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Abstract
Inventory matching is a standard mechanism for trading fi-
nancial stocks by which buyers and sellers can be paired. In
the financial world, banks often undertake the task of finding
such matches between their clients. The related stocks can
be traded without adversely impacting the market price for
either client. If matches between clients are found, the bank
can offer the trade at advantageous rates. If no match is found,
the parties have to buy or sell the stock in the public market,
which introduces additional costs.

A problem with the process as it is presently conducted is
that the involved parties must share their order to buy or sell
a particular stock, along with the intended quantity (number
of shares), to the bank. Clients worry that if this information
were to “leak” somehow, then other market participants would
become aware of their intentions and thus cause the price to
move adversely against them before their transaction finalizes.

We provide a solution, Prime Match, that enables clients
to match their orders efficiently with reduced market impact
while maintaining privacy. In the case where there are no
matches, no information is revealed. Our main cryptographic
innovation is a two-round secure linear comparison protocol
for computing the minimum between two quantities without
preprocessing and with malicious security, which can be of
independent interest. We report benchmarks of our Prime
Match system, which runs in production and is adopted by a
large bank in the US – J.P. Morgan. The system is designed
utilizing a star topology network, which provides clients with
a centralized node (the bank) as an alternative to the idealized
assumption of point-to-point connections, which would be
impractical and undesired for the clients to implement in
reality.

Prime Match is the first secure multiparty computation
solution running live in the traditional financial world.
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1 Introduction

An axe is an interest in a particular stock that an investment
firm wishes to buy or sell. Banks and brokerages provide their
clients with a matching service, referred to as “axe matching".
When a bank finds two clients interested in the same stock
but with opposite directions (one is interested in buying and
the other is interested in selling), the bank can offer these two
clients the opportunity to trade internally without impacting
the market price. Both clients, and the bank, benefit from this
internalization. On the other hand, if the bank cannot find
two matching clients, the bank has to perform the trade in
the public market, which introduces some additional costs
and might impact the price. Banks, therefore, put efforts into
locating internalized matches.

One such effort is the following service. To incentivize
clients to trade, banks publish a list of stocks that they are
interested in trading, known as “axe list". The axe list that the
bank publishes contains, among other things, aggregated in-
formation on previous transactions that were made by clients
and facilitated by the bank. For instance, to facilitate clients’
trades, the bank sometimes buys stocks that some clients wish
to sell. The bank then looks to sell those stocks to other clients
at advantageous rates before selling those stocks in the public
market. Those stocks will appear in the bank’s axe list.

The axe list consists of tuples (op,symb,axe) where op ∈
{buy,sell}, symb is the symbol of the security to buy or sell,
and axe is the number of the shares (quantity) of the security
to buy or sell (we sometimes use the terminology of “long"
for buy and “short" for sell). This axe list provides clients
the ability to locate available (synthetic) trades at reduced
financing rates.

Unfortunately, this method is unsatisfactory. Although the
information in the axe list of the bank relates to transactions
that were already executed, there is a correlation between
previous transactions that a client performed and future trans-
actions that it might wish to trade. Thus, clients feel uncom-
fortable with seeing their recent (potentially large) trade his-
tory (although anonymized and aggregated) in the axe list that
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the bank publishes, and sometimes ask the bank to remove
their previous trades from the axe list. Clients, therefore, face
the following dilemma: keeping their axes published reveal
information about their future potential trades or investment
strategy, while continuously asking to remove trades from the
axe list limits the banks’ ability to internalize trades and offer
advantageous rates, to begin with.

The bank currently uses some ad-hoc methods to mitigate
the leakage. For instance, it might aggregate several stocks
together into “buckets" (e.g., reveal only the range of available
stocks to trade in some sector), or trim the volumes of other
stocks. This does not guarantee privacy, and also makes it
harder to locate potential matches.

1.1 Our Work
We provide a novel method for addressing the inventory
matching problem (a simple double auction, which is periodic,
with a single fixed price per symbol). Our main contribution
is a suite of cryptographic protocols for several variants of the
inventory matching problem. The system we report, called
Prime Match, was implemented and runs in production in J.P.
Morgan since September 2021. Prime Match has the potential
to transform common procedures in the financial world. We
design the following systems:
• Bank-to-client inventory matching: Prime Match supports a

secure two-party (bank-to-client) inventory matching. The
client can privately find stocks to trade in the bank’s full
axe list without the bank revealing its axe list, and without
the client revealing the stocks and quantities it wishes to
trade. The protocol is secure against a semi-honest bank
and malicious client and is of two rounds of communication
(three rounds if both parties learn the output).

• Client-to-client inventory matching: We extend Prime
Match to support a secure (client-to-client) inventory
matching. This is a three-party protocol where the bank
is an intermediate party that mainly delivers the messages
between two clients and facilitates the trade if there is a
match. This enables two clients to explore whether they
can have potential matches against each other and not just
against the axe list of the bank. This further increases poten-
tial matches. The protocol is secure in the presence of one
malicious corruption and is of three rounds of interaction.

• Multiparty inventory matching: We also extend the client-
to-client inventory matching to multiple clients coming at
once and looking to be matched.

We expand on each one of those scenarios below.

Bank-to-client inventory matching: We replace the current
procedure in which the bank sends an axe list to a client,
and the client replies with which stocks to trade based on
the axe list, with a novel bank-to-client inventory matching.
Prime Match allows the bank to locate potential matches
without revealing its axe list, and without the client revealing
its interests. Moreover, as the bank can freely use accurate

axe information (as the axe list is hidden), clients have no
longer an interest to remove themselves from the axe list. All
parties enjoy better internalization and advantageous rates.

Importantly, the bank does not learn any information about
what the client is interested in on any stock that is not matched,
and likewise, the client does not learn any information on what
is available unless she/he is interested in that as well. Only
after matches are found, the bank and the client are notified
and the joint interest is revealed. At a high level, for two
orders (buy,X,axe1) and (sell,X,axe2) on the same symbol X,
we provide a secure two-party protocol that computes as the
matching quantity the min quantity between axe1 and axe2.1

Secure Matching Engine

orderB

C1

orderC

Figure 1: Client-to-bank topology. Client C sends an encrypted
order orderC = (buy,X,axe1) to the Bank (secure matching engine)
which holds orderB = (sell,X,axe2). The engine computes the mini-
mum between axe1 and axe2.

Client-to-client inventory matching: The above approach
only enables matching between the bank’s inventory to each
client separately but does not allow a direct matching among
different clients. For illustration, consider the following sce-
nario: Client A is interested in buying 100 shares of some
security X, while client B is interested in selling 200 shares
of the same security X. On the other hand, the bank does not
provide X in its inventory axe list. The bank either distributes
in a non-private way its axe list to clients A and B (as it is
being conducted prior to our work) or engages twice in a
bank-to-client inventory matching described above, the first
time against client A and the second time against client B.
The two clients do not find X in the list, and both clients would
have to trade on the public market at higher costs.

Prime Match allows the clients and the bank not to miss
such opportunities. We provide a mechanism that acts as a
transparent matching engine. Each client provides as input
to the computation his/her encrypted axes, and the clients
then interact and learn whether their axes match or not, see
Figure 2. For this solution, we provide a three-party secure
minimum protocol Πmin among two clients and the bank as
the intermediary party to facilitate and execute the trade if
there is a match.

Multi-party protocol. A potentially powerful mechanism
would be to support multiple clients coming at the same time,
where all clients talk to each other through the bank who

1In our actual protocol, each party also provides a range of quantities it
wishes to trade, i.e., a minimum amount and a maximum amount. If there is
no match that satisfies at least its minimum quantity, then there is no trade.
To keep the introduction simple, we omit this additional complexity for now.
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Figure 2: Client-to-client topology. Client C1 and C2 send encrypted
orders order1 = (buy,X,axe1) and order2 = (sell,X,axe2), respec-
tively, to the Bank which computes the minimum of axe1 and axe2.

facilitates the trades when there are matches. This might in-
crease the potential number of matches for each client. We
implement such a mechanism based on our client-to-client
matching protocol, where we invoke it

(n
2

)
times, for each pos-

sible pair of clients, when n is the total number of participating
clients. Since the service of axe matching is relatively exclu-
sive, i.e., it is offered only to selected clients, n is relatively
small (around 10 per day), and thus this approach suffices for
the current needs.

At this point, we only implement this relatively degener-
ated form of multiparty matching. We provide security for
a semi-honest bank and malicious clients. In the multiparty
setting, there are further challenges that have to be explored,
such as what information is leaked by the functionality due to
partial matches (i.e., client A can fulfill its order, say, selling
1000 shares by matching with client B and C, each wishing to
buy 500 shares). Moreover, to achieve malicious security, the
protocol also has to guarantee that the bank does not discrimi-
nate against clients, e.g., when two clients are both interested
in buying some security, then it treats them fairly and does
not prefer to match the “big client" over the “small client." In
fact, it is impossible to support security against a malicious
bank in this case already because of the star network – the
clients communicate through the bank with no authentication
(see [8]). Therefore, achieving malicious security would re-
quire some different setups and further techniques. We leave
this for future research.

From a business perspective, the clients generally do trust
the bank, and the bank is also highly regulated and will not
risk its reputation by attempting to cheat. Therefore, semi-
honest bank generally suffices.

Secure minimum protocol. At the heart of our Prime Match
engine is a secure protocol for comparing two input values
axe1 and axe2, each in {0, . . . ,2n− 1} ⊂ Fq. The protocol,
given the bit-decompositions of axe1 and axe2, computes the
minimum between the two. We have a two-party variant (bank
to client) and a three-party variant when only two parties have
inputs (client-to-client) and the third party (the server) helps in
the computation. For the latter, an interesting property of our
protocol is that the two clients only perform linear operations,
and therefore can operate non-interactively on encrypted in-
puts (or secret-shared, or homomorphic commitments, etc.).
The server facilitates the computation. For ℓ-bit inputs, our
protocol runs in three rounds of interaction and with O(ℓ2)
communication where in the first round clients provide their

input, and in the last (third) round the output is revealed. The
protocls also offers malicious security.

Implementation and evaluation. All three scenarios were
implemented, and we report running times in Section 5. On
the bottom level, both bank-to-client and client-to-client proto-
cols can process roughly 10 symbols per second with security
against malicious clients under conventional machines with
commodity hardware. Our system is running live, in produc-
tion by J.P. Morgan. To the best of our knowledge, this is the
first MPC solution running live in the financial world. Com-
mercially, the main advantage of the system is the increased
opportunities for clients to find matches.

As clients do not wish to spend resources to use such a
service (installation of packages, maintenance cost, etc.), and
cannot commit to providing tech resources before testing
the product, Prime Match is implemented as a browser ser-
vice. This raises several challenges in the implementation, see
Section 5. Moreover, in the client-to-client matching a star
topology network is required where clients communicate only
with the bank. Clients do not wish to establish communication
with other clients and reveal their identities to other clients.

Our contributions. To conclude, our contributions are:

• We identify a real-world problem in which cryptogra-
phy significantly simplifies and improves the current
inventory matching procedure.

• We provide two new protocols: bank-to-client inventory
matching and client-to-client inventory matching. Those
completely replace the current method which leaks infor-
mation and misses potential matches. Our protocols are
novel and are specifically tailored to the problem at hand.
We do not just use generic, off-the-shelf, MPC protocols
(see Section 1.3 for a discussion).

• At the heart of our matching engine is a novel two-round
comparison protocol that minimizes interaction and re-
quires only linear operations.

• The protocols are implemented and run live, in produc-
tion, by a major bank in the US – J.P. Morgan.

1.2 Related Work

Prior works on volume (quantity) matching. We now com-
pare the prior privacy-preserving volume matching architec-
tures [5, 14, 18] to Prime Match. The MPC-based volume
matching constructions of [14, 18] derive their security by
separating the system’s service operator/provider into several
(e.g., 3) distinct servers, whose collusion would void the sys-
tem’s security guarantees. The clients submit their encrypted
orders to the servers by secret sharing, such that no single
server can recover the encrypted orders. The clients have no
control over these servers and no clear way to prevent them
from colluding.
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Allowing clients to themselves serve as contributing op-
erators of the system would present its own challenges. For
instance, it would impose a disproportionate computational
burden on those clients who choose to serve as operators.
Moreover, it is unclear how to incentivize clients to run heavy
computations, and to play the role of the operators.2

The fully homomorphic approach of [7] imposes a compu-
tational burden on a single server in a star topology network
in which clients communicate with the server. Moreover, the
concrete efficiency of the proposed GPU-FHE scheme is slow.
Furthermore, the scheme of [7] does not offer malicious se-
curity. FHE-based solutions for malicious security are much
less efficient than the ones based on MPC.

Prior works on privacy-preserving dark pools. A recent
line of research has attempted to protect the information con-
tained in dark pools [5, 15] run by an operator. The systems
described in these works allow users to submit orders in an
“encrypted” form; the markets’ operator then compares orders
“through the encryptions”, unveiling them only if matches
occur. The functionality of privacy-preserving dark pools is a
continuous double auction in which apart from the direction
(buy or sell) and a desired trading volume, a price (indicating
the “worst” price at which the participant would accept an
exchange) is submitted. The operator “matches” compatible
orders, which, by definition, have opposite directions, and for
which the price of the buy order (the “bid”) is at least the price
of the sell order (the “ask”). [14, 15] are based on MPC with
multiple operators and the work of [5] is based on FHE.

