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Abstract. Laconic cryptography is an emerging paradigm that enables cryptographic primitives with
sublinear communication complexity in just two messages. In particular, a two-message protocol be-
tween Alice and Bob is called laconic if its communication and computation complexity are essentially
independent of the size of Alice’s input. This can be thought of as a dual notion of fully-homomorphic
encryption, as it enables “Bob-optimized” protocols. This paradigm has led to tremendous progress in
recent years. However, all existing constructions of laconic primitives are considered only of theoretical
interest: They all rely on non-black-box cryptographic techniques, which are highly impractical.
This work shows that non-black-box techniques are not necessary for basic laconic cryptography primi-
tives. We propose a completely algebraic construction of laconic encryption, a notion that we introduce
in this work, which serves as the cornerstone of our framework. We prove that the scheme is secure
under the standard Learning With Errors assumption (with polynomial modulus-to-noise ratio). We
provide proof-of-concept implementations for the first time for laconic primitives, demonstrating the
construction is indeed practical: For a database size of 250, encryption and decryption are in the order
of single digit milliseconds.
Laconic encryption can be used as a black box to construct other laconic primitives. Specifically, we
show how to construct:

– Laconic oblivious transfer
– Registration-based encryption scheme
– Laconic private-set intersection protocol

All of the above have essentially optimal parameters and similar practical efficiency. Furthermore, our
laconic encryption can be preprocessed such that the online encryption step is entirely combinatorial
and therefore much more efficient. Using similar techniques, we also obtain identity-based encryption
with an unbounded identity space and tight security proof (in the standard model).
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1 Introduction

Laconic cryptography [CDG+17,QWW18,DGI+19,DGGM19] is an emerging paradigm to securely compute
on large amounts of data in just two messages, while incurring very small communication. Specifically, in
the laconic setting the receiver Alice has an input of very large size, whereas we typically think of the sender
Bob’s input as smaller in size. In the first message, Alice publishes a succinct hash h of her input D, which
may be thought of as a large database D ∈ {0, 1}n. Such a compressing hash function cannot be unkeyed,
therefore laconic protocols also rely on public parameters, which are typically also required to be succinct6.
Given the hash h, Bob can encrypt his input x with respect to h, obtaining a succinct ciphertext ctxt.
Importantly, the workload of Bob should also be independent of n. Such a ciphertext ctxt enables Alice to
compute a joint function of her input D and Bob’s input x, while Bob has the guarantee that Alice learns
nothing but the legitimate function output. The specific choice of the function f computed by such a protocol
leads to different laconic primitives:

– In laconic OT [CDG+17], Bob’s input consists of an index i and two messages m0 and m1. The function
f is given by f(D, (i,m0,m1)) = (i,mD[i]), i.e. Alice learns the index i, and if the i-th bit of the database
D is 0 she learns m0, otherwise m1. The setting of laconic OT typically imposes an additional efficiency
requirement concerning Alice. Concretely, we require Alice’s second phase to have a runtime essentially
independent of n.

– In laconic function evaluation (LFE) [QWW18], Alice’s input D is a (large) boolean circuit C, and
the function computed by an LFE protocol is f(C, x) = C(x). The construction provided in [QWW18]
satisfies a somewhat relaxed succinctness guarantee: While the size of the communication does not scale
with the size of the circuit C, it scales polynomially with the depth of C. Furthermore, the runtime of
the second phase of Alice scales linearly with the size of C.

Implications. The notion of laconic OT in particular has had broader implications: The core-ideas un-
derlying laconic OT led to a series of constructions of identity-based encryption (IBE) from weaker as-
sumptions [DG17b,DG17a,DGHM18,BLSV18] and gave rise to the notion of registration-based encryption
(RBE) [GHMR18,GHM+19,GV20]. These constructions make essential use of the above-mentioned more
stringent efficiency-property of the laconic OT constructions they are based on. Consequently, these primi-
tives are not known to be generically constructible from LFE.

Furthermore, the techniques developed in the context of laconic cryptography were key to making
progress on a broad range of problems: trapdoor functions from the computational Diffie-Hellman assump-
tion [GH18], private-information retrieval (PIR) from the decisional Diffie-Hellman assumption [DGI+19],
two-round multi-party computation protocols from minimal assumptions [GS17,GS18b,BL18], adaptively
secure garbled circuits [GS18a], laconic conditional disclosure of secrets [DGGM19], and laconic private set
intersection [ABD+21,ALOS22].

Reverse Delegation. Laconic cryptography can be seen as enabling reverse delegation without requiring
additional rounds of communication. In a standard delegation scheme, a user outsources its computation
to an untrusted server with the goal of learning the output while keeping its input private. The canonical
cryptographic tool that enables delegation is fully-homomorphic encryption (FHE) [Gen09], since it allows
the server to perform the computation without knowing the user’s input. Reverse delegation allows a user
(Bob, in our previous example) to delegate the computation completely to the server (Alice) while also
letting her learn the output of the computation and nothing beyond that. For instance, [CDG+17] provided a
protocol to let Bob reverse-delegate RAM computations to Alice, such that Bob’s overhead and the size of the
communication scales only with runtime of the RAM program, but not with the size of Alice’s (large) input.
Likewise, the laconic function evaluation scheme of [QWW18] allows to reverse-delegate circuit computations
to Alice, while incurring a communication overhead that only scales with the depth of the circuit.

6That is, independent or at least sublinear in n.
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A Non-Blackbox “Barrier” for Practicality. So far, the aforementioned progress in designing new
cryptographic primitives has been almost exclusively of theoretical interest. In essence, the lack of practicality
of these new solutions can be explained by their non-blackbox use of underlying cryptographic building blocks.
For example, essentially all known constructions of laconic OT involve a re-encryption step, also called
deferred encryption [BLSV18], which gives the receiver Alice the ability to produce ciphertexts under keys
that were not known to the sender Bob at the time of encryption. In the above-mentioned constructions,
this re-encryption step is implemented using garbled circuits [Yao86] for circuits which perform public-
key cryptographic operations. The non-black box use of cryptographic primitives is such a grave source of
inefficiency that, to the best of our knowledge, not even the basic laconic OT has ever been implemented as
a proof of concept. On a slightly different note, we remark that while the LFE scheme of [QWW18] does not
make use of garbled circuits, it relies on a different non-blackbox mechanism based on FHE to bootstrap a
weaker notion called attribute-based LFE into fully-fledged LFE.

In summary, the present state of affairs sees laconic cryptography as a powerful theoretical tool for
enabling new cryptographic primitives and realizing powerful notions from weaker assumptions. However,
the resulting schemes are practically inefficient, thus calling into question the relevance of this framework
beyond theoretical feasibility results. Motivated by this gap, we ask:

Can we realize truly efficient laconic cryptography?

Towards a positive resolution to this question, it seems insufficient to optimize existing techniques. Instead,
a conceptual reworking of basic laconic primitives will be required.

1.1 Our Results

This work shows that garbled circuits (and other non-black box cryptographic techniques) are not needed
to construct laconic cryptography. We establish a new paradigm for constructing concretely efficient laconic
cryptographic schemes based on the hardness of the standard learning with errors (LWE) problem with a
polynomial modulus-to-noise ratio. In contrast to prior works, we show that our schemes are practical with
a proof of concept implementation. In the following, we discuss our contributions in more detail.

Laconic Encryption. We propose the notion of laconic encryption as the central abstraction of our frame-
work. Laconic encryption allows Alice to construct a binary tree whose leaves are public keys (pk1, . . . , pkn)
and sends the root of the tree to Bob. Given only the root of the tree and an index ind, Bob can then encrypt
a message with respect to pkind, which can only be decrypted with the corresponding secret key skind. Such
a scheme is called laconic since Alice’s message is independent of n, as she only sends the root of the tree.

We then show how to construct laconic encryption efficiently and with (asymptotically) optimal parame-
ters without relying on garbled circuits or other non-black box cryptographic techniques. At a technical level,
our construction relies on the algebraic properties of the SIS-based hash tree. It exploits the gadget matrix
to efficiently re-encrypt the message layer-by-layer. In order to demonstrate the security of the scheme, we
introduce a new variant of the (ring/module) LWE problem, in which the adversary is also given a leakage
on the error. Then we prove that this problem is as hard as the standard (ring/module) LWE problem, with
an essentially tight reduction. Our proof relies on spectral analysis of positive definite matrices, a subject of
independent interest.

Applications. We show how laconic encryption enables a wide range of laconic cryptographic primitives
with minimal overhead. The following constructions use laconic encryption in a black-box sense, and the
additional methods required are combinatorial. That is, all of the resulting schemes are concretely efficient
and have near-optimal parameters. Specifically, we show how to construct:

– Laconic OT: As an immediate application of laconic encryption, we construct a laconic OT protocol
with essentially optimal parameters.
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– Registration-Based Encryption: Registration-based encryption (RBE) is a notion recently introduced
in [GHMR18] to solve the key-escrow problem for identity-based encryption (IBE) while preserving the
“encrypt with respect to identity” functionality. Laconic encryption enables the first concretely efficient
RBE construction that the size of the public parameters scales logarithmically with the number of users.

– Laconic Private-Set Intersection: Private-set intersection (PSI) allows Alice and Bob to check
whether they have a common item in their database without revealing anything about other items.
Laconic encryption allows us to construct an efficient laconic PSI protocol where the communication
complexity is independent of the size of Alice’s database.

Optimizations and Extensions. We explore a number of optimizations and extensions for our laconic
encryption construction. First, we show that the encryption algorithm can be pre-processed: In an input-
independent offline phase, the encryptor can prepare auxiliary information at essentially the same cost as the
encryption algorithm. In an online phase, where the message msg and the index ind are known, the encryptor
can use the auxiliary information prepared earlier to produce a correctly-formed ciphertext. Importantly,
the online phase is entirely combinatorial, and all public-key operations happen in the offline phase.

Second, we explore the possibility of plugging-in different encryption schemes in our construction. Na-
tively, our laconic encryption supports only dual-Regev ciphertexts [GPV08], whereas for some applications
it may be desirable to use support other encryption schemes. We show how our scheme can be adapted
to support a large class of algorithms, which includes LPN-based encryption [Ale03] and recently NIST-
standardized lattice-based schemes [BDK+17]. To solve this challenge, we develop a new special-purpose
randomized encoding scheme, which may be of independent interest.

Finally, we show that our construction of laconic encryption can be turned into that of identity-based
encryption (IBE) [BF01] with similar efficiency properties. Our IBE is the first scheme that simultaneously
achieves: (i) Constant-size public parameters, (ii) an unbounded identity space, (iii) a tight proof of (adaptive)
security against a standard assumption (specifically, LWE).

Implementation and Benchmark. To demonstrate the practicality of our laconic encryption scheme,
we implemented a proof of concept in Go (see Section 12). We ran the benchmarks for the scheme with a
database size/index space of 250 and achieved encryption and decryption times below 10 milliseconds on a
personal computer. We believe these times can be improved using further optimizations, which are beyond
the scope of this work.

1.2 Related Work
We mention prior works that study practical variants of laconic cryptographic primitives. In [ALOS22] the
authors show a variant of laconic private-set intersection that is practically efficient and leads to substantial
improvements in real-world protocols. However, the variant that is implemented has a long common reference
string, linear in the size of Alice’s database D; thus it is not fully laconic.

In [HLWW22] the authors propose the notion of registered attribute-based encryption, as an extension
of the notion of RBE, and they show a constructions based on bilinear pairings. Compared to our work,
their scheme has a long common reference string (in fact, quadratic in n), the runtime of the key generation
and registration algorithms is linear in n, and they have an a-priori bound on the number of users. On the
flip-side, they achieve the attribute-based functionality, that we do not consider in this work.

Another recent work [GKMR22] proposes the first practically efficient registration-based encryption
scheme, and shows the first proof of concept implementation. Contrary to this work, their scheme is asymp-
totically only sublinear in the size of D (specifically,

√
n as opposed to polylog(n)), and requires an a-priori

bound on n. Furthermore, they rely on the hardness of problems over bilinear pairings and thus their scheme
is immediately insecure in the quantum settings.

2 Technical Overview
We give a brief overview of the new ideas and the technical innovations introduced in this work. We start
by describing the new notion of laconic encryption, how to construct it efficiently from the standard LWE
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assumptions, and the challenges that arise during the security proofs. Then we outline the new cryptographic
schemes that are enabled by this new notion and possible optimizations and extensions. In favor of a more
intuitive description, the following outline considers the special case of Z-lattices; however, in the technical
sections, we prove all of our statements for the more general R-module settings.

2.1 Laconic Encryption

Before delving into the description of our scheme, we introduce the syntax of laconic encryption, and we
recall how prior work (implicitly) addresses the challenges needed to build this notion.

Syntax and Properties. A laconic encryption scheme allows Alice to (iteratively) construct a digest (e.g.,
via a Merkle hash tree) of public keys (pk1, . . . , pkn) where (pki, ski) ← KGen(pp) and pp can be thought
of as a uniformly random string, which is common to all participants. We denote by st the message that
Alice sends to Bob, which consists of the digest (e.g., the root of the Merkle tree). Importantly, the size
of pp and st is only polynomial in the security parameter, and in particular, it does not depend on n. On
input a message msg and an index ind ∈ [n], Bob can then compute a ciphertext ctxt← Enc(pp, st, ind,msg).
Correctness requires that anyone possessing the corresponding secret key can decrypt ctxt, more specifically:

msg = Dec(skind,witind, ctxt)

where witind is some (public) auxiliary information, whose size is logarithmic in n. The reader can think of
this information as being the Merkle tree opening, i.e., the root-to-leaf path, of the key pkind. For security,
we require that if the adversary does not know the secret key associated with index ind (or if no key is added
to the tree at that particular index), then:

Enc(pp, st, ind,msg0) ≈ Enc(pp, st, ind,msg1).

In fact, we will require (and prove) a slight strengthening of this property, i.e., that ciphertexts should look
pseudorandom to anyone who cannot decrypt them.

Prior Works. To gain some intuition on why constructing laconic encryption is a challenging problem,
it is useful to recall how prior works [CDG+17] (implicitly) build this cryptographic primitive. Loosely
speaking, their main leverage is a construction of a structured two-to-one hash function Hash (which can be
constructed from a variety of computational assumptions) that supports an encryption functionality. More
specifically, given a digest d ← Hash(D), Bob can compute a ciphertext ctxt ← Enc(d, ind, (msg0,msg1))
that allows Alice (who knows the database D) to recover msgDind

, whereas the message msgD1−ind
remains

computationally hidden. While this looks like a promising start, it should be noted that the hash function is
only two-to-one, and therefore the size of the digest d is only half that of the original database D. If one were
to naively recurse this scheme, the encryption algorithm would quickly start running in exponential time.

To circumvent the runtime issue, the strategy of [CDG+17] is to rely on garbled circuits [Yao86]. More
specifically, to boost the compression of the hash function, they define a binary tree of hash values and use
garbled circuits to (asymptotically efficiently) implement a re-encryption gadget from one layer to another.
Given a digest di ← Hash(Di+1), where Di+1 = (di+1,0, di+1,1) are the digests at a lower layer, the encryption
algorithm uses the above procedure to encrypt the labels of a garbled circuit, that internally runs the
encryption Enc for the layer below. Crucially, the size of the labels is independent of the size of the garbled
circuit (except for its input) and therefore this encryption strategy can be recursed without incurring an
exponential blow-up. Although this framework achieves asymptotically optimal parameters, it is prohibitively
expensive to use garbled circuits for public-key operations. In contrast, our strategy (described below in
detail) will bypass this barrier by leveraging the algebraic properties of a particular hash function.
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Our Approach. As hinted above, a strategy of constructing laconic encryption is to design a mechanism
allowing to “encrypt with respect to a Merkle tree opening”, and successfully executing this strategy requires
an “encryption-friendly” hash function. Our starting point is the following variant of Ajtai’s [Ajt96,GGH96]
collision-resistant hash function based on the short integer solution (SIS) assumption:

f(x0,x1) := A0(−G−1(x0)) +A1(−G−1(x1)) mod q

where A0,A1 ∈ Zn×m
q are uniformly random matrices with m ≈ n log q, x0,x1 ∈ Zn

q are vectors, and G−1

denote the binary-decomposition operator (so that for any x ∈ Zn
q we have G ·G−1(x) = x). A very similar

hash function was used in [LLNW16] to build lattice-based Merkle-tree accumulators, ring signatures, and
group signatures. At first glance, it may seem that the hash function f is not encryption-friendly since the
binary-decomposition operation G−1 is highly non-linear. What enables us to encrypt with respect to a
Merkle tree opening is the crucial observation that a hash chain formed by f induces a linear relation.

