63
150 6421 BDD 242.7 β = 44
200 130769 BDD 241.8 β = 41
256 6139999 uSVP/BDD 241.8 β = 40
300 94056013 uSVP 241.9 β = 40
350 3831165139 uSVP 242.0 β = 40

Table 14. LWE Estimator [5] estimates for PICANTE’s most successful
recoveries (see Table 1). Cost: number of operations in Zq.

using Kannan’s embedding and BKZ2.0 [15] with different
block sizes. The dimension for the Kannan’s embedding is de-
termined as in [12]. We choose block sizes close to the block
size predicted by the LWE Estimator and compare PICANTE
against attacks with similar success probability.

We ran the classical attacks for dimensions up to n = 256
with the block size predicted by the LWE Estimator (β = 40).
For n = 300,350, already the first loop in BKZ takes longer
than 3 days; we expect the full attack to take several weeks.

The uSVP attack was run using the fplll package on the
same machine as the norm-reduction step of PICANTE. We did
not use any optimization for either of the attacks. We see that
for n = 80 and h = 9, PICANTE with β = 20 achieves similar
success to uSVP with β = 60. The uSVP attack takes about
10 hours to succeed; the time spent on data preprocessing
for PICANTE is negligible with enough parallelization, and
the training (run on 1 GPU) for successful recoveries took
5 epochs of about 0.8 hours each. The minimal time spent
by PICANTE is therefore about 4 hours. For n = 256 and
h = 31, the uSVP attack with block size β = 35 (smaller than
predicted by the LWE estimator) takes about 280 hours to
succeed on average; PICANTE with sufficient parallelization
needs 52 hours for data pre-processing and about 19 hours
for training, so the total time is about 71 hours.

We stress that these timings are rough estimates. Note that
optimizations to lattice-reduction for the uSVP attack could
also speed up the data preprocessing of PICANTE. We did not
include any possible savings from parallelizing the training
and secret recovery methods (see § 5.3).
Theoretical analysis. Denote by BKZ(d,β) the (classical)
cost of BKZ reduction in dimension d with block size β. It
can be estimated [2] as

20.292β+c << BKZ(d,β)< 8d ·20.292β+c,

where the cost SV P(β) = 20.292β+c is the cost of the SVP ora-
cle in dimension β (a major step in the BKZ-reduction algo-
rithm). The constant c depends on the attack model—16.4 for
sieving and 0 for other analyses. The upper bound arises from
the estimate that 8 runs (full loops) of the BKZ-reduction, and
hence 8d calls to the SV P(β) oracle, are needed.

The uSVP attack solves the shortest vector problem in
dimension d > n; PICANTE applies the BKZ-reduction to

lattices of dimension d = 2n but keeps the block size close
to constant (β = 20, and decreases the block size in larger
dimensions for efficiency). We make this choice because the
cost of BKZ reduction scales exponentially with the block
size. While we do not know whether we can use constant
block size β = 20 for all dimensions, we do expect our block
size to grow slower than the block sizes required for lattice-
reduction attacks.
High level comparison. PICANTE compares with classical
lattice reduction attacks as follows: PICANTE succeeds in re-
covering the secret vector using much smaller block size than
pure lattice reduction attacks, at the expense of processing
many more matrices (2.2 million/n matrices). Because this
step is run in parallel, PICANTE recovers secrets faster than
the uSVP attack but uses many more CPUs for parallel pro-
cessing. As the dimension increases and/or logq decreases,
we expect the advantage of PICANTE to grow, due to the ex-
ponential cost of the lattice reduction attacks based on BKZ.
Future work may produce a more efficient way to preprocess
the data or reduce the amount of data needed for training.