Dark pools are different than our setting, as matches are
also conditioned on an agreement on a price (requiring many
more comparisons) leading to more complex functionality. In
comparison, inventory matching is a simple double auction,
which is periodic, with a single fixed price per symbol. More-
over, dark pools support high-frequency trading, which means
that they have to process orders very fast. All prior works’ per-
formance on dark pools (including multi-server dark pools)
does not suffice for high-frequency trading. In comparison,
axe-list matching is a much slower process; with the current,
insecure procedure of axe-matching, a few minutes might
elapse between when the bank sends its axe list, and the time
the client submits its orders. Since ensuring privacy intro-
duces some overhead, clients might not necessarily prefer a
slower privacy-preserving dark pool over a fast ordinary dark
pool. Furthermore, secure comparison is a necessary building
block for dark pools. Any of the comparison protocols from
prior works, [16,19,28,29,32,34], including ours, can be used
for dark pools, but all of them have some overhead. Unfortu-
nately, neither of these works can lead to a fast dark pool (in
a star topology network) which is close to the running times
of a dark pool operating on plaintexts. Achieving fast enough

2Part of the success of the Prime Match system is related to the fact that
clients are offered a web service to participate in the system which requires
minimal tech support by the clients.

comparison that is suitable for high-frequency trading is an
interesting open problem.

The work of Massacci et al. [30] considers a distributed
Market Exchange for futures assets which has functionality
with multiple steps where one of the steps includes the dark
pool functionality. Their experiments show that their system
can handle up to 10 traders. Moreover, orders are not con-
cealed: in particular, an aggregated list of all waiting buy and
sell orders is revealed which is not the case in solution and the
dark pool solutions. Note that there are works that propose
dark pool constructions on the blockchain [6, 24, 31] which
is not the focus of our work. Moreover, these solutions have
different guarantees and security goals. None of the above
solutions is in production.

Prior works on secure 3-party Less Than comparison.
There are several works in the literature that propose se-
cure comparison protocols of two values in the information-
theoretic setting [2, 16, 19, 28, 29, 32, 34]. See Table 1 for a
detailed comparison of these works compared to ours. Our
protocol does not require preprocessing and runs in 2 rounds
of interaction. Our cost incurs an ℓ2 overhead since we secret
share ℓ bit numbers in a field of size ℓ. Similar overhead also
appears in prior works. The security parameter λ overhead is
required due to the use of coin flipping and the additional use
of commitments in the malicious protocol. The main reason
for the higher overhead of prior secret sharing-based protocols
in Table 1 is that they require interaction per secure multiplica-
tion leading to an increased round complexity (≈ logℓ). Our
protocol does not require any secure multiplications, which is
a significant benefit in upgrading our passive protocol to one
with malicious security.

The works of [20, 21, 23, 27], based on multiplica-
tive/additive homomorphic encryption, provide 2 (or constant)
round solutions but they only offer passive security. The com-
putational cost is capped at O(λ · ℓ) modular multiplications.
Moreover, some works require a trusted setup assumption
to generate the public parameters. For instance the modu-
lus generation of the homomorphic Paillier encryption-based
solutions.

The most recent work of [2], based on functional secret
sharing in the preprocessing model, is a three-round solution
offering only passive security with the cost of O(ℓ) PRG calls
in its online phase.

1.3 Why Specifically-Tailored Protocols?
A natural question is why we design a specifically tailored
protocol for the system, instead of just using any generic, off-
the-shelf secure computation protocols. Those solutions are
based on securely emulating arithmetic or Boolean circuits,
and require translating the problem at hand to such a cir-
cuit. Specifically, for our client-to-client matching algorithm,
which is a three-party secure protocol with one corruption, it
looks promising to use some generic MPC protocols that are
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Offline Online Offline Online
Protocol Communication Communication Computation Computation Rounds Security Corruption

[32] - O
(
(ℓ logℓ) · (ℓ+ s)

)
- O

(
(ℓ logℓ) · (ℓ+ s)

)
31 passive HM

[16] - O
(
ℓ · (ℓ+ s)

)
- O

(
ℓ · (ℓ+ s)

)
O(logℓ) passive HM

[34] - O(ℓ2 + logℓ) - O(ℓ2 + logℓ) O(logℓ) passive DM
This work - O(ℓ2 + logℓ) - O(ℓ2 + logℓ) 2 passive DM

[28] O(ℓ2) O(logℓ · (ℓ+ s)) O(ℓ2) O(logℓ · (ℓ+ s)) O(logℓ) active HM
[19] - O

(
(ℓ logℓ) · (ℓ+ s)

)
- O

(
(ℓ logℓ) · (ℓ+ s)

)
44 active HM

[29] O(ℓ) O
(
(ℓ logℓ) · (ℓ+ s)

)
O(ℓ) O(ℓ · (ℓ+ s)) O(logℓ) active DM

This work - O(ℓ · (ℓ+λ)) - O(ℓ · (ℓ+λ)) 2 active HM

Table 1: Cost of passive and active comparison protocols in terms of offline, and online communication and computation
complexity; in terms of rounds; in terms of security; and in terms of corruptions supported. HM stands for honest majority, while
DM stands for dishonest majority. ℓ denotes to the bit length of the input, s is the statistical security parameter and λ is the
computational security parameter. The work of [29] achieves statistical security over arithmetic fields but it achieves perfect
security over the arithmetic rings.

based on replicated secret sharing, such as [3, 17] or garbled
circuits [26, 35].

There are two main requirements from the system (from
a business perspective) that leads us to design a specifically-
tailored protocol and not a generic MPC: (1) The need for
a constant number of rounds; (2) Working with committed
inputs. Furthermore, no offline preprocessing is possible since
clients wish to participate only during the live matching phase.
We provide a comparison with generic MPC techniques in
the full version.

1.4 Overview of our Techniques
We focus in this overview on the task of client-to-client match-
ing (see Figure 2): A three-party computation between two
clients that communicate through the bank. We present our so-
lution while hiding only the clients’ quantities axe. However,
our detailed protocol additionally hides both the directions
and the symbols. We present our protocol in the semi-honest
setting and then explain how to achieve malicious corruption.

Semi-honest clients and server: The client provides secret
shares (and commitments) for all possible symbols and for
the two possible sides. If a client is not interested in buying
(resp. selling) a particular stock, it provides 0 as its input for
that symbol and size. It is assumed that the total number of
symbols is around 1000− 5000, and of course, the number
of sides is 2. Thus, each party has to provide roughly 2000−
10000 values. To see if there is a match between clients A and
B on a particular stock, we securely compute the minimum
between the values the parties provided with opposite sides
(i.e., A sells and B buys, or B sells and A buys).

Each one of the clients first secret shares its secret value
axe using an additive secret sharing scheme. The two clients
then exchange shares3. Then, they decide on the matching

3The communication model does not allow the two clients to talk directly,
and each client talks only to the server. However, using encryption and

quantity by computing two bits indicating whether the two
quantities are equal or which one of the two is minimal.

We design a novel algorithm for computing the minimum.
The algorithm consists of two phases. As depicted in Fig-
ure 3, the first phase works on the shares of the two secrets
(a,b), exchanged via the matching engine using symmetric
key encryption, while performing only linear operations on
them (min protocol). Looking ahead, each one of the two
clients would run this phase, without any interaction, on its
respective shares. The result would be shares of some secret
state (d0,d1) in which some additional non-linear processing
is needed after reconstruction to obtain the final result. How-
ever, the secret state can be simulated with just the result of
the computation – i.e., the two bits indicating whether the two
numbers are equal or which one is minimal. Therefore, at the
end of the first phase, the two clients can send the shares to the
server, who reconstructs the secret state and learns the result,
again using just local (this time, non-linear) computations.

Our minimum protocol min is described in Section 4.2, and
we overview our techniques and contributions in the relevant
section. Our semi-honest protocol is given in Section 4.3.

Malicious clients. We now discuss how to change the proto-
col to protect against malicious clients.

Zooming out from computing minimum, the auction works
in two phases: a “registration" stage, where clients submit
their orders, and the matching stage, where the clients and
the bank run the secure protocols to find matching orders. In
the malicious case, the parties submit commitments to the
quantities of their orders to the server. The list of participants
is not known in advance, only the clients who submitted a
commitment can participate in the current matching phase.
Moreover, the list of participants (at each run) is not public
and is only known to the server.

Of course, clients have to be consistent, and cannot use

authentication schemes, the two clients can establish a secure channel while
the server just delivers messages for them.
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different values in the matching phase and in the registra-
tion phase. In the matching phase, the clients secret shares
their inputs (additive secret sharing), and prove using a Zero-
Knowledge (ZK) proof that the shares define the committed
value provided in the registration phase.

More specifically, client C1 commits to a during registra-
tion, i.e., sends Com(a) to the server and commits to the
shares (a1,a2) of the minimum by sending Com(a1) and
Com(a2) to the server. It also proves in ZK the statement
that Com(a) = Com(a1)+Com(a2) given that the commit-
ment scheme is linearly homomorphic allowing to perform
additions on committed values.

On top of the basic semi-honest protocol (as depicted in
Figure 3) we also exchange the messages shown in Figure 4
where every party forwards a commitment to the other party
for the share that it does not hold. Client C1 receives a com-
mitment to b2 and client C2 receives a commitment to a1.

Next, recall that our minimum protocol requires only linear
work from the clients, and thus it allows to work on any
linearly-homomorphic cryptosystem, such as linear secret
sharing scheme, linearly homomorphic commitments, linearly
homomorphic encryption scheme, and so on. In the semi-
honest setting, we used this property to work only on the secret
shares. We run the linear algorithm three times in parallel, on
different inputs:

1. First, each client simply runs the algorithm on additive
shares, just as in the semi-honest solution. This is de-
picted in Figure 3. Running the algorithm on those shares
would result in shares of some secret state that will be
delivered to the server. The server reconstructs the state
and computes the result from this state.

2. Second, the parties run the algorithm on the commit-
ments of the other party’s share. This is depicted in
Figure 4. Since the commitment scheme is also linearly-
homomorphic, it enables Alice to compute a commit-
ment of what Bob is supposed to send to the server in
the first invocation, and vice versa.

3. Third, the parties also compute (again, using only linear
operations!) information that allows the server to learn
the openings of the other party’s commitment. This en-
ables the server to check that all values it received in the
first invocations are correct.

Malicious server. Our final system does not provide security
against a malicious server, unless the two clients can authenti-
cate themselves to each other, or can talk directly. We show
that if the client can communicate to each other, then we can
also support malicious server for the comparison protocol.

The server receives shares of some secret states, together
with commitments of the secret states. It then reconstructs
the secret state and checks for consistency. It then has to
perform some non-linear operations on the secret state to
learn the result. Applying generic ZK proofs for proving that

Secure Matching EngineC1 C2

a= a1+a2 b= b1+b2

a2 b1

b1 a2
b1 a2

d1 =min(a1,b1) d2 =min(a2,b2)
d = d1 +d2

Figure 3: Client-to-client matching protocol for computing the min-
imum between the quantities a from client C1 and b from client C2
in the semi-honest setting. As described in Footnote 3, the communi-
cation between the two clients through the server is encrypted, and
so the view of the server in this communication is just d1, d2.

Secure Matching EngineC1 C2

a= a1+a2 b= b1+b2

Com(a1) Com(b2)

Com(b2) Com(a1)

Com(d2) =min
(
Com(a2),Com(b2)

)
Com(d1) =min

(
Com(a1),Com(b1)

)
Com(d) = Com(d1)+Com(d2)

Figure 4: Client-to-client matching protocol for computing the
minimum in the presence of a malicious adversary. In addition to
values computed in Figure 3, the parties compute commitments of
the value that the other participant is supposed to send to the server.

the non-linear operation was done correctly would increase
the overhead of our solution. Luckily, the non-linear opera-
tion that the server performs is ZK-friendly, specifically, it is
enough to prove in ZK a one-out-of-many proof (i.e., given a
vector, proving that one of the elements in the vector is zero;
see Theorem 4.4). For this particular language, there exists
fast ZK solutions [25]. See Section 4.4 for a description and
details.

Organization. The paper is organized as follows. In Section 2
we provide the preliminaries, while some are deferred to the
appendices. In Section 3 we provide the main matching en-
gine functionality. In Section 4 we provide our protocol for
computing the minimum, including the semi-honest and the
malicious versions. In Section 5 we report the system perfor-
mance and in Appendix J we mention challenges pertaining
to the deployment of our system.

2 Preliminaries

Some preliminaries are deferred to Appendix A.

Notations. We use PPT as an acronym for probabilistic poly-
nomial time. We use λ to denote the security parameter, and
negl(λ) to denote a negligible function (a function that is
smaller than any polynomial for sufficiently large λ).

Commitment schemes. A commitment scheme is a pair
of probabilistic algorithms (Gen,Com); given public pa-
rameters params ← Gen(1λ) and a message m, com :=
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Com(params,m;r) returns a “commitment” to the message
m. To reveal m as an opening of com, the committer simply
sends m and r (this is sometimes called “decommitment”).
For notational convenience, we often omit params. A commit-
ment scheme is homomorphic if, for each params, its message,
randomness, and commitment spaces are abelian groups, and
the corresponding commitment function is a group homo-
morphism. We always write message and randomness spaces
additively and write commitment spaces multiplicatively. See
Section A for more details.

Zero-knowledge proofs. We use non-interactive zero-
knowledge for three languages. See formal treatment in Ap-
pendix A.1:

• Commitment equality proof: Denoted as the relation
RComEq, the prover convinces the verifier that the two
given commitments c0,c1 hide the same value.

• Bit proof: Denoted as the relation RBitProof , allows the
prover to prove that a commitment c hides a bit, i.e., a
value in {0,1}.

• Out-of-many proofs. Denoted as the relation ROneMany,
allows a prover to prove that one of the commitments
V0, . . . ,Vn in the statement is a commitment of 0.

3 The Prime Match Main Functionalities

We now describe our Prime Match inventory matching func-
tionalities. We describe the bank-to-client functionality (Sec-
tion 3.1), the client-to-client functionality (Section 3.2), and
the multi-client system (Section 3.3).

