
FuLeeca: A Lee-based Signature Scheme

Stefan Ritterhoff, Georg Maringer, Sebastian Bitzer, Violetta Weger, Patrick
Karl, Thomas Schamberger, Jonas Schupp, and Antonia Wachter-Zeh

Technical University of Munich, Germany
TUM School of Computation, Information and Technology

{stefan.ritterhoff, georg.maringer, sebastian.bitzer, violetta.weger,
patrick.karl, t.schamberger, jonas.schupp, antonia.wachter-zeh} @tum.de

Abstract. In this work we introduce a new code-based signature scheme,
called FuLeeca, based on the NP-hard problem of finding codewords of
given Lee-weight. The scheme follows the Hash-and-Sign approach ap-
plied to quasi-cyclic codes. Similar approaches in the Hamming metric
have suffered statistical attacks, which revealed the small support of the
secret basis. Using the Lee metric, we are able to thwart such attacks.
We use existing hardness results on the underlying problem and study
adapted statistical attacks. We propose parameters for FuLeeca and com-
pare them to an extensive list of proposed post-quantum secure signature
schemes including the ones already standardized by NIST. This compar-
ison reveals that FuLeeca is competitive. For example, for NIST category
I, i.e., 160 bit of classical security, we obtain an average signature size
of 1100 bytes and public key sizes of 1318 bytes. Comparing the total
communication cost, i.e., the sum of the signature and public key size,
we see that FuLeeca is only outperformed by Falcon while the other stan-
dardized schemes Dilithium and SPHINCS+ show larger communication
costs than FuLeeca.

Keywords: Post-Quantum cryptography · Signature scheme · Code-
Based cryptography · Lee metric

1 Introduction

Due to the threat coming from capable quantum computers, NIST initialized in
2016 a standardization call for post-quantum alternatives.

Since the standardization call several of the submitted cryptosystems have been
broken or removed from the competition as the proposed parameters seemed
inferior to other schemes. Recently, several cryptosystems have been selected for
standardization, both for key encapsulation and digital signatures. The most
competitive and already selected signature schemes in terms of parameter sizes
(keys and signature sizes) are based on structured lattices, namely CRYSTALS-
Dilithium [28] and Falcon [36]. If signature sizes or signing times are not a major
concern, hash-based signatures like SPHINCS+[5] provide even smaller key sizes.
Since it is desirable to have a broader variety of schemes to choose from, NIST
reopened the standardization call for digital signatures.

2 S. Ritterhoff et al.

One possibility to build quantum-secure signature schemes is to rely on hard
problems from coding theory which have been examined over decades [15,10,9,18].
While classical code-based cryptography considers vector spaces endowed with
the Hamming metric, other metrics, such as the rank metric, have attracted at-
tention in the context of cryptography and show a great potential for smaller
key sizes. To the best of our knowledge this work marks the first Lee-based
cryptographic primitive.

In general, there are two main methods to construct code-based signature schemes:
the first one applies the Fiat-Shamir transform [35] to a code-based zero-knowledge
protocol and the second one is called Hash-and-Sign approach [14]. The for-
mer approach usually suffers from large signature sizes, due to large cheating
probabilities within the zero-knowledge protocol, while the latter features small
signature sizes at the cost of larger public key sizes.

The signature scheme we present in this paper is based on the Hash-and-Sign
approach, which has been introduced in 2001 by Courtois, Finiasz and Sendrier
[24] (following the idea of [14]). This so called CFS scheme is a direct adaption
of the McEliece public-key encryption scheme. In fact, the rationale is to start
with an algebraically structured secret code that comes with an efficient decoding
algorithm. The public key is a disguised version of the secret code. To generate a
signature, the message and a salt is hashed until the digest results in a syndrome
of a low-weight error vector. This approach has some potential drawbacks that
have been exploited for attacks in the past: on the one hand, the public code
might be distinguishable from a random code and thus leak information on
the secret code1. On the other hand, the event that the hash of a message is
a syndrome of a low weight error vector is highly unlikely and therefore this
process has to be repeated many times. This causes the signing time of CFS to
be impractically high. Additionally, as the public key is a disguised version of an
algebraically structured code, the public key size of CFS tends to be rather large.
The CFS scheme was the starting point for several Hash-and-Sign signature
schemes, such as [6,40,23], which have not survived cryptanalysis [46,48]. The
code-based scheme WAVE [26] also follows the same blueprint but translated
into the theoretical framework of [39]. Additionally, it is based on the hardness
of finding errors having large Hamming weights instead of small ones, thereby
preventing all aforementioned attacks and so far no successful cryptanalysis has
been mounted.

Code-based signature schemes based on quasi-cyclic structures with low density
codes in the Hamming metric, e.g., [6,47], are vulnerable to statistical key re-
covery attacks [51,27]. These attacks have in common that they make use of the
small support of the secret key. An attacker can recover the sparse secret key
by observing the distribution of many signatures and comparing it to a random
distribution. The use of the Lee metric thwarts such attacks, as even if the Lee

1See for example [31], where the CFS scheme using high rate Goppa codes has been
attacked.

FuLeeca: A Lee-based Signature Scheme 3

weight of the secret basis is low, the number of non-zero entries is relatively
large.

FuLeeca is based on quasi-cyclic codes in the Lee metric. In a nutshell, the
signature scheme works as follows: the secret key is a quasi-cyclic generator ma-
trix, where the generators have Lee weight according to the Lee-metric Gilbert-
Varshamov (GV) bound and the public key is its systematic form. Note that
recovering the original generators is as hard as the problem of finding codewords
of given Lee weight, which has been proven to be NP-hard [56]. The binary hash
output of the message m is mapped onto {±1} and is considered as the target
vector c for the main step of the scheme: the signer uses the secret generators to
find a codeword, which is connected to the signature for m, with two properties:
firstly, the Lee weight should be low and secondly, the signum of the codeword
should have many 1s, respectively −1s, in the same places as the target vector
c. This second property, called sign matching, is used to bind the message to the
signature, while the first property is essential for the schemes security.

For our chosen parameters targeting NIST security level I, the public key and
signature sizes are only 1318 bytes and 1100 bytes, respectively. The total size,
which is the sum of the public key and signature sizes is often used for compar-
isons, since in certificates one would need to download both. The total size of
FuLeeca is smaller than that of Dilithium [28] and SPHINCS+ [5], and slightly
larger than Falcon [36], which are the three signature schemes currently selected
for standardization by NIST.

A multiple-use signature scheme should have an existential unforgeability under
adaptive chosen message attacks (EUF-CMA) security proof. For code-based
signatures constructed from a zero-knowledge protocol this property is assured
by using a sufficiently large number of rounds with respect to the desired se-
curity level and the cheating probability of the zero-knowledge protocol. How-
ever, the EUF-CMA security proof is notoriously difficult for Hash-and-Sign ap-
proaches. To the best of our knowledge, WAVE [26] is the only known code-based
Hash-and-Sign signature scheme that provides such a proof. Unfortunately, the
achieved public-key size of more than 2 megabytes for 128 bit classical security
is very large compared to Falcon’s 897 bytes.

The capability of breaking FuLeeca (e.g. recovering the secret key from a polyno-
mial number of collected signatures) is crucially based on the fact that signatures
do not leak any useful information on the secret key. An EUF-CMA security
proof would immediately follow by assuming that such problem is hard. How-
ever, we feel like such proof would be immature, given the current state of affairs.
Indeed, such problem is somewhat non-standard, since this problem has not been
used in cryptography before. EUF-CMA security proofs for novel problems can
also lead to concrete breaks. In fact, Durandal [2], a promising code-base sig-
nature scheme with an EUF-CMA security proof, was recently attacked in [3].
Thus, an EUF-CMA security proof does not prevent from cryptanalysis. Conse-
quently, we choose not to provide such security proof, which would be artificial,

4 S. Ritterhoff et al.

i.e., based on a new, ad-hoc problem. Instead, we consider attacks exploiting the
leakage via published hash/signature pairs, and design our scheme integrating
countermeasures for those attacks.

This paper is structured as follows: In Section 2, we introduce the notation that
is used throughout this paper and recall the required coding-theoretic basics.
In Section 3, we describe the proposed Lee metric signature scheme FuLeeca.
In Section 4, we analyze the security of the proposed scheme. We first consider
the best known solver to find d codewords of given Lee weight codewords, and
secondly we provide heuristics for EUF-CMA security, which allow the signature
scheme to be used multiple times. Finally, in Section 5, we analyze the perfor-
mance of the scheme. We also compare the key sizes, the signature size and the
computation time for signing and verification to other post-quantum signature
schemes. Section 6 concludes the paper.

