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Abstract

Digital signatures ensure legitimate access through identity authentication.
It is also used to build blocks in blockchains and to authenticate transactions.
The Courtois-Finiasz-Sendrier (CFS) digital signature is a well-known code-
based digital signature scheme based on the Niederreiter cryptosystem. The
CFS signature, however, is not widely used due to the long processing time
required by its signing algorithm. Most code-based digital signature schemes
are based on Niederreiter. The present paper proposes a new code-based digital
signature based on the McEliece cryptosystem. The proposed McEliece code-
based scheme also gives less complexity and a higher success rate. The scheme
provides an efficient code-based algorithm to sign a document in a shorter pro-
cessing time. The scheme is also secure against public key structural attacks.
Key generation, signing, and verification algorithms are presented. The key
generation algorithm constructs three-tuple public keys using a dual inverse
matrix. The proposed signing scheme is the first code-based digital signature
based on McEliece with the lower processing time required to construct a valid
digital signature. The proposed signing algorithm also constructs smaller sig-
natures. In addition, the verification algorithm checks the integrity value to
avoid any forgery before final verification.
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1 Introduction

The first code-based cryptosystem was introduced by McEliece [1] and the second is the
Niederreiter cryptosystem [2], which is mainly used in code-based digital signatures [3].
The Shor algorithm indicates that quantum attacks are a serious threat to cryptographic
primitives [4]. Code-based cryptographic primitives [5] have been shown to be resistant to
quantum attacks. Recent technological developments have intensified this threat and there-
fore, the National Institute of Standards and Technology has considered various proposals
in the post-quantum era. Post-quantum cryptography [6] is the development of crypto-
graphic mechanisms [7–9] to secure systems against quantum attacks. The security of the
cryptosystem is based on the hardness of the decoding and code distinguishability prob-
lems [10, 11]. The inability to distinguish between the scrambled parity check matrix and
other random ones is an NP-problem [11, 12], so is decoding a linear code without the
knowledge of its algebraic structure [13].

The existing Niederreiter digital signatures are not widely used due to their long signing
process time. The drawback of code-based cryptosystems not used in digital signatures is
that the number of valid codewords is smaller than the vector space [14]. Thus the signed
document may not necessarily be decodable [15]. This increases the signing process time
as the algorithm tries to find a valid signature that the receivers can verify.

This paper proposes a McEliece-based digital signature scheme that covers the entire vec-
tor space so that a valid code-based digital signature can be generated with a higher success
rate and lower processing time without searching the entire vector space for a decodable
syndrome, like the CFS signature. The proposed algorithm is a code-based digital signa-
ture scheme with key generation, signing, and verification algorithms. The key generation
algorithm constructs a public key and a private key. These keys are used by signing and
verification algorithms to sign a chosen document that can successfully be verified on the
receiver’s side with forgery detection capability.

The main obstacle preventing code-based signatures from being widely used is that the
ciphertexts do not cover the entire vector space [14]. As a consequence, on average it takes
t! executions of the CFS code-based signatuer to find a valid signature [3]. This paper
propose a digital signature scheme that covers the entire vector space, so a valid code-
based digital signature can be generated with a higher success rate and lower processing
time.
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2 Review of the Linear Block Code

This section briefly deals with linear block codes. In modern communication systems,
redundant bits added to an information sequence are considered able to detect and correct
errors introduced by a noisy channel. In a communication system, the channel encoder
assigns a binary sequence codeword ccc = (c1,c2, ...,cn) to a message mmm = (m1,m2, ...,mk).
For a k-tuple message mmm, there would be 2k distinct messages and codewords. The set of
all 2k codewords is referred to as a C(n,k) block code. The length of a C(n,k) block code
is shown by n and k denoting dimension where k ≤ n.

The channel encoder adds redundancy in the binary information sequence to the transmitted
codewords, so each codeword has n− k redundant bits more than the message associated
with it. These redundant bits are used by the channel decoder at the receiver’s end to detect
and correct errors having occurred over a noisy channel.