3.1 Bank to Client Matching

This variant is a two-party computation between a bank and
a client. The bank tries to find matching orders between its
own inventory and each client separately. As mentioned in
the introduction, this essentially comes to replace the current
procedure of axe-matching as being conducted today, with
a privacy-preserving mechanism. Today the bank sends its
inventory list to the client who then submits orders to the bank.
Note, however, that if the bank runs twice with two different
clients, and the bank does not hold some security X, and two
clients are interested in X with opposite directions, then such
a potential match will not be found.
The functionality proceeds as follows. The client sends to the
bank its axe list. This includes the list of securities it is inter-
ested in, and for each security whether it is interested in long
(buy) or short (sell) exposures, and the quantity. The client
sends its own list. The functionality finds whether the bank
and the client are interested in the same securities with oppo-
site sides, and in that case, it provides as output the matching
orders and the quantity is the minimum between the two
amounts.

FUNCTIONALITY 3.1 (FB2C–Bank-to-client func-
tionality).
The functionality is parameterized by the set of all pos-
sible securities to trade, a set U .
Input: The bank P∗ inputs lists of orders
(symb∗i ,side

∗
i ,amount∗i ) where symbi ⊆ U is the

security, side∗i ∈ {buy,sell} and amount∗i is an
integer. The client sends its list of the same format,
(symbC

i ,side
C
i ,amountCi ).

Output: Initialize a list of Matches. For each i, j
such that symb∗i = symbC

j and side∗i ̸= sideC
j , add

(symb∗i ,side
∗
i ,side

C
j ,min{amount∗i ,amountCj }) to M.

Output M to both parties.

From a business perspective, it is important to note that the
input of the client (and the bank) serves as a “commitment" -
if a match is found then it is executed right away.

The functionality resembles a set intersection. In set inter-
section, if some element is in the input set of some party but
not in its output, it can conclude that it does not contain in the
other set. Here, if a party does not find a particular symbol
in its output although it did provide it as an input, then it is
still uncertain whether the other party is not interested in that
security, or whether it is interested but with the same side. We
show how to implement the functionality in the presence of a
malicious client or a semi-honest server in Appendix E.

Bank to multiple clients. In the actual system, the bank has
to serve multiple clients. This is implemented by a simple
(sequential) composition of the functionality. Specifically,
the functionality is now reactive where clients first register
that they are interested to participate. The bank then runs
Functionality 3.1 with the clients – either according to the
basis of first-come-first-served, or some random ordering. We
omit the details and exact formalism as they are quite natural
given a semi-honest bank.

Range functionalities. In Appendix G, we show a variant of
the protocol where each party inputs a range in which it is
interested and not just one single value. I.e., if a matched order
does not satisfy some minimal value, it will not be executed.
Since the minimum value does not change throughout the
execution, whenever the bank receives 0 as a result of the
execution it cannot decide whether the client is not interested
in that particular symbol, or whether it is interested – but the
matched amount does not satisfy the minimum threshold.

3.2 Client to Client Matching
In this variant, the bank has no input and it tries to find po-
tential matches between clients facilitating two clients that
wish to compare their inventories. This is a three-party com-
putation where the bank just facilitates the interaction. It is
important to notice that the clients do not know each other,
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and do not know who they are being paired with. The bank
selects the two clients and offers them to be paired.

FUNCTIONALITY 3.2 (FC2C–Client-to-client func-
tionality).
The functionality is parameterized by the set of all pos-
sible securities to trade, a set U . This is a three-party
functionality between two clients, P1 and P2, and the
bank P∗.
Input: The client P1 inputs a list of orders
(symb1

i ,side
1
i ,amount1

i ). The client P2 inputs a list of
orders (symb2

i ,side
2
i ,amount2

i ), and the bank has no in-
put.
Output: Initialize a list of Matches. For each
i, j such that symb1

i = symb2
j and side1

i ̸= side2
j ,

add (symb1
i ,side

1
i ,side

2
j ,min{amount1

i ,amount2
j}) to

M. Output M to all three parties.

In the next section, we show how to implement this functional-
ity in the presence of a malicious client or a malicious server,
assuming that the two clients can communicate directly, or
have a public-key infrastructure. When the two clients can
communicate only through the server and there is no public-
key infrastructure (PKI) or any other setup, there is no au-
thentication and the server can impersonate the other client.
We therefore cannot hope to achieve malicious security. We
achieve security in the presence of a semi-honest server. See
a discussion in the next subsection.

3.3 The Multi-Client System
We now proceed to the multiparty auction. Here we have
parties that register with their intended lists, and the bank
facilitates the orders by pairing the clients according to some
random order. The functionality is now reactive; The parties
first register, in which they announce that they are willing to
participate in the next auction, and they also commit to their
orders. In the second phase, the bank selects pairs of clients in
a random order to perform client-to-client matching. Looking
ahead, typically there are around 10 clients that participate in
a given auction.

For simplicity of exposition and to ease readability, we
write the functionality as the universe is just a single symbol.
Moreover, instead of sending the side explicitly, the client
sends two integers L and S, representing its interest in long
(buy) or short (sell) exposure, respectively. Rationally, each
party would put one of the integers as 0 (as otherwise, it would
just pay extra fees to the bank). Generalizing the functionality
to deal with many symbols is performed in a natural manner,
where the number of total symbols is 1000-5000 in practice.
The main functionality can process all the different symbols
in parallel.

FUNCTIONALITY 3.3 (FMC – Multi-client matching).
This is an n+ 1 party functionality between n clients
P1, . . . ,Pn and a bank P∗.

Upon initialization, FMC initializes a list P = /0 and
two vectors L and S of size n, where n bounds the total
number of possible clients.

FMC.Register(Pi,Li,Si). Store L [i] = Li and S [i] = Si
and add i to P . Send to the bank P∗ the message
registered(Pi).
FMC.Process().

1. Choose a random ordering O over all pairs of P .
2. For the next pair (i, j) ∈ O try to match between Pi

and Pj (we can assume wlog that always i≤ j):

(a) Compute M0 =min(L [i],S [ j]), b0
0 = (L [i] ≤

S [ j]), b0
1 = (S [i]≤ L [ j]).

(b) Compute M1 = min(S [i],L [ j]), b1
0 = (S [i] ≤

L [ j]) and b1
1 = (S [i]≤ L [ j]).

(c) Send (i, j,M0,M1,b0
i ,b

1
i ) to Pi, and

(i, j,M0,M1) with (b0
0,b

0
1,b

1
0,b

1
1) to P∗.

(d) Update L [i] =L [i]−M0 and S [ j] = S [ j]−M0.

(e) Update S [i] = S [i]−M1 and L [ j] =L [ j]−M1.

On malicious server. Our final protocol (see Appendix F)
for FMC is secure in the presence of a semi-honest P∗ (and a
malicious client). Inherently, clients communicate through a
star network where the bank facilitates the communication.
Moreover, we assume no PKI, clients do not know how many
clients are registered in the system, and how many clients
are participating in the current auction. This can be viewed
as “secure computation without authentication", in which
case the server can always “split" the communication and
disconnect several parties from others (see [8] for a formal
treatment).

We prove security in the presence of a semi-honest server.
In fact, our protocol achieves a stronger notion of a guarantee
than just semi-honest, as in particular, it runs the underlying
comparison protocol (a single invocation of a client-to-client
matching) which is secure against a malicious server.

Another relaxation that we make is that the ordering of
pairs is random, and we do not have a mechanism to enforce it.
Note also that the functionality leaks some information to the
server; in particular, after finding a match, the bank executes
it immediately. The bank can infer information about whether
two values equal to 0, and therefore whether a client is not
interested in a particular symbol. In contrast, each client just
learns whether its value is smaller or equal to the value of the
other party, and therefore when it inputs 0 it can never infer
whether the other party is interested in that symbol or not.
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4 Securely Computing Minimum

A pivotal building block in Prime Match is a secure minimum
protocol. In Section 4.1, we review our functionality for com-
puting the minimum. We focus on the case of client-to-client
matching with an aiding server. We show how to convert the
protocol for two parties in Appendix E.

In Section 4.2 we present the underlying idea for computing
the minimum. The algorithm computes the minimum while
using only linear operations (looking ahead, those would be
computed on shared values) while pushing the non-linear
operations on reconstructed data. In Sections 4.3 and 4.4 we
show a semi-honest and a malicious protocol for computing
the minimum, respectively.

4.1 The Minimum Functionality
After receiving a secret integer from each one of the two
parties, the functionality compares them and gives as a result
two bits – which indicate which one of the two inputs is
smaller than the other, or whether they are equal. It also gives
the result to the server.

FUNCTIONALITY 4.1 (Fcomp: Server-aided secure
minimum functionality).
Consider two players, P0 and P1, and a server P∗.
• Input: P0 and P1 respectively send integers v0 and v1

in {0, . . . ,2n−1} to Fcomp.
• Output: Fcomp sends b0 := (v0 ≤ v1) to P0, b1 :=
(v1 ≤ v0) to P1, (b0,b1) to P∗.

In the rest of this section, we will show how to imple-
ment this functionality in the presence of a semi-honest (Sec-
tion 4.3) and malicious adversary (Section 4.4).4

4.2 Affine-Linear Comparison Function
We first describe an abstract algorithm which compares two
elements v0 and v1 of {0, . . . ,2n− 1} ⊂ Fq, given their bit-
decompositions. We separate the algorithm into two parts:
ComparisonInitial (Algorithm 1) and ComparisonFinal (Algo-
rithm 2). Both parts do not use any underlying cryptographic
primitives.

In the first algorithm (ComparisonInitial), all operations on
the bit-decompositions of the two inputs v0 and v1 are linear.
Looking ahead, this will be extremely useful when convert-
ing the algorithm into a secure two-party protocol, where v0
and v1 are additively shared between the two parties (or also
just committed, encrypted under additively homomorphic en-
cryption scheme, etc.). In particular, this part of the protocol
can be executed without any interaction, just as the algorithm

4For ease of presentation, Functionality 4.1 is for the semi-honest version
of the protocol; For the malicious case, we will use a slightly different
functionality on committed inputs; See Appendix D.

itself when v0 and v1 are given in the clear. The second al-
gorithm (ComparisonFinal) can be computed by a different
party, given all information in the clear. Looking ahead, this
will be executed by the server P∗ on the outputs of the first
part. This part contains some non-linear operations, however,
this part of the algorithm does not have to be translated into a
secure protocol.

Overview Algorithm 1 (ComparisonInitial). Our approach is
inspired by the algorithm of Wagh, Gupta, and Chandran [34,
Alg. 3], which compares a secret-shared integer with a public
integer. (Specifically, its inputs consist of an array of public
bits and an array of secret-shared bits.) We extend the algo-
rithm and allow the comparison of two private integers using
only linear operations.

We achieve this Fq-linearity in the following way. We
fix integers v0 and v1 in {0, . . . ,2n−1}, with big-endian bit-
decompositions given respectively by

v0 =
n−1

∑
j=0

2n−1− j · v0, j, and v1 =
n−1

∑
j=0

2n−1− j · v1, j .

We follow the paradigm of [34], whereby, for each j ∈
{0, . . . ,n−1}, a quantity w j is computed which equals 0 if and
only if v0, j = v1, j. Meanwhile, for each j ∈ {0, . . . ,n−1}, we
set c j := 1+v0, j−v1, j +∑k< j wk (we also set cn := ∑

n−1
k=0 wk,

as we discuss below). The crucial observation of [34] is that,
for each j ∈ {0, . . . ,n−1}, c j = 0 so long as v0, j < v1, j as bits
(that is, if 1+ v0, j− v1, j = 0) and the higher bits of v0 and v1
agree (inducing the equality ∑k< j wk = 0). By consequence,
some c j, for j ∈ {0, . . . ,n−1}, must equal 0 whenever v0 < v1.
Similarly, cn = 0 whenever v0 = v1. In summary, v0 ≤ v1 im-
plies that some c j = 0, for j ∈ {0, . . . ,n}.

The main challenge presented by this technique is to ensure
that the opposite implication holds; that is, we must prevent
the sum c j := 1+v0, j−v1, j +∑k< j wk from equalling 0 (pos-
sibly by overflowing) modulo q—that is, even when wk ̸= 0
for some k < j—and hence yielding a “false positive” c j = 0,
which would falsely assert the inequality v0 ≤ v1. [34] pre-
vents this phenomenon by ensuring that each w j ∈ {0,1},
and choosing 2 + n < q (they set n = 64 and q = 67). In
fact, [34] defines w j := (v0, j− v1, j)

2. Under this paradigm,
c j := 1+v0, j−v1, j +∑k< j wk is necessarily non-zero so long
as either v0, j ≥ vi, j as bits (so that 1+ v0, j− v1, j > 0) or any
wk ̸= 0, for k < j.

This squaring operation is nonlinear in the bits v0, j and v1, j,
and so it is unsuitable for our setting. We adopt the following
recourse instead, which yields Fq-linearity at the cost of re-
quiring that the number of bits n∈O(logq) (a mild restriction
in practice). The key technique is that we may eliminate the
squaring—thereby allowing each w j to remain in {−1,0,1}—
provided that we multiply each w j by a suitable public scalar.
In fact, it suffices to multiply each (unsquared) difference w j
by 22+ j. In Theorem 4.4 below, we argue that this approach
is correct.
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Our modifications to [34] also include our computation of
the non-strict inequality v0 ≤ v1—effected by the extra value
cn—as well as our computation of the opposite non-strict in-
equality, v1 ≤ v0, in parallel. The latter computation proceeds
identically, except uses−1+v0, j−v1, j ∈ {−2,−1,0} at each
bit.

