
Generic Construction of Broadcast

Authenticated Encryption with Keyword Search

Keita Emura§

§National Institute of Information and Communications Technology (NICT), Japan.

March 21, 2023

Abstract

As a multi-receiver variant of public key authenticated encryption with keyword search
(PAEKS), broadcast authenticated encryption with keyword search (BAEKS) was proposed by
Liu et al. (ACISP 2021). BAEKS focuses on receiver anonymity, where no information about the
receiver is leaked from ciphertexts, which is reminiscent of the anonymous broadcast encryption.
Here, there are rooms for improving their security definitions, e.g., two challenge sets of receivers
are selected before the setup phase, and an adversary is not allowed to corrupt any receiver.
In this paper, we propose a generic construction of BAEKS derived from PAEKS that provides
ciphertext anonymity and consistency in a multi-receiver setting. The proposed construction
is an extension of the generic construction proposed by Libert et al. (PKC 2012) for the
anonymous broadcast encryption and provides adaptive corruptions. We also demonstrate that
the Qin et al. PAEKS scheme (ProvSec 2021) provides ciphertext anonymity and consistency
in a multi-receiver setting.

1 Introduction

Public key authenticated encryption with keyword search (PAEKS) [8,12–15,18,26,29–32] has been
proposed as an extension of public key encryption with keyword search (PEKS) [7]. In PAEKS, a
sender secret key is required for encryption. Because of the restriction of the rights of encryption,
a keyword guessing attack1 is prevented. PAEKS requires that no information about the keyword
is leaked from both the ciphertexts and trapdoors.

Broadcast authenticated encryption with keyword search (BAEKS) [25] was proposed by Liu et
al. as a multi-receiver variant of PAEKS. Unlike other multi-receiver variants of P(A)EKS [3,5,9,17,
19,20,27,33,34],2 BAEKS focuses on receiver anonymity, where no information about the receiver is

1In PEKS, if an adversary has a trapdoor, information about which keyword is associated with the trapdoor is
leaked by running a test algorithm with self-made ciphertexts. This keyword guessing attack is unavoidable in PEKS
because anyone can generate a ciphertext of any keyword, and anyone can run the test algorithm when they obtain
the trapdoor.

2Attrapadung et al. [5] introduced broadcast encryption with keyword search (BEKS) whose security is defined
as a selective manner. Chatterjee and Mukherjee [9] proposed a BEKS scheme which is secure under the SXDH
(Symmetric eXternal Diffie-Hellman) assumption and provides adaptive security. They also mentioned that the
generic construction of Ambrona et al. [4] on [10] or on [11] also provide pairing-based BEKS constructions. Note that
Chatterjee and Mukherjee called a BEKS scheme anonymous, if the challenge ciphertext hides associated challenge
keyword. Moreover, in the BEKS syntax, the test algorithm takes a set of receivers. Thus these BEKS constructions
do not provide receiver anonymity.

1

leaked from ciphertexts, which is reminiscent of the anonymous broadcast encryption [6,16,21–24].
BAEKS also considers trapdoor anonymity. The flow of BAEKS is described below. A sender
generates a ciphertext by specifying a set of receivers S and a keyword to be encrypted kw, and
sends the ciphertext to a cloud server. Each receiver generates a trapdoor by specifying a sender
and a keyword to be searched kw′, and sends the trapdoor to the cloud server. The could server
runs a test algorithm, and forwards the corresponding content3 to a receiver based on the result of
the test algorithm. Informally, the BAEKS scheme is correct if the test algorithm outputs 1 when
kw = kw′ and the trapdoor is generated by a receiver belonging to S.

Liu et al. proposed a pairing-based BAEKS scheme (in the random oracle model). However,
the following restrictions in their security definitions can be observed:

1. No consistency is defined, i.e., it is not formally defined when the test algorithm outputs 0.

• If a PAEKS scheme needs to provides correctness only, a meaningless scheme can be con-
structed as follows. The encryption and trapdoor generation algorithms output random
values, and the test algorithm always outputs 1 regardless of the input. Then, no infor-
mation about the keyword is revealed from both the ciphertext and trapdoor, and the
construction provides correctness. To avoid this meaningless construction, consistency
is important in the searchable encryption context.

• We note that Liu et al. construction defines when the test algorithm outputs 0. Also,
we do not claim that their scheme does not provide consistency.

2. The challenge sets S∗
0 and S∗

1 are fixed during the setup phase. Furthermore, the two challenge
sets contain only one distinct receiver public key and other identical receiver public keys. This
restricts the attack strategies of adversaries.

3. An adversary is not allowed to obtain the secret key of a receiver, i.e., no corruption is allowed.

To this day, no generic BAEKS construction has been proposed. Since generic constructions of
anonymous broadcast encryption have been proposed, it is reasonable to consider whether generic
constructions of anonymous broadcast encryption can be customized for BAEKS or not.

Anonymous Broadcast Encryption. Here, we revisit a generic construction of anonymous
broadcast encryption to investigate the properties required to construct BAEKS by extending this
generic construction.4 Libert et al. [24] proposed a generic construction (under adaptive corruptions)
that provides full anonymity, where no information about the receiver is leaked from ciphertexts,
even against ciphertext receivers; i.e., an adversary is allowed to obtain the secret keys of the
receivers belonging to S∗

0 ∩ S∗
1 where S∗

0 and S∗
1 are the challenge sets. Specifically, an adversary

is not allowed to obtain the secret keys of the receivers belonging to S where S ∩ (S∗
0 △ S∗

1) = ∅
(here, S∗

0 △ S∗
1 is the symmetric difference defined as S∗

0 △ S∗
1 = (S∗

0 \ S∗
1) ∪ (S∗

1 \ S∗
0)). The

construction assumes that the underlying encryption scheme is key private, i.e., the public key
used for encryption is not leaked from ciphertexts. Furthermore, the underlying encryption scheme
is required to be (weakly) robust [1, 2], i.e., the decryption algorithm outputs the error symbol ⊥
when a non-appropriate decryption key is used for decryption. Specifically, for two distinct key

3In a real system, additional encryption is required to encrypt a content. For example, a content is encrypted by
an anonymous broadcast encryption scheme, and keywords are encrypted by a searchable encryption scheme. Then,
the cloud server sends a ciphertext of the content to a receiver based on the result of the test algorithm. As in Liu
et al.’s paper [25], we only focus on the searching phase in this paper.

4We do not consider chosen-ciphertext attack (CCA) in this paper and we omit one-time signatures from the
construction hereafter.

2

Table 1: Comparison between our instantiation from the Qin et al. PAEKS scheme [32] and the
Lin et al. BAEKS scheme [25]. Let S be a set of receivers specified in the encryption algorithm
and N = |S|. CT and TD stand for ciphertext and trapdoor, respectively. We emphasize that
our generic construction provides trapdoor anonymity if the underlying PAEKS scheme provides
trapdoor anonymity.

Scheme CT Test Consistency CT TD Corruption
Size Attempts Anon. Anon.

Lin et al. [25] O(N) O(N) Not Defined Restricted Yes No
Ours (§ 4) + [32] O(N) O(N) Defined Full No Adaptive

pairs (pk, sk) and (pk′, sk′), the decryption result of a ciphertext generated by pk is ⊥ when sk′

is used for decryption. Robustness is important in identifying which ciphertext can be decrypted
by receivers because of the key privacy. At a high level, a ciphertext is a set of ciphertexts of
the underlying encryption scheme (with random permutations of ciphertexts). When a receiver
decrypts a ciphertext, the receiver decrypts each ciphertext of the underlying encryption scheme
one by one and outputs a non-⊥ decryption result.

