
Fork-Resilient Continuous Group Key Agreement

Joël Alwen1 Marta Mularczyk1 Yiannis Tselekounis2

1AWS-Wickr, {alwenjo,mulmarta}@amazon.com
2Carnegie Mellon University, itseleko@cs.cmu.edu

February 22, 2024

Abstract. Continuous Group Key Agreement (CGKA) lets a evolving group of
clients agree on a sequence of group keys. An important application of CGKA is
scalable asynchronous end-to-end (E2E) encrypted group messaging.

A major problem preventing the use of CGKA over unreliable infrastructure are
so-called forks. A fork occurs when group members have diverging views of the
group’s history (and thus its current state); e.g. due to network or server failures.
Once communication channels are restored, members resolve a fork by agreeing on the
state of the group again. Today’s CGKA protocols make fork resolution challenging,
as natural resolution strategies seem to conflict with the way the protocols enforce
group state agreement and forward secrecy. Meanwhile, secure group messaging
protocols which do support fork resolution do not scale nearly as well as CGKA does.

In this work, we pave the way to practical scalable E2E messaging over unreliable
infrastructure. To that end, we generalize CGKA to Fork Resilient-CGKA which
allows clients to process significantly more types of out-of-order network traffic.
This is important for many natural fork resolution procedures as they are based,
in part, on replaying missed traffic. Next, we give two FR-CGKA constructions: a
practical one based on the CGKA underlying the MLS messaging standard and an
optimally secure one (albeit with only theoretical efficiency). To further assist with
fork resolution, we introduce a simple new abstraction to describe a client’s local
protocol state. The abstraction describes all and only the information relevant to
natural fork resolution, making it easier for higher-level fork resolution procedures
to work with and reason about. We define a black-box extension of an FR-CGKA
which maintains such a description of a client’s internal state. Finally, as a proof of
concept, we give a basic fork resolution protocol.

1

Contents

1 Introduction 3
1.1 Our Contribution . 6
1.2 Related Work . 8

2 Preliminaries 9
2.1 Notation . 9
2.2 Binary-Tree Encryption and HIBE . 9
2.3 Binary-Tree Signatures . 10
2.4 Collision-Resistant PRF . 11
2.5 Puncturable PRF . 11

3 Fork-Resilient CGKA 13
3.1 (Server-aided) CGKA . 13
3.2 FR-CGKA Protocols . 14
3.3 FR-CGKA Security Definition . 15
3.4 (Sub-)Optimal Security Predicates . 19

4 The FREEK Protocol 20
4.1 Definition of FREEK . 23

5 FR-CGKA with Optimal Security 25
5.1 Authenticity . 27
5.2 The Final Construction . 28

6 Natural Fork-Resolution Protocols 29

7 Security of FREEK 32
7.1 Security Proof of FREEK . 33
7.2 Consistency and Step Correctness . 35
7.3 Confidentiality . 38
7.4 Authenticity . 45

8 Security Proof of O-FREEK 48
8.1 Consistency and Step Correctness . 49
8.2 Confidentiality . 50
8.3 Authenticity . 53

A Security Model Intuition 59

B Details of SAIK Components Used by FREEK 61

2

1 Introduction

End-to-end (E2E) encrypted secure messaging is a widely used class of cryptographic applications
allowing groups of clients to communicate securely with each other over untrusted network and server
infrastructure. Here, “secure” has come to denote (at least) message authenticity and a strong flavour
of message confidentiality known as Post Compromise Forward Secrecy (PCFS) [CCG16, ACDT20].
Intuitively, PCFS means that current messages remain semantically secure from an adversary that
controls all network traffic and can leak all participants’ local states both in the past (PCS) and
future (FS) but not currently.

A new class of messaging applications are based on underlying Continuous Group Key Agree-
ment (CGKA) protocols, including the IETF’s upcoming Messaging Layer Security (MLS) stan-
dard [BMO+18]. Most of the functionality, security and efficiency properties of these protocols is
inherited directly from their underlying CGKAs [ACDT21]. This has made CGKA a growing subject
of cryptographic research in recent years. (See the related work section below for some highlights.)

Put simply, CGKA provides an E2E secure group state management for dynamic groups, i.e.,
groups whose properties (including its membership) evolve over time. Every change of the group’s
properties initiates a new epoch. The goal of CGKA is to equip the group members in each epoch
with a symmetric group key known only to them. In line with the E2E security paradigm, clients
can affect and authenticate changes to their group’s state (including adding/removing members) on
their own. That is, without relying on specially designated group members or trusted third parties
(beyond some form of PKI). Finally, as sessions may last for years, at any point clients can perform a
PCS update. This injects fresh entropy into all of the client’s cryptographic secrets related to the
CGKA session so as to hedge against the client’s local state being leaked mid-session.

To be useful for messaging applications, CGKAs must provide all group members with a consistent
view of the group’s state. That is, group members that have a common view of a group state and
subsequently see the same1 “packets” (aka. protocol messages) will end up with the same new group
state. This state includes the group’s current membership and other application-relevant data (e.g.
the group’s name).

The CGKA-based approach to group messaging comes with various improvements over previous
generations of messaging protocols. Most notably, CGKAs are designed to scale to orders of magnitude
larger group sizes n (e.g. 100x larger) opening up new use cases in the domain of IoT and large scale
events while reducing the bandwidth requirements of today’s use cases. To enable this scalability,
they reduce the O(n) communication (and computational) complexities of older messaging protocols’
(e.g. when removing a group member or doing a PCS update) [Fou23a, MP22, Wha23, HLA19] down
to O(log(n)); albeit, under some relatively mild assumptions about clients online/offline behavior.
This type of complexity is sometimes informally referred to as “fair-weather complexity” and it is a
hallmark of CGKA protocols. Other improvements of CGKA over older protocols include mechanisms
for exporting shared keys (for use by higher level applications), importing PSKs and other arbitrary
external contexts, dynamically updating ciphersuites, client capabilities and even the protocol version
mid-session and a mechanism for recovering from faults. They are also very extensible allowing
applications to define custom group properties, business logic, and protocol functionality as needed.

Consistency For Reliable Infrastructure. One of the main tasks in designing a messaging
system (and CGKA) is to ensure all participants maintain a consistent view of the group’s state under
minimal network assumptions. Indeed, the vast majority of messaging applications are designed for
asynchronous communication. That is, they allow clients to participate in groups even when no other

1or equivalent, as defined by the protocol

3

group member is currently online. Whenever a client does come online it quickly catches up to the
current group state by processing any packets it missed while offline.

A common method of ensuring consistency is to implement a single source of truth determining
the group state; e.g. via an (untrusted) server which buffers all packets for a group and forwards
them in the same order to all group members as they come online. This implicitly establishes a fixed
order of events in the group that all clients can agree on and based on which they can determine
the new group state.2 Alternatively, the server may even maintain its own view of the group state
(possibly obliviously so [CPZ20]) which serves as a more direct single source of truth.

Consistency for Unreliable Infrastructure. Unfortunately, when infrastructure such as the
network or server are unreliable, depending so critically on a central server can become problematic
as it introduces a single point of failure (and a bottleneck) for the group. A client that cannot reach
the server cannot participate in the group at all. Unfortunately (and unnecessarily as it turns out)
that is even true when clients can still reach each other somehow over the network.

Yet many secure messaging use cases must contend with unreliable infrastructure. For example,
in disaster relief scenarios, when communicating via ad-hoc mesh networks or when operating in
contested environments. Even in a federated setting (where clients’ packets are routed via host servers
as with email) it can happen that host servers lose connectivity with each other for extended periods
of time.3 In such cases, we could ask that clients can still participate in groups with each other as
long as their host servers remain in contact (or they are hosted on the same server).

Fortunately, as a consequence of enabling asynchronous messaging, most CGKA and secure
messaging protocols already, in principle, allow arbitrary subsets of clients in a group to process each
other’s packets without any further interaction with the group members outside their subset [MP16,
Fou23a, HLA19, BMO+18]. Thus, one way to improve resilience of a messaging application is for
clients to forward packets directly to each other whenever possible as permitted by the communication
infrastructure.

But forgoing a central server also means living without the single source of truth it provided. So,
to guarantee consistency a new method is needed that allows for “fork resolution”. A fork occurs
when clients in a group have diverging views of the group’s event history, e.g. due to network links
going down for some time. Once connectivity is restored, the fork resolution method must provide a
way for clients to reconcile their divergent views in order to agree on a new group state from which to
proceed.

For example, consider a group in a federated setting where some members are hosted on a host
server SA and the rest on host server SB. Now suppose the link connecting the two servers goes down,
partitioning the group into two subsets that can continue to communicate with each other via their
shared host servers. Alice, who is hosted on server SA adds Anthony to the group who joins from the
perspective of all clients hosted on SA. Meanwhile Bob, who is hosted on SB, removes Alice from the
group. Thus we now have a fork. Later, the link between the servers is restored. A fork resolution
method must now provide a way for all clients in the group to resolve their fork to reach consensus
on a common view of the group state (in particular, in this case, its membership).

2We note such delivery servers are not trusted for confidentiality, authenticity or agreement of the CGKA / messaging
application. Instead, we rely on them only for availability. The agreement property ensures that for two clients to be
in the same epoch (a prerequisite for exchanging E2E encrypted messages in a CGKA-based messaging protocol) the
clients must first have the same view of the group state.

3Federated messaging is used widely in practice, especially in the enterprise and public sectors. [OR93, Jab23,
Fou23a, Tea23, HLA19, Gmb21]. One reason is that by administering their own host servers, organizations can better
manage their members’ clients. For example, organizations can better control incoming/ougoing communication flows
by determining to which external host servers their own server can connect.

4

Natural Fork Resolution. Fork resolution for CGKA and messaging have both been considered
before. To the best of our knowledge, they all adhere to the following high-level outline we shall call
natural fork resolution. First, clients determine which network packets each one is missing. Next,
they obtain those packets (e.g. from each other via a gossip protocol). Finally, after processing the
new packets they determine a new group state based on their, now updated, view of all events in the
group. This final step is often implemented non-interactively by running an algorithm (sometimes
called a “state resolution” algorithm [Fou23b]) which maps an initial group state and a set of causally
dependent events in the group to a new group state.

The Matrix messaging application, the DCGKA protocol of [WKHB21] and the messaging protocol
of [CEST22] employ the natural fork resolution paradigm. Along with a state resolution algorithm,
each also introduces a group messaging protocol that allows processing packets delivered in any
causality respecting order.

An event E1 is causally dependent on event E0 if E1 happened after E0 from the point of view of
the client that created event E1 [Wei19]. For example Alice must join the group (E0) before she sends
a message to the group (E1). In a slight abuse of notation we use the same terminology for packets
to denote that the sender of a packet P1 already received packet P0 when sending P1. A sequence of
events (or packets) is causality respecting if every event (or packet) appears in the sequence after all
events (or packets) upon which it is causally dependent. Note that an otherwise unreliable network
that does ensure packets from the same origin to the same destination are received in the order they
are sent guarantees that packets in a session are delivered in an arbitrary but causality respecting
order to all group members.4

However, neither Matrix nor the protocols from [WKHB21, CEST22] are designed with the type
of scalability that characterizes CGKA protocols. In particular, rather than fair-weather logarithmic
complexity, removing a group member requires O(n) download bandwidth for each client, as does a
single PCS update.5 Conversely, the (experimental) fair-weather dMLS messaging protocol (adapted
from MLS by the Matrix team [Mat23a]) allows for processing packets in any causality respecting
order. However it does so at the cost of seriously weakening forward secrecy for message confidentiality.

Nevertheless, their state resolution algorithms (or something similar) seem like useful building
blocks for a fork resilient fair weather complexity messaging protocol. But before we can apply them
we must first overcome a fundamental problem with today’s CGKA protocols. Forks can result in
sender and receiver of a packet receiving packets in different orders. Thus, the natural fork resolution
paradigm requires that clients can process incoming packets in arbitrary causally respecting order
while ending up with the same interpretation of events encoded in those packets.

In the example above, clients hosted by server SA will see Alice’s packet inviting Anthony before
they see Bob’s packet removing Alice while clients hosted by server SB will see the packets in reverse.
Yet, to date, no CGKA supports this level of flexibility. Instead, to ensure forward secrecy of old
epoch keys, protocols mandate critical key material in an epoch state be deleted as soon as it is used
to transition to a new epoch. The unfortunate side effect is that no other transitions (e.g. due to
forks) can be made out of the old epoch. Thus, clients are effectively only able to process events in a
single sequence, making consistency in the face of unreliable networks very challenging.

4Most protocols make it easy to recognize any causal dependencies of packets using sequence or epoch numbers so
local buffering of packets delivered prior to causal dependencies effectively implements a causality respecting network
from one with eventual delivery from a clients point of view.

5We also note that, unlike almost all other protocols in this work, the Matrix protocol has little to no forward secrecy,
though we believe this could be fixed relatively easily; albeit at the likely cost to availability in the case of failure and
device loss [ACDJ23].

5

1.1 Our Contribution

In this work we pave the way towards scalable secure group messaging (and CGKA) over unreliable
communication infrastructure. That is, we define and construct a new type of CGKA that supports
processing packets in any causally respecting order. This removes the main roadblock preventing
natural fork resolution for CGKA based messaging. We do so without compromising on the standard
CGKA security properties. Furthermore, we provide a simple abstraction clients can use to reason
and communicate about their local states, and to help determine what events (i.e. packets) they are
missing and which missing ones they could still process.

Fork-resilient CGKA. We begin with a fresh approach to CGKA, called fork-resilient CGKA
(FR-CGKA). We observe that, up till now, a typical way of thinking about regular CGKA relies
heavily on the concept of a client’s current epoch. For example, this resulted in defining authenticity
for CGKA to mean that a member only accepts packets from group members in a single, i.e. the
receiver’s “current”, epoch [ACJM20, AJM22, AHKM22a]. Consequently, all CGKA protocols to
date are incapable of processing packets with events pertaining to older epochs.

To address this, a key conceptual novelty of FR-CGKA is to replace the focus on a current epochs
with a focus on a current view of the group’s history. This history is represented as a directed tree
of epochs called the history graph [ACDT21] where an edge from an epoch E0 to E1 represents an
event modifying E0’s state, giving rise to the new epoch E1. Each new FR-CGKA protocol packet
corresponds to creating a new edge and epoch in the history graph. Clients can create a child epoch
E1 of any epoch E0 in their view, i.e., they can send a packet from epoch E0 to convey to other
group members some event changing E0’s state defining the new epoch E1. Clients can also receive
packets sent from any epoch E0 in their view thus adding the new epoch node E1 to their view
and connecting it as a child of E0. We adapt the standard CGKA security notions accordingly.
For example, authenticity now requires that if a member accepts a packet as having been sent by
some client C, then C is a member in E0 and C did in fact create E1. In particular, correctness of
FR-CGKA ensures that packets can be processed in any causality respecting order.

Our formal model for defining FR-CGKA is based on server-aided CGKA [AHKM22a] inheriting
all of its advantages such as a flexible definition parameterized by security predicates and enabling
better efficiency, as members receive personalized, smaller packets.

The Pebbling Abstraction For Local States. To implement the natural fork resolution paradigm,
clients that re-establish communication after a fork must determine which packets they have received
(and which not) as well as which of the packets they didn’t receive, yet which they are still able to
process.

To help with this, we introduce a comparatively simple abstraction of a clients local state which
captures precisely this (and no more) information about the client. In essence, it captures which
epochs and their relations a client is aware of, for which of those epochs it can still send and receive
and for which it still knows the epoch key. In a bit more detail, we call the abstraction the client’s
pebbled history graph. At any given moment, the local state of a client can be represented using this
abstraction. There are three types of pebbles which can be placed on nodes (i.e. on epochs in the
history graph): move pebbles, visited pebbles and key pebbles. A node can have at most one pebble
of each type on it. A move pebble on epoch E denotes that the client can send and receive from E.
A visited pebble on E denotes that the packet leading to E can not be processed any more. (Not
being able to process previously received packets is crucial to ensure forward secrecy of messages in a
CGKA-based messaging protocol.) Finally, a key pebble on epoch E indicates that the client still has
the epoch key in their local state. Move and key pebbles can be deleted from old epochs at any time

6

(as this simply corresponds to deleting cryptographic keys from the client’s local state). A visited
pebble E cannot be removed though as its presence implies that some critical cryptographic secret
required to process the packet for the E’s incoming edge has already been deleted. To summarize; to
be able to process a packet sent from epoch E0 to create child epoch E1 the client must already have a
move pebble on E0 and, if E1 is already in their view, then have no visited pebble on E1. Processing
the packet then (adds E1 as a child of E0 if not already there and) places a move, visited and key
pebble on E1. Thus, the pebbled history graph of a client fully determines which packets it has and
still can process. We give a simple protocol in the FR-CGKA hybrid model for clients to obtain
and manipulate their current pebbling state. This presents a minimal interface to the underlying
FR-CGKA for use by a fork resolution procedure. In particular, it abstracts away all details about
the underlying cryptographic state.

We note that FR-CGKA is a generalization of CGKA in the following sense. A CGKA can be
built black-box from any FR-CGKA by keeping only the newly placed move pebble and removing all
old ones whenever a new packet is processed.

Natural Fork Resolution Example for FR-CGKA. As a brief proof-of-concept demonstrating
how FR-CGKA and the pebbling abstraction can be used for fork resolution we give an example
natural fork resolution procedure (in Sec. 6). At a high level, when users discover that they are
out of sync, they exchange their respective pebbled history graphs and missing packets and run a
local state resolution algorithm to get a “current” group state consistent with their combined views.
Then one of them chooses some epoch E and creates its child E0 (or a chain of descendants ending
with E0) whose state matches the “current” one. (E should be chosen so that the cost of creating
and/or transitioning to E0 is minimized.) For state resolution, we can, for example, use the algorithm
of [Fou23b], as the “event graphs” it uses are similar to history graphs.

Practical FR-CGKA protocol. As our next contribution we give a practical protocol, FREEK,
based on the SAIK protocol [AHKM22a], which in turn builds on MLS [BMO+18].

It turns out that modifying MLS (or SAIK) without compromising on security is not entirely
straightforward. For example, the distributed MLS (dMLS) protocol of [Mat23b], which modifies
MLS to allow processing packets in any causally respecting order, ends up with far weaker forward
secrecy (FS) than FS-CGKA (and MLS) guarantee. Concretely, to enable processing packets from
old epochs, dMLS stores old secrets (thus, removing MLS’s instructions to delete them). So for
example, corrupting Alice while she has a move pebble on epoch E can reveal the epoch keys (and
thus messages sent by clients in those epochs since dMLS is a CGKA-based messaging protocol) of
many descendant epochs of E, even those she has already deleted. In contrast, FREEK ensures that
these keys are secure.

The main idea of FREEK is as follows. SAIK (and MLS) derive the epoch key of an epoch E1
by mixing secret entropy from the state of its parent epoch E0 with fresh entropy sampled by the
client creating E1. Concretely, init secret, which is part of E0’s cryptographic state, is hashed
with a fresh commit secret distributed in a packet to the group by the creator of E1. Recall that
CGKA must provide strong FS for epoch keys. Unfortunately, the decryption keys clients use to
recover commit secret from a packet may not be rotated out for many epochs into the future which
means we get weaker than desired FS for commit secret. So instead, SAIK (and MLS) improve the
FS of E1’s epoch keys by immediately deleting the init secret of E0. Thus, a leaked client’s state
might reveal enough to allow recovering commit secret but not init secret which is also needed to
recompute the epoch key.

However, this creates a problem for FR-CGKA, as the deleted init secret is needed to transition
to other child epochs of E0. Therefore, if the packets for those epochs arrive later, the client can no

7

longer process them.
Based on this observation, we take a more fine-grained approach to enforcing FS by being more

selective about which information is deleted. In particular, in FREEK the init secret of E0 is now
the key to a puncturable PRF (PPRF). Puncturable PRFs allow puncturing their key on any subset
of inputs S such that the key reveals nothing about the output of the PRF on those inputs but can
still be used to evaluate the PRF on all other inputs. The epoch key of E1 is now derived by mixing
a fresh commit secret with the PPRF output produced using init secret of E0 as the PPRF key
and a challenge distributed in the packet by the creator of E1. So, instead of deleting init secret,
FREEK only punctures it on the challenge, providing FS for E1’s epoch key while maintaining the
ability to process future packets with other commit secret values.

It remains to choose the challenge, which turns out to be a bit tricky. For example, using
commit secret is a bad idea, because a punctured PPRF key may reveal the inputs it was punctured
on (this is actually the case for the common GGM-based PPRF). Therefore, using such a construction
would leak old commit secrets, making FS worse again. Using instead a random challenge (attached to
the packet) is also a bad idea, because it opens the door to denial-of-service attacks (and it increases
bandwidth). In such an attack, a malicious group member Malory creates a packet P1 with the
challenge copied from some honest packet P2, and delivers P1 to Bob before P2. As a result, Malory
blocks Bob from receiving P1, since Bob already punctured his init secret. As a result, FREEK
constructs the challenge from a cryptographic commitment to the new epoch’s public state and half
of the commit secret (the other half becomes what was previously the commit secret). See Sec. 4 for
more details on challenge selection.

Optimally secure FR-CGKA. Finally, we construct a second FR-CGKA protocol with optimal
security predicates. That is, all epochs whose security does not contradict the protocol’s correctness
are secure. To achieve this, we expand the techniques of [ACJM20] which constructs standard CGKA
with optimal security using hierarchical identity-based encryption (HIBE). To extend the CGKA
of [ACJM20] to the FR-CGKA setting, parties would have to store old CGKA states, which destroys
optimal security. We show how to fix this using HIBE with a binary identity space, which achieves
both HIBE and puncturable PKE[GM15].

1.2 Related Work

Besides those already mentioned in the introduction, there various works about fork resolution and
about CGKA. First, several (also non-cryptographic) decentralized systems in practice can be cast as
using resolution algorithms to provide consistency, some more explicitly than others. For example
some messaging applications [Fou23a, CEST22, OR93, Jab23], most blockchain protocols (e.g. [Nak08,
But14]) and CRDT based systems like collaborative document editing applications [Goo23, Aut23]
all use either implicit or even explicit [Fou23a] resolution algorithms. Further, [DDF21] provides a
way to deal with a different type of fork; namely ones caused by malicious insiders deviating from the
honest protocol in the setting with a server trusted to deliver packets in order.

Another related line of work considers concurrent CGKA protocols [AAN+22b, AAN+22a,
BDG+22, BMO+18] which allow for concurrent PCS updates (e.g. due to a network partition).
However for these protocols, concurrency is only supported within one epoch. That is, once a client
decides to apply one or more concurrently generated PCS updates (or other modifications) to its
local state, it enters a new epoch at which point it can no longer process any other incoming events
pertaining to the previous epoch. In particular, it has no way of processing delayed packets pertaining
to the old group state. As such, these protocols only provide a very limited type of fork resilience.

The most prominent CGKA protocol, the one underlying the MLS[BMO+18] messaging standard,

8

received a lot of attention from academia. The works [BCK21, AJM22] provide cryptographic analysis
of the whole protocol, while [BCK22] analyzes its key schedule. Further, [WPBB22] gives a formally
verified implementation of MLS with security proofs in F∗. Apart from MLS, other CGKA protocols
have been proposed, improving efficiency and/or security. In terms of security, RTreeKEM [ACDT20]
improves PCFS while [HKP22] provides better metadata privacy. The works of [BCV22, KEO+22]
consider CGKA with flexible authorization. Protocols with better efficiency (at least in certain
scenarios) include TTKEM [ACC+21] and the protocol of [AAB+21]. The work [BDT22] proposes
a (potentially) more efficient but also more restricted variant of CGKA. Another way to improve
efficiency is to consider server-aided CGKA [KKPP20, HKP+21, AHKM22a], where parties download
(smaller) personalized packets prepared by an untrusted mailboxing service (instead of communicating
via broadcast as is typical for CGKA).

Finally, for an overview of game-based security models for group key exchange see [PRSS21].

2 Preliminaries

2.1 Notation

For a vector v⃗ and a value v, we denote by v⃗ ∥ v appending v at the end of v⃗. The empty vector is
denoted ϵ.

2.2 Binary-Tree Encryption and HIBE

Hierarchical identity-based encryption (HIBE) [GS02] is public-key encryption where secret keys form
a hierarchy (the public keys form the analogous hierarchy). On top is the master secret key. Directly
below it are keys associated with identities I from some identity space, w.l.o.g. {0, 1}ℓ for some ℓ.
Directly below each key with identity I1 are keys associated with two-element identity vectors (I1, I2)
for I2 ∈ {0, 1}ℓ, and so on. This hierarchy can be visualized as a tree where each node is associated
with an identity vector I⃗ and the corresponding secret key. On top is the root with the empty identity
vector I⃗ = ϵ and the master secret key. Then nodes on depth d have identity vectors of length d.

Given the master public key, one can encrypt a message to any public key in the hierarchy. Further,
given a secret key, one can derive all secret keys below it in the hierarchy. However, the secret key
reveals no information about messages encrypted to public keys that are not below its corresponding
public key.

Binary-Tree Public-Key Encryption (BtPke) is a special case of HIBE where the identities I are
bits, i.e. ℓ = 1. Our protocol only uses BtPke, so we only define the special case. The syntax is as
follows.

Key Generation: BtPke.gen()→ (epk, esk) generates a fresh master public and secret key.

Sub-key Derivation: BtPke.der(esk) → (esk0, esk1) takes as input a secret key for an (implicit)
binary identity vector I⃗ and outputs keys for identity vectors I⃗ ∥ 0 and I⃗ ∥ 1, respectively.

Encryption: BtPke.enc(epk, I⃗, m)→ c takes as input a master public key, a binary identity vector I⃗
and a message m, and outputs a ciphertext c.

Decryption: BtPke.dec(esk, c) → m/⊥ takes the public a secret key esk for an (implicit) binary
identity I⃗ and a ciphertext c encrypted to I⃗ and returns either a decrypted message m or ⊥ if
decryption fails.

9

Game IND-CCA

ExpIND-CCA
BtPke,b (A)

(epk, esk)← BtPke.gen()
C← ∅
c∗, I⃗∗ ← ⊥
(m0, m1, I⃗∗)← ACorr,Dec(epk)
c∗ ← BtPke.enc(epk, I⃗∗, mb)
b′ ← ACorr,Dec(c∗)
req ∄I⃗ ∈ C, I⃗ ′ ∈ {0, 1}∗ : I⃗∗ = I⃗ ∥ I⃗ ′

return b = b′

Oracle Corr(I⃗)

C +← I⃗
return *get-esk(esk, I⃗)

Oracle Dec(I⃗ , c)
if c∗ ̸= ⊥ then

req (I⃗ , c) ̸= (I⃗∗, c∗)
esk′ ← *get-esk(esk, I⃗)
return BtPke.dec(esk′, c)

Helper *get-esk(esk, I⃗)

esk′ ← esk
for i = 0 to |I⃗| do

(esk′
0, esk′

1)← BtPke.der(esk′)
esk′ ← esk′

I⃗[i]
return esk′

Figure 1: Experiment defining security of BtPke.