More concretely, consider the Merkle tree built using the hash function f where the node indexed by
str ∈ {0, 1}∗ is labeled by ystr. Suppose that ustr = −G−1(ystr) for each str ∈ {0, 1}∗. Closing into the top of
the tree, we observe that (u0,u1) is a short (in fact binary) vector satisfying the linear relation:(

A0 A1

G 0

)(
u0

u1

)
=

(
yϵ

−y0

)
mod q.

Where yϵ is the node denoting the root of the tree. In other words, the vector (u0,u1) is a valid solution to
the (inhomogeneous) SIS instance ((

A0 A1

G 0

)
,

(
yϵ

−y0

))
.

Likewise, (u0,u1) is also a valid solution to the (inhomogeneous) SIS instance((
A0 A1

0 G

)
,

(
yϵ

−y1

))
.

Dual-Regev Encryption. It turns out that this structure synergizes remarkably well with the dual-Regev
encryption scheme [GPV08]. Recall that in the dual-Regev encryption scheme [GPV08], whose security is
based on the standard LWE assumption, a public key is a SIS instance and the corresponding secret key is
the SIS solution. Specifically, in the following assume that the matrix A = (A0 A1) is part of the public
parameters. Further assume that y0 and y1 are dual-Regev public keys with respect to A. That is, for
b ∈ {0, 1} we generate yb by choosing a uniformly random wb ∈ {0, 1}2m and set yb = A ·wb mod q. Here,
wb is the secret key corresponding to yb. By the leftover-hash-lemma [HILL99,Reg05], the yb are statistically
close to uniform. To encrypt a message msg under yb, we choose an LWE secret r1 and compute a ciphertext
(c1, d1) via

c1 ≈ rT1 ·A mod q,

d1 ≈ rT1 · yb + Encode(msg) mod q.

Here, we use the ”≈” notation to omit the LWE error. The function Encode(·) protects the message msg
against small errors, a popular choice is to encode a message bit msg in the most-significant bit, i.e.
Encode(·) = q

2 ·msg. To decrypt a ciphertext (c1, d1) using a secret key wb we compute

d1 − cT1 ·wb ≈ rT1 · yb + Encode(msg)− rT1 ·A ·wb︸ ︷︷ ︸
=yb

= Encode(msg) mod q,

from which the message msg can be efficiently recovered.
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Encrypting to Hash Values. Now assume that we are not given y0 and y1, but only their hash value

y = A ·
(
−G−1(y0)
−G−1(y1)

)
mod q.

Our goal is to produce a ciphertext “for the key yb” given only the hash value y. Towards this goal, let us
examine what happens when we generate a dual-Regev encryption scheme with respect to the “public key”

pk :=

((
A0 A1

G 0

)
,

(
y
0

))
,

Choosing LWE secrets r0 and r1 we compute a ciphertext ctxt = (c, d) by

cT ≈
(
rT0, r

T
1

)
·
(
A0 A1

G 0

)
= rT0 ·A+ rT1 · (G 0) mod q

d ≈
(
rT0, r

T
1

)
·
(
y
0

)
+ Encode(msg) = rT0 · y + Encode(msg) mod q.

If we “decrypt” the ciphertext using (u0 = −G−1(y0),u1 = −G−1(y1)) as the secret key, we obtain

d− cT ·
(
u0

u1

)
≈ rT0 · y + Encode(msg)− rT0 · (A0 A1) ·

(
u0

u1

)
︸ ︷︷ ︸

=y

−rT1 · (G 0) ·
(
u0

u1

)
︸ ︷︷ ︸

=−y0

= rT1 · y0 + Encode(msg) mod q.

Consequently, this “decryption operation” has produced (part of) a ciphertext encrypted under the public
key y0! Analogously, if we use the public key

pk :=

((
A0 A1

0 G

)
,

(
y
0

))
,

the above decryption operation would result in a ciphertext component rT1 · y1 + Encode(msg) mod q. Thus,
decryption of such ciphertext with (u0 = −G−1(y0),u1 = −G−1(y1)) is effectively a re-encryption to either
public key y0 or y1.

To make such a ciphertext decryptable under one of the corresponding secret keys, we add an additional
ciphertext component cT1 = rT1 ·A+ e1 mod q to ctxt. Then, a ciphertext ctxt for yb comprises of

cT ≈ rT0 ·A+ rT1 · ((1− b) ·G b ·G) mod q

cT1 ≈ rT1 ·A mod q

d ≈ rT0 · y + Encode(msg) mod q.

Finally, observe that it doesn’t matter if the yb are actually dual-Regev public keys or itself a hash value, the
ciphertext structures are identical! Hence, for a larger tree we can apply this mechanism recursively, which
results in one additional ciphertext component cTi ≈ rTi ·A + rT1 · ((1 − bi) ·G bi ·G) mod q per level of the
tree, where the bi define the path through the tree.

Security of the Construction. We will now focus on establishing the security of this construction with
the goal of basing security on the LWE assumption. For this purpose, we need to consider the error terms
in our construction explicitly. Let A = (A0 A1). A ciphertext ctxt = (c, c1, d) for b = 0 is computed by

cT = rT0 ·A+ rT1 · (G 0) + e mod q

cT1 = rT1 ·A+ e1 mod q

8



d = rT0 · y + e∗ + Encode(msg) mod q,

where e, e1 and e∗ are short error vectors.
On the face of it, this looks almost like a classical LWE encryption. Hence, one might try to reduce

security directly to the LWE problem. That is, given LWE samples (A,vT = rT0 ·A+ eT mod q) and (y, v =
rT0 · y + e∗ mod q) we can simulate a ciphertext by computing

cT = vT + rT1 · (G 0) mod q

cT1 = rT1 ·A+ e1 mod q

d = v + Encode(msg) mod q.

By replacing vT and v by uniformly random values, as per the LWE assumption, the term d now hides msg
and security follows.

However, upon closer inspection there is a problem with this approach: The matrix A and the vector
yT are not independent from the view of an adversary. Specifically, the adversary knows an explicit relation
between A and yT, namely

yT = A0 · (−G−1(y0)) +A0 · (−G−1(y1)) =: A · z mod q,

as y0 and y1 are known to the adversary. Here z :=

(
−G−1(y0)
−G−1(y1)

)
is a binary (and thus short) vector

(denoted (u0,u1) above). For this reason, vT = rT0 · A + eT mod q and v = rT0 · y + e∗ mod q are easily
distinguishable from uniformly random values: It holds that v − vT · z = e∗ − eT · z mod q is short, whereas
for uniformly random vT and v this expression is, with high probability, not short.

Drowning Out Correlations. However, there is a fairly routine solution to this issue using a technique
called drowning. The idea is, given LWE samples (A,vT = rT0 ·A+ e mod q), to simulate v from v and z by
computing it via

v ≈ vT · z = (rT0 ·A+ eT) · z = rT0 ·A · z+ eT · z = rT0 · y + eT · z mod q.

Yet, now the error terms in vT and v are obliviously correlated. To get rid of this correlation, we can opt
to drown it out: If e∗ is chosen from a suitable short distribution which produces super-polynomially larger
values than eT · z, then it holds that eT · z+ e∗ ≈s e

∗, i.e. eT · z+ e∗ and e∗ are statistically close. Hence, we
can simulate v by computing v = vT · z+ e∗ mod q.

Hence, our security proof now proceeds as follows. Given LWE samples (A,vT = rT0 ·A + eT mod q) we
can simulate a ciphertext ctxt = (c, c1, d) by sampling e∗ and setting

cT = vT + rT1 · (G 0) mod q

cT1 = rT1 ·A+ e1 mod q

d = vT · z+ e∗ + Encode(msg) mod q.

If (A,v) are well-formed LWE samples, then by the above discussion,

d = vT · z+ e∗ + Encode(msg)

= rT0 · y + eT · z+ e∗ + Encode(msg)

≈s r
T
0 · y + e∗ + Encode(msg) mod q,

i.e. such a ctxt = (c, c1, d) is statistically close to a real ciphertext. Under the LWE assumption, we can now
replace v with a uniformly random v′ and get

cT = v′T + rT1 · (G 0) mod q

9



d = v′T · z+ e∗ + Encode(msg) mod q.

Now, since v′ is uniformly random, we can equivalently choose it by computing v′T = v′′T − rT1(G 0), where
v′′ is also chosen uniformly random. That is, we compute ctxt = (c, c1, d) by

cT = v′′T

cT1 = rT1 ·A+ e1 mod q

d = (v′′T − rT1 · (G 0)) · z+ e∗ + Encode(msg)

= v′′T · z− rT1 · (G 0) · z+ e∗ + Encode(msg)

= v′′T · z+ rT1 · y0 + e∗ + Encode(msg) mod q,

as (G 0) · z = −y0 mod q. Going a step further, we can compute d by d = v′′T · z + d1 mod q, where
d1 = rT1 · y0 + e∗ + Encode(msg) mod q is the payload part of an encryption of msg under the public key
y0. In other words, we are now in a situation where we can simulate a ciphertext ctxt = (c, c1, d) given
and encryption (c1, d1) of msg under the public key y0! Hence, we can now immediately appeal to the fact
that, from the view of the adversary, y0 looks indeed uniformly random to argue security: Via the LWE
assumption, (A, rT1 ·A + e1 mod q) and (y0, r

T
1 · y0 + e∗1 mod q) are indistinguishable from uniform. Thus,

from the adversary’s view d1 looks uniformly random, and therefore d = v′′T · z + d1 mod q also looks
uniformly random. In fact, from the adversary’s view all ciphertext components look uniformly random and
independent.

LWE with Error-Leakage. Drowning is, however, a rather heavy-handed approach that, for all intents
and purposes, ruins the LWE parameters. Specifically, to use this approach we need to assume the security
of LWE with superpolynomial modulus-to-noise ratio. This means, in turn, that the underlying worst-to-
average case reduction of LWE [Reg05] reduces LWE to worst-case lattice problems with super-polynomial
approximation factors. Moreover, it forces us to use a superpolynomially large modulus q.

We will now look a bit closer at the above drowning step. Specifically, given z and vT = rT0 ·A+ e mod q
we computed

v = vT · z+ e∗ = rT0 ·A · z+ eT · z+ e∗ = rT0 · y0 + eT · z+ e∗ mod q.

Our main observation is the following: If we were somehow given an advice l = −eT · z+ e∗ about e and e∗,
we could use l to switch the correlated error term eT · z in vT · z to a fresh and uncorrelated e∗. Namely by
computing v = vT · z+ l mod q. Then it holds that

v = vT · z+ l = rT0 · y0 + eT · z− eT · z+ e∗ = rT0 · y0 + e∗ mod q.

Thus, such an advice l is sufficient to make the security argument in the last paragraph work. Our hope now
is that the advice l = −eT · z + e∗ does not fully reveal e and e∗, i.e. that e and e∗ mutually conceal one
another, even if the parameters of these error terms are way below the drowning regime.

This motivates the definition of Learning with Errors with Error-Leakage, elLWE for short. As the name
suggests, in this variant of the LWE problem the adversary gets a leak or advice about the LWE error
term. To make this definition useful for our purposes, we will allow the leak to depend on the LWE matrix
A. Consequently, we will define elLWE similarly to the regular LWE assumption, but via an interactive
experiment. The security experiment of elLWE is given as follows, where we assume that a modulus q,
dimensions n,m and error distributions χ, χ∗ are parametrized by the security parameter.

The elLWE Security Experiment:

– In the first step, the experiment chooses a uniformly random matrix A←$ Zn×m
q and provides A to the

adversary.
– Given the matrix A, the adversary now chooses a short vector z ∈ Zm and provides z to the experiment.
– The experiment samples e←$ χ1 and e∗ ←$ χ∗ and sets l = eT · z+ e∗.
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– Now the experiment flips a random bit b←$ {0, 1}. If b = 0 it chooses a uniformly random r←$ Zn
q and

sets vT = rT ·A+ eT mod q. If b = 1 it chooses v←$ Zm
q uniformly at random.

– The experiment now provides (A,v, l) to the adversary. The adversary then produces a guess b′ ∈ {0, 1}
for the bit b

– If b′ = b the adversary wins, and loses otherwise.

As usual, we say that elLWE is secure if no PPT adversary has non-negligible advantage in this experiment.
Now, via the above discussion we can routinely reduce the security of our construction to elLWE.

We remark that the elLWE problem generalizes the extended LWE problem [OPW11,AP12]. Specifically,
in the extended LWE problem the vector z is chosen at random from a Gaussian distribution instead of
adversarially (as in the case of the elLWE problem). For the precise definitions concerning elLWE refer to
Section 6.

From LWE to elLWE. As an additional technical contribution of this work, we provide a hardness result
for elLWE. Specifically, we show that the security of elLWE can be based on standard LWE with polynomial
modulus-to-noise ratio. In this paragraph, we will sketch the main ideas underlying this result. In a nutshell,
the main idea of our approach is to choose the leakage term l independent of the LWE error, and then adjust
the LWE error in such a way that it conforms with the leakage. More precisely in the case of Gaussian e
and e∗, we will show the following. There is a (sufficiently wide) Gaussian distribution ê, such that for every
(short) vector z there is an efficiently sampleable pair of correlated random variables (fz, fz) (independent
of ê), such that

(eT, eT · z+ e∗) ≈s (ê
T + fTz, fz).

In other words, fz simulates the leakage eT ·z+e∗, whereas fz can be used to additively adjust an independent
Gaussian ê to have the same distribution as e given the leakage eT ·z+ e∗. Equipped with such an efficiently
sampleable pair (fz, fz), reducing elLWE to LWE is almost straightforward: Given an LWE instance (A,vT)
we run the elLWE adversary on A, who returns z. The reduction now samples (fz, fz), provides (A,vT+fTz, fz)
to the adversary, and outputs whatever the adversary outputs.

On one side, if vT is an LWE sample, i.e. vT = rT ·A+ ê mod q, then

(A,vT + fTz, fz) = (A, rT ·A+ ê+ fTz mod q, fz)

≈s (A, rT ·A+ eT mod q, eT · z+ e∗),

is statistically close to a correctly formed elLWE sample for b = 0.
On the other hand, if v is chosen uniformly random, then v′ := v + fz mod q is also uniformly random.

Consequently (A,v + fz mod q, fz) ≈s (A,v′, eTz + e∗), i.e. it is statistically close to an elLWE sample
for b = 1. The claim follows. Notice that this reduction is tight, i.e. it does not (substantially) degrade the
adversary’s runtime or advantage. Further notice that this reduction is agnostic of the structure of the matrix
A and the secret r. Consequently, it is applicable to any structured LWE variant [BD20].

Constructing the Leakage Simulator. We will now briefly discuss how such a pair (fz, fz) can be
constructed. For simplicity, assume that e and z are scalars, i.e. e = e and z = z. To further simplify matters,
assume first that e and e∗ are continuous Gaussians instead of discrete Gaussians. In this perspective,
(e, ez + e∗) is a pair of correlated Gaussians, i.e. a 2-dimensional Gaussian with (possibly) non-diagonal
covariance matrix. If e ∼ Dσ and e∗ ∼ Dσ∗7, then a routine calculation shows that the covariance matrix C
of (e, ez + e∗) is

C =

(
σ2 σ2z

σ2z σ2z2 + σ∗2

)
.

Our idea now is, basically speaking, to find an alternative way to represent this distribution. Specifically, we
want to alternatively compute (e, ez + e∗) via (ê + we†, e†), where ê ∼ Dσ̂ and e† ∼ Dσ† are independent

7We denote the continuous Gaussian distribution with parameter σ by Dσ, i.e. the probability density function
of Dσ is proportional to e

−π x2

σ2
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Gaussians and w is fixed (depending on σ, σ∗ and z). Again, a routine calculation finds that the covariance
matrix C′ of (ê+ we†, e†) is

C′ =

(
σ̂2 + σ†2w2 σ†2w

σ†2w σ†2

)
.