Towards Generic Construction of BAEKS. Intuitively, BAEKS can be genetically constructed
from PAEKS if the underlying PAEKS scheme provides anonymity. In addition to anonymity, we
should pay attention to the robustness in the PAEKS context. That is, we need to ensure that a
trapdoor generated by a receiver secret key should not work against ciphertexts generated by the
public key of another receiver, even if the same keyword is associated. However, previous PAEKS
schemes only considered the following case: kw ̸= kw′ where kw is used to generate a ciphertext and
kw′ is used to generate a trapdoor. One exception is consistency in the multi-sender setting defined
in [15] where a trapdoor associated with a sender does not work against ciphertexts generated by
the secret key of another sender, even if the same keyword is associated. Thus, we need to consider
the dual concept, i.e., consistency in the multi-receiver setting.

Our Contribution. In this paper, we propose a generic construction of BAEKS derived from
PAEKS that provides ciphertext and trapdoor anonymity as well as consistency in a multi-receiver
setting. The proposed construction is an extension of the generic construction of the anonymous
broadcast encryption [24] and provides adaptive corruptions. We also demonstrate that the Qin et
al. PAEKS scheme [32] provides consistency in a multi-receiver setting and ciphertext anonymity.
A comparison of our instantiation with the Lin et al. BAEKS scheme [25] is presented in Table 1.
The number of test attempts and the ciphertext size are the same as those reported by Liu et al,
although the proposed construction provides a higher security level in terms of ciphertext anonymity
and adaptive corruptions. We note that the Qin et al. PAEKS scheme does not provide trapdoor
anonymity. Consequently, our construction does not provide trapdoor anonymity. However, we
argue that trapdoor anonymity is not necessary, at least for the setting considered in [25]. We recall
that a cloud server forwards the corresponding content to a receiver based on the result of the test
algorithm. Then, the cloud server needs to know the destination, i.e., it needs to obtain information
about the receivers. If not, there is no way to send the content to the receivers. Although we do not
deny the possibility that some applications may require trapdoor anonymity, we do not consider
trapdoor anonymity in our instantiation. We emphasize that the proposed generic construction
provides trapdoor anonymity if the underlying PAEKS scheme provides trapdoor anonymity.

3

2 Definitions of PAEKS in the Multi-Receiver Setting

In this section, we introduce the definitions of PAEKS in the multi-receiver setting.

Definition 1 (Syntax of PAEKS). A PAEKS scheme PAEKS consists of the following six algo-
rithms (PAEKS.Setup,PAEKS.KGR,PAEKS.KGS,PAEKS.Enc,PAEKS.Trapdoor,PAEKS.Test) defined
as follows.

PAEKS.Setup: The setup algorithm takes a security parameter λ as input, and outputs a common
parameter pp. We assume that pp implicitly contains the keyword space KS.

PAEKS.KGR: The receiver key generation algorithm takes pp as input, and outputs a public key pkR
and secret key skR.

PAEKS.KGS: The sender key generation algorithm takes pp as input, and outputs a public key pkS
and secret key skS.

PAEKS.Enc: The keyword encryption algorithm takes pkR, pkS, skS, and a keyword kw ∈ KS as
input, and outputs a ciphertext ctPAEKS.

PAEKS.Trapdoor: The trapdoor algorithm takes pkR, pkS, skR, and a keyword kw′ ∈ KS as input,
and outputs a trapdoor tdR,kw′.

PAEKS.Test: The test algorithm takes ctPAEKS and tdR,kw′ as input, and outputs 1 or 0.

Definition 2 (Correctness). For any security parameter λ, any common parameter pp← PAEKS.Setup(1λ),
any key pairs (pkR, skR) ← PAEKS.KGR(pp) and (pkS, skS) ← PAEKS.KGS(pp), and any keyword
kw ∈ KS, let ctPAEKS ← PAEKS.Enc(pkR, pkS, skS, kw) and tdR,kw ← PAEKS.Trapdoor(pkR, pkS, skR, kw).
Then Pr[PAEKS.Test(ctPAEKS, tdR,kw) = 1] = 1− negl(λ) holds.

Next, we define computational consistency in the multi-receiver setting which guarantees that
a trapdoor generated by a receiver secret key does not work against ciphertexts generated by the
public key of another receiver, even if the same keyword is associated. As in [15], the following
definition can be extended to consider the multi-sender setting if necessary.

Definition 3 (Computational Consistency for Multi Receivers). For all probabilistic polynomial-
time (PPT) adversaries A, we define the following experiment.

ExpconsistPAEKS,A(λ) :

pp← PAEKS.Setup(1λ)

(pkR[0], skR[0])← PAEKS.KGR(pp); (pkR[1], skR[1])← PAEKS.KGR(pp)

(pkS, skS)← PAEKS.KGS(pp)

(kw, kw′, i, j)← A(pp, pkR[0], pkR[1], pkS) s.t. kw, kw′ ∈ KS ∧ i, j ∈ {0, 1} ∧ (kw, i) ̸= (kw′, j)

ctPAEKS ← PAEKS.Enc(pkR[i], pkS, skS, kw)

tdR[j],kw′ ← PAEKS.Trapdoor(pkR[j], pkS, skR[j], kw
′)

If PAEKS.Test(ctPAEKS, tdR[j],kw′) = 1, then output 1, and 0 otherwise.

We say that a PAEKS scheme PAEKS is consistent if the advantage

AdvconsistPAEKS,A(λ) := Pr[ExpconsistPAEKS,A(λ) = 1]

is negligible in the security parameter λ.

4

Next, we define indistinguishability against the chosen keyword attack (IND-CKA) which en-
sures that no information about the keyword is leaked from ciphertexts. We also capture ciphertext
anonymity simultaneously. If we explicitly mention the IND-CKA security in the non-anonymous
setting, then (pk∗R[0], sk

∗
R[0]) = (pk∗R[1], sk

∗
R[1]) in the following experiment.

Definition 4 (IND-CKA). For all PPT adversaries A, we define the following experiment.

ExpIND-CKA
PAEKS,A(λ) :

pp← PAEKS.Setup(1λ)

(pk∗R[0], sk
∗
R[0])← PAEKS.KGR(pp); (pk∗R[1], sk

∗
R[1])← PAEKS.KGR(pp)

(pkS, skS)← PAEKS.KGS(pp)

(kw∗
0, kw

∗
1, state)← AO(pp, pk∗R[0], pk

∗
R[1], pkS) s.t. kw

∗
0, kw

∗
1 ∈ KS ∧ kw∗

0 ̸= kw∗
1

b
$←− {0, 1}; ct∗PAEKS ← PAEKS.Enc(pk∗R[b], pkS, skS, kw

∗
b)

b′ ← AO(state, ct∗PAEKS)

If b = b′ then output 1, and 0 otherwise.

Here, O := {OC(·, ·),OT (·, ·)}. OC takes kw ∈ KS and i ∈ {0, 1} as input, and returns the
result of PAEKS.Enc(pk∗R[i], pkS, skS, kw). Here, there is no restriction. OT takes kw′ ∈ KS and

i ∈ {0, 1} as input, and returns the result of PAEKS.Trapdoor(pk∗R[i], pkS, skR[i], kw
′). Here (kw′, i) ̸∈

{(kw∗
0, 0), (kw

∗
1, 0), (kw

∗
0, 1), (kw

∗
1, 1)}. We say that a PAEKS scheme PAEKS is IND-CKA secure

if the advantage
AdvIND-CKA

PAEKS,A(λ) := Pr[ExpIND-CKA
PAEKS,A(λ) = 1]

is negligible in the security parameter λ.