A C(n,k) code is linear when its codewords form a k-dimensional vector subspace of the
n-tuple vector space. Therefore, there are k linearly independent codewords ggg1,ggg2, ...,gggk

that are settled as the rows of the generator matrix. The systematic form of generator matrix
G in linear code is given by

Gk×n = (Ik|Pk×(n−k)). (1)

Linear algebra shows that for any C(n,k) block code there is a dual code represented by
C⊥, which is an n−k dimensional vector space. Matrices G and H are the generator matrix
and its dual space of the C(n,k) block code. Matrix H, also called the parity check matrix,
is an (n− k)×n matrix such that GHT = 000 where HT denotes the transposition matrix of
H. A systematic parity check matrix has the form

H(n−k)×n = (PT
(n−k)×k|In−k). (2)

2.1 The McEliece Cryptosystem

In the McEliece cryptosystem, bits of plaintext are scrambled, the corresponding codeword
is permuted, and up to t bits are flipped where t denotes the error correcting capability
of the code. This is a public key cryptosystem where the public key is the product of a
non-singular k× k scrambling matrix, a k× n generator matrix of the code, and an n× n
permutation matrix. The secret key consists of three matrices. The encryption and decryp-
tion algorithms of the system are given below.
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The systematic form of the generator matrix G and the parity check matrix in linear code
is given by Gk×n = (Ik|P′k×(n−k)) and H(n−k)×n = (P′T |In−k), where Ik is the k× k identity
matrix and P′ is an k× (n− k) matrix.

In the McEliece cryptosystem a code C(n,k) is chosen with a generator matrix G, a scram-
bling matrix S, and a permutation matrix P. The public key is pk = SGP and the secret key
is sk = (S,G,P). The encryption algorithm of the McEliece cryptosystem is as follows.

1. For a plaintext mmm of length k, Alice uses Bob’s public key to encode it via ccc = mmmSGP.

2. Next, she flips some of the bits of ccc by selecting a random vector eee of the length n so
that w(eee)≤ t, where t is the error correcting capability of the code. The ciphertext is

ccc′′′ = ccc+ eee = mmmSGP+ eee. (3)

The decryption algorithm is as follows.

1. For a ciphertext ccc′′′, find P−1 using the secret key. Then multiply ccc′′′ by P−1 to obtain

ccc′′′P−1 = (mmmSGP+ eee)P−1 = mmmSG+ eeeP−1. (4)

2. As P is a permutation matrix, P−1 = PT is also a permutation matrix. Therefore,
eeeP−1 is a vector with the same weight as eee. Thus ccc′′′P−1 can be decoded to obtain
mmmS.

3. Multiply mmmS by S−1 to obtain the plaintext mmm.

2.2 The Niederreiter Cryptosystem

Niederreiter, in 1986, introduced a code-based encryption scheme that can be considered
the dual of the McEliece cryptosystem [2]. It is based on the hardness of the syndrome-
decoding problem. The Niederreiter cryptosystem, similar to the McEliece cryptosystem,
is a public key encryption scheme where the public key is the product of a non-singular
k×n scrambling matrix, an (n− k)×n parity check matrix of a code C(n,k), and an n×n
permutation matrix.

Similar to the McEliece cryptosystem, a code C(n,k) is denoted by its parity check matrix
H, an (n−k)× (n−k) scrambling matrix S, and an n×n permutation matrix P. The secret
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key consists of the three tuples of the three mentioned matrices, sk = (S,H,P), and the
public key is pk = SHP.

The encryption algorithm for the Niederreiter cryptosystem is as follows.

1. For a plaintext mmm of the length n and the weight t, the corresponding ciphertext is

ccc′′′ = SHPmmmT . (5)

The decryption algorithm for the Niederreiter cryptosystem is as follows.

1. For ciphertext ccc′′′ find S−1ccc′′′ = HPmmmT .

2. Use syndrome decoding to obtain PmmmT .

3. P−1×PmmmT gives the plaintext mmm.

2.3 CFS digital signature scheme

The CFS (Courtois-Finiasz-Sendrier) signature scheme is a well-known code-based digital
signature scheme based on the Niederreiter cryptosystem [2]. In this scheme, a document
is hashed to compress its size to n bits, where n is the length of the code used in the
cryptosystem. The CFS scheme considers the hashed document a ciphertext. The signature
algorithm, verification algorithm, security, and drawback of the CFS signature are given
below.