Now, two centered multivariate Gaussians are identically distributed, if and only if they have the same
covariance matrix. Consequently, setting C = C′ and solving for σ̂2, σ†2 and w yields

σ†2 = σ2z2 + σ∗2,

w =
σ2z

σ†2
=

σ2z

σ2z2 + σ∗2 ,

σ̂2 = σ2 − σ†2w2 = σ2 − σ4z2

σ2z2 + σ∗2 =

(
1− 1

1 + σ∗2

σ2z2

)
σ2. (1)

That is, for these parameters of σ̂, σ† and w it holds that (e, ez + e∗) ≡ (ê + we†, e†), i.e. the two pairs are
identically distributed. Thus, we can define (fz, fz) by fz = we† and fz = e†.

Now, recall that in our reduction ê corresponds to the error-term in the underlying LWE-instance. Thus,
we should choose σ∗ so as to ensure that ê ∼ Dσ̂ is a sufficiently wide Gaussian, while σ∗ should not be too
large. A reasonable choice for σ∗ (which simplifies calculations) is to choose it such that σ∗ ≥ σ · β, where β
is an upper bound for |z| (recall that z is adversarially chosen but short). For this choice of σ∗, it holds by
(1) that σ̂ ≥ σ/

√
2. In other words, for this parameter choice σ∗ is only a factor β bigger than σ, whereas σ̂

is only a factor 1/
√
2 smaller than σ. In essence, this means that the reduction roughly preserves the LWE

parameters, up to small factors.
The final piece of our reduction is to make this leakage simulator work for discrete Gaussians instead of

continuous Gaussians. For this, we will make use of Peikert’s randomized rounding approach [Pei10]. That is,
a discrete Gaussian can be computed as the randomized rounding of a continuous Gaussian. This, together
with Regev’s discrete-to-continuous Gaussian smoothing lemma [Reg05], allows us to adapt the simulator for
continous Gaussians to discrete Gaussians. While the simplified analysis above only uses simple arithmetic,
the actual analysis in Section 5, while similar in spirit, relies on more involved concepts from singular value
analysis to deal with high-dimensional multivariate Gaussians.

2.2 Applications

Laconic OT. As a warm-up application, it is easy to see that laconic encryption immediately implies laconic
OT. Alice can construct a binary tree of keys with the following procedure: For each index pair (2ind, 2ind−1),
Alice inserts in the tree a uniformly sampled public key either in the even position if Dind = 0, or in the odd
position if Dind = 1. Bob can then simply encrypt msg0 with respect to the index 2ind and msg1 with respect
to index 2ind− 1. Since Alice is semi-honest, the security of laconic encryption immediately carries over.

Registration-Based Encryption. Laconic Encryption almost implies RBE: Each user ind generates a
key-pair and sends her pkind for registration to an (untrusted) Key Curator, which is added to the database
D ← D ∪ {pki}. Then the digest d (the root of the tree) and the witnesses witj of all users are updated
accordingly. Encryption and decryption with respect to ind work exactly as in laconic encryption. The
crucial caveat is that in RBE, being highly dynamic, it’s unrealistic to consider that the users are receiving
an updated wit each time a new user registers. Therefore, there is an additional strict efficiency requirement:
No user’s witness should change more than logN times throughout the lifetime of the system (N being the
total number of users). This requirement minimizes the interaction between a user and the key curator.

Garg et.al [GHMR18] achieve this requirement by providing a direct construction based on Merkle trees.
In a nutshell, to accumulate the public keys, there are multiple Merkle trees with an increasing number of
leaves. A new public key enters a (degenerate) tree that consists of a single leaf. Then, as soon as the number
of its leaves is the same with the next tree, the two trees are merged. This means that a tree (and therefore
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its corresponding paths-witnesses) is changing only when its leaves are doubled. Overall, this translates to
logN number of trees and thus at most logN number of updates per user’s witness. We generalize this idea
and show a generic transformation from any laconic encryption scheme to a registration-based encryption
scheme. A more detailed overview and a formal description can be found in Section 8.

Laconic PSI. We present a semi-honestly secure laconic PSI from laconic encryption. Here the receiver
who owns a large database chooses a message for the sender to encrypt, and then it checks whether the
ciphertext can be decrypted correctly with respect to the indices registered on the receiver’s side.

We first need to have a hash function H : {0, 1}∗ 7→ {0, 1}ℓ to map elements into the universe of indices.
For simplicity, we assume the sender’s set is a singleton set SS = {y}. Besides sampling a hash function H, the
setup phase is the same as the laconic encryption. Then the receiver constructs a binary tree with the freshly
generated public keys with respect to the indices where the elements in SR are mapped. In the meantime,
the receiver generates the witnesses. Then the receiver sends the updated st and a random message msg.
Next, the sender encrypts msg with st with respect to the index H(y), and sends the ciphertext ctxt to the
receiver. Finally, upon receiving the ciphertext, the receiver will check for all xk ∈ SR, whether it holds that
Dec(skk,witk, ctxt) = msg. If it finds such a k, xk will be output as the intersection of SS and SR. The actual
protocol will be obtained by running the above for every element in the senders set. Correctness and security
of this protocol follows from the guarantees of the laconic encryption scheme. For more details, we refer the
reader to Section 9.

Identity-Based Encryption. We also show that our laconic encryption scheme can be modified to con-
struct an IBE. The basic idea is simple: Instead of constructing a tree of public keys iteratively, the key
authority implicitly defines an exponentially large tree by sampling the root of the tree at random. The key
difference is that now the authority must choose the matrices in the public parameters with a trapdoor. This
way, when the user ind wants to register to the system, the authority can provide it with the appropriate
root-to-leaf path (which will function as the secret key) by sampling pre-images, starting from the root and
all the way down to the corresponding leaf.

Compared with other LWE-based constructions [CHKP10,ABB10,BL16,DGHM18,DG17a], our IBE sup-
ports an unbounded identity space, and has a tight security reduction of full (adaptive) security in the stan-
dard model. This is achieved with a new simulation strategy that relies on two alternating pairs of matrices
(B0,even,B1,even) and (B0,odd,B1,odd), for left and right children and for even and odd layers, respectively. In
the security proof, the simulator can “forget” the trapdoor of any one of the four matrices, and it can still
issue decryption keys using the remaining trapdoors. This way, one can substitute ciphertext components
one-by-one with uniformly sampled vectors. Proceeding until the last layer completes the security proof. A
more detailed overview can be found in Section 11.

Pre-Processing and Other Extensions. To increase the efficiency of our laconic encryption even further,
we also construct a pre-processing variant of our scheme. Informally, the encryption algorithm Enc is split
into an offline part (OfflineEnc), which is input-independent, and an online part (OnlineEnc). Crucially, the
online algorithm is much more efficient and does not perform any public-key operation. The main observation
is that each element of the ciphertext ci depends only on a single bit of the corresponding index/identity.
Thus, we can let the OfflineEnc algorithm computing both possible ciphertexts for each bit of the index
(making sure to use the randomness consistently), and output two commitments. The OnlineEnc algorithm is
on the other hand given the index ind, so it can complete the encryption by simply revealing the openings of
the commitments corresponding to (ind1, . . . , indℓ). As for the message, the OfflineEnc algorithm can simply
encrypt a random bit r, and when the message msg is given to the OnlineEnc algorithm, it can simply output
msg ⊕ r. This way, the OnlineEnc is entirely combinatorial, and all the public-key operation happen in an
offline and input-independent phase. A formal description of this procedure can be found in Section 10.1.

We also explore a number of other extensions of laconic encryption: In Section 10.2 we describe how we
can make the encryption algorithm compatible with other encryption schemes (possibly not even lattice-
based), and in Appendix B we present an alternative laconic encryption construction that offers different
efficiency trade-offs.
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3 Preliminaries

Let (n, p, q) = (n, p, q)(λ) with p < q. Let m := n ·
⌈
logp q

⌉
. Define the (p, q)-ary gadget matrix

G := In ⊗
(
1 p . . . pblogp qc

)
and denote the (balanced) p-ary decomposition by G−1(·). For a bit b ∈ {0, 1}, denote b̄ := 1− b.

3.1 Lattices

Let K = Q(ζ) be a cyclotomic field and R = Z[ζ] its ring of integers, where ζ ∈ C is a root of unity.
Write dR for the degree of (the cyclotomic polynomial defining K and) R. The (infinity) norm ‖·‖ of an
element a =

∑dR−1
i=0 aiζ

i ∈ R is defined as the norm of its coefficient vector (a0, . . . , adR−1) ∈ ZdR , i.e.
‖a‖ = maxdR−1

i=0 |ai|. For a vector x = (x0, . . . , xm−1) ∈ Rm, its norm is defined as ‖x‖ := maxm−1
i=0 ‖xi‖. For

q ∈ N, write Rq := R/qR. Let χ be a distribution over R.

Definition 1 (LWER,n,q,χ Assumption). Let R, n,m, q, χ be parametrised by λ. The (decision) LWER,n,m,q,χ

assumption states that for any PPT adversary A∣∣∣∣∣∣∣∣∣∣
Pr

A(A,b) = 1

∣∣∣∣∣∣∣∣∣∣
A←$Rn×m

q

s←$Rn
q

e←$ χm

bT = sT ·A+ eT mod q

− Pr

[
A(A,b) = 1

∣∣∣∣∣A←$Rn×m
q

b←$Rm
q

]∣∣∣∣∣∣∣∣∣∣
≤ negl(λ).

The LWER,n,q,χ assumption is said to hold if the LWER,n,m,q,χ assumption holds for all m = poly(λ).

Definition 2 (Discrete Gaussian Distributions). Let m ∈ N and s > 0. The discrete Gaussian func-
tion over R with parameter s is defined as ρs(x) := exp

(
−π |x|2

s2

)
with support R. The discrete Gaussian

distribution over Z with parameter s is defined as DZ,s(x) :=
ρs(x)∑

x′∈Z ρs(x′) with support Z. The discrete Gaus-
sian distribution over R with parameter s, denoted by DR,s is induced by sampling dR independent samples
xi ←$ DZ,s and outputing x =

∑dR−1
i=0 xi · ζi.

We recall a version of the leftover hash lemma over cyclotomic rings.

Lemma 1 (Adapted from [BJRW20, Lemma 7]). Let n = poly(λ), p, q ∈ N, and m ≥ n · logp q +
ω(log λ). The following distributions are statistically close in λ:(B,y) :

B←$Rn×m
q

x←$Rm
p

y := B · x mod q

 and

{
(B,y) :

B←$Rn×m
q

y←$Rn
p

}
.

Lemma 2 (Derived from [MP12, Section 2.4]). For any k > 0,

Pr[‖u‖ > k · s |u←$ DR,s ] < 2 · dR · exp(−π · k2).

Definition 3 (Ring Expansion Factor). The expansion factor of R, denoted by γR, is γR := maxa,b∈R\{0}
∥a·b∥

∥a∥·∥b∥ .

Proposition 1 ([AL21]). If R is a prime-power cyclotomic ring, then γR ≤ 2 degR. If R is a power-of-2
cyclotomic ring, then γR ≤ degR.
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4 Preliminaries on Spectral Analysis

Linear Algebra We say a symmetric matrix Σ ∈ Rn×n is positive definite, if xTSx > 0 for all non-zero
x ∈ Rn. Analogously, we say that Σ is positive semi-definite, if xTSx ≥ 0 for all non-zero x ∈ Rn. We can use
positive semi-definiteness to define a partial ordering on symmetric matrices: We define Σ1 ≥ Σ2 iff Σ1−Σ2

is positive semi-definite, i.e. if for all x ∈ Rn we have that xTΣ1x ≥ xTΣ2x.
For every matrix M ∈ Rm×n we can find a singular value decomposition M = UDVT, where U ∈ Rm×m

and V ∈ Rn×n are orthogonal matrices, i.e. it holds that UUT = I and VVT = I, and D ∈ Rm×n is an
upper diagonal matrix. The entries on the diagonal of D are called the singular values of M. We denote by
σmax(M) the largest singular value of M, and by σmin(M) the smallest singular value of M.

Every positive semi-definite matrix Σ ∈ Rn×n has a singular-value decomposition of the Σ = UD2UT,
where U ∈ Rn×n is an orthogonal matrix and D ∈ Rn×n is a diagonal matrix. Via the singular value
decomposition we can compute a square root

√
Σ of a positive semi-definite matrix Σ by

√
Σ = UDUT.

It holds for every positive semi-definite definite matrix Σ that σmin(Σ) ·I ≤ Σ ≤ σmax(Σ) ·I. Furthermore,
σmin(Σ) is the largest value and σmax(Σ) the smallest scalar value for which this holds.

Lattices and Gaussians We recall the standard facts about lattices. A lattice Λ ⊆ Rm is the set of all
integer-linear combinations of a set of linearly independent basis-vectors, i.e. for every lattice Λ there exists
a full-rank matrix B ∈ Rk×m such that Λ = Λ(B) = {z ·B | z ∈ Zk}. We call k the rank of Λ and B a basis
of Λ, and we say that Λ is full-rank if k = m. The Gaussian function ρσ : Rn → R is defined by

ρσ(x) = e−π· ∥x∥2

σ2 .

For a a non-singular matrix B we define ρB(x) = ρ(xB−1).
The continuous gaussian distribution DB on Rn has the probability density function ρB(x)/ρB(Rn). We

call Σ = BTB the covariance matrix of the gaussian DB. For a lattice Λ, the discrete gaussian distribution
DΛ,B supported on Λ has the probability mass function ρB(x)/ρB(Λ).

For a lattice Λ and a positive real ϵ > 0, the smoothing parameter ηϵ(Λ) is defined to be the smallest
real number s for which ρ1/s(Λ

∗\{0}) ≤ ϵ. For a matrix B we write B ≥ ηϵ(Λ) if ηϵ(ΛB−1) ≤ 1.
We will make use of the following properties of gaussian distributions with respect to lattices.

Lemma 3 ([Reg05, Claim 3.9], simplified). Let Λ ⊆ Rn be a lattice and let σ1, σ2 > 0 be such that

1
1
σ2
1
+ 1

σ2
2

≥ ηϵ(Λ).

Let e ∼ DΛ,σ1
be a discrete gaussian and e′ ∼ Dσ2·I be a continuous gaussian. Then e+ e′ is 4ϵ close to the

continuous gaussian D√
σ2
1+σ2

2 ·I
.

We will use the following simple corollary of Lemma 3.

Lemma 4. Let Λ ⊆ Rn be a lattice, let ϵ > 0 and let Σ0 ≥ ηϵ(Λ). Let Σ1 = σ2
1Σ0 and let Σ2 be such that

Σ2 ≥ σ2
2Σ0. Assume that s

σ2 + 1
σ2
2
≤ 1. Let e ∼ DΛ,

√
Σ1

, ẽ ∼ D√
Σ2

and e∗ ∼ D√
Σ1+Σ2

. Then it holds that

e+ ẽ ≈4ϵ e
∗.

Theorem 1 ([Pei10, Thm 3.1], second part). Let Σ1,Σ2 > 0 be two positive definite matrices such
that Σ = Σ1 +Σ2 > 0 and Σ−1

3 = Σ−1
1 +Σ−1

2 > 0. Let Λ be a lattice with
√
Σ1 ≥ ηϵ(Λ) for some ϵ > 0.

Let c ∈ Rn be arbitrary. Consider the following sampling procedure for x ∈ Λ:

– Choose x′ ←$ D√
Σ2

.
– Choose x←$ x1 +DΛ+c−x′,

√
Σ1

.
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Then it holds that the marginal distribution of x is within statistical distance 8ϵ to DΛ+c,
√
Σ. Furthermore,

the conditional distribution of x′ given x = z is within statistical distance 2ϵ of Σ3Σ
−1
1 z+D√

Σ3
.

Theorem 1 motivates the definition of a convenient gaussian rounding function.

Definition 4. Let Λ be a lattice (or more generally a coset of a lattice) and Σ be a positive definite matrix.
Then roundΛ,

√
Σ(x) is a random variable following the distribution x+DΛ−x,

√
Σ.

Note that it follows instantly from the definition of roundΛ,
√
Σ that it holds for any x ∈ Rn and any

z ∈ Λ that roundΛ,
√
Σ(x+ z) ≡ z+ roundΛ,

√
Σ(x), as Λ− (x+ z) = Λ− x.