2 Preliminaries

2.1 Notation

Throughout this work, we denote by Fp the finite field of order p, where p is a
prime. We often choose to represent this prime field as {−p−1

2 , . . . , 0, . . . , p−1
2 },

which we call the symmetric representation. We denote vectors in bold lowercase
and matrices in bold uppercase letters. We refer to the i-th element of the vector
v by vi and similarly, to the j-th row of a matrix A by aj and we denote the
element in the j-th row and k-th column by aj,k. The identity matrix of size n is
denoted by In. We denote by uppercase letters sets and for a set S ⊂ {1, . . . , n},
we denote by |S| the cardinality and by SC = {1, . . . , n}\S the complement. For
a set S ⊂ {1, . . . , n} of size s and matrix A ∈ Fk×n

p , we denote by AS the k × s
matrix formed by the columns of A indexed by S, similarly for a vector x ∈ Fn

p ,
we denote by xS the vector of length s formed by the entries of x indexed by
S.

The sampling of an element a from the uniform distribution over a set K is
denoted by a

$←− K. While the sampling of an element a according to a dis-
tribution χ is given by a

$←− χ and by a slight abuse of notation we denote
sampling of a vector v independently and identically distributed (i.i.d.) from χ

by v
$←− χ.

The binary entropy function with parameter p is defined as h2(p) := −p log2(p)−
(1− p) log2(1− p).

2.2 Basic cryptographic tools

We denote the security parameter by λ. We use standard definitions of proba-
bilistic polynomial time algorithms. We denote by “Hash” a Hash function in
the perfect random oracle model.

FuLeeca: A Lee-based Signature Scheme 5

In a digital signature scheme we have two parties, the signer and the verifier,
and three efficiently computable algorithms: the key generation, the signature
generation and the signature verification. In the key generation, the signer ran-
domly samples a secret key sk and computes and publishes the connected public
key pk. For the signature generation, given a message m, the signer then uses
the secret key sk to compute a signature v. The signer then sends (m,v) to the
verifier. The verifier checks the validity of the signature v for the message m
under the constraints imposed by the scheme using the public key in the sig-
nature verification step. An adversary might try to construct a valid signature,
either using just the knowledge of the public key, or after having observed several
signatures corresponding to different messages. The adversary is only allowed to
succeed with negligible probability, e.g., < 2−λ.

2.3 Lee-metric codes

An [n, k] linear code C is a k-dimensional linear subspace of Fn
p and can be

compactly represented either through a generator matrix G ∈ Fk×n
p , which has

the code as its image or through a parity-check matrix H ∈ F(n−k)×n
p having

the code as its kernel. The elements of a code are called codewords and for any
x ∈ Fn

p , we call s = xH> the syndrome of x. The rate of an [n, k] code is
R = k

n .

For an [n, k] linear code C and a set I ⊂ {1, . . . , n}, we denote by CI the set
of restrictions on codewords restricted to the coordinates specified in I. We say
that I ⊂ {1, . . . , n} of size k is an information set, if |CI | = |C|. As a consequence,
we have that for a generator matrix G, respectively a parity-check matrix H
of the code, GI and HIC are invertible. We say that a generator matrix G,
respectively a parity-check matrix H, is in systematic form (with respect to I),
if GI = Ik, respectively HIC = In−k.

Classically, we endow the vector space Fn
p with the Hamming metric, where the

Hamming weight of a vector v, denoted by wtH(v), is given by the number of
non-zero entries of v. However, for this scheme, we are interested in a different
metric, called the Lee metric.

The Lee weight of an element a ∈ Fp is defined as

wtL(a) := min{a, p− a}, (1)

where the representation of a is chosen to be in {0, . . . , p− 1}. In fact, one can
think of the Lee weight as the L1-norm modulo p. Clearly, the Lee weight of
an element can be at most (p − 1)/2, thus we will denote this value by M . For
a vector v ∈ Fn

p its Lee weight is defined as the sum of the Lee weights of its
elements, i.e.,

wtL(v) :=

n∑
i=1

wtL(vi). (2)

6 S. Ritterhoff et al.

Note that, wtH(v) ≤ wtL(v) ≤ MwtH(v) and the average Lee weight of the
vectors in Fn

p is given by (M/2)n.

The Lee weight induces the Lee distance, which we define by dL(x,y) := wtL(x−
y), for all x,y ∈ Fn

p . For a linear code C we define the minimum Lee distance
as

dL(C) = min{wtL(c) | c ∈ C, c 6= 0}.

We denote by δ the relative minimum Lee distance, that is δ = dL(C)
nM . Let us

denote by VL(p, n, r) the Lee sphere of radius t

VL(p, n, t) := {x ∈ Fn
p | wtL(x) = t},

and by
FL(p, T) = lim

n→∞

1

n
logp(|VL(p, n, TnM)|)

its asymptotic size. The exact formulas for the size of VL(p, n, t) and FL(p, T)
can be found in [56,37].

Let us denote by A(n, δ) the maximal size of a code in Fn
p of minimum Lee

distance δMn and by

R(δ) = lim sup
n→∞

1

n
logp(A(n, δ)).

The Gilbert-Varshamov (GV) bound in the Lee-metric [4] then states:

R(δ) ≥ 1− FL(p, δ).

In [21] it was shown that random Lee-metric codes attain with high probability
the Lee-metric GV bound, i.e., a random code has with high probability a relative
minimum Lee distance δ such that R(δ) = 1−FL(p, δ). For the considered quasi-
cyclic code of rate 1/2, the corresponding minimum Lee distance δ of codes on
the GV bound will only depend on p and is thus denoted by δGV

p .

If C ∈ Fn
p is a random code of dimension k, we can also compute the expected

number of codewords of a given Lee weight w as

|VL(p, n, w)|pk−n.

3 System Description

In this section, we describe how FuLeeca works.

For our scheme we represent the elements of Fp as{
−p− 1

2
, . . . , 0, . . . ,

p− 1

2

}
for p > 3 prime and n ∈ N even. As usual, we write M for the maximal Lee
weight in Fp, that is M = p−1

2 . We define a function sgn(x), that gives us the
sign of an element in Fp.

FuLeeca: A Lee-based Signature Scheme 7

Definition 1 (Signum). For x ∈ Fp =
{
−p−1

2 , . . . , 0, . . . , p−1
2

}
let

sgn(x) =

0 if x = 0,

1 if x > 0,

−1 if x < 0.

For the symmetric representation of Fp this corresponds to the common signum
function.

Furthermore, we define a matching function mt(x,y) that compares x and y
and counts the number of symbols that hold the same sign.

Definition 2 (Sign Matches). Let x,y ∈ Fn
p and consider the number of

matches in their sign such that

mt(x,y) = |{i ∈ {1, . . . , n} | sgn(xi) = sgn(yi), xi 6= 0, yi 6= 0}|.

We are interested in upper bounding the probability of an attacker being able
to reuse any of the previously published signatures. For that, we introduce a
function calculating the probability that a vector and a uniformly random hash
digest (in {±1}n) have µ sign matches. When talking about the security of the
signature scheme, we will usually consider the negative log2 of this probability.

Definition 3 (Logarithmic Matching Probability (LMP)). For a fixed
v ∈ Fn

p and y
$←− {±1}n, the probability of y to have µ := mt(y,v) sign matches

with v is
B(µ,wtH(v), 1/2),

where B(k, n, q) is the binomial distribution defined as

B(k, n, q) =

(
n

k

)
qk(1− q)n−k .

To ease notation, we write LMP(v,y) = − log2(B(µ,wtH(v), 1/2)).

Note that this function can be efficiently approximated via additions and sub-
tractions of precomputed values of log2(x!), i.e., using a look-up table.

In [11], the authors computed the marginal distribution of entries where vectors
are uniformly distributed in VL(p, n, w). Let E denote a random variable corre-
sponding to the realization of an entry of x ∈ Fn

p . As n tends to infinity we have
the following result on the distribution of the elements in x ∈ Fn

p .

Lemma 4 ([11, Lemma 1]). For any x ∈ Fp, the probability that one entry
of x is equal to x is given by

pw(x) =
1

Z(β)
exp(−β wtL(x)),

8 S. Ritterhoff et al.

where Z(β) =
∑p−1

i=0 exp(−β wtL(x)) denotes the normalization constant and β

is the unique solution to w =
∑p−1

i=0 wtL(i)pw(x).

Definition 5 (Typical Lee Set). For a fixed weight w, let pw(x) be the prob-
ability from Lemma 4 of the element x ∈ Fp. Then, we define the typical Lee set
as

T (p, n, w) =
{
x ∈ Fn

p | xi = x for f(pw(x)n) coordinates i ∈ {1, . . . , n}
}
,

for a rounding function f . That is the set of vectors, for which the element x
occurs f(pw(x)n) times.