Correctness requires that for any (epk, esk) in the support of BtPke.gen, for any d ≥ 0 and
I⃗ ∈ {0, 1}d, for any eskI⃗ generated by running BtPke.der with all bits of I⃗, and for any m, we have
BtPke.dec(eskI⃗ , BtPke.enc(epk, I⃗, m)) = m with probability 1.

For security, we require the standard, straightforward modification of IND-CCA security. Formally,

Definition 1. The advantage of an adversary A against IND-CCA security of a scheme BtPke is
defined as

AdvIND-CCA
BtPke (A) = Pr[ExpIND-CCA

BtPke,1 (A)⇒ 1]− Pr[ExpIND-CCA
BtPke,0 (A)⇒ 1],

where the experiment ExpIND-CCA
BtPke,b (A) is defined in Fig. 1.

2.3 Binary-Tree Signatures

Binary-tree signatures, BtSig, are analogous to binary-tree encryption. Secret and public keys form a
hierarchy. A master public key allows to verify signatures for all binary identity vectors I⃗. A secret
key for a vector I⃗ allows to generate signatures for I⃗ and derive keys for identity vectors I⃗ ∥ 0 and
I⃗ ∥ 1.

BtSig is a special case of hierarchical identity-based signatures [GS02].

Key Generation: BtSig.gen() → (spk, ssk) generates a fresh master public key and master secret
key for identity ϵ.

Sub-key Derivation: BtSig.der(ssk, I) → ssk takes as input a secret key for an (implicit) binary
identity vector I⃗ and secret keys for identity vectors I⃗ ∥ 0 and I⃗ ∥ 1, respectively.

Signing: The signing algorithm BtSig.sig(ssk, m)→ σ takes as input a secret key for an (implicit)
binary identity vector I⃗ and a message m, and outputs a signature σ over m for I⃗.

Verification: The verification algorithm BtSig.ver(spk, I⃗, m, σ)→ b takes as input a (master) public
key, a binary identity vector I⃗, a message m and a signature σ, and outputs b = true if σ is a
valid signature over m for I⃗.

Correctness requires that for any (spk, ssk) in the support of BtSig.gen, for any d ≥ 0 and
I⃗ ∈ {0, 1}d, for any sskI⃗ generated by running BtSig.der with all bits of I⃗, and for any m, we have
BtSig.ver(spk, I⃗, BtSig.sig(sskI⃗ , m), m) = 1 with probability 1. Security is formalized as follows.

10

Game EUF-CMABtSig,A

ExpEUF-CMA
BtSig.sig (A)

(spk, ssk)← BtSig.gen()
C, S← ∅
(σ∗, m∗, I⃗∗)← ACorr,Sig,Upd(spk)
win← 1
win← win ∧ BtSig.ver(spk, I⃗∗, m∗, σ∗)
win← win ∧ (m∗, I⃗∗) /∈ S
win← win ∧ ∄I⃗ ∈ C, I⃗′ ∈ {0, 1}∗ : I⃗∗ = I⃗ ∥ I⃗′

return win

Oracle Sig(I⃗, m)

ssk′ ← *get-ssk(ssk, I⃗)
σ ← BtSig.sig(ssk′, m)
S +← (m, I⃗)
return σ

Oracle Corr(I⃗)

C +← I⃗
return *get-ssk(ssk, I⃗)

Helper *get-ssk(ssk, I⃗)

ssk′ ← ssk
for i = 0 to |I⃗| do

(ssk′
0, ssk′

1)← BtSig.der(ssk′)
ssk′ ← ssk′

I⃗[i]
return ssk′

Figure 2: The EUF-CMA game for key-updatable signatures.

Definition 2. The advantage of an adversary A against EUF-CMA security of a scheme BtSig is
defined as

AdvEUF-CMA
BtSig (A) = Pr[ExpEUF-CMA

BtSig (A)⇒ 1],

where the experiment ExpEUF-CMA
BtSig (A) is defined in Fig. 2.

2.4 Collision-Resistant PRF

Let CR-PRF(k, x) → y be a function. We require two security properties for CR-PRF: standard
PRF security and collision-resistance (CR) w.r.t. (k, x) pairs. That is, CR requires that no efficient
adversary can find two pairs (k, x) and (k′, x′) such that CR-PRF(k, x) = CR-PRF(k′, x′). CR is not
implied by PRF security because the former implies there are no collision on keys too.

2.5 Puncturable PRF

A puncturable pseudorandom function [BW13, KPTZ13, BGI14], PPRF, is a variant of a PRF that
additionally allows to puncture the secret key on different inputs. A key punctured on an input x
reveals no information about the output on x.

For simplicity, we consider PPRFs with key, input and output space of bitstrings of length κ (the
security parameter). Formally, a PPRF consists of the following algorithms

Evaluation: PPRF.eval(k, x)→ y takes as input a key k ∈ {0, 1}κ (chosen uniform at random) and
an input x ∈ {0, 1}κ and outputs y ∈ {0, 1}κ ∪ {⊥}

Puncturing: PPRF.puncture(k, x) → k′ takes as input a key k ∈ {0, 1}κ and an input x ∈ {0, 1}κ
and outputs a key k′ ∈ {0, 1}κ punctured on x

Correctness. A PPRF is correct if for any n > 0, for any k, x1, . . . , xn−1 ∈ {0, 1}κ and x ∈
{0, 1}κ \ {x1, . . . , xn}, if we set k1 = k and ki+1 = PPRF.puncture(ki, xi) for i ∈ [1, n − 1], then
PPRF.eval(kn, x) = PPRF(k, x) ̸= ⊥. Note that correctness implies commutativity.

We note that typically a weaker PPRF correctness is considered, where a key is only punctured
once. We need the stronger version. It can be easily achieved.

11

Game OW-PPRF

ExpOW-PPRF
PPRF,N,n(A)

for i ∈ [N] do
ki

$← {0, 1}κ

for (i, j) ∈ [N]× [n] do
ri,j

$← {0, 1}κ

C← ∅
win← false
ACorr,Eval(ri,j | (i, j) ∈ [N]× [n])
return win

Oracle Corr(i, j1, . . . , jℓ)
req i ∈ [N] ∧ j1, . . . , jℓ ∈ [n]
k ← ki

for j ∈ j1, . . . , jℓ do
k ← PPRF.puncture(k, ri,j)

C +← ([N]× [n]) \ {(i, j1), . . . , (i, jℓ)}
return k

Oracle Try(i, j, y)
req (i, j) ∈ [N]× [n]
y′ ← PPRF.eval(ki, ri,j)
if (i, j) /∈ C ∧ y = y′ then

win = true
return y = y′

Oracle Eval(i, x)
req i ∈ [N] ∧ ∄j : x = ri,j

return PPRF.eval(ki, x)

Figure 3: Experiment defining security of PPRF schemes.

Security. We define a non-standard security notion for PPRF called one-wayness (with adaptive
corruptions), OW-PPRF. The game is defined in Fig. 3. Roughly, the challenger samples N keys
and for each key n random inputs. The adversary’s goal is to compute one of these inputs given the
outputs (hence, one-wayness). In addition, the adversary can use a corrupt oracle which outputs a
challenge key punctured on a combination of challenge inputs chosen by the adversary. Such adaptive
corruptions are necessary to prove security of our protocol FREEK. We are not aware of any work
that defines such a notion.

Definition 3. Let N and n be positive integers. The advantage of an adversary A against OW-PPRF
security of a scheme PPRF is defined as

AdvOW-PPRF
PPRF,N,n(A) = Pr[ExpOW-PPRF

PPRF,N,n(A)⇒ 1],

where the experiment ExpOW-PPRF
PPRF,N,n(A) is defined in Fig. 3.

Construction. As shown in [BW13, KPTZ13, BGI14], the PRF by Goldreich et al. [GGM84]
(GGM) naturally extends to a puncturable PRF.

Roughly, the GGM construction defines a binary tree of height κ where each node is labeled by a
κ-bit value. Nodes are identified by binary strings: root is identified by an empty string ϵ, and if
a node is identified by a string x, then its left and right children are identified by x ∥ 0 and x ∥ 1,
respectively. To define the labels, the scheme uses a length-doubling pseudorandom generator PRG.
The root’s label is the secret PRF key. For a node with label ℓ, the labels of its children are the first
κ bits and the last κ bits of PRG(ℓ), respectively. The output on input x is the label of the node
identified by x.

To get a PPRF, we need to implement puncturing. At a high level, to puncture on x, we store the
labels of all nodes on the copath from the node identified by x to the root, i.e., those with identifiers
(x1, x2, ...,¬xn) for some n ∈ [0, κ] where (x1, x2, ..., xn) is a prefix of x and ¬ is binary negation. We
delete the root’s label. Note that we can compute the labels of all leaves except x.

OW-PPRF security of the construction. We note that even for standard PPRF security (with
one adaptive corruption of a key punctured on one challenge value), there is no polynomial-time
reduction to PRG security for the GGM PPRF. However, it is easy to see that the construction is
OW-PPRF secure if PRG is modeled as a random oracle.

Since we only require one-wayness, there may be a standard-model proof showing a reduction
from OW-PPRF security of GGM to some other property of PRG. Since we use the construction in

12

FREEK whose proof is in the ROM anyway, this would not improve our result in particular. It is an
interesting question, however.

3 Fork-Resilient CGKA

In the current section we define the notion of Fork-Resilient Continuous Group Key Agreement
(FR-CGKA). Our model is based on the model of [AHKM22a], which in turn builds on [ACJM20],
i.e., our definitions and protocols are in the server-aided CGKA setting. In Sec. 3.1 we first recall
the core ideas behind CGKA in general, and then, in Secs. 3.2 and 3.3, we present our FR-CGKA
definition.

3.1 (Server-aided) CGKA

A CGKA protocol enables a dynamic group of parties to continuously agree on shared, symmetric
secret keys, while ensuring the confidentiality and authenticity of those keys. The protocol is run over
a network and parties may be online/offline at arbitrary times, while the communication between
parties is assumed to be handled by an untrusted mailboxing service. A PKI is also assumed, that
enables parties to exchange initial key material so that they can be added while offline.

Syntax. A CGKA protocol execution proceeds in epochs. Each epoch defines a fixed set of group
properties, most importantly the member set and the shared group key. Any group member can
modify the group properties, which means that they create a new epoch. In this work, we consider
three types of operations they can do: (1) the addition of new members, (2) the removal of existing
ones, and (3) the update of the group key. Each protocol operation is performed by creating a single
message, which is uploaded to the untrusted mailboxing service. Afterwards, each group member can
download a possibly personalized message, and, if they accept it, they transition to the new epoch.
When adding a member, a CGKA protocol may contact a key service to fetch a so-called key package
previously uploaded by the added member. This way the added member does not need to be online.
A key package can only be used once and it must be group-agnostic — a member does not know to
which groups they will be added.

Adversary. The adversary can fully control the mailboxing service and repeatedly expose secret
states for parties. Note that this combination allows it to inject messages on behalf of parties whose
states were exposed (they have no more secrets). Intuitively, this means that if Alice’s state is exposed
and her message is delivered first, then she can heal. However, if a message injected on her behalf is
delivered first, then Alice is doomed — the only way for the group to heal is to remove the adversary
impersonating Alice and add Alice again.

History graphs. A useful tool when thinking of CGKA are history graphs introduced in [ACDT21].
Intuitively, a history graph is a symbolic representation of group evolution. Epochs are represented
as nodes and group modifications are represented as directed edges. For instance, assume a group
with a single member, Alice in epoch U . If Alice decides to add Bob, she creates an epoch V with an
edge from U to V , and after Bob joins they are both in epoch V . If Alice then decides to update
the group key, she creates an epoch W (every epoch has its own key). The history graph also stores
information about parties’ current epochs, adversary’s actions, etc.

Ideally, the history graph of a CGKA protocol execution should be a chain, i.e., each epoch should
have only a single child epoch in which the epoch creator transitions to it instantly, while other
parties transition as soon as they go online (or they join the group) and process the creator’s message.

13

However, this is not true since forks can also be created: if two parties simultaneously create new
epochs, an active adversary can deliver different messages to different parties, causing them to follow
different branches, creating a fork. Furthermore, it can make parties join fake groups by injecting
messages that invite them. Epochs in fake groups form what we call detached trees, where in presence
of such trees the history graph becomes a forest.

Security. Using the language of history graphs, [AHKM22a] identifies the following CGKA security
properties. The first two properties generalize PCS and FS. We also add correctness which is not
considered in [AHKM22a].

Agreement: Any two parties in the same epoch agree on the group state, i.e., the set of current
members, the group key, the last group modification and the previous epoch. One consequence
of the property is agreement on the transcript, that is, any two parties in a given epoch reached
it by executing the same sequence of group modifications since the latter one joined.

Confidentiality: An epoch U is confidential if the adversary has no information about its group
key. An active adversary may destroy confidentiality in certain epochs. CGKA security is
parameterized by a confidentiality predicate which decides if an epoch U is confidential.

Authenticity: Authenticity for a party A in an epoch U is preserved if the following holds: If a party
in U transitions to a child epoch V and identifies A as the sender creating V , then A indeed
created V . Again, an active adversary may destroy authenticity for certain epochs and parties.
CGKA security is parameterized by an authenticity predicate which decides if authenticity of a
party A in epoch E is preserved.

Strong Correctness: An honestly-generated message transitioning from epoch U to V is accepted by
a party in U . This holds even in the presence of corruptions, e.g. when U is created by the
adversary (via injections).

3.2 FR-CGKA Protocols

The intuition from the previous subsection leads to CGKA protocols and definitions which make fork
resolution very problematic. In such CGKAs, each party knows only about one current epoch. If two
parties end up with current epochs in different branches, they will never be able to reach the same
current epoch and, hence, communicate; see the example in Fig. 4. The reason is that agreement
requires a common group history (including all ancestors of the current epoch), and reaching the
same epoch from different branches clearly contradicts that.

FR-CGKA enables fork resolution without giving up agreement. At a high level, we replace the
notion of a party’s current epoch by its current view of the history graph. This means that a party is
not in one epoch but in many epochs at once. In the FR-CGKA syntax, when a party creates a new
epoch, it specifies a history-graph node which should be its parent. When a party receives a message,
it simply learns about a new node (and its parent). We say that it traverses the edge in such case.
Further, it can fetch the group keys from different nodes.

More precisely, a party’s view is represented by a pebbling of the history graph. See the example
in Figs. 5 to 7. Each party has three types of pebbles: A party A has a move pebble on an epoch U if
it has information required to transition to (non-visited) children of U . That is, A can create a child
epoch of U and transition to a child of U created by another party. A’s key pebble on U indicates
that A can output the group key for epoch U . A key can only be fetched once for forward secrecy.
Finally, forward secrecy requires that after traversing an edge from U to V , a party A removes the
information needed to do that. A’s visited pebble on V denotes that A already traversed the edge.

14

B

A

1

4

2 3

Figure 4: A fork blocks CGKA : Alice (A) in epoch 4 will
never be able to read messages sent by Bob (B) in epoch 3.

B

A

1

4

2 3

B

A,B

Figure 5: Resolving a fork in FR-CGKA : Alice and Bob
can still process messages from epoch 1, i.e., each has
a move pebble on epoch 1. In addition, Bob has move
pebbles on epochs 2 and 3, and Alice has a move pebble
on epoch 4.

A,B

A

1

4

2 3

A,B

A,B

Figure 6: Resolving a fork in FR-CGKA : Once Alice
receives messages (1, 2) and (2, 3), she gets move pebbles
on epochs 2 and 3 and she can talk to Bob (she needs both
messages to get to epoch 3.)

A

1

4

2 3

A,B

A,B

B
A,B
B

Figure 7: Forward secrecy of FR-CGKA : Bob’s state does
not contain information needed to transition to epochs he
already visited, i.e., 2 and 3, marked by his visited pebbles.
This means that if Bob is corrupted in the situation above,
the adversary learns the group key in epoch 4 (this is
possible for any correct FR-CGKA) but not in 2, 3.

In addition, the syntax of FR-CGKA allows for deleting move pebbles. It provides FS for old
epochs from which a party no longer needs to move.

All security properties of CGKA also apply to FR-CGKA. The only difference is that agreement
now mandates that for any epoch in the view of two parties, the parties agree on the group state
in this epoch. Note that when the state of a party A is exposed, the adversary gets the ability to
traverse edges from all nodes on which A has a move pebble except those on the ends of which she
has a visited pebble.

3.3 FR-CGKA Security Definition

We define security of FR-CGKA protocols in the UC framework, i.e., we consider a real-world
experiment where an environment A interacts with an FR-CGKA protocol π, denoted by realπ(A),
and an ideal-world experiment where A interacts with an ideal FR-CGKA functionality Ffr-cgka and
a simulator S, denoted by idealFfr-cgka,S(A). In this setting, a protocol π is secure if for all A there
exists an S such that the difference between the probability that A outputs 1 in realπ(A) and the
probability that A outputs 1 in idealFfr-cgka,S(A), is negligible. Due to space limitations, basic ideas
behind the UC framework and the security model of [AHKM22a] are deferred to App. A.

We now formally define our ideal functionality, Ffr-cgka, presented in Fig. 8. The functionality is
parameterized by the confidentiality and authenticity predicates, conf and auth, respectively, the
packet extraction function Ext(C, id)→ c and the id of the group creator, denoted by idcreator. Note
that our security definition is generic enough to capture arbitrary predicates conf , auth, admitting
protocols with different levels of security. The (deterministic) Ext function is (only) used to express
correctness. Ext is defined by the FR-CGKA protocol realizing Ffr-cgka for the mailboxing service to
extract from an uploaded packet C, a packet c downloaded by id.

15

Functionality Ffr-cgka

Parameters: conf , auth, packet extraction function Ext(C)→ c, group creator idcreator

Initialization // Executed on first input.
Eps[∗]← ⊥
Receive U0 from the simulator
Eps[U0]← *new-ep(sndr = idcreator, par = ⊥, act

= ‘create’, mem = {idcreator}, packet = ‘create’)
MoveA, KeyA, VisitedA ← ∅
Move, Key, Visited← {(idcreator, U0)}
return U0 to idcreator

Input (Send, U, act ∈ {‘up’, ‘add’-idt, ‘rem’-idt}) from id
Send (Send, id, U, act) to sim., receive (V, C, ack)
req ack ∧ Eps[V] = ⊥
// Compute the new epoch created by the action.
Eps[V]← *new-ep(sndr = id, par = U, act,

mem = *mem(U, act), packet = C)
Move, Key, Visited +← (id, V)
*assert-agree-auth-preserved
return (V, C)

Input (Receive, c) from id
Send (Receive, id, c) to sim.
if ∃V : c = Ext(Eps[V].packet) then

req *step-correct(Move, Key, Visited, id, V)
else

Receive (ack, V) from the sim.; req ack
if Eps[V] ̸= ⊥ then

(sndr, act, U)← (Eps[V].sndr, Eps[V].act, Eps[V].par)
else

Receive (sndr, act, U) from sim.
Eps[V]← *new-ep(sndr, par = U, act,

mem = *mem(U, act), packet = ‘inj’)
if act ̸= ‘rem’-id then

Move, Key, Visited +← (id, V)
*assert-agree-auth-preserved
return (U, V, sndr, act)

Input (Join, c) from id// Note : id may already be in the group
in another epoch

Send (Join, id, c) to sim., receive (ack, U)
req ack
if Eps[U] ̸= ⊥ then

(sndr, act, mem)← (Eps[U].sndr, Eps[U].act, Eps[U].mem)
else

Receive (sndr, act, mem) from sim.
Eps[U]← *new-ep(sndr, par = ⊥, act, mem, packet = ‘inj’)

assert act = ‘add’-id
Move, Key, Visited +← (id, U)
*assert-agree-auth-preserved
return (U, sndr, mem)

Input (GetKey, U) from id
req (id, U) ∈ Key
Send (Key, id, U) to the sim. and receive I.
if Eps[U].key = ⊥ then

if conf(U, Eps, MoveA, KeyA, VisitedA) then
Eps[U].key $← {0, 1}κ; Eps[U].chall← true

else
Eps[U].key← I

Key -← (id, U)
return Eps[U].key

Input (DeleteMovePebble, U) from id
Send (DeleteMovePebble, id, U) to sim.
Move -← (id, U)

Corruption (Expose, id)
KeyA +← {U : (id, U) ∈ Key}
for U s.t. (id, U) ∈ Move \MoveA do

MoveA +← (id, U)
VisitedA +← {(id, V) : U = Eps[V].par ∧ (id, V) ∈ Visited}

*assert-agree-auth-preserved
// Avoids commitment problem.
only allowed if ∄U : Eps[U].chall ∧

¬conf(U, Eps, MoveA, KeyA, VisitedA)

Helper *new-ep(sndr, par, act, mem, packet)
return new epoch with given sndr, par, act,
mem and packet, and with key = ⊥, exp = ∅,
chall = false.

Helper *mem(U, act)
G← Eps[U].mem
if act = ‘add’-idt then G +← idt

else if act = ‘rem’-idt then G -← idt

req act = ‘up’ ∨G ̸= Eps[U].mem
return G

Helper *assert-agree-auth-preserved
assert HG has no cycles
for U s.t. Eps[U] ̸= ⊥ do

assert {id : (id, U) ∈ Visited} ⊆ Eps[U].mem
assert Eps[U].par = ⊥ ∨ Eps[U].mem = *mem(Eps[U].par, Eps[U].act)

assert ∄V : Eps[V].packet = ‘inj’ ∧ auth(V, Eps, MoveA, KeyA, VisitedA)

Helper *step-correct(Move, Visited, id, V)
return (id, Eps[V].par) ∈ Move ∧ (id, V) /∈ Visited

Figure 8: The ideal CGKA functionality.

16

Notation. We use the keyword assert followed by a condition cond, to restrict the simulator’s
actions as follows: if the condition cond is false, then the functionality permanently halts, making
the real and ideal worlds easily distinguishable. We use only allowed if followed by a condition
cond to restrict the environment. That is, our statements quantify only over environments who,
when interacting with Ffr-cgka and any simulator, never make cond false. We write “Receive x from
the simulator” to denote that the functionality sends a dummy value to it, waits until it sends a value
x back and asserts via assert that the received value is of the correct format.

History graph. The functionality Ffr-cgka maintains a history graph represented as an array Eps,
where Eps[U] denotes the epoch identified by U . Each epoch, say E, has a number of attributes,
listed below, and we use the standard object-oriented notation to access their values, e.g., E.mem
returns the set of group members in E. Epoch identifiers U are arbitrary, i.e., chosen by the simulator,
subject to some natural conditions such as that, when a group member creates a new epoch, its
identifier must not already exist in the graph.

E.par The parent epoch of E.
E.sndr The party who created E by performing a group operation.
E.packet If E was created honestly, the packet C creating it; else, a special value ‘inj’.
E.act The group modification performed when E was created: either ‘up’ for update, or ‘add’-idt for adding idt,

or ‘rem’-idt for removing idt.
E.mem The set of group members.
E.key The shared group key.
E.chall A flag indicating if a random group key has been outputted.

Pebbling history graph nodes. Besides maintaining the history graph, the Ffr-cgka functionality
also pebbles and unpebbles the history graph nodes depending on the input operation. In particular,
Ffr-cgka stores sets Move, Key and Visited. We say that id has a move (resp., key or visited) pebble on
U if (id, U) ∈ Move (resp., (id, U) ∈ Key or (id, U) ∈ Visited).

Whenever a party id gets corrupted, the history graph is pebbled with adversarial pebbles that
capture the knowledge gained by the adversary. In particular, all group keys that can be computed
by id can also be computed by the adversary. Ffr-cgka marks this by putting an adversarial key
pebble on each U on which id has a key pebble. Formally, for all (id, U) ∈ Key, it adds U to a set
KeyA. Second, for each epoch U on which id has a move pebble, the adversary gains the ability to
transition to those children V of U for which id does not have a visited pebble on the edge from U to
V . This means that the adversary can create children of U on behalf of id and transition to some
(honestly created) children of U . Ffr-cgka marks this by putting an adversarial move pebble on U
and adversarial visited pebbles on some of its children. Formally, for each (id, U) ∈ Move, Ffr-cgka
adds (id, U) to a set MoveA and for each child V of U such that (id, V) ∈ Visited, it adds (id, V) to a
set VisitedA.

Inputs from parties. Initialization is executed on the first input to Ffr-cgka. The functionality
initializes an empty history graph (Eps[∗]← ⊥) and creates the first epoch using the *new-ep helper
(see below), with epoch id U0, chosen by the simulator. It also initializes the sets that store pebbles,
described above.

On input Send, followed by an epoch id U and action act, Ffr-cgka first sends all input values
to the simulator and awaits for the acknowledgement flag ack (which indicates whether the send
operation succeeds or fails with output ⊥), message C and new epoch id V . In case of success the
history graph is updated and a new epoch is created using the helper *new-ep. Furthermore, (id, V) is

17

added to Move, Key, Visited, since immediately after sending the message from epoch U , id transitions
to V , and is allowed to move, compute the group key, and has already visited, V . Finally, the helper
*assert-agree-auth-preserved is called to enforce agreement of the history graph and authenticity
(see below).

On input (Receive, c), from id, Ffr-cgka first forwards the input values to the simulator and
via the first “if” statement checks if the message c corresponds to an existing target epoch id V .
In the first case it enforces correctness of the transition to V (from the parent epoch Eps[V].par)
via the helper *step-correct (see below), while in the latter, the target epoch V is provided by
the simulator. Subsequently, if V already exists, the sender, action and parent epoch are recovered,
otherwise, a new epoch is created via *new-ep, with inputs provided by the simulator. If act is not
for removal, the receiver transitions to the epoch V and Move, Key, Visited, are updated as in Receive.
Finally, agreement and authenticity are enforced via *assert-agree-auth-preserved. On input
(Join, c), Ffr-cgka acts similarly.

On input (GetKey, U) from id, Ffr-cgka outputs the group key of the party with id id. The key is
set to a uniformly random value if confidentiality for U holds (this is checked conf), otherwise is set
to an arbitrary value chosen by the simulator. The operation requires (id, U) to be in the set of key
pebbles, Key, and is removed afterwards, which enforces forward secrecy of CGKA protocols.

On input (DeleteMovePebble, U) from id, (id, U) is removed from Move, indicating that id can no
longer move from U to any other epoch.

When id gets corrupted, all pebbles related to id are added to the adversarial sets of pebbles. In
particular, for all key pebbles (id, U) ∈ Key, U is added to KeyA; for all move pebbles (id, U) not in
MoveA, (id, U) is added to MoveA and similar for VisitedA. The above are only allowed if the corruption
is not violating confidentiality of a challenged epoch, while agreement and authenticity are enforced
as in previous operations.

Helpers. The *new-ep creates a new epoch with creator sndr, parent epoch par, action act, group
members mem, and packet packet. *mem receives epoch U and action act and updates the set of group
members based on the type of action, while *assert-agree-auth-preserved enforces agreement
and authenticity via the following assertions: (1) all ids visited an epoch U they should belong to the
set of group members for that epoch, (2) the history graph has no cycles, (3) *mem should update
group membership consistently w.r.t. parent epoch and action, and (4) there is no epoch that satisfies
the authenticity predicate predicate auth, that has been created via an injected packet. Finally,
*step-correct receives (Move, Visited, id, V) and checks validity of id moving to V , as follows: there
should be a move pebble for id w.r.t. the parent of V and id should have not visited V .