Using this notion, we will make use of Theorem 1 in the form of the following corollary.

Lemma 5. Let Σ0 be a positive definite matrix and let s > 0. Let Λ ⊆ Rn be a lattice with
√
Σ0 ≥ ηϵ(Λ)

for some ϵ > 0. Let e′ ∼ Ds·
√
Σ0

, e ∼ D
Λ,
√

(1+s2)Σ0
and ẽ ∼ D√

(s2+1)/s2·Σ0
. Let σ∗ = s2

s2+1 . Then it holds
that

roundΛ,
√
Σ0

(e′) ≈8ϵ e

and furthermore
(e′, roundΛ,

√
Σ0

(e′)) ≈10ϵ (σ
∗(e+ ẽ), e).

Proof. The first item follows from Theorem 1 by setting Σ1 = Σ0 and Σ2 = s2 · Σ0. For this parameter
choice it holds that Σ3 = s2

s2+1Σ0 and hence Σ3Σ
−1
1 z = σ∗z for all z ∈ Rn. We establish the second item as

follows. Letting re′ = roundΛ,
√
Σ0

(e′), it holds by the triangle inequality that

∆((e′, re′), (σ∗(e+ ẽ), e)) ≤ ∆((e′, re′), (σ∗re′ + σ∗ẽ, re′))

+∆((σ∗re′ + σ∗ẽ, re′), (σ∗e+ σ∗ẽ, e))

=
∑
z∈Λ

Pr [re = z]∆(e|re = z, σ∗z+ σ∗ẽ)︸ ︷︷ ︸
≤2ϵ by Theorem 1

+∆(re,d)

≤ 2ϵ (
∑
z∈Λ

Pr [re = z])︸ ︷︷ ︸
=1

+8ϵ

= 10ϵ.

ut

4.1 Spectral Bounds

We will briefly establish a few convenient tools to bound the spectra of matrices.

Lemma 6. Let M,S,Σ be positive definite matrices in Rn×n. Then it holds that

1

σmax(M)
I ≤M−1 ≤ 1

σmin(M)
I

and
(S+Σ)−1 ≤ 1

1 + σmin(Σ)
σmax(S)

S−1

Proof. Let M = UDUT be the singular value decomposition of M. Then M−1 = UD−1UT. Note that
D−1 ≤ 1

σmin(M)I. Hence it holds for all x ∈ Rn that

xTM−1x = (UTx)TD−1(UTx) ≤ 1

σmin(M)
(UTx)T(UTx) = xT

(
1

σmin(M)
I

)
x,
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from which the first item follows. To establish the second item, let Y =
√
S. Note that Y is also positive

definite. It holds for all x ∈ Rn that

xT(S+Σ)−1x = xTY−1(Y−1(S+Σ)Y−1)−1Y−1x

= (Y−1x)T(I+Y−1ΣY−1)(Yx)

≤ 1

σmin(I+Y−1ΣY−1)
(Y−1x)T(Y−1x)

=
1

σmin(I+Y−1ΣY−1)
xTY−2x

= xT

(
1

σmin(I+Y−1ΣY−1)
S−1

)
x,

i.e. (S+Σ)−1 ≤ 1
σmin(I+Y−1ΣY−1)S

−1. It remains to lower-bound σmin(I+Y−1ΣY−1). It holds for all x ∈ Rn

that

xTY−1ΣY−1x = (Y−1x)TΣ(Y−1x)

≥ σmin(Σ)(Y−1x)T(Y−1x)

= σmin(Σ)xTY−2x

= σmin(Σ)xTS−1x

≥ σmin(Σ)

σmax(S)
xTx,

i.e. Y−1ΣY−1 ≥ σmin(Σ)
σmax(S)

I and hence

I+Y−1ΣY−1 ≥
(
1 +

σmin(Σ)

σmax(S)

)
I.

This implies σmin(I+Y−1ΣY−1) ≥ 1 + σmin(Σ)
σmax(S)

. We can conclude that

(S+Σ)−1 ≤ 1

1 + σmin(Σ)
σmax(S)

S−1.

ut
Lemma 7. Let m ≥ n be integers and let M ∈ Rm×n be a full rank matrix. Let T = MT(MMT)−1M. Then
all non-zero singular values of T are 1.
Proof. Let M = USVT be the singular value decomposition of M, where S =

(
D 0

)
. Then it holds that

T = VSTUT(USVTVSTUT)−1USVT

= VSTD−2SVT,

as SST = D2. Finally, note that

STD−2S =

(
D
0

)
D−2

(
D 0

)
=

(
DD−2D 0

0 0

)
=

(
I 0
0 0

)
,

i.e.
T = V

(
I 0
0 0

)
VT,

and the claim follows. ut
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5 Simulating Gaussian Leakage

5.1 Continuous Gaussian Leakage

We will need the following Lemma about continuous gaussians conditionals.

Lemma 8 (Gaussian conditionals). Let n, k be integers. Let Σ1 ∈ Rn×n and Σ2 ∈ Rk×k be positive
definite matrices. Fix a matrix Z ∈ Rk×n and let Σ′

2 = ZΣ1Z
T + Σ2, W = Σ1Z

TΣ′
2
−1 and Σ′

1 = Σ1 −
Σ1Z

T(Σ′
2)

−1ZΣ1. Then the the following holds: If e1 ∼ D√
Σ1

, e2 ∼ D√
Σ2

, e′1 ∼ D√
Σ′

1
, e′2 ∼ D√

Σ′
2
, then

(e1,Ze1 + e2) ≡ (e′1 +We′2, e
′
2),

i.e. (e1,Ze1 + e2) and (e′1 +We′2, e
′
2) are identically distributed. Moreover, it holds that1− 1

1 + σmin(Σ2)
σmax(Σ1)σmax(Z)2

Σ1 ≤Σ′
1 ≤ Σ1

Σ2 ≤Σ′
2 ≤ Σ2 + σmax(Σ1)σmax(Z)

2I

Specifically, Lemma 8 provides us with an alternative way to compute the pair (e1, e
′
2 = Ze1 + e2):

Instead of first sampling e1 and e2 and then computing e′2 = Ze1+e2, we can first sample e′2 from a suitable
gaussian and then sample a matching e1 = e′1 +We′2 depending on e′2. An alternative interpretation of the
lemma is that given e′2 = Ze1 + e2, the conditional distribution of e1 given e′2 follows e′1 +We′2.

Proof. In the following, we will assume that the matrix Z has full rank. This will only affect the lower

bound on Σ′
1. If Z is rank-deficient, the singular value decomposition of Z provides us with Z = U

(
Z′

0

)
for an orthogonal matrix U and a matrix Z′ ∈ Rr×n (where r is the rank of Z). Since rotation with U
does not change the spectrum of Σ2 (i.e. the shape of the gaussian D√

Σ2
), we may assume for simplicity

that Z =

(
Z′

0

)
. We can decompose Σ2 as Σ2 = Σ̄2 + (Σ2 − Σ̄2), where Σ̄2 = σmin(Σ2) · I. Note that both

Σ̄2 and Σ2 − Σ̄2 are positive semi-definite and that σmin(Σ̄2) = σmin(Σ2). Hence we can decompose e2 as
e2 = e

(1)
2 + e

(2)
2 , where e

(1)
2 ∼ D√

Σ̄2
and e

(2)
2 ∼ D√

Σ2−Σ̄2
. That is e

(1)
2 is now a spherical gaussian, for

which all components are independent. We can then prove the statement of the Lemma for the full rank
matrix Z′ instead of Z and e

(1)
2 instead of e2. This concludes the detour about rank-deficient Z.

We will now prove that for

W = Σ1Z
T(ZΣ1Z

T +Σ2)
−1

Σ′
1 = Σ1 −Σ1Z

T(ZΣ1Z
T +Σ2)

−1ZΣ1

Σ′
2 = ZΣ1Z

T +Σ2

the claim of the lemma holds. Assume for now that Σ′
1 and Σ′

2 are positive definite. We will show this claim
later when bounding the spectra of Σ′

1 and Σ′
2. It will be convenient to express W in terms of Σ′

2 and Σ′
1

in terms of W. By inspection, it holds that

W = Σ1Z
TΣ′

2
−1 (2)

Σ′
1 = Σ1 −WΣ′

2W
T. (3)

Now let
e =

(
e1

Ze1 + e2

)
and e′ =

(
e′1 +We′2

e′2

)
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Both e and e′ are multivariate gaussians and it follows routinely that both e and e′ have expectation 0.
Thus it suffices to show that e and e′ have the same covariance matrix in order to show that they follow the
same distribution.

It holds that

Σ = E[eeT]

= E

[
e1e

T
1 e1(Ze1 + e2)

T

(Ze1 + e2)e
T
1 (Ze1 + e2)(Ze1 + e2)

T

]
=

(
E[e1e

T
1] E[e1(Ze1 + e2)

T]
E[(Ze1 + e2)e

T
1] E[(Ze1 + e2)(Ze1 + e2)

T]

)
=

(
E[e1e

T
1] E[e1e

T
1]Z

T + E[e1e
T
2]

ZE[(e1e
T
1] + E[e2e

T
1] ZE[e1e

T
1]Z

T + ZE[e1e
T
2] + E[e2e

T
1]Z

T + E[e2e
T
2]

)
=

(
Σ1 Σ1Z

T

ZΣ1 ZΣ1Z
T +Σ2

)
.

Likewise, it holds that

Σ′ = E[e′e′
T
]

=

(
WE[e′2e

′T
2]W

T +WE[e′2e
′T
1] + E[e′1e

′T
2]W

T + E[e1e
′T
1] WE[e′2e

′T
2] + E[e′1e

′T
2]

E[e′2e
′T
2]W

T + E[e′2e
′T
1] E[e′2e

′T
2]

)
=

(
WΣ′

2W
T +Σ′

1 WΣ′
2

Σ′
2W

T Σ′
2

)
.

Plugging in (2) and (3) we obtain that

Σ′ =

(
Σ1 Σ1Z

T

ZΣ1 ZΣ1Z
T +Σ2

)
= Σ,

i.e. Σ and Σ′ are indeed identical and therefore e and e′ follow the same distribution.
We will now compute spectral bounds for Σ′

1 and Σ′
2. Concerning Σ′

2, we can bound the largest singular
value of ZΣ1Z

T as follows. It holds for all x ∈ Rn that

xTZΣ1Z
Tx = (ZTx)TΣ1(Z

Tx)

≤ σmax(Σ1)x
TZZTx

≤ σmax(Σ1)σmax(Z)
2xTx

= xT(σmax(Σ1)σmax(Z)
2I)x,

i.e. it holds that

ZΣ1Z
T ≤ σmax(Σ1)σmax(Z)

2I. (4)

It follows that
Σ2 ≤ Σ′

2 ≤ Σ2 + σmax(Σ1)σmax(Z)
2I.

We will finally consider Σ′
1. For this purpose we define S = Z

√
Σ2 and note that ZΣ2Z

T = SST and
ZΣ1 = S

√
Σ1. Now it holds that

Σ′
1 = Σ1 −Σ1Z

T(ZΣ1Z
T +Σ2)

−1ZΣ1

= Σ1 −
√
Σ1S

T(SST +Σ2)
−1S

√
Σ1 (5)

≥ Σ1 −
1

1 + σmin(Σ2)
σmax(SST)

√
Σ1S

T(SST)−1S
√

Σ1 (6)
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≥ Σ1 −
1

1 + σmin(Σ2)
σmax(SST)

Σ1 (7)

=

1− 1

1 + σmin(Σ2)
σmax(SST)

Σ1

≥

1− 1

1 + σmin(Σ2)
σmax(Σ1)σmax(Z)2

Σ1, (8)

where (5) follows from the definition of S, (6) follows by Lemma 6, (7) follows by Lemma 7 and (8) follows
by (4) as SST = ZΣ2Z

T. ut

5.2 Discrete Gaussian Leakage

The following Theorem gives us a way to obliviously simulate an error term e1 together with leakage l =
Ze1 + e2. Given a gaussian e we can choose the leakage term independently of e, and then adjusting e
additively depending on the leakage term.

Theorem 2. Let ϵ, β > 0 and let Λ1,Λ2 be lattices with (possibly) different dimension. Let Z be such that
for all x ∈ Λ1 it holds that Zx ∈ Λ2. Furthermore let σmax(Z) ≤ β. Let Σ0 be a positive definite matrix with
same dimensions as Λ1 and

√
Σ0 ≥ ηϵ(Λ1) and let T0 be a positive definite matrix with same dimensions

as Λ2 and
√
T0 ≥ ηϵ(Λ2). Let s, t ≥ 2

√
2 and assume that

t2σmin(T0) ≥
(s2 + 1)(s2 + 2)

s2
σmax(Σ0) · β2.

Further let

Σ = (s2 + 1)Σ0

T = (t2 + 1)T0

T′ = t2T0 + (s2 + 1)ZΣ0Z
T

Σ̃ =
3

4
s2Σ0 − (s2 + 1)2Σ0ZT

′−1
ZΣ0

Σ̄ =
s2

4
·Σ0

W = (s2 + 1)Σ0Z
TT′−1

.

Now let e1 ∼ DΛ1,
√
Σ and e2 ∼ DΛ2,

√
T, e ∼ D

Λ1,
√
Σ̄

, ẽ ∼ D√
Σ̃

and d∗ ∼ D√
T′ . Then it holds that

(e1,Ze1 + e2) ≈22ϵ (e+ roundΛ1,
√
Σ0

(ẽ+Wd∗), roundΛ2,
√
T0

(d∗)).

Proof. Let e1 ∼ DΛ1,
√
Σ and e2 ∼ DΛ2,

√
T, where Σ = (s2+1)Σ0 and T = (t2+1)T0. Now let e′2 ∼ Dt

√
T0

.
By Lemma 5 (first item) it holds that

(e1,Ze1 + e2) ≈8ϵ (e1,Ze1 + roundΛ2,
√
T0

(e′2)).

We will now further decompose e′2. Let T∗ = t2T0 − s2+1
s2 ZΣ0Z

T. Note that

σmin(T
∗) ≥ t2σmin(T0)−

s2 + 1

s2
σmax(Σ0)σmaxZ

2 > 0, (9)
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hence T∗ is positive definite. Now let e∗2 ∼ D√
T∗ and ẽ1 ∼ D√

(s2+1)/s2·Σ0
. Hence e∗2 + Zẽ1 is a continuous

gaussian with covariance matrix

T∗ + Z((s2 + 1)/s2 ·Σ0)Z
T = t2T0 −

s2 + 1

s2
ZΣ0Z

T +
s2 + 1

s2
ZΣ0Z

T = t2T0,

thus e∗2 +Zẽ1 and e′2 have the same covariance matrix and are thus identically distributed, i.e. it holds that
e′2 ≡ e∗2 + Zẽ1. We thus have

(e1,Ze1 + roundΛ2,
√
T0

(e′2)) ≡ (e1,Ze1 + roundΛ2,
√
T0

(e∗2 + Zẽ1))

≡ (e1, roundΛ2,
√
T0

(e∗2 + Zẽ1 + Ze1))

≡ (e1, roundΛ2,
√
T0

(e∗2 + Z(ẽ1 + e1))).

Now let e∗1 ∼ Ds
√
Σ0

. Since e1 ∼ D
Λ1,
√

(s1+1)Σ0
and ẽ1 ∼ D√

Σ0
it holds by Lemma 5 (second item) that

(e∗1, roundΛ1,
√
Σ0

(e∗1)) ≈10ϵ ((s
2/(s2 + 1) · (e1 + ẽ1), e1). Letting Z∗ = (s2 + 1)/s2 · Z it holds that

(e1, roundΛ2,
√
T0

(e∗2 + Z(ẽ1 + e1))) ≡ (e1, roundΛ2,
√
T0

(e∗2 + Z∗(s2/(s2 + 1) · (ẽ1 + e1))))

≈10ϵ (roundΛ1,
√
Σ0

(e∗1), roundΛ2,
√
T0

(e∗2 + Z∗e∗1)).