In principle, f could be simply chosen as the rounding function. This would, how-
ever, mean that the elements of T (p, n, w) do in general not have Lee weight w.
This effect is particularly evident when moderate values w are picked, for which
number occurrences would be rounded to zero for many field elements.

Therefore, to obtain a closer approximation of the target weight, we design f as
follows: if the expected number of occurrences for a symbol x ∈ Fp according to
pw(x)n is at least 1, we always round down. If, however, the element x is expected
to occur at most once, we round up or down according to a threshold τ . This τ
allows us fine control over the Lee weight of the vector x ∈ T (p, n, w) ⊂ Fn

p . We
choose this value such that the vector used to generate the secret key has Lee
weight as close to the GV bound as possible.

3.1 Key Generation

The key generation of our signature scheme is presented in Algorithm 1. The
basic idea to generate the secret key Gsec is to sample two cyclic matrices A,B ∈
Fn/2×n/2
p of Lee weight wkey = δGV

p n, where A has to fulfill the extra property
of being an invertible matrix. Note that this property is satisfied for random
matrices with large probability. The public key is obtained by computing the
row reduced Echelon form of Gsec, referred to as Gsys. The public key is then
formed by the non-trivial part of Gsys, which we denote by T .

Note that |T (p, n/2, wkey)|2 corresponds to the cardinality of our key space. In
order to prevent brute force attacks this cardinality needs to be larger than
2λ.

3.2 Signature Generation

Note that most of the Hash-and-Sign schemes require the Hash of a message to
be a syndrome for a public parity-check matrix. In this Hash-and-Sign algorithm
we proceed differently. We use the generator matrix to generate signatures which
are codewords of Lee weight within a fixed range. The connection to the Hash
of the message vector is established through the number of sign matches.

FuLeeca: A Lee-based Signature Scheme 9

Algorithm 1: Key Generation
Input: Prime p, code length n, security level λ, Lee weight wkey

1 Choose a, b
$←− T (p, n/2, wkey/2).

2 Construct cyclic matrix A ∈ Fn/2×n/2
p from all shifts of a. A needs to

be invertible. If this is not the case, resample a according to Line 1.
3 Construct cyclic matrix B ∈ Fn/2×n/2

p from all shifts of b.
4 Generate the secret key Gsec =

(
A B

)
∈ Fn/2×n

p .
5 Calculate the systematic form Gsys =

(
In/2 T

)
of Gsec with

T = A−1B.
Output: public key T , private key Gsec

The signature generation takes as its input the message m to be signed and
makes use of the private key Gsec and outputs the signature y. To do so the
algorithm utilizes the secret generators matrix of the code, namely the rows of
Gsec, to find a codeword v = [y,yT] of Lee weight in [wsig − εs, wsig] with
sign matches achieving a desired LMP between the hash of the message and the
signature codeword. Without having access to a secret basis (the private key),
it is already computationally hard to find codewords in the desired Lee weight
range (even ignoring the LMP). Therefore, this property suffices to ensure that
it is hard to generate fresh codewords that can function as signatures even for
arbitrary hashes.

Loosely speaking, a high LMP value ensures that enough signs of the codeword
v and challenge c match. This establishes the connection between the signa-
ture and the message and prevents reusing codewords contained in previously
published signatures to sign freshly generated hashes. Sampling a fresh salt if
a signing attempt does not work, guarantees that any message can be signed
successfully.

In line 1, one takes the secret key Gsec from the Key Generation 1, and stacks
it with its negative −Gsec. In line 2, we hash the input message and get m′,
which will be fed together with a salt to CSPRNG in line 5 to get the target
vector c for the number of sign matches, i.e., the LMP(v, c), where v denotes the
information vector of the signature y. Line 6 assures that c is in {±1}n making
its signs comparable with the signs of vectors in Fn

p . In line 9, we are checking
how many matches the row gi has with the target vector c. We take into account
how many of the signs of c and gi are matching in line 10, where b·c denotes
truncation. We do this by setting the magnitude in the corresponding position
of the information vector according to the number of matches and the scaling
factor s. Thus, if the row has many matches with the target c, we add this row
multiple times. This results in the information vector x and in line 12 produces
the preliminary codeword v.

10 S. Ritterhoff et al.

Lines 11-33, which we refer to as the Concentrating procedure, are necessary
to ensure that the signatures vary as little as possible in Lee weight and sign
matches.

A keeps track of which rows have already been added or subtracted from the
codeword v and is updated respectively in line 26, 28. In line 14, we initiate the
condition lf with 1, which keeps track whether the conditions of the signature
(that is LMP and Lee weight) are satisfied, in which case lf will be set to 0. To
ensure a constant time signature generation, the lines 16-28 will only run up to
ncon times.

To have signatures with much lower Lee weight than other signatures is un-
desirable, as this might leak information on the secret key. Thus, the iterative
approach in lines 16-20 is used to add or subtract the generator row minimizing
the absolute difference to the desired LMP. For this we first add the row g′

i to
v in line 17 and then check in line 18 if the difference of the LMP to the target
is minimized by adding this row. Line 19 checks whether the row g′

i is within
the set of allowed rows, i.e., in A or if the signature conditions are satisfied,
i.e., lf = 0. This results in a codeword v′ which is close enough to the target
LMP.

Lines 21-24 aim at creating signatures of almost constant Lee weight. For this we
compute in line 21 the Lee weight w′ of v′ and check in line 22 if it is close enough
to the target Lee weight wsig, i.e., at most has a wkey difference. In this case, we
update the signature condition lf with 0. If the Lee weight w′ is larger than the
target, we reset v′ with the initial v in lines 23, 24. The lines 25-28 update the
set of rows which are allowed to be added. In fact, if i′ ≤ n/2, we added a row of
Gsec and exclude the same row to be extracted again by excluding i′+n/2 from
the allowed set A. If i′ > n/2, the added row was from −Gsec and we exclude
i′ − n/2 from A to avoid subtracting the same row again.

After all iterations have been completed, lines 29-33 check whether the re-
sulting codeword is within the desired LMP/Lee weight range. If this is the
case, we extract the information vector y from v in line 30 and publish the
signature (salt,encode(y)). The encoding procedure encode(·) is described
in Section 3.4. Otherwise another salt is sampled and the signing procedure
restarts.

The scaling parameter s used in line 10 is experimentally determined with the
goal of minimizing the running time of the Signing algorithm. Its value is a
trade-off between the probability of creating a valid signature for a specific hash
value and the amount of iterations within the Concentrating procedure.

3.3 Signature Verification

The verification process is quite simple. In a first step, the received signature y′

is decoded as explained in Section 3.4 to obtain the uncompressed vector y. The
verifier computes in line 3 and 4 c as CSPRNG from the hash of the message

FuLeeca: A Lee-based Signature Scheme 11

Algorithm 2: Signing
Input: Secret key a, b, message m, threshold ε, signature weight wsig,

key weight wkey, scaling factor s ∈ R, security level λ, number of
concentrating iterations ncon.

Output: salt, signature y.

1 Gsec ← (A,B), G =

(
Gsec

−Gsec

)
with rows g′

i

2 m′ ← Hash(m)
3 repeat
4 salt $←− {0, 1}256 // Simple signing starts
5 c← CSPRNG(m′ || salt)
6 ci ← (−1)ci ∀i
7 x← (0, . . . , 0)
8 for i← 1 to n/2 do
9 xmt = mt(gi, c)− wtH(gi)

2
10 xi = bxmtsc // Simple signing ends

end
11 A ← {1, . . . , n} // Allowed row index set
12 ν ← xGsec // Concentrating starts
13 ν′ ← (0, ..., 0), i′ = 0
14 lf ← 1
15 for j ← 1 to ncon do
16 for i ∈ {1, . . . , n} do
17 ν′′ ← ν + g′

i

18 if |LMP(ν′′, c)− (λ+ 64 + ε)| ≤ |LMP(ν′, c)− (λ+ 64 + ε)|
then

19 if i ∈ A || lf = 0 then
20 ν′ ← ν′′, i′ ← i

end
21 w′ ← wtL(ν

′)
22 if w′ > wsig − wkey then

lf ← 0
23 if w′ ≤ wsig then
24 ν ← ν′

25 if i′ ≤ n
2 then

26 A ← A \ {i′ + n/2}
27 else
28 A ← A \ {i′ − n/2}

end
29 if wtL(ν) ≤ wsig && wtL(ν) > wsig − 2wkey &&

LMP(ν, c) ≥ λ+ 64 then
30 [y,yT]← ν
31 return salt, encode(y)
32 else
33 go to Line 3 // Concentrating ends

end

12 S. Ritterhoff et al.

and salt. Then, the verifier checks that v is indeed a codeword of the public
code; this is ensured by computing v as [y yT] in line 5.