Next, we define indistinguishability against the inside keyword guessing attack (IND-IKGA)
which ensures that no information about the keyword is leaked from trapdoors. We also capture
trapdoor anonymity simultaneously.

Definition 5 (IND-IKGA). For all PPT adversaries A, we define the following experiment.

ExpIND-IKGA
PAEKS,A (λ) :

pp← PAEKS.Setup(1λ)

(pk∗R[0], sk
∗
R[0])← PAEKS.KGR(pp); (pk∗R[1], sk

∗
R[1])← PAEKS.KGR(pp)

(pkS, skS)← PAEKS.KGS(pp)

(kw∗
0, kw

∗
1, state)← AO(pp, pk∗R[0], pk

∗
R[1], pkS) s.t. kw

∗
0, kw

∗
1 ∈ KS ∧ kw∗

0 ̸= kw∗
1

b
$←− {0, 1}; td∗S,kw∗

b
← PAEKS.Trapdoor(pk∗R[b], pkS, sk

∗
R[b], kw

∗
b)

b′ ← AO(state, td∗S,kw∗
b
)

If b = b′ then output 1, and 0 otherwise.

Here, O := {OC(·, ·),OT (pkR, ·, skR, ·)}. OC takes kw ∈ KS and i ∈ {0, 1} as input, and returns
the result of PAEKS.Enc(pk∗R[i], pkS, skS, kw). Here, (kw, i) ̸∈ {(kw∗

0, 0), (kw
∗
1, 0), (kw

∗
0, 1), (kw

∗
1, 1)}.

OT takes kw′ ∈ KS and i ∈ {0, 1} as input, and returns the result of PAEKS.Trapdoor(pk∗R[i],

pkS, skR[i], kw
′). Here (kw′, i) ̸∈ {(kw∗

0, 0), (kw
∗
1, 0), (kw

∗
0, 1), (kw

∗
1, 1)}. We say that a PAEKS

scheme PAEKS is IND-IKGA secure if the advantage

AdvIND-IKGA
PAEKS,A (λ) := Pr[ExpIND-IKGA

PAEKS,A (λ) = 1]

is negligible in the security parameter λ.

5

3 Definitions of BAEKS

In this section, we introduce the definitions of BAEKS. We mainly follow the definitions given
in [25] but modify them to capture adaptive corruptions.

Definition 6 (Syntax of BAEKS). A BAEKS scheme BAEKS consists of the following six al-
gorithms (BAEKS.Setup,BAEKS.KGR,BAEKS.KGS,BAEKS.Enc,BAEKS.Trapdoor,BAEKS.Test) de-
fined as follows.

BAEKS.Setup: The setup algorithm takes a security parameter λ and the maximum number of
receivers Nmax as input, and outputs a common parameter pp. We assume that pp implicitly
contains the keyword space KS.

BAEKS.KGR: The receiver key generation algorithm takes pp as input, and outputs a public key pkR
and secret key skR.

BAEKS.KGS: The sender key generation algorithm takes pp as input, and outputs a public key pkS
and secret key skS.

BAEKS.Enc: The keyword encryption algorithm takes pp, a set of receivers S = {pkR[i]}i∈[1,N] where
N ≤ Nmax, pkS, skS, and a keyword kw ∈ KS as input, and outputs a ciphertext ctPAEKS.

BAEKS.Trapdoor: The trapdoor algorithm takes pkR, pkS, skR, and a keyword kw′ ∈ KS as input,
and outputs a trapdoor tdR,kw′.

BAEKS.Test: The test algorithm takes ctBAEKS and tdR,kw′ as input, and outputs 1 or 0.

Next, we define computational correctness, which ensures that the test algorithm outputs 1
if (1) the same keyword is specified when a ciphertext and a trapdoor are generated and (2) the
trapdoor is generated by a receiver secret key, and the receiver public key is contained in a set
of receivers, which is specified when the ciphertext is generated. The reason behind employing a
computational concept here is that the correctness of the proposed generic construction relies on
computational consistency (in a multi-receiver setting) of the underlying PAEKS scheme.

Definition 7 (Computational Correctness). For all PPT adversaries A, we define the following
experiment.

ExpcorrectBAEKS,A(λ) :

pp← BAEKS.Setup(1λ, Nmax)

For i ∈ [1, Nmax], (pkR[i], skR[i])← BAEKS.KGR(pp)

(pkS, skS)← BAEKS.KGS(pp)

(kw, S, pkR)← A(pp, {pkR[i]}i∈[1,Nmax], pkS) s.t. kw ∈ KS ∧ S ⊆ {pkR[1], . . . , pkR[Nmax]} ∧ pkR ∈ S

ctBAEKS ← BAEKS.Enc(pp, S, pkS, skS, kw); tdR,kw ← BAEKS.Trapdoor(pkR, pkS, skR, kw)

If BAEKS.Test(ctBAEKS, tdR,kw) = 1, then output 1, and 0 otherwise.

We say that a BAEKS scheme BAEKS is correct if the advantage

AdvcorrectBAEKS,A(λ) := Pr[ExpcorrectBAEKS,A(λ) = 1]

is negligible in the security parameter λ.

6

Next, we define computational consistency which ensures that the test algorithm outputs 0 if
(1) different keywords are specified when a ciphertext and a trapdoor are generated, respectively,
or (2) the trapdoor is generated by a receiver’s secret key but the receiver’s public key is not
contained in a set of receivers which is specified when the ciphertext is generated. Especially,
if pkR ̸∈ S, then BAEKS.Test(ctBAEKS, tdR,kw′) = 0 holds even if kw = kw′, where ctBAEKS ←
BAEKS.Enc(pp, S, pkS, skS, kw) and tdR,kw′ ← BAEKS.Trapdoor(pkR, pkS, skR, kw

′). The following
definition captures this case by the condition (kw ̸= kw′ ∨ pkR ̸∈ S).

Definition 8 (Computational Consistency). For all PPT adversaries A, we define the following
experiment.

ExpconsistBAEKS,A(λ) :

pp← BAEKS.Setup(1λ, Nmax)

For i ∈ [1, Nmax], (pkR[i], skR[i])← BAEKS.KGR(pp)

(pkS, skS)← BAEKS.KGS(pp)

(kw, kw′, S, pkR)← A(pp, {pkR[i]}i∈[1,Nmax], pkS)

s.t. kw, kw′ ∈ KS ∧ S ⊆ {pkR[1], . . . , pkR[Nmax]} ∧ (kw ̸= kw′ ∨ pkR ̸∈ S)

ctBAEKS ← BAEKS.Enc(pp, S, pkS, skS, kw)

tdR,kw′ ← BAEKS.Trapdoor(pkR, pkS, skR, kw
′)

If BAEKS.Test(ctBAEKS, tdR,kw′) = 1, then output 1, and 0 otherwise.

We say that a BAEKS scheme BAEKS is consistent if the advantage

AdvconsistBAEKS,A(λ) := Pr[ExpconsistBAEKS,A(λ) = 1]

is negligible in the security parameter λ.

Next, we define indistinguishability against the chosen keyword attack (IND-CKA) which en-
sures that no information about the keyword is leaked from ciphertexts. We also capture ciphertext
anonymity simultaneously. In our definition, adversaries A are allowed to obtain secret keys skR[i].
If pkR[i] ∈ S∗

0 ∩ S∗
1 , then kw∗

0 = kw∗
1 is required to hold. Adversaries A are also allowed to obtain

trapdoors generated by skR[i]. Similarly, if pkR[i] ∈ S∗
0 ∩ S∗

1 , then kw∗
0 = kw∗

1 is required to hold.