The signing algorithm of the CFS signature scheme has four steps.

1. For a document dddoooccc, hash it using a hash function h() to find h(dddoooccc) and set i = 0.

2. Find h(h(dddoooccc)|i), where | denotes concatenation of h(dddoooccc) and i.

3. Decrypt h(h(dddoooccc)|i) using the decryption algorithm of the Niederreiter cryptosystem
to find sssiiiggg. If this step fails, increase i by 1 and repeat step 2.

4. Output (sssiiiggg, i) as the signature of the document dddoooccc.

The verification algorithm of the CFS signature scheme is as follows.

1. For the signature (sssiiiggg, i) of a document doc, find h(h(dddoooccc)|i).
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2. The signature is valid if

h(h(dddoooccc)|i) = SHPsssiiigggT , (6)

otherwise, the signature is not valid.

2.4 CFS performance analysis

Public key code-based cryptosystems are not used in digital signatures mainly because of
low probability of successful decoding the valid signature. The success rate is less than 1
as the ciphertexts do not cover the entire vector space, so a signature may not be obtained
[14–16]. In the CFS signature scheme, an integer i is appended to dddoooccc and changed if
decryption of h(h(dddoooccc)|i) fails to find sssiiiggg. This results in a reduction in speed and an
increase in the the complexity and processing time. The probability of a syndrome being
decoded is approximately equal to decodable syndrome space over total vector space. Thus,
on average, it will take t! executions of the CFS signature algorithm to find a valid signature
[3]. Therefore, the probability of success is 1

t! [3]. In the next section, a code-based digital
signature proposed which has a success rate of 1 and has lower complexity than the CFS
scheme.

3 Proposed Code-Based Digital Signature

The proposed code-based digital signature scheme is a probabilistic polynominal time al-
gorithm for key generation, signing and verification. The code-based cryptosystem is used
in the public key infrastructure of the proposed code-based digital signature. The dual ma-
trix A is playing the important roles of key generation, document signing and verification
algorithms.

Proposed algorithms

− Key Generation: (pk, prk)← Gen(λ ).

− Document/Message Signing: σ ← Sign(pk, prk,dddoooccc), where σ and dddoooccc denotes the signa-
ture and the document, respectively.

− Signature Verification: Ver(σ , pk,dddoooccc) ∈ 0,1.

The key generation algorithm constructs a pair of public and private-keys that can be used
by encryption and decryption algorithms for confidentiality and authenticity purposes.
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3.1 Dual Matrix A

This section proposes a key generation algorithm for both code-based cryptosystems and
digital signatures. The proposed algorithm generates a tree-tuple public key based on spe-
cific an inverse matrix with dual functionality. Let matrix A denote a dual parity check
matrix with the order of n× (n− k). Matrix A offers two different functionalities as it
function as HT and H−1 (parity check transpose and parity check inverse) at the same time.

In ECC codes, the rows of the parity check matrix are orthogonal to the rows of the gen-
erator matrix such that GHT = 000. Consider a matrix A such that HA = In−k and GA = 000.
Thus, A is an inverse parity check matrix and the transpose of a parity check matrix, so
that GHT = GA. Hence A can be constructed using HT and a permutation matrix P′ that
satisfies A = HT P′. Then

GA = 000 and GHT = 000 so A = HT P′, and

HA = H(HT P′) = (HHT )P′ = In−k,

so P′ = (HHT )−1, and matrix A can be constructed only if the (n− k)× (n− k) matrix
HHT is non-singular. Hence a code C(n,k) can have a dual inverse matrix A, when the
square matrix HHT is non-singular. Let pA denote the total number of possible linear
combinations of column vectors of A, then

pA =
n−k−1

∏
i=0

(2n−k−2i) (7)

3.2 Key Generation

The key generation algorithm provides the public and private keys using the generator
matrix G of the code C(n,k) and the dual matrix A, where

GA = 000 (8)

HA = In−k (9)

The following matrices are used by the key generation algorithm.