Then, the verifier checks in line 6 that the codeword v has Lee weight of at most
wsig. Finally, one checks whether a sufficient amount of the signs of the signature
v match the output c of the CSPRNG(Hash(m)||salt), i.e., LMP(v, c) ≥ λ+64.
This verification process is given in Algorithm 3.

Algorithm 3: Verification
Input: signature (salt, y′) message m, public key T , Lee weight wsig.

1 y ← decode(y′)
2 m′ ← Hash(m)
3 c← CSPRNG(m′ || salt)
4 ci ← (−1)ci ∀i
5 v = [y yT].
6 Accept if the following two conditions are satisfied:

(a) wtL(v) ≤ wsig,
(b) LMP(v, c) ≥ λ+ 64.
Otherwise, Reject.
Output: Accept or Reject

3.4 Encoding and Decoding

The coefficients that constitute a signature before encoding follow a Gaussian-
like distribution centered at zero. This fact allows to reduce the signature size
by compressing the signature and encode it in a bitstring. For that, we use
the same approach as proposed in the Falcon signature scheme [36]. That is,
each coefficient is converted into its signed representation and split into a tail
and head. The coefficient’s sign bit is concatenated with the uncoded tail, as
this tail is approximately uniformly distributed and thus cannot be compressed
efficiently. The remaining bits in the coefficients head are then encoded in a 0k1
fashion, that is a sequence of k zeroes and a one, where k is the value of the
head.

4 Security Analysis

In this section, we assess the security of FuLeeca. The analysis consists of three
parts. We begin by considering the generic solvers for finding codewords of given
Lee weight. The second part describes known attacks and our countermeasures.
The third part discusses the applicability of lattice reduction algorithms to solve
the hard computational problems underlying this system. Taking all mentioned
attacks into account we determine the presented parameters to achieve the se-
curity levels required by NIST.

FuLeeca: A Lee-based Signature Scheme 13

4.1 Hardness of Underlying Problem and Generic Solvers

The adversary can attempt to recover the secret key from the public key, which
is known as a key recovery attack. For FuLeeca, this is equivalent to finding any
of the the rows of the secret generator matrix, which are of weight wkey. Alter-
natively, the attacker can try to forge a signature directly, without knowledge of
the secret key. Forging a signature of FuLeeca is, therefore, equivalent to find-
ing a codeword of given Lee weight that satisfies both the number of required
matches and the weight restriction.

Hence, both attacks require solving instances of the finding a codeword of given
Lee weight problem, which is formally defined as follows.

Problem 6 (Finding Codeword of Given Lee Weight). Given H ∈ F(n−k)×n
p and

w ∈ N find a c ∈ Fn
p such that cH> = 0 and wtL(c) = w.

This problem has first been studied in [42]. Problem 6, i.e., finding codewords
of given weight is equivalent to the decoding problem. The decisional version of
this problem has been proven to be NP-complete in [56].

Several algorithms have been proposed to solve this problem, they all belong to
the family of Information Set Decoding (ISD) algorithms.

Remark 7. Note that ISD algorithms can be formulated such that they solve the
syndrome decoding problem, that is: given a parity-check matrix H ∈ F(n−k)×n

p ,
a syndrome s ∈ Fn−k

p and a target weight t, they find an error vector e ∈ Fn
p ,

such that He> = s> and wt(e) = t. Thus, by setting s = 0, we can use such
solvers to find codewords of weight t. However, note that Prange’s algorithm
[49] searches for a transformed syndrome s′ = sU , for some invertible U and
wants the transformed syndrome to have weight t. As this is never satisfied for
s = 0, Prange cannot be used to find codewords of given weight. However, all
improvements upon Prange, such as Stern/Dumer [55,29], MMT [45], BJMM
[13] try to first enumerate the error vector in the information set and then check
whether the remaining vector has the remaining weight. This can also be applied
to s = 0.

ISD algorithms make use of an information set of the code, where one assumes
a small weight and thus constructs lists of these partial solutions.

Let us quickly recall the main steps of an ISD algorithm. Given H ∈ F(n−k)×n
p ,

choose an information set I and bring H into a partial systematic form. For this,
let J be a set of size k + `, which contains the information set I and transform
H as

UHP = H̃ =

(
In−k−` H1

0 H2

)
,

where U ∈ F(n−k)×(n−k)
p is an invertible matrix and P ∈ Fn×n

p is a permutation
matrix. Thus, we also split the unknown solution c into the indices J and JC ,

14 S. Ritterhoff et al.

i.e., cP> = (c1, c2). Assuming that c2 has Lee weight v, we get the following
two equations:

c1 + c2H
>
1 = 0

c2H
>
2 = 0.

Thus, we can first solve the second equation, c2H>
2 = 0 with wtL(c2) = v as

we then can easily check if the missing part c1 has the remaining Lee weight, by
wtL(c2H

>
1) = w − v.

In [56], several algorithms have been presented to solve the smaller instance,
namely using Wagner’s approach of a set partitioning and using representation
technique. In [22], the authors presented the amortized Wagner’s approach.

Finally, in [12] the authors presented an adaption of these algorithms, taking
into account that a random low Lee weight codeword has the exponential weight
distribution observed in [11]. In these papers, it has been observed, that the
amortized BJMM approach attains the lowest computational cost, and thus we
consider this algorithm to compute the security level of the proposed parame-
ters.

For the details of the algorithm, we refer to [12]. Mathematica programs to com-
pute the computational costs of BJMM are publicly available2 or for Wagner’s
cost here3.

We adapted the program which computes the classical asymptotic cost c in the
form 2c·n, by considering the cost c/2 on a capable quantum computer (see
[16,22]).

Since we sample the secret vectors for the generator matrix using the typical Lee
sets, i.e., any x ∈ Fp occurs in the sought-after codeword f(pwkey

(x) ·n) number
of times, it makes sense to use this information in an ISD algorithm. However, as
shown in [12], the amortized BJMM algorithm outperforms even the attempts
to use restricted balls in case, where we are beyond the unique decoding radius.
Thus, we build our security analysis on this fastest known algorithm, taking into
account also polynomial speedups due to the quasi-cyclic structure [53].

4.2 Analysis of the Algorithm with Respect to Known Attacks

We assume that an attacker has access to up to 264 signatures for chosen mes-
sages. Such multi-use scenarios require an existential unforgeability under cho-
sen message attack (EUF-CMA) security proof. For Hash-and-Sign approaches,
EUF-CMA security proofs are notoriously difficult. Unfortunately, we cannot
provide one at the moment. We prevented possible leakages and vulnerabilities
via the Concentrating procedure. These considerations are described in more

2https://git.math.uzh.ch/isd/lee-isd/lee-isd-algorithm-complexities/-
/blob/master/Lee-ISD-restricted.nb

3https://github.com/setinski/Information-Set-Decoding-Analysis

https://git.math.uzh.ch/isd/lee-isd/lee-isd-algorithm-complexities/-/blob/master/Lee-ISD-restricted.nb
https://git.math.uzh.ch/isd/lee-isd/lee-isd-algorithm-complexities/-/blob/master/Lee-ISD-restricted.nb
https://github.com/setinski/Information-Set-Decoding-Analysis

FuLeeca: A Lee-based Signature Scheme 15

detail below. Note that the Concentrating procedure at the moment does not
involve a threshold on how close the valid signatures have to be to the target
LMP. This flexibility might be of use in a future EUF-CMA security proof. Addi-
tionally, the scheme does not involve rejection sampling, which might be helpful
to strengthen security, as soon as new attack vectors are known.

Exploiting additional knowledge given to the attacker in form of signatures is per-
haps the most common way to attack Hash-and-Sign based signature schemes.
In fact, information leaked by the signatures has repeatedly been used to re-
trieve the private key. To give an example, successful attacks on the schemes
[6,47] have been presented in [51,27]. Specifically, these attacks exploit the fact
that for the proposed schemes in the Hamming metric a basis vector as well
as the signatures have low weight, i.e., a small support. The main problem in
the design of these attacked schemes was that the supports of the published
signatures correlate with the private key. We consider attacks exploiting leakage
via published hash/signature pairs. Such support-based attacks cannot directly
be applied to FuLeeca as in the Lee metric vectors of low Lee weight do not
necessarily have a small Hamming support. In fact, by putting the weight of the
secret generators on the GV bound, we may even treat the resulting code as
a random code. This thwarts Hamming-metric attacks as the secret generators
and the signatures have close to full Hamming weight.