Definition 9 (IND-CKA). For all PPT adversaries A, we define the following experiment.

ExpIND-CKA
BAEKS,A(λ) :

pp← BAEKS.Setup(1λ, Nmax)

For i ∈ [1, Nmax], (pkR[i], skR[i])← BAEKS.KGR(pp)

(pkS, skS)← BAEKS.KGS(pp)

(kw∗
0, kw

∗
1, S

∗
0 , S

∗
1 , state)← AO(pp, {pkR[i]}i∈[1,Nmax], pkS)

s.t. kw∗
0, kw

∗
1 ∈ KS ∧ S∗

0 , S
∗
1 ⊆ {pkR[1], . . . , pkR[Nmax]} ∧ |S

∗
0 | = |S∗

1 |

b
$←− {0, 1}; ct∗BAEKS ← BAEKS.Enc(pp, S∗

b , pkS, skS, kw
∗
b)

b′ ← AO(state, ct∗BAEKS)

If b = b′ then output 1, and 0 otherwise.

7

Here, O := {OC(·, ·),OT (·, ·),OExt(·)}. OC takes kw ∈ KS and S ⊆ {pkR[1], . . . , pkR[Nmax]} as in-
put, and returns the result of BAEKS.Enc(pp, S, pkS, skS, kw). Here, there is no restriction. OT takes
kw′ ∈ KS and pkR[i] ∈ {pkR[1], . . . , pkR[Nmax]} as input, and returns the result of BAEKS.Trapdoor(pkR[i],
pkS, skR[i], kw

′). Here, either kw′ ̸∈ {kw∗
0, kw

∗
1} or pkR[i] ∈ S where S ∩ (S∗

0 △ S∗
1) = ∅. If

pkR[i] ∈ S∗
0 ∩ S∗

1 , then kw∗
0 = kw∗

1. OExt takes pkR[i] ∈ {pkR[1], . . . , pkR[Nmax]} as input, and re-
turns skR[i]. Here, pkR[i] ∈ S where S ∩ (S∗

0 △S∗
1) = ∅. If pkR[i] ∈ S∗

0 ∩S∗
1 ∧ kw′ ∈ {kw∗

0, kw
∗
1}, then

kw∗
0 = kw∗

1. We say that a BAEKS scheme BAEKS is IND-CKA secure if the advantage

AdvIND-CKA
BAEKS,A(λ) := Pr[ExpIND-CKA

BAEKS,A(λ) = 1]

is negligible in the security parameter λ.

Next, we define indistinguishability against the inside keyword guessing attack (IND-IKGA)
which ensures that no information about the keyword is leaked from trapdoors. We also capture
trapdoor anonymity simultaneously.

Definition 10 (IND-IKGA). For all PPT adversaries A, we define the following experiment.

ExpIND-IKGA
BAEKS,A(λ) :

pp← BAEKS.Setup(1λ, Nmax)

For i ∈ [1, Nmax], (pkR[i], skR[i])← BAEKS.KGR(pp)

(pkS, skS)← BAEKS.KGS(pp)

(kw∗
0, kw

∗
1, pk

∗
R[0], pk

∗
R[1], state)← A

O(pp, {pkR[i]}i∈[1,Nmax], pkS)

s.t. kw∗
0, kw

∗
1 ∈ KS ∧ kw∗

0 ̸= kw∗
1 ∧ pk∗R[0], pk

∗
R[1] ∈ {pkR[i]}i∈[1,Nmax]

b
$←− {0, 1}; td∗R[b],kw∗

b
← BAEKS.Trapdoor(pk∗R[b], pkS, sk

∗
R[b], kw

∗
b)

b′ ← AO(state, td∗R[b],kw∗
b
)

If b = b′ then output 1, and 0 otherwise.

Here, O := {OC(·, ·),OT (·, ·),OExt(·)}. OC takes kw ∈ KS and S ⊆ {pkR[1], . . . , pkR[Nmax]} as
input, and returns the result of BAEKS.Enc(pp, S, pkS, skS, kw). Here, either kw′ ̸∈ {kw∗

0, kw
∗
1} or

pk∗R[0], pk
∗
R[1] ̸∈ S. OT takes kw′ ∈ KS and pkR[i] ∈ {pkR[1], . . . , pkR[Nmax]} as input, and returns

the result of BAEKS.Trapdoor(pkR[i], pkS, skR[i], kw
′). Here, either kw′ ̸∈ {kw∗

0, kw
∗
1} or pkR[i] ̸∈

{pk∗R[0], pk
∗
R[1]}. OExt takes pkR[i] ∈ {pkR[1], . . . , pkR[Nmax]} as input, and returns skR[i]. Here, pkR[i] ̸∈

{pk∗R[0], pk
∗
R[1]}. We say that a BAEKS scheme BAEKS is IND-IKGA secure if the advantage

AdvIND-IKGA
BAEKS,A(λ) := Pr[ExpIND-IKGA

BAEKS,A(λ) = 1]

is negligible in the security parameter λ.

4 Proposed Generic Construction

In this section, we demonstrate the proposed generic construction of BAEKS derived from PAEKS
and a random permutation. Let PAEKS = (PAEKS.Setup,PAEKS.KGR,PAEKS.KGS,PAEKS.Enc,
PAEKS.Trapdoor,PAEKS.Test) be a PAEKS scheme. Let π : {1, . . . , N} → {1, . . . , N} be a random
permutation for any N ≤ Nmax. Intuitively, a BAEKS ciphertext is a set of PAEKS ciphertexts
with each public key pkR[i] and the same keyword kw. Due to consistency in the multi-receiver

8

setting, the test algorithm of the underlying PAEKS scheme outputs 0 for a ciphertext encrypted
by pkR[i] and a trapdoor generated by pkR[j] and i ̸= j, even if kw is associated to the trapdoor.
That is, consistency in the multi-receiver setting acts as robustness in the generic construction
of anonymous broadcast encryption. Moreover, a BAEKS ciphertext (ctPAEKS1, . . . , ctPAEKSN) is
randomly sorted by a random permutation π such that (ctPAEKSπ(1), . . . , ctPAEKSπ(N)). Thus, no
information about receiver is revealed at least from the order of ciphertexts. The construction of a
BAEKS scheme BAEKS from PAEKS is described below.

The Proposed Generic Construction

BAEKS.Setup(λ,Nmax): Run pp′ ← PAEKS.Setup(1λ) and output pp = (pp′, Nmax).

BAEKS.KGR(pp): Parse pp = (pp′, Nmax). Run (pkR, skR)← PAEKS.KGR(pp
′) and output (pkR, skR).

BAEKS.KGS(pp): Parse pp = (pp′, Nmax). Run (pkS, skS)← PAEKS.KGS(pp) and output (pkS, skS).

BAEKS.Enc(pp, S, pkS, skS, kw): Parse pp = (pp′, Nmax). Without loss of generality, we denote
S = {pkR[1], . . . , pkR[N]}. For all i ∈ [1, Nmax], run ctPAEKSi ← PAEKS.Enc(pkR[i], pkS, skS, kw).
Output ctBAEKS = {ctPAEKSπ(i)}i∈[1,N].

BAEKS.Trapdoor(pkR, pkS, skR, kw
′): Run tdR,kw′ ← PAEKS.Trapdoor(pkR, pkS, skR, kw) and output

tdR,kw′ .