8 Discussion

Our attack, PICANTE, demonstrates a dramatic improvement
over SALSA, the only prior work on attacking LWE with Ma-
chine Learning. PICANTE successfully recovers LWE binary
secrets with sparsity up to 10%, for dimensions up to 350.
It does so using only 4n samples, a realistic assumption in
practice. PICANTE’s performance is competitive with that of
known state-of-the-art attacks on LWE, particularly when suf-
ficient compute resources are available, as PICANTE’s novel
data preprocessing step can be run in parallel on many cores.
Ethical considerations. Although PICANTE demonstrates
significant progress towards attacking real-world LWE prob-
lems with sparse binary secrets, it cannot yet break prob-
lems with real-world-size parameters. In particular, the LWE
schemes standardized by NIST use random secrets and are
not vulnerable to the attacks presented here. Hence, we do
not believe our paper raises any ethical concerns. Nonethe-
less, we will share a copy of the current paper with the NIST
Cryptography group, to inform them of this progress.
Future directions. More work is needed to better understand
the effect of the data preprocessing step, since we observe that
we only need a 5% reduction of data entropy to succeed (Ta-
ble 7). Additionally, there may be better ways to preprocess
the data to improve transformer learning, which are less costly
than using BKZ. In the future, the model training and secret
recovery components of the attack could benefit from parallel
runs across multiple GPUs, given our observation that differ-
ent transformer initializations may result in different speeds of
secret recovery (§ 6.3). Furthermore, improvements to trans-
former architecture and secret recovery methods may enable
recovery of secrets with more complex parameter settings.

13

n, log2 q h

PICANTE uSVP attack with BKZ 2.0 and early-abort
Preprocessing Training

β success CPU.hrs # matrices CPU.hrs β success success time fail time
per matrix per epoch (CPU.hrs) (CPU.hrs)

80, 7
6, 7 20 4/10 0.01 34800 0.8

60 2/10 8, 12 7.8
65 6/10 9, 10, 14, 18, 40, 85 72.1

8, 9 20 2/40 0.01 34800 0.8
55 0/10 — 2.4
60 1/10 12 6.9

150, 13
9,10 20 6/10 3.1 14600 1.0

50 5/10 26, 30, 31, 35, 35 22.9
55 8/10 19, 19, 23, 23, 23, 23, 28, 28 22.7

11, 12 20 4/10 3.1 14600 1.0
50 2/10 22, 39 9.5
55 4/10 14, 19, 24, 33 5.6

200, 17
18, 19 20 5/10 16 10800 1.6 45 6/10 12, 13, 18, 21, 21, 21 7.7

20, 21 20 3/10 16 10800 1.6 45 3/10 13, 21, 25 12.9

256, 23
26, 27 18 5/10 52 8300 2.7 40 4/10 203, 221, 243, 265 189.1

28, 29 18 4/10 52 8300 2.7 35 7/10 238, 246, 249, 269, 284, 303, 348 241.9

30, 31 18 4/10 52 8300 2.7 35 5/10 231, 255, 263, 330, 336 171.7

Table 15. Concrete running times (CPU.hrs) for uSVP attacks and corresponding PICANTE costs. Training cost includes secret recovery time. PICANTE
uses BKZ, the uSVP attack uses BKZ2.0 [15], see the discussion in § 4.1. In all uSVP attacks, we use ω = round(

√
2σ) = 4. Legend: CPU.hrs: CPU hours. fail

time: average time for the failed experiments.

References
[1] AKKAYA, I., ANDRYCHOWICZ, M., CHOCIEJ, M., LITWIN, M., MC-

GREW, B., PETRON, A., PAINO, A., PLAPPERT, M., POWELL, G.,
RIBAS, R., ET AL. Solving rubik’s cube with a robot hand, 2019.
https://arxiv.org/abs/1910.07113.

[2] ALBRECHT, M., CHASE, M., CHEN, H., DING, J., GOLDWASSER,
S., GORBUNOV, S., HALEVI, S., HOFFSTEIN, J., LAINE, K., AND
LAUTER, K. E. A. Homomorphic encryption standard. In Protecting
Privacy through Homomorphic Encryption. Springer, 2021, pp. 31–62.
https://eprint.iacr.org/2019/939.