− Matrix G, represents the generator matrix of the order k×n.
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− Matrix H, represents the parity check matrix of the order (n− k)×n

− Matrix A, represents the dual matrix of the order n× (n− k)

− Matrix S, represents a scrambling non-singular matrix of the order k× k

− Matrix P, represents a permutation matrix of the order n×n

− Matrix L, represents a non-singular matrix of the order (n− k)× (n− k)

Key Generation Algorithm Gen(λ )

Given the generator matrix G with non-singular HHT ←C(n,k)

A = HT P′← Construct P′ = (HHT )−1.

Public key: pk← (SGP,L−1HP,P−1AHP).

Private key: prk ← (S−1,P−1,G,P−1AL).

where the generator matrix G and its parity check matrix H are blinded by using a non-
singular random scrambling matrix S and a random permutation matrix P, and the non-
singular random matrix L and a random permutation matrix P are used to blind the dual
matrix A. P−1AHP is used by the verification algorithm to verify the signed digital signa-
tures.

TTT hhheeeooorrreeemmm 1
The public key L−1HP has many inverses, and the probability of constructing a particular
inverse of L−1HP is trivial.

PPPrrroooooo fff ::: The parity check matrix is a full rank matrix and it is not unique [17]. The inverse
of its matrix has n− k columns, each of which can have 2k different values, so the number
of its valid inverse matrices is 2k×(n−k) [17]. Therefore, the public key L−1HP is a full rank
matrix, hence, the probability of constructing a particular inverse of the public key L−1HP
would be equal to 1

2k×(n−k) which is trivial.

3.3 The signing algorithm

The signing algorithm of the proposed signature scheme uses both public keys to sign a
document as follows.
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Signing Algorithm Sign(pk, prk,dddoooccc)

1 - Use the hash function to compress the size of the document to n bits.
h(dddoooccc)← hash document dddoooccc,
h(h(dddoooccc))← hash the h(dddoooccc)

2 - let sss denote an n− k bit vectors, such that
sss← h(dddoooccc)(P−1AL)

3 - Constructs a codeword ccc using the h(dddoooccc) and vector sss.
sssiiigggSGP← h(dddoooccc)+ sss(L−1HP)

4 - Decode the codeword ccc to obtain sssiiiggg.
sssiiigggSG← (sssiiigggSGP)(P−1)

sssiiigggS← decode sssiiigggSG

sssiiiggg← (sssiiigggS)(S−1)

5 - Use h(h(dddoooccc)) and private prk to construct the ddd vector, (where ddd denotes another n−k bit
vector)
ddd ← h(h(dddoooccc))(P−1AL)+ sss.

6 - Output σ = (sssiiiggg,,,ddd).
Transmit (sssiiiggg,,,ddd) and document dddoooccc to the receiver for signature verification.

TTT hhheeeooorrreeemmm 2
The h(dddoooccc)+ sss(L−1HP) is a valid codeword of the code C(n,k) with a generator matrix
G′ = SGP.

PPPrrroooooo fff ::: Matrix S and P are full rank as they are non-singular matrices. Therefore, the rank
of SGP equals k, and the rank of P−1AL is equal to n−k, respectively. Thus the row vectors
of SGP and the column vectors of P−1AL are orthogonal, therefore, P−1AL generates the
nullspace for every code that is spanned by SGP. Hence, the transpose of P−1AL is a parity
check matrix of SGP.

For a codeword ccc ∈C(n,k), cccH
′T = 000 with the generator matrix G′ = SGP of order k× n

and H ′T = P−1AL.
ccc = sssiiigggSGP = h(dddoooccc)+ sss(L−1HP)
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The vector sss is equal to h(dddoooccc)(P−1AL)

sssiiigggSGP = h(dddoooccc)+h(dddoooccc)(P−1AL)(L−1HP)

sssiiigggSGP = h(dddoooccc)+h(dddoooccc)(P−1AHP)

Therefore cccH ′T = [sssiiigggSGP][P−1AL]

cccH ′T = h(dddoooccc)(P−1AL)+h(dddoooccc)(P−1AHP)(P−1AL)

= h(dddoooccc)(P−1AL)+h(dddoooccc)(P−1AL)

= 000

3.4 The verification algorithm

The verification algorithm of the proposed code-based digital signature scheme is as fol-
lows.