Security properties. Intuitively, Ffr-cgka captures the security properties of Sec. 3, as follows.
Regarding Agreement, observe that for each epoch Ffr-cgka stores and returns to the caller the
same group key, parent epoch, last group modification (action), and group members (set at the
time the epoch is created), and if this doesn’t hold for the protocol, real and ideal would be easily
distinguishable. Furthermore, the 2nd and 3rd assertions inside the *assert-agree-auth-preserved
enforce consistency in the way that the set of group members is updated w.r.t. the actions issued
by the callers, enforcing the same behaviour for the real world protocol. Confidentiality is captured
by the fact that the adversary is allowed to make calls to the GetKey operation, that, for epochs for
which confidentiality has not been violated via corruptions (this is checked by the predicate conf),
the operation returns a uniformly random key (instead of the actual protocol key). This implies
that for confidential epochs the actual group key is indistinguishable from a uniformly random value.
Authenticity is enforced via the last assertion in *assert-agree-auth-preserved, which requires
that there should be no injected epoch that satisfies the authenticity predicate auth. If the assertion

18

Generic security predicates

confP (U, Eps, MoveA
0 , KeyA

0 , VisitedA
0) is true if U is a descendant of the epoch created on Initialization and there is no sequence of

P -valid pebbling steps from (MoveA
0 , KeyA

0 , VisitedA
0) to (MoveA, KeyA, VisitedA) such that U ∈ KeyA.

authP (V, Eps, MoveA
0 , KeyA

0 , VisitedA
0) is true iff V is a descendant of the epoch created on Initialization and there is no sequence of P -

valid pebbling steps from (MoveA
0 , KeyA

0 , VisitedA
0) to (MoveA, KeyA, VisitedA) s.t. there is a move pebble for the creator id = Eps[V].sndr

of V on its parent U = Eps[V].par.

P -valid pebbling step

Let P be a predicate on a history graph Eps, a party id, an epoch V and a pebbling configuration (MoveA, KeyA, VisitedA). A pair of
adversarial pebbling configurations (MoveA

0 , KeyA
0 , VisitedA

0) and (MoveA
1 , KeyA

1 , VisitedA
1) on a history graph Eps is P -valid if all of the

following conditions hold.

1. In addition, move pebbles for id cannot be put on V if id is the sender or is not a member:

(id, V) ∈ (MoveA
1 \MoveA

0) ∧ U ̸= ⊥ → id ∈ Eps[V].mem ∧ id ̸= Eps[V].sndr

2. Move pebbles are only put a node V if A) the parent U = Eps[V].par already has a move pebble for id and there is no visited pebble
on V , or B) subopt = P (Eps, id, V, MoveA

0 , KeyA
0 , VisitedA

0) is true.

(id, V) ∈ (MoveA
1 \MoveA

0) ∧ U ̸= ⊥ →
(
(id, U) ∈ MoveA

0 ∧ (id, V) /∈ VisitedA
0

)
∨ subopt

3. Key pebbles are put on nodes V only if a move pebble for some id is put on it:

U ∈ (KeyA
1 \ KeyA

0) ∧ U ̸= ⊥ → ∃id(id, U) ∈ MoveA
1 \MoveA

0

4. Visited pebbles for an id are removed from an edge (U, V) only if a move pebble is put on its parent U :

(id, V) ∈ (VisitedA
0 \ VisitedA

1) ∧ U ̸= ⊥ → (id, U) ∈ MoveA
1 \MoveA

0

Figure 9: Generic security predicates for both our protocols.

fails, the execution halts, making the real and ideal worlds easily distinguishable. Strong correctness,
is enforced by the fact that for an honestly generated epoch V , Ffr-cgka requires (via *step-correct
) that the receiver has a move pebble on the parent of, and hasn’t already visited, V , in which case it
always returns the corresponding outputs. This means that for Ffr-cgka the receiver should be able
to process the incoming message, and if this is not the case for the real world protocol, then real and
ideal are easily distinguishable.

3.4 (Sub-)Optimal Security Predicates

We now introduce generic security predicates for confidentiality and authenticity, depicted in Fig. 9,
which are used by both our protocols (and potentially other FR-CGKAs). The predicates are
parameterized by a protocol-specific predicate P . Intuitively, P identifies epochs which are insecure
only due to the protocol’s sub-optimal security. That is, P of an optimal FR-CGKA is always false.

First of all, both predicates are false for epochs in detached trees, i.e., not descendants of the
root epoch created on Initialization. The reason is that, as in [AHKM22a], we do not consider
security in detached trees for simplicity. Note that detached epochs may become secure once attached.
In the remainder of this section, we do not consider detached epochs.

In general, both predicates are defined as follows. We start with an initial configuration of
adversary’s pebbles, as recorded by Ffr-cgka on corruptions. Then we add more adversary’s pebbles,
in any way that conforms with pebbling-step P -validity, defined in the bottom part of the figure. An
epoch U is confidential, i.e., conf(U, Eps, MoveA0 , KeyA0 , VisitedA0) is true, if there is no way we can get
to a configuration where U ∈ KeyA, that is, if the adversary cannot deduce a configuration where it

19

knows the key in U . Further, authenticity for V is guaranteed, i.e., auth(V,Eps,MoveA0 , KeyA0 ,VisitedA0)
is true if the adversary cannot deduce a configuration with a move pebble for the creator of V on its
parent.

Pebbling-step validity. A pebbling step from a configuration (Eps, MoveA0 , KeyA0 , VisitedA0) to
(Eps, MoveA1 , KeyA1 , VisitedA1) is valid w.r.t. the predicate P (or P -valid), if rules 1), 2), 3), 4) on Fig. 9
hold. Rules 1), 2) define when the adversary can add a move pebble for id on V , i.e., transition to a
configuration such that (id, V) ∈ MoveA1 . Intuitively, being able to add a move pebble means that the
adversary can deduce secrets known to id in V from the secrets it has given in the first configuration 0.
For an optimal protocol, i.e., with P (·) = false, this is only possible if the adversary can transition
to V by executing id’s protocol. This is only possible if 1) id didn’t create, and is a member of, V , 2)
there is a move pebble on the parent of V for id and id doesn’t have a visited pebble on V . Observe
that this is the same as the *step-correct predicate in Ffr-cgka. Intuitively, 1) captures PCS —
the group heals from id’s compromise when id sends a message or is no longer a group member, and
2) captures FS — corrupting id after it transitioned to V does not give the adversary the ability to
transition.

The above cases cover what we consider as optimal security. Additional, protocol specific, weak-
nesses that enable the adversary to deduce more information about the parties’ protocol states are
captured by the “∨ P (·)” part of the generic security predicate, which enables the adversary to deduce
“more pebbles”, by mounting protocol specific attacks that set P (·) to true.

4 The FREEK Protocol

In this section we present the practical FR-CGKA called FREEK. It builds on the SAIK protocol
of [AHKM22a], which in turn builds on the MLS protocol of [BBR+22]. We note that all our
techniques can be easily applied to MLS too.

Overview of SAIK. For this overview, we distinguish three components of SAIK: key schedule, the
TreeKEM protocol and message framing. The key schedule generates for each epoch U a bunch of
secrets: the application, membership, init and epoch, secrets (and a joiner, which is only relevant
for adding new members, so we ignore it for now). A secret of U is a κ-bit value known only to the
members in U . The application secret is the CGKA group key. The rest we explain soon.

When a party A creates an epoch V as a child of U , the key schedule generates secrets for V as
follows. First, the init secret of U is hashed with the commit secret of V and the group context of V
to compute the epoch secret of V . The commit secret is a fresh random value which A generates and
communicates to all other group members using TreeKEM (TreeKEM guarantees PCS).6 The context
is a cryptographic commitment to all relevant information about V , e.g. the member set and the
parent epoch. Finally, all other secrets of V are derived by hashing its epoch secret with different
labels.

SAIK’s security. The main idea behind the FS and PCS security of SAIK is as follows. Regarding
FS, observe that the secrets in V look random (in the RO model) if the adversary does not know
the secrets of U , while for PCS, the secrets of V also look random even if the adversary knows
the secrets of U , assuming that A generated the commit secret for V , honestly. SAIK also achieves
agreement because agreement on the secrets implies agreement on the group context which commits

6For the purpose of this overview, one can think of a simplified TreeKEM where each party has a PKE key pair. The
sender encrypts a random commit secret to each party and generates a new PKE key pair for themselves.

20

𝑎𝑝𝑝𝑆𝑒𝑐

𝑚𝑒𝑚𝑏𝐾𝑒𝑦

Group
Context 2

𝑗𝑜𝑖𝑛𝑒𝑟𝑆𝑒𝑐

𝑝𝑎𝑡ℎ𝑆𝑒𝑐

𝑒𝑝𝑆𝑒𝑐

Application

SAIK : TreeKEM SAIK : Framing

𝑖𝑛𝑖𝑡𝑆𝑒𝑐!"# 𝑖𝑛𝑖𝑡𝑆𝑒𝑐!

Epoch 𝑖Epoch 𝑖 − 1 Epoch 𝑖 + 1

𝑖𝑛𝑖𝑡𝐶ℎ𝑖𝑙𝑑𝑆𝑒𝑐

𝑎𝑝𝑝𝑆𝑒𝑐

𝑚𝑒𝑚𝑏𝐾𝑒𝑦

Group
Context 2

𝑗𝑜𝑖𝑛𝑒𝑟𝑆𝑒𝑐

𝑐𝑜𝑚𝑚𝑖𝑡𝑆𝑒𝑐𝑐𝑜𝑚𝑆𝑒𝑐𝐶𝑜𝑛𝑓

𝑝𝑎𝑡ℎ𝑆𝑒𝑐

𝑖𝑛𝑖𝑡𝑆𝑒𝑐!"#

Group
Context 2

𝑒𝑝𝑆𝑒𝑐 𝑖𝑛𝑖𝑡𝑆𝑒𝑐!

Epoch 𝑖

𝑒𝑖𝑑

Epoch 𝑖 − 1 Epoch 𝑖 + 1

Application

SAIK : TreeKEM SAIK : Framing

Figure 10: Illustration of the key schedule of SAIK and MLS (top) and of FREEK (bottom). Secrets
are represented as arrows and functions are represented as shapes: circles represent KDF calls and
diamonds represent PPRF calls with key coming from the left and input coming from the bottom.

to all information we want the group members to agree on. Finally, SAIK achieves authenticity using
the message-framing component. This component equips each member with a signature key pair.
When A creates V , her message is framed by signing it with her secret key and MACing with the
membership secret in U . A’s message also includes a new key pair for herself, which provides PCS.

Problems with forks. In SAIK, when a party B transitions from epoch U to V , he immediately
deletes the init secret of U . Indeed, this is essential for FS as in this way, if B gets corrupted, say, five
epochs later, the secrets of V remain secure, since the adversary does not know the init secret of U .
Note that, TreeKEM does not guarantee security of the commit secret of V after the corruption, as
the adversary could learn the secret key that decrypts the ciphertext that carries it (this happens if B
does not issue an update after epoch V and before getting corrupted). The above creates issues in the
presence of forks. For concreteness, say there is a network partition and some party, A′, not knowing
about A creating V , creates another child of U , say V ′. When the connectivity is restored and B
learns about V ′, he would like to derive its secrets (this way he can e.g. read messages encrypted
using the CGKA group key in the other partition). However, this is not possible since the same init
secret in U protects the group keys in both V and V ′. Therefore by deleting it in order to achieve FS
of V , B lost the ability to derive the key in V ′. A trivial solution to solve this issue would be to store
the old init secrets, but clearly this completely destroys FS.

Our FR-CGKA protocol. In a high level, our idea to solve the above problem is to modify the
key schedule so that it can derive many init secrets of an epoch U , one for each child of U . We refer
to those secrets as child init secrets. That is, the secrets of a child V of U are generated by hashing

21

the child init secret (instead of the init secret hashed in the old key schedule) of V with its commit
secret. After deriving the child init for V , the key schedule deletes all information about it.

The above key schedule can be easily constructed using puncturable PRF, PPRF (we recall the
primitive in Sec. 2). In particular, each epoch U has a parent init secret which is a PPRF key. To
derive the child init for V , the key schedule evaluates the PPRF on input a challenge for V (we
discuss choosing the challenge soon) and punctures the parent init secret on the challenge.

To summarize, our FR-CGKA protocol works as follows. When B transitions to a child V of
U , he generates the secrets of V and stores the entire SAIK state in U , except with the parent init
secret punctured on the challenge for V . This means that B keeps one SAIK state for each epoch
on which he has a move pebble. To delete a pebble, B simply deletes the state. In this way we get
FS: corrupting B after he transitions to a child V does not allow the adversary to re-compute the
secrets of V because the parent init of U has been punctured. Moreover, we get fork resilience – if
some party A′ creates another child V ′ of U , B can generate its secrets, because the parent init of U
has not been punctured on the challenge for V ′ (and he kept the TreeKEM state).

Choosing the challenge for V . The first idea may be to have the party creating V pick a random
challenge and attach it to the packet. However, this increases bandwidth cost and opens the door to
denial-of-service (DoS) attacks. For example, say A creates an epoch V as a child of U and picks a
random challenge r. Before B sees her packet, a corrupted C creates a child V ′ of U and sets the
challenge for V ′ to the same r. If B transitions to V ′ first, he cannot process the honest packet from
A because he already punctured the parent init of U on r.

The second idea is to make the challenge be the context of V (recall, the context is a commitment
to information about V produced by SAIK). Unfortunately, the context does not bind the commit
secret of V which brings back the DoS attack. In particular, the corrupted C can still create V ′

with the exact same context as V (same group modification etc.) but with a different commit secret.
Again, if B transitions to V ′, he can no longer transition to V .

The third idea is to include both the commit secret and the context in the challenge. However,
this is insecure, because a punctured PPRF key generally may reveal the point it was punctured on.
Therefore, a corruption of B would reveal old commit secrets via the punctured parent init secrets,
destroying FS.

One may try to fix this by setting the challenge to a hash of the commit secret and the context
(which is fine if the hash is modeled as an RO). However, this still allows some DoS attacks. At a
high level, the problem is that a removed member does not know the commit secret of the new epoch
(clearly, since they are no longer in the group) and therefore cannot validate the challenge. Concretely,
in our running example, say the corrupted C creates V ′ by removing B. After receiving the packet,
B punctures his parent init secret on the identifier of V ′.7 B has no way of computing or verifying
the identifier, so he must trust C that it is correct. Therefore, C can again claim that the identifier is
the same as that of the honest epoch V . After puncturing, B can no longer transition to V .

The final solution is to include in the challenge half of the commit secret and use the other half to
generate the secrets of V . That is, let us call the commit secret produced by TreeKEM the path secret
(commit is one of path secrets TreeKEM internally generates). The challenge is set to (a hash of) the
context and the hash of the path secret with label ‘conf’, called commit confirmation. The secrets of
V are generated using the new commit secret which is the hash of the path secret with label ‘comm’.
Removed members receive the commit confirmation from their removers. Moreover, we choose epoch

7This is better for FS, because not puncturing on such epochs enables the following attack. A creates epoch 2 as a
child of 1 by removing B. B receives her message and later is corrupted. Another member D transitions to a child 3 of
2 and also is corrupted. Now the adversary can combine his secrets with the unpunctured key from B and compromise
epoch 2 which would otherwise be secure.

22

identifiers equal to the challenges. This means that, intuitively, there is a 1-1 correspondence between
identifiers and challenges.

This prevents the above attack because B can now compute the epoch identifier the same way as
other members. This means that injecting a message creating V ′ in a way that makes B puncture on
an honest identifier V is equivalent to delivering the honest message creating V . The reason is that,
as we identify epochs by challenges, the above implies V = V ′. Further, B can check that the epoch
removes him (using the context), just like any other member would.

Note on correctness. Say a party A creates an epoch by sending C. In SAIK the adversary can,
without corruptions, successfully deliver different packets c′ not outputted by Ext, as long as they
transition to the honest epoch created by the sender of C. (Trying to make c unique is too stringent,
requiring inefficient solutions.) Therefore, it can happen that a party B receives c′ first, punctures the
parent init and then receives c outputted by Ext. Recall that correctness requires that B accepts c.
Thus, when receiving a packet claiming to transition to a V (the identifier is included in the packet),
B checks if V is already in his state, and returns its stored semantics (while throwing error would be
more natural).

Authentication. We use a simplified version of SAIK’s framing component. Roughly, each member
A generates a signature key pair and updates it each time she sends a message. Further, a secret
called the membership key, used as a MAC key, is generated by the key schedule for each epoch U .
When A creates an epoch V as a child of U , she signs and MACs the identifier V .

We remark that one may ask if puncturing membership keys achieves additional authenticity.
Unfortunately, this is not the case. The reason is that this would only prevent forging MAC tags on
epoch identifiers of already created epochs. Such forgeries are not useful, however — only forgeries
that create new “injected” epochs are an attack on authenticity.

4.1 Definition of FREEK
In the current section we formally define our FR-CGKA protocol, FREEK, based on SAIK [AHKM22b],
which, as most CGKA protocols, relies on a PKI infrastructure, called Authenticated Key Service
(AKS) in [AHKM22b]. In our protocol description, calls to AKS are made implicitly via calls to
SAIK’s operations. For completeness we recall the AKS functionality in App. B.

Our protocol relies on the following primitives: (1) a multi-recipient multi-message PKE, mmPKE,
(2) a puncturable PRF, PPRF, (3) a signature scheme, Sig, (4) a message authentication code, MAC,
and (4) HKDF. Our protocol is depicted in Fig. 11, and includes FREEK’s main algorithms (that
make calls to SAIK’s ones), the key schedule, and the message framing. Due to space limitations,
SAIK’s unmodified algorithms are deferred to App. B.

The FREEK protocol executed by a party id keeps track of epochs using an array St. For each
epoch with identifier U on which id has a move pebble, St[U] stores a modified SAIK state in that
epoch. Further, the protocol keeps track of all outputs of Join and Receive operations in an array
Semantics (cf. the “Note on correctness” paragraph in Sec. 4). Both arrays are initialized when id
creates the group using Initialization or joins for the first time. Note that id may join multiple times
to different epochs (which is only possible in FR-CGKA).

Send. The Send operation receives U and act, recovers SAIK’s state for epoch U (γ ← St[U]) and
uses it to generate a message C and a new state γ′ via SAIK.Send(γ, act). Internally (not in Fig. 11)
the latter algorithm runs TreeKEM to create and encrypt a value pathSec, which it then inputs
to the *derive-keys function of the key schedule to compute the secrets of γ′. To enable joining,

23

FREEK: Algorithms

Initialization
γ ← SAIK.Init
St[∗]← ϵ; γ.eid← 0; St[0]← γ
Semantics[∗]← ⊥
return γ.eid

Input (Send, U, act ∈ {‘up’, ‘add’-idt, ‘rem’-idt}) from id
γ ← St[U]
// Run SAIK to get new epoch’s state and a packet
(γ′, C)← SAIK.Send(γ, act)
U ′ ← γ′.eid; St[U ′]← γ

// We remove SAIK’s signatures and MACs; see App. B
σ ← *authenticate(γ, U ′)
return (U ′, (U, U ′, C, σ, id, γ′.comSecConf))

Input (DeleteMovePebble, U) from id
St[U]← ⊥

Input (Receive, (U, U ′, c, σ, ids, comSecConf) from id
γ ← St[U]
if St[U ′] ̸= ⊥ then return Semantics[U ′]
(St[U ′], x)← *process(γ, U, U ′, c, σ, ids, comSecConf)
Semantics[U ′]← (U, U ′, x)
return (U, U ′, x)

Input (Join, (U, U ′, c, σ, ids, comSecConf) from id
if St = ⊥ then St[∗], Semantics[∗]← ⊥
if St[U ′] ̸= ⊥ then return Semantics[U ′]
(γ′, x)← *process(⊥, U, U ′, c, σ, ids, comSecConf)
St[U ′]← γ′; Semantics[U ′] +← (U ′, x)
return (U ′, x)

Input (GetKey, U) from id
return SAIK.GetKey(St[U])

helper *process(γ, U, U ′, c, σ, ids, comSecConf)
if γ ̸= ⊥ then try (γ′, x)← SAIK.Receive(γ, c)
else // SAIK only uses c; U is passed to *derive-epoch-keys

try (γ′, x)← SAIK.Join(c, U)
// SAIK didn’t return (γ′, x) = ⊥ so it succeeded
req *verify(γ, ids, U ′, σ)
if γ′ ̸= ⊥ then

req U ′ = γ′.eid ∧ comSecConf = γ′.comSecConf
else // id is removed

// treeHash′ is derived using TreeKEM, γ and c
ctx ← (treeHash′, ids-‘rm’-id, U)
req U ′ = HKDF.Exp(ctx, comSecConf)
γ.initSec← PPRF.puncture(γ.initSec, U ′)

return (γ′, x)

FREEK: Key schedule

helper *derive-keys(γ, γ′, pathSec) // SAIK calls this during Join
and Receive. The input is the old state γ, the partially initialized
new state γ′ and pathSec generated by TreeKEM

γ′.comSecConf ← HKDF.Exp(pathSec, ‘conf’)
γ′.eid← HKDF.Exp(grpCtxt(γ′), γ′.comSecConf)
initChildSec← PPRF.eval(γ.initSec, γ′.eid)
γ′.parEid← γ.eid
joinerSec← *derive-joiner(γ, γ′)
γ′ ← *derive-epoch-keys(γ′, joinerSec, γ.parEid)
return (γ′, joinerSec)

helper grpCtxt(γ)
// treeHash (generated by TreeKEM) binds member set
return (γ.treeHash, γ.lastAct, γ.parEid)

helper *derive-epoch-keys(γ′, joinerSec, U)// Called by
*derive-keys and by SAIK.Join with joinerSec received di-
rectly from invitor and U passed from FREEK.*process

γ′.parEid← U
epSec← HKDF.Ext(joinerSec, grpCtxt(γ′))
γ′.appSec← HKDF.Exp(epSec, ‘app’)
γ′.membKey← HKDF.Exp(epSec, ‘memb’)
γ′.initSec← HKDF.Exp(epSec, ‘init’)
return γ′

helper *derive-joiner(γ, γ′)
γ.initSec← PPRF.puncture(γ.initSec, γ′.eid)
commitSec← HKDF.Exp(pathSec, ‘com’)
return HKDF.Ext(γ′.grpCtxt(), initChildSec, commitSec)

FREEK: Message framing

helper *authenticate(γ, x)
return (MAC.tag(γ.membKey, x), Sig.sign(γ.ssk, x))

helper *verify(γ, ids, x, (σ, t))
// In SAIK leafof(ids).spk is ids’s personal public key
return ← MAC.vrf(γ.membKey, x, t) ∧
Sig.vrf(γ.leafof(ids).spk, x, σ)

Figure 11: FREEK algorithms.

SAIK also encrypts the joinerSec computed in *derive-keys to all new members (they cannot run
*derive-keys, since they should not know the init secret — this may allow them to compute group
keys for other forks where they are not members).

We modify *derive-keys as follows; this is one of the core changes made by FREEK. The function
computes a distinct init secret for γ′, denoted by initChildSec. This value is the output of PPRF.eval
over the PPRF key, initSec, of γ, and the epoch id of γ′, where the latter is the output of HKDF.Exp

24

over the group context, grpCtxt(γ′), and the confirmation secret, comSecConf. The joiner’s secret,
joinerSec, is now computed w.r.t. the group context, grpCtxt(), initChildSec and the commit secret,
commitSec, and from joinerSec, all other secretes are derived as in SAIK. Obverse that the PPRF key
in γ is punctured over the id of γ′, and this enables FS, i.e., if the user’s PPRF key is leaked after
processing the incoming message creating γ′, the adversary can no longer evaluate the PPRF over its
identifier and compute the initChildSec.

The rest of the Send operation fetches from γ′ the epoch identifier U created by *derive-keys
and stores the state in St. Finally, it MACs and signs U (SAIK MACs and signs a different value
which is not useful for us.)

Receive and join. Receive, on input (U, U ′, c, σ, ids, comSecConf), first recovers the SAIK’s state
that will be used to process the incoming message for epoch U (γ ← St[U]) and if id has already
processed a message that leads to the target epoch, U ′, the operation returns the values stored in
Semantics[U ′] (computed the first time id processed a message that led to U ′). If not, it processes the
message by executing SAIK’s Receive or Join operation with c. Internally, (not in Fig. 11) SAIK’s
Receive algorithm runs TreeKEM to decrypt pathSec which it inputs to our modified *derive-keys
function to get the key schedule for γ′. Similarly, SAIK’s Join operation decrypts joinerSec and runs
*derive-epoch-keys.

Observe that the protocol checks if the sender knows the right epoch id, U ′, and if the user is
removed it directly uses comSecConf to do that check. Removed users also puncture the init secret
on the epoch from which they are removed, U ′. This prevents the adversary from injecting a message
that removes id from U ′, so that later id cannot transition to an honestly generated epoch U ′.

Security of FREEK is proven in Sec. 7.

5 FR-CGKA with Optimal Security

In this section we give an overview of the protocol O-FREEK, that achieves optimal security predicates,
i.e., the predicates from Fig. 9 with P set to false.

Roughly, we start with a simplified version of SAIK called SAIK-S which is less efficient but just
as secure. We then identify and fix two problems with it: cross-fork and collusion attacks. The first
fix uses a known technique from [ACJM20], using HIBE. The second fix requires modifying the HIBE
fix to also deal with new attacks specific to FR-CGKA.

The SAIK-S protocol. In SAIK-S, each member has a PKE key pair. When an epoch is created, the
committer encrypts a random path secret to all members and the new epoch’s secrets are derived by
mixing it with the (child) init secret. It also generates a new PKE (and signature) key pair for itself.

Weak PCFS and cross-fork attacks. Cross-fork attacks are relevant for CGKA in general (not
only FR-CGKA). Roughly, the problem is that parts of the private state of parties in different epochs
may be the same. In that case, the same secret may be relevant to two (or more) distinct epochs, and
it is impossible to meaningfully delete a move pebble on one epoch but not another.

For concreteness, assume that a protocol execution creates an epoch 1 on which parties A, B and
C all have a move pebble. Then a fork is created as follows: A creates (and transitions to) epoch 2
and at the same time B creates epoch 3. Notice that C’s PKE key is the same in epochs 1, 2 and 3.
Now assume that C transitions to epoch 2, deletes the move pebble on 1 and then gets corrupted.
The adversary can use C’s PKE secret key to decrypt the commit secret in epoch 3.

Intuitively, to defend against cross-fork attacks, a protocol needs to ratchet all key material (of
all group members), with each epoch change. This has to be done in a way such that, secrets in any

25

epoch V do not reveal information about its ancestors or epochs in other arms of a fork. Following
[ACJM20], we achieve this using HIBE. Roughly, the public key of each party in an epoch U is a pair
of a HIBE (master) public key and a vector of HIBE identities. The latter contains the identifiers of
all epochs since the key was inserted into the state, ordered from the oldest to U . When a party A
creates a child epoch of U , it encrypts the fresh commit secret to the HIBE public key and identity
vector of each (non-removed) member B in U . Then A computes the public group state in V as
follows: the identifier V is the same as in SAIK-S; the public key of each other group member B is
the HIBE public key from U and the identity vector from U with V appended; the public key of A
is a fresh HIBE master key she chooses and the empty identity vector. When B transitions to V ,
it updates the HIBE secret key of U with V and stores the resulting secret key that will be used
to process incoming messages for V ; it also keeps the HIBE key before the update. When later B
removes the move pebble on U it simply erases that key (i.e., the key before the update).