We are now ready to invoke Lemma 8. Let

T′ = T∗ + Z∗(s2Σ0)(Z
∗)T

= t2T0 −
s2 + 1

s2
ZΣ0Z

T + Z∗(s2Σ0)(Z
∗)T

= t2T0 −
s2 + 1

s2
ZΣ0Z

T +
(s2 + 1)2

s2
ZΣ0Z

T

= t2T0 + (s2 + 1)ZΣ0Z
T,

further

W = s2Σ0(Z
∗)TT′−1

= (s2 + 1)Σ0Z
TT′−1

and

Σ′ = s2Σ0 − (s2Σ0)Z
∗TT′−1

Z∗(s2Σ0)

= s2Σ0 − (s2 + 1)2Σ0ZT
′−1

ZΣ0.

Now let e∗ ∼ D√
Σ′ and d∗ ∼ D√

T′ . Recalling that e∗1 ∼ Ds2
√
Σ0

and e∗2 ∼ D√
T∗ , it now holds by Lemma 8

that (e∗1,Z
∗e∗1 + e∗2) ≡ (e∗ +Wd∗,d∗). Hence it holds that

(roundΛ1,
√
Σ0

(e∗1), roundΛ2,
√
T0

(e∗2 + Z∗e∗1)) ≡ (roundΛ1,
√
Σ0

(e∗ +Wd∗), roundΛ2,
√
T0

(d∗)).

Recall that by equation (9) it holds that

σmin(T
∗) ≥ t2σmin(T0)−

s2 + 1

s2
σmax(Σ0)σmaxZ

2.

Further recalling that by assumption we have that

t2σmin(T0) ≥
(s2 + 1)(s2 + 2)

s2
σmax(Σ0)σmaxZ

2,
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we have that

σmin(T
∗) ≥ (s2 + 1)(s2 + 2)

s2
σmax(Σ0)σmaxZ

2 − s2 + 1

s2
σmax(Σ0)σmaxZ

2

=
(s2 + 1)2

s2
σmax(Σ0)σmax(Z)

2

= σmax(s
2Σ0) · σmax(Z

∗)2.

Thus, together with the bound on Σ′ in Lemma 8 it holds that

Σ′ ≥

1− 1

1 + σmin(T∗)
σmax(s2Σ0)·σmax(Z∗)2

 s2Σ0 ≥
s2

2
Σ0.

In the final step, we will decompose e∗ ∼ D√
Σ′ as the sum of a discrete and a continuous gaussian. Let

e ∼ DΛ1,s/2·
√
Σ0

and ẽ ∼ D√
Σ′−s2/4Σ0

. First note that Σ′ − s2/4Σ0 is positive definite, as it holds that

Σ′ − s2/4 ·Σ0 ≥ s2/2 ·Σ0 − s2/4 ·Σ0 = s2/4 ·Σ0 > 0.

As by s ≥ 2
√
2 it holds that

1

s2/4
+

1

s2/4
=

8

s2
≤ 1,

it holds by Lemma 4 that e+ ẽ ≈4ϵ e
∗. From this we can conclude that

(roundΛ1,
√
Σ0

(e∗ +Wd∗), roundΛ2,
√
T0

(d∗)) ≈4ϵ (roundΛ1,
√
Σ0

(e+ ẽ+Wd∗), roundΛ2,
√
T0

(d∗))

≡ (e+ roundΛ1,
√
Σ0

(ẽ+Wd∗), roundΛ2,
√
T0

(d∗)).

Putting all together, it holds that

(e1,Ze1 + e2) ≈22ϵ (e+ roundΛ1,
√
Σ0

(ẽ+Wd∗), roundΛ2,
√
T0

(d∗)),

which concludes the proof. ut

6 LWE with Error-Leakage

In this Section we will introduce a hardness assumption we call LWE with Error-Leakage and show that the
problem is as hard as standard LWE for a certain parameter regime.

Definition 5 (elLWER,n,m,k,q,χ,χ̄,L Assumption). Let R, n,m, k, q, χ, χ̄,L be parametrised by λ, where
L ⊂ Rm×k is an efficiently decidable set. The (decisional) LWER,n,m,k,q,χ,χ̄,L problem is defined via the
following experiment, where A = (A1,A2) is a two-stage PPT adversary.

– The challenger chooses A←$Rn×m
q uniformly at random and provides A to A1.

– A1 outputs a matrix Z ∈ L to the challenger (If Z /∈ L the challenger aborts and outputs a random bit).
– The challenger chooses a uniformly random bit b←$ {0, 1}.
– If b = 0, he samples s←$Rn

q , e←$ χm, ē←$ χ̄k and sets yT = sT ·A+ eT mod q and l = eT · Z+ ēT.
– If b = 1, he samples y←$Rm

q uniformly at random, e←$ χm, ē←$ χ̄k and computes l = eT · Z+ ēT.
– The challenger now runs A2 on input (A,y, l), upon which A2 outputs a bit b′.
– If b′ = b, the challenger outputs 1, otherwise 0.

We say that elLWER,n,m,k,q,χ,χ̄,L holds if every PPT adversary A has at most negligible advantage in the
above experiment.
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As the set L that specifies the admissible leakage functions we will use the L∞-ball in Rm

L∞(β) = {zT ∈ Rm | ‖z‖∞ ≤ β}.

The following Lemma bounds the maximal singular value of elements of L∞(β), interpreted as matrices
in Rd×dm via the coefficient embedding.
Lemma 9. Let R be a ring of degree d with an embedding Φ : R→ Rd. We can describe Φ via a transforma-
tion matrix M ∈ Rd×d, i.e. we have a generating set r1, . . . , rd ∈ R for which it hold that Φ(

∑d
i=1 αiri) = Ma,

where a = (α1, . . . , αd).
Now assume that it holds that ‖Φ(a · b)‖∞ ≤ γ · ‖Φ(a)‖∞ · ‖Φ(b)‖∞. Fix an a ∈ R and define the linear

transformation Θ : Rn → Rn via
Θ(x) = Φ(a · Φ−1(x)) = A · x.

Then A has maximal singular value γβ
√
d.

Proof. It holds that

‖Ax‖2 ≤
√
d‖Ax‖∞ =

√
d‖Φ(a · Φ−1(x))‖∞ ≤ γ

√
d‖Φ(a)‖∞ · ‖Φ(Φ−1(x))‖∞ = γβ

√
d‖x‖∞ ≤ γβ

√
d‖x‖2

We will now show that for suitable discrete gaussian error distributions, LWE implies elLWE tightly with
only a small loss in parameters.
Theorem 3. Let β > 0 be a parameter. Let ϵ > 0 be negligible. Let R be a suitable ring with an embedding
as a lattice in Rn, and let Σ0 be a covariance matrix with

√
Σ0 ≥ ηϵ(R). Let s, t ≥ 2

√
2 be such that

t2σmin(Σ0) ≥
(s2 + 1)(s2 + 2)

s2
σmax(Σ0) · β2.

Now let χ = DR,
√

(s2+1)Σ0
, χ̄ = DR,

√
(t2+1)Σ0

and χ∗ = DR,s/2·
√
Σ0

. Then, assuming that LWER,n,m,q,χ∗

is hard, elLWER,n,m,k,q,χ,χ̄,β is also hard. More precisely, assume the exists a distinguisher D with advan-
tage δ against elLWER,n,m,k,q,χ,χ̄,β. Then there exists a distinguisher D′ with advantage δ − 44ϵ against
LWER,n,m,q,χ∗ .
Proof. Let D be a PPT distinguisher against elLWE with advantage δ. We will construct the distinguisher
D′ as follows.

– Given (A,y), provide A to D1, which outputs a matrix Z.
– From Z, compute matrices T′, Σ̃ and W as in the statement of Theorem 2 (setting T0 = Σ0).
– Choose d∗ ∼ Dk√

T′ and ẽ ∼ Dm√
Σ̃

.
– Compute y′ = y + roundRm,

√
Σ0

(Wd∗ + ẽ) and l = roundRk,
√
Σ0

(d∗).
– Run D2 on input (A,y′, l) and output whatever D2 outputs.

If (A,y) is a well-formed LWER,n,m,q,χ∗ sample it holds that y = sA + e, where e ∼ DRm,s/2·
√
Σ1

. Conse-
quently, by Theorem 2 it holds that

(A,y′, l) ≡ (A, sA+ e+ roundRm,
√
Σ0

(Wd∗ + ẽ), roundRk,
√
Σ0

(d∗))

≈22ϵ (A, sA+ e1, e1Z+ e2)

where e1 ∼ χm and e2 ∼ χ̄k. That is, in this case the sample computed by D′ is statistically close to a
sample of elLWER,n,m,k,q,χ,χ̄,β for b = 0.

On the other hands, if y is distributed uniformly random, we can write y as y = u + e for a uniformly
random u and e ∼ χm. Consequently, in this case it holds also by Theorem 2 that

(A,y′, l) ≡ (A,u+ e+ roundRm,
√
Σ0

(Wd∗ + ẽ), roundRk,
√
Σ0

(d∗))

≈22ϵ (A,u+ e1, e− 1Z+ e2)

≡ (A,u′, e1Z+ e2)

That is, in this case the sample computed by D′ is statistically close to a sample of elLWER,n,m,k,q,χ,χ̄,β for
b = 1. Putting these two facts together it follows that D′ has advantage δ − 44ϵ. ut
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7 Laconic Encryption

We define a new notion of encryption called laconic encryption and give an efficient construction based
on the LWE assumption. Laconic encryption is essentially registration-based encryption with less stringent
efficiency requirements.

7.1 Definition

Definition 6 (Laconic Encryption). A laconic encryption scheme for message space M consists of a
tuple of PPT algorithms (Setup,KGen,Upd,Enc,WGen,Dec) with the following syntax:

– (pp, st, aux) ← Setup(1λ, 1ℓ): The setup algorithm is a randomized algorithm which takes as input the
security parameter 1λ and a length parameter 1ℓ. It generates the public parameters pp, a state st, and
some auxiliary information aux.

– (pk, sk)← KGen(pp): The key generation algorithm takes as input the public parameters pp and outputs
a pair of public and secret keys (pk, sk).

– st′ ← Updaux(pp, st, ind, pk): The membership update algorithm, with (read-and-write-)random access to
the auxiliary information aux, takes as input the public parameters pp, the state st, an index ind ∈ {0, 1}ℓ,
and a public key pk (or ⊥). It outputs updated state st′.

– ctxt ← Enc(pp, st, ind,msg): The encryption algorithm is a randomized algorithm which takes as input
the public parameters pp, the state st, an index ind ∈ {0, 1}ℓ, and a message msg ∈ M. It outputs a
ciphertext ctxt.

– wit ← WGenaux(pp, st, ind, pk): The witness generation algorithm, with (read-)random access to the aux-
iliary information aux, takes as input the public parameters pp, the state st, an index ind ∈ {0, 1}ℓ, and
a public key pk. It outputs a (non)-membership witness wit.

– msg← Dec(sk,wit, ctxt): The decryption algorithm takes as input a secret key sk, a membership witness
wit, and a ciphertext ctxt. It outputs a message msg.

Furthermore, there exists t ∈ poly(λ, ℓ) such that all above algorithms run in time at most t(λ, ℓ).

An instance of laconic encryption is initialized by a server running the Setup algorithm and publishing
the public parameters pp and the state st. The auxiliary information aux is kept (not necessarily secret) by
the server for generating membership witnesses later. The state st and the auxiliary information aux can be
thought of as a short digest and a long encoding, respectively, of a set of registered tuples (ind, pk) of index
and public keys, which is initially empty.

Given the public parameters pp, anyone can generate a pair of public and secret keys (pk, sk). The
membership update algorithm allows registering a new key pk 6= ⊥ under an index ind, possibly replacing
a previously registered key or removing the key previously registered under index ind (if any) if pk = ⊥.
Correspondingly, the witness generation algorithm generates a (non-)membership witness wit of (ind, pk)
(not) being registered in the state st. The encryption algorithm allows one to encrypt a message with respect
to an index ind, such that the ciphertext can be decrypted given a membership witness of (ind, pk) and the
secret key sk corresponding to pk. Crucially, the encryption algorithm does not require the knowledge of the
public key registered under index ind.

Note that the size of the auxiliary information aux could be linear in the number of registered keys
(exponential in ℓ). No algorithm requires aux as input, WGen and Upd only require random access to it.
Therefore, by the definition of PPT, all algorithms are required to run in time poly(λ, ℓ).

With the above-intended use of laconic encryption in mind, we define correctness and security. Our
correctness definition considers a scenario where the public parameters have underdone an arbitrary sequence
of updates such that in the latest version a tuple (ind, pk) is registered. In this case, if a message is encrypted
with respect to (pp, st, ind, pk), then decrypting the ciphertext with the secret key sk corresponding to pk
recovers the message with overwhelming probability.
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CorrectnessΠ,A(1λ, 1ℓ)

Honest := Empty dictionary

(pp, st, aux)← Setup(1λ, 1ℓ)

(ind∗,msg∗)← AKGenO,UpdO(pp, st, aux)

if ind∗ /∈ Honest then return 1

ctxt∗ ← Enc(pp, st, ind∗,msg∗)

(pk∗, sk∗)← Honest[ind∗]

wit∗ ←WGen(pp, st, aux, ind∗, pk∗)

msg = Dec(sk∗,wit∗, ctxt∗)

return (msg = msg∗)

KGenO(ind)

(pk, sk)← KGen(pp)

st← Updaux(pp, st, ind, pk)

Honest[ind] := (pk, sk)

return (st, aux, pk)

UpdO(ind, pk)

pp← Updaux(pp, st, ind, pk)

if pk = ⊥ then Honest[ind] := ⊥
else Malicious := Malicious ∪ { ind }
return (pp, aux)

SecuritybΠ,A(1λ, 1ℓ)

Malicious := ∅

(pp, st, aux)← Setup(1λ, 1ℓ)

((ind0,msg0), (ind1,msg1))← A
KGenO,UpdO(pp, st, aux)

if { ind0, ind1 } ∩Malicious ̸= ∅ then return 0

ctxt∗ ← Enc(pp, st, indb,msgb)

b′ ← AKGenO,UpdO(ctxt∗)

return b′

PseudorandomnessbΠ,A(1λ, 1ℓ)

Malicious := ∅

(pp, st, aux)← Setup(1λ, 1ℓ)

(ind∗,msg∗)← AKGenO,UpdO(pp, st, aux)

if ind∗ ∈ Malicious then return 0

if b = 0 then ctxt∗ ← Enc(pp, st, ind∗,msg∗)

else ctxt∗ ←$ C

b′ ← AKGenO,UpdO(ctxt∗)

return b′

Fig. 1. Correctness, security, pseudorandomness and update privacy experiments for laconic encryption.

Definition 7 (Correctness). A laconic encryption scheme Π is said to be statistically correct if for any
(unbounded) algorithm A, any ℓ = poly(λ), it holds that

Pr
[
CorrectnessΠ,A(1

λ, 1ℓ) = 1
]
≥ 1− negl(λ)

where the experiment CorrectnessΠ,A is defined in Fig. 1.

Our security definition combines both index and message-hiding. It requires that if each of two adversar-
ially chosen indices ind0, ind1 is either registered by an honest party (so that the secret key is unknown to
the adversary) or not registered, then for any adversarially chosen messages msg0,msg1 the adversary should
not be able to distinguish a ciphertext encrypting msg0 with respect to ind0 from that encrypting msg1 with
respect to ind1.

Definition 8 (Security). A laconic encryption scheme Π is said to be secure if for any PPT (stateful)
adversary A, any ℓ = poly(λ), it holds that∣∣Pr[Security0Π,A(1

λ, 1ℓ) = 1
]
− Pr

[
Security1Π,A(1

λ, 1ℓ) = 1
]∣∣ ≤ negl(λ)

where the experiment SecuritybΠ,A is defined in Fig. 1.

We will further define a slightly stronger security notion called pseudorandom ciphertexts. In essence,
this property guarantees that if an index ind∗ has not been registered, then a ciphertext with respect to ind∗

looks pseudorandom.
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Definition 9 (Pseudorandom Ciphertexts). A laconic encryption scheme Π with ciphertext space C is
said to be have pseudorandom ciphertexts if for any PPT (stateful) adversary A, any ℓ = poly(λ), it holds
that ∣∣Pr[Pseudorandomness0Π,A(1

λ, 1ℓ) = 1
]
− Pr

[
Pseudorandomness1Π,A(1

λ, 1ℓ) = 1
]∣∣

≤ negl(λ)

where the experiment PseudorandomnessbΠ,A is defined in Fig. 1.