BAEKS.Test(ctBAEKS, tdR,kw′): Parse ctBAEKS = {ctPAEKSi}i∈[1,N]. Output 1 if there exists i ∈ [1, N]
such that PAEKS.Test(ctPAEKSi, tdR,kw′) = 1, and 0 otherwise.

Because of consistency in the multi-receiver setting of PAEKS, PAEKS.Test(ctPAEKSi, tdR[j],kw′) = 0
for ctPAEKSi ← PAEKS.Enc(pkR[i], pkS, skS, kw) and tdR[j],kw′ ← PAEKS.Trapdoor(pkR[j], pkS, skR[j], kw

′)
if (kw, i) ̸= (kw′, j). Thus, the proposed construction is correct. Note that the BAEKS.Test al-
gorithm outputs 1 only if there exists one i ∈ [1, N] such that PAEKS.Test(ctPAEKSi, tdR,kw′) = 1
holds. This requires a stronger consistency and the underlying PAEKS scheme needs to provide
consistency in the multi-receiver setting, and thus correctness holds in a computational manner.
If we just require correctness in a usual manner, i.e., the BAEKS.Test algorithm outputs 1 even
if there exist two or more i ∈ [1, N] such that PAEKS.Test(ctPAEKSi, tdR,kw′) = 1 holds, then the
proposed construction is correct in a statistical manner.

In addition to provide correctness, due to consistency in the multi-receiver setting of PAEKS,
the proposed construction is consistent because the condition pkR ̸∈ S in ExpconsistBAEKS,A(λ) is also
captured.

5 Security Analysis

In this section, we prove the following theorems. We note that Libert et al. [24] proved the IND-
CCA security of the generic construction of anonymous broadcast encryption by assuming that the
underlying encryption scheme is (weakly) robust. This robustness is required to handle decryption
queries, where the decryption result using a different secret key is non-⊥. Since we do not consider
CCA security, we do not employ consistency to prove IND-CKA/IND-IKGA security here.

Theorem 1. The proposed construction is IND-CKA secure if the underlying PAEKS scheme is
IND-CKA secure.

9

Proof. The proof uses a sequence of games, where an adversary is given an encryption of kw∗
0 for

S∗
0 as the challenge ciphertext in the first game, and the adversary is given an encryption of kw∗

1

for S∗
1 as the challenge ciphertext in the last game. Let |S∗

0 | = |S∗
1 | = N∗ ≤ Nmax and ℓ = |S∗

0 ∩S∗
1 |.

Game 0: This game corresponds to the real game when the challenger’s bit is b = 0. Let E0 be
the event that A outputs b′ = 0.

Game k (1 ≤ k ≤ ℓ): From S∗
0 and S∗

1 , let us define two ordered indices sets S̄∗
0 = {θ1, . . . ,

θℓ, θℓ+1, . . . , θN∗} and S̄∗
1 = {ρ1, . . . , ρℓ, ρℓ+1, . . . , ρN∗}, where θi = ρi for i ∈ [1, ℓ] and θi ̸= ρi

for i ∈ [ℓ+ 1, N∗]. The challenge ciphertext ct∗BAEKS is generated as follows.

• For j ∈ [1, k], compute ctPAEKSj ← PAEKS.Enc(pkR[θj], pkS, skS, kw
∗
1).

• For j ∈ [k + 1, N∗], compute ctPAEKSj ← PAEKS.Enc(pkR[θj], pkS, skS, kw
∗
0).

Then, ct∗BAEKS = {ctPAEKSπ(i)}i∈[1,N∗]. Let Ek be the event that A outputs b′ = 0 in Game k.

Game k′ (ℓ+ 1 ≤ k′ ≤ N∗): From S∗
0 and S∗

1 , again let define two ordered indices sets S̄∗
0 =

{θ1, . . . , θℓ, θℓ+1, . . . , θN∗} and S̄∗
1 = {ρ1, . . . , ρℓ, ρℓ+1, . . . , ρN∗} where θi = ρi for i ∈ [1, ℓ]

and θi ̸= ρi for i ∈ [ℓ+ 1, N∗]. The challenge ciphertext ct∗BAEKS is generated as follows.

• For j ∈ [1, k′], compute ctPAEKSj ← PAEKS.Enc(pkR[ρj], pkS, skS, kw
∗
1).

• For j ∈ [k′ + 1, N∗], compute ctPAEKSj ← PAEKS.Enc(pkR[θj], pkS, skS, kw
∗
0).

Then, ct∗BAEKS = {ctPAEKSπ(i)}i∈[1,N∗]. Let Ek′ be the event that A outputs b′ = 0 in Game
k′.

Here, Game N∗ corresponds to the real game when the challenger’s bit is b = 1. We prove the
following Lemma 1 and Lemma 2.

Lemma 1. For each k ∈ [1, ℓ], Game k is indistinguishable from Game k − 1 if the underlying
PAEKS scheme is IND-CKA secure in the non-anonymous setting. Precisely, we can construct an
algorithm B such that

|Pr[Ek]− Pr[Ek−1]| ≤ Nmax · AdvIND-CKA
PAEKS,B(λ)

Proof. LetA be an adversary that distinguishes Game k and Game k−1. we construct an algorithm
B that breaks the IND-CKA security of PAEKS as follows. Let C be the challenger of the IND-CKA
security of PAEKS. For each k ∈ [1, ℓ], if A issues OExt(pkR[i]) such that pkR[i] ∈ S∗

0 ∩ S∗
1 , then

kw∗
0 = kw∗

1. Then, Game k and Game k − 1 are identical. Thus, we can assume that kw∗
0 ̸= kw∗

1

and A does not issue OExt(pkR[i]) for pkR[i] ∈ S∗
0 ∩ S∗

1 .
B obtains (pp′, pk∗R, pkS) from C. Recall that now non-anonymous setting is considered, pk∗R[0] =

pk∗R[1] and we set pk∗R = pk∗R[0]. B picks i∗
$←− {1, Nmax}. For i ∈ [1, Nmax]\{i∗}, B runs (pkR[i], skR[i])

← PAEKS.KGR(pp
′). B sets pp = (pp′, Nmax) and sends (pp, {pkR[i]}i∈[1,Nmax], pkS) to A.

• When A issues OC(kw, S) where |S| = N , if pk∗R ∈ S, then B issues OC(kw, 0) of the under-
lying PAEKS scheme, obtains ctPAEKS ← PAEKS.Enc(pk∗R, pkS, skS, kw), and sets ctPAEKSi∗ =
ctPAEKS. B generates other PAEKS ciphertexts using skR[i]. B returns ctBAEKS = {ctPAEKSπ(i)}i∈[1,N]

to A.

10

• When A issues OT (kw
′, pkR[i]), if i = i∗, then B issues OT (kw

′, 0) of the underlying PAEKS
scheme, obtains tdR,kw′ ← PAEKS.Trapdoor(pk∗R, pkS, sk

∗
R, kw

′), and sends tdR,kw′ to A. If
i ̸= i∗, then B responds the query using skR[i].

• WhenA issuesOExt(pkR[i]) for i ∈ [1, Nmax]\{i∗}, B returns skR[i]. WhenA issuesOExt(pkR[i∗]),
B aborts.