At a high level, the HIBE secret key of an epoch U enables key generation only for the descendants
of U . This prevents the attack described above since all secrets in an epoch V are (computationally)
unrelated to the secrets in any epochs other than the descendants of V .

Collusion attacks. This type of attacks is specific to the way SAIK-S punctures the init secrets to
get forward-secure FR-CGKA. In particular, observe that in SAIK-S, if a party A has a move pebble
on an epoch U , then it can decrypt the commit secrets of all children of U , even those on which it
has visited pebbles. The only thing that protects the children in case A is corrupted is the fact that
A punctured the init secret on their identifiers. However, the unpunctured init can be leaked when
other members are corrupted, which enables collusion attacks.

For concreteness, assume that in a protocol execution, A, B and C, are in epoch 1. Then, A
creates (and transitions to) epoch 2 by removing C; B transitions to 2, creates epoch 3 as its child,
and deletes the group key in epoch 2. He now has move pebbles on epochs 1, 2 and 3, and visited
pebbles on 2 and 3. C never sees epoch 2. Now assume B and C get corrupted. The expectation
is that epoch 2 is secure since C cannot move there because A removed him, and B has a visited
pebble on it and deleted the group key. Unexpectedly, epoch 2 is insecure for the following reason:
the adversary can compute the group key in 2 by combining the unpunctured init secret from C and
the commit secret decrypted using B’s secret key from epoch 1.

Intuitively, puncturing the init secret is insufficient, since it is known to other group members, and
the adversary can leak the (unpunctured) key via corruptions of removed users, or group members
that lie in other epochs. Therefore, in order for security to be preserved in the presence of collusion
attacks we require the following: when B puts a visited pebble on V with parent U , he has to puncture
his own secret key in U , so that it can no longer decrypt the ciphertext that carries the commit secret
of V .

To achieve this, we modify the HIBE-version of SAIK-S as follows. The main observation is that
HIBE with a binary identity space, called binary-tree encryption, BtPke, (a special case of HIBE
[GS02]) can be used to construct puncturable public key encryption [GM15], whose goal is exactly
to allow A to puncture her secret key. So, we first switch from HIBE to BtPke. Second, we switch
the order of encryption and updating the identity vector: when A creates a new epoch V , then for
each other member B, she first appends all bits of V to B’s identity vector U⃗ in U and then encrypts
the commit secret to B’s public key and the identity V⃗ = U⃗ ∥ V . So, the commit is encrypted to its
unique identity vector V⃗ . When later B puts a visited pebble on V , he punctures his secret key in U
on the unique V⃗ , as we describe below.

Puncturing in our setting is essentially a public-key version of puncturing a GGM tree. That is,
B’s secret key in U is a binary tree eskTreeU of height |V |, where each node is labeled by a binary
identity vector A⃗. The root’s label is U⃗ and if a node has label A⃗, then its left and right children have

26

labels A⃗ ∥ 0 and A⃗ ∥ 1, respectively. In addition, some nodes store the HIBE secret keys corresponding
to their labels. We denote the HIBE secret key of a node U⃗ ∥ A⃗ by eskTreeU [A⃗]. Initially, when U
is created, only the root stores a key in eskTreeU [ϵ]. Notice that V⃗ = U⃗ ∥ V , is a label on a leaf in
eskTreeU . To puncture the tree on V⃗ , B derives and stores HIBE secret keys for all nodes on the
copath of that leaf to the root and then deletes all nodes in the path to the root.

Fixing the last issues. As described so far, after puncturing eskTreeU , B creates the tree eskTreeV

for the new epoch V with the root set to V⃗ = U⃗ ∥ V . However, this creates an issue because the
HIBE secret key for V⃗ corresponds to the public key used by A to encrypt the commit secret of V .
Thus, storing the secret key breaks FS. To fix this, B stores instead the secret for the left child of V⃗ ,
i.e. V⃗ ∥ 0. Respectively, A and all other members update the identity vectors with 0 after encrypting.
Further, the protocol no longer needs the init secret, since puncturing HIBE keys solves all problems
it was meant to solve, namely, getting forward secrecy and being able to put visited pebbles on nodes.

5.1 Authenticity

Cross-fork attacks. Cross-fork attacks apply to both confidentiality and authenticity. For con-
creteness, recall the protocol execution showcasing cross-fork attacks on confidentiality: A, B and C
each have a move pebble on an epoch 1. Then a fork occurs: A creates epoch 2 and at the same time
B creates epoch 3. C transitions to 2 but does not know about 3 and deletes the move pebble on 1.
Notice that C’s signature key is the same in epochs 2 and 3. Therefore, corrupting him now allows
the adversary to create an epoch 4 as a child of 3 by injecting a message to B on behalf of C. This is
an attack because C does not have a move pebble on 3.

One attempt to solve this would be to MAC packets with some shared group secrets (the way
FREEK does). This does not work, because the adversary can obtain MAC keys by corrupting B.
Note that creating 4 is still an attack because the adversary does not have a move pebble for C on 3.

The authors of [ACJM20] propose to prevent cross-fork attacks for regular CGKA using hierarchical
identity-based signatures, HIBS. The HIBS primitive is analogous to HIBE — verification is done
with respect to a vector of identities indicating a place in the hierarchy and a secret signing key can
be used to derive secret keys below it. Signing messages in the optimally secure CGKA of [ACJM20]
also works analogously to encryption. At a high level, recall that each party A in an epoch U has a
HIBE master public key and a vector of identities of ancestors of U . To add optimal authenticity,
A also has a HIBS master verification key. Messages sent by A are verified with that key and the
same identity vector as for HIBE and A generates a new master key for herself every time she sends a
message.

Translating this directly to the FR-CGKA setting means that a party has one HIBS secret key
for each epoch U on which it has a move pebble. The key for U corresponds to the identifiers of
the ancestors of U since it was generated. The cross-fork attack describe above is prevented because
corrupting C reveals only the signing key for identity vector (1, 2) which does not allow the adversary
to inject messages in 3, since they are verified with the vector (1, 3).

Deleting move pebbles. Unfortunately, the FR-CGKA sketched above is still not optimally secure.
At a high level, the problem is that it is not possible to delete a move pebble on a child V of U while
keeping the move pebble on U . In particular, deleting the HIBS secret key for V doesn’t solve our
problem, since it can be derived from the HIBS secret key for U .

Intuitively, to fix this, we have to puncture the HIBS secret key in U so that it is no longer possible
to derive the HIBS secret for V . To this end, we use a HIBS with a binary identity space, called
binary-tree signature, BtSig (we recall the formal definition in Sec. 2). Puncturing works analogous

27

O-FREEK: Algorithms

Initialization
if id = idcreator then

(epk, esk)← BtPke.gen()
(spk, ssk)← BtSig.gen()
γ ← *init-state(esk, ssk, {(id, epk, spk)})
γ.appSec $← {0, 1}κ

Input (Send, U, act) from id
req St[U] ̸= ⊥
// Initialize the new epoch’s state γ
try (γ, act)← *apply-act(γ[U].clone(), id, act)
*update-context(γ, U, id, act)
r $← {0, 1}κ

comSecConf ← CR-PRF(r, ‘conf’)
γ.appSec← CR-PRF(r, ‘app’)
V ← Hash(γ.grpCtxt, comSecConf)
// Update “identity chains” in V and encrypt r
for id′ ∈ γ.BtIds \ {id} do

btid← γ.BtIds[id′] ∥ V
C[id′]← BtPke.enc(γ.ePKs[id′], btid, r)
γ.BtIds[id′]← btid ∥ 0

St[V]← γ

// Sign V and update the signing key
(σ, St[U].sskTree, ssk)← *sign(St[U].sskTree, V, V)
return (V, (C, U, V, id, act, comSecConf, σ))

Input (Receive, (c, U, V, ids, act, comSecConf, σ)) from id
try (St[V], St[U].eskTree, St[U].sskTree)

← *process(St[U], c, U, V, ids, act, comSecConf, σ)
if act = ‘add’-idt-(pkt, spkt) then

return (ids, ‘add’-idt)
else return (ids, act)

Input (Join, (c, U, V, ids, G, σ)) from id

// G is the group roster computed by the DS
req (id, epk, spk) ∈ G for some epk, spk
(esk, ssk)← query (GetSk, (epk, spk)) to Fks
γ ← *init-state(esk, ssk, G)
act← ‘add’-id-epk-spk
(γ, ,)← *process(γ, c, U, V, ids, act, σ)
req G is the set of keys in γ.ePKs and γ.sPKs
St[∗]← ⊥; St[V]← γ
return (V, ids, G)

Input (DeleteMovePebble, U) from id
St[U]← ⊥

Input (GetKey, U) from id
(appSec, St[U].appSec)← (St[U].appSec,⊥)
return appSec

Figure 12: Algorithms of O-FREEK.

to puncturing BtPke secret keys. That is, the signing key for U is a binary tree sskTree with the same
structure as the secret-key tree eskTree for BtPke — nodes have the same labels and whenever a node
in eskTree stores a BtPke key for an identity vector I⃗, the same node in sskTree stores a BtSig key for
I⃗.

5.2 The Final Construction

The protocol is defined Figs. 12 and 13. It relies on the following primitives: (1) a CCA secure
binary-tree encryption scheme, BtPke, (2) an EUF-CMA binary-tree signature scheme, BtSig, (3) a
collision resistant PRF, CR-PRF, and (4) collision resistant hash functions, Hash. We now briefly
explain the protocol operations depicted in the below figures.

Initialization generates keys for binary-tree encryption and signatures, initializes the user’s
state with the generated keys and samples the first group key, appSec. Send, on input epoch id U
and action act, applies the action to a copy of U ’s state, updates the group context, and samples
uniformly random r from which it generates the confirmation secret, comSecConf and application
secret appSec, and the epoch id V for the new epoch (which is the hash of comSecConf). It then
updates the identity chains in V and encrypts r to all group members. Finally, it signs the new
epoch id, V , updates the signing key by puncturing sskTree, and generates the signing key for V by
ratcheting forward ssk. Receive, on input (c, U, V, ids, act, σ), verifies the signature over V , initializes
the state and updates the group context for the new epoch, decrypts c and derives the secret key
for V by ratcheting forward esk, computes secrets as in Send, verifies V via Hash, and updates the
signing key. Join is similar, while DeleteMovePebble and GetKey are straightforward.

Remark 1. In general, our protocol requires BtPke with unbounded hierarchy depth and adaptive
security, which is quite a strong requirement. Using BtPke with a bounded hierarchy would come at

28

O-FREEK: Helpers

helper *apply-act(γ, ids, act)
// If necessary, get keys for the action
if act = ‘up’ then // My own update

(epk, esk)← BtPke.gen()
(spk, ssk)← BtSig.gen()
γ.BtIds[id]← ϵ
γ.eskTree← [∗] γ.eskTree[ϵ]← esk
γ.sskTree← [∗] γ.sskTree[ϵ]← ssk
act← ‘up’-epk-spk

if act = ‘add’-idt then
(epkt, spkt)

← query (GetPk, idt) to Fks
act← ‘add’-idt-(epkt, spkt)

// Apply the action
if act = ‘up’-epk-spk then

(γ.ePKs[ids], γ.sPKs[ids])← (epk, spk)
else if act = ‘add’-idt-epk-spk then

(γ.ePKs[idt], γ.sPKs[idt])← (epk, spk)
else if act = ‘rem’-idt then

(γ.ePKs[idt], γ.sPKs[idt])← (⊥,⊥)
return (γ, act)

helper *sign(sskTree, V, m)
try (sskTree′, ssk)

← *punct(sskTree, V, BtSig.der)
try σ ← BtSig.sig(ssk, m)
// Get new root for V by ratcheting ssk
(ssk,)← BtPke.der(ssk)
return (σ, sskTree′, ssk)

helper *process(γ, c, U, V, ids, act,
comSecConf, σ)

(spk, btid)← (γ.sPKs[ids], γ.BtIds[ids])
req BtSig.ver(spk, btid, V, σ)
// Compute the new epoch’s state
try γ′ ← *apply-act(γ.clone(), ids, act)
*update-context(γ′, ids, act)
if act = ‘rem’-id then // Leave group

(τ,)← *punct(γ.tree, V, BtPke.der)
// The new state in U is ⊥
return (⊥, τ, γ.sskTree)

// Derive new BtPke secret, decrypt c.
try (r, eskTree, esk)

← *decrypt(γ.eskTree, V, c)
comSecConf ← CR-PRF(r, ‘conf’)
γ′.appSec← CR-PRF(r, ‘app’)
// Check that V is correct
req V = Hash(γ′.grpCtxt, comSecConf)
// Packet accepted.
γ′.eskTree← [∗]; γ.eskTree[ϵ]← esk
(, sskTree, ssk)

← *sign(St[U].sskTree, V ∥ 0, ϵ)
γ′.sskTree← [∗]; γ.sskTree[ϵ]← ssk
return (γ′, eskTree, sskTree)

helper *init-state(esk, ssk, G)
γ.esk[∗]← ⊥; γ.eskϵ]← esk
γ.ssk[∗]← ⊥; γ.sskϵ]← esk
for (id, epk, spk) ∈ G do

(γ.ePKs[id], γ.sPKs[id], γ.BtIds)
← (epk, spk, ϵ)

return γ

helper *punct(tree, I⃗, *deriver)
// Derive the secret key tree[V] and at the
same time puncture tree on V
tree← tree.clone()
for i = 0 to |I⃗| do

I⃗i ← I⃗[0..i− 1]
if tree[I⃗i] ̸= ⊥ then

(tree[I⃗i ∥ 0], tree[I⃗i ∥ 1])
← *deriver(tree[I⃗i])

tree[I⃗i]← ⊥

// If tree hasn’t been punctured on I⃗ then
the loop set the key for I⃗.
req tree[I⃗] ̸= ⊥
(sk, tree[I⃗])← (tree[I⃗],⊥)
return (tree, sk)

helper *update-context(γ, U, ids, act)
γ.grpCtxt← Hash(γ.ePKs, γ.sPKs, U, ids, act)

helper *decrypt(eskTree, V, c)
try (eskTree′, esk)

← *punct(eskTree, V, BtPke.der)
try r ← BtPke.dec(esk, c)
// Get new root for V by ratcheting for-
ward esk
(esk,)← BtPke.der(esk)
return (r, eskTree′, esk)

Figure 13: The helpers for O-FREEK.

the cost of sacrificing correctness — it would result in an upper bound on the number of epochs that
can be created while there is a single party that never sends an update. We note that this may be
reasonable in some applications, in which the silent parties can be removed.

Requiring adaptive security seems necessary to get adaptively-secure FR-CGKA. We note that
in the random oracle model there is a trivial black-box construction of adaptively-secure BtPke from
statically-secure BtPke — the adaptively-secure construction simply hashes identities via the RO
before passing them to the statically-secure one. Therefore, adaptive security is only a limitation if we
require security in the standard model.

Security of O-FREEK is proven in Sec. 8.

6 Natural Fork-Resolution Protocols

In this section, we discuss how any FR-CGKA can be used together with a natural fork-resolution
protocol to get a complete solution to group management. At a high level, the goal of a natural
fork-resolution protocol is to allow group members whose views of the group have diverged to reconcile
these views and define the current group state. A bit more precisely, a group member can use the
fork-resolution protocol to collect information about the group’s history graph from other members
(assuming point-to-point channels) and identify (or create) an epoch representing the current state

29

Protocol FR-Wrap

Initialization // Executed on first input.
U ← Ffr-cgka.Initialize
G← {U}
E, Move, Visited← ∅
A[∗], M [∗]← ⊥

Input GetGraph from id
return (G, E, A, M, Move, Visited)

Input (ExtendGraph, G′, E′, A′, M ′, Move′,
Visited′) from id

G +← G′; E +← E′; A +← A′

Move +← Move′; Visited +← Visited′

req (G, E) is a forest

Inputs (CreateNode, U, act), (Send, U, act)
from id

(V, C)← Ffr-cgka.Send(U, act)
*register(U, V, id, act, C)
Move, Visited +← (id, V)
return (V, C)

Inputs (CreateEdge, c), (Receive, c) from id
(U, V, ids, act)← Ffr-cgka.Receive(c)
*register(U, V, ids, act,⊥)
Move, Visited +← (id, V)
return (U, V, ids, act)

Input (DeleteMovePebble, U) from id
return Ffr-cgka.DeleteMovePebble(U)

Input (Join, c) from id
(U, ids, mem)← Ffr-cgka.Join(c)
G +← U
M [U]← mem
Move, Visited +← (id, U)
return (U, ids, mem)

Input (GetKey, U) from id
return Ffr-cgka.GetKey(U)

helper *register(U, V, ids, act, C)
G +← U, V ; E +← (U, V)
A[(U, V)]← (ids, act, C)

Figure 14: The protocol FR-Wrap supporting fork-resolution protocols.

consistent with the collected view.

The FR-Wrap protocol. To support fork-resolution protocols, we construct a simple protocol called
FR-Wrap, defined in Fig. 14. The protocol works in the Ffr-cgka-hybrid model, that is, it makes
black-box calls to Ffr-cgka and can be instantiated with any FR-CGKA protocol that realizes it.
FR-Wrap extends the interface of Ffr-cgka by methods especially for fork-resolution protocols. That
is, in addition to all inputs to Ffr-cgka (which are transparently forwarded to the functionality),
FR-Wrap supports the following.

First, a fork-resolution protocol can fetch the labeled history graph (input GetGraph), represented
by a set G of epoch identifiers and a set E of edges. Each edge is labeled by the action creating it,
stored in the array A. Some nodes are labeled by the member sets, stored in the array M . This
is important for epochs with unknown parents, such as ones into which the graph’s owner joined.
Finally, the output contains move and visited pebbles about which the graph’s owner knows. In the
following, by graph we refer to the tuple (G, E, A, M, Move, Visited).

Second, FR-Wrap supports collecting information about the graph from other members by allowing
to extend the graph by another one, obtained from the other member (input ExtendGraph). This
method involves no cryptography and does not affect Ffr-cgka — a party does not want to download
packets and transition to epoch (which is expensive) if this is not useful given the eventual current
group state. Finally, FR-Wrap supports creating the current epoch (in case it does not exist) by
allowing to create nodes and edges (inputs CreateNode, CreateEdge). Creating a node has the effect
of creating an epoch in Ffr-cgka, and creating an edge has the effect of transitioning to an epoch in
Ffr-cgka. The latter requires obtaining a packet c (either from some server, or some other party).

Typical fork-resolution protocols. A typical fork-resolution protocol uses FR-Wrap as follows.
The protocol is invoked whenever an id sends a message to id′ and they discover that the current
epoch is different according to their views. That is, id sends from a different epoch. (We assume here
that parties communicate via a mesh network, so they are both online at this moment; we discuss
other cases later.) Recall that the goal is for id and id′ to transition to a new current epoch, consistent
with the union of their views. The protocol proceeds as follows:

1. Each id and id′ fetches its graph (GetGraph) and sends it to the other party, who adds it to its
own graph via ExtendGraph.

30

2. id (resp., id′) inputs its current graph to a local state-resolution algorithm (see below) which
outputs the current set of members M consistent with it.

3. id creates a new epoch with member set M . To this end, id picks some node U (see below) with
member set M ′ and creates a chain starting at U that “corrects” M ′. That is, for party in
M ′ \M , id creates a node removing them (CreateNode). Similarly, for each party in in M \M ′,
id creates a node adding them. Finally, id identifies all members who are in U but cannot
transition there based on Move and Visited. It removes and re-adds each such party.8

4. id sends to id′ the FR-CGKA messages generated by edge creation. id′ transitions to the new
current epoch via CreateEdge.

State-resolution algorithms. The high-level goal of a state-resolution algorithm is to “make sense”
of a number of concurrent group changes and output “the right” group state. One example is the
State Resolution v2 algorithm of [Fou23a].

At a very high level, [Fou23a] represents the history of a group as a collection of events, which are
roughly the same thing as our group operations. In fact, [Fou23a] defines much more event types
(including state events that do not influence members’ permissions) but here we focus on those we
have in common (it is not hard to extend our FR-CGKA by other types): adds, removes, joins and
group creation ([Fou23a] does not have special update events). Relations between control events are
represented as a directed acyclic graph (DAG). An edge from event E to E′ indicates that a party
generating E′ knew about E at the time (in the protocol of [Fou23a], this relation is made explicit in
the packet).9

State Resolution v2 takes as input an event DAG and resolves the “current” room state. It
achieves this by first topologically sorting the DAG, which gives a linear sequence of events. Then,
the algorithm initializes a group state according to the first event (joining or group creation) and
traverses the control-event sequence one by one. For each event, if it is not authorized according to
the current state, it removes it from the sequence. Else, it updates the current state according to it.
After the last event, we get the current state.

We can use an analogous algorithm to implement state resolution in our sense. That is, the history
graph from FR-Wrap is first topologically sorted, which gives a sequence of group operations. Then,
a membership set is initialized according to the first node (group creation or join). Further, the
sequence of group operations is traversed one by one. If the sender is not in the group according to
the current membership set, the operation is dropped. Else, the set is updated by adding or removing
the specified member. The final membership set is the output.

At a very high level, [Fou23a] represents the history of a group as a collection of events, which are
roughly the same thing as our group operations. In fact, [Fou23a] defines much more event types, but
here we focus on those we have in common (it is not hard to extend our FR-CGKA by other types).
Further, [Fou23a] distinguishes two types of events: control events that can change user’s ability
to send/receive, and state events that cannot. Since in this paper we only have control events, i.e.,
adds and removes ([Fou23a] does not have special update events), we ignore state events. Relations
between control events are represented as a directed acyclic graph (DAG). An edge from event E
to E′ indicates that a party generating E′ knew about E at the time (in the protocol of [Fou23a],
this relation is made explicit in the packet).10 Finally, each state event is associated with the control
event directly preceding it (in the generator’s view).

8In the propose-commit syntax of [BB+20], these group changes can be done as a batch modification. Our syntax
easily extends to batch operations.

9To make a connection with history graphs, we flip the arrow direction from [Fou23a].
10To make a connection with history graphs, we flip the arrow direction compared to [Fou23a].

31

Predicate P for FREEK

// P is true if the adversary leaked the (unpunctured) init secret from any id′ and exposed id’s individual secrets
P (Eps, id, V, MoveA, ∗, VisitedA)↔ ∃id′ (

id′, Eps[V].par) ∈ MoveA
i ∧ (id′, V) /∈ VisitedA

i

)
∧ *leaked-ind-secs(id, V)

*leaked-ind-secs(U, id)↔
(
∃U ′ : *share-ind-secs(U, U ′, id) ∧ *ind-secs-bad(U ′, id)

)
*exposed-ind-secs-weak(U, id)

*share-ind-secs(U, U ′, id)↔ U and U ′ are the same or connected via undirected path of
epochs U ′′ such that Eps[U ′′].sndr ̸= id ∧ Eps[U].act /∈ {‘rem’-id, ‘add’-id}

*ind-secs-bad(U, id)↔ (id, U) ∈ MoveA ∨ (Eps[U].packet = ‘inj’ ∧ (Eps[U].sndr = id ∨ Eps[U].act = ‘add’-id))

*exposed-ind-secs-weak(U, id)↔ ∃U1, U2, U3 : all of the following conditions are satisfied:
(1) U1 ̸= U2 ∧ *ancestor(U1, U) ∧ *ancestor(U2, U3)

(2) Eps[U1].act = Eps[U2].act = ‘add’-id

(3) *share-ind-secs(U1, U, id) ∧ *share-ind-secs(U2, U3, id)

(4) Eps[U2].inj ∧ id ∈ Eps[U3].exp

Figure 15: The predicate P instantiating the generic security predicates for FREEK.

Choosing epoch on which to base the new current epoch. The choice of U in Step 3)
impacts the cost of transitioning to the new current epoch for different members. Moreover, creating
a long chain of modifications may result in destroying TreeKEM’s distributed state and super-
logarithmic communication cost. Unfortunately, there is no one-size-fits-all solution. For example,
some applications may want to minimize the average cost for a group member to transition, while
others — the cost for a couple of constrained users (e.g., IoT devices).

7 Security of FREEK
FREEK’s security predicate. FREEK’s security predicates conf and auth instantiate the generic
security predicates from Fig. 9 with the predicate P defined in Fig. 15.

Recall that according to the optimal predicates (P (·) = false), the adversary can put a move
pebble for id on V only if it has a move pebble for id on V ’s parent U and there is no visited pebble
for id on V . At a high level, the reason why FREEK achieves a weaker guarantee is that some secrets
used by id (the init secret and the MAC key) are shared among all group members. Therefore, it is
enough to have a move pebble on U without a visited pebble on V for any id′ to get these secrets.
Getting these secrets may break the last line of defense and enable putting a move pebble for id on V .

A bit more precisely, we can distinguish two types of FREEK secrets for each epoch: group secrets
known to all group members and individual secrets known only to some members (e.g., the signing
key of id or PKE secret keys generated for it by TreeKEM). FREEK guarantees that the adversary
can put a move pebble for id on V only if A) it has the group secrets of its parent U and B) id’s
individual secrets in V . For A), it is enough for the adversary to have a move pebble on U for any id′
(c.f. the first two literals of P). To decide if B) is satisfied, we use the predicate *leaked-ind-secs
which is the same as in SAIK.

It remains to explain *leaked-ind-secs. It consists of two clauses, where the latter one considers
an edge-case attack on SAIK; we refer to [AHKM22a] for an explanation and focus here on the former,
more interesting case. Roughly, id’s secrets are replaced by FREEK whenever it sends a message
by (possibly) secure ones.11 Its secrets are also not present in epochs where it is not a member.
We define *share-ind-secs(U, U ′, id) to capture when id’s secrets are the same in U and U ′. Now
*leaked-ind-secs is true in U if they are the same as in some U ′ where they are corrupted, as per
*ind-secs-bad. The latter is true if id’s state is exposed in U ′, which is marked by Ffr-cgka by

11This is the difference from the optimal protocol — there id’s secrets are replaced with each epoch change, without
interaction with id.

32

adding a move pebble, or id’s state is created via an injection on its behalf, or an injection that adds
it.

FREEK vs SAIK. Since FR-CGKA implies CGKA, it makes sense to ask how security of SAIK
compares with the security of FREEK when used in the CGKA mode, i.e., when every party has only
one move pebble on the “current” epoch (when transitioning, the old move pebble is immediately
deleted). It turns out that FREEK in the CGKA mode achieves the same CGKA security as SAIK. In
fact, the protocols are almost equivalent, since puncturing becomes void — any keys punctured by
FREEK when creating new epochs are immediately deleted.

We note that SAIK uses simplified predicates that do not enforce deleting group keys after
outputting them. In our case, this means that key and move pebbles become the same thing and the
former are not needed — an epoch is secure if the adversary does not have a move pebble on it. With
this said, equivalence of SAIK’s predicate and our predicate without key pebbles easily follows by
inspection.