Setting a sufficiently high threshold for the number of required sign matches
prevents that a previously published signature can be directly used to sign an-
other message. An obvious generalization of this reuse attack is creating linear
combinations of existing signatures to forge new signatures. Note, however, that
with overwhelming probability the Lee weight of the resulting vector will be
too large to be accepted by the verifier. Hence, such an attack, which is sim-
ilar to performing a sieving algorithm known from lattice-based cryptography,
requires complexity which is exponential in the code parameters. Notably the
works [38,44] show that finding a codeword of lower Lee weight in a quasi-cyclic
code is significantly easier in case the code dimension n/2 is a composite number.
In fact the security reduces to the codeword finding problem in a quasi-cyclic
code with dimension equal to the smallest factor of n/2. Therefore, for all con-
sidered parameter sets in this work, we choose n/2 to be prime.

To avoid leakage via published hash/signature pairs we integrated a specific pro-
cedure into the signing algorithm, which we refer to as the Concentrating proce-
dure. In the following, we first examine the signing algorithm without applying
the specified Concentrating procedure. We randomly draw k = 500 salts and mes-
sages and observe the corresponding outputs of the hash-function h1, . . . , hk, i.e.,
h` = Hash(salt||m`). For two different private keys we compare the Lee weights
and sign matches of the corresponding signatures after just applying “Simple
Signing”. Figure 1 shows the relation between the relative Lee weights and the
LMP between the codeword and the target vector, which is the hash of the mes-
sage. Since the signature algorithm effectively correlates the secret key and the
hashes it appears to be possible to learn at least some information about the

16 S. Ritterhoff et al.

2 2.2 2.4 2.6 2.8 3 3.2

·10−2relative Lee weight
2 2.2 2.4 2.6 2.8 3 3.2

·10−2

60

80

100

120

140

160

180

relative Lee weight

L
M
P
(v
,c
)

Fig. 1: Evaluation of 500 signatures for simulated hashes (i.i.d uniform) using
two different keys (left and right) after application of “Simple Signing”.

2.95 2.96 2.97 2.98 2.99 3 3.01

·10−2relative Lee weight
2.95 2.96 2.97 2.98 2.99 3 3.01

·10−2

224

225

226

relative Lee weight

L
M
P
(v
,c
)

Fig. 2: Evaluation of 500 signatures for simulated hashes (i.i.d uniform) for two
different keys after application of both “Simple Signing” and “Concentrating”.

secret key based on the distribution of resulting codewords in this Lee weight /
LMP space.

The distribution of signatures for both private keys of Figure 1 show that the
LMP between hash and codeword as well as the resulting Lee weights vary sig-
nificantly and depend on the secret key. Since we are using two different private
keys, we obtain two different signatures for each of the hashes. To exemplify
this, we marked the resulting signatures before the Concentrating procedure for
the same hash (the red dots) but using different private keys in Figure 1. Even
though we do not provide a specific attack exploiting this behavior, the results
suggest that some information about the private key is leaked and can potentially
be exploited to help in the process of recovering the secret key. Figure 2 shows
the distribution of LMP values and relative Lee weights for the same hashes as

FuLeeca: A Lee-based Signature Scheme 17

2.2 2.4 2.6 2.8 3

·10−2relative Lee weight
2.2 2.4 2.6 2.8 3

·10−2

50

100

150

200

relative Lee weight

L
M
P
(v
,c
)

Fig. 3: Evaluation of 500 signatures for simulated hashes (i.i.d uniform) using two
different keys both after application of the “Simple Signing” part of Algorithm 2
and as well as applying the “Concentrating” procedure (dense clusters in the
upper right).

in Figure 1 after the Concentrating part of Algorithm 2 has been completed. The
difference between the distributions for the different secret keys shall be as small
as possible to minimize leakage about the secret key. As in Figure 1, we marked
the signatures for the same hashes and different secret keys, this time after the
Concentrating procedure in Figure 2. The results show that the Concentrating
procedure significantly reduces the leakage observable via the relative Lee weight
/ LMP map. Figure 3 provides the information observable from Figure 1 and
Figure 2 within a single plot to further illustrate the effect of the Concentrating
procedure.

Similarly, we also observe that the shape of the distribution of signatures in
the Lee weight / LMP space does not appear to meaningfully depend on the
distribution of the same signatures after “Simple Signing”. This is demonstrated
in Figure 4 and 5 where for a single key we apply “Simple Signing” to the same set
of hashes as before but split the signatures into two groups of almost equal size.
For group one (left hand side of Fig. 4) obtaining a codeword with the required
LMP after application of the Concentrating procedure is expected to be easier
than for group two (right hand side of Fig. 4) since in terms of the ratio between
the log probability (LMP) and the Lee weight all of these are above average,
while group two is below average. In fact, the percentage of hashes in group two
that lead to a valid signature (right hand side of Fig. 5) in the end is slightly
lower than for group one (left hand side of Fig. 5). However, this behaviour is to
be expected for effectively every private key and, thus, this does not reveal any
useful information about any chosen key in particular.

18 S. Ritterhoff et al.

2 2.2 2.4 2.6 2.8 3 3.2

·10−2relative Lee weight
2 2.2 2.4 2.6 2.8 3 3.2

·10−2

60

80

100

120

140

160

180

relative Lee weight

L
M
P
(v
,c
)

Fig. 4: Evaluation of 500 signatures for simulated hashes (i.i.d uniform) before
applying the Concentrating procedure. Unlike the previous figures, all of the
displayed signatures were created using a single key. The vectors are divided into
two (nearly equally large) groups, where the ratio between the log probability
(LMP) and the Lee weight is above average (left), respectively below average
(right).

2.95 2.96 2.97 2.98 2.99 3 3.01

·10−2relative Lee weight
2.95 2.96 2.97 2.98 2.99 3 3.01

·10−2

224

225

226

relative Lee weight

L
M
P
(v
,c
)

Fig. 5: The same two sets of hashes for the same key (as in figure 4) after applying
the “Concentrating” algorithm.

4.3 Lattice-based Attacks

Since the Lee metric is close to the Euclidean metric used in lattice-based cryp-
tography, one has to study the known combinatorial attacks therein. In fact,
the Lee metric corresponds to the L1-norm, whereas the Euclidean metric corre-
sponds to the L2-norm. It is well known [50] that problems with respect to the
L2-norm can be reduced to problems with respect to any other Lp-norm. This
result translates to: any algorithm solving a problem in the Lp-norm can also be
used to solve the problem in the L2-norm. Or as stated in [50]: “our main result

FuLeeca: A Lee-based Signature Scheme 19

shows that for lattice problems, the L2-norm is the easiest.” Thus, one can use
the Lee-metric ISD algorithms to solve lattice-based problems in the Euclidean
metric. It is unknown, whether the reverse direction is also possible, i.e., whether
there exists a reduction from problems with respect to the L1-norm to problems
with respect to the L2-norm. This is, however, exactly the direction required in
order to use lattice-based algorithms to solve problems in the Lee metric.

To the best of our knowledge the only sieving algorithm in the L1-norm is pro-
vided in [20], where the authors provide an (1 + ε) approximation algorithm
for the closest vector problem for all Lp-norms that runs in (2 + 1/ε)O(n). The
asymptotic cost of this algorithm does not outperform the considered Lee-metric
ISD algorithms.

Another lattice-based approach is to search for the codeword of lowest Euclidean
weight, e.g., using the BKZ algorithm [52]. Since we set the weight of the secret
generators on the GV bound and thus assume that our code behaves like a
random code, it is not known whether the codeword of lowest Euclidean weight is
also the codeword of lowest Lee weight, i.e., the secret key. Under the conservative
assumption that this is indeed the case, we estimate the cost of BKZ for the full
rank lattice to be in O

(
20.292n

)
. We observe that the parameter sets we choose

attain the target security levels also according to this attack.

Assumption 1: Let us use BJMM to find a vector v of Lee weight wsig. We
assume that finding another vector v′ of equal Euclidean length, i.e., ||v||2 =
||v′||2, by using BKZ has a lower complexity than finding v using BJMM. If
this assumption did not hold, then using BJMM we would be able to achieve a
speedup in solving SVP compared to using BKZ, which would in turn affect all
lattice-based cryptosystems.

Assumption 2: We assume that the complexity of using BKZ to find a vector
having Lee weight less than or equal to wsig is higher compared to using BJMM
for this task.

For a Lee weight of wsig the consequence of Assumption 2 not holding is that
BKZ would outperform all known ISD algorithms for solving the given weight
codeword finding problem at that weight. BKZ requires orthogonal projections
within the LLL step. However, the L1 norm is not induced by a scalar product
and, therefore, we assume that the best way to use BKZ for finding short vectors
in the L1 norm is to use it for finding short vectors in L2 norm and to hope that
those are also short enough in the L1 norm. We assume that using BJMM to
find short vectors in the L1 norm is more efficient than this.