[3] ALBRECHT, M. R. On Dual Lattice Attacks Against Small-Secret
LWE and Parameter Choices in HElib and SEAL. In Advances in
Cryptology – EUROCRYPT 2017 (Cham, 2017), J.-S. Coron and J. B.
Nielsen, Eds., Springer International Publishing, pp. 103–129. https:
//eprint.iacr.org/2017/047.

[4] ALBRECHT, M. R., GÖPFERT, F., VIRDIA, F., AND WUNDERER,
T. Revisiting the expected cost of solving usvp and applications to
lwe. In Proc. of ASIACRYPT (2017), Springer, pp. 297–322. https:
//eprint.iacr.org/2017/815.pdf.

[5] ALBRECHT, M. R., PLAYER, R., AND SCOTT, S. On the concrete
hardness of learning with errors. Journal of Mathematical Cryptology
9, 3 (2015), 169–203. https://eprint.iacr.org/2015/046.

[6] AVANZI, R., BOS, J., DUCAS, L., KILTZ, E., LEPOINT, T., LYUBA-
SHEVSKY, V., SCHANCK, J. M., SCHWABE, P., SEILER, G., AND
STEHLÉ, D. CRYSTALS-Kyber (version 3.02) – Submission to
round 3 of the NIST post-quantum project. Available at https:
//pq-crystals.org/.

[7] BAHDANAU, D., CHO, K., AND BENGIO, Y. Neural machine trans-
lation by jointly learning to align and translate. In Proc. of ICLR
(2014).

[8] BAI, S., MILLER, S., AND WEN, W. A refined analysis of the cost
for solving LWE via uSVP. In Proc. of ASIACRYPT (2019), Springer,
pp. 181–205. https://eprint.iacr.org/2019/502.pdf.

[9] BRAKERSKI, Z., LANGLOIS, A., PEIKERT, C., REGEV, O., AND
STEHLÉ, D. Classical Hardness of Learning with Errors. In Proc.
of the Forty-Fifth Annual ACM Symposium on Theory of Computing
(2013). https://arxiv.org/abs/1306.0281.

[10] CARION, N., MASSA, F., SYNNAEVE, G., USUNIER, N., KIRILLOV,
A., AND ZAGORUYKO, S. End-to-end object detection with transform-
ers, 2020. https://arxiv.org/abs/2005.12872.

[11] CHARTON, F. Linear algebra with transformers, 2021. https://
arxiv.org/abs/2112.01898.

[12] CHEN, H., CHUA, L., LAUTER, K., AND SONG, Y. On the Concrete
Security of LWE with Small Secret. Cryptology ePrint Archive, Paper
2020/539, 2020. https://eprint.iacr.org/2020/539.

[13] CHEN, H., AND HAN, K. Homomorphic lower digits removal and im-
proved fhe bootstrapping. In Advances in Cryptology – EUROCRYPT
2018 (Cham, 2018), J. B. Nielsen and V. Rijmen, Eds., Springer Interna-
tional Publishing, pp. 315–337. https://eprint.iacr.org/2018/
067.

[14] CHEN, L., MOODY, D., LIU, Y.-K., ET AL. PQC Standard-
ization Process: Announcing Four Candidates to be Standard-
ized, Plus Fourth Round Candidates. US Department of Com-
merce, NIST (2022). https://csrc.nist.gov/News/2022/
pqc-candidates-to-be-standardized-and-round-4.

[15] CHEN, Y., AND NGUYEN, P. Q. BKZ 2.0: Better Lattice Security
Estimates. In Proc. of ASIACRYPT 2011 (2011).

[16] CHEON, J. H., KIM, A., KIM, M., AND SONG, Y. Homomorphic
encryption for arithmetic of approximate numbers. In Proc. of ASI-
ACRYPT (2017).