7.1 Security Proof of FREEK
In the current section we prove security of FREEK. Before presenting the full proof we provide the
high level idea behind it. At a high level, we require the following properties from the underlying
primitives. For the PPRF, we require one-wayness security (with adaptive corruptions), defined
formally in Sec. 2.5. The TreeKEM component of FREEK, which is the same as in FREEK, also
requires a multi-message multi-recipient PKE scheme, mmPKE, which we recall in Sec. 2. At a high
level, mmPKE has the functionality (and security) of a parallel composition of standard PKEs. Its
goal is to improve efficiency. For mmPKE, we require one-wayness (the adversary’s goal is to compute
a random encrypted message) RCCA (a relaxation of CCA) security. See Sec. 2.

Proof intuition. We prove our theorem using a sequence of hybrid experiments Hybi (transitioning
from the real to the ideal execution). Hybrid Hyb0 is equal to the real world execution. Hybrid Hyb1

is identical to Hyb0, but translated to the ideal-world language. That is, we replace the real world
execution with FREEK by an execution with a “trivial” ideal functionality F1

fr-cgka that forwards all
inputs to S1 and returns the values set by it. S1 simply runs the code of FREEK on the inputs. The
indistinguishability between Hyb0 and Hyb1 is straightforward.

Agreement and step correctness. The next hybrid, Hyb2, contains the functionality F2
fr-cgka,

which is the same as Ffr-cgka except that it uses conf = auth = false. I.e., it does not enforce that
the protocol provides authenticity or confidentiality, but it does enforce step correctness.

Intuitively, the main differences between the current hybrid and the previous one are the following:
i) the outputs of the protocol are now set by the functionality F2

fr-cgka (instead of being directly set
by the simulator as in the previous one), and ii) the execution can be disrupted if the checks made by
F2

fr-cgka via assert statements and the helpers, fail.
First we deal with i). Regarding, calls to *assert-agree-auth-preserved, the execution is

disrupted only when one of three assertions made by the helper function (cf. Fig. 8) fail. For the first
and third assertion, the claim follows by inspection. For the second assertion, recall that V is equal to
HKDF.Exp(γ.grpCtxt(), comSecConf), thus a cycle is created if for two different epochs (with different
parents and thus different group contexts), the output of HKDF.Exp is the same, which implies a
collision against HKDF.Exp.

Regarding, *step-correct, we show that in the current hybrid, if when an id receives a message
*step-correct is true, then the protocol run by S2 accepts the input. Observe that id’s protocol

33

rejects such a packet only if A) id does not have the epoch U in its state, B) it possesses the state
information for the epoch U , but the init secret initParSecU has been already punctured on the epoch
id of the target epoch, V , or C) the correctness property of the signature or the encryption scheme
fails, i.e., for an honestly generated packet, signature verification or decryption, fails. It is not hard
to see that A), B) would contradict *step-correct, while C) violates the (perfect) correctness of
the either the encryption, or the signature, scheme. Finally, indistinguishability of outputs, (case i)),
follows by inspection and the collision resistance of HKDF.Exp (cf. Sec. 7.1).

Confidentiality. The next hybrid, Hyb3, introduces confidentiality, which is formalized by restoring
the original conf predicate of Ffr-cgka. The simulator S3 is the same as S2. Assuming security of PKE
and PPRF, and RO, we show indistinguishability between the current hybrid and the previous one.
Observe that the only difference between Hyb2 and Hyb3 is that group keys in confidential epochs are
real in hybrid Hyb2 (technically, computed by the simulator according to FREEK) and random and
independent in Hyb3 (technically, sampled by F3

fr-cgka). Since application secrets (i.e., group keys)
are derived by hashing the respective epoch secrets (recall that appSec ← HKDF.Exp(epSec, ‘app’)
and appSec is I in F3

fr-cgka), the distinguishing advantage of A is upper-bounded by the probability
that it inputs to the RO the epoch secret, epSec, from some confidential epoch V . Therefore, we
focus on upper-bounding the probability of the aforementioned event. Since the epoch secret is the
HKDF.Exp (i.e., RO) output over the joiner secret, where the latter depends on other secrets, in the
full proof, we define a sequence of bad events, which are related to queries of other secrets. Let QA(X)
be the event that A queries X to the RO and V0 be the first epoch. In the full proof, after a sequence
of calculations over predicates and events we conclude that the adversary manages to distinguish
between the two hybrids, if:
a) Exists s in {epSecV0 , joinerSecV0 , initParSecV0} s.t. QA(s) and conf(V),
b) Or exists V with parent U s.t. for s ∈ {epSecU , joinerSecU , initParSecU}, ¬QA(s), V is not reachable
(see below) from U and QA(initChildSecU,V),
c) Or exists V s.t. QA(commitSecV) and conf(V),
d) Or exists V s.t. conf(V), QA(joinerSecV) and ¬QA(initSec(U, V), commitSecV),
e) Or exists V s.t. for some secret s ̸= joinerSecV , QA(s).

Cases a) and e) are bounded via straightforward probabilistic arguments related to the RO queries,
since the view of A is independent of any protocol secrets. Cases c), d), rely on the fact that V is
confidential, thus security is reduced to the security of the underlying PKE scheme. For this part
we use existing lemmas from SAIK [AHKM22b]. It only remains to bound the probability of b).
Observe that in b) A queries the output of PPRF, initChildSecU,V , to the RO, in a setting where it
never queries the secrets of the parent epoch, and V is not reachable from U , meaning that 1) either
A does not own any move pebbles w.r.t. U , or 2) the move pebbles where put after corrupting an
id that had already visited V . 1) implies that the PPRF key of U is not known to the adversary,
while 2) implies that A learns U ’s PPRF key after the key is punctured on V , therefore we bound
the probability of b) via a reduction to the one-wayness property of PPRF (cf. Sec. 2.5): assuming
A queries initChildSecU,V to the RO we construct a reduction B that uses initChildSecU,V and V to
break one-waynes of PPRF.

Authenticity. The fourth and final hybrid introduces authenticity, which is formalized by restoring
the auth predicate. This hybrid matches the ideal experiment with Ffr-cgka. In Sec. 7.1 we prove
that, if Sig and MAC are unforgeable and if mmPKE is mmOW-RCCA secure, then FREEK guarantees
authenticity, that is, the current hybrid is indistinguishable from the previous one.

Our result is formally presented in the following theorem. Let Ffr-cgka be the functionality from
Fig. 8 with predicates conf , auth defined in Fig. 9 and P defined in Fig. 15. Let mmPKE, PPRF, Sig,

34

MAC and HKDF be the schemes instantiating FREEK. Denote the output of an environment A in the
real execution with FREEK and the hybrid functionality Faks from Fig. 17 as realFREEK,Faks(A) and
the output of A in the ideal execution with Ffr-cgka and a simulator S as idealFfr-cgka,S(A). For
any A, there exists an S and adversaries B1 to B5 s.t.

Pr[idealFfr-cgka,S(A) = 1]− Pr [realFREEK,Faks(A) = 1] ≤

AdvCR
HKDF.Exp(B1) + 2 ·

(
1/2κ + AdvOW-PPRF

PPRF,qe,qm
(B1)

+ qe ·AdvmmOW-RCCA
mmPKE,qe log(qn),qn

(B2) + qe ·AdvmmOW-RCCA
mmPKE,1,qn

(B3) + s · qe · qh

2κ

)
,

+ 2qe ·AdvEUF-CMA
Sig (B3) + qe ·AdvEUF-CMA

MAC (B4),

where qe, qn, qm, and qh, denote bounds on the number of epochs, the group size, the number of
children of a single epoch, and the number of A’s queries to the random oracle modeling HKDF,
respectively, and s = 5 denotes the number of key schedule secrets in a single epoch.

Proof. We prove our theorem using a sequence of hybrid experiments Hybi (transitioning from the
real to the ideal execution) and we will use subscripts as with ideal to parameterize our hybrids
with functionalities and simulators.

Hyb0: This hybrid is equal to the real world execution, realFREEK,Faks(A).

Hyb1
F1

fr-cgka,S1 : The current hybrid is identical to Hyb0, but translated to the ideal-world language.
That is, we replace the real world execution with FREEK and Faks by an execution with a “trivial”
ideal functionality F1

fr-cgka and a “trivial” simulator S1. F1
fr-cgka gives no security guarantees but

matches the syntax of Ffr-cgka. That is, F1
fr-cgka forwards all inputs to S1 and allows it to choose

all outputs (protocol messages, group keys, etc). S1 uses these inputs to run the code of FREEK and
Fks, which allows it to compute the outputs exactly as in the real world.

Lemma 1. The view of A in Hyb0 is identical to the one in Hyb1
F1

fr-cgka,S1.

Proof. Straightforward by inspection.

In the subsequent hybrids, we modify F1
fr-cgka, which gives no security guarantees, by gradually

introducing the security guarantees of FR-CGKA. We do so by gradually activating the security
predicates and the checks (made by our helper functions via assertions), that enforce the properties
of our protocol, i.e., consistency, step correctness, confidentiality and authenticity. In particular,
F2

fr-cgka introduces consistency and step correctness, F3
fr-cgka introduces confidentiality, and F4

fr-cgka
authenticity. The simulator is modified accordingly, to deal with less power given by the functionality.
We first deal with consistency and correctness.

7.2 Consistency and Step Correctness

We show that FREEK guarantees step correctness and consistency, by showing indistinguishability
between Hyb1

F1
fr-cgka,S1 and the second hybrid that we define below w.r.t. a new simulator S2.

Hyb2
F2

fr-cgka,S2 : The current hybrid contains the functionality F2
fr-cgka, which is the same as Ffr-cgka

except that it uses conf = auth = false. I.e., it disables all checks related to authenticity and
confidentiality of the protocol while consistency and step correctness checks are enabled (by default).
In a high level, the current hybrid is distinguishable from the previous one (which is identical to real

35

world execution), if the environment can violate consistency of the execution or step correctness. The
simulator S2 is defined as follows:

Simulator S2

S2 stores a FREEK state for each party id. When F2
fr-cgka sends to S2 an FR-CGKA input from id (for

Send, Receive, Join, GetKey, or DeleteMovePebble), S2 runs FREEK on this input and updates the
state. It sends to F2

fr-cgka the epoch identifier(s) U, V and well as any packets outputted by the
protocol. For injected epochs, it sends to F2

fr-cgka the values sndr, act and mem taken from the ratchet
tree in id’s state. When id gets corrupted, S2 sends its state to the environment A.

Indistinguishability between the current hybrid and the previous one is proven via the following
lemma.

Lemma 2. For any environment A, there exists an adversary B such that

Pr
[
Hyb2

F2
fr-cgka,S2(A)⇒ 1

]
− Pr

[
Hyb1

F1
fr-cgka,S1(A)⇒ 1

]
≤ AdvCR

HKDF.Exp(B).

The probability runs over the randomness used by the experiments.

Proof. The main differences between the current hybrid (Hyb2
F2

fr-cgka,S2) and the previous one
(Hyb1

F1
fr-cgka,S1), are the following: (1) the outputs of the protocol are now set by the function-

ality F2
fr-cgka (instead of being directly set by the simulator as in Hyb1

F1
fr-cgka,S1), and (2) the

execution can be disrupted if the checks made by F2
fr-cgka via assert statements and the helpers,

fail. First we deal with (2).

Helper *assert-agree-auth-preserved. We show that calls to *assert-agree-auth-preserved
do not disrupt the execution, which only happens if one of the following three assertions fail:

1. assert ∀U s.t. Eps[U] ̸= ⊥ : {id : (id, U) ∈ Visited} ⊆ Eps[U].mem

2. assert HG has no cycles

3. assert ∀U s.t. Eps[U] ̸= ⊥ ∧ Eps[U].par ̸= ⊥ : Eps[U].mem = *mem(Eps[U].par, Eps[U].act)

For case 1, observe that (id, U) can be added to Visited via Initialization, Send, Receive or Join.
We will show that such id also belongs to Eps[U].mem. For Initialization, id instantly becomes
a member of the new epoch via a call to *new-ep with input mem = {id}. For Send, id becomes
a member of V via a call to *mem(U, act), which copies all group members of U . For Receive, if
Eps[V] ̸= ⊥, the receiver has been included to the set of group members of V when V was created,
otherwise, it becomes a member of V by calling *new-ep (which copies the group members). Finally,
for Join, if Eps[U] ̸= ⊥, id has already become a group member by the Send operation that issued
the add of id, via a call to *new-ep with input mem = *mem(U, act), otherwise, membership is set
by the simulator as in the previous hybrid. Using similar arguments and the fact that the protocol
handles removals consistently (a Send operation that removes id creates a new epoch in which id is
removed), we observe that the assertion of case 3 also holds.

For case 2, recall that, by the definition of the key schedule, the epoch id of a newly generated
epoch is V = HKDF.Exp(γ.grpCtxt(), comSecConf), where γ.grpCtxt() includes the epoch id of the

36

parent epoch. Assume A creates a cycle for the first time. This implies that there exist U ≠ V , such
that

HKDF.Exp(γ.grpCtxtV (),comSecConfV) = V

= HKDF.Exp(γ.grpCtxtU (), comSecConfU).

Since U ̸= V , the parent ids in γ.grpCtxtU (), γ.grpCtxtV (), are different, therefore, γ.grpCtxtU () ̸=
γ.grpCtxtV (), and we can define an adversary B that simulates the execution with A and outputs a
collision against HKDF.Exp, reaching a contradiction. Therefore, there can be no cycles in the history
graph.12

Helper *step-correct. We show that in Hyb2
F2

fr-cgka,S2 , if *step-correct is true when an id
receives a message, then the protocol executed by S2 accepts the input. That is, the input refers to
a packet that enables the transition from U to V , correctly extracted by F2

fr-cgka. Notice that id’s
protocol rejects such a packet only if A) id does not have the epoch U in its state, B) it possesses the
state information for the epoch U , but the init secret initParSecU has been already punctured on the
epoch id of the target epoch, V , or C) the correctness property of the signature or the encryption
scheme fails, i.e., for an honestly generated packet, signature verification or decryption, fails.

Regarding A), it only happens if id has never transitioned to U , or it executed DeleteMovePebble
w.r.t. U . This implies that (id, U) /∈ Move, which contradicts *step-correct. Furthermore, regarding
B), if initParSecU is already punctured on V , given the fact that there are no cycles (as shown above),
this means that id has already visited V and there cannot be another epoch with the same identifier,
which again contradicts *step-correct. Finally, C) violates the (perfect) correctness of the either
the encryption, or the signature, scheme.

Indistinguishability of outputs. Now that we have proved that the checks introduced by F2
fr-cgka

do not affect indistinguishability, we show that the parties’ outputs observed by A are the same in
both hybrids. In Hyb1

F1
fr-cgka,S1 , the outputs are directly forwarded from S1 executing FREEK. In

Hyb2
F2

fr-cgka,S2 , they are computed by F2
fr-cgka with the help of the values sent by S2. Let us observe

all possible outputs. First, the epoch identifiers U, V , as well as the packet C, are chosen by the
simulator, so they are identical in the two hybrids. Thus, it only remains to show that sndr and
act, output by Receive, sndr and mem, output by Join, and the key, key, output by GetKey, are
indistinguishable from those output by the protocol (and forwarded by S1) in hybrid Hyb1

F1
fr-cgka,S1 .

Observe that for those operations, if the “if” statements are not satisfied (which implies that the
target epoch is generated on-the-fly by the simulator as the operation executes), the execution follows
a path in which all values are set by the simulator, thus for those cases the outputs match those of
the previous hybrid. If the “if” statements are satisfied (which implies that the target epoch has
been already created by a previous operation), then we need to make sure that the properties of the
epoch (namely, sndr, act, mem, key) at the time of creation, match the ones returned to the parties in
subsequent calls, i.e., the parties’ CGKA states are consistent. In order to prove that (and conclude
the proof of Lemma 2) we rely on the following claim.

Claim 1. In Hyb1
F1

fr-cgka,S1, Hyb2
F2

fr-cgka,S2, if each two parties id1 and id2, with states γid1, γid2,
respectively, (emulated by S1, S2, respectively), transition to a new epoch (after a Send, Receive or
Join, operation) and they both output the same epoch identifier, V , then either there is an HKDF.Exp
collision or

12Here, we assume that the id of the root epoch is not in the range of the HKDF.Exp. This trivially excludes collisions
against the root epoch.

37

1. γid1 [V].τ = γid2 [V].τ and13

2. γid1 [V].keySchedule = γid2 [V].keySchedule and

3. γid1 [V].parent = γid2 [V].parent and

4. The last group modification, act, outputted by id1 and id2 is the same (if one of them joins, the
implicit modification is adding them).

Observe that if the epoch identifier matches then since V = HKDF.Exp(γ.grpCtxtV (), comSecConfV)
and γ.grpCtxtV contains the last action and sender, sndr and act are the same for all parties that reach
V (for all operations) assuming collision resistance of HKDF.Exp. γ.grpCtxtV also includes the tree
hash, thus the member set outputted on Join is consistent with the tree in the states of other parties
transitioning to the epoch. By the fact that the last action is the same and recursion, this is consistent
with the member set in the functionality. It remains to prove that the key output by GetKey is
consistent. By collision resistance, all parties that reach V agree on γ.grpCtxtV () and comSecConfV ,
which implies they also agree on pathSecV , since comSecConfV = HKDF.Exp(pathSecV , ‘conf’) (by
collision resistance), therefore they all compute the same commitSecV = HKDF.Exp(pathSecV , ‘com’).
Finally, γ.grpCtxtV contains the id of the parent epoch, thus initParSecU and initChildSecU,V =
PPRF.eval(initParSecU , V) should be the same for all parties that reach V . We conclude that joinerSecV

is the same for all parties and thus the group key is also the same. Clearly, if any of the above is
violated we can construct an adversary B that uses A to break collisions resistance of HKDF.Exp.
The proof of the above claim follows.

of the above claim. The proof follows directly from the way the epoch identifier V and the key
schedule are computed using HKDF.Exp. We revisit the relevant parts of FREEK below.

• The group context, γ.grpCtxtV (), of V contains (the tree hash of) the ratchet tree in epoch V ,
the identifier U of the parent of V and the last group modification.

• The path secret pathSecV is chosen by the party creating V .

• The new epoch’s identifier V is HKDF.Exp(γ.grpCtxtV (), comSecConfV), where comSecConfV =
HKDF.Exp(pathSecV , ‘conf’)

• The key schedule of V is derived from joinerSecV computed as the HKDF.Ext of γ.grpCtxtV (),
initChildSecU,V = PPRF.eval(initParSecU , V) and commitSecV = HKDF.Exp(pathSecV , ‘comm’).

The proof of the claim is concluded. This concludes the proof of Lemma 2.

7.3 Confidentiality

The next hybrid introduces confidentiality, which is formalized by restoring the original confidentiality
predicate of Ffr-cgka.

Hyb3
F3

fr-cgka,S3 : The functionality F3
fr-cgka uses the original conf predicate from Ffr-cgka. The

simulator S3 is the same as S2.
We next show that if the PKE and PPRF schemes are secure, then Hyb2

F2
fr-cgka,S2 and Hyb3

F3
fr-cgka,S3

are indistinguishable for any PPT environment A.
13Here, we refer only to the public part of the CGKA states of the users in epoch V .

38

Proof intuition.

For better intuition, observe that hybrids Hyb2
F2

fr-cgka,S2 and Hyb3
F3

fr-cgka,S3 are almost identical. In
both experiments, the environment interacts with the CGKA functionality and the same simulator. The
only difference is that group keys in confidential epochs are real in hybrid Hyb2

F2
fr-cgka,S2 (technically,

computed by the simulator according to FREEK) and random and independent in Hyb3
F3

fr-cgka,S3

(technically, sampled by F3
fr-cgka). This means that distinguishing between the two hybrids an be

seen as a typical confidentiality game for CGKA schemes. The adversary in the game corresponds to
the environment A. The adversary’s challenge queries correspond to A’s GetKey inputs on behalf of
parties in confidential epochs and its reveal-session key queries correspond to A’s GetKey inputs in
non-confidential epochs. To disable trivial wins, confidential epochs where a random key has been
outputted are marked by setting a flag chall. A and the adversary in the game are not allowed to
corrupt if this makes such an epoch non-confidential.

The indistinguishability between the two hybrids if formalized in the following lemma:

Lemma 3. For any environment A, there exist adversaries B1, B2, B3, such that

Pr
[
Hyb3

F3
fr-cgka,S3(A)⇒ 1

]
− Pr

[
Hyb2

F2
fr-cgka,S2(A)⇒ 1

]
≤

1/2κ + AdvOW-PPRF
PPRF,qe,qm

(B1)+
qe ·AdvmmOW-RCCA

mmPKE,qe log(qn),qn
(B2)+

qe ·AdvmmOW-RCCA
mmPKE,1,qn

(B3) + s · qe · qh

2κ
,

where HKDF.Exp and HKDF.Ext are modeled as random oracles and qe, qm, qn and qh, are as in the
main theorem. The probability runs over the randomness used by the experiments and the random
oracle.

Proof. First we define a predicate and events that will assist our proof.
The original conf predicate states that the environment cannot reach a configuration in which the

set of it’s keys contains U , i.e., adv can compute the key of epoch U .

Simpler predicate.

For simplicity, we first consider a slightly weaker confidentiality predicate : conf ′(U) is true if

∄(MoveAn , ,) : (MoveA, KeyA, VisitedA) ⊢∗ (MoveAn , ,) ∧ ∃id(id, U) ∈ MoveAn .

We observe that conf ′ implies conf : if conf = false, then by definition, A can reach a configura-
tion in which it can compute they key of U , but this wouldn’t be possible without knowing the state
of U , which implies a move pebble on U , thus conf ′ = false. Furthermore, the only case for which
conf does not imply conf ′ (w.r.t. epoch U), i.e., the case in which the environment can’t compute
the key of U but there is a move pebble on U , are those where a) all parties have been corrupted
after computing/deleting the key of U (via GetKey) and b) the environment cannot derive the key
indirectly. Security of FREEK in these epochs is trivial, therefore for the rest of the proof we prove
indistinguishability between the current hybrid and previous one by considering conf ′ in the place of
conf .

39

Events.

Let A be any environment. Observe that, since application secrets are derived by hashing the
respective epoch secrets (recall that appSec← HKDF.Exp(epSec, ‘app’) and appSec is I in F3

fr-cgka),
the distinguishing advantage of A is upper-bounded by the probability that it inputs to the RO
the epoch secret, epSec, from some confidential epoch V . Therefore, it remains to upper-bound the
probability of A inputting the epoch secret of such a V to the RO.

We next define a number of predicates, each taking as an implicit input the execution (at some
point in time) of the experiment with A and as an explicit input one or two epochs within it. One
can think of the predicates, as well as formulas defined on them, as events occurring whenever a
predicate becomes true. Note that, whenever we say A queries the RO with a secret, we assume that
the whole input (to the RO) matches the format that the protocols uses.

// Eventually, the goal is to upper-bound the probability that there exists an V for which the next two
predicates are true.

• conf(V) : conf ′(V) is true.

• hashesSec(V) : An input of A to RO contains epSecV , joinerSecV or initParSecV .

// The next two predicates describe one way A can make hashesSec true : by hashing the init and
commit to get the joiner

• hashesIni(U, V) : V is a child of U and some input of A to the RO contains initChildSecU,V (the
child init secret derived for V from initParSecU via PPRF).

• hashesCom(V) : An input of A to RO contains commitSecV .

// Another way A can make hashesSec true is to get the joiner from other sources e.g. a welcome
message.

• hashesJoiOnly(V) : An input of A to the RO contains joinerSecV but no input contains
initChildSec(U, V) and commitSecV together.

// Finally, A could guess some secret derived from joiner without hashing the joiner.

• guesses(V) : An input of A to the RO contains some secret in V but no input to the RO
contains joinerSecV .

The event that A can win w.r.t. an epoch V .

Let us look at any epoch V with parent U . The goal is to bound the probability of A winning w.r.t.
V , which is captured by hashesSec(V) ∧ conf(V). Observe that this event is slightly more general, as
besides the queries made to the RO for epSecV , it also considers queries of joinerSecV and initParSecV .
We include joinerSecV and initParSecV , in hashesSec(V) since the security of V relies on the security
of prior epochs and hashesSec(V) will enable us to prove security of V via a recursive argument.

Next we define a super-event implied by hashesSec(V) ∧ conf(V). The super-event will be a
conjunction of simpler events, the probability of which we will upper-bound separately for modularity;
the final upper bound will follow by the union bound.

40

First, recall that the epoch secret, epSecV , is the hash of the joiner secret, joinerSecV , and the
joiner secret is the hash of the commit secret, commitSecV , with initChildSecU,V (and the group
context, grpCtxt(), which is public). Therefore,

hashesSec(V) =⇒ (hashesIni(U, V) ∧ hashesCom(V))
∨ hashesJoiOnly(V) ∨ guesses(V).

(1)

If the left hand side of the above formula is true due to the query of epSecV , then the right hand
side is also true, as explained above. If the left hand side of the formula is true due to the query
of initParSecV , then since this secret is the hash of epSecV , the environment either queries epSecV

or simply guesses initParSecV , and the right hand side is also true. Finally, if the left hand side
is true due to the query of joinerSecV , then either the environment queries initChildSec(U, V) and
commitSecV , together, or it should only query joinerSecV . In both cases the right hand side of the
formula becomes true.

Now, observe that conf ′(V) does not depend on KeyA and, given rules b) and c) of the pebbling-step
validity, conf ′(V) implies one of the following:

// A cannot reach a configuration from which it could put a move pebble on U for some id and id did
not visit V

1. cantReach(U, V) ⇐⇒ ∄ConfigA
n′ : ConfigA ⊢∗ ConfigA

n′

∧ ∃id(id, U) ∈ ConfigA
n′ .MoveA ∧ (id, V) /∈ ConfigA

n′ .VisitedA

// A cannot make a pebbling step

2. ∄id : *leaked-ind-secs(id, V).

From the above and Eq. (1) we derive the following:

hashesSec(V) ∧ conf(V) =⇒ (hashesIni(U, V) ∧ hashesCom(V) ∧ cantReach(U, V))
∨ (hashesIni(U, V) ∧ hashesCom(V) ∧

∄id : *leaked-ind-secs(id, V)))
∨ (hashesJoiOnly(V) ∧ conf(V))
∨ (guesses(V) ∧ conf(V)),

which we can simplify as follows:

hashesSec(V) ∧ conf(V) =⇒ (cantReach(U, V) ∧ hashesIni(U, V))
∨ (hashesCom(V) ∧ ∄id : *leaked-ind-secs(id, V)))
∨ (hashesJoiOnly(V) ∧ conf(V))
∨ guesses(V).

We now apply induction to the above formula and as a logical consequence we derive the following:

hashesSec(V) ∧ conf(V) =⇒ (hashesSec(U) ∧ conf(U))
∨ (¬hashesSec(U) ∧ cantReach(U, V) ∧ hashesIni(U, V))
∨ (hashesCom(V) ∧ ∄id : *leaked-ind-secs(id, V)))
∨ (hashesJoiOnly(V) ∧ conf(V))
∨ guesses(V).