5 Efficiency and performance
5.1 Parameters
Due to the quasi-cyclic structure of the private matrix Gsec it is sufficient to
store only one of its rows. Therefore, the size of the private key is in the order
Op(n), where the constant depends on the parameter p.

20 S. Ritterhoff et al.

We take a conservative choice for the NIST security levels [43], as shown in Table
1.

Table 1: Conservative NIST Categories
NIST Security Level Classical Cost Quantum Cost

I 160 80
III 224 112
V 288 144

Table 2: Parameters for the proposed signature scheme FuLeeca. All sizes are
given in Bytes.
NIST cat. n s ncon secret key size public key size sign. size

I 1318 0.046 875 100 2636 1318 1100
III 1982 0.035 156 25 90 3964 1982 1620
V 2638 0.023 437 5 178 5276 2638 2130

The chosen parametersand associated data sizes for the NIST categories I, III and
V are given in Table 2. Note that for all parameter sets, we fix p = 65521, ε =
1 and the relative Lee weights ωsig = wsig/(nM) = 0.001437, and ωkey =
wkey/(nM) = 0.03 is on the GV bound, where we recall that M = bp−1

2 c is the
maximal Lee weight in Fp.

The signature sizes are averaged over 1k generated compressed signatures and
include the size of the salt. For compression, we have adapted the mechanisms as
used in the Falcon signature scheme. Although the signature size is not constant,
it can be padded to obtain a fix size. As proposed in [30], it is possible to compress
the signatures resulting from Algorithm 2 even further.

5.2 Reason for choice of parameters
Recall that the choice to set wkey on the Lee-metric GV bound is necessary, to
treat the public code as a random code and thus estimate the BKZ algorithms
cost at 20.292n.

We choose p = 65 521, in order to set the Lee weight wkey of the secret generators
on the Lee-metric GV bound and still have a large enough distance to the Lee
weight of the signatures wsig. In fact, for smaller choices of p and setting wkey

on the Lee-metric GV bound we cannot find enough sign matches to signatures
of Lee weight wsig with wsig < 0.2. The bound wsig < 0.2 is mandatory to avoid
a polynomial time cost of ISD algorithms.

FuLeeca: A Lee-based Signature Scheme 21

Table 3: Comparison of post-quantum signature schemes for NIST level I (except
for Dilithium which achieves NIST level II). All sizes are given in kB.

scheme public key size signature size total size variant
Falcon [36] 0.9 0.6 1.5 -

FuLeeca [This work] 1.3 1.1 2.4 -
Dilitihium [28] 1.3 2.4 3.7 -

R-BG [7] 0.1 7.7 7.8 Fast
0.1 7.2 7.3 Short

Rank SDP Fen[32] 0.9 7.4 8.3 Fast
0.9 5.9 6.8 Short

Ideal Rank BG[19] 0.5 8.4 8.9 Fast
0.5 6.1 6.6 Short

PKP BG [19] 0.1 9.8 9.9 Fast
0.1 8.8 8.9 Short

SDItH [34] 0.1 11.5 11.6 Fast
0.1 8.3 8.4 Short

Ret. of SDitH [1] 0.1 12.1 12.1 Fast, V3
0.1 5.7 5.8 Shortest, V3

SPHINCS+ [5] <0.1 16.7 16.7 Fast
<0.1 7.7 7.7 Short

Beu [17] 0.1 18.4 18.5 Fast
0.1 12.1 12.2 Short

Durandal [2] 15.2 4.1 19.3 -

FJR [33] 0.1 22.6 22.7 Fast
0.1 16.0 16.1 Short

GPS [41] 0.1 24.0 24.1 Fast
0.1 19.8 19.9 Short

MinRank Fen [32] 18.2 9.3 27.5 Fast
18.2 7.1 25.3 Short

LESS-FM [8] 10.4 11.6 23.0 Balanced
205.7 5.3 211.0 Short sign

WAVE [26] 3200 2.1 3202 -

The parameters are also chosen according to the best known attack to find a
codeword of given Lee weight given our public key Gpub, namely the quantum,
amortized BJMM algorithm in the Lee metric.

22 S. Ritterhoff et al.

For the choice of p = 65 521, one cannot explicitly compute the cost of the
BJMM algorithm using the program4 due to numerical instabilities. A conser-
vative extrapolation from results for smaller choices of p suggests that the cost
for BJMM at wsig = 0.03 lies at 20.08n. We want to note here that Wagner’s
algorithm implies a cost of 20.5n.

We choose the length n according to the BKZ algorithm on full-rank lattices,
which runs with a cost of 20.292n. We aim at the conservative classical security
levels λ1 = 160, λ3 = 224, λ5 = 288 and set n at least such that

2λi + 64 = 0.292n.

This choice is conservative in two ways. Not only the security levels λi have
been chosen conservatively but also assuming a loss in the security level of λi for
each of the provided 264 signature vectors is a very conservative approach within
the estimation of the resulting security level. In fact, the parameters are chosen
in such a way that even for the aforementioned loss of λi + 64 bits a security
level of of at least λi bits is maintained for the respective parameter sets. It is
possible to speed up solving the SVP using BKZ by providing the algorithm with
short Euclidean lattice vectors [25]. The obtainable speedup is upper bounded
by the cost of finding the provided lattice vectors since otherwise we would have
found an improved lattice reduction algorithm. The exact speedup obtained from
integrating the short (codeword) vectors depends on their Euclidean length, but
we assume that a vector of comparable Euclidean length can be obtained at
a lower cost using BKZ compared to using BJMM. We conservatively add 64
to account for the maximum possible speedup once 264 signatures have been
published.

In fact, we choose n even slightly larger to ensure that we reach the necessary
LMP with good probability. This leads to the following lengths: n1 = 1318, which
ensures that n1/2 = 659 is prime, n3 = 1982, which ensures that n3/2 = 991
and finally n5 = 2638, which ensures that n5/2 = 1319 is prime.

Parameter Choice I The parameter choice p = 65 521, n = 1318, ωsig =
wsig/(nM) = 0.03, ωkey = wkey/(nM) = 0.001437 leads at least to the desired
quantum cost of 280, since BJMM’s algorithm indicates a quantum complexity
of 280 = 20.08n operations and the BKZ algorithm requires at least a classical
complexity of 2384 = 20.292n.

Parameter Choice III The parameter choice p = 65 521, n = 1982, ωsig =
wsig/(nM) = 0.03, ωkey = wkey/(nM) = 0.001437 leads to the desired quantum
cost of 2112, since BJMM’s algorithm indicates a quantum complexity of 2112 =
20.08n operations and the BKZ algorithm requires at least a classical complexity
of 2578 = 20.292n.

4https://git.math.uzh.ch/isd/lee-isd/lee-isd-algorithm-complexities/-
/blob/master/Lee-ISD-restricted.nb

https://git.math.uzh.ch/isd/lee-isd/lee-isd-algorithm-complexities/-/blob/master/Lee-ISD-restricted.nb
https://git.math.uzh.ch/isd/lee-isd/lee-isd-algorithm-complexities/-/blob/master/Lee-ISD-restricted.nb

FuLeeca: A Lee-based Signature Scheme 23

Parameter Choice V The parameter choice p = 65 521, n = 2638, ωsig =
wsig/(nM) = 0.03, ωkey = wkey/(nM) = 0.001437 leads to the desired quan-
tum cost of 2144, since BJMM’s algorithm indicates a quantum complexity of
2144 = 20.08n operations and the BKZ algorithm requires at least a classical
complexity of 2770 = 20.292n.

5.3 Detailed Performance Analysis

To evaluate FuLeeca, we provide a constant-time C reference implementation that
is publicly available at https://gitlab.lrz.de/tueisec/fuleeca-signature.
Both the hash functions as well as the CSPRNGs were instantiated with SHA-3
primitives. More precisely, we use the SHA-3 hash functions, as specified in FIPS
202 [54], with digest size of 2λ for the message hashing and expand this mes-
sage digest together with a salt using the eXtendable-Output Function (XOF)
SHAKE256 from the FIPS 202 specification as CSPRNG.

Table 4 shows the required clock cycles and run time in milliseconds for the ref-
erence implementation of the algorithm averaged over 10 000 runs. These values
were obtained on an Ubuntu 22.04 machine with an Intel Comet Lake (Intel Core
i7-10700) CPU at its base frequency of 2900MHz and 64GB of RAM using GCC
version 11.3.0 and an O3 optimization. In order to generate reliable results, all
dynamic performance enhancement and power management features like hyper
threading, turbo boost, and dynamic undervolting of the CPU were disabled.
Clock cycles are measured using the internal performance registers of the CPU
using the library libcpucycles5.