Verification Algorithm Ver(σ , pk,dddoooccc)

1− Use the hash function h() to hash the received document to construct h(dddoooccc), h(h(dddoooccc)) and
assign variable a such that,
a← sssiiigggSGP

2− Use the public key and ddd value to compute v1 = sss(L−1HP), where v1 denotes an n bit vector.
v1← sss(L−1HP) = h(h(dddoooccc))(P−1AHP)+ddd(L−1HP)

ddd = h(h(dddoooccc))(P−1AL)+ sss

ddd(L−1HP) = (h(h(dddoooccc))(P−1AL)+ sss)(L−1HP)

ddd(L−1HP) = h(h(dddoooccc))(P−1AL)(L−1HP)+ sss(L−1HP)

Note that, (P−1AL)(L−1HP) = P−1AHP, therefore,

v1 = sss(L−1HP) = h(h(dddoooccc))(P−1AHP)+ddd(L−1HP) (10)

3− Use the public key (P−1AHP) to compute v2 = sss(L−1HP), where v2 denotes another n bit
vector.
v2 ← sss(L−1HP) = h(dddoooccc)(P−1AHP)

sssiiigggSGP = h(dddoooccc)+ sss(L−1HP)
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sss(L−1HP) = sssiiiggg(SGP)+h(dddoooccc)

sss(L−1HP)(P−1AHP) = sssiiiggg(SGP)(P−1AHP)+h(dddoooccc)(P−1AHP)

Note that, (SGP)(P−1AHP) = 000 and (L−1HP)(P−1AHP) = L−1HP, therefore,

v2 = sss(L−1HP) = h(dddoooccc)(P−1AHP) (11)

4− Check the integrity condition if
v1 = v2

otherwise, the verification fails.

5− Having v1 = sss(L−1HP) and given h(dddoooccc), compute ccc.
ccc← h(dddoooccc)+ sss(L−1HP)

6− The verification will be successful if the second condition is valid as follows.

a = ccc,

otherwise, the verification fails.

Any changes or modification by an adversary should be detected by the verification al-
gorithm. The integrity condition protects the accuracy of the transmitted signature by com-
paring the v1 and v2 variables. Hence v1 is not dependent on the signature sssiiiggg and v2 does
not depend on the private key, although the integrity condition is met when v1 = v2.

3.5 Proposed digital signature example

Let n = 12 and k = 5 be the indexes of the following generator matrix G,

G = (Ik|Pk×(n−k)) =


| 1 0 0 1 0 1 1
| 0 1 0 0 1 0 0

Ik | 0 0 1 1 1 1 1
| 0 1 0 1 0 1 0
| 1 1 0 1 0 0 1

 ,
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its corresponding parity check matrix H, and its constructed dual inverse matrix A.

H(n−k)×n =



1 0 0 0 1 |
0 1 0 1 1 |
0 0 1 0 0 |
1 0 1 1 1 | In−k

0 1 1 0 0 |
1 0 1 1 0 |
1 0 1 0 1 |


,An×(n−k) =



0 1 1 0 1 0 1
0 1 0 1 0 1 0
0 0 0 1 0 0 0
1 1 1 0 0 0 0
1 1 1 0 1 1 0
0 0 0 0 0 1 1
0 0 0 1 1 0 0
0 0 1 1 0 0 0
0 1 1 0 0 1 1
0 1 0 0 1 1 0
1 0 0 1 1 1 1
1 0 0 1 0 1 0


A non-singular matrix L of order n− k and inverse matrix S−1 of order k× k.

L(n−k)×(n−k) =



1 0 1 0 1 1 1
0 0 0 1 0 0 1
1 1 0 0 1 0 0
1 0 1 0 0 0 0
0 1 0 0 1 0 1
0 0 0 1 0 1 1
1 0 0 1 0 0 1


,Sk×k =


0 1 0 0 0
1 0 1 1 0
0 1 1 1 0
0 0 1 0 1
1 1 0 0 1


A permutation matrix P of order n×n.

Pn×n =



0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0



12



1. Alice hashes a document dddoooccc by a hash function h() to find h(dddoooccc) to size the
document to n bits as the lenght of the code here. h(dddoooccc) = 100110010001 and
h(h(dddoooccc)) = 110001110111.