[17] CHEON, J. H., KIM, D., LEE, J., AND SONG, Y. Lizard: Cut Off
the Tail! A Practical Post-quantum Public-Key Encryption from LWE
and LWR. In Security and Cryptography for Networks (Cham, 2018),
D. Catalano and R. De Prisco, Eds., Springer International Publishing,
pp. 160–177. https://eprint.iacr.org/2016/1126.pdf.

[18] CHO, K., VAN MERRIENBOER, B., GULCEHRE, C., BAHDANAU, D.,
BOUGARES, F., SCHWENK, H., AND BENGIO, Y. Learning phrase

14

https://arxiv.org/abs/1910.07113
https://eprint.iacr.org/2019/939
https://eprint.iacr.org/2017/047
https://eprint.iacr.org/2017/047
https://eprint.iacr.org/2017/815.pdf
https://eprint.iacr.org/2017/815.pdf
https://eprint.iacr.org/2015/046.
https://pq-crystals.org/
https://pq-crystals.org/
https://eprint.iacr.org/2019/502.pdf
https://arxiv.org/abs/1306.0281
https://arxiv.org/abs/2005.12872
https://arxiv.org/abs/2112.01898
https://arxiv.org/abs/2112.01898
https://eprint.iacr.org/2020/539
https://eprint.iacr.org/2018/067
https://eprint.iacr.org/2018/067
https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4
https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4
https://eprint.iacr.org/2016/1126.pdf

representations using rnn encoder-decoder for statistical machine trans-
lation. In Proc. of EMNLP (2014).

[19] CSORDÁS, R., IRIE, K., AND SCHMIDHUBER, J. The Neural Data
Router: Adaptive Control Flow in Transformers Improves Systematic
Generalization. In Proc. of ICML (2022).

[20] CURTIS, B. R., AND PLAYER, R. On the feasibility and impact
of standardising sparse-secret LWE parameter sets for homomor-
phic encryption. In Proc. of the 7th ACM Workshop on Encrypted
Computing & Applied Homomorphic Cryptography (2019). https:
//eprint.iacr.org/2019/1148.

[21] DEHGHANI, M., GOUWS, S., VINYALS, O., USZKOREIT, J., AND
KAISER, Ł. Universal transformers. In Proc. of ICLR (2019).

[22] DEVELOPMENT TEAM, T. F. fplll, a lattice reduction library, Version:
5.4.4. Available at https://github.com/fplll/fplll, 2023.

[23] DONG, L., XU, S., AND XU, B. Speech-transformer: A no-recurrence
sequence-to-sequence model for speech recognition. In Proc. of
ICASSP (2018).

[24] DOSOVITSKIY, A., BEYER, L., KOLESNIKOV, A., WEISSENBORN,
D., ZHAI, X., UNTERTHINER, T., DEHGHANI, M., MINDERER, M.,
HEIGOLD, G., GELLY, S., USZKOREIT, J., AND HOULSBY, N. An
image is worth 16x16 words: Transformers for image recognition at
scale. In Proc. of ICLR (2021).

[25] DUCAS, L., KILTZ, E., LEPOINT, T., LYUBASHEVSKY, V., SCHWABE,
P., SEILER, G., AND STEHLÉ, D. CRYSTALS-Dilithium – Algorithm
Specifications and Supporting Documentation (Version 3.1). Available
at https://pq-crystals.org/.

[26] KANNAN, R. Minkowski’s Convex Body Theorem and Integer Pro-
gramming. Mathematics of Operations Research 12 (1987), 415–440.

[27] KINGMA, D. P., AND BA, J. Adam: A method for stochastic optimiza-
tion. In Proc. of ICLR (2015).

[28] LAINE, K., AND LAUTER, K. Key recovery for lwe in polynomial
time. Cryptology ePrint Archive (2015). https://eprint.iacr.
org/2015/176.pdf.