41

Finally, denote the ancestors of V by V0, . . . , Vℓ−1 = U, Vℓ = V . By induction,

hashesSec(Vℓ) ∧ conf(Vℓ) =⇒ (hashesSec(V0) ∧ conf(V0))
∨ (∃i ∈ [1, ℓ] ¬hashesSec(Vi−1) ∧

cantReach(Vi−1, Vi) ∧ hashesIni(Vi−1, Vi))
∨ (∃i ∈ [1, ℓ] hashesCom(Vi) ∧ ∄id : *leaked-ind-secs(id, Vi))
∨ (∃i ∈ [1, ℓ] hashesJoiOnly(Vi) ∧ conf(Vi))
∨ (∃i ∈ [1, ℓ] guesses(Vi)).

The event that A can win.

We next look at the event that there exists a V with which A can win. Given the formula above, we
have

∃V hashesSec(V) ∧ conf(V) =⇒ (hashesSec(V0) ∧ conf(V0)) a)
∨ (∃V, U = par(V) : ¬hashesSec(U) ∧

cantReach(U, V) ∧ hashesIni(U, V)) b)
∨ (∃V hashesCom(V) ∧ ∄id : *leaked-ind-secs(id, V)) c)
∨ (∃V hashesJoiOnly(V) ∧ conf(V)) d)
∨ (∃V guesses(V)). e)

This means that A’s advantage is upper-bounded by the sum of the probabilities of events a)-e).

Lemma 4 (Bounding a)). For any environment A,

Pr[hashesSec(V0) ∧ conf(V0)] ≤ 1/2κ.

Proof. We will show that if conf(V0) is true, then the only secret which A can send to the RO to
make hashesSec(V) true, i.e., the initParSec in V0, is random and independent of A’s view. Therefore,
the probability of guessing it is at most 1/2κ, and this will conclude the proof.

Recall that, as per the Initialization operation of FREEK, the first epoch does not have epSec
or joinerSec, and that the initParSec is chosen uniformly at random by the group creator. Moreover,
the initParSec exists only in the state of the group creator and the only part of A’s view that depends
on it are the joiner secrets of children of V0 (note that the joiner secrets are sent to the first members
invited by the creator, and nothing used to derive the joiners leaves the creator’s state). As these
joiner secrets are outputs of the RO, they are independent of the corresponding inputs. Therefore,
initParSec is independent of A’s view unless A leaks it via a corruption of the group creator. However,
this would contradict conf(V0), and the proof is concluded.

Lemma 5 (Bounding c)). For any A, there exists a reduction B s.t.

Pr[∃V hashesCom(V) ∧ ∄id : *leaked-ind-secs(id, V)] ≤ qe ·AdvmmOW-RCCA
mmPKE,qe log(qn),qn

(B).

Proof. This is a straightforward consequence of Lemma H.7 from [AHKM22b].

Lemma 6 (Bounding d)). For any A, there exists a reduction B s.t.

Pr[∃V hashesJoiOnly(V) ∧ conf(V)] ≤ qe ·AdvmmOW-RCCA
mmPKE,1,qn

(B).

42

Proof. This is a straightforward consequence of Lemma H.6 from [AHKM22b].

Lemma 7 (Bounding e)). For any environment A,

Pr[∃V guesses(V)] ≤ s · qe · qh

2κ
,

where s is the number of secrets in any epoch V .

Proof. Let V := {V1, . . . , Vqe} be all epochs. Then,

Pr[∃V guesses(V)] = Pr

 ∨
i∈[qe]

guesses(Vi)

 ≤ s · qe · qh

2κ
.

Lemma 8 (Bounding b)). For any A, there exists a reduction B s.t.

Pr[∃V, U = par(V) : ¬hashesSec(U) ∧ cantReach(U, V) ∧ hashesIni(U, V)]
≤ AdvOW-PPRF

PPRF,qe,qm
(B).

Here qe is an upper bound on the total number of epochs and qm is an upper bound on the number
of children of a single epoch created in an execution with A. The event E equal to ∃V, U = par(V) :
¬hashesSec(U) ∧ cantReach(U, V) ∧ hashesIni(U, V) occurs when the predicate becomes true (the first
time) in an execution with A.

Proof. Let A be any environment. B simulates the experiment for A as defined in Hyb2
F2

fr-cgka,S2 ,
lazily programming the RO. At a high level, the only difference from Hyb2

F2
fr-cgka,S2 concerns the key

schedule derivation. That is, B, embeds one PPRF key k from the OW-PPRF game it plays in the
key schedule of each (non-injected) epoch. For operations involving k (which include programming
the RO), B uses the Try, Corr and Eval oracles. Moreover, B embeds one challenge random value
ri,j from the PPRF security game as the output of the RO on input grpCtxtV () for one (honestly
generated) epoch V . We will show that if the event E occurs, then B wins with one of its Try queries.
Details follow.

Notation. Recall that in Hyb2
F2

fr-cgka,S2 , each epoch U has an initParSecU , derived from its key
schedule. Further, to derive the key schedule for a child V of U , the protocol computes the following:

joinerSecV = HKDF.Ext(grpCtxtV (), initChildSecU,V , commitSecV), where

initChildSecU,V = PPRF.eval(initParSecU , HKDF.Exp(grpCtxtV (), comSecConfV)).

The reduction B. There are three differences between the experiment emulated by B and
Hyb2

F2
fr-cgka,S2 , each described in detail in Fig. 16. Roughly, the first difference is in the way

the new key schedule is derived when an epoch is created in Ffr-cgka, i.e., when a party sends a
packet, or receives an injected packet (by claim 1, the key schedule is the same for all parties, so B
derives it only once). The second difference is in how B programs the RO. The third difference is in
dealing with corruptions of parties holding init secrets.

43

Reduction B
Key Schedule

When a new epoch V is created as a child of U , B exe-
cutes FREEK, programming the RO if necessary, except the
*derive-keys and *derive-epoch-keys methods of the key
schedule is replaced by the following.

Case 1. V is honest, i.e., created on input Send.

1. Embed a PPRF instance in the key schedule of V — asso-
ciate with V a new index iV in the OW-PPRF game; kiV

will be used instead of initParSecV .

2. If there was an index iU associated with U , then em-
bed a challenge in initChildSecU,V — set the identifier
V (initChildSecU,V is the PPRF output on V) to some
yet unused riU ,j received from the game. Else, choose a
random V .

3. Choose at random all hash outputs: joinerSecV ,
comSecConfV , commitSecV , appSecV , confTagV and
membKeyV .

4. Program the RO on correct inputs to output V and all
outputs above except joinerSecV . The only RO links that
re not programmed are: 1) The input to get joinerSecV is
unknown, as it contains the challenge PPRF output that
allows B to win, 2) The output initParSecV is unknown,
as the instance is embedded there.

Case 2. V is injected, i.e., created when an id accepts an in-
jected commit transitioning it to V .

1. Compute comSecConfV and commitSecV as in FREEK,
programming the RO if necessary.

2. Search for a joinerSecV that already appeared as out-
put to some RO query that should be the joiner in
V . That is, for each RO input equal to (grpCtxtV (), y,
commitSecV) for some y, run CheckPPRF(U, V, y). If
a check succeeds (at most one can, since PPRF.eval is
deterministic), let joinerSecV denote the output. Else,
joinerSecV is not found.

3. If joinerSecV is not found choose a random one.

4. Derive from joinerSecV all secrets of V , including
initParSecV (by programming the RO).

Random Oracle

When A inputs an X for the first time, B programs the RO out-
put Y computed as follows.

Case 1. X = (epSecU , ‘init’), where epSecU is the epoch secret of
an epoch U with an associated iU .

1. Query the oracle Corr(iU), receive the unpunctured
initParSecU , set Y = initParSecU .

Case 2. X = (V, grpCtxtV (), y, commitSecV , ‘joiner’).

1. Check if a joinerSecV matching the inputs has been al-
ready generated in Key Schedule. That is, check if some
joinerSecV was generated for V with parent U contained in
grpCtxtV (), and CheckPPRF(U, V, y) is true.

2. If joinerSecV has been generated, set Y to it. Else, choose
Y at random.

Case 3. For any other input, pick Y at random.

Corruptions

The state of a party id contains for each epoch U on which id
has a Move pebble, initParSecU punctured on the V1, . . . , Vℓ of all
children Vi of U on which id does not have a Visited pebble. B
computes the punctured init as follows.

1. If there is no index iU associated with U , then the un-
punctured initParSecU is known to B, so it punctures it on
V1, . . . , Vℓ itself.

2. Else, w.l.o.g. let V1 = rU,j1 , . . . , Vℓ′ = rU,jℓ′ denote those
epoch id’s that are equal to some challenges from the
OW-PPRF game. Query Corr(iU , j1, . . . , jℓ′) and receive
initParSec′

U .

3. Also puncture initParSec′
U on each Vℓ′+1, . . . , Vℓ.

Procedure CheckPPRF(U, V, y)
// Returns true if y = PPRF.eval(initParSecU , V) for initParSecU

set to the parent init secret in U (possibly chosen by the
OW-PPRF game).

1. If there is no index iU associated with U , then initParSecU

is known to B, so it simply evaluates the PPRF.

2. Else, let iU be the index. If V is equal to some challenge
riU ,j , query Try(iU , j). Else, query Eval(iU , V).

Figure 16: The reduction B for the proof of Lem. 8. Parts related to OW-PPRF oracles are marked in
blue.

The reduction B wins. It is easy to see that the experiment emulated by B is exactly the same as
Hyb2

F2
fr-cgka,S2 (note that the OW-PPRF game never aborts or refuses to reveal a value). Therefore, it

remains to show that if the event E occurs, then B wins the OW-PPRF game. Recall that E occurs
when there is an epoch V with parent U such that

1. A inputs to the RO initChildSecU,V ,

2. A does not input to the RO any secret of U ,

3. cantReach(U, V) is true, i.e., there is no id for which A can put a Move pebble on U without a

44

Visited pebble on V .

It is easy to see that 3. implies that U was created via an honest Send, so there is an index iU

associated with it. Moreover, V was also created honestly, so its identifier V is a challenge riU ,j .
Further, 1. implies that A inputs y = PPRF.eval(kiU , riU ,j) to the RO. At this point B uses the Try
oracle as part of the CheckPPRF procedure with the correct PPRF output y. It is left to show that
2. and 3. imply that this sets the win flag to true, i.e., that (iU , j) is not in the corrupted set C in the
OW-PPRF game.

Assume towards a contradiction that (iU , j) ∈ C. This means that B queried the Corr oracle on
(iU , j1, . . . , jℓ) where j /∈ {j1, . . . , jℓ}. Observe that B queries Corr(iU , j1, . . . , jℓ) in two cases.

a) When A sends epSecU to the RO. This is a contradiction with 2.

b) When A corrupts an id with a Move pebble on U . In this case, B sets {j1, . . . , jℓ} to the indices
of id’s of those children of U on which id has a Visited pebble. Since j is not in the above set,
id does not have a Visited pebble on V , which contradicts 3.

This concludes the proof of Lem. 8.

Given Lems. 4 to 8, the proof of Lem. 3 is concluded.

7.4 Authenticity

The fourth and final hybrid introduces authenticity, which is formalized by restoring the auth predicate.
This hybrid matches the ideal experiment with Ffr-cgka. More concretely,

Hyb4
F4

fr-cgka,S4 : The functionality F4
fr-cgka uses the original auth predicate from Ffr-cgka. The

simulator S4 is the same as S4. The hybrid matches idealF4
fr-cgka,S4 .

In the remainder of this section we show that, if Sig and MAC are unforgeable and if mmPKE is
mmOW-RCCA secure, then FREEK guarantees authenticity, that is, the current hybrid is indistin-
guishable from the previous one. We note that security of mmPKE is needed e.g. to guarantee secrecy
of MAC keys.
Proof intuition. We observe that the two hybrids are identical unless a bad event Forges occurs.
Roughly, Forges happens if A breaks authenticity, that is, if it successfully impersonates an ids towards
idr in an epoch epid such that auth is true for ids in epid. Therefore, A’s advantage in distinguishing
the hybrids is upper bounded by the probability of Forges. This means that distinguishing between
the two hybrids can be seen as a typical authenticity game, where the adversary wins by forging
messages accepted by the protocol, as expressed by Forges.
Bad events. Let A be any environment. Since epochs in detached trees are not authentic and the
root cannot be injected, in the remainder of the proof we only consider non-root epochs in the main
history-graph tree.

The hybrids are identical unless Forges occurs. If it does occur, then the last assertion of the
procedure *assert-agree-auth-preserved fails, implying the following event:

∃V : Eps[V].packet = ‘inj’ ∧ auth(V, Eps, MoveA, KeyA, VisitedA) (2)

45

For simplicity, in what follows we will omit the history graph Eps, and the pebbling sets MoveA, KeyA,
VisitedA, from the authenticity predicate, and we will simply write auth(V).

As with the confidentiality predicate, conf , in the confidentiality proof, we observe that, given
rules b) and c) of the pebbling-step validity, auth(V) implies one of the following. Below, U is the
parent of V .

// A cannot reach a configuration from which it could put a move pebble on U for some id and id did
not visit V

1. cantReach(U, V) ⇐⇒ ∄ConfigA
n′ : ConfigA ⊢∗ ConfigA

n′

∧ ∃id(id, U) ∈ ConfigA
n′ .MoveA ∧ (id, V) /∈ ConfigA

n′ .VisitedA

// A cannot make a pebbling step

2. ∄id : *leaked-ind-secs(id, V).

By 2 and 1., 2., we derive the following:

Forges =⇒ ∃U, V (cantReach(U) ∧ Eps[V].packet = ‘inj’) a)
∨ (∄id : *leaked-ind-secs(id, V) ∧ Eps[V].packet = ‘inj’) b)

where U is the parent of V . It thus remains to bound the probabilities of the events a) and b). By
the safety predicate definition observe that b) takes place whenever there is a successful injection
and the private signature keys of all ids in the target epoch are secure. Therefore b) reduces to the
unforgeability of signatures. The idea is formalized in the following lemma.

Lemma 9. For any adversary A, there exists a reduction B s.t.

Pr[∃U(∄id *leaked-ind-secs(id, V) ∧ Eps[V].packet = ‘inj’)]
≤ 2qe ·AdvEUF-CMA

Sig (B).

Proof. This is a straightforward consequence of Lemma H.10 from [AHKM22b].

Event a) is handled by the following lemma. We remind that, after a successful injection both the
real-world and ideal-world executions stop, and we bound the probabilities of bad events under this
assumption.

Lemma 10. For any adversary A, there exist reduction B1, B2, B3 and B4 s.t.

Pr[∃(U, V) cantReach(U, V) ∧ Eps[V].packet = ‘inj’] ≤
1/2κ + qe ·AdvEUF-CMA

MAC (B4)
AdvOW-PPRF

PPRF,qe,qm
(B1)+

qe ·AdvmmOW-RCCA
mmPKE,qe log(qn),qn

(B2)+

qe ·AdvmmOW-RCCA
mmPKE,1,qn

(B3) + s · qe · qh

2κ

Proof. The event cantReach(U, V) ∧ Eps[V].packet = ‘inj’ occurs when the adversary manages for the
first time to inject a message to a receiver id who is in epoch U , and either makes id transition to
a new injected epoch V , or removes id from the group w.r.t. the injected epoch V . Note that, the
injected epoch can also be created by A via a welcome message for V to a new group member, and
then make other group members transition to that epoch.

46

Observe that cantReach(U, V) implies that, either the adversary doesn’t have a move pebble on
U , or if it does, then for all id such that (id, U) ∈ MoveA, id has already visited V , i.e., it should be
that (id, U) ∈ VisitedA. Since V is a new, injected epoch, the latter cannot hold, thus cantReach(U, V)
implies that A does not have a move pebble in U . In both cases conf(U) holds. More formally, we
derive the following implication

∃(U, V) cantReach(U, V) ∧ Eps[V].packet = ‘inj’ =⇒
∃(U, V) conf(U) ∧ Eps[V].packet = ‘inj’

therefore it suffices to bound the probability of the event on the right hand side of the above formula.
Similar to the confidentiality proof we define hashesSec(U) to be the following event: an input of

A to RO contains epSecV , joinerSecV or initParSecV . Given the above, we compute

Pr[∃(U, V) conf(U) ∧ Eps[V].packet = ‘inj’] =
Pr[∃(U, V) conf(U) ∧ Eps[V].packet = ‘inj’ ∧ hashesSec(U)]

+ Pr[∃(U, V) conf(U) ∧ Eps[V].packet = ‘inj’ ∧ ¬hashesSec(U)] (3)

Observe that the following implications holds:

∃(U, V) conf(U) ∧ Eps[V].packet = ‘inj’ ∧ hashesSec(U) =⇒
∃Uconf(U) ∧ hashesSec(U)

Given the above implication and the fact that the probability of the event on the right hand side has
been already bounded by Lem. 3 in the confidentiality proof, we derive that there exist B1, B2, B3,
such that

Pr[∃(U, V) conf(U) ∧ Eps[V].packet = ‘inj’ ∧ hashesSec(U)] ≤
1/2κ + AdvOW-PPRF

PPRF,qe,qm
(B1)+

qe ·AdvmmOW-RCCA
mmPKE,qe log(qn),qn

(B2)+

qe ·AdvmmOW-RCCA
mmPKE,1,qn

(B3) + s · qe · qh

2κ
(4)

We finally show that there exists B4 such that

Pr[∃(U, V) conf(U) ∧ Eps[V].packet = ‘inj’ ∧ ¬hashesSec(U)] ≤
qe ·AdvEUF-CMA

MAC (B4) (5)

Since the adversary is not querying epSecU to the RO and U is confidential, i.e., conf(U) holds,
the MAC key, membKey, which is the hash of epSecU , is uniformly random and independent of A’s
view. Therefore, we prove the above bound via a straightforward reduction to the security of the
MAC scheme. B4 acts as follows. First guesses the epoch that the adversary will try to inject to,
i.e., it pics a uniformly random element i from the set [qe], and then simulates the execution of
the hybrid, and only diverges as follows: for the i-th epoch it doesn’t use membKey to compute
MAC tags and forwards the input to the challenger and receives the tag, i.e., instead of computing
tagt ← MAC.tag(γ.membKey, γ′.eid), it forwards γ′.eid to the challenger of the MAC unforgeability
game, receives back tagt and uses it in subsequent operations. MAC verification for messages of the
i-th epoch are also forwarded to the challenger, while for the first pair (tagt, γ′.eid) that verifies, but
has not been generated by the challenger, B4 outputs that pair as a forgery to the challenger. Clearly,
if this is the case, then U is a new injected epoch, B4 mounts a successful injection and the execution

47

halts, assuming B4 correctly guesses the injected epoch, which happens with probability 1/qe. The
bound of 5 follows.

By plugging, 5, 4, to 3, the proof of Lem. 10 is concluded, and this concludes FREEK’s security
proof.

8 Security Proof of O-FREEK
The following theorem formalizes the security of the O-FREEK protocol defined in Sec. 5.2.

Let Ffr-cgka be the functionality from Fig. 8 with predicates conf , auth, defined in Fig. 9 with
P (Eps, id, V, MoveA0 , KeyA0 , VisitedA0) set to false. Let BtPke, BtSig, CR-PRF and Hash be the schemes
instantiating O-FREEK. Denote the output of an environment A in the real execution with O-FREEK
and the hybrid functionality Faks from Fig. 17 as realO-FREEK,Faks(A) and the output of A in the
ideal execution with Ffr-cgka and a simulator S as idealFfr-cgka,S(A). Then, for any A, there exists
an S and adversaries B1 to B5 s.t.

Pr[idealFfr-cgka,S(A) = 1]− Pr [realO-FREEK,Faks(A) = 1] ≤
AdvCR

Hash(B1) + AdvCR
CR-PRF(B2)

+ 8q2
eqn ·AdvIND-CCA

BtPke (B3) + 2qe ·AdvPRF
CR-PRF(B4)

+ 2qe ·AdvEUF-CMA
BtSig (B5),

where qe and qn denote bounds on the number of epochs and the group size, respectively.

Proof. We prove our theorem using a sequence of hybrid experiments Hybi (transitioning from the
real to the ideal execution), and we will use subscripts as with ideal to parameterize our hybrids
with functionalities and simulators. For parts of the proof that are similar to those of FREEK, we will
refer the reader to the corresponding parts of FREEK’s proof.

Hyb0: This hybrid is equal to the real world execution, realO-FREEK,Faks(A).

Hyb1
F1

fr-cgka,S1 : The current hybrid is identical to Hyb0, but translated to the ideal-world language.
The hybrid’s definition and simulator S1 are as in Hyb0 of FREEK’s proof, but using O-FREEK in
the place of FREEK.

Lemma 11. The view of A in Hyb0 is identical to the one in Hyb1
F1

fr-cgka,S1.

Proof. Straightforward by inspection.

In the subsequent hybrids, we modify F1
fr-cgka, which gives no security guarantees, by gradually

introducing the security guarantees of FR-CGKA. We do so by gradually activating the security
predicates and the checks (made by our helper functions via assertions), that enforce the properties
of our protocol, i.e., consistency, step correctness, confidentiality and authenticity. In particular,
F2

fr-cgka introduces consistency and step correctness, F3
fr-cgka introduces confidentiality, and F4

fr-cgka
authenticity. The simulator is modified accordingly, to deal with less power given by the functionality.
We first deal with consistency and step correctness.

48

8.1 Consistency and Step Correctness

Similar to FREEK, we show that O-FREEK guarantees step correctness and consistency, by show-
ing indistinguishability between Hyb1

F1
fr-cgka,S1 and the second hybrid that we define below w.r.t. a

new simulator S2 (the hybrid and simulator are as in FREEK; we recall them for the ease of exposition).

Hyb2
F2

fr-cgka,S2 : The current hybrid contains the functionality F2
fr-cgka, which is the same as Ffr-cgka

except that it uses conf = auth = false. The simulator S2 is defined as follows:

Simulator S2

S2 stores an O-FREEK state for each party id. When F2
fr-cgka sends to S2 an FR-CGKA input from id

(for Send, Receive, Join, GetKey, or DeleteMovePebble), S2 runs O-FREEK on this input and updates
the state. It sends to F2

fr-cgka the epoch identifier(s) U, V and well as any packets outputted by the
protocol. For injected epochs, it sends to F2

fr-cgka the values sndr, act and mem taken from id’s state.
When id gets corrupted, S2 sends its state to the environment A.

Indistinguishability between the current hybrid and the previous one is proven via the following
lemma.

Lemma 12. For any environment A, there exists an adversary B such that

Pr
[
Hyb2

F2
fr-cgka,S2(A)⇒ 1

]
−Pr

[
Hyb1

F1
fr-cgka,S1(A)⇒ 1

]
≤ AdvCR

Hash(B) + AdvCR
CR-PRF(B).

The probability runs over the randomness used by the experiments.

Proof. The main differences between the current hybrid (Hyb2
F2

fr-cgka,S2) and the previous one
(Hyb1

F1
fr-cgka,S1), are the following: (1) the outputs of the protocol are now set by the function-

ality F2
fr-cgka (instead of being directly set by the simulator as in Hyb1

F1
fr-cgka,S1), and (2) the

execution can be disrupted if the checks made by F2
fr-cgka via assert statements and the helpers,

fail. First we deal with (2).

Helper *assert-agree-auth-preserved. We show that calls to *assert-agree-auth-preserved
do not disrupt the execution. By the protocol definition, the epoch ids of newly generated epochs
are computed as in FREEK, i.e., V = Hash(γ.grpCtxt(), comSecConf), therefore the arguments made
in FREEK’s proof also hold for the current proof (assuming Hash is collision resistant), and calls to
*assert-agree-auth-preserved do not disrupt the execution.

Helper *step-correct. We show that in Hyb2
F2

fr-cgka,S2 , if *step-correct is true when an id
receives a message, then the protocol executed by S2 accepts the input. That is, the input refers to
a packet that enables the transition from U to V , correctly extracted by F2

fr-cgka. Notice that id’s
protocol rejects such a packet only if A) id does not have the epoch U in its state, B) it possesses the
state information for the epoch U , but the secret key of the public-key encryption scheme has already
been punctured on V⃗ , or C) the correctness property of the signature or the encryption scheme fails,
i.e., for an honestly generated packet, signature verification or decryption, fails. Regarding A), it
only happens if id has never transitioned to U , or it executed DeleteMovePebble w.r.t. U . This
implies that (id, U) /∈ Move, which contradicts *step-correct. Regarding B), if the secret key of

49

the encryption scheme is punctured on V⃗ , given the fact that there are no cycles (as shown above),
this means that id has already visited V and there cannot be another epoch with the same identifier,
which again contradicts *step-correct. Finally, C) violates the (perfect) correctness of the either
the encryption, or the signature, scheme.

Indistinguishability of outputs. As in FREEK, outputs that are chosen by the simulator are
identical in the two hybrids. These include the epoch identifiers U, V , the packet C, and also, sndr
and act, output by Receive, sndr and mem, output by Join, and the key, key, output by GetKey,
for the cases in which the “if” statements in the operations are not satisfied (which implies that the
target epoch is generated on-the-fly by the simulator as the operation executes). If the “if” statements
are satisfied (which implies that the target epoch has been already created by a previous operation),
then we need to make sure that the properties of the epoch (namely, sndr, act, mem, key) at the time
of creation, match the ones returned to the parties in subsequent calls, i.e., the parties’ CGKA states
are consistent. We prove consistency of those values using similar arguments as with the main claim 1
in the proof of Lem. 2, for FREEK (and we conclude the proof of Lem. 12).

For sndr, act, mem, the idea is identical to that of FREEK: if the epoch identifier matches, then
since V = Hash(γ.grpCtxtV (), comSecConfV) and γ.grpCtxtV contains the last action and sender, sndr
and act are the same for all parties that reach V (for all operations) assuming collision resistance of
Hash. γ.grpCtxtV also includes the tree hash, thus the member set outputted by Join is consistent
with the tree in the states of other parties transitioning to the epoch. By the fact that the last action
is the same and recursion, this is consistent with the member set in the functionality.

It remains to prove that the key output by GetKey is consistent. By collision resistance, all parties
that reach V agree on γ.grpCtxtV () and comSecConfV , which implies they also agree on rV , since
comSecConfV = CR-PRF(rV , ‘conf’) (by collision resistance of CR-PRF), therefore they all compute
the same group key which is equal to γ.appSecV ← CR-PRF(rV , ‘app’).

This concludes the proof of Lemma 12.

8.2 Confidentiality

The next hybrid introduces confidentiality, which is formalized by restoring the original confidentiality
predicate of Ffr-cgka.

Hyb3
F3

fr-cgka,S3 : The functionality F3
fr-cgka uses the original conf predicate from Ffr-cgka. The

simulator S3 is the same as S2.
The indistinguishability between the current hybrid and the previous one is formalized in the

following lemma.

Lemma 13. For any environment A, there exist adversaries B1 and B2 such that

Pr
[
Hyb3

F3
fr-cgka,S3(A)⇒ 1

]
−Pr

[
Hyb2

F2
fr-cgka,S2(A)⇒ 1

]
≤ 8q2

eqn ·AdvIND-CCA
BtPke (B1) + 2qe ·AdvPRF

CR-PRF(B2).