Algorithm 1 ComparisonInitial((v0,0, . . . ,v0,n−1) ,
(v1,0, . . . ,v1,n−1))

1: Assign waccum := 0
2: for j ∈ {0, . . . ,n−1} do
3: Set c0, j := 1+ v0, j− v1, j +waccum.
4: Set c1, j :=−1+ v0, j− v1, j +waccum

5: Set w j := (v0, j− v1, j) and wacum += 22+ j ·w j

6: Set c0,n and c1,n equal to waccum

7: Sample a random permutation π← Sn+1
8: for j ∈ {0, . . . ,n} do
9: Sample random scalars s0, j, s1, j from Fq \{0}.

10: Assign d0, j := s0, j · c0,π( j),
11: Assign d1, j := s1, j · c1,π( j)

12: return (d0,0, . . . ,d0,n) and (d1,0, . . . ,d1,n)

Of course, the intermediate value v0, j− v1, j need only be
computed once per iteration of the first loop.

Overview of Algorithm 2 (ComparisonFinal). Note that in
Algorithm 1, wacum = 0 as long as v0, j = v1, j, and it attains a
non-zero value at the first j for which v0, j ̸= v1, j. Up to that
point, (c0, j,c1, j) = (1,−1). At the first j for which v0, j ̸= v1, j:

• If v0 > v1 (i.e., (v0, j,v1, j) = (1,0)), then we get that
(c0, j,c1, j) = (2,0).

• If v0 < v1 (i.e., (v0, j,v1, j) = (0,1)), then we get that
(c0, j,c1, j) = (0,−2).

The algorithm then makes sure that no other value
of cb, j′ = 0, essentially by assigning wacum to be non-
zero. If v0 = v1 then c0,n = c1,n = 0. Finally, all the
bits (c0,0, . . . ,c0,n),(c1,0, . . . ,c1,n) are permuted and re-
randomized with some random scalars. Observe that if v0 > v1
then all the values d0,0, . . . ,d0,n are all non-zero, and one of
d1,0, . . . ,d1,n is zero. If v1 ≥ v0 then exactly one of the values
d1,0, . . . ,d1,n is 0 and all d0,0, . . . ,d0,n are non-zero.

It is crucial that the vectors (d0,0, . . . ,d0,n) and
(d1,0, . . . ,d1,n) do not contain any information on v0,v1 rather
then whether v0 ≤ v1 or v1 ≤ v0. Specifically, these values
can easily be simulated given just the two bits v0 ≤ v1 and
v1 ≤ v0. Therefore, it is safe to give both vectors to a third
party, which will perform the non-linear part of the algorithm.
For a vector of bits (x0, . . . ,xn) ∈ {0,1}n+1, the operation
anyn

j=0x j returns 1 iff there exists j ∈ [0, . . . ,n] such that
x j = 1. Algorithm 2 simply looks for the 0 coordinate in the
two vectors. We have:

Algorithm 2 ComparisonFinal((d0,0, . . . ,d0,n) ,
(d1,0, . . . ,d1,n))

1: Assign b0 := anyn
j=0 (d0, j = 0)

2: Assign b1 := anyn
j=0 (d1, j = 0)

3: return b0 and b1

In the below theorem, we again consider bit-decomposed
integers v0 = ∑

n−1
j=0 2n−1− j · v0, j and v1 = ∑

n−1
j=0 2n−1− j · v1, j;

we view the bits vi, j as elements of {0,1}⊂Fq. The following
theorem is proven in Appendix B:

Theorem 4.4. Suppose n is such that 2+ 4 · (2n− 1) < q.
Then for every v0,v1 ∈ Fq

(v0 ≤ v1,v1 ≤ v0) =

ComparisonFinal(ComparisonInitial(v⃗0, v⃗1)) ,

where v⃗0, v⃗1 are the bit-decomposition of v0,v1, respectively.
Moreover, for every i ∈ {0,1}:

• If vi ≤ v1−i then there exists exactly one j ∈ {0, . . . ,n}
such that di, j = 0. Moreover, j is distributed uniformly in
{0, . . . ,n}, and each di,k for k ̸= j is distributed uniformly
in Fq \{0}.

• If v0 > v1−i then the vector (di,0,, . . . ,di,n) is distributed
uniformly in Fn+1

q \{0}n+1.

We emphasize that Algorithm 1 uses only Fq-linear opera-
tions throughout. A number of our below protocols conduct
Algorithm 1 “homomorphically”; that is, they execute the
algorithm on elements of an Fq-module M which is unequal
to Fq itself. As a basic example, Algorithm 1 may be executed
on bits (v0, j)

n−1
j=0 and (v1, j)

n−1
j=0 which are committed, provided

that the commitment scheme is homomorphic (its message,
randomness and commitment spaces should be Fq-modules,
and its commitment function an Fq-module homomorphism).
Furthermore, Algorithm 1 may be conducted on additive Fq-
shares of the bits (v0, j)

n−1
j=0 and (v1, j)

n−1
j=0 .

In this latter setting, sense must be given to the affine addi-
tive constants ±1. As in [34], we specify that these be shared
in the obvious way; that is, we stipulate that P0 and P1 use the
shares 0 and ±1, respectively.

4.3 The Semi-Honest Protocol
For simplicity, we first describe a protocol that securely com-
putes this functionality in the setting of three-party computa-
tion with an honest majority and a semi-honest adversary. We
give a maliciously secure version in Protocol 4.3 and prove
its security in Section C of the Appendix.

Theorem 4.5. If ΠCT is a secure coin-tossing protocol, G is a
pseudorandom generator, and the two clients communicate us-
ing symmetric authenticated encryption with pseudorandom
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PROTOCOL 4.2 (Semi-honest secure comparison protocol).

• Input: P0 and P1 hold integers v0 and v1, respectively, in {0, . . . ,2n−1}. P∗ has no input.
• The protocol:

1. P0 and P1 engage in the coin-tossing procedure ΠCT (see Sect. A) to obtain a λ-bit shared secret s.
2. Each party Pi (for i ∈ {0,1}) computes the bit decomposition vi = ∑

n−1
j=0 2n−1− j · vi, j, for bits vi, j ∈ {0,1}.

3. For each j ∈ {0, . . . ,n−1}, Pi computes a random additive secret-sharing vi, j = ⟨vi, j⟩q0 + ⟨vi, j⟩q1 in Fq. Pi sends the
shares

(
⟨vi, j⟩q1−i

)n−1
j=0 to P1−i.

4. After receiving the shares
(
⟨v1−i, j⟩qi

)n−1
j=0 , from Pi−1, Pi executes Algorithm 1 on the appropriate shares; that is, it

evaluates ((
⟨d0, j⟩qi

)n
j=0 ,

(
⟨d1, j⟩qi

)n
j=0

)
← ComparisonInitial

((
⟨v0, j⟩qi

)n−1
j=0 ,

(
⟨v1, j⟩qi

)n−1
j=0

)
,

where all internal random coins are obtained from G(s).
5. Pi sends the output shares

(
⟨d0, j⟩qi

)n
j=0 ,

(
⟨d1, j⟩qi

)n
j=0 to P∗.

6. After receiving all shares, P∗ reconstructs for every j ∈ {0, . . . ,n}:

d0, j := ⟨d0, j⟩q0 + ⟨d0, j⟩q1 and d1, j := ⟨d1, j⟩q0 + ⟨d1, j⟩q1 ,

and finally executes Algorithm 2 to receive (b0,b1) := ComparisonFinal
(
(d0, j)

n
j=0 ,(d1, j)

n
j=0

)
.

7. P∗ sends bi to Pi.
• Output: Each Pi outputs bi. P∗ outputs (b0,b1).

ciphertexts, then Protocol 4.2 securely computes Functional-
ity 4.1 in the presence of a semi-honest adversary corrupting
at most one party. Each party sends or receives O(n2 + λ)
bits, where n is the length of the input and λ is the security
parameter.

4.4 The Maliciously Secure Protocol

We now give our malicious protocol for Functionality 4.1 in
Protocol 4.3. To ease notation, we denote N = {0, . . . ,n−1}.
We already gave an overview of the protocol as part of the in-
troduction. The parties commit to the inputs, share their inputs,
commit to the shares, and prove that all of those are consistent.
Then, each party can operate on the shares it received (as in
the semi-honest protocol), but also on the commitment that
it holds on the other parties’ share. When P∗ receives the
shares of d from party Pi, it also receives a commitment of
what P1−i is supposed to send. The server can therefore check
for consistency, and that no party cheated. Moreover, each
party Pi can also compute commitments of the two vectors
d⃗0, d⃗1. When the server comes to prove Pi that vi ≤ v1−i, it
has to show that there is a 0 coordinate in its vector d⃗i. This
is possible using one-out-of-many proof. See Appendix D
for the full security proof. We note that the functionality is
slightly different than that of Functionality 4.1.

4.5 Bank-to-Client

We show in Appendix E a two-party (Bank-to-Client) version
of the protocol, where the bank does not just facilitate the
computation but also provides input. In a nutshell, the parties
use linear homomorphic encryption – ElGamal encryption –
instead of secret sharing.

5 Prime Match System Performance

We report benchmarks of Prime Match in two different en-
vironments, a Proof of Concept (POC) environment, and the
production environment after refactoring the code to meet
the requirements of the bank’s systems. The former bench-
marks can be used to value the performance of the comparison
protocol for other applications in different systems.

Secure Minimum Protocol Performance: For the purposes
of practical convenience, adoption, and portability, our client
module is entirely browser-based, written in JavaScript. Its
cryptographically intensive components are written in the C
language with side-channel resistance, compiled using Em-
scripten into WebAssembly (which also runs natively in the
browser). Our server is written in Python, and also executes
its cryptographically intensive code in C. Both components
are multi-threaded—using WebWorkers on the client side and
a thread pool on the server’s—and can execute arbitrarily
many concurrent instances of the protocol in parallel (i.e.,
constrained only by hardware). All players communicate by
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PROTOCOL 4.3 (Maliciously secure comparison protocol Πcomp).
Input: P0 and P1 hold integers v0 and v1, respectively, in {0, . . . ,2n−1}. P∗ has no input.
Setup phase: A coin-tossing protocol ΠCT, and a commitment scheme (Gen,Com), are chosen (see Sect. 2,A).
The protocol:

1. Commit Vi← Com(vi;ri), and send Vi to P∗. P∗ delivers Vi to P1−i.
2. Engage with P1−i in the coin-tossing procedure ΠCT, and obtain a λ-bit shared s.
3. Compute the bit decomposition vi = ∑ j∈N 2n−1− j · vi, j, for bits vi, j ∈ {0,1}.
4. For each j ∈ N:

(a) Compute a random additive secret-sharing vi, j = ⟨vi, j⟩q0 + ⟨vi, j⟩q1 in Fq.
(b) Commit Vi, j,k← Com(⟨vi, j⟩qk ; ri, j,k) for each k ∈ {0,1}.
(c) Open Vi, j,1−i by sending ⟨vi, j⟩q1−i and ri, j,1−i to P1−i.

5. Send the full array
(
Vi, j,k

)n−1,1
j,k=0 to P1−i.

6. Compute: πi← ComEq.Prove
(

Vi,∏
n−1
j=0 (Vi, j,0 ·Vi, j,1)

2n−1− j
)
, πi, j← BitProof.Prove(Vi, j,0 ·Vi, j,1), for all j ∈ N,

Pi sends πi, and (πi, j)
n−1
j=0 to P1−i.

7. Pi receives π1−i, and (π1−i, j)
n−1
j=0 and verifies the following:

(a) The openings ⟨v1−i, j⟩qi and r1−i, j,i indeed open V1−i, j,i, for j ∈ N,

(b) ComEq.Verify
(

π1−i,V1−i,∏
n−1
j=0 (V1−i, j,0 ·V1−i, j,1)

2n−1− j
)

,

(c) BitProof.Verify (π1−i, j,V1−i, j,0 ·V1−i, j,1) for each j ∈ N.
If any of these checks fail, Pi aborts.

8. Pi runs Algorithm 1, in parallel, on the shares ⟨vk, j⟩qi , the randomnesses rk, j,i, and the commitments to the other party’s
shares Vk, j,1−i (all for j ∈ N and k ∈ {0,1}). That is, Pi runs:((

⟨d0, j⟩qi
)n

j=0 ,
(
⟨d1, j⟩qi

)n
j=0

)
← ComparisonInitial

((
⟨v0, j⟩qi

)n−1
j=0 ,

(
⟨v1, j⟩qi

)n−1
j=0

)
,(

(s0, j,i)
n
j=0 ,(s1, j,i)

n
j=0

)
← ComparisonInitial

(
(r0, j,i)

n−1
j=0 ,(r1, j,i)

n−1
j=0

)
,(

(D0, j,1−i)
n
j=0 ,(D1, j,1−i)

n
j=0

)
← ComparisonInitial

(
(V0, j,1−i)

n−1
j=0 ,(V1, j,1−i)

n−1
j=0

)
,

using the same shared randomness s for all internal coin flips.
9. Pi sends

(
⟨d0, j⟩qi

)n
j=0 ,

(
⟨d1, j⟩qi

)n
j=0 and the randomnesses (s0, j,i)

n
j=0 ,(s1, j,i)

n
j=0 to P∗.

Party P∗ (Output reconstruction): After receiving all shares, P∗ proceeds as follows:

1. Reconstruct for each j ∈ N:

d0, j := ⟨d0, j⟩q0 + ⟨d0, j⟩q1 , s0, j := s0, j,0 + s0, j,1

d1, j := ⟨d1, j⟩q0 + ⟨d1, j⟩q1 , s1, j := s1, j,0 + s1, j,1

2. Finally, P∗ executes Algorithm 2, that is: (b0,b1) := ComparisonFinal
(
(d0, j)

n
j=0 ,(d1, j)

n
j=0

)
3. For each i ∈ {0,1}, if bi is true, then P∗ re-commits Di, j := Com(di, j;si, j) for each j ∈ N, computes π′i ←

OneMany.Prove
(
(Di, j)

n
j=0

)
, and finally sends π′i to Pi. Otherwise, P∗ sends ⊥ to Pi. P∗ outputs both b0 and b1.