2. Constructs an n− k bit vector sss, such that sss = h(dddoooccc)(Q).

sss = 0101111

3. Constructs a codeword h(dddoooccc)+ sss(L−1HP) of the code C(n,k).

ccc = sssiiigggSGP = h(dddoooccc)+ sss(L−1HP)

= 100110010001+(0101111)(L−1HP)

= 100110010001+000110110010

= 100000100011

4. She decodes the codeword to obtain the sssiiiggg = 01010.

5. She decodes ddd, using prk and vector sss.

ddd = h(h(dddoooccc))(P−1AL)+ sss

= (110001110111)(P−1AL)+0010111

= 1000110+0010111

= 1101001

6. She outputs (sssiiiggg,,,ddd) along with the document dddoooccc.

Bob verifies the signature as follows.

1. Use the hash function h() to hash the received document to construct h(dddoooccc), h(h(dddoooccc))
and assign a = sssiiigggSGP.

h(dddoooccc) = 100110010001,

h(h(dddoooccc)) = 110001110111,

a = sssiiigggSGP = (0000110)(SGP),

a = 100000100011.

2. Use Alice’s public key and ddd value to compute v1

v1 = h(h(dddoooccc))(P−1AHP)+ddd(L−1HP)

13



= 110001110111(P−1AHP)+1101001(L−1HP)

= 110111000110+110001110100

= 000110110010

3. Use Alice’s public key to compute v2 = sss(L−1HP)

v2 = h(dddoooccc)(P−1AHP)

= 100110010001(P−1AHP)

= 000110110010

3. Use Alice’s public key pk = (P−1AHP) to compute sssL−1HP.

h(dddoooccc)(P−1AHP) = (sssiiigggSGP+ sssL−1HP)(P−1AHP)

h(dddoooccc)(P−1AHP) = 000+(sssL−1HP)(P−1AHP)

sss(L−1HP) = h(dddoooccc)(P−1AHP)

= 100110010001(P−1AHP)

= 000110110010

4. Bob continues to the next level, if the integrity condition is met, v1 = v2, otherwise
the verification failed.

5. Having v1 = sss(L−1HP), and given h(dddoooccc), Bob computes ccc

ccc = h(dddoooccc)+ sss(L−1HP)

= 100110010001+000110110010

= 10000010011

6. The verification is successful as

a = ccc

It is recommended that every time a new scheme signs the same document, the signing
algorithm should generate a different digital signature. This can be achieved by simply
concatenating an n bit random vector rrr into the chosen document. However, it increases
the size of the signature, and the random vector should output (rrr) along with (sssiiiggg,ddd).
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3.6 Performance and security analysis

On average, the CFS code-based signature and modified CFS schemes will take t! of exe-
cutions to find a valid signature [18], therefore their success rate is 1

t! .

The size of the signature and the speed of the signing process are the two main factors of a
digital signature algorithm. The proposed code-based scheme constructs small signatures
and increases the speed of the signing process. The proposed algorithm provides a signature
with 130 bytes (n = 1024) compared to Bliss-IV, with a signature size of 6500 bytes and
a low success rate of 5.6 [19], and qTesla-III, which can construct a signature with a size
of 2848 bytes [20, 21]. Hence, the presented model has shorter signature lengths and can
sign documents faster. As mentioned, speed is a critical factor in various applications of
digital signature schemes such as online banking, e-commerce, and blockchains (Bitcoin,
Ethereum).

There are different types of cryptanalysis attack models that adversaries may use to discover
the weaknesses of the algorithm, gain access to the contents of the messages/document, and
break the secret codes [22]. The proposed algorithm blinds the generator matrix by inter-
changing the rows, columns, and their linear combinations using permutation and scram-
bling non-singular matrices. Therefore the robust and secure algorithm should not verify
a forged document signed by an adversary through generic, directed, or adaptive chosen-
message attacks [25]. The proposed scheme encrypts vector sss and ddd and ensures that the
probability of constructing the private key from the public key is negligible as follows

Pr[(Adv,γ) = 1]< ε(γ), where Adv,γ denote adversary and security parameter.