Table 4: Runtime of the constant-time reference implementation in kilocycles
and milliseconds on an Intel Comet Lake with a base frequency of 2900MHz
averaged over 10000 runs.

NIST cat. Unit Keygen Sign Verify
I kCycles 53 913 1 803 104 1452

ms 18 621 0.49
III kCycles 111 937 2 139 170 2534

ms 38 737 0.86
V kCycles 195 729 11 805 175 3845

ms 67 4070 1.32

6 Conclusion

In this paper, we proposed a Hash-and-Sign signature scheme based on the
hardness of finding a codeword of given Lee weight. Taking known statistical

5The implementation is publicly available at https://cpucycles.cr.yp.to/.

https://gitlab.lrz.de/tueisec/fuleeca-signature
https://cpucycles.cr.yp.to/

24 S. Ritterhoff et al.

attacks into account, we refined the simple signing process to render the scheme
multiple-use. We keep the EUF-CMA security proof as an open problem. The
scheme can be efficiently implemented as it only uses simple arithmetics and is
able to achieve short signatures of 1100 bytes and public keys of 1318 bytes for
the NIST category I security level. This compares favorably to state-of-the-art
of lattice-based and code-based schemes.

7 Acknowledgments

We would like to thank Sabine Pircher, Georg Sigl, Thomas Debris-Alazard and
Wessel van Woerden for meaningful discussions.

Violetta Weger is supported by the European Union’s Horizon 2020 research
and innovation programme under the Marie Skłodowska-Curie grant agreement
no. 899987. Sebastian Bitzer, Georg Maringer, Stefan Ritterhoff and Antonia
Wachter-Zeh were supported by the German Research Foundation (Deutsche
Forschungsgemeinschaft, DFG) under Grant No. WA3907/4-1, the European
Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement no. 801434), and acknowledge the
financial support by the Federal Ministry of Education and Research of Ger-
many in the programme of “Souverän. Digital. Vernetzt.”. Joint project 6G-life,
project identification number: 16KISK002. Patrick Karl acknowledges the finan-
cial support by the Federal Ministry of Education and Research of Germany in
the programme of “Souverän. Digital. Vernetzt.”. Joint project 6G-life, project
identification number: 16KISK002.

FuLeeca: A Lee-based Signature Scheme 25

References
1. Aguilar-Melchor, C., Gama, N., Howe, J., Hülsing, A., Joseph, D., Yue, D.: The

return of the SDitH. Cryptology ePrint Archive (2022)
2. Aragon, N., Blazy, O., Gaborit, P., Hauteville, A., Zémor, G.: Durandal: a rank

metric based signature scheme. In: Advances in Cryptology–EUROCRYPT 2019:
38th Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Darmstadt, Germany, May 19–23, 2019, Proceedings, Part III
38. pp. 728–758. Springer (2019)

3. Aragon, N., Dyseryn, V., Gaborit, P.: Analysis of the security of the PSSI problem
and cryptanalysis of the Durandal signature scheme. Cryptology ePrint Archive
(2023)

4. Astola, J.: On the asymptotic behaviour of Lee-codes. Discrete applied mathemat-
ics 8(1), 13–23 (1984)

5. Aumasson, J.P., Bernstein, D.J., Beullens, W., Dobraunig, C., Eichlseder, M.,
Fluhrer, S., Gazdag, S.L., Hülsing, A., Kampanakis, P., Kölbl, S., Lange,
T., Lauridsen, M.M., Mendel, F., Niederhagen, R., Rechberger, C., Rijneveld,
J., Schwabe, P., Westerbaan, B.: SPHINCS+, submission to the NIST post-
quantum project, v.3 (2020), https://csrc.nist.gov/Projects/post-quantum-
cryptography/selected-algorithms-2022

6. Baldi, M., Bianchi, M., Chiaraluce, F., Rosenthal, J., Schipani, D.: Using LDGM
codes and sparse syndromes to achieve digital signatures. In: Post-Quantum Cryp-
tography: 5th International Workshop, PQCrypto 2013, Limoges, France, June 4-7,
2013. Proceedings 5. pp. 1–15. Springer (2013)

7. Baldi, M., Bitzer, S., Pavoni, A., Santini, P., Wachter-Zeh, A., Weger, V.: Zero
knowledge protocols and signatures from the restricted syndrome decoding prob-
lem. Cryptology ePrint Archive (2023)

8. Barenghi, A., Biasse, J.F., Persichetti, E., Santini, P.: LESS-FM: fine-tuning sig-
natures from the code equivalence problem. In: Post-Quantum Cryptography: 12th
International Workshop, PQCrypto 2021, Daejeon, South Korea, July 20–22, 2021,
Proceedings 12. pp. 23–43. Springer (2021)

9. Barg, A.: Complexity Issues in Coding Theory. Tech. Rep. TR97-046, Electronic
Colloquium on Computational Complexity (ECCC) (Oct 1997), https://eccc.
weizmann.ac.il/eccc-reports/1997/TR97-046/index.html, iSSN: 1433-8092

10. Barg, Alexander: Some New NP-Complete Coding Problems. Problemy Peredachi
Informatsii 30(3), 23–28 (1994), https://www.mathnet.ru/eng/ppi241

11. Bariffi, J., Bartz, H., Liva, G., Rosenthal, J.: On the properties of error patterns in
the constant Lee weight channel. In: International Zurich Seminar on Information
and Communication (IZS 2022). Proceedings. pp. 44–48. ETH Zurich (2022)

12. Bariffi, J., Khathuria, K., Weger, V.: Information set decoding for Lee-metric codes
using restricted balls. In: Code-based Cryptography 10th International Workshop,
CBCrypto 2022. Springer

13. Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary linear codes
in 2n/20: How 1 + 1 = 0 improves information set decoding. In: Advances in
Cryptology–EUROCRYPT 2012: 31st Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Cambridge, UK, April 15-
19, 2012. Proceedings 31. pp. 520–536. Springer (2012)

14. Bellare, M., Rogaway, P.: The exact security of digital signatures-how to sign with
RSA and Rabin. In: Eurocrypt. vol. 96, pp. 399–416. Springer (1996)

15. Berlekamp, E.R., McEliece, R.J., van Tilborg, H.C.A.: On the inherent intractabil-
ity of certain coding problems. IEEE Transactions on Information Theory 24(3),
384–386 (May 1978)

https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://eccc.weizmann.ac.il/eccc-reports/1997/TR97-046/index.html
https://eccc.weizmann.ac.il/eccc-reports/1997/TR97-046/index.html
https://www.mathnet.ru/eng/ppi241

26 S. Ritterhoff et al.

16. Bernstein, D.J.: Grover vs. McEliece. In: Post-Quantum Cryptography: Third In-
ternational Workshop, PQCrypto 2010, Darmstadt, Germany, May 25-28, 2010.
Proceedings 3. pp. 73–80. Springer (2010)

17. Beullens, W.: Sigma protocols for MQ, PKP and SIS, and fishy signature schemes.
In: Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques. pp. 183–211. Springer (2020)

18. Bhattacharyya, M., Raina, A.: A quantum algorithm for syndrome decoding of
classical error-correcting linear block codes. In: 2022 IEEE/ACM 7th Symposium
on Edge Computing (SEC). pp. 456–461 (Dec 2022). https://doi.org/10.1109/
SEC54971.2022.00069

19. Bidoux, L., Gaborit, P.: Shorter signatures from proofs of knowledge for the SD,
MQ, PKP and RSD problems. arXiv preprint arXiv:2204.02915 (2022)

20. Blömer, J., Naewe, S.: Sampling methods for shortest vectors, closest vectors and
successive minima. Theoretical Computer Science 410(18), 1648–1665 (2009)

21. Byrne, E., Horlemann, A.L., Khathuria, K., Weger, V.: Density of free modules
over finite chain rings. Linear Algebra and its Applications 651, 1–25 (2022)

22. Chailloux, A., Debris-Alazard, T., Etinski, S.: Classical and Quantum algorithms
for generic Syndrome Decoding problems and applications to the Lee metric (2021),
https://eprint.iacr.org/2021/552, report Number: 552

23. Cho, J., No, J.S., Lee, Y., Koo, Z., Kim, Y.S.: Enhanced pqsigRM: Code-based
digital signature scheme with short signature and fast verification for post-quantum
cryptography. Cryptology ePrint Archive (2022)