We also define a security notion called update privacy. It requires that the state st hides the indices where
the public keys have been registered.

Definition 10 (Update Privacy). A laconic encryption scheme Π is said to be updated private if the
distribution of the state st is (statistically close to) independent of the update operations Updaux.

7.2 Our Construction

We construct a laconic encryption scheme for the message space M = R2 in Fig. 2.

Overview. Our construction is parametrised by n,m, p, q ∈ N and distributions χ, χ̄ over R. The public
parameters consists of random matrices A0,A1 ←$ Rn×m

q and B ←$ Rn×m
q , and initially two copies of a

random vector yϵ = y∗ ←$ Rn
q . The vector yϵ serves as the label of the root node ϵ, while the vector y∗ is

a special “terminator” label which is assigned to the top-most node of any uninitialized path. In addition
to the public parameters, the setup also generates some auxiliary information aux, which consists of the
(already assigned) labels of all nodes in the Merkle tree. At setup, since no public key is registered yet, no
path in the tree is assigned, and therefore the root node is assigned the terminator label, i.e. yϵ = y∗, and
aux contains only yϵ. Throughout the lifetime of the system, yϵ and aux will be updated, while the rest of
the public parameters will be fixed once and for all.

Each pair of secret and public keys takes the form of (x,y) ∈ Rm
p ×Rn

q satisfying B · x = y mod q. To
insert a public key yind or to replace an old key with yind at index ind ∈ {0, 1}ℓ, the public parameters and
auxiliary information are updated as follows. First, the key yind is assigned (or reassigned) as the label of
the leaf node ind. Then, following the path from the leaf node ind (exclusive) towards the root, the label of
each node str (and possibly their children) in the path is computed recursively as follows:

(i) If the left child (str‖0) is not assigned a label yet, assign it the terminator label y∗.
(ii) Similarly, if the right child (str‖1) is not assigned a label yet, assign it the terminator label y∗.
(iii) Let ystr∥0 and ystr∥1 be the labels of the children of str.
(iv) Compute ustr∥0 := −G−1(ystr∥0) and ustr∥1 := −G−1(ystr∥1).
(v) Compute ystr := A0 · ustr∥0 +A1 · ustr∥1 mod q.
(vi) Assign (or reassign) ystr as the label of node str.

To encrypt a message msg ∈ R2 with respect to index ind against the current root label yϵ, the encryptor
essentially performs dual-Regev encryption using (Aind,v) as the public key, where

Aind :=



A0 A1
¯ind1 ·G ind1 ·G A0 A1

¯ind2 ·G ind2 ·G
. . . . . .

A0 A1
¯indℓ ·G indℓ ·G

B


and v :=


yϵ

0
...
0
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In other words, the message msg ∈M is encrypted as (c, d) ∈ R(2ℓ+1)m
q ×Rq where

cT = rT ·Aind + eT mod q, and

d = rT · v + e+
⌊q
2

⌋
·msg mod q

for some random LWE secret r and small noises e and e. In Fig. 2, we write the expressions of the ciphertext
components explicitly without referring to Aind and v.

To decrypt a ciphertext (c, d) encrypted with respect to index ind with the key xind, the decryptor first
fetches its membership witness, i.e. a Merkle tree opening proof, wit = u[ind] where

uT
[ind] := (uT

0,u
T
1,u

T
ind1∥0,u

T
ind1∥1, . . . ,u

T
ind1:ℓ−1∥0,u

T
ind1:ℓ−1∥1)

from the auxiliary information aux. Together with the secret key sk = xind, the relations

Aind ·
(
u[ind]

xind

)
= v mod q and

∥∥∥∥(u[ind]

xind

)∥∥∥∥ ≤ p/2

are satisfied. The user therefore computes d−cT ·
(
u[ind]

xind

)
mod q, and round the result to the nearest multiple

of q
2 . The decryption is correct whenever

∣∣∣∣e− eT ·
(
u[ind]

xind

)∣∣∣∣ < (q − 1)/4.

Analysis. We analyze the correctness and the security of the construction in the following.

Theorem 4. Let R, ℓ,m, p, q, s, t be such that s < t, χ = DR,s, χ̄ = DR,t, and q > ((2ℓ+1) ·m · γR · p+4) ·√
λ · t+ 1. The construction in Fig. 2 is correct with overwhelming probability in λ.

Proof. Observe that decryption is correct whenever
∣∣∣∣e− eT ·

(
u[ind]

xind

)∣∣∣∣ < (q − 1)/4. By Lemma 2, with

overwhelming probability in λ, we have ‖e‖ ≤
√
λ
2 · t and ‖e‖ ≤

√
λ
2 · s <

√
λ
2 · t. Since

(
u[ind]

xind

)
∈ R(2ℓ+1)m

p ,

we have
∥∥∥∥(u[ind]

xind

)∥∥∥∥ ≤ p/2. Combining these facts yields

∥∥∥∥e− eT ·
(
u[ind]

xind

)∥∥∥∥ ≤ (2ℓ+ 1) ·m · γR ·
√
λ

2
· t · p

2
+
√
λ · t < (q − 1)/4

with overwhelming probability in λ. ut

Theorem 5. If dR ≥ λ, m ≥ n · logp q+ω(log λ), and the LWER,n,q,χ assumption holds, the laconic encryp-
tion in Fig. 2 is secure. More specifically, for every PPT adversary A against the pseudorandom ciphertext
security of the construction in Fig. 2, there exist PPT adversaries A1 against elLWER,n,m,1,q,χ,χ̄,p/2, A2

against LWER,n,2m,q,χ and A3 against LWER,n,m+1,q,χ such that

adv(A) ≥ ℓ · adv(A1) + adv(A2) + ℓ · adv(A3) + lhl(λ)

where lhl is the statistical distance defined by Lemma 1.

Proof. Denote the construction by Π and write C := R(2ℓ+1)m+1
q for the ciphertext space. Before we discuss

the hybrids, we will briefly analyze the structure of the challenge ciphertext. In the following, let ind∗ =
(ind∗1, . . . , ind

∗
ℓ ), and let k be such that ind∗1:k = (ind∗1, . . . , ind

∗
k) is a leaf node in the tree for which the adversary

does not have a corresponding preimage. Furthermore, we denote y∗
i = yind∗1:i

at the nodes ind∗1, . . . , ind
∗
1:k.

In the following let ctxt∗ = (c0, . . . , cℓ, d) be the challenge ciphertext. Consider the following hybrids.
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Setup(1λ)

A0,A1,B←$Rn×m
q

yϵ := y∗ ←$Rn
q

T := { ϵ }
pp := (A0,A1,B,y∗)

st := yϵ

aux := (T , {yv }v∈T )

return (pp, st, aux)

KGen(pp)

x←$Rm
p

y := B · x mod q

return (pk, sk) := (y,x)

Updaux(pp, st, ind, pk)

if pk = ⊥ then T := T \ { ind }
else

T := T ∪ { ind }
yind := pk

st′ ← TreeUpdateaux(pp, st, ind)

return st′

Enc(pp, st, ind,msg)

rj ←$Rn
q , ∀j ∈ { 0, . . . , ℓ }

for j = 0, . . . , ℓ− 1 do

ej ←$ χ2m

Bj :=

(
A0 A1

¯indj+1 ·G indj+1 ·G

)
cTj := (rTj , r

T
j+1) ·Bj + eTj mod q

eℓ ←$ χm, e←$ χ̄

cTℓ := rTℓ ·B+ eTℓ mod q

d := rT0 · yϵ + e+
⌊ q
2

⌋
·msg mod q

return ctxt := (c0, . . . , cℓ, d)

WGenaux(pp, st, ind, pk)

for j = ℓ− 1, . . . , 0 do

uind1:j∥0 := −G−1(yind1:j∥0)

uind1:j∥1 := −G−1(yind1:j∥1)

return wit := (uind1:j∥0,uind1:j∥1)
ℓ−1
j=0

Dec(sk,wit, ctxt)

parse sk as xind

µ̄ := d−
ℓ−1∑
j=0

cTj ·
(
uind1:j∥0
uind1:j∥1

)
− cTℓ · xind mod q

if |µ̄| < q/4 then return 0

else return 1

TreeUpdateaux(pp, st, ind)

for j = ℓ− 1, . . . , 0 do

if (ind1:j∥0) /∈ T ∧ (ind1:j∥1) /∈ T then // Both children of ind1:j are unassigned.

T := T \ { ind1:j }
else

if (ind1:j∥ ¯indj+1) /∈ T then // ind1:j+1 is assigned but its sibling not.

yind1:j∥ ¯indj+1
:= y∗

uind1:j∥0 := −G−1(yind1:j∥0), uind1:j∥1 := −G−1(yind1:j∥1)

T := T ∪ { ind1:j } // Assign ind1:j if any of its children is assigned.

yind1:j
:= A0 · uind1:j∥0 +A1 · uind1:j∥1 mod q

return st

Fig. 2. Construction of laconic encryption.

– H0: Identical to Pseudorandomness0Π,A(1
λ, 1ℓ). Note that in this hybrid

cTj = rTj · (A0 A1) + rTi+1 · ( ¯indi+1 ·G indi+1 ·G) + eTj mod q ∀j ∈ { 0, . . . , ℓ− 1 } ,
cTℓ = rTℓ ·B+ eTℓ mod q, and

d = rT0 · y∗
0 + e+

⌊q
2

⌋
·msg mod q.
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– H1: Compute ctxt∗ as follows. Choose c0, . . . , ck−1 ←$R2m
q uniformly at random, choose e0, . . . , ek−1 ←$

χ2m, and set

d =

k−1∑
j=0

(cj − ej)
T · zj + rTk · y∗

k + e+
⌊q
2

⌋
·msg mod q,

where zj =

(
uind∗1:j∥0
uind∗1:j∥1

)
∈ R2m

p . Furthermore, compute ck, . . . , cℓ as in H0.

– H2: In this hybrid we choose ck ←$R2m
q and d←$Rq uniformly at random.

– H3: In this hybrid we choose ci ←$ R2m
q uniformly at random for i = k + 1, . . . , ℓ − 1 and cℓ ←$ Rm

q

uniformly at random.

Note that in H3 all ciphertext components are chosen uniformly random. Hence the claim of the theorem
follows. We will establish the indistinguishability of successive hybrids via a sequence of lemmata. ut

Lemma 10. For any PPT adversary A there exists a PPT adversary A1 against elLWER,n,m,1,q,χ,χ̄,p/2 such
that

|Pr [H0(A) = 1]− Pr [H1(A) = 1] | ≤ ℓ · adv(A1).

Proof. To show that H0 and H1 are computationally indistinguishable, we define the following sub-hybrids
H′

0, . . . ,H′
ℓ and H′′

0 , . . . ,H′′
ℓ .

– H′
i (for i = 0, . . . , ℓ): H′

0 is identical to H0 and hybrids H′
>k are identical to H1. For the middle cases,

i.e. 1 ≤ i ≤ k, we define hybrid H′
i so that c0, . . . , ci−1 and d are computed as in H1, and ci, . . . , cℓ are

computed as in H0. Specifically, different from H0, we choose c0, . . . , ci−1 ←$R2m
q uniformly at random,

choose e0, . . . , ei−1 ←$ χ2m and set

d =

i−1∑
j=0

(cj − ej)
T · zj + rTi · y∗

i + e+
⌊q
2

⌋
·msg mod q.

– H′′
i (for i = 1, . . . , ℓ): If i > k, then this hybrid is identical to H′

i. Else (1 ≤ i ≤ k), cj for all j ∈ [0 :
ℓ] \ { i− 1 } are computed as in H′

i, and ci−1 is computed as follows. Choose ĉi−1 uniformly at random
and set

cTi−1 = ĉTi−1 + rTi · ( ¯indi ·G indi ·G) mod q.

Furthermore, we set

d =

i−2∑
j=0

(cj − ej)
T · zj + (ĉTi−1 − eTi−1) · zi−1 + e+

⌊q
2

⌋
·msg mod q.

First, observe that H′
i and H′′

i are in fact identically distributed: In H′′
i , since ĉi−1 is uniformly and

independently distributed, we can equivalently compute it as

ĉTi−1 = c̄Ti−1 − rTi · ( ¯indi ·G indi ·G)

for a uniformly random and independent c̄i−1. This makes ci−1 = c̄i−1 uniformly random, as in H′
i. Substi-

tuting the new ĉi to the expression of d in H′′
i , we have

d =

i−2∑
j=0

(cj − ej)
T · zj + (ĉTi−1 − eTi−1) · zi−1 + e+

⌊q
2

⌋
·msg mod q

=

i−2∑
j=0

(cj − ej)
Tzj + (cTi−1 − rTi (

¯indiG indiG)− eTi−1)zi−1 + e+
⌊q
2

⌋
msg mod q

29



=

i−1∑
j=0

(cj − ej)
T · zj − rTi · ( ¯indi ·G indi ·G) · zi−1 + e+

⌊q
2

⌋
·msg mod q

=

i−1∑
j=0

(cj − ej)
T · zj + rTi · y∗

i + e+
⌊q
2

⌋
·msg mod q,

as in H′
i, where the last equality was due to ( ¯indi ·G indi ·G) · zi−1 = −y∗

i .
The main technical part of this proof lies in establishing indistinguishability between hybrids H′

i and
H′′

i+1 for i ∈ { 0, . . . , ℓ− 1 }. Note that the case k < i ≤ ℓ− 1 is trivial since H′′
i = H′

i = H1 for i > k. In the
following, we focus on the remaining case 0 ≤ i ≤ k. We will show that these two hybrids are indistinguishable
under elLWE. Assume towards contradiction that

Pr [H′
i(A) = 1]− Pr

[
H′′

i+1(A) = 1
]
≥ ϵ.

We will show that this implies a PPT adversary A′
1 against elLWE with advantage ϵ.

The adversary A′
1 is specified as follows. As input it receives a matrix A ∈ Rn×2m

q , and it parses A as
A = (A0 A1) where A0,A1 ∈ Rn×m

q . Now A′
1 simulatesH′

i(A) with the matrices A0,A1 thus obtained, until
the adversary A queries the challenge ciphertext. Now it chooses z∗ = −zi and sends z∗ to its challenger.
Note that z∗ is a legit query as ‖z∗‖ ≤ p/2. Now A′

1 obtaining a leak l and y. Next, it computes the challenge
ciphertext as in H′

i(A), except that it sets

ci = y + ri+1 · ( ¯indi+1 ·G indi+1 ·G) mod q

and

d =

i−1∑
j=0

(cj − ej)
Tzj − yT · z∗ + l +

⌊q
2

⌋
·msg mod q.

Note that the remaining ciphertext components are the same as in H′
i(A) and H′′

i+1(A). From there on, A′
1

continues the simulation of H′
i(A) and outputs whatever H′

i(A) outputs.
Now let b ∈ {0, 1} be the challenge bit of the elLWE experiment. We claim that if b = 0, then A′

1 faithfully
simulates H′

i(A). On the other hand, we claim that for b = 1 the A′
1 faithfully simulates H′′

i+1(A). From
these two claims it follows that A′

1 has advantage ϵ.

– For b = 0, it holds that yT = rT ·A+eT = rT · (A0 A1)+eT mod q and l = eT ·z∗+e = −eT ·zi+e mod q.
Renaming r to ri and e to ei, it holds that

cTi = yT + rTi+1 · ( ¯indi+1 ·G indi+1 ·G) mod q

= rTi · (A0 A1) + rTi+1 · ( ¯indi+1 ·G indi+1 ·G) + eTi mod q

and

d =

i−1∑
j=0

(cj − ej)
T · zj − yT · z∗ + l +

⌊q
2

⌋
·msg mod q (10)

=

i−1∑
j=0

(cj − ej)
T · zj + (rTi ·A+ eTi ) · zi − eTizi + e+

⌊q
2

⌋
·msg mod q (11)

=

i−1∑
j=0

(cj − ej)
T · zj + rTi · y∗

i + e+
⌊q
2

⌋
·msg mod q, (12)

where the last equality holds as y∗
i = Azi. We can conclude that in this case the simulation of A′

1 and
H′

i(A) are identically distributed.
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– For b = 1, it holds that y = ĉi for a uniformly random ĉi ←$ R2m
q and l = eT · z∗ + e = −eTzi + e. It

therefore holds that

cTi = yT + rTi+1 · ( ¯indi+1 ·G indi+1 ·G) mod q

= ĉTi + rTi+1 · ( ¯indi+1 ·G indi+1 ·G) mod q

and

d =

i−1∑
j=0

(cj − ej)
T · zj − yT · z∗ + l +

⌊q
2

⌋
·msg mod q

=

i−1∑
j=0

(cj − ej)
T · zj + ĉTi · zi − eTizi + e+

⌊q
2

⌋
·msg mod q

=

i−1∑
j=0

(cj − ej)
T · zj + (ĉTi − eTi ) · zi + e+

⌊q
2

⌋
·msg mod q.