In the challenge phase, A declares (kw∗
0, kw

∗
1, S

∗
0 , S

∗
1). B re-orders indices of S∗

0 and S∗
1 such that

S̄∗
0 = {θ1, . . . , θℓ, θℓ+1, . . . , θN∗} and S̄∗

1 = {ρ1, . . . , ρℓ, ρℓ+1, . . . , ρN∗} where θi = ρi for i ∈ [1, ℓ]
and θi ̸= ρi for i ∈ [ℓ + 1, N∗]. If θk ̸= i∗, then B aborts. Here, we assume that θk = i∗

holds with a probability of at least 1/Nmax since the choice of i∗ is completely independent of
A’s view. We remark that if θk = i∗, then pkR[i∗] = pk∗R ∈ S∗

0 ∩ S∗
1 . Thus, A does not issue

OExt(pkR[i∗]) as mentioned above. B sends (kw∗
0, kw

∗
1) to C as the challenge keywords. C sends

ct∗PAEKS ← PAEKS.Enc(pk∗R, pkS, skS, kw
∗
b) to B for some internally flipped random bit b

$←− {0, 1}.
The BAEKS challenge ciphertext ct∗BAEKS = {ctPAEKSπ(i)}i∈[1,N∗] is generated as follows.

• For j ∈ [1, k− 1], B issues OC(kw
∗
1, pkR[θj]). Then C responds ctPAEKSj ← PAEKS.Enc(pkR[θj],

pkS, skS, kw
∗
1) to B.

• For j = k, B sets ctPAEKSj = ct∗PAEKS.

• For j ∈ [k+1, N∗], B issuesOC(kw
∗
0, pkR[θj]). Then C responds ctPAEKSj ← PAEKS.Enc(pkR[θj],

pkS, skS, kw
∗
0) to B.

B simulates A’s queries as in the first phase. Finally, A outputs b′ ∈ {0, 1}, and B outputs the
same result. If C chooses b = 0, then B is clearly playing Game k− 1 whereas, if b = 1, B is playing
Game k. This concludes the proof of Lemma 1.

Lemma 2. For each k′ ∈ [ℓ+1, N∗], Game k′ is indistinguishable from Game k′−1 if the underlying
PAEKS scheme is IND-CKA secure. Precisely, we can construct an algorithm B such that

|Pr[Ek′]− Pr[Ek′−1]| ≤ N2
max · AdvIND-CKA

PAEKS,B(λ)

Proof. Let A be an adversary that distinguishes Game k′ and Game k′ − 1. we construct an
algorithm B that breaks the IND-CKA security of PAEKS as follows. Let C be the challenger of
the IND-CKA security of PAEKS.

B obtains (pp′, pk∗R[0], pk
∗
R[1], pkS) from C. B picks two distinct indices i∗0, i

∗
1

$←− {1, Nmax} and
sets pkR[i∗0] = pk∗R[0] and pk∗R[i∗1]

= pkR[1]. For i ∈ [1, Nmax] \ {i∗0, i∗1}, B runs (pkR[i], skR[i]) ←
PAEKS.KGR(pp

′). B sets pp = (pp′, Nmax) and sends (pp, {pkR[i]}i∈[1,Nmax], pkS) to A.

• When A issues OC(kw, S) where |S| = N , if pkR[i∗0] ∈ S, then B issues OC(kw, 0) of the
underlying PAEKS scheme, obtains ctPAEKS ← PAEKS.Enc(pk∗R[0], pkS, skS, kw), and sets
ctPAEKSi∗0 = ctPAEKS. If pkR[i∗1] ∈ S, then B issues OC(kw, 1) of the underlying PAEKS
scheme, obtains ctPAEKS ← PAEKS.Enc(pk∗R[1], pkS, skS, kw), and sets ctPAEKSi∗1 = ctPAEKS. B
generates other PAEKS ciphertexts using skR[i]. B returns ctBAEKS = {ctPAEKSπ(i)}i∈[1,N] to
A.

• When A issues OT (kw
′, pkR[i]), if i = i∗0, then B issues OT (kw

′, 0) of the underlying PAEKS
scheme, obtains tdR,kw′ ← PAEKS.Trapdoor(pk∗R[0], pkS, sk

∗
R[0], kw

′), and sends tdR,kw′ to A.
If i = i∗1, then B issues OT (kw

′, 1) of the underlying PAEKS scheme, obtains tdR,kw′ ←
PAEKS.Trapdoor(pk∗R[1], pkS, sk

∗
R[1], kw

′), and sends tdR,kw′ to A. If i ̸∈ {i∗0, i∗1}, then B re-
sponds the query using skR[i].

11

• When A issues OExt(pkR[i]) for i ∈ [1, Nmax]\{i∗}, B returns skR[i]. When A issues OExt(pkR[i])
for i ∈ {i∗0, i∗1}, B aborts.

In the challenge phase, A declares (kw∗
0, kw

∗
1, S

∗
0 , S

∗
1). B re-orders indices of S∗

0 and S∗
1 such that

S̄∗
0 = {θ1, . . . , θℓ, θℓ+1, . . . , θN∗} and S̄∗

1 = {ρ1, . . . , ρℓ, ρℓ+1, . . . , ρN∗} where θi = ρi for i ∈ [1, ℓ] and
θi ̸= ρi for i ∈ [ℓ + 1, N∗]. If θk′ ̸= i∗0 or ρk′ ̸= i∗1, then B aborts. Here, we assume θk′ = i∗0 and
ρk′ = i∗1, which holds with a probability of at least 1/Nmax(Nmax − 1) > 1/N2

max since the choice
of (i∗0, i

∗
1) is completely independent of A’s view. We remark that if θk′ = i∗0 and ρk′ = i∗1, then

pkR[i∗0], pkR[i∗1] ∈ S∗
0 △ S∗

1 and thus A does not issue both OExt(pkR[i∗0]) and OExt(pkR[i∗1]). B sends
(kw∗

0, kw
∗
1) to C as the challenge keywords. C sends ct∗PAEKS ← PAEKS.Enc(pk∗R[b], pkS, skS, kw

∗
b) to

B for some internally flipped random bit b
$←− {0, 1}. The BAEKS challenge ciphertext ct∗BAEKS =

{ctPAEKSπ(i)}i∈[1,N∗] is generated as follows.

• For j ∈ [1, k′−1], B issues OC(kw
∗
1, pkR[ρj]). Then C responds ctPAEKSj ← PAEKS.Enc(pkR[ρj],

pkS, skS, kw
∗
1) to B.

• For j = k′, B sets ctPAEKSj = ct∗PAEKS.

• For j ∈ [k′+1, N∗], B issuesOC(kw
∗
0, pkR[θj]). Then C responds ctPAEKSj ← PAEKS.Enc(pkR[θj],

pkS, skS, kw
∗
0) to B.

B simulates A’s queries as in the first phase. Finally, A outputs b′ ∈ {0, 1}. and B outputs the
same result. If C chooses b = 0, then B is clearly playing Game k′−1 whereas, if b = 1, B is playing
Game k′. This concludes the proof of Lemma 2.

From Lemma 1 and Lemma 2, we have |Pr[E0]− Pr[EN∗]| ≤ ℓ ·Nmax · AdvIND-CKA
PAEKS,B(λ) + (N∗ −

ℓ) ·N2
max · AdvIND-CKA

PAEKS,B(λ) ≤ N3
max · AdvIND-CKA

PAEKS,B(λ). This concludes the proof of Theorem 1.

Theorem 2. The proposed construction is IND-IKGA secure if the underlying PAEKS scheme is
IND-CKA secure.

Proof Sketch. Since a BAEKS trapdoor is a PAEKS trapdoor in the proposed construction, the
proof of Theorem 2 is straightforward. Let A be the adversary that breaks the IND-IKGA security.
We construct an algorithm B that breaks the IND-IKGA security of the underlying PAEKS scheme.
We need to consider that B embeds two public keys, say (pk∗R[0], pk

∗
R[1]), given by the challenger of

the IND-IKGA security of PAEKS C, to {pkR[i]}i∈[1,Nmax], and expects that (pk∗R[0], pk
∗
R[1]) will be

selected by A in the challenge phase. The guessing is correct with a probability of at least N2
max.