[29] LAMPLE, G., AND CHARTON, F. Deep learning for symbolic mathe-
matics. In Proc. of ICLR (2020).

[30] LENSTRA, H. J., LENSTRA, A., AND LOVÁSZ, L. Factoring polyno-
mials with rational coefficients. Mathematische Annalen 261 (1982),
515–534.

[31] LYUBASHEVSKY, V., AND MICCIANCIO, D. On bounded distance
decoding, unique shortest vectors, and the minimum distance problem.
In Proc. of Advances in Cryptology - CRYPTO 2009 (2009), S. Halevi,
Ed. https://doi.org/10.1007/978-3-642-03356-8_34.

[32] MICCIANCIO, D., AND VOULGARIS, P. Faster exponential time algo-
rithms for the shortest vector problem. In Proceedings of the Twenty-
First Annual ACM-SIAM Symposium on Discrete Algorithms (2010),
p. 1468–1480.

[33] PEIKERT, C. Public-Key Cryptosystems from the Worst-Case Shortest
Vector Problem: Extended Abstract. In Proc. of the Forty-First Annual
ACM Symposium on Theory of Computing (2009). https://eprint.
iacr.org/2008/481.

[34] POLU, S., AND SUTSKEVER, I. Generative language modeling for
automated theorem proving, 2020. https://arxiv.org/abs/2009.
03393.

[35] RADFORD, A., NARASIMHAN, K., SALIMANS, T., AND SUTSKEVER,
I. Improving language understanding by generative pre-training.
OpenAI blog (2018). https://s3-us-west-2.amazonaws.com/
openai-assets/research-covers/language-unsupervised/
language_understanding_paper.pdf.

[36] RADFORD, A., WU, J., CHILD, R., LUAN, D., AMODEI, D.,
SUTSKEVER, I., ET AL. Language models are unsupervised
multitask learners. OpenAI blog (2019). https://d4mucfpksywv.
cloudfront.net/better-language-models/language_models_
are_unsupervised_multitask_learners.pdf.

[37] RAMESH, A., PAVLOV, M., GOH, G., GRAY, S., VOSS, C., RAD-
FORD, A., CHEN, M., AND SUTSKEVER, I. Zero-shot text-to-image
generation, 2021. https://arxiv.org/abs/2102.12092.

[38] REGEV, O. Quantum computation and lattice problems. SIAM Journal
on Computing 33, 3 (2004), 738–760.

[39] REGEV, O. On Lattices, Learning with Errors, Random Linear Codes,
and Cryptography. In Proc. of the Thirty-Seventh Annual ACM Sym-
posium on Theory of Computing (2005). https://dblp.org/rec/
journals/corr/cs-DS-0304005.bib.

[40] RIVEST, R. L., SHAMIR, A., AND ADLEMAN, L. A method for obtain-
ing digital signatures and public-key cryptosystems. Communications
of the ACM (1978).

[41] ROGEZ, G., WEINZAEPFEL, P., AND SCHMID, C. Lcr-net:
Localization-classification-regression for human pose. In Proc. of
CVPR (2017).

[42] ROTHE, R., TIMOFTE, R., AND VAN GOOL, L. Dex: Deep expectation
of apparent age from a single image. In Proc. of ICCV (2015).

[43] SCHNORR, C. A hierarchy of polynomial time lattice basis reduction
algorithms. Theoretical Computer Science 53, 2 (1987), 201–224.

[44] SCHNORR, C. P., AND EUCHNER, M. Lattice basis reduction: Im-
proved practical algorithms and solving subset sum problems. Mathe-
matical Programming 66, 1-3 (Aug. 1994), 181–199.

[45] SCHRITTWIESER, J., ANTONOGLOU, I., HUBERT, T., SIMONYAN,
K., SIFRE, L., SCHMITT, S., GUEZ, A., LOCKHART, E., HASSABIS,
D., GRAEPEL, T., ET AL. Mastering ATARI, Go, Chess and Shogi by
planning with a learned model. Nature 588, 7839 (2020), 604–609.