Each Party Pi (output reconstruction):

1. If receives a proof π′i, compute Di, j := Com(⟨di, j⟩qi ;si, j,i) · Di, j,1−i, for each j ∈ N, and then verifies

OneMany.Verify
(

π′i,(Di, j)
n
j=0

)
. If verification passes then output true, otherwise, output false.
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Throughput Matching Matching
Number of (transactions/ received msg sent msg
Symbols Latency (sec) sec) Size (MB) Size (MB)

Bank-to-client

100 9.903 (±0.174 ) 10.09 0.215 0.521
200 19.533 (±0.530 ) 10.23 0.430 1.040
500 46.223(±0.787 ) 10.81 1.076 2.597

1000 95.396 (±2.063 ) 10.48 2.152 5.194
2000 183.186 (±2.512 ) 10.91 4.304 10.382
4000 356.740 (±2.149 ) 11.21 8.608 20.762
10000 941.813 (±18.465 ) 10.61 21.520 51.902

Client-to-client

100 11.15 (±0.060 ) 8.96 0.972 1.549
200 20.636 (±0.525 ) 9.69 1.945 3.096
500 51.493(±2.343 ) 9.71 4.863 7.737

1000 101.051 (±2.587 ) 9.89 9.727 15.472
2000 208.813 (±1.479 ) 9.57 19.454 30.942
4000 390.510 (±3.020 ) 10.24 38.908 61.882
10000 1064.443 (±70.439 ) 9.39 97.270 154.702

Table 2: Performance of Bank-to-Client matching for two clients, and Client-to-Client matching.

sending binary data on WebSockets (all commitments, proofs,
and messages are serialized).

We run our experiments on commodity hardware through-
out since our implementation is targeted to a real-world appli-
cation where clients hold conventional computers. In particu-
lar, one of the two clients runs on an Intel Core i7 processor,
with 6 cores, each 2.6GHz, and another one runs on an Intel
Core i5, with 4 cores, each 2.00 GHz. Both of them are Win-
dows machines. Our server runs in a Linux AWS instance of
type c5a.8xlarge, with 32 vCPUs. In the first scenario, we run
the client-to-bank inventory matching protocol for two clients
where we process each client one by one against the bank’s
inventory. In Table 2 we report the performance for a different
number of registered orders per client (100,200, . . . ,10000).
Latency refers to the total time it takes to process all the orders
from both clients (in seconds). Throughput measures the num-
ber of transactions per second. The number of orders/symbols
processed per second is approximately 10. We also report the
message size (in MB) for the message sent from each client
to the server during the registration phase and the matching
phase. We further record the size of the messages received
from the server to each client. The bandwidth is 300 Mbps.

In the second scenario, we run the client-to-client inven-
tory matching protocol (the comparison protocol) for two
clients where we try to match the orders of the two clients
via the bank. In this case we assume that the bank has no
inventory. We report the performance in Table 2. The number
of orders/symbols processed per second is approximately 10
in this case too.

Prime Match Performance in Production: Figure 6 shows a
sketch of both the bank’s network tiering and the application
architecture of Prime Match. The right side of the diagram
shows that the clients are able to access the Prime Match UI
through the bank’s Markets portal with the correct entitlement.

The application UI for Prime Match is hosted on the bank’s

internal cloud platform. After each client is getting authenti-
cated by the bank’s Markets portal, it can access the applica-
tion on the browser which establishes web socket connections
to the server. The server is hosted on the bank’s trade man-
agement platform.

The bank’s network tiering exists to designate the net-
work topology in and between approved security gateways
(firewalls). The network traffic from the client application is
handled by tier 1 which helps the bank’s Internet customers
achieve low latency, secured, and accelerated content access
to internally hosted applications. Then, the traffic will be sub-
sequently forwarded to a web socket tunnel in tier 2 and gets
further directed to the server in tier 3.

During the axe registration phase, the client logins to Prime
Match from his/her web browser and uploads a file of or-
ders (symbol, directions, quantity) which are encrypted on the
browser based on our MPC protocol. The client is uploading
a minimum (threshold) and a maximum (full) quantity per
symbol. Prime Match first processes the encrypted threshold
quantities of all clients and then it processes the full quan-
tities. This process implements the range functionality of
Appendix G. Note that for the partial matches, the full quan-
tity is never revealed to the server. Moreover, if there is no
match no quantity is revealed to the server. Figure 7 shows a
complete run of an auction after the matching phase where
the final matched quantities of some test symbols/securities
with the corresponding fixed spread are decided.

Our protocol runs in production every 30 minutes. There
are two match runs each hour and matching starts at xx:10
and xx:40. Axe registration starts 8 minutes before matching
(xx:02 and xx:32). The matching process finishes at various
times (as shown in the experiments section) based on the
number of symbols. Based on the application requirements
(up to 5000 symbols in the US and 10-60 clients) it does not
finish after xx:55.
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For running the code in production in the bank’s environ-
ment, the two clients run on the same type of Windows ma-
chines whose specs are Intel XEON CPU E3-1585L, with 4
cores, each 3.00 GHz. The server runs on the bank’s trade man-
agement platform with 32 vCPUs. In Table 3 of the Appendix,
we report the performance. Moreover, we discuss challenges
we faced during the implementation in Appendix J.

6 Conclusion

Inventory matching is a fundamental service in the traditional
financial world. In this work, we introduce secure multiparty
computation in financial services by presenting a solution for
matching orders in a stock exchange while maintaining the
privacy of the orders. Information is revealed only if there is
a match. Our central tool is a new protocol for secure com-
parison with linear operations in the presence of a malicious
adversary, which can be of independent interest. Our system
is running live, in production, and is adopted by a large bank
in the US – J.P. Morgan.
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A Deferred Preliminaries

Notations. A distribution ensemble X = {X(a,λ)}a∈D,λ∈N is
an infinite sequence of random variables indexed by a ∈D
and λ ∈ N. We let x← X(a,λ) denote sampling an element x
according to the distribution X(a,λ). Two distribution ensem-
bles X = {X(a,λ)}a∈D,λ∈N and Y = {Y (a,λ)}a∈D,λ∈N are
computationally-indistinguishable, denoted X ≈comp Y , if for
every non-uniform PPT algorithm D there exists a negligible
function negl(·) such that for every λ and a ∈D:

Pr [D(X(a,λ)) = 1]−Pr [D(Y (a,λ)) = 1]≤ negl(λ) .

We let G denote a group-generation algorithm, which on
input 1λ outputs a cyclic group G, its prime order q (with
bit-length λ) and a generator g ∈ G. We recall the discrete-
logarithm assumption, in which given a cyclic group (G,q,g)
and a random h ∈G , any probabilistic polynomial time adver-
sary finds x such that gx = h with at most negligible probabil-
ity in λ. The Decisional Diffie-Hellman assumption states that
any probabilistic polynomial time adversary distinguishes be-
tween (G,q,g,gx,gy,gxy) and (G,q,g,gx,gy,gz) for random
x,y,z ∈ Fq with at most negligible probability in λ.

Secure multiparty computation. We use standard definitions
of secure multiparty computation, following the stand-alone
model [13]. We distinguish between security in the presence
of a semi-honest adversary, i.e., the adversary follows the
protocol execution but looks at the all messages it received
and tries to learn some additional information about the honest
parties’ inputs, and a malicious adversary, i.e., an adversary
that might act arbitrarily. We compare between a function

F (x1, . . . ,xn) = (y1, . . . ,yn) and a protocol π(x1, . . . ,xn) that
allegedly privately computes the function F .

We review some notations: Let A be a non-uniform proba-
bilistic polynomial-time adversary controlling parties I ⊂ [n].
Let REALπ,A(z),I(x1, . . . ,xn,λ) denote the output of the honest
parties and A in an real execution of π, with inputs x1, . . . ,xn,
auxiliary input z for A , and security parameter λ. Let S be
a non-uniform probabilistic polynomial-time adversary. Let
IDEALF ,S(z),I(x1, . . . ,xn,λ) denote the output of the honest
parties and S in an ideal execution with the functionality F ,
inputs x1, . . . ,xn to the parties, auxiliary-input z to S , and se-
curity parameter λ. The security definition requires that for
every real-world adversary A , there exists an ideal world ad-
versary S such that REAL and IDEAL are indistinguishable.
We refer to [13] for the full definition.

Hybrid model and composition. The hybrid model combines
both the real and ideal models. Specifically, an execution of a
protocol πF in the G -hybrid model, for some functionality G ,
involves the parties sending normal messages to each other
(as in the real model), but they also have access to a trusted
party computing G . The composition theorem of [13] implies
that if πF securely computes some functionality F in the
G-hybrid model and a protocol πG computing G then the

protocol π
G
F , where every ideal call of G is replaced with an

execution of πG securely-computes F in the real world.

On modeling security. We sometimes wish to prove that the
protocol is secure with, e.g., malicious P0 but semi-honest
P1. We use the malicious security formalization where we
quantify for adversaries that control P1 that do follow the
protocol specifications. Note that in the ideal world, the simu-
lator receives the input of the corrupted parties, whereas, in
the malicious setting, we usually extract the input it actually
uses in the protocol. In the case of a semi-honest adversary,
the simulator does not have to extract the input, and it can just
send the input it received to the trusted party.

Coin-tossing. We define the coin-tossing functionality, FCT.
The functionality assumes two parties, P1 and P2:

1. Input: Each party inputs 1λ and some parameter ℓ > sec.
2. The functionality: Sample a uniform string s←{0,1}ℓ

and give the two parties s.

This functionality can be realized easily, assuming commit-
ment schemes and pseudorandom generators (security with
abort).

Commitment Schemes. The hiding property of the com-
mitment scheme states that for any two messages m0,m1,
any adversary distinguishes between Com(params,m0;r0)
and Com(params,m1;r1) with at most negligible probabil-
ity in λ. The binding property states that given params←
Gen(1λ), any adversary can find (m0,r0),(m1,r1) such that
Com(params,m0;r0) = Com(params,m1;r1) with at most
negligible probability in λ.
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For example, we have the Pedersen commitment scheme
(see, e.g., [11, Def. 6]). For params consisting of a prime
q, a cyclic group G of order q, and elements g and h of
G, the Pedersen scheme maps elements m and r of Fq to
Com(m;r) := gmhr. If the discrete logarithm problem is hard
with respect to G , then the Pedersen scheme is computation-
ally binding.

A.1 Zero Knowledge Proofs
We present definitions for zero-knowledge arguments of
knowledge, closely following [25] and [11]. We also review a
number of particular constructions.

We posit a triple of interactive, probabilistic polyno-
mial time algorithms Π = (Setup,Prove,Verify). We fix a
polynomial-time-decidable ternary relation R ⊂ ({0,1}∗)3;
by definition, each common reference string σ← Setup(1λ)
yields an NP language Lσ = {x | ∃w : (σ,x,w) ∈ R }. We de-
note by tr← ⟨Prove(σ,x,w),Verify(σ,x)⟩ the (random) tran-
script of an interaction between Prove and Verify on auxiliary
inputs (σ,x,w) and (σ,x) (respectively). Abusing notation,
we occasionally write b← ⟨Prove(σ,x,w),Verify(σ,x)⟩ for
the single bit indicating the verifier’s state upon completing
the interaction (i.e., accept or reject). The zero-knowledge
proof constructions we use (see below) all feature relations
R whose statements consist of commitments and whose wit-
nesses consist of openings to these commitments. To sim-
plify notation—we adopt a somewhat non-standard notational
scheme, whereby we omit the witness from each call to Prove.

The Zero-Knowledge Functionality FZK(R ): The zero-
knowledge functionality FZK(R ) for an NP relation R is
defined as follows:

• Input: The prover and the verifier hold the same setup
string σ and input x, and the prover holds w.

• Output: If R (σ,x,w) = 1 then it sends accept to the
verifier. Otherwise, it sends reject.

The particular zero-knowledge proof constructions we use
all feature relations R whose statements consist of commit-
ments and whose witnesses consist of openings to these com-
mitments. More precisely—for each R we consider below,
and for each setup string σ—each element x of Lσ consists
of one more commitment, while any valid witness w to x’s
membership consists exactly of openings (i.e., message and
randomness) to some or all among these commitments.

In light of this fact—and to simplify notation—we adopt a
somewhat non-standard notational scheme, whereby we omit
the witness from each call to Prove, leaving it implicit in the
statement. For example, for a language Lσ whose statements
consist of single commitments, we write Π.Prove(V )—for
some commitment V —to mean Π.Prove(σ,V,(m,r)), where
V = Com(m;r) (and the commitment scheme (Gen,Com) is
implicit in the setup string σ). The expression Π.Verify(π,V )

of course retains its usual meaning. Informally, we view each
commitment V as a “data structure” whose internal “fields”
m and r may, optionally (that is, for the prover), be populated
with an opening to V . The call Π.Prove(V ) acts on V by
accessing its internal fields.

Moreover, given commitments V0 and V1 whose internal
openings are populated, we understand V0 ·V1 as a third com-
mitment whose openings are also populated (in the obvious
way, i.e., by addition).

Commitment equality proof. A simple Schnorr proof can
be used to show that two Pedersen commitments open to
the same message (recall that in Pedersen’s commitment,
the commitment scheme is Com(m;r) = gmhr for two group
elements g,h). We specialize (Gen,Com) to the Pedersen
scheme, and set σ to a Pedersen base (g,h). For completeness,
we outline the details. The relevant relation is as follows:

RComEq = {(σ,V0,V1) | ∃(m0,r0,m1,r1)

s.t. Vi = Com(mi;ri)∀i ∈ {0,1}∧m0 = m1} .