24. Courtois, N.T., Finiasz, M., Sendrier, N.: How to achieve a McEliece-based digital
signature scheme. In: Advances in CryptologyASIACRYPT 2001: 7th International
Conference on the Theory and Application of Cryptology and Information Security
Gold Coast, Australia, December 9–13, 2001 Proceedings 7. pp. 157–174. Springer
(2001)

25. Dachman-Soled, D., Ducas, L., Gong, H., Rossi, M.: Lwe with side information:
attacks and concrete security estimation. In: Advances in Cryptology–CRYPTO
2020: 40th Annual International Cryptology Conference, CRYPTO 2020, Santa
Barbara, CA, USA, August 17–21, 2020, Proceedings, Part II. pp. 329–358.
Springer (2020)

26. Debris-Alazard, T., Sendrier, N., Tillich, J.P.: Wave: A new family of trapdoor one-
way preimage sampleable functions based on codes. In: Advances in Cryptology–
ASIACRYPT 2019: 25th International Conference on the Theory and Application
of Cryptology and Information Security, Kobe, Japan, December 8–12, 2019, Pro-
ceedings, Part I. pp. 21–51. Springer (2019)

27. Deneuville, J.C., Gaborit, P.: Cryptanalysis of a code-based one-time signature.
Designs, Codes and Cryptography 88, 1857–1866 (2020)

28. Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehlé,
D.: Crystals-dilithium algorithm specifications and supporting documentation
(version 3.1) (2021), https://pq-crystals.org/dilithium/resources.shtml

29. Dumer, I.I.: Two decoding algorithms for linear codes. Problemy Peredachi Infor-
matsii 25(1), 24–32 (1989)

30. Espitau, T., Tibouchi, M., Wallet, A., Yu, Y.: Shorter hash-and-sign lattice-based
signatures. In: Advances in Cryptology–CRYPTO 2022: 42nd Annual International
Cryptology Conference, CRYPTO 2022, Santa Barbara, CA, USA, August 15–18,
2022, Proceedings, Part II. pp. 245–275. Springer (2022)

31. Faugere, J.C., Gauthier-Umana, V., Otmani, A., Perret, L., Tillich, J.P.: A distin-
guisher for high-rate McEliece cryptosystems. IEEE Transactions on Information
Theory 59(10), 6830–6844 (2013)

https://doi.org/10.1109/SEC54971.2022.00069
https://doi.org/10.1109/SEC54971.2022.00069
https://doi.org/10.1109/SEC54971.2022.00069
https://doi.org/10.1109/SEC54971.2022.00069
https://eprint.iacr.org/2021/552
https://pq-crystals.org/dilithium/resources.shtml

FuLeeca: A Lee-based Signature Scheme 27

32. Feneuil, T.: Building MPCitH-based signatures from MQ, MinRank, Rank SD and
PKP. Cryptology ePrint Archive (2022)

33. Feneuil, T., Joux, A., Rivain, M.: Shared permutation for syndrome decoding: New
zero-knowledge protocol and code-based signature. Designs, Codes and Cryptog-
raphy pp. 1–46 (2022)

34. Feneuil, T., Joux, A., Rivain, M.: Syndrome decoding in the head: Shorter signa-
tures from zero-knowledge proofs. Cryptology ePrint Archive (2022)

35. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Crypto. vol. 86, pp. 186–194. Springer (1986)

36. Fouque, P.A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T., Prest, T.,
Ricosset, T., Seiler, G., Whyte, W., Zhang, Z.: FALCON: fast-fourier lattice-basd
compact signatures over NTRU, specification v1.2 (2020), https://csrc.nist.
gov/Projects/post-quantum-cryptography/selected-algorithms-2022

37. Gardy, D., Solé, P.: Saddle point techniques in asymptotic coding theory. In: Alge-
braic Coding: First French-Soviet Workshop Paris, July 22–24, 1991 Proceedings.
pp. 75–81. Springer (2005)

38. Gentry, C.: Key recovery and message attacks on ntru-composite. In: Advances
in CryptologyEUROCRYPT 2001: International Conference on the Theory and
Application of Cryptographic Techniques Innsbruck, Austria, May 6–10, 2001 Pro-
ceedings 20. pp. 182–194. Springer (2001)

39. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Proceedings of the fortieth annual ACM sympo-
sium on Theory of computing. pp. 197–206 (2008)

40. Gligoroski, D., Samardjiska, S., Jacobsen, H., Bezzateev, S.: McEliece in the world
of Escher. Cryptology ePrint Archive (2014)

41. Gueron, S., Persichetti, E., Santini, P.: Designing a practical code-based signature
scheme from zero-knowledge proofs with trusted setup. Cryptography 6(1), 5
(2022)

42. Horlemann-Trautmann, A.L., Weger, V.: Information set decoding in the Lee met-
ric with applications to cryptography. Advances in Mathematics of Communica-
tions 15(4) (2021)

43. Jang, K., Baksi, A., Kim, H., Song, G., Seo, H., Chattopadhyay, A.: Quantum
analysis of AES. Cryptology ePrint Archive (2022)

44. Löndahl, C., Johansson, T., Koochak Shooshtari, M., Ahmadian-Attari, M., Aref,
M.R.: Squaring attacks on McEliece public-key cryptosystems using quasi-cyclic
codes of even dimension. Designs, Codes and Cryptography 80, 359–377 (2016)

45. May, A., Meurer, A., Thomae, E.: Decoding random linear codes in O(20.054n).
In: Advances in Cryptology–ASIACRYPT 2011: 17th International Conference on
the Theory and Application of Cryptology and Information Security, Seoul, South
Korea, December 4-8, 2011. Proceedings 17. pp. 107–124. Springer (2011)

46. Moody, D., Perlner, R.: Vulnerabilities of McEliece in the World of Escher. In: Post-
Quantum Cryptography: 7th International Workshop, PQCrypto 2016, Fukuoka,
Japan, February 24-26, 2016, Proceedings 7. pp. 104–117. Springer (2016)

47. Persichetti, E.: Efficient one-time signatures from quasi-cyclic codes: A full treat-
ment. Cryptography 2(4), 30 (2018)

48. Phesso, A., Tillich, J.P.: An efficient attack on a code-based signature scheme.
In: Post-Quantum Cryptography: 7th International Workshop, PQCrypto 2016,
Fukuoka, Japan, February 24-26, 2016, Proceedings 7. pp. 86–103. Springer (2016)

49. Prange, E.: The use of information sets in decoding cyclic codes. IRE Transactions
on Information Theory 8(5), 5–9 (1962)

https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

28 S. Ritterhoff et al.

50. Regev, O., Rosen, R.: Lattice problems and norm embeddings. In: Proceedings of
the thirty-eighth annual ACM symposium on Theory of Computing. pp. 447–456
(2006)

51. Santini, P., Baldi, M., Chiaraluce, F.: Cryptanalysis of a one-time code-based dig-
ital signature scheme. In: 2019 IEEE International Symposium on Information
Theory (ISIT). pp. 2594–2598. IEEE (2019)

52. Schnorr, C.P., Euchner, M.: Lattice basis reduction: Improved practical algorithms
and solving subset sum problems. Mathematical programming 66, 181–199 (1994)

53. Sendrier, N.: Decoding One Out of Many. In: Post-Quantum Cryptography. pp.
51–67. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-25405-5_4

54. of Standards, N.I., Technology: SHA-3 Standard: Permutation-Based Hash and
Extendable-Output Functions. Tech. rep. (jul 2015). https://doi.org/10.6028/
nist.fips.202

55. Stern, J.: A method for finding codewords of small weight. Coding theory and
applications 388, 106–113 (1989)

56. Weger, V., Khathuria, K., Horlemann, A.L., Battaglioni, M., Santini, P.,
Persichetti, E.: On the hardness of the Lee syndrome decoding prob-
lem. Advances in Mathematics of Communications (Apr 2022). https:
//doi.org/10.3934/amc.2022029, https://www.aimsciences.org/en/article/
doi/10.3934/amc.2022029, publisher: Advances in Mathematics of Communica-
tions

https://doi.org/10.1007/978-3-642-25405-5_4
https://doi.org/10.1007/978-3-642-25405-5_4
https://doi.org/10.6028/nist.fips.202
https://doi.org/10.6028/nist.fips.202
https://doi.org/10.6028/nist.fips.202
https://doi.org/10.6028/nist.fips.202
https://doi.org/10.3934/amc.2022029
https://doi.org/10.3934/amc.2022029
https://doi.org/10.3934/amc.2022029
https://doi.org/10.3934/amc.2022029
https://www.aimsciences.org/en/article/doi/10.3934/amc.2022029
https://www.aimsciences.org/en/article/doi/10.3934/amc.2022029

	FuLeeca: A Lee-based Signature Scheme