[46] Microsoft SEAL (release 4.1). https://github.com/Microsoft/
SEAL, Jan. 2023. Microsoft Research, Redmond, WA.

[47] VASWANI, A., SHAZEER, N., PARMAR, N., USZKOREIT, J., JONES,
L., GOMEZ, A. N., KAISER, L., AND POLOSUKHIN, I. Attention is
all you need. In Proc. of NeurIPS (2017).

[48] WANG, Y., MOHAMED, A., LE, D., LIU, C., XIAO, A., MA-
HADEOKAR, J., HUANG, H., TJANDRA, A., ZHANG, X., ZHANG, F.,
AND ET AL. Transformer-based acoustic modeling for hybrid speech
recognition. Proc. of ICASSP (2020).

[49] WENGER, E., CHEN, M., CHARTON, F., AND LAUTER, K. Salsa:
Attacking lattice cryptography with transformers, 2022. https://
arxiv.org/abs/2207.04785.

15

https://eprint.iacr.org/2019/1148
https://eprint.iacr.org/2019/1148
https://github.com/fplll/fplll
https://pq-crystals.org/
https://eprint.iacr.org/2015/176.pdf
https://eprint.iacr.org/2015/176.pdf
https://doi.org/10.1007/978-3-642-03356-8_34
https://eprint.iacr.org/2008/481
https://eprint.iacr.org/2008/481
https://arxiv.org/abs/2009.03393
https://arxiv.org/abs/2009.03393
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://arxiv.org/abs/2102.12092
https://dblp.org/rec/journals/corr/cs-DS-0304005.bib
https://dblp.org/rec/journals/corr/cs-DS-0304005.bib
https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL
https://arxiv.org/abs/2207.04785
https://arxiv.org/abs/2207.04785

A Appendix

A.1 Comparison of TINYLWE and LWE
Table 16 compares secret recovery performance of models
trained using samples generated via PICANTE’s TinyLWE
approach (4n initial samples) vs. a baseline approach (222

initial samples).

Setting Hamming weight h

n = 80 4 5 6 7 8 9 10
TinyLWE 3/5 3/5 2/5 2/5 1/20 1/20 0/20

LWE 5/5 4/5 3/5 3/5 0/20 1/20 0/20

n = 150 9 10 11 12 13 14 15
TinyLWE 4/5 2/5 3/5 1/5 1/20 0/20 0/20

LWE 5/5 2/5 2/5 1/20 0/20 0/20 0/20

n = 200 17 18 19 20 21 22 23
TinyLWE 3/5 2/5 3/5 1/5 2/5 2/20 0/20

LWE 3/5 2/5 1/5 1/5 2/20 0/20 0/20

n = 256 26 27 28 29 30 31 32
TinyLWE 4/5 1/5 1/5 3/5 3/5 4/20 0/20

LWE 3/5 2/5 3/5 3/5 1/5 3/20 2/20

n = 300 28 29 30 31 32 33 34
TinyLWE 2/5 2/5 1/5 1/5 2/5 1/5 0/20

LWE 1/5 3/5 2/5 1/5 1/5 0/5 0/20

n = 350 20 21 22 23 24 25 26
TinyLWE 2/5 4/5 2/5 2/5 3/20 1/20 0/20

LWE 3/5 5/5 1/5 4/5 5/20 2/20 0/20

Table 16. Secret recovery performance: TINYLWE vs. LWE. Reported
values are successes/attempts across different n and h settings.

A.2 Statistical properties of secret verification
At the end of the secret recovery phase, we are provided a
secret guess s′, that we need to check. To do so, we use the
original m = 4n LWE samples (ai,bi), and compute the m
residuals ri = bi−ai · s′. If the secret is recovered, we expect
the ri to have the same standard deviation as a LWE sample,
i.e. σ. Otherwise, we expect the standard deviation to be that
of the uniform distribution, i.e. q/

√
12.