The relation RComEq expresses knowledge of openings to
two commitments whose messages are equal. The protocol is
trivial; it essentially runs a Schnorr protocol on the difference
between V0 and V1. This protocol can be derived as a special
case of the “basic protocol” of Terelius and Wikström [33,
Prot. 1]; it also appears implicitly in the techniques of [10,
Sec. G]. The prover sends K = hk for a random k← Fq. The
verifier chooses a random x←Fq. The prover replies with s :=
(r0− r1) ·x+k and the verifier accepts iff hs = (V0 ·V−1

1 )s ·K.

Bit proof. We now recall two important protocols from Groth,
and Kohlweiss [25]. The first, [25, Fig. 1], demonstrates
knowledge of a secret opening (m,r) of a public commit-
ment V for which m ∈ {0,1}. We use the protocol BitProof
from [25]. The bit-proof protocol concerns the following rela-
tion:

RBitProof = {(σ,V ) | ∃ (m,r), s.t. V = Com(m;r)

∧m ∈ {0,1}} .

One-out-of-many proofs. The second protocol—namely, [25,
Fig. 2]—demonstrates knowledge of a secret element Vl of a
public list (V0, . . . ,Vn)—as well as a secret randomness r—for
which Vl = Com(0;r). Though [25] uses the former protocol
merely as a subroutine of the latter, we will have occasion to
make independent use of both protocols. For a fixed integer
n, we have the relation:

ROneMany = {(σ,(V0, . . . ,Vn)) | ∃l ∈ [0, . . . ,n],r,
s.t. Vl = Com(0;r)} ,

as well as the proof protocol OneMany, which we use exactly
as written in [25, Fig. 2] without modification.
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In practice, we choose n which is one short of a power of
2 (i.e., n = 2m−1 for some m). The reason for this unusual
indexing scheme will become clear below.

B Proof of Theorem 4.4

Theorem B.1 (Theorem 4.4, restated). Suppose n is such that
2+4 · (2n−1)< q. Then for every v0,v1 ∈ Fq

(v0 ≤ v1,v1 ≤ v0) =

ComparisonFinal(ComparisonInitial(v⃗0, v⃗1)) ,

where v⃗0, v⃗1 are the bit-decomposition of v0,v1, respectively.
Moreover, for every i ∈ {0,1}:

• If vi ≤ v1−i then there exists exactly one j ∈ {0, . . . ,n}
such that di, j = 0. Moreover, j is distributed uniformly in
{0, . . . ,n}, and each di,k for k ̸= j is distributed uniformly
in Fq \{0}.

• If v0 > v1−i then the vector (di,0,, . . . ,di,n) is distributed
uniformly in Fn+1

q \{0}n+1.

Proof. We recall that Algorithms 1 and 2 are correct so long
as, for each j ∈ {0, . . . ,n}, the quantities c0, j and c1, j equal 0
if and only if, respectively, v0, j < v1, j and v0, j > v1, j (if j < n)
and moreover it holds that v0,k = v1,k for each k < j .

To show the nontrivial “only if” implications, it suffices
to show that, for each j, the quantities c0, j and c1, j are non-
zero so long as either some wk ̸= 0, for k < j, or else the
appropriate bit inequality (i.e., either v0, j < v1, j or v0, j > v1, j)
fails to hold. The special case in which all wk are 0 is triv-
ially settled; in this case, c0, j and c1, j are easily seen to be
nonzero when v0, j ≥ v1, j and v0, j ≤ v1, j, respectively (this
is guaranteed so long as −2 and 2 are unequal to 0 in Fq,
true so long as q > 2). To show the claim, then, we fix an
arbitrary j ∈ {0, . . . ,n}, and consider an arbitrary set of coef-
ficients (wk)k< j for which each wk ∈ {−1,0,1} and at least
one wk is nonzero. It suffices to demonstrate, in this setting,
that the sum ∑k< j 22+k ·wk cannot attain any of the values
{−2,−1,0,−1,2}.

We first show that this property holds “over Z”; that
is, we interpret all quantities (including the input bits
v0,0, . . . ,v0,n−1,v1,0, . . . ,v1,n−1, as well as all scalars) as in-
tegers. We denote by k∗ the smallest index k ∈ {0, . . . , j−
1} for which wk∗ ̸= 0. Clearly the sum ∑

k∗
k=0 22+k · wk ̸∈

{−2,−1,0,−1,2}; in fact, this sum equals either positive
or negative 22+k∗ (whose absolute value is at least 4). In par-
ticular, this sum’s residue class modulo 23+k∗ is 22+k∗ .

We now argue that ∑
j−1
k=0 22+k ·wk ̸∈ {−2,−1,0,−1,2} as

an integer. Informally, adding higher powers of two cannot
change the sum’s residue class modulo 23+k∗ , which we have
already seen equals 22+k∗ . More formally,

j−1

∑
k=0

22+k ·wk ≡
k∗

∑
k=0

22+k ·wk ≡ 22+k∗ (mod 23+k∗);

this follows from the equality ∑
j−1
k=k∗+1 22+k · wk ≡ 0

(mod 23+k∗) (which actually holds regardless of the wk). As
the above equation’s right-hand residue class modulo 23+k∗ is
necessarily unequal to those of −2, −1, 0, 1, and 2, the sum
on its left-hand side is necessarily unequal to each of these
values as an integer.

Finally, in light of the above, ensuring that ∑
j−1
k=0 22+k ·wk ̸∈

{−2,−1,0,−1,2} in Fq amounts simply to showing that
∑

j−1
k=0 22+k · wk ∈ {−q + 3 . . . ,q− 3} as an integer. In the

worst case, this sum has an absolute value of ∑
n−1
k=0 22+k =

4 · (2n−1); the statement of the first part of the theorem eas-
ily follows.

For the second part of the theorem, if vi ≤ v1−i then there
exists exactly one j ∈ {0, . . . ,n} such that ci, j = 0, and we
have seen that this is the first j for which for every k < n it
holds that v0,k ̸= v1,k (in case vi = v1−i, we have that ci,n = 0).
The algorithm shuffles the vector ci,0, . . . ,ci,n and then multi-
plies each element with an independent random scalar. Thus,
if vi ≤ v1−i exactly one element would be 0, and all the rest
are random in Fq \ {0}. If vi > vi−1, then all elements in
ci,0, . . . ,ci,n, so after shuffling and multiplying with indepen-
dent random scalars, the vector di,0, . . . ,di,n distributes uni-
formly in Fn+1

q \{0}n+1.

C Proof of Theorem 4.5

Proof. Regarding complexity, each party holds an input of
length n bits. It secret shares each one of the bits using a field
of size 2n, and therefore it sends O(n2) bits. In addition, the
parties run a secure coin-tossing protocol to toss λ coins, and
its complexity is O(λ). In total we get O(n2 +λ).

We consider the protocol in an idealized (i.e., a hybrid)
model where ΠCT is a secure coin-tossing protocol. Replacing
it with a secure protocol follows by a composition theorem.
Since Functionality 4.1 is deterministic, we can separately
show correctness and privacy, and we do not have to consider
the joint distribution of the view of the adversary and the
output of all parties. We start with showing correctness.

Correctness. We first analyze the security of a modified pro-
tocol in which the two parties run πCT and receive all the
randomness they need for running Algorithm 1. Note that this
means that the parties do not use the pseudorandom generator
at all throughout the execution.

All operations in Algorithm 1 on the values
(v0,0, . . . ,v0,n−1) ,(v1,0, . . . ,v1,n−1) are linear, and there-
fore working on shares of those vectors, applying Algorithm 1
on each one of the shares separately, and then reconstructing,
results with the same output as running Algorithm 1 directly
on and the values (v0,0, . . . ,v0,n−1) ,(v1,0, . . . ,v1,n−1). P∗ then
runs Algorithm 2 on the reconstructed values, and from
Theorem 4.4, the result (b0,b1) is (v0 ≤ v1,v1 ≤ v0), exactly
as computed by the functionality.
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When replacing the random string with the result of G(s),
we get that the output is computationally-indistinguishable
from the output of the functionality.

Privacy. Here we separate to two different case. The first case
is where Pi is corrupted for some i ∈ {0,1}, and the second is
when P∗ is corrupted.

Case I: Pi is corrupted. The simulator receives the input
(vi) and the output (b0,b1) of the corrupted party, Pi. It has
to generate the view of Pi. The view of Pi consists of the
following:

1. The internal random coins of Pi.
2. The result of the coin-tossing protocol, s.

3. The random shares
(
⟨v1−i, j⟩qi

)n−1
j=0 .

4. The output bi as sent by P∗.

Clearly, all except for the last two items are independent ran-
dom coins, which are easily simulatable. For the last item, the
simulator receives them as input. Simulating the view of Pi
follows easily.

Case II: P∗ is corrupted. The simulator receives the input
and output of P∗, which consists of the two bits (b0,b1) =
(v0 ≤ v1,v1 ≤ v0). The view of P∗ consists of the shares(
⟨d0, j⟩qi

)n
j=0 ,

(
⟨d1, j⟩qi

)n
j=0 for both i = 0 and i = 1. P∗ in the

protocol then reconstructs for every j ∈ {0, . . . ,n} the values
d0, j,d1, j where

(d0,0, . . . ,d0,n−1) ,(d0,0, . . . ,d0,n−1)

= ComparisonInitial((v0,0, . . . ,v0,n−1) ,

(v1,0, . . . ,v1,n−1)) .

From Theorem 4.4 it follows that all the values d0, j,d1, j are
uniform distributed in Fq \{0} unless for one position, which
reveals whether v0≤ v1 and/or v1≤ v0. In any case, simulating
the values of d0,0, . . . ,d0,n, d1,0, . . . ,dn,0 is easy. The simulator
then generates additive shares for those values, as obtained
from P0 and P1 (note that the shared randomness between P0
and P1 is not in the view of the adversary).

We remark that the view of P∗ also consists of the entire
communication between P0 and P1, however, since it has no
information on the private shared key between P0 and P1, all
encrypted information between the two parties is indistin-
guishable from random (as follows from the secrecy of the
encryption scheme), and therefore simulating this communi-
cation is straightforward.

D Malicious Security of Protocol 4.3

Computing minimum on committed inputs. We slightly
modify the protocol and the functionality, and this is the way
we will use it to implement Functionalities 3.1 and 3.3. In par-
ticular, we assume that the server already holds commitments

of the input values v0,v1, and the parties have the openings.
Looking ahead, the clients first commit to their orders to the
server; Later, when the server pairs two clients and we run
the matching protocol, the bank provides the commitments to
the counterparties. We have:

FUNCTIONALITY D.1 (F com
min – Computing minimum

on committed inputs).
Consider two players, P0 and P1, and a server P∗.
The functionality:
1. In case of a corrupted Pi: The honest P∗ inputs

commitments (V0,V1), and the honest P1−i sends
(v1−i,r1−i) such that V1−i = Com(v1−i;r1−i). Send
the corrupted Pi the commitments (V0,V1) and re-
ceive back (vi,ri). Verify that Vi = Com(vi;ri), and
otherwise abort.

2. In case of a corrupted P∗: Receive from the
each honest Pj the input (v j,r j), and compute Vj =
Com(v j;r j) for j ∈ {0,1}. Send (V0,V1) to P∗.

3. Compute b0 := (v0 ≤ v1) and b1 := (v1 ≤ v0).
4. Send b0 to P0, b1 to P1 and (b0,b1) to P∗. In addition,

send to all parties min{v0,v1}.

To implement this functionality, we slightly modify Proto-
col 4.3: The parties do not send the commitments in the first
step. Instead, P∗ sends both parties both commitments; In the
last round, if a party outputs true, then it sends a new commit-
ment V ′i , and proves using ComEq that the two commitments
are the same, and opens V ′i to P∗. P∗ verifies that the commit-
ments are the same, and sends this information also to Pi−1
as long as b0 ̸= b1 (i.e., if they are both 1, then both parties
already know the minimum). Denote the modified protocol
as Πcom

min .

Theorem D.2. Πcom
min securely computes the F com

min (Func-
tionality D.1) in the presence of a malicious adversary who
corrupts a single party. Each party has to send or receive
O(n(n+λ)) bits where n is the length of the input and λ is
the (computational) security parameter.

Proof. We prove the security of the protocol in the hybrid
model, where the underlying functionalities are FZK(R ) (see
Section A.1). Using the composition theorem, we later con-
clude security in the plain model.

We wrote the protocol in the plain model for
brevity; We convert its description to a protocol in the
(FZK(RComEq),FZK(RBitProof),FZK(ROneMany),FCT)-hybrid
model and prove that the protocol is secure in this model.
We discussed how to implement those functionalities in
Section A.1), and using composition theorem we conclude
that the protocol in the plain model is secure.

We need to prove that for any malicious adversary A , the
view generated by the simulator S above is indistinguishable
from the output in the real (hybrid)-model, namely:{

IDEALF ,S(z),i(u0,u1,λ)
}
≈comp

{
REALπ,A(z),i(u0,x1,λ)

}
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We start with a simulator for the case where Pi is corrupted,
for i ∈ {0,1}. We later show a simulator for the case where
P∗ is corrupted. Without loss of generality, assume that i = 0.

The simulator S :

1. The simulator invokes the adversary A on an auxiliary
input z

2. The simulator receives from the trusted party the com-
mitment V0,V1.

3. Simulate FCT: Choose a random s and give it to the
adversary. If the adversary does not reply with OK, then
send ⊥ to the trusted party.

4. Choose random shares for ⟨v1, j⟩q0 uniformly at random,
and then compute commitments V1, j,0.

5. Choose random commitments V1, j,1 such that

∏
n−1
j=0(V1, j,0 ·V1, j,1)

2n−1− j
=V1.