Proof. We define a sequence of qe hybrids Hyb0, . . . , Hybqe
, transitioning from Hyb2

F2
fr-cgka,S2 to

Hyb3
F3

fr-cgka,S3 . The hybrids switch the evaluations of conf executed by F2
fr-cgka on input GetKey

from false to the predicate from Fig. 9, one by one. That is, in Hyb0 all evaluations use conf = false,
like in Hyb2

F2
fr-cgka,S2 . In Hyb1, the evaluation for the first epoch, in the order they are created, uses

50

the predicate from Fig. 9, and so on. Clearly, Hybqe
is Hyb3

F3
fr-cgka,S3 . Therefore, it remains to show

that for each i there exist B1 and B2 such that

Pr
[
Hybi+1(A)⇒ 1

]
−Pr [Hybi(A)⇒ 1]
≤ 8qeqn ·AdvIND-CCA

BtPke (B1) + 2 ·AdvPRF
CR-PRF(B2).

Let U denote the i-th created epoch. The only difference between Hybi and Hybi+1 is as follows:
In Hybi, the group key in U is computed (by the simulator) as CR-PRF(r, ‘app’). In Hybi+1, if conf
from Fig. 9 is true, the group key in U is a uniformly random value chosen by the functionality
independently of r. Moreover, recall that the only part of A’s view that depends on r is the packet C
outputted by the functionality (and generated by the simulator) when U is created. In particular, C
contains (1) qn ciphertexts, each encrypting r to one group member in U , and (2) comSecConf equal
to CR-PRF(r, ‘conf’).

We next define a sequence of 2qn + 1 hybrids, Hybi,0 to Hybi,2qn+1 transitioning from Hybi to
Hybi+1. Assume for a moment that conf from Fig. 9 is always true in U (we later show how to remove
this assumption).

Switching ciphertexts. The first qn hops replace, one by one, the encryptions of r in C by
encryptions of a random and independent value s. That is, in Hybi,0 all ciphertexts encrypt r like
in Hybi. In Hybi,1, the first ciphertext (i.e. for the lexicographically smallest public key) encrypts
a random and independent s. In Hybi,2, the first two ciphertexts encrypt the same random and
independent s, ans so on.

Switching the group key. Observe that in Hybi,qn
, all ciphertexts in C encrypt s. This means

that r used to derive the group key as CR-PRF(r, ‘app’) and comSecConf = CR-PRF(r, ‘conf’) is
independent of A’s view, apart from the above derivations. Therefore, we can use the PRF property
to switch CR-PRF(r, ‘app’) to a random and independent group key in hop qn + 1.

Switching ciphertexts back. Finally, observe that the only difference between Hybi,qn+1 and
Hybi+1 is that in the former C encrypts a random and independent s, while in the latter it encrypts r
which is also used to compute comSecConf = CR-PRF(r, ‘conf’). Therefore, we define the last qn hops
which revert the first qn hops — they switch the encryptions of s by encryptions of r, one by one.14

Removing the assumption that conf in U is true. In general, for each j, Hybi,j should switch
anything (at the time C is generated) only if conf in U is true at the time GetKey in U is called.
Else, it should behave as Hybi. The reason is that if something was switched and later a party id was
corrupted making U not confidential, then hybrids would be trivially distinguishable. E.g., a secret
key in id’s state would allow to decrypt an s different than r used to compute comSecConf.

To make this possible, we define hybrids Hyb′i and Hyb′i+1 which are the same as Hybi and Hybi+1,
resp., except in Hyb′i and Hyb′i+1 the environment A′ commits at the beginning to a bit indicating
if U is confidential at the time GetKey in U is called. Technically, the experiment stops as soon as
the bit announced by A′ turns out to be incorrect. Observe that for any A with advantage ϵ in
distinguishing Hybi and Hybi+1, there is a trivial A′ with advantage ϵ/2 in distinguishing Hyb′i and

14One may hope to get a tighter reduction that does not need the last qn hops by having the simulator S3 choose
comSecConf at random instead. However, this doesn’t work with adaptive corruptions – S3 has to commit to whether to
make comSecConf random or not at the moment the epoch is created. If it chooses comSecConf at random and A later
corrupts a party, S3 loses. If it chooses real and the epoch ends up confidential, our reduction doesn’t work. Guessing
the strategy for all epochs would make S3 inefficient.

51

Hyb′i+1 — A′ guesses the bit, runs A and outputs what A outputs if the guessed bit is correct, and 0
otherwise.15 Therefore, it remains to upper-bound the advantage of an adversary A′ in distinguishing
Hyb′i and Hyb′i+1.

To this end, we define hybrids Hyb′i,0 to Hyb′i,2qn+1 transitioning from Hyb′i to Hyb′i+1 as follows.
For each j, Hyb′i,j is the same as Hybi,j if A′ announces that U will be confidential. Else, Hybi,j is the
same as Hybi.

To conclude the proof, it is left to prove the following two claims.

Claim 2. For any adversary A′ and any i ∈ [qe], j ∈ [qn]∪ [qn + 2, 2qn + 2], there exists an adversary
B s.t.

Pr
[
Hyb′i,j+1(A′)⇒ 1

]
− Pr

[
Hyb′i,j(A′)⇒ 1

]
≤ 2qe ·AdvIND-CCA

BtPke (B).

Claim 3. For any adversary A, and any i ∈ [qe] there exists an adversary B s.t.

Pr
[
Hyb′i,qn+1(A′)⇒ 1

]
− Pr

[
Hyb′i,qn

(A′)⇒ 1
]
≤ AdvPRF

CR-PRF(B).

of the first claim. We only consider the first sequence i ∈ [qe], j ∈ [qn], as the second one is analogous.
Notice that Hyb′i,qn

and Hyb′i+1,0 are the same. Therefore, it remains to consider Hyb′i,j and Hyb′i,j+1
for all j.

Recall that the only difference between Hyb′i,j and Hyb′i,j+1 is the message contained in the j-th
ciphertext cj in the packet creating the i-th epoch in the order of creation. In the first hybrid cj

encrypts the “real” value r, and in the latter – a random s.
Let A′ be any adversary. The reduction B receives epk from the IND-CCA game and runs A′. In

general, B runs the code of the functionality and the simulator as in Hyb′i,j . The only difference is
that if the i-th epoch will be safe, B makes the following changes.

1. Embed epk. Recall that O-FREEK generates key pairs (only) when it creates an epoch — on
each such operation, it generates a key pair for the sender and, in case this is an add operation,
for the added member (technically, the latter is done by Faks at this exact moment). Therefore,
B guesses an e ∈ [qe] and a bit b and embeds epk when the e-th epoch is created, as one of the
two keys according to b. Let id∗ denote the party for which epk is generated.

2. Embed challenge. When the i-th epoch is created, B sends to the challenger r and s as well as
the identity vector I∗ = BtIds[id∗] of id∗ used by the sender (emulated by B). It receives c∗ and
uses it instead of cj .

3. For operations using esk, that is, receiving messages by id∗ and computing its state when
corrupted, B uses the Corr and Dec oracles. The only exception is when id∗ receives c∗ in the
i-th epoch, B runs its protocol with r directly.

B outputs whatever A′ outputs. Assume B’s guess is correct. We next show that in this case
the req checks executed by the IND-CCA game pass. Once this is proved, it is easy to see that B’s
emulation is Hyb′i,j if the challenge bit is 0 and Hyb′i,j+1 otherwise. This will conclude the proof.

The game makes two req checks. The first one happens in the Dec oracle. B uses Dec as in Step 3
above. When id∗ receives a message transitioning to the i-th epoch, B does not use Dec on c∗, so the
req’ed condition is not violated. When id∗ receives a message transitioning to another epoch V , the

15The advantage of A′ is a trivial calculation after noticing that the guessed bit is independent of the view of A.

52

identity I⃗ used for decryption will be different than I⃗∗ — indeed, I⃗ ends with the unique identifier of
V .

The second check happens at the end of the game. For this, we show that if conf is true for the
i-th epoch, then B’s corruptions do not violate the req’ed condition. Assume towards a contradiction
that B violates the condition. This means that B queries Corr on I⃗ which is a prefix of I⃗∗. We next
show that this allows the adversary to put a key pebble on the i-th epoch which is a contradiction.

Recall that for each epoch Um on which id∗ has a move pebble, it stores a bunch of keys for
identity vectors (U1, 0, . . . , Um, 0, x) where U1, . . . , Um identify ancestors of Um and x identifies a node
in the binary tree eskTree on which the key has not been punctured. If id∗ has a visited pebble on a
child Um+1 of Um, then its state contains no keys for identity vectors where x is a prefix of Um+1.

Now let U1, . . . , Un denote the ancestors of the i-th epoch, Un, ordered from the oldest. By the
above observation, if I⃗ is a prefix of I⃗∗, then at the moment of corruption id∗ has a move pebble
on a Um for m < n and it does not have a visited pebble on Um+1. Therefore, the adversary also
gets these pebbles for id. Moreover, no epoch U1, . . . , Un removes or is created by id∗ as this would
clear the identity vector. Therefore, the adversary can put move and key pebbles on Um+1. This, in
turn, allows it to put a pebble on Um+2, and so on, resulting in a key pebble on the i-th epoch. This
contradicts conf and concludes the proof.

of the second claim. In both hybrids, if the i-th epoch will be confidential, the key for CR-PRF in
epoch i is random and independent of the view of A′. Therefore, we construct a straightforward
reduction that runs A′, emulating the code of the simulator and the functionality, except if the i-th
epoch is secure it does as follows. First, it queries the Eval oracle on ‘conf’ to get the comSecConf for
the i-th epoch. Second, it gets the challenge on input ‘app’ and uses it as the group key.

8.3 Authenticity

The fourth and final hybrid introduces authenticity, which is formalized by restoring the auth predicate.
This hybrid matches the ideal experiment with Ffr-cgka. More concretely,

Hyb4
F4

fr-cgka,S4 : The functionality F4
fr-cgka uses the original auth predicate from Ffr-cgka. The

simulator S4 is the same as S4. The hybrid matches idealF4
fr-cgka,S4 .

In the remainder of this section we show that, if Sig is unforgeable, then O-FREEK guarantees
authenticity, that is, the current hybrid is indistinguishable from the previous one. More formally,

Lemma 14. For any environment A, there exist an adversary B such that

Pr
[
Hyb4

F4
fr-cgka,S4(A)⇒ 1

]
−Pr

[
Hyb3

F3
fr-cgka,S3(A)⇒ 1

]
≤ 2qe ·AdvEUF-CMA

BtSig (B).

Proof. Let A be any environment. Observe that the hybrids are identical unless the following bad
event Forges happens:

∃V : Eps[V].packet = ‘inj’ ∧ auth(V, Eps, MoveA, KeyA, VisitedA)

53

Therefore, it remains to upper-bound the probability of Forges. To this end, next construct a
reduction B such that Pr[Forges] ≤ 2qe ·AdvEUF-CMA

BtSig (B).
The reduction B receives spk from the EUF-CMA game and runs A. In general, B runs the code

of the functionality and the simulator as in Hyb3
F3

fr-cgka,S3 , except the following.

1. Embed spk. Recall that O-FREEK generates key pairs (only) when it creates an epoch — on
each such operation, it generates a key pair for the sender and, in case this is an add operation,
for the added member (technically, the latter is done by Faks at this exact moment). Therefore,
B guesses an e ∈ [qe] and a bit b and embeds spk when the e-th epoch is created, as one of the
two keys according to b. Let id∗ denote the party for which spk is generated.

2. For operations using spk, i.e., sending messages by id∗ and computing its state when corrupted,
B uses Sig, Upd and Corr oracles in the natural way.

3. Get the forgery. If Forges happens, B halts and sends to the challenger the following forgery:
Let V ∗ be the epoch that makes Forges happen. Let idr be the first party who transitioned
there and let c∗ be the (injected) packet it used. B’s forgery consists of σ∗ contained in c∗, the
message V ∗ and the identity vector I⃗∗ used by idr.

It remains to show that if Forges occurs and B’s guess is correct, i.e., the injection happens on
behalf of id∗ when it uses spk, then B wins the game. Assume towards a contradiction that B loses.
This means that one of the three condition s checked by the game to compute the win flag fails.

The first condition is false if Sig.vrf outputs 0. But idr accepted c∗, which means that its protocol
run Sig.vrf with result 1. Verification is deterministic, so we get a contradiction.

The second condition is false if B queried V ∗ to the Sig oracle. However, B only uses Sig with
epochs honestly created by id∗. Since Forges implies that V ∗ is not honest (formally, its packet ̸= ‘inj’),
we get a contradiction.

The third and final condition is false if B queried Corr and received a secret key for I⃗c ≠ ⊥ s.t.
there is an I⃗ ′ s.t. I⃗∗ = I⃗c ∥ I⃗∗. We will how that this allows the adversary to put a move pebble on
the parent of V ∗, which is a contradiction with auth.

ecall that for each epoch Um on which id∗ has a move pebble, it stores a bunch of secret keys
for identity vectors (U1, 0, . . . , Um, 0, x) where U1, . . . , Um identify ancestors of Um and x identifies a
node in the binary tree sskTree on which the key has not been punctured. If id∗ has a visited pebble
on a child Um+1 of Um, then its state contains no keys for identities where x is a prefix of Um+1.

Now let U1, . . . , Un denote the ancestors of V ∗, ordered from the oldest to the parent Un of V ∗.
By the above observation, if I⃗ is a prefix of I⃗∗, then at the moment of corruption id∗ has a move
pebble on a Um. If m = n, then the adversary has a move pebble on the parent of V ∗ and we are
done. Else, again by the observation, id∗ does not have a visited pebble on Um+1. Therefore, the
adversary can put a move pebble on Um+1 and remove visited pebbles from its children. This in turn
allows it to do the same for Um+2 and so on. Eventually, the adversary gets a move pebble on Un,
which concludes the proof.

References

[AAB+21] Joël Alwen, Benedikt Auerbach, Mirza Ahad Baig, Miguel Cueto Noval, Karen Klein,
Guillermo Pascual-Perez, Krzysztof Pietrzak, and Michael Walter. Grafting key trees:
Efficient key management for overlapping groups. In Kobbi Nissim and Brent Waters,

54

editors, TCC 2021, Part III, volume 13044 of LNCS, pages 222–253. Springer, Heidelberg,
November 2021.

[AAN+22a] Joël Alwen, Benedikt Auerbach, Miguel Cueto Noval, Karen Klein, Guillermo Pascual-
Perez, and Krzysztof Pietrzak. DeCAF: Decentralizable continuous group key agreement
with fast healing. Cryptology ePrint Archive, Report 2022/559, 2022. https://eprint.
iacr.org/2022/559.

[AAN+22b] Joël Alwen, Benedikt Auerbach, Miguel Cueto Noval, Karen Klein, Guillermo Pascual-
Perez, Krzysztof Pietrzak, and Michael Walter. CoCoA: Concurrent continuous group
key agreement. In Orr Dunkelman and Stefan Dziembowski, editors, EUROCRYPT 2022,
Part II, volume 13276 of LNCS, pages 815–844. Springer, Heidelberg, May / June 2022.

[ACC+21] Joël Alwen, Margarita Capretto, Miguel Cueto, Chethan Kamath, Karen Klein, Ilia
Markov, Guillermo Pascual-Perez, Krzysztof Pietrzak, Michael Walter, and Michelle
Yeo. Keep the dirt: Tainted treekem, an efficient and provably secure continuous group
key agreement protocol. 42nd IEEE Symposium on Security and Privacy, 2021. Full
Version: https://ia.cr/2019/1489.

[ACDJ23] M. R. Albrecht, S. Celi, B. Dowling, and D. Jones. Practically-exploitable cryptographic
vulnerabilities in matrix. In 2023 2023 IEEE Symposium on Security and Privacy (SP)
(SP), pages 1419–1436, Los Alamitos, CA, USA, may 2023. IEEE Computer Society.

[ACDT20] Joël Alwen, Sandro Coretti, Yevgeniy Dodis, and Yiannis Tselekounis. Security analysis
and improvements for the IETF MLS standard for group messaging. In Daniele Micciancio
and Thomas Ristenpart, editors, CRYPTO 2020, Part I, volume 12170 of LNCS, pages
248–277. Springer, Heidelberg, August 2020.

[ACDT21] Joël Alwen, Sandro Coretti, Yevgeniy Dodis, and Yiannis Tselekounis. Modular design
of secure group messaging protocols and the security of MLS. In Giovanni Vigna and
Elaine Shi, editors, ACM CCS 2021, pages 1463–1483. ACM Press, November 2021.

[ACJM20] Joël Alwen, Sandro Coretti, Daniel Jost, and Marta Mularczyk. Continuous group key
agreement with active security. In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020,
Part II, volume 12551 of LNCS, pages 261–290. Springer, Heidelberg, November 2020.

[AHKM22a] Joël Alwen, Dominik Hartmann, Eike Kiltz, and Marta Mularczyk. Server-aided
continuous group key agreement. In Heng Yin, Angelos Stavrou, Cas Cremers, and
Elaine Shi, editors, ACM CCS 2022, pages 69–82. ACM Press, November 2022.

[AHKM22b] Joël Alwen, Dominik Hartmann, Eike Kiltz, and Marta Mularczyk. Server-aided
continuous group key agreement. In Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’22, page 69–82, New York, NY, USA,
2022. Association for Computing Machinery.

[AJM22] Joël Alwen, Daniel Jost, and Marta Mularczyk. On the insider security of MLS. In
Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part II, volume 13508
of LNCS, pages 34–68. Springer, Heidelberg, August 2022.

[Aut23] Automerge.org. Automerge, 2023. https://automerge.org/.

55

https://eprint.iacr.org/2022/559
https://eprint.iacr.org/2022/559
https://ia.cr/2019/1489
https://automerge.org/

[BB+20] R. Barnes, B. Beurdouche, , J. Millican, E. Omara, K. Cohn-Gordon, and R. Robert. The
messaging layer security (mls) protocol (draft-ietf-mls-protocol-latest). Technical report,
IETF, Oct 2020. https://messaginglayersecurity.rocks/mls-protocol/draft-
ietf-mls-protocol.html.

[BBR+22] Richard Barnes, Benjamin Beurdouche, Raphael Robert, Jon Millican, Emad Omara,
and Katriel Cohn-Gordon. The Messaging Layer Security (MLS) Protocol. Internet-Draft
draft-ietf-mls-protocol-17, Internet Engineering Task Force, December 2022. Work in
Progress.

[BCK21] Chris Brzuska, Eric Cornelissen, and Konrad Kohbrok. Cryptographic security of
the MLS RFC, draft 11. Cryptology ePrint Archive, Report 2021/137, 2021. https:
//eprint.iacr.org/2021/137.

[BCK22] Chris Brzuska, Eric Cornelissen, and Konrad Kohbrok. Security analysis of the MLS
key derivation. In 2022 IEEE Symposium on Security and Privacy, pages 2535–2553.
IEEE Computer Society Press, May 2022.

[BCV22] David Balbás, Daniel Collins, and Serge Vaudenay. Cryptographic administration
for secure group messaging. Cryptology ePrint Archive, Report 2022/1411, 2022.
https://eprint.iacr.org/2022/1411.

[BDG+22] Alexander Bienstock, Yevgeniy Dodis, Sanjam Garg, Garrison Grogan, Mohammad
Hajiabadi, and Paul Rösler. On the worst-case inefficiency of CGKA. In Eike Kiltz
and Vinod Vaikuntanathan, editors, TCC 2022, Part II, volume 13748 of LNCS, pages
213–243. Springer, Heidelberg, November 2022.

[BDT22] Alexander Bienstock, Yevgeniy Dodis, and Yi Tang. Multicast key agreement, revisited.
In Steven D. Galbraith, editor, CT-RSA 2022, volume 13161 of LNCS, pages 1–25.
Springer, Heidelberg, March 2022.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom
functions. In Hugo Krawczyk, editor, PKC 2014, volume 8383 of LNCS, pages 501–519.
Springer, Heidelberg, March 2014.

[BMO+18] Richard Barnes, Jon Millican, Emad Omara, Katriel Cohn-Gordon, and Raphael Robert.
Message layer security (mls) wg. https://datatracker.ietf.org/wg/mls/about/, 2018.

[But14] Vitalik Buterin. Ethereum: A next-generation smart contract and decentralized applica-
tion platform, 2014.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applica-
tions. In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part II, volume
8270 of LNCS, pages 280–300. Springer, Heidelberg, December 2013.

[CCG16] Katriel Cohn-Gordon, Cas J. F. Cremers, and Luke Garratt. On post-compromise
security. In IEEE 29th Computer Security Foundations Symposium, CSF 2016, Lisbon,
Portugal, June 27 - July 1, 2016, pages 164–178. IEEE Computer Society, 2016.

[CEST22] Kelong Cong, Karim Eldefrawy, Nigel P. Smart, and Ben Terner. The key lattice frame-
work for concurrent group messaging. Cryptology ePrint Archive, Report 2022/1531,
2022. https://eprint.iacr.org/2022/1531.

56

https://messaginglayersecurity.rocks/mls-protocol/draft-ietf-mls-protocol.html
https://messaginglayersecurity.rocks/mls-protocol/draft-ietf-mls-protocol.html
https://eprint.iacr.org/2021/137
https://eprint.iacr.org/2021/137
https://eprint.iacr.org/2022/1411
https://eprint.iacr.org/2022/1531

[CPZ20] Melissa Chase, Trevor Perrin, and Greg Zaverucha. The signal private group system and
anonymous credentials supporting efficient verifiable encryption. In Jay Ligatti, Xinming
Ou, Jonathan Katz, and Giovanni Vigna, editors, ACM CCS 2020, pages 1445–1459.
ACM Press, November 2020.

[DDF21] Julien Devigne, Céline Duguey, and Pierre-Alain Fouque. MLS group messaging: How
zero-knowledge can secure updates. In Elisa Bertino, Haya Shulman, and Michael
Waidner, editors, ESORICS 2021, Part II, volume 12973 of LNCS, pages 587–607.
Springer, Heidelberg, October 2021.

[Fou23a] The Matrix.org Foundation. Matrix specification, 2023. https://spec.Matrix.org/
v1.6.

[Fou23b] The Matrix.org Foundation. Matrix state resolution, 2023. https://spec.Matrix.org/
v1.6/rooms/v10.

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions
(extended abstract). In 25th FOCS, pages 464–479. IEEE Computer Society Press,
October 1984.

[GM15] Matthew D. Green and Ian Miers. Forward secure asynchronous messaging from
puncturable encryption. In 2015 IEEE Symposium on Security and Privacy, pages
305–320. IEEE Computer Society Press, May 2015.

[Gmb21] Wire Swiss GmbH. Wire security whitepaper, 2021. https://wire-docs.wire.com/
download/Wire+Security+Whitepaper.pdf.

[Goo23] Google. Google docs, 2023. https://docs.google.com/.

[GS02] Craig Gentry and Alice Silverberg. Hierarchical ID-based cryptography. In Yuliang
Zheng, editor, ASIACRYPT 2002, volume 2501 of LNCS, pages 548–566. Springer,
Heidelberg, December 2002.

[HKP+21] Keitaro Hashimoto, Shuichi Katsumata, Eamonn Postlethwaite, Thomas Prest, and
Bas Westerbaan. A concrete treatment of efficient continuous group key agreement via
multi-recipient PKEs. In Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021, pages
1441–1462. ACM Press, November 2021.

[HKP22] Keitaro Hashimoto, Shuichi Katsumata, and Thomas Prest. How to hide MetaData
in MLS-like secure group messaging: Simple, modular, and post-quantum. In Heng
Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi, editors, ACM CCS 2022, pages
1399–1412. ACM Press, November 2022.

[HLA19] Chris Howell, Tom Leavy, and Joël Alwen. Wickr messaging protocol : Technical
paper, 2019. https://1c9n2u3hx1x732fbvk1ype2x-wpengine.netdna-ssl.com/wp-
content/uploads/2019/12/WhitePaper_WickrMessagingProtocol.pdf.

[Jab23] Jabber. Jabber, 2023. https://www.jabber.org/.

[KEO+22] Kaisei Kajita, Keita Emura, Kazuto Ogawa, Ryo Nojima, and Go Ohtake. Continuous
group key agreement with flexible authorization and its applications. Cryptology ePrint
Archive, Report 2022/1768, 2022. https://eprint.iacr.org/2022/1768.

57

https://spec.Matrix.org/v1.6
https://spec.Matrix.org/v1.6
https://spec.Matrix.org/v1.6/rooms/v10
https://spec.Matrix.org/v1.6/rooms/v10
https://wire-docs.wire.com/download/Wire+Security+Whitepaper.pdf
https://wire-docs.wire.com/download/Wire+Security+Whitepaper.pdf
https://docs.google.com/
https://1c9n2u3hx1x732fbvk1ype2x-wpengine.netdna-ssl.com/wp-content/uploads/2019/12/WhitePaper_WickrMessagingProtocol.pdf
https://1c9n2u3hx1x732fbvk1ype2x-wpengine.netdna-ssl.com/wp-content/uploads/2019/12/WhitePaper_WickrMessagingProtocol.pdf
https://www.jabber.org/
https://eprint.iacr.org/2022/1768

[KKPP20] Shuichi Katsumata, Kris Kwiatkowski, Federico Pintore, and Thomas Prest. Scalable
ciphertext compression techniques for post-quantum KEMs and their applications. In
Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020, Part I, volume 12491 of
LNCS, pages 289–320. Springer, Heidelberg, December 2020.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias.
Delegatable pseudorandom functions and applications. In Ahmad-Reza Sadeghi, Virgil D.
Gligor, and Moti Yung, editors, ACM CCS 2013, pages 669–684. ACM Press, November
2013.

[Mat23a] Matrix.org. are we mls yet?, 2023. http://arewemlsyet.com/.

[Mat23b] Matrix.org. Decentralised mls, 2023. https://gitlab.matrix.org/matrix-org/mls-
ts/-/blob/decentralised2/decentralised.org.

[MP16] M. Marlinspike and T. Perrin. The double ratchet algorithm, 11 2016. https://
whispersystems.org/docs/specifications/doubleratchet/doubleratchet.pdf.

[MP22] M. Marlinspike and T. Perrin. Signal – technical information, 2022. https://signal.
org/docs/.

[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, Dec 2008.

[OR93] J. Oikarinen and D. Reed. Internet relay chat protocol. RFC 1459, RFC Editor, 1993.

[PRSS21] Bertram Poettering, Paul Rösler, Jörg Schwenk, and Douglas Stebila. SoK: Game-based
security models for group key exchange. In Kenneth G. Paterson, editor, CT-RSA 2021,
volume 12704 of LNCS, pages 148–176. Springer, Heidelberg, May 2021.

[Tea23] Microsoft Teams. Group chat software, 2023. https://www.microsoft.com/en-us/
microsoft-teams/group-chat-software.

[Wei19] Matthew Weidner. Group messaging for secure asynchronous collaboration. MPhil Disser-
tation, 2019. Advisors: A. Beresford and M. Kleppmann, 2019. https://mattweidner.
com/acs-dissertation.pdf.