The standard deviation of residuals is estimated by the
classical formula:

σemp =

√
1

m−1

m−1

∑
i=0

(ri− r)2

The lower and higher confidence intervals, with level
100(1−α)% are

σemp

√
m−1

χ2
α/2,m−1

and

σemp

√
m−1

χ2
(1−α)/2,m−1

Since m > 100, we approximate the chi-square distribution
with m− 1 degrees of freedom by the normal distribution
N (m−1,2m−2). Table 17 provides estimates of the confi-
dence intervals at level 0.001% for different values of n, and
around σ = 3 and q/

√
12.

n m Right (σ = 3) Wrong (q/
√

12)

80 320 [2.58, 3.72] [28.08, 40.45]
150 600 [2.68, 3.48] [1.65×103,2.15×103]
200 800 [2.71, 3.40] [3.42×104, 4.28×104]
256 1024 [2.74, 3.34] [1.62×106, 1.98×106]
300 1200 [2.76,3.31] [2.50×107, 3.00×107]
350 1400 [2.78, 3.29] [1.02×109, 1.21×109]

Table 17. Confidence intervals (0.001%) for secret verification.
Confidence level 0.001%. Right: the secret is correctly predicted
(σ = 3). Wrong: the secret is incorrectly predicted (σ = q/

√
12). q

from Table 2.

For instance, for n= 80, we have m= 320 and q= 113. The
0.001% level confidence interval for a correct secret predic-
tion (i.e. measuring σ= 3) is [2.58,3.72]. For an incorrect pre-
diction (measuring σ = q/

√
12 = 32.62), it is [28.08,40.45].

Since the two intervals do not overlap, the sample size we
use (m) is large enough to verify secret guesses (with quasi-
certitude). As dimension increases, the confidence intervals
are further apart. This proves our claim that the original 4n
LWE samples are sufficient to verify model predictions.

A.3 Understanding secret recovery

Tr
ai

n
in

g
ep

o
ch

Ranks of secret 1-bits (lower is better)

Distinguisher
Cross-attention (CA)
Summed Distinguisher + CA

Figure 6. Change in secret bit ranking as model training progresses
(n = 350 recovery).

We illustrate PICANTE’s secret recovery in Figure 6 for
a successful n = 350 experiment, in which the combined
method recovers the secret in epoch 5. Figure 6 shows how the

16

rankings of the 1-bits of the secret change throughout training.
Our recovery methods guess as 1-bits the first h ranks, so a
successful secret recovery occurs when all 1-bits appear in
the first h slots along the x-axis.

Over time, distinguisher and CA methods learn better ranks
for true secret 1-bits. By epoch 5, the combined method,
which sums the ranks of distinguisher and CA methods, can
correctly guess the secret. We do not include direct recovery
results because of its poor performance for large n.

Plotting Figure 6 requires knowledge of the secret s, and
we leverage this knowledge here for illustrative purposes only.
We reiterate that PICANTE can validate secret guesses without
the knowledge of the secret, using verification as in § 4.5.

17

	Introduction
	Background on LWE
	Lattice-based cryptography
	Attacks on LWE

	Introducing Salsa Picante
	Methods
	LWE data reduction
	TinyLWE: linear number of samples
	Encoding LWE pairs
	Models and training
	Secret Recovery
	Experimental setting

	Salsa Picante's Performance
	Overall Performance
	TinyLWE vs LWE: few or many samples
	Resources needed for Picante
	Effect of preprocessing

	Additional Results
	Effect of encoding base
	Effect of model architecture
	Effect of model initialization
	Secret recovery methods

	Comparison to Existing Attacks on LWE
	Discussion
	Appendix
	Comparison of TinyLWE and LWE
	Statistical properties of secret verification
	Understanding secret recovery