6. Send A the shares ⟨v1, j⟩q0, the full array (V1, j,0,V1, j,1) j∈N ,
and open the commitments V1, j,0 for j ∈ N. More-
over, simulate FZK(RComEq),FZK(RBitProof) by sending
accept to A .

7. Receive from A the full array (V0, j,0,V0, j,1) j∈N and the
openings ⟨v1, j⟩q1. Check that the openings indeed open
V1, j,1, for j ∈ N.

8. Simulate the FZK(RComEq) invocation of Step 6: re-
ceive from A as part of its invocation the wit-
ness for Vi, which consists of (vi,ri), and the wit-
ness (vi,r′i) of ∏

n−1
j=0 (Vi, j,0 ·Vi, j,1)

2n−1− j
. Verify that

indeed Vi = Com(vi;ri) and that the Com(vi,r′i) =

∏
n−1
j=0 (Vi, j,0 ·Vi, j,1)

2n−1− j
. If these conditions hold, return

accept to Adv; otherwise, return reject.
9. Simulate the FZK(RBitProof) invocation of Step 6 of each

instance Vi, j,0 ·Vi, j,1 for every j ∈ N; i.e., from each invo-
cation also receive a witness and check that the witness
satisfies the relation RBitProof . For each check return
accept or reject.

10. If all checks pass, send vi to the trusted party, where vi
was received when simulating the FZK(RComEq) func-
tionality in the previous steps. Otherwise, send ⊥.

11. Receive (b0,b1,v) from the trusted party as Pi’s output.
12. Run Algorithm 1 on the shares provided to A in the pre-

vious steps to obtain with randomness s (which was the
result of the FCT) to obtain

(
⟨d0, j⟩qi

)n
j=0 ,

(
⟨d1, j⟩qi

)n
j=0

and the randomnesses (s0, j,i)
n
j=0 ,(s1, j,i)

n
j=0 and(

(D0, j,1−i)
n
j=0 ,(D1, j,1−i)

n
j=0

)
.

13. Receive from A the shares
(
⟨d0, j⟩qi

)n
j=0 ,

(
⟨d1, j⟩qi

)n
j=0

and the randomnesses (s0, j,i)
n
j=0 ,(s1, j,i)

n
j=0 as in Step 9.

Verify that those are the same values as computed.
14. Compute Di, j := Com(⟨di, j⟩qi ;si, j,i) ·Di, j,1−i, for each

j ∈ N, and then simulate invoking FZK(ROneMany) while
sending A to output 1.

15. If b1 = 1, then choose a random V ′1 = Com(v,r′). Send
to P0 the commitment V ′1, as well as accept for the
FZK(RComEq) on the instance (V1,V ′1).

16. If b0 = 1, then receive from A commitment V ′0, and sim-
ulate an invocation of FZK(RComEq) where expect to
receive the opening of V0 and V ′0. If indeed the openings
are correct and V ′0 is a commitment of v0, then send OK
to the trusted party. Otherwise, send ⊥.

17. The simulator outputs the view of the adversary in the
above execution.

To show indistinguishability between the real and ideal
execution, we consider the following experiments:

• Exp1: This is the real execution. The adversary A is run
with the honest P1 and P∗. The output of the experiment
is the view of the adversary and the output of the honest
parties P1 and P∗.

• Exp2: We run the simulator S with the trusted party of
Functionality D.1 with the following difference: When
the honest party P1 sends v1 to the trusted party, the
trusted party delivers v1 to S . Then, S uses v1 as the
input of P1 to simulate the first steps of the protocol
instead of choosing random commitments that match V1
as in the simulation. The output of this experiment is the
output of all honest parties as determined by the trusted
party and the output of the simulator.

• Exp3: this is just as the ideal execution: We run the
simulator S as prescribed above. The output of this ex-
periment is the of all honest parties as determined by the
trusted party and the output of the simulator.

We claim that the output of Exp1 is computationally in-
distinguishable from Exp2. In particular, since the simulator
receives the input of P1, it essentially runs the honest P1 while
exactly simulating all FZK functionalities for the different
relations in the protocol. The output of the protocol in the
real execution is determined from the shares that P∗ receives,
which it then invokes Algorithm 2. In the simulation, the
simulator uses the input v0 as extracted when invoking the
FZK(RCompEq) functionality, sending v0 to the trusted party,
which then computes (b0,b1) = (v0 ≤ v1,v1 ≤ v0). From the
binding property of the commitment scheme, it is infeasible
for the adversary to come up with a different v0 that does not
match V0. Correctness of the protocol from similar reasoning
as in the semi-honest case, and from linearity of Algorithm 1.

We then claim that the output of Exp2 is computationally
indistinguishable from Exp3. The only difference is the view
of the adversary are the commitments of V1, j,1 that are never
opened. Besides of those values, the entire view of the adver-
sary is exactly the same (those are just accept messages re-
ceived from the FZK functionality). However, from the hiding
property of the commitment scheme, the view of the adversary
is indistinguishable.

A corrupted P∗. In case where P∗ is corrupted, then the
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simulator simulates the entire communication between P0 and
P1 as random strings. P∗ has no input, and it receives from the
trusted party the two bits (b0,b1), the minimum M, and the
commitments V0 and V1. From the bits (b0,b1) it generates
the two vectors (d0,0, . . . ,d0,n) and (d1,0, . . . ,d1,n) just as the
simulator in the semi-honest case. It chooses random s0, j,s1, j
and chooses random shares:

d0, j := ⟨d0, j⟩q0 + ⟨d0, j⟩q1 , s0, j := s0, j,0 + s0, j,1

d1, j := ⟨d1, j⟩q0 + ⟨d1, j⟩q1 , s1, j := s1, j,0 + s1, j,1

It simulates P0 sending
(
⟨d0, j⟩q0

)n
j=0 ,

(
⟨d1, j⟩q0

)n
j=0 and

the randomnesses (s0, j,0)
n
j=0 ,(s1, j,0)

n
j=0 to A , and P1

sending
(
⟨d0, j⟩q1

)n
j=0 ,

(
⟨d1, j⟩q1

)n
j=0 and the randomnesses

(s0, j,1)
n
j=0 ,(s1, j,1)

n
j=0 to A . It then simulates the invocation of

FZK(ROneMany): If A does not provide the correct statement,
(Di, j)

n
j=0 for Di, j := Com(di, j;si, j), and the correct witness

(consisting of the index of the non-zero coordinate in d and
the opening of its commitment), then return reject to A and
send ⊥ to the trusted party. Otherwise, send accept to A and
send OK to the trusted party. At the end of the invocation,
if some party Pj has to open the commitment to A , then it
sends a commitment V ′j = Com(M;r) with some random r,
and simulates FZK(RComEq) on instance Vj,V ′j as accept.

It is easy to see that the simulator perfectly simulates the
view of the adversary in the real execution. This follows from
the properties of our comparison algorithm (Theorem 4.4),
and that the simulator perfectly simulates the FZK functional-
ity. Finally, any wrong information A sends to FZK results in
false in the real execution. In contrast, in the ideal execution,
the simulator sends ⊥ to the trusted party which results in ⊥
to both P0,P1 in the ideal execution.

Computing FC2C functionality (Functionality 3.2.) To con-
clude client-to-client matching, the parties invoke 2|U | times
Fmin. For each possible symbol in U , the parties first commit
to their short and long exposure for that symbol. They then
invoke the committed minimum functionality twice: Once
when P0 inputs its long exposure and P1 inputs short, and
vice-versa. If a party is not interested in some symbol or in a
particular side then it simply inputs 0. The bank receives as
output all the matches and can execute them directly. Security
follows from just the composition theorem. We have:

Corollary D.3. The above protocol securely computes Func-
tionality 3.2 in the presence of one malicious client or a
malicious server.

E Bank-to-Client Matching

In this section, we present a two-party variant of our main
three-party comparison protocol which can be used for bank-
to-client matching. We describe the functionality and then the
protocol.

FUNCTIONALITY E.1 (Two-party min, F B2C
min .).

Input: The server P0 holds v0, and P1 holds v1, both in
{0, . . . ,2n−1}.
Output: Both parties receive min{v0,v1}.

PROTOCOL E.2 (Two-party protocol ΠB2C
min ).

Input: P0 and P1 hold integers v0 and v1, respectively,
in {0, . . . ,2n−1}.
Setup phase: A commitment scheme (Com) and an
encryption scheme (Gen,Enc,Dec) are chosen. P0 runs
(pk,sk)← Gen(1λ), and authenticates its public key pk
with P1.

The protocol:
1. P0 proceeds as follows: (Encryption):

(a) Commit V0← Com(v0;r0), and send V0 to P1.
(b) Compute the bit decomposition v0 =

∑ j∈N 2n−1− j · v0, j, for bits v0, j ∈ {0,1}.
(c) For each j ∈ N: compute additive homomorphic

encryptions A j = Encpk(v0, j).
(d) Send the full array (A j)

N−1
j=0 to P1.

(e) Compute:

i. π← ComEq.Prove
(

V0,∏
N−1
j=0 (A j)

2 j
)
,

ii. π j← BitProof.Prove(A j), for all j ∈ N,

P0 sends π, and (π j)
N−1
j=0 to P1.

2. P1 proceeds as follows: (Computing the mini-
mum):

Receive (π,(π j)
N−1
j=0 ) and verify the following:

(a) ComEq.Verify
(

π,V0,∏
N−1
j=0 (A j)

2 j
)

,

(b) BitProof.Verify (π j,A j) for each j ∈ N. If any
of these checks fail, P1 aborts.

(c) Run Algorithm 1, in parallel, on the ciphertexts
A j and on its own secret inputs. That is, P1
runs:(

(D0, j)
N
j=0 ,(D1, j)

N
j=0

)
←

ComparisonInitial
(
(A j)

N−1
j=0 ,(v1, j)

N−1
j=0

)
recall that the algorithm shuffles the two result
vectors inside.

(d) P1 sends
(
(D0, j)

N
j=0 ,(D1, j)

N
j=0

)
to P0.

3. Party P0 (Output reconstruction):
(a) Decrypt di, j = decsk(Di, j) for each i= {0,1} and

j = {0, . . . ,n−1}
(b) Execute Algorithm 2, that is:

(b0,b1) :=ComparisonFinal
(
(d0, j)

N
j=0 ,(d1, j)

N
j=0

)
.
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(c) Write u for the index such that bu is true and sets
u := 0 if both are.

(d) Compute π′ ← OneMany.Prove
(
(Du, j)

n−1
j=0

)
,

and sends π′ and u to P1. If u = 1 then send
also v1.

4. Party P1 (output reconstruction):
(a) P1 verifies OneMany.Verify

(
π′,(Du, j)

N−1
j=0

)
. If

verification passes, then P1 outputs vu.

Theorem E.3. Protocol E.2 securely computes Functional-
ity E.1 in the presence of a malicious P0 or a semi-honest P1,
assuming secure commitments and zero-knowledge function-
alities.

Proof. Since the protocol is not symmetric, we separate be-
tween corrupted P0 and corrupted P1.

Security against a malicious P0: We show security assum-
ing an ideal commitment and a zero-knowledge scheme. The
simulator plays the role of the ideal functionalities for those
sub-protocols and receives in particular the input v0 and the
decomposition bits when P0 calls to the zero-knowledge and
commitment functionalities. It verifies that P0 provided con-
sistent input. If not, the simulator aborts in the corresponding
functionality.

If the inputs are consistent, then given the input v0 it sends it
to the ideal functionality and receives back the minimum and
whether the two integers are the same. It computes from that
(b0,b1), and simulates values d0, j,d1, j uniformly at random
as per Theorem 4.4, and sends to P1 encryption of those values
under P0’s public key. It then verifies that the one-out-of-many
proof of P0 is correct, and if so it sends OK to the trusted party,
in which it delivers to P1 its output in the ideal world. It is
easy to see that the simulator perfectly simulates the view of
the adversary in the ideal world.

Security against a semi-honest P1: In that case, the sim-
ulator sends to the adversary a commitment to 0, and bit
decomposition as all zeros. Moreover, it simulates the zero-
knowledge proofs as succeeding. It then receives encryptions
of (d0, j,d1, j). It receives from the trusted party the minimum
value and simulates the final ZK proof as successful.

Concrete instantiation. We implement Protocol E.2 using
the ElGammal encryption scheme, where the message m is
part of the exponent (thereby we get additive homomorphism).
I.e., for a public key h ∈G, Encpk(m) = (gr,hrgm). Note that
P1 does not have to decrypt the ciphertexts, but just identify
an encryption of 0. Given a secret key x such that h = gx and
a ciphertext c = (c1,c2), this is done by simply comparing
c2/cx

1 to g0.

Implementing Functionality 3.1. To implement the bank-
to-client functionality, the parties invoke 2|U | times the two-
party minimum functionality. For each possible symbol in U ,

the parties invoke the minimum functionality where once the
bank inputs its interest in symbols to buy and the client in sell,
and one time where the bank inputs whether it wishes to sell
and the client inputs whether it wishes to buy. If a party is not
interested in some symbol or in a particular side, it simply
inputs 0. The results of all minimum invocations will reveal
the matches. Security follows from composition. We have:

Corollary E.4. The above protocol securely computes Func-
tionality 3.1 (FB2C) in the presence of a semi-honest bank or
a malicious client.

F Realizing Functionality 3.3

In this Section we present protocol F.1 for the functional-
ity 3.3 in the F com

min -hybrid (Functionality D.1) model. When
matching begins, orders pertaining to the same security and of
opposite direction are matched. After each particular match,
the server decrements both orders’ quantities by the matched
amount, and dequeues whichever among the two orders is
empty (necessarily at least one will be). The commitments’
homomorphic property allows the engine to appropriately
decrement registrations between matches.