[Wha23] WhatsApp. Whatsapp encryption overview, 2023. https://z-p3-
scontent-dub4-1.xx.fbcdn.net/v/t39.8562-6/328495424_498532869106467_
756303412205949548_n.pdf?_nc_cat=104&ccb=1-7&_nc_sid=ad8a9d&_nc_
ohc=hXI5qoXRQZYAX_07jvi&_nc_ht=z-p3-scontent-dub4-1.xx&oh=00_AfA_
WYI48K0JHrfvQ12DfuJYRtocrVeZ8JG_StJPWqKIzQ&oe=63F4133C.

[WKHB21] Matthew Weidner, Martin Kleppmann, Daniel Hugenroth, and Alastair R. Beresford.
Key agreement for decentralized secure group messaging with strong security guarantees.
In Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021, pages 2024–2045. ACM
Press, November 2021.

[WPBB22] Théophile Wallez, Jonathan Protzenko, Benjamin Beurdouche, and Karthikeyan Bharga-
van. TreeSync: Authenticated group management for messaging layer security. Cryptol-
ogy ePrint Archive, Report 2022/1732, 2022. https://eprint.iacr.org/2022/1732.

58

http://arewemlsyet.com/
https://gitlab.matrix.org/matrix-org/mls-ts/-/blob/decentralised2/decentralised.org
https://gitlab.matrix.org/matrix-org/mls-ts/-/blob/decentralised2/decentralised.org
https://whispersystems.org/docs/specifications/doubleratchet/doubleratchet.pdf
https://whispersystems.org/docs/specifications/doubleratchet/doubleratchet.pdf
https://signal.org/docs/
https://signal.org/docs/
https://www.microsoft.com/en-us/microsoft-teams/group-chat-software
https://www.microsoft.com/en-us/microsoft-teams/group-chat-software
https://mattweidner.com/acs-dissertation.pdf
https://mattweidner.com/acs-dissertation.pdf
https://z-p3-scontent-dub4-1.xx.fbcdn.net/v/t39.8562-6/328495424_498532869106467_756303412205949548_n.pdf?_nc_cat=104&ccb=1-7&_nc_sid=ad8a9d&_nc_ohc=hXI5qoXRQZYAX_07jvi&_nc_ht=z-p3-scontent-dub4-1.xx&oh=00_AfA_WYI48K0JHrfvQ12DfuJYRtocrVeZ8JG_StJPWqKIzQ&oe=63F4133C
https://z-p3-scontent-dub4-1.xx.fbcdn.net/v/t39.8562-6/328495424_498532869106467_756303412205949548_n.pdf?_nc_cat=104&ccb=1-7&_nc_sid=ad8a9d&_nc_ohc=hXI5qoXRQZYAX_07jvi&_nc_ht=z-p3-scontent-dub4-1.xx&oh=00_AfA_WYI48K0JHrfvQ12DfuJYRtocrVeZ8JG_StJPWqKIzQ&oe=63F4133C
https://z-p3-scontent-dub4-1.xx.fbcdn.net/v/t39.8562-6/328495424_498532869106467_756303412205949548_n.pdf?_nc_cat=104&ccb=1-7&_nc_sid=ad8a9d&_nc_ohc=hXI5qoXRQZYAX_07jvi&_nc_ht=z-p3-scontent-dub4-1.xx&oh=00_AfA_WYI48K0JHrfvQ12DfuJYRtocrVeZ8JG_StJPWqKIzQ&oe=63F4133C
https://z-p3-scontent-dub4-1.xx.fbcdn.net/v/t39.8562-6/328495424_498532869106467_756303412205949548_n.pdf?_nc_cat=104&ccb=1-7&_nc_sid=ad8a9d&_nc_ohc=hXI5qoXRQZYAX_07jvi&_nc_ht=z-p3-scontent-dub4-1.xx&oh=00_AfA_WYI48K0JHrfvQ12DfuJYRtocrVeZ8JG_StJPWqKIzQ&oe=63F4133C
https://z-p3-scontent-dub4-1.xx.fbcdn.net/v/t39.8562-6/328495424_498532869106467_756303412205949548_n.pdf?_nc_cat=104&ccb=1-7&_nc_sid=ad8a9d&_nc_ohc=hXI5qoXRQZYAX_07jvi&_nc_ht=z-p3-scontent-dub4-1.xx&oh=00_AfA_WYI48K0JHrfvQ12DfuJYRtocrVeZ8JG_StJPWqKIzQ&oe=63F4133C
https://eprint.iacr.org/2022/1732

A Security Model Intuition

For completeness, we include the intuition for the security model of [AHKM22b]. This text is copied
verbatim from [AHKM22b].

Security of saCGKA protocols is defined in the UC framework. This means that we define a real-
world experiment where an environment A interacts with a saCGKA protocol π and an ideal-world
experiment where A interacts with an ideal saCGKA functionality Ffr-cgka and a simulator S. A
protocol π is secure if for all A there exists an S such that the difference between the probability
that A outputs 1 the real world with π and the probability that A outputs 1 in the ideal world with
Ffr-cgka and S are negligible.

Readers familiar with game-based security should think of A as the adversary attacking the
protocol. The simulator S models all parts of the protocol irrelevant for security.

We next look at both worlds for the specific case of saCGKA.

The real world. In the real-world experiment, the following actions are available to A: First, it
can instruct parties to perform different group operations, creating new epochs. When this happens,
the party runs the protocol, updates its state and hands to A the message meant to be sent to the
mailboxing service. The mailboxing service is fully controlled by A. This means that the next action
it can perform is to deliver arbitrary messages to parties. A party receiving such message updates
its state (or creates it in case of new members) and notifies A which group operation it applied.
Moreover, A can fetch from parties group keys computed according to their current states and corrupt
them by exposing their current states.16

The ideal world. In the ideal-world experiment A can perform the same actions, but instead of the
protocol, parties use the ideal CGKA functionality, Ffr-cgka, and a simulator S. Internally, Ffr-cgka
maintains and dynamically extends the history graph. When A instructs a party to perform a group
operation, the party inputs Send to Ffr-cgka. The functionality creates a new epoch in its history
graph and hands to A an idealized message. The message is arbitrary, i.e., chosen by the simulator.
When A delivers a message, the party inputs Receive to Ffr-cgka. On such an input Ffr-cgka first
asks the simulator to identify the epoch into which the receiver transitions. The simulator can either
indicate an existing epoch or instruct Ffr-cgka to create a new one. The latter ability should only
be used if A injects a message and, accordingly, epochs created this way are marked as injected.
Afterwards, Ffr-cgka hands to A the semantics of the message, computed based on the graph. A
corruption in the real world corresponds in the ideal world to Ffr-cgka executing the procedure Expose
and the simulator computing the corrupted party’s state. When A fetches the group key, the party
inputs GetKey to Ffr-cgka, which outputs a key from the party’s epoch. The way keys are chosen is
discussed next.

Security guarantees in the ideal world. To formalize confidentiality, Ffr-cgka is parameterized
by a predicate conf , which determines the epochs in the history graph in which confidentiality of the
group key is guaranteed. For such a confidential epoch, Ffr-cgka chooses a random and independent
group key. Otherwise, the simulator chooses an arbitrary key. To formalize authenticity, Ffr-cgka is
parameterized by auth, which determines if authenticity is guaranteed for an epoch and a party. As
soon as an injected epoch with authentic parent appears in the history graph, Ffr-cgka halts, making
the worlds easily distinguishable. Finally, Ffr-cgka guarantees consistency by computing the outputs,

16To make this section accessible to readers not familiar with UC, we avoid technical details, which sometimes results
in inaccuracies. E.g., parties are corrupted by the (dummy) adversary, not A. We hope this doesn’t distract readers
familiar with UC.

59

such as the set of group members outputted by a joining party, based on the history graph. This
means that the outputs in the real world must be consistent with the graph (and hence also with
each other) as well, else, the worlds would be distinguishable.

Observe that the simulator’s power to choose epochs into which parties transition and create
injected epochs is restricted by the above security guarantees. For example, an injected epoch can only
be created if the environment exposed enough states to destroy authenticity. For consistency, Ffr-cgka
also requires that a party can only transition to a child of its current epoch. Another example is that
if a party in the real world outputs a key from a confidential epoch, then the simulator cannot make
it transition to an unsafe epoch.

Personalizing messages. saCGKA protocols may require that the mailboxing service personalizes
messages before delivering them. In our model, such processing is done by A. It can deliver an
honestly processed message, or an arbitrary injected message. The simulator decides if a message is
honestly processed, i.e., leads to a non-injected epoch, or is injected, i.e., leads to an injected epoch.
Note that this notion has an RCCA flavor. For example, delivering an otherwise honestly generated
message but with some semantically insignificant bits modified can still lead the receiver to an honest
epoch.

Adaptive corruptions. Our model allows A to adaptively decide which parties to corrupt, as long
as this does not allow it to trivially distinguish the worlds. Specifically, A can trivially distinguish if
a corruption allows it to compute the real group key in an epoch where Ffr-cgka already outputted
to A a random key. Our statement quantifies over A’s that do not trivially win.

We note that, in general, there can exist protocols that achieve the following stronger guarantee:
Upon a trivial-win corruption, Ffr-cgka gives to the simulator the random key it chose and the simulator
comes up with a fake state that matches it. However, this requires techniques which typically are
expensive and/or require additional assumptions, such as a random oracle programmable by the
simulator or a common-reference string. We note that the disadvantage of this is restricted composition
in the sense that any composed protocol can only be secure against the class of environments restricted
in the same way.

Relation to game-based security. It may be helpful to think about distinguishing between the
real and ideal world as a typical security game for saCGKA. The adversary in the game corresponds
to the environment A. The adversary’s challenge queries correspond to A’s GetKey inputs on behalf
of parties in confidential epochs and its reveal-session key queries correspond to A’s GetKey inputs in
non-confidential epochs. To disable trivial wins, we require that if the adversary queries a challenge
for some epoch, then it cannot corrupt in a way that makes it non-confidential. Apart from the
keys in challenge epochs being real or random, the real and ideal world are identical unless one of
the following two bad events occurs: First, the adversary breaks consistency, that is, it causes the
protocol to output in the real world something different than Ffr-cgka in the ideal world. Second,
the adversary breaks authenticity, that is, it makes the protocol accept a message that violates the
authenticity requirement in the ideal world, making Ffr-cgka halt forever. Therefore, distinguishing
between the worlds implies breaking consistency, authenticity or confidentiality.

Advantages of simulators. Using a simulator simplifies the notion, because the ideal world does
not need to encode parts of the protocol that are not relevant for security. For example, in our model
the epochs into which parties transition are arbitrary, as long as security holds. This means that in
the ideal world we do not need a protocol function that outputs some unique epoch identifiers. In
general, our ideal world is agnostic to the protocol, which is conceptually simple.

60

Functionality Faks

Parameter: key-package generation algorithm *AKS-kgen.

Initialization
SK[·, ·]← ⊥

Input GetSK(PK) from id
SK ← SK[id, PK]
SK[id, PK]← ⊥
return SK

Input (GetPK, id′) from id
(PK, SK)← *AKS-kgen()
SK[id′, PK]← SK
Send (id′, PK) to adv.
return PK

Figure 17: The Authenticated Key service Functionality.

B Details of SAIK Components Used by FREEK

τ.root The root.
v.isroot True iff v = τ.root.
v.isleaf True iff v has no children.
v.par The parent node of v (or ⊥ if v.isroot).
v.children If ¬v.isleaf: ordered list of v’s children.
v.nodeIdx The node index of v.
v.depth The length of the path from v to τ.root.
v.pk An mmPKE encryption key.
v.sk The corresponding decryption key.
v.spk If v.isleaf: a signature verification key.
v.ssk If v.isleaf: the corresponding signing key.
v.unmLvs The set of indices of the leaves below v whose

owner id does not know v.sk.
v.id If v.isleaf: the id associated with that leaf.

Table 1: Labels of a ratchet-tree τ and its nodes.

γ.grpId The identifier of the group.
γ.τ The ratchet tree.
γ.leaf The party’s leaf in τ .
γ.treeHash A hash of the public part of τ .
γ.lastAct The last modification of the group state and

the user who initiated it.
γ.appSec The current epoch’s CGKA key. Exposed to

the application layer.
γ.initSec The next epoch’s init secret.
γ.membKey The next epoch’s membership secret for au-

thenticating messages.
γ.parEid The epoch id of the parent epoch.
γ.confTag The confirmation tag, which is signed to

ensure authenticity.

Table 2: The protocol state of a party id and the
helper method for computing the context.

pathSec The path secrets s2, . . . , sn used to derive the keypairs in each node. Sent via the mmPKE encryption to keep tree
invariant intact. sn is used to derive keys.

joinerSec Secret sent to new group members. Together with the group context, enables computation of the epSec.

Table 3: Intermediate values computed by the protocol that are not part of the state.
τ.clone() Returns a copy of τ .
τ.public() Returns a copy of τ with all labels v.ssk

and v.sk set to ⊥.
τ.roster() Returns id’s of all parties in τ .
τ.leaves() Returns the list of all leaves in the tree,

sorted from left to right.
τ.leafof(id) Returns the leaf v with v.id = id.
τ.getLeaf() Returns leftmost v s.t. ¬v.inuse(). If

no such v exists, adds a new leaf using
addLeaf(τ) and returns it.

τ.blankPath(v) For all u ∈ τ.directPath(v) calls
u.blank().

τ.inSubtree(u, v) Returns true if u is in v’s subtree.
v.inuse() Returns false iff all labels are ⊥.
v.blank() Sets all labels of v to ⊥.

τ.lca(u, v) Returns the lowest common ancestor of
the two leafs.

τ.directPath(v) Returns the path from v’s parent to the
root.

τ.mergeLvs(v) Sets u.unmLvs ← ∅ for all u ∈
τ.directPath(v)

τ.unmerge(v) Sets u.unmLvs +← v for all u returned by
τ.directPath(v)

v.resolution() If v.inuse, return (v) ++ v.unmLvs.
Else if v.isleaf, return (). Else, re-
turn v.children[1].resolution() ++ · · · ++
v.children[n].resolution()

v.resolvent(u) Returns the ancestor of u in v.resolution()\
(v) (or ⊥ if u is not a descendant of v).

Table 4: Helper methods for a ratchet tree τ and its nodes.
In the current section we recall the components of SAIK [AHKM22b] used by FREEK. The

algorithms in Figs. 18 to 20 and Table 4 are copied verbatim from [AHKM22b]. The only difference
is that we remove signatures and MACs, as FREEK uses a different mechanism (but we keep signature

61

SAIK: Algorithms
Initialization

if id = idcreator then
γ ← *new-state()
γ.grpId, γ.initSec, γ.membKey, γ.appSec $← {0, 1}κ

γ.τ ← *new-LBT()
γ.leaf ← γ.τ.leaves[0]
(γ.leaf.spk, γ.leaf.ssk)← Sig.gen()

Input (Send, act), act ∈ {‘up’, ‘rem’-idt, ‘add’-idt}
from id

req γ ̸= ⊥
// In case of add, fetch idt’s keys from AKS (AKS runs *AKS-kgen).
if act = ‘add’-idt then

(pkt, spkt, pk′
t)← query (GetPk, idt) to Fks

act← ‘add’-idt-(pkt, spkt, pk′
t)

// Create the state and secrets for the new epoch.
try (γ′, pathSecs, joinerSec)← *create-epoch(act)
// Encrypt the path secrets using the new epoch’s ratchet tree. For
adds, also encrypt the joiner secret.
if act ∈ {‘up’, ‘rem’-idt} then

Ctxt← *encrypt(γ′, pathSecs,⊥,⊥,⊥)
else if act = ‘add’-idt-(pkt, spkt, pk′

t) then
Ctxt← *encrypt(γ′, pathSecs, idt, pk′

t, joinerSec)
ssk← γ.τ.leafof(id).ssk
γ ← γ′

if act = ‘add’-idt-(pkt, spkt, pk′
t) then

// Send additional data for idt.
welcomeData← (γ.grpId, γ.τ.public(), pk′

t)
return (id, act, Ctxt, updEKs, welcomeData)

return (id, act, Ctxt, updEKs)

Input Key from id
req γ ̸= ⊥
k ← γ.appSec
γ.appSec← ⊥
return k

Input (Receive, (ids, ‘removed’)) from id
// Receiver is removed.

spk← γ.τ.leafof(ids).spk
γ ← ⊥
return (ids, ‘rem’-id)

Input (Receive, (ids, act, ctxt, updEKs′)) from id
// Receiver is a member.

try γ′ ← *apply-act(γ.clone(), ids, act)
try (γ, confTag)← *transition(γ′, ctxt, updEKs′, ids, act)
spk← γ.τ.leafof(ids).spk
if act = ‘add’-idt-(pkt, spkt) then return (ids, ‘add’-idt)
else return (ids, act)

Input (Receive, (ids, act, ctxt1, ctxt2, welcomeData))) from id
// Receiver joins.

req γ = ⊥
parse (grpId, τ, pk′)← welcomeData
γ ← *new-state
(γ.grpId, γ.τ, γ.lastAct)← (grpId, τ, (ids, ‘add’-id))
v ← γ.τ.leafof(id)
try (sk, spk, sk′)← query GetSk((v.pk, v.spk, pk′)) to Fks
(v.sk, v.ssk)← (sk, ssk)
γ ← *set-tree-hash(γ)
try (γ, confTag)← *get-secrets(γ, sk′, ctxt1, ctxt2, ids)
return (γ.τ.roster(), ids)

SAIK: Helpers for encryption and key generation for Faks

helper *encrypt(γ′, pathSecs, idt, pk′
t, joinerSec)

L← *rcvrs-of-path-secs(γ′.τ, id)
U⃗m, U⃗pk← ()
for j = 1 to len(L) do

(i, v)← L[j]
U⃗m ++← pathSecs[i]
if idt ̸= ⊥ ∧ v = γ′.τ.leafof(idt) then U⃗pk ++← pk′

t

else U⃗pk ++← U⃗v.pk
if idt ̸= ⊥ then

U⃗m ++← joinerSec
p⃗k ++← pk′

t

return mmPKE.mmEnc(p⃗k, U⃗m)

helper *decrypt-path-secret(γ′, ids, ctxt)
v ← lca(γ′.τ.leafof(ids), γ′.leaf).resolvent(γ′.leaf)
return mmPKE.mmDec(v.sk, ctxt)

helper *AKS-kgen()
(pk, sk)← mmPKE.mmGen()
(spk, ssk)← Sig.gen()
(pk′, sk′)← mmPKE.mmGen()
return ((pk, spk, pk′), (sk, ssk, sk′))

Figure 18: The algorithms of SAIK.

62

SAIK: Creating epochs

helper *create-epoch(γ, id, act)
γ′ ← γ.clone()
// Apply the action to the tree. Fails if the action is not allowed.
try γ′ ← *apply-act(γ′, id, act)
// Re-key the direct path.
directPath← γ′.τ.directPath(γ′.leaf)
pathSecs[∗]← ⊥
pathSecs[1] $← {0, 1}κ

for i = 1 to len(directPath)− 1 do
v ← directPath[i]
r ← HKDF.Exp(pathSecs[i], ‘node’)
(v.pk, v.sk)← mmPKE.mmGen(r)
pathSecs[i + 1]← HKDF.Exp(pathSec[i], ‘path’)

γ′.τ.mergeLvs(γ′.leaf)
// Re-key the leaf.
(γ′.leaf.pk, γ′.leaf.sk)← mmPKE.mmGen()
(γ′.leaf.spk, γ′.leaf.ssk)← Sig.gen()
// Set all context variables and then derive epoch secrets.
γ′.lastAct← (id, act)
γ′ ← *set-tree-hash(γ′)
(γ′, joinerSec)← *derive-keys(γ′, pathSecs[len(pathSecs)])
return (γ′, pathSecs, joinerSec)

helper *apply-act(γ′, ids, act)
req ids ∈ γ′.τ.roster()
if act = ‘rem’-idt then

req ids ̸= idt ∧ idt ∈ γ′.τ.roster()
γ′.τ.blankPath(γ′.τ.leafof(idt))
γ′.τ.leafof(idt).blank()

else if act = ‘add’-idt-(pkt, spkt) then
req idt /∈ γ′.τ.roster()
v ← γ′.τ.getLeaf()
(v.id, v.pk, v.spk)← (idt, pkt, spkt)
γ.τ.unmerge(v)

helper *transition(γ′, ctxt, updEKs′, ids, act)
// Set keys on the re-keyed path.
vs ← γ′.τ.leafof(ids)
directPath← γ′.τ.directPath(vs)
(vs.pk, vs.spk)← updEKs′[1]
i← 1
lca← γ′.τ.lca(γ′.leaf, vs)
while directPath[i] /∈ {lca, γ′.τ.root} do

// If message contains too few ek’s, reject it.
req i + 1 ≤ len(updEKs′)
directPath[i].pk← updEKs′[i + 1]
i++

// Decrypt the path secret using the updated tree.
try pathSec← *decrypt-path-secret(γ′, ids, ctxt)
while i < len(directPath) do

v ← directPath[i]
r ← HKDF.Exp(pathSecs[i], ‘node’)
(v.ek, v.dk)← mmPKE.mmGen(r)
pathSec← HKDF.Exp(pathSec, ‘path’)
i++

γ′.τ.mergeLvs(vs)
// Set all context variables; derive epoch secrets.
γ′.lastAct← (ids, act)
γ′ ← *set-tree-hash(γ′)
(γ′, joinerSec)← *derive-keys(γ′, pathSec)
return γ′

helper *get-secrets(γ′, dk′, ctxt1, ctxt2, ids)
try pathSec← mmPKE.mmDec(dk, ctxt1)
try joinerSec← mmPKE.mmDec(dk, ctxt2)
v ← γ′.τ.lca(γ′.leaf, γ′.τ.leafof(ids))
while v ̸= γ′.τ.root do

r ← HKDF.Exp(pathSec, ‘node’)
(pk, v.sk)← mmPKE.mmGen(r)
req v.pk = pk
pathSec← HKDF.Exp(pathSec, ‘path’)
v ← v.par

γ′ ← *derive-epoch-keys(γ′, joinerSec)
return γ′

SAIK: Tree hash
helper *set-tree-hash(γ′)

γ′.treeHash← *tree-hash(γ′.τ.root)
return γ′

helper *tree-hash(v)
if v.isleaf then

return Hash(v.nodeIdx, v.pk, v.spk)
else

ℓ← len(v.children)
for i ∈ [ℓ] do hi ← *tree-hash(v.children[i])
h← (h1, . . . , hℓ)
return Hash(v.nodeIdx, v.pk, v.unmLvs, h)

Figure 19: Additional helper methods for SAIK.

63

SAIK: Extraction
helper *extract(id, act, Ctxt, updEKs, σ, ids)

i, j ← *getExtractionIndices(γ, id)
ctxt← mmExt(C, i)
updEKs′ ← updEKs[1 : j]
return id, act, ctxt, updEKs′, σ

helper *getExtractionIndices(γ, id, ids)
vlca ← γ.τ.lca(id, ids)
vs ← γ.τ.leafofids

directPath← γ.τ.directPath(vs)
// Compute number of public keys “under” lca.
j ← γ.τ.leafof(ids).depth− v.depth
// Count number of encryptions before id’s encryption.
k ← 0
for 2 ≤ l ≤ j do

k ← k + len(γ.τ.resolution(directPath[l].children \ directPath[l − 1]))
S ← γ.τ.resolution(vlca.children \ directPath[j − 1])
i← 1
while S[i] ∩ γ.τ.directPath(vR) = ∅ do i++
i← i + k
return i, j

Figure 20: Helper functions for extraction.

key generation).

The authenticated key service (AKS). The AKS is a type of PKI that enables the distribution
of key-packages that are used to add new members to the group, without requiring any interaction.
It is modeled via the functionality Faks (cf. Fig. 17), which, for simplicity, guarantees that a fresh,
authentic, honestly generated key-package for any user is always available.
Faks is parameterized by the key-package generation algorithm, *AKS-kgen, and works as follows.

Initialization initializes an empty array that will be used to store the key-packages. When a party
id wants to fetch a key-package of another id′ (via GetPK), Faks generates a fresh key-package, stores
it, and sends the public part to A and id. Furthermore, the secret of a key-package can be fetched by
the owner id via GetSK. Once fetched, the secret key of the key-package is deleted. SAIK is defined in
the Faks-hybrid model, i.e., its operations make direct calls to the operations provided by Faks.

Ratchet trees. SAIK is based on the so-called ratchet trees (RTs), which are left-balanced q-ary
tress. For simplicity, we consider q = 2, i.e. left-balanced binary trees, LBBT. Informally, an LBBT on
n nodes (is defined recursively and) has a maximal full binary tree as its left child, and an LBBT on
the remaining nodes, as its right child. In most of the existing CGKA protocols, including SAIK, group
members are arranged at the leaves of an RT and all nodes have an associated public-key encryption
(PKE) key-pair, except for the root. Leaves nodes can also be associated with signature key-pairs. In
the current section we recall the labeling (cf. Table 1) and basic methods (cf. Table 4) over ratchet
trees and its nodes, that will assist the presentation of SAIK, while for the formal definitions we refer
the reader to [ACDT20, AHKM22b].

SAIK’s state and algorithms. In Table 2, we recall the variables that are contained SAIK’s state
(for a single a party). Table 3 lists intermediate secrets computed by the protocol that are not part of
the state, but they enable the computation of other secrets.

SAIK’s algorithms are depicted in Figs. 18 and 19. The protocol supports Initialization,
which enables the initialization of the protocol state, Send, which creates new epochs and enables
the addition and removal of members, as well as the update of the sender’s state, Receive, for
processing incoming messages (for new and existing members, as well as removed ones), and GetKey,
for computing the group key. Only the outputs of Send are uploaded to the mailboxing service, and
users fetch those messages via Receive.

64

Extraction. The procedure Ext(C, id) → c is used by the server to compute the message c that
should be delivered to id given the uploaded ciphertext, C. Extraction enables the server to deliver
to each id only the part of the ciphertext that should be processed by her. Recall, that the uploaded
ciphertext C contains the last group operation, the sender id, a multi-recipient ciphertext and a
vector of uploaded public keys, therefore, Ext(C, id) computes id’s individual mmPKE ciphertexts
and a prefix of the uploaded public keys, which depends on the position of id on the ratchet tress.
For further details, see [AHKM22b].

65

	Introduction
	Our Contribution
	Related Work

	Preliminaries
	Notation
	Binary-Tree Encryption and HIBE
	Binary-Tree Signatures
	Collision-Resistant PRF
	Puncturable PRF

	Fork-Resilient CGKA
	(Server-aided) CGKA
	FR-CGKA Protocols
	FR-CGKA Security Definition
	(Sub-)Optimal Security Predicates

	The FREEK Protocol
	Definition of FREEK

	FR-CGKA with Optimal Security
	Authenticity
	The Final Construction

	Natural Fork-Resolution Protocols
	Security of FREEK
	Security Proof of FREEK
	Consistency and Step Correctness
	Confidentiality
	Authenticity

	Security Proof of O-FREEK
	Consistency and Step Correctness
	Confidentiality
	Authenticity

	Security Model Intuition
	Details of SAIK Components Used by FREEK