If the guess is correct, then B can simulate all queries issued by A by forwarding them to C, and
can break the IND-IKGA security of the underlying PAEKS scheme using A.

6 Qin et al. PAEKS

In this section, we briefly explain that the Qin et al. PAEKS scheme [32] provides consistency in
the multi-receiver setting and ciphertext anonymity, but it does not provide trapdoor anonymity.
We emphasize that trapdoor anonymity is not required in the original PAEKS security definition.
The Qin et al. PAEKS scheme is described as follows.

PAEKS.Setup(λ): Let e : G×G→ GT be a bilinear pairing where G and GT be groups with prime
order p and G = ⟨g⟩. H1 : {0, 1}∗ → G, H2 : G → {0, 1}λ, and H3 : G → {0, 1}λ be hash
functions which are modeled as random oracles. Output pp = (g,G,GT , e, p,H1,H2,H3).

12

PAEKS.KGR(pp): Choose x, v
$←− Zp. Output pkR = (pk

(1)
R , pk

(2)
R) = (gx, gv) and skR = (sk

(1)
R , sk

(2)
R) =

(x, v).

PAEKS.KGS(pp): Choose u
$←− Zp. output pkS = gu and skS = u.

PAEKS.Enc(pkR, pkS, skS, kw): Parse pkR = (pk
(1)
R , pk

(2)
R) and skS = u. Choose r

$←− Zp and compute

A = gx. Compute DHkeyS,R = (pk
(2)
R)u (= guv), h = H1(kw||pkS||pkR||H3(DHkeyS,R)), and

B = H2(e(h
r, pk

(1)
R))). Output ctPAEKS = (A,B).

PAEKS.Trapdoor(pkR, pkS, skR, kw
′): Parse pkR = (pk

(1)
R , pk

(2)
R) and skR = (sk

(1)
R , sk

(2)
R). Compute

DHkeyS,R = pkS
sk

(2)
R (= guv) and h′ = H1(kw

′||pkS||pkR||H3(DHkeyS,R)). Output tdR,kw′ =

(h′)sk
(1)
R = (h′)x.

PAEKS.Test(ctPAEKS, tdR,kw′): Parse ctPAEKS = (A,B). Output 1 if H2(e(A, tdR,kw′)) = B and 0,
otherwise.

Intuitively, a DH key DHkeyS,R = (pk
(2)
R)skS = (pkS)

sk
(2)
R = guv is defined, which is fixed when a

sender and a receiver are fixed. The value h is computed by a keyword to be encrypted and a DH key
such that h = H1(kw||pkS||pkR||H3(DHkeyS,R)). SinceH1 is modeled as a random oracle, informally,
no information about kw is revealed from h. Here, to formally prove the IND-IKGA security, H3

is required. A ciphertext is A = gr and B = H2(e(h
r, pk

(1)
R))) for r

$←− Zp. Thus, informally,
no information of kw is revealed from (A,B) since H2 is modeled as a random oracle. Formally,
Qin et al. proved the IND-CKA security under the bilinear Diffie-Hellman (BDH) assumption.
Simultaneously, we observe that receiver information, i.e., pkR is also not revealed from (A,B).
Precisely, for two challenge keywords kw∗

0 and kw∗
1 and two receivers’ public keys pkR[0] and pkR[1],

the challenge bit b is hidden from H1(kw
∗
b ||pkS||pkR[b]||H3(DHkeyS,Rb)) and the simulation given

in [32] still works. The value h′ is computed by a keyword to be searched and a DH key, such
that h′ = H1(kw

′||pkS||pkR||H3(DHkeyS,R)), and tdR,kw′ = (h′)x. If kw = kw′ and the sender and
the receiver are the same, then h = h′ holds. If kw ̸= kw′ or either the sender or the receiver is
different, then h ̸= h′ holds due to the collision resistance of H1. Thus, consistency in the multi-
receiver setting holds. Since H1 is modeled as random oracle, informally, no information of kw′ is
revealed from h′ and thus no information of kw′ is revealed from tdR,kw′ = (h′)x. Formally, Qin
et al. introduced the computational oracle Diffie-Hellman (CODH) problem, and proved that the
scheme provides the IND-IKGA security under the CODH assumption.

However, because (g, h′, pk
(1)
R , tdR,kw′) = (g, h′, gx, (h′)x) is a decisional Diffie-Hellman (DDH)

tuple, e(pk
(1)
R , h′) = e(g, tdR,kw′) holds if tdR,kw′ is generated by the receiver (whose public key is

pkR). Thus, the Qin et al. PAEKS scheme does not provide trapdoor anonymity. To provide
trapdoor anonymity, one may employ type-3 asymmetric pairings; where e : G1 × G2 → GT , and
there is no efficiently computable isomorphism between G1 and G2. Then, the DDH assumption

holds over both G1 and G2. To prevent the DDH test, (g, h′, pk
(1)
R , tdR,kw′) must belong to the same

group. However, a ciphertext consists of B = H2(e(h
r, pk

(1)
R))), i.e., h and pk

(1)
R belong to different

groups, and thus h and h′ also belong to different groups. This violates the correctness of the Qin
et al. scheme that requires h = h′ if kw = kw′ and the sender and the receiver are the same. Thus,
it seems nontrivial to provide trapdoor anonymity even if asymmetric pairings are employed.

13

7 Conclusion

In this paper, we propose a generic construction of BAEKS from PAEKS providing ciphertext
and trapdoor anonymity and consistency in the multi-receiver setting. Our generic constructions
provide adaptive corruptions. We also show that the Qin et al. PAEKS scheme can be employed
for instantiating the proposed generic construction.

The proposed construction requires approximately |S|/2-times PAEKS test procedures. To
reduce the number of decryption attempts in the generic construction of anonymous broadcast
encryption, Libert et al. [24] proposed an anonymous hint system that provides O(1) decryption
cost in terms of the number of cryptographic operations. Unfortunately, we could not directly
employ this anonymous hint system because the test algorithm was run by a cloud server in BAEKS,
whereas the decryption algorithm was run by a receiver in anonymous broadcast encryption. Thus,
the cloud server could observe the secret key of the hint system. Because of ciphertext anonymity
(which is implied by IND-CKA in our definition), it is required that the cloud server has no
information about the receivers before running the test algorithm. That is, if a hint system can
be employed, then the cloud server obtains information about the receivers before running the test
algorithm. Consequently, we did not employ a hint system in this paper. We leave this task as an
interesting future work.

Fazio et al. [16] also proposed a generic construction of anonymous broadcast encryption that
provides outsider anonymity, where no information about a receiver is leaked from ciphertexts
against outsiders, i.e., an adversary is allowed to obtain secret keys of outsiders who belong to a set
S where S∩(S∗

0∪S∗
1) = ∅. Regarding the number of receivers, the Libert et al. construction provides

a linear-size ciphertext, whereas the Fazio et al. construction provides a sublinear-size ciphertext
using the subset cover framework [28] at the expense of a weak anonymity level. Although outsider
anonymity seems sufficient in some applications, the construction proposed by Fazio et al. cannot
be extended to BAEKS directly because Fazio et al. employed anonymous and weakly robust
identity-based encryption. Employing the Fazio et al. construction in the BAEKS context is left
as a future work.