I.e. it holds that in this case the simulation of A′
1 and H′′

i+1(A) are identically distributed. ut

Lemma 11. For any PPT adversary A there exists a PPT adversary A2 against LWER,n,2m,q,χ such that

|Pr [H1(A) = 1]− Pr [H2(A) = 1] | ≤ adv(A2) + lhl(λ).

Proof. In the following we describe the adversary A2 for the case where k 6= ℓ, i.e., the challenge identity is
not registered. For the case k = ℓ, the argument is the same, except that we first invoke Lemma 1 to switch
the matrix B to uniformly sampled, which introduces an additive (statistical) term lhl(λ) in the distance
between the two hybrids.
A2 first queries 2m LWE samples from its oracle and arranges them in matrix form as (A,v), this A is

then parsed as A = (A0 A1) and uses A0 and A1 in pp, whereas the vector v is stored. Next, A2 queries
m LWE samples from its oracle and arranges them in matrix form as (B,v′), this B is then used as part of
pp. Now A2 simulates H1, but whenever a new honest key pk∗i is generated, A2 queries its LWE oracle and
obtains (ŷi, v̂i), sets pki = ŷi and stores v̂i. The challenge ciphertext is generated as follows: Assume the
challenge identity ind∗ terminates in a public key pki∗ . The challenge ciphertext is computed as in H2(A),
except that we set

d =

k−1∑
j=0

(uj − ej)
T · zj + v̂i∗ +

⌊q
2

⌋
·msg mod q

and cTk = v if k < ℓ and cTk = v′ if k = ℓ. A2 then continues simulation of H2(A) and outputs whatever
H2(A) outputs.

First observe that if (A,v), (B,v′) and {(ŷi∗ , v̂i∗)} are LWE samples, i.e. v = sT ·A+ eT mod q, (v′)T =
sT ·B+ êT mod q and v̂i∗ = sT · ŷi∗ + êi∗ mod q, then the simulation of A2 is identically distributed to H2(A).
On the other hand, if c, v′ and the v̂i∗ are uniformly random and independent, then the simulation of A2 is
identically distributed to H3(A). The claim of the lemma follows. ut

Lemma 12. For any PPT adversary A there exists a PPT adversary A3 against LWER,n,m+1,q,χ such that

|Pr [H2(A) = 1]− Pr [H3(A) = 1] | ≤ ℓ · adv(A3).

Proof. Consider the following hybrids H′′′
0 , . . . ,H′′′

ℓ , where H′′′
0 is identically distributed to H2, and H′′′

ℓ is
identically distributed to H3.

– H′′′
i+1 (For i = 0, . . . , ℓ − 1): Identically distributed to Hi, except that, for i > k, ci is chosen uniformly

at random.
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Assume towards contradiction that

Pr
[
H′′′

i+1(A) = 1
]
− Pr [H′′′

i (A) = 1] ≥ ϵ

for some i ∈ {0, . . . , ℓ}. We will show that this implies a PPT adversary A3 against LWER,n,m,q,χ with
advantage ϵ. The adversary A3 receives an input (A,v) and proceeds as follows. A3 simulates H′′′

i (A),
except for the following modifications. First, it uses the matrix A = (A0 A1) in the public parameters. Next,
when the challenge ciphertext is generated, if i > k it sets ci = v. A3 then continues the simulation and
outputs whatever its simulation of H′′′

i−1(A) outputs.
Now, it follows routinely that if (A,v) is an LWE sample, i.e. vT = sT ·A+eT mod q, then the simulation

of A3 is distributed identically to H′′′
i (A). On the other hand, if v is uniformly random, then the simulation

of A3 is distributed identically to H′′′
i+1(A). We can conclude that A3 has advantage ϵ. ut

Update Privacy. There is a simple modification to construction of laconic encryption in Fig. 2 which yields
update-privacy. The idea is to make the hash-function fA0,A1

(y0,y1) = A0 · (−G−1(y0))+A1 · (−G−1(y1))
randomized such that fA0,A1

(y0,y1) statistically hides y0 and y1. This can be achieved by slightly modifying
the gadget matrix G into G′ and making G′−1 randomized 8, and replacing the parameter m with a slightly
larger m′ = m+n log(q). Specifically, we set G′ = (G 0) ∈ Zn×m′ , i.e. we obtain G′ by appending n log(q) all-

zero columns to G. Furthermore, we define G′−1
(x) =

(
G−1(x)

r

)
, where r←$R2n log(q)

2 is chosen uniformly

at random. Note that it still holds that G′G′−1
(x) = x for all x ∈ Rn

q . The modified hash function is now

f ′(y0,y1) = A0 · (−G′−1
(y0)) +A1 · (−G′−1

(y1)).

Now, decomposing A0 = (A0,1 A0,2) and A1 = (A1,1 A1,2), where A0,1,A1,1 ∈ Rn×m
q and A0,2,A1,2 ∈

Rn×n log(q)
q , it holds that

f ′(y0,y1) = A0 · (−G′−1
(y0)) +A1 · (−G′−1

(y1))

= (A0,1 A0,2) · (−
(
G−1(y0)

r0

)
) + (A1,1 A1,2) · (−

(
G−1(y1)

r1

)
)

= (A0,1 A1,1)

(
−G−1(y0)
−G−1(y1)

)
− (A0,2 A1,2)

(
r0
r1

)
︸ ︷︷ ︸

=:v

.

Since the matrix (A0,2 A1,2) ∈ Rn×2n log(q)
q is chosen uniformly random and (r0, r1) is uniformly random in

R2n log(q)
2 , it holds by the leftover hash lemma (Lemma 1) that v is 2−n-close to uniform. Consequently, the

hash-value f ′(y0,y1) is statistically close to uniform. Hence, update privacy of the modified construction
follows. We can conclude the following lemma.

Lemma 13. The modified construction of Fig. 2 using G′ and the randomized G′−1 is update private.

Properties and Efficiency. We remark about some properties and efficiency of our construction. The
public parameters (initially) consists of three uniformly random matrices A0,A1,B ∈ Rn×m

q which can
be sampled with public coin. Subsequent updates to the public parameters, more specifically to yϵ ∈ Rn

q ,
are deterministic. Suppose we pick q to be linear in ℓ, then the Setup and KGen algorithms run in time
logarithmic in ℓ, while the Upd, Enc, WGen, and Dec algorithms run in time quasi-linear in ℓ.

8[BdMW16] defined a similar notion of randomized G−1, which however samples a discrete gaussian preimage
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8 Registration-Based Encryption

In Registration-Based Encryption (RBE) [GHMR18] users, characterized by an identity ind, generate a pair
of public-secret keys (pk, sk) and register pk, upon entering the system, to an (untrusted) Key Curator
(KC). KC is then generating a short public information st and a (public) witness for the user wit. Given the
identity of the user ind, the public state st (and possibly some universal public parameters pp), but without
the corresponding public key, anyone can encrypt a meesage for the user. The user can then decrypt using
her secret key sk and witness wit. This witness is updated during the lifetime of the system, upon new user
registrations.

As noted in Section 7, RBE is essentially equivalent to (static) Laconic Encryption (LE) with an additional
efficiency requirement: the total number of witness updates any user should ask is at most poly-logarithmic
in the number of users. Although the two notions are conceptually close, this distinguishing feature turns
out to be cumbersome enough to differentiate the two primitives.

In more detail, RBE is (1) static, in the sense that an identity-user can register her public key once
but cannot replace or delete it. Therefore, if N number of users participate in the RBE, exactly N public
parameter updates happen. Additionally, the crucial efficiency property of RBE is that throughout these N
registrations, each user’s witness wit is updated at most poly(λ, logN) times. This means that any user ind
needs to call WGenaux(·, ind, ·) at most poly(λ, logN) times. In recent work, [MQR22] showed that if we keep
the public parameters of length poly(logN) in any RBE construction, Ω(logN/ log logN) calls to WGenaux

are necessary so as to satisfy the RBE properties. This essentially minimizes the communication between a
user with the Key Curator.

In a Laconic Encryption scheme, N public parameter updates (i.e. Updaux calls) can result to N witness
updates. As a matter of fact, our construction of Section 7.2 requires N witness updates: at each new
registration all witnesses should be updated.

Below we formally define RBE assuming LE. The definition is equivalent to the one originally introduced
by Garg et. al. [GHMR18], restated through the lens of laconic encryption.

Definition 11 (Registration-based Encryption). A registration-based scheme is a laconic encryption
scheme, consisting of the PPT algorithms (Setup,KGen,Upd,Enc,WGen,Dec), with the following additional
property:

• Efficiency of the number of updates. For any identity ind ∈ {0, 1}ℓ, the total number of
WGenaux(·, ind, ·) invocations is upper bounded by poly(λ, ℓ).

Furthermore, we recall the definition of weakly-efficient RBE [GHMR18], which relaxes the efficiency
requirements of RBE. Essentially, it allows the Key Curator to run in time linear in the number of registred
users, instead of poly-logarithmic.

Definition 12 (Weakly-Efficient Registration-based Encryption). A weakly-efficient registration-
based scheme is a registration-based encryption scheme where the running time of Upd is bound by poly(λ,N),
for N the total number of users registered.

8.1 Our Construction

Here we present our (weakly-efficient) Registration-Based Encryption scheme. In fact, we give a generic
construction of weakly-efficient RBE from any Laconic Encryption scheme.

Assume any Laconic Encryption scheme (LE.Setup, LE.KGen, LE.Upd, LE.Enc, LE.WGen, LE.Dec). Our end-
goal is to prevent the number of updates from being linear in the number of registration. In other words,
not every wit should become invalid (and thus need an update) after new registration. In LE the short state
st “accumulates” all the N current set of keys. In our transformation instead, we generate ℓ different states
st = (st1, . . . , stℓ) that ’accumulate’ N1 > N2 > . . . > Nℓ keys resp., where Ni can be either a power-of-2 or
0.
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A new pk is at first put in an empty state with Nk = 0, then as long as Ni = Ni−1 the two states are
merged: all the public keys of Ni are removed from sti and moved to sti−1, which gives as N ′

i−1 ← 2Ni−1 and
N ′

i ← 0. At this point all the witnesses of the corresponding identities in sti−1 should be updated. However
this means that the only way a witness is updated is when it moves to the next power-of-2 state, i.e. with
double the number of identities. This can happen at most logN number of times. On the other hand, merge
may, in the worst case, require O(N) time, which gives us a weakly-efficient RBE.

The above transformation generalizes the underlying data structure of the Garg et. al. [GHMR18] con-
struction.

On another note, in LE we (implicitly) assume that after each witness update the owner is receiving
the new witness. In RBE, since updates sparsely happen, we desire the user to identify when the update
happened so that it communicates with KC to receive the new witness. For this each ciphertext should
include some information from which the identity can reason whether the current witness is valid or it has
to be updated. For this, in addition to the encryption of the message msg, we plug into the ciphertext a
commitment to msg with randomness r, c = com(msg; r), using any commitment scheme Γ , and an encryption
of r, LE.Enc(pp, st, ind, r).9 If msg; r is an opening of c then the decryption is correct and the witness is valid,
otherwise the decryption gives different msg′, r′ that do not open c and the witness should be updated.

In the following construction we assume that the auxiliary information (aux) in the Laconic Encryption
Scheme at the very least contains:

(i) The set of identities registered, denoted I.
(ii) The corresponding public keys of the identities registered, denoted PK.
(iii) The number of identities currently registered, denoted N .10

We assume RAM access to the above information of aux and that they are updated accordingly with every
LE.Updaux call. Additionally, we remark that depending on the LE construction, aux may contain further
information.

Our weakly-efficient RBE generic construction is in Figure 3.

Remark 1 (Generic O(
√
N)-efficient RBE transformation). An alternative generic transformation is to con-

sider O(
√
N) states st = (st1, . . . , st

√
N ) instead of logN , where each state ’accumulates’ up to

√
N identities

(and no merging ever occurs). This gives an RBE where the size of the public information ‖st‖ and the
maximum number of updates are O(

√
N) instead of logN , but the running time of Upd is O(

√
N) instead

of O(N). This transformation and the transformation of Figure 3 provide different tradeoffs for the user’s
and KC’s overhead.

Correctness and Security. Correctness follows from correctness of the laconic encryption scheme and the
commitment scheme.

Security of the scheme comes from the security of the laconic encryption and the hiding property of
the commitment scheme. As discussed above, the definition of security for RBE is the same as that of LE.
Therefore we can argue indistinguishability for each component ctxt

(1)
i , ctxt

(2)
i of the RBE ciphertext using

the security of LE. Then for each ci component we use the hiding property of Γ . This is formally described
below with a sequence of hybrid games.

Theorem 6. If LE is a secure laconic encryption scheme and Γ a hiding commitment scheme, the registration-
based encryption in Fig. 3 is secure.

9For convinience we assume that the randomness space of the commitment scheme and the message of the LE
scheme coincide. In the opposite case one can always encode r in the message space of LE with possibly many messages
(e.g. bit decomposition) and encrypt them message-by-message (Enc(Encode1(r)), . . . ,Enc(Encodek(r))).

10The number of identities N can be infered from the set of identities I. For ease of presentation we consider N
explicitly stored.
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Setup(1λ, 1ℓ)

(pp, st0, aux0)← LE.Setup(1λ, 1ℓ)

st := (st0, . . . , st0) // ℓ-sized vector.

aux := (aux0, . . . , aux0) // ℓ-sized vector.

return (pp, st, aux)

KGen(pp)

(pk, sk)← LE.KGen(pp)

return (pk, sk)

Updaux(pp, st, ind, pk)

find the smallest i ∈ [ℓ] : Ni = 0 // Using aux.

parse st := (st1, . . . , stℓ)

st′i ← LE.Updaux(pp, sti, ind, pk)

(st′1, . . . , st
′
i−1) := (st1, . . . , sti−1) // Initilization.

while Ni = Ni−1 ∧ i > 1 do

(st′i, st
′
i−1)← Mergeaux(st′i, st

′
i−1)

i := i− 1

return st′ := (st′1, . . . , st
′
i, sti+1, . . . , stℓ)

Mergeaux(sti, sti−1)

foreach ind ∈ Ii do
st′i−1 ← LE.Updauxi−1(pp, sti−1, ind, pkind)

st′i ← LE.Updauxi(pp, sti, ind,⊥)
return (st′i, st

′
i−1)

Enc(pp, st, ind,msg)

parse st := (st1, . . . , stℓ)

for j = 1, . . . , ℓ do

ri ←$RΓ

ctxt
(1)
i ← LE.Enc(pp, sti, ind,msg)

ctxt
(2)
i ← LE.Enc(pp, sti, ind, ri)

ci ← com(msg; ri)

ctxti ← (ctxt
(1)
i , ctxt

(2)
i , ci)

return ctxt := (ctxt1, . . . , ctxtℓ)

WGenaux(pp, st, ind, pk)

find i ∈ [ℓ] : ind ∈ Ii // Using aux.

parse st := (st1, . . . , stℓ)

witi ← LE.WGenauxi(pp, sti, ind, pk)

return wit := (witi, i)

Dec(sk,wit, ctxt)

parse st := (st1, . . . , stℓ)

parse wit := (witi, i)

parse ctxt := (ctxt1, . . . , ctxtℓ)

parse ctxti := (ctxt
(1)
i , ctxt

(2)
i , c)

msg← LE.Dec(ski,witi, ctxt
(1)
i )

r← LE.Dec(ski,witi, ctxt
(2)
i )

if c ̸= Γ.com(msg; r) then return GetUpd

else return msg

Fig. 3. Our generic construction of registration-based encryption from any laconic encryption scheme.
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Proof. Let the security experiment SecuritybΠ,A(1
λ, 1ℓ) of Figure 1 for a uniformly random b←$ {0, 1}. The

ciphertext has the form:

ctxt =
(
(ctxt

(1)
1 , ctxt

(2)
1 , c1), . . . , (ctxt

(1)
ℓ , ctxt

(2)
ℓ , cℓ)

)
where ctxt

(1)
i ← LE.Enc(pp, sti, indb,msgb), ctxt

(2)
i ← LE.Enc(pp, sti, indb, ri), ci ← Γ.com(msgb; ri).