PROTOCOL F.1 (ΠMC—multiparty matching).

Upon initialization, P∗ initializes a list P = /0 and two
vectors L and S of size n, where n bounds the number
of possible clients.
ΠMC.Register(Pi): When the command is invoked, then
Pi sends to P∗ commitments L̃i = Com(Li;ri) and S̃i =
Com(Si;si) for some random ri,si. P∗ set L [i] = L̃i and
S [i] = S̃i. The party Pi locally stores (Li,ri) and (Si,si).
P∗ also adds i to P.
ΠMC.Process():
1. P∗ chooses a random ordering O over all pairs of P.
2. For the next pair (i, j) ∈ O, try to match between Pi

and Pj:
(a) Invoke Functionality D.1 where Pi inputs (Li,ri)

and Pj inputs (S j,s j), P∗ inputs (L [i],S [ j]). Let
M0 be the resulting minimum. Pi sets Li =
Li−M0 and Pj sets S j = S j −M0. If M0 ̸= 0,
then execute the match. P∗ homomorphically
evaluates the commitments (L [i],S [ j]) to sub-
tract M0.

(b) Invoke Functionality D.1 where Pi inputs (Si,si)
and Pj inputs (L j,r j), P∗ inputs (S [i],L [ j]). Let
M1 be the resulting minimum. Pi sets Si =
Si−M1 and Pj sets L j = L j −M1. If M1 ̸= 0,
then execute the match. P∗ homomorphically
evaluates the commitments (L [i],S [ j]) to sub-
tract M1.
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Theorem F.2. Protocol F.1 securely implements Functional-
ity 3.3 in the F com

min -hybrid model (Functionality D.1) in the
presence of a malicious client or a semi-honest server.

Proof. We first simulate the case where some client is mali-
cious:

1. Invoke the adversary A . Whenever the adversary sends
L̃i, S̃i, store L̃i and S̃i in L [i] and S [i], respectively.

2. Whenever received (i, j,M0,M1,bi) from the trusted
party, choose random commitments L [ j] and S [ j] and
simulate two invocations of F com

min :
(a) Send to Pi the commitment L [i] and a random com-

mitment S [ j]. Receive back bi and M0. Homomor-
phically subtract M0 from L [i].

(b) Send to Pi the commitment S [i] and a random com-
mitment L [ j]. Receive back b j and M1. Homomor-
phically subtract M1 from L [i].

From inspection, it is easy to see that the view of Pi is the same
in the simulation and in the real world since the simulator
perfectly simulates the invocations of Functionality D.1 from
the information it receives from the trusted party. Moreover,
the underlying committed values of P∗ in the real execution
are the same as in the ideal process for the same ordering O
(which have the exact same distribution in the real and ideal).
This can be shown by induction over the different invocations
of the ordering of O: in each execution, the functionality D.1
gives P∗ the same as in the ideal execution of FMC. From
the homomorphic evaluation of the commitment scheme, the
subtraction of the values is equivalent to FMC subtracting the
minimum values.

The case of a corrupted P∗. We show security in the pres-
ence of a semi-honest P∗. First, whenever received a message
registered(Pi) from the trusted party, simulate Pi sending to
P∗ some random commitments L̃i, S̃i, and store those commit-
ments.

The simulator then repeatedly receives from the trusted
party values (i, j,M0,M1,b0,b1) and has to simulate the view
of P∗ in the two invocations of F com

min . First, from all those
values, it can extract random coins that will result in the same
random ordering O as the one that the trusted party chose.
Moreover, for each such (i, j,M0,M1), (b0

0,b
1
0,b

0
1,b

1
1), the sim-

ulator pretend sending the adversary L̃i, S̃ j as coming from
F com
min ; and then the output (b0

0,b
0
1) and M0. For the second in-

vocation, pretend sending the adversary S̃i, L̃ j and the output
(b0

1,b
1
1) and M1. Then, update L̃i, S̃i and L̃ j, S̃ j as in the proto-

col. From inspection, it is clear that the view of the adversary
is the same in both executions.

G Range Bank-to-Client Functionality

In this section, we consider the setting in which the client
submits a minimum and a maximum amount per stock instead

of a single amount. The current system is set to accept a
minimum and a maximum quantity from the clients to be
matched against the bank’s inventory. As a first step, the bank
runs Functionality 3.1 on every client one by one only on
their minimum quantity until the bank exhausts its inventory.
For the case where the bank did not exhaust its inventory
after processing all the clients, it runs again Functionality 3.1
on every client one by one on their maximum quantity. This
process is presented in Functionality G.1. The requirement
on the minimum and maximum quantity is imposed by the
business for this use case as a greedy approach in an effort to
satisfy more clients with the bank’s inventory. This is not a
necessary requirement, but the bank views it as an additional
feature to satisfy more clients. This greedy approach is not
ideal since, for instance, the minimum quantity of the first
client can exhaust the full inventory of the bank. We leave it
as an open problem to devise a secure optimization algorithm
for better allocations across all clients.

This additional range feature is considered only when we
seek for matches between the bank and a client in an effort
to maximize the number of matches the bank can accommo-
date from its own inventory. Thart said, we do not explicitly
consider it for the client-to-client matching.

FUNCTIONALITY G.1 (FB2C–Range Bank-to-client
functionality).
The functionality is parameterized by the set of all pos-
sible securities to trade, a set U .
Input: The bank P∗ inputs lists of orders
(symb∗i ,side

∗
i ,amount∗i ) where symbi ⊆ U is the

security, side∗i ∈ {buy,sell} and amount∗i is an
integer. A client Pi sends its list of the same for-
mat but with a minimum and a maximum amount,
(symbC

i ,side
C
i ,MinAmountCi ,MaxAmountCi ).

Output: Initialize a list ofMatches M. Choose a random
order O over all clients.

• For the next client j in O and for ev-
ery i, such that symb∗i = symbC

j and
side∗i ̸= sideC

j , add (symb∗i ,side
∗
i ,side

C
j ,v =

min{amount∗i ,MinAmountCj }) to M and update
amount∗i = amount∗i − v.

Then, check maximum amounts for the j in M:

• For the next j in O and every i such
that symb∗i = symbC

j and side∗i ̸=
sideC

j , add (symb∗i ,side
∗
i ,side

C
j ,v =

min{amount∗i ,MaxAmountCj }) to M and up-
date amount∗i = amount∗i − v.

Implementing this protocol is quite straightforward, given
the protocols we already have. The bank simply runs the min-
imum functionality against (random) ordering of the clients
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with their minimum amount, and then with their maximum
amount, while updating the amount of each symbol along the
way.

H Prime Match System Performance Cont.

In Figure 7, we present a sample of the user interface of the
Prime Match system.

I Comparison to Generic MPC

In this section, we compare the performance of our protocol to
generic MPC protocols. Concretely, we look at the client-to-
client matching. Towards that end, we estimate the size of the
circuit that we have to use to implement such a functionality.

Our main client-to-client matching protocol has two phases,
in which the client first commits to their orders, and then the
parties run in a second phase that the orders they provide
match the committed ones. Implementing that using generic
MPC protocols is relatively expensive as they must involve
cryptographic primitives. Implementing group operations in
a circuit, which involves exponentiation and public-key prim-
itives is clearly prohibitively expensive, so we would like to
use symmetric-key primitives.

Specifically, we look at a commitment scheme in which the
server (the bank) chooses some random seed s and publishes it
to all parties. To commit to a value v, a party chooses a random
r and computes H(s,v,r) where H is a CRHF. This commit-
ment scheme is secure when modeling H as a random oracle.
When instantiating H using SHA256, this (heuristically) gives
128-bit security for the binding property (a collision implies
breaking the commitment).

A Boolean circuit for SHA256 has 22K number of AND
gates, and depth 1607 (see e.g., [1, 12]). This means that even
ignoring the costs for comparisons themselves, we have:

• Using any garbling-like protocol (say, variants of BMR)
and with 128-bit keys for the labels, a circuit that checks
that the commitments are correct will require commu-
nicating 22K · 128 · 2 · 2 bits (128 bit keys; using half
gate optimization, so two ciphertexts per gate; for each
symbol, we need at least two commitments - one from
each one of the clients). The communication would be
at least 722KB for processing a symbol. This is com-
pared to roughly 25 KB per symbol by our protocol, as
reflected by Table 2. This is at least ×30 more expen-
sive than our solution, while the actual performance is
likely to be much more expensive. We ignored here the
cost of the comparisons themselves, or if the clients have
to be paired later again then the circuit has to compute
the modified commitment after reducing the minimum
(which requires further evaluations of SHA inside the
circuit).

• Using any GMW-like protocol that requires number of
rounds that is proportional to the depth of the circuit,
the number of rounds would be at least 1607. This is
compared to 3 rounds as in our protocols. This is an
increase in a factor of ×500.

J Challenges in Implementation

Privacy-preserving auctions have been the holy grail of prac-
tical MPC since [9]. However, no financial institutions took
a step forward to use such tools. To begin with, we got con-
nected to the bank’s business department of quantitative re-
search to test the appetite for a form of privacy-preserving
auctions. Thus, the Axe inventory use case was chosen.

Pre-Production Challenges. Releasing a secure multiparty
computation (MPC) product in a big organization that had
no other products utilizing these techniques was itself chal-
lenging. Furthermore, there were no other products across the
street (market) to showcase the feasibility of such a solution.

As a first step, a proof of concept (POC) was implemented
to show its feasibility.

Given the innovative nature of the product, the green light
for production was given after a long process. More specif-
ically, the organization decided to test the appetite for the
possible product of its valuable clients (hedge funds). Al-
most 20 hedge funds were visited in 6 months to demo the
POC and to hear their highly appreciated feedback. Given
the client feedback, the organization decided to move another
step forward and ask the clients under what conditions they
will utilize such a product. In particular, the clients provided
a set of different features and requirements they would like to
see in the product. Notable requirements were:

• No communication with other clients, only communica-
tion with the bank.

• No resources for preprocessing data.
• No installation of code on client’s machines - a web-

based application was required.
• Stronger security guarantees than semi-honest security.
• Peer review of the solution.

The POC was updated to satisfy the above requirements.
Another round of demos to clients was conducted. After sev-
eral months the business gave the green light to build the prod-
uct and allocated resources to enable it. The team consisted of
cryptographers, quants, tech quants, expert programmers on
different topics (such as secure multiparty computation, UI,
web-based development etc.), cybersecurity experts, product
managers, legal, and stakeholders.

Production Challenges - Lessons Learned During the de-
velopment of Prime Match, we faced several critical technical
challenges. Those challenges were mainly due to the com-
plex design of the organization’s infrastructure for security
measures.
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Figure 5: Prime Match User Interface of a completed matching run.

Figure 6: Prime Match system architecture connecting exter-
nal users/clients to the bank’s network.

• Coding in the Trade Management platform and the Mar-
kets Portal, see Figure 6, needed to follow certain prac-
tices (which easy maintenance too) which were not fol-
lowed in the POC stage. POC was reprogrammed to
follow current practices.

• Only a limited set of open-source libraries are allowed in
the Trade Management platform. For example, importing
the open-source library emscripten docker image to the
Trade Management platform. This process went through
rigorous request and approval processes to show that this
library does not contain any code that would secretly
send data to the internet.

• Integration to the markets portal which is an existing
service for external clients, in order to access some of the
organization’s trading applications, was not easy since no
other application required interaction between the server
and the clients. Prior apps involve simple downloads of
data from clients.

• Set up a pathway that allows network traffic to flow from
the clients to the Prime Match server with the use of web
socket protocol. In particular, setting up Psaas service
in Tier 1 and 2, which stands for Perimeter Security as
a Service. Extensive review and approval process were
required.

• Placing a physical server and setting up an Apache WS
tunnel in tier 1 to enable external clients to transact and
transact within tight latency requirements. In particular,
we had to implement the entire WS tunnel proxy from
scratch since the Web Sockets protocol was not used
within these platforms before.
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Throughput Registration Registration Matching Matching
Number of (transactions/ received msg sent msg received msg sent msg
Symbols Latency (sec) sec) Size (MB) Size (MB) Size (MB) Size (MB)

100 23.85 (±9.19 ) 8.38 0.062 0.036 16.225 4.510
200 29.49 (±2.85 ) 13.56 0.124 0.073 32.451 9.021
500 65.04 (±1.41 ) 15.37 0.310 0.184 81.128 22.552
1000 136.93 (±3.32 ) 14.60 0.621 0.370 162.257 45.105
2000 244.37 (±10.31 ) 16.36 1.243 0.749 324.507 90.210
3000 428.48 (±32.19 ) 14.00 1.865 1.128 486.739 135.260
4000 1077.60 (±27.46 ) 7.42 2.487 1.507 647.758 180.043
5000 1314.44 (±39.15 ) 7.60 3.109 1.886 809.191 224.641
6000 1558.58 (±46.96 ) 7.69 3.731 2.265 971.875 269.997

Table 3: Performance of Bank-to-Client Prime Match for two clients. The number of symbols processed in the production code is
double since clients provide both a minimum and a maximum quantity to be matched. This is reflected at the Throughput column
which is multiplied by a factor of two.

• Run several internal tests ranging from UI requirements
to cyber security requirements (such as timing attacks).

• Extensive code review from internal and external experts.
• Integrate the UI component with the markets portal

which required extensive approvals.
• Integration of our code with WebAssembly to achieve

near-native performance. To this end, we also had to han-
dle garbage collection. See more details on the chosen

programming languages in Section 5.

Overall each step required extensive review and approval
processes. An important aspect that was not listed above is
the last process of extensive testing, verification of the code,
and beta testing the product with the help of a limited number
of clients.
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Figure 7: Prime Match User Interface of a completed matching run.
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