Let’s analyze if an adversary could form a structural attack by constructing the private
key from the public key. The challenger provides full access to an adversary to input any
selected document and receive valid signature. Then an adversary uses its private-key (sk2)

to sign a document and output (sssiiiggg,,,ddd) to be verified by the challenger. The challenger uses
the verification algorithm and reaches step (4) to challenge the first condition.

v1 = v2

h(dddoooccc)(P−1AHP) = h(h(dddoooccc))(P−1AHP)+ddd(L−1HP)

The left side of the above equation (h(dddoooccc)(P−1AHP)) is independent of the adversary
private key (sk2), while the ddd value on the right is constructed by the adversary private key
during the signing process.

15



The ddd value is equal
ddd = h(h(dddoooccc))(sk2)+h(dddoooccc)(sk2)

Therefore,

h(dddoooccc)(P−1AHP) = h(h(dddoooccc))(P−1AHP)+(h(h(dddoooccc))(sk2)+h(dddoooccc)(sk2))(L−1HP)

(h(dddoooccc)+h(h(dddoooccc)))(P−1AHP) = (h(h(dddoooccc))+h(dddoooccc))(sk2)(L−1HP)

(P−1AHP) = (sk2)(L−1HP)

The above equation would be valid if and only if (sk2) = (sk).
Lets consider that an adversary selects the (L−1H ′′P)−1 as the private key. Then

(sk2)(L−1HP) = (L−1H ′′P)−1(L−1HP)

= (H ′′P)−1(L)(L−1)(HP)

= P−1H ′′−1HP

So if (H ′′)−1 =A, then the (sk2)(L−1HP) would be equal to the third public key (P−1AHP)
and the signed document can be verified successfully, with the result that the adversary can
forge a signature with respect to the given public key. The algorithm is secure when the
probability of success is significantly low and negligible

Pr[(Adv,γ) = 1]< ε(γ)

where Adv denotes the adversary and γ denotes the security parameter, respectively [23,
24]. The matrix L is a square matrix, and the inverse of (L−1) would be equal to L matrix,
as this matrix is a non-singular with an order of (n− k)× (n− k). However, this is not
the case with the parity check matrix as matrix H is a full rank and non-square matrix of
order (n− k)×n, and therefore, the H ′′ matrix should be a full rank matrix with the same
order of parity check matrix (n− k)×n. Hence the inverse of the H matrix is not unique,
and based on T heorem 1, the probability of (H ′′)−1 = H−1 would be insignificant, and the
proposed algorithms are secure against structural attacks [22]. Therefore, the possibility
of constructing an adversary private key from the algorithm’s public key would be equal
to 2−(k×(n−k)). As result, the probability that an adversary signs a verifiable document is
negligible.

Pr[(Adv,γ) = 1← Pr[prk2 = pr2]← Pr[(H ′′)−1 = H−1]]< ε(γ)

Hence, the chances that an adversary forges the signature by accessing the signing algo-
rithm are extremely low and negligible, and the proposed digital signature algorithms are
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secure.

4 Conclusion

The CFS digital signature scheme and its drawbacks have been described in the above sec-
tion. In addition, the primary approach to overcoming these drawbacks in the form of the
CFS signature scheme was elucidated. It was also shown that even in these approaches,
the digital signature schemes based on codes are still significantly slow because the cipher-
texts only cover part of the vector space. Therefore it requires t! number of executions (t,
the error correction capability of the code) of the CFS signature algorithm to find a valid
signature. A code-based digital signature scheme was proposed, which provides practical
code-based digital signatures. In fact, the proposed schemes require no decoding syndrome
search operation, which optimizes the digital signature construction process.

The proposed public key allows the encryption of the value vectors. Therefore, the ver-
ification process can examine the integrity and authenticity of the signature. In fact, the
proposed schemes is secure, as the probability of an adversary being able to forge a sig-
nature that can be verified is trivial. In addition, the proposed algorithms are safe against
any structural attack. It has been proven that the probability of constructing the private key
from the public key is negligible. Moreover, it was shown how the proposed schemes can
considerably increase the speed of the signature algorithm in code-based digital signatures.
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