Cheng and Meng [13] proposed a PAEKS scheme from LWE (learning with errors). In their
security proof, almost all ciphertext components are switched to random values. However, one
component is selected from the receiver public key-related distribution. Although it is sufficient to
prove that no information about the keyword is revealed from ciphertexts, it is unclear whether
the Cheng-Meng PAEKS scheme provides ciphertext anonymity. We leave this to be investigated
in a future study.

Acknowledgment: This work was supported by JSPS KAKENHI Grant Number JP21K11897.

References

[1] Michel Abdalla, Mihir Bellare, and Gregory Neven. Robust encryption. In TCC, pages 480–
497, 2010.

[2] Michel Abdalla, Mihir Bellare, and Gregory Neven. Robust encryption. Journal of Cryptology,
31(2):307–350, 2018.

[3] Mohamed Ali, Hamza Ali, Ting Zhong, Fagen Li, Zhiguan Qin, and A. A. Ahmed Abdelra-
haman. Broadcast searchable keyword encryption. In IEEE CSE, pages 1010–1016, 2014.

[4] Miguel Ambrona, Gilles Barthe, and Benedikt Schmidt. Generic transformations of predicate
encodings: Constructions and applications. In CRYPTO, pages 36–66, 2017.

14

[5] Nuttapong Attrapadung, Jun Furukawa, and Hideki Imai. Forward-secure and searchable
broadcast encryption with short ciphertexts and private keys. In ASIACRYPT, pages 161–
177, 2006.

[6] Adam Barth, Dan Boneh, and Brent Waters. Privacy in encrypted content distribution using
private broadcast encryption. In Financial Cryptography and Data Security, pages 52–64, 2006.

[7] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano. Public key
encryption with keyword search. In EUROCRYPT, pages 506–522, 2004.

[8] Marco Calderini, Riccardo Longo, Massimiliano Sala, and Irene Villa. Searchable encryption
with randomized ciphertext and randomized keyword search. IACR Cryptol. ePrint Arch.,
page 945, 2022.

[9] Sanjit Chatterjee and Sayantan Mukherjee. Keyword search meets membership testing: Adap-
tive security from SXDH. In INDOCRYPT, pages 21–43, 2018.

[10] Jie Chen, Romain Gay, and Hoeteck Wee. Improved dual system ABE in prime-order groups
via predicate encodings. In EUROCRYPT, pages 595–624, 2015.

[11] Jie Chen and Junqing Gong. ABE with tag made easy - concise framework and new instanti-
ations in prime-order groups. In ASIACRYPT, pages 35–65, 2017.

[12] Leixiao Cheng and Fei Meng. Security analysis of Pan et al.’s “public-key authenticated
encryption with keyword search achieving both multi-ciphertext and multi-trapdoor indistin-
guishability”. Journal of Systems Architecture, 119:102248, 2021.

[13] Leixiao Cheng and Fei Meng. Public key authenticated encryption with keyword search from
LWE. In ESORICS, pages 303–324, 2022.

[14] Tianyu Chi, Baodong Qin, and Dong Zheng. An efficient searchable public-key authenticated
encryption for cloud-assisted medical internet of things. Wireless Communications and Mobile
Computing, 2020:8816172:1–8816172:11, 2020.

[15] Keita Emura. Generic construction of public-key authenticated encryption with keyword search
revisited: Stronger security and efficient construction. In ACM APKC, pages 39–49, 2022.

[16] Nelly Fazio and Irippuge Milinda Perera. Outsider-anonymous broadcast encryption with
sublinear ciphertexts. In Public Key Cryptography, pages 225–242, 2012.

[17] Tao Feng and Jiewen Si. Certificateless searchable encryption scheme in multi-user environ-
ment. Cryptography, 6(4):61, 2022.

[18] Qiong Huang and Hongbo Li. An efficient public-key searchable encryption scheme secure
against inside keyword guessing attacks. Information Sciences, 403:1–14, 2017.

[19] Peng Jiang, Fuchun Guo, and Yi Mu. Efficient identity-based broadcast encryption with
keyword search against insider attacks for database systems. Theoretical Computer Science,
767:51–72, 2019.

[20] Aggelos Kiayias, Ozgur Oksuz, Alexander Russell, Qiang Tang, and Bing Wang. Efficient
encrypted keyword search for multi-user data sharing. In ESORICS, pages 173–195, 2016.

15

[21] Aggelos Kiayias and Katerina Samari. Lower bounds for private broadcast encryption. In
Information Hiding, pages 176–190, 2012.

[22] Hirokazu Kobayashi, Yohei Watanabe, and Junji Shikata. Asymptotically tight lower bounds
in anonymous broadcast encryption and authentication. In IMACC, pages 105–128, 2021.

[23] Jiangtao Li and Junqing Gong. Improved anonymous broadcast encryptions - tight security
and shorter ciphertext. In ACNS, pages 497–515, 2018.

[24] Benôıt Libert, Kenneth G. Paterson, and Elizabeth A. Quaglia. Anonymous broadcast en-
cryption: Adaptive security and efficient constructions in the standard model. In Public Key
Cryptography, pages 206–224, 2012.

[25] Xueqiao Liu, Kai He, Guomin Yang, Willy Susilo, Joseph Tonien, and Qiong Huang. Broadcast
authenticated encryption with keyword search. In ACISP, pages 193–213, 2021.

[26] Zi-Yuan Liu, Yi-Fan Tseng, Raylin Tso, Masahiro Mambo, and Yu-Chi Chen. Public-key au-
thenticated encryption with keyword search: Cryptanalysis, enhanced security, and quantum-
resistant instantiation. In ACM ASIACCS, pages 423–436, 2022.

[27] Mimi Ma, Shuqin Fan, and Dengguo Feng. Multi-user certificateless public key encryption with
conjunctive keyword search for cloud-based telemedicine. Journal of Information Security and
Applications, 55:102652, 2020.

[28] Dalit Naor, Moni Naor, and Jeffery Lotspiech. Revocation and tracing schemes for stateless
receivers. In CRYPTO, pages 41–62, 2001.

[29] Mahnaz Noroozi and Ziba Eslami. Public key authenticated encryption with keyword search:
revisited. IET Information Security, 13(4):336–342, 2019.

[30] Xiangyu Pan and Fagen Li. Public-key authenticated encryption with keyword search achieving
both multi-ciphertext and multi-trapdoor indistinguishability. Journal of Systems Architecture,
115:102075, 2021.

[31] Baodong Qin, Yu Chen, Qiong Huang, Ximeng Liu, and Dong Zheng. Public-key authenticated
encryption with keyword search revisited: Security model and constructions. Information
Sciences, 516:515–528, 2020.

[32] Baodong Qin, Hui Cui, Xiaokun Zheng, and Dong Zheng. Improved security model for public-
key authenticated encryption with keyword search. In ProvSec, pages 19–38, 2021.

[33] Ningbin Yang, Quan Zhou, Qiong Huang, and Chunming Tang. Multi-recipient encryption
with keyword search without pairing for cloud storage. Journal of Cloud Computing, 11:10,
2022.

[34] Kai Zhang, Mi Wen, Rongxing Lu, and Kefei Chen. Multi-client sub-linear boolean keyword
searching for encrypted cloud storage with owner-enforced authorization. IEEE Transactions
on Dependable and Secure Computing, 18(6):2875–2887, 2021.

16

	Introduction
	Definitions of PAEKS in the Multi-Receiver Setting
	Definitions of BAEKS
	Proposed Generic Construction
	Security Analysis
	Qin et al. PAEKS
	Conclusion