We define the following sequence of hybrid games:

– Hybrid 0: is identical to the orginal security game.
– Hybrid 1: is the same as Hybrid 0, except c1 is computed as Γ.com(m̃sg; r̃) for an arbitrary message:

m̃sg ∈MΓ and r̃←$RΓ . Hybrid 0 and Hybrid 1 are indistinguishable according to the hiding property
of the commitments scheme Γ .

– . . .
– Hybrid ℓ: similarly it is the same as Hybrid ℓ−1 except for cℓ which is computed as a commitment to an

arbitrary message from the message space of Γ , Γ.com(m̃sg; r̃). From the hiding property of Γ Hybrid ℓ
is indistinguishable from Hybrid ℓ− 1.

– Hybrid ℓ + 1: it is the same as Hybrid ℓ except ctxt
(1)
1 is replaced with an encryption of an arbitrary

element m̂sg and identity ˆind1, ctxt(1)1 ← LE.Enc(pp, st1,
ˆind, m̂sg). Hybrid ℓ+ 1 is indistinguishable from

Hybrid ℓ from the security of LE: an adversary that is able to distinguish between the two games can be
used to break the security of the laconic encryption scheme (for st1 and ctxt

(1)
1 ).

– . . .
– Hybrid 2ℓ: is the same as the Hybrid 2ℓ− 1 except ctxt

(1)
ℓ ← LE.Enc(pp, st1,

ˆind, m̂sg). The two Hybrids
are indistinguishable from LE security.

– Hybrid 2ℓ+ 1: is the same as the Hybrid 2ℓ except ctxt
(2)
1 ← LE.Enc(pp, st1,

ˆind, r̂). The two Hybrids are
indistinguishable from LE security.

– . . .
– Hybrid 3ℓ: is the same as the Hybrid 3ℓ− 1 except ctxt

(2)
ℓ ← LE.Enc(pp, st1,

ˆind, r̂). The two Hybrids are
indistinguishable from LE security.
The final ciphertext has the form:

ctxt∗ =
(
(LE.Enc(pp, st1,

ˆind, m̂sg), LE.Enc(pp, st1,
ˆind, r̂), Γ.com(m̃sg; r̃)), . . . ,

(LE.Enc(pp, stℓ,
ˆind, m̂sg), LE.Enc(pp, stℓ,

ˆind, r̂), Γ.com(m̃sg; r̃))
)

for arbitrary ˆind, m̂sg, m̃sg.̃r (independent of the choice of A’s ind0,msg0, ind1,msg1) so the adversary can
successfully guess b with probability 1/2, Pr [Hybrid 3ℓ = 0] = 1/2.
Therefore:

Pr [Hybrid 0 = 0] =
1

2
+ ℓ · advhid(A) + 2ℓ · advLEsec(A) =

1

2
+ negl(λ)

ut

Instantiation and Efficiency. The above RBE construction can be instantiated with our laconic en-
cryption scheme of section 7.2 and any (bit-)commitment scheme, the simpllest being the one based on
SIS [Ajt96].11 Here, we discuss the (asymptotic) efficiency of this concrete instantiation. We note that in all
cryptographic operations and element sizes below there is an inherent O(λ) factor omitted.

The running time of the Setup algorithm is O(ℓ) (it generates one LE key in O(1) time and outputs two
O(ℓ)-vectors). KGen runs in O(1) time. For the registration, the Key Curator should run Upd which takes, in
the worst case, O(N) steps, where N is the number of curently registered identities. For this our RBE scheme
is weakly efficient. Encrypting and decrypting a ciphertext takes O(ℓ2) time, each of the ℓ components of

11Alternative (lattice-based) commitment schemes can be considered, with the goal of improving concrete efficiency,
without though changing the asymptotic behaviour of the RBE scheme.
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the ciphertext takes O(ℓ) time to compute according to LE.Enc and LE.Dec respectively. Finally, witness
generation takes O(ℓ) time.

For the communication complexity, ‖pp‖ = O(1), ‖st‖ = O(ℓ), ‖sk‖, ‖pk‖ = O(1). The size of of the
auxiliary information is ‖aux‖ = O(N). Then the ciphertext has size ‖ctxt‖ = O(ℓ2) and the witness ‖wit‖ =
O(ℓ).

Finally, as discussed above the maximum number of update queries a user should make to the Key
Curator is exactly logN .

We stress that the asymptotic behaviour of our RBE scheme matches exactly the one by Garg et.
al. [GHMR18]. However, our construction does not make use of expensive non-black-box cryptographic
primitives such as garbled circuits or indistinguishable obfuscation. All the operations are purely algebraic.
This greatly improves the concrete efficiency of our scheme.

8.2 Efficient Verifiable Registration-Based Encryption

Here we discuss how to achieve verifiability in our (concrete) RBE scheme. Verifiable RBE was introduced
by Goyal et. al. [GV20] and states that the behaviour of the Key Curator shall be verifiable. That is, anyone
should be able to ask the Key Curator if an identity ind is registered or not and the KC should be able to
answer with a short (non-)membership proof for ind.

Our concrete RBE scheme (instantiated with our laconic encryption of 7.2 and the SIS-based commitment
scheme [Ajt96]) is verifiable in a straightforward way. The data structure accumulating users’ public keys are
ℓ Merkle-trees, where the i-th position (the i-th leave) is reserved for the public key of the identity ind = i.
If the user i is registered then exactly one of the ℓ Merkle trees should contain pki and the rest should be
unassigned, in position i. If the user is not registered then all ℓ Merkle trees should be null in position i.

More specifically, an RBE membership proof for (ind, pk) should be ℓ − 1 non-membership proofs and
exactly 1 membership proof for position ind. Similarly, an RBE non-membership proof for ind should be
exactly ℓ non-membership proofs for the position ind. For our construction, a Merkle-tree membership proof
is simply the path (and the siblings) from leaf ind up to the root. For the Merkle-tree non-membership proof
we exploit the fact that if the leaf ind is unassigned there should be (exactly) one terminator value y∗ in
the (hypothetical) path from leaf ind up to the root. That is one of uind1:1 ,uind1:2 , . . . ,uind1:ℓ should be y∗.
Therefore the non-membership proof consists of the path (and its siblings) from the terminator node in the
path of ind up to the root.

We formally describe (MProve,MVerify,NMProve,NMVerify), the membership and non-membership algo-
rithms for verifiability, in Figure 4.

9 Laconic Private-Set Intersection

In a private set intersection (PSI) protocol [FNP04], two parties holding private sets X and Y can jointly
compute the intersection X ∩ Y without revealing any other information about their sets to each other.
There are several laconic PSI protocols constructed from accumulators [ABD+21,ALOS22]. We now present
a laconic PSI protocol from our laconic encryption scheme Π.

– PSI.Setup: On input the security parameter λ, the setup algorithm runs the setup of laconic encryption
(pp, st, aux)← Setup(1λ) and generates a collision-resistant hash function H : {0, 1}∗ 7→ {0, 1}ℓ.

– PSI.R1: On input a non-empty set SR = {xi}i∈[m], the receiver algorithm proceeds with the following
subroutine. For i ∈ [m]:
• Sample a pair of keys (pki, ski)← KGen(pp).
• Insert pki at position H(xi) computing st← Updaux(pp, st,H(xi), pki) and generate the corresponding

witness witi ←WGenaux(pp, st,H(xi), pki).
It samples a message msg←R2. Finally, it sends the updated st and msg to the sender.

– PSI.S: On input st, msg and a set SS = {yj}j∈[n], the sender samples an one-way permutation π on [n]
and encrypts msg with the updated st: ctxtj ← Enc(pp, st,H(yπ(j)),msg) and j ∈ [n], and sends the set
of ciphertexts {ctxtj}j∈[n] to the receiver.
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MProveaux(pp, st, ind, pk)

(witi, i)←WGenaux(pp, st, ind, pk)

for j = 1, . . . , ℓ, j ̸= i do

w̃itj ← W̃Gen
aux

(pp, st, ind)

return

π := (w̃it1, . . . , w̃iti−1,witi, w̃iti+1, . . . , w̃itℓ, i)

MVerify(pp, st, ind, pk, π)

if WVer(pp, sti, ind,witi, pk) ̸= 1 then

return 0

for j = 1, . . . , ℓ, j ̸= i do

if WVer(pp, stj , ind, w̃itj ,y
∗) ̸= 1 then

return 0

return 1

NMProveaux(pp, st, ind)

for j = 1, . . . , ℓ do

w̃itj ← W̃Gen
aux

(pp, st, ind)

return π := (w̃it1, . . . , w̃itℓ)

NMVerify(pp, st, ind, π)

for j = 1, . . . , ℓ do

if WVer(pp, stj , ind, w̃itj ,y
∗) ̸= 1 then

return 0

return 1

W̃Gen
aux

(pp, st, ind)

find the smallest ℓ∗ ∈ [ℓ] : ind1:ℓ∗ /∈ T
for j = ℓ∗ − 1, . . . , 0 do

uind1:j∥0 := −G−1(yind1:j∥0)

uind1:j∥1 := −G−1(yind1:j∥1)

return w̃it := (uind1:j∥0,uind1:j∥1)
ℓ∗−1
j=0

WVer(pp, st, ind,wit,y)

parse wit := (uind1:j∥0,uind1:j∥1)
ℓ∗−1
j=0

if uindℓ∗ ̸= −G
−1(y) then

return 0

for j = ℓ∗ − 1, . . . , 0 do

yind1:j
:= A0 · uind1:j∥0 +A1 · uind1:j∥1

uind1:j ← −G
−1(yind1:j

)

if yind1:0
̸= st then

return 0

return 1

Fig. 4. Membership and non-membership algorithms for our RBE scheme.
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– PSI.R2: On input a set of ciphertexts {ctxtj}j∈[n], the receiver initializes a set Z = ∅. For all j ∈ [n] and
k ∈ [m], the receiver does the following:
• Compute msgk = Dec(pp, skk,witk, ctxtj).
• If msgk = msg , add xk to the output Z.

The receiver outputs Z.

Theorem 7. If Π is a secure laconic encryption scheme and H is collision-resistant, the laconic PSI protocol
is correct and secure in the semi-honest model.

Proof. Intuitively, the correctness follows that of laconic encryption scheme. The security against corrupted
sender is from update privacy which means st hides the indices where the public keys have been registered.
The security against corrupted receiver is from the pseudorandomness property of the encryption scheme
such that a ciphertext with respect to an index not registered looks pseudorandom.

We now show the correctness of this protocol and that it is possible to simulate the transcripts for both
parties which are computationally indistinguishable from the view in a real world.

Correctness. For simplicity, we first assume the sender holds an element y and y = xk. The receiver will
output xk by checking

Dec (skk,WGenaux(pp,H(xk), pkk), ctxt)) = msg.

Since H is collision-resistant, it happens with negligible probability that y 6= xk but they are mapped to the
same index.

Then, we assume that the sender holds an element y∗ which does not get any match with the receiver’s
element. Since msg ∈ R2 and the degree of R2 is dR, it holds that for all k ∈ [m],

Pr[Dec (skk,WGenaux(pp,H(xk), pkk), ctxt
∗)) = msg] ≤ 1/2dR

which is negligible under an appropriate choice of dR.
To achieve the correctness of a full protocol, we repeat the checking for each element in the sender’s set.

Security - Corrupted sender. On input the set SS and nothing else, we simulate the view of the corrupted
sender by running the setup algorithm of laconic encryption scheme except that yϵ,y

∗ ←$ Rn
q are distinct,

and setting st := yϵ.
Due to update privacy of the laconic encryption scheme, st in the real world hides the indices perfectly.

Therefore, the simulated st is perfectly indistinguishable from that in the real world. This concludes the
security argument in the case of a corrupted sender.

Security - Corrupted receiver. On input the set SR and the intersection Z of a corrupted receiver, we
simulate the view in the following way:

(i) Simulate the setup phase as an honest party, i.e., (pp, st, aux)← Setup(1λ) and samples an H.
(ii) Update st by iterating the computation for all elements in SR and sample a message msg← {0, 1}λ.
(iii) Let Z = {z1, . . . , zζ}.
(iv) Pick a random subset Γ ⊂ [n] with |Γ | = |Z| = ζ. Let Γ = {γ1, . . . , γζ}. For all j ∈ [ζ], encrypt the

message as in the protocol, i.e., ctxtγj ← Enc (pp, st,H (zj) ,msg). This simulates the positions where the
receiver gets a match.

(v) For the complimentary set ∆ = Z \ Γ , let ∆ = {δ1, . . . , δη} where η = n − ζ. For all j ∈ [η], sample a
binary string rj and compute ctxtηj

← Enc (pp, st,H (rj) ,msg). This simulates the positions where the
receiver does not get a match.

(vi) Output {ctxtj}j∈[n]as the simulated view.

We now show that the simulated view is indistinguishable from the view in the real execution using the
following sequence of hybrids.
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– Hybrid 0: Identical to the view of R in the real protocol.
– Hybrid (1, 0): Instead of sampling the permutation π, we pick sets (Γ,∆) where Γ = {γ1, . . . , γζ} and ∆

is the complimentary set, like in the simulation. For each j we find the index σ(j) such that zj = yσ(j)
and choose a random permutation π such that π(γj) = σ(j) and the remaining positions are filled at
random.

The indistinguishability between Hybrid 0 to (1, 0) is immediate since in both cases π is an uniform
permutation in [n].

– Hybrid (1, j) for j ∈ [n]: In each hybrid, we change the distribution of a single ctxtj such that in Hybrid
(1, j − 1) it is generated as in the real protocol while in (1, j) it is generated as in the simulation.

For j ∈ Γ , ctxtj is identically distributed in the real protocol and the simulation, and thus Hybrid
(1, j − 1) and (1, j) for j ∈ Γ is perfectly indistinguishable.

For j ∈ ∆, under the pseudorandomness of the laconic encryption scheme, it is with negligible
probability that an adversary can distinguish a ciphertext ctxt with respect to ind from that with respect
to ind∗ where none has been registered.

Therefore, Hybrid (1, j − 1) and (1, j) for j ∈ ∆ is computationally indistinguishable.
– Hybrid 2: Identical to the view of R in the simulation.

In Hybrid (1, n), each ctxtj from the real protocol has been replaced with that from the simulation.
Therefore, Hybrid (1, n) and 2 are indistinguishable, and this concludes the proof.

ut

10 Optimizations and Extensions

In the following we describe a number of extensions and improvements for our laconic encryption scheme.

10.1 Pre-Processing

We now discuss our variant of laconic encryption with pre-processing. Loosely speaking, the Enc algorithm is
split into an offline part, which is input-independent, and an online part. Importantly, the online algorithm
is much more efficient and does not perform any “public-key operation”. We introduce the updated syntax
next, only for those algorithms that differ from the standard laconic encryption definition

Definition 13 (Offline/Online Encryption). A laconic encryption scheme for message space M with
offline/online encryption has the following syntax:

– (ctxt, rand) ← OfflineEnc(pp, st): The offline encryption algorithm takes as input the public parameters
pp and the state st, and outputs a ciphertext ctxt and some internal randomness rand.

– online ← OnlineEnc(pp, st, rand, ind,msg): The online encryption algorithm takes as input the public pa-
rameters pp, the state st, the randomness rand, an index ind ∈ {0, 1}ℓ, and a message msg ∈ M. It
outputs an online information online.

– msg← OnlineDec(sk,wit, ctxt, online): The online decryption algorithm takes as input the public parame-
ters pp, a secret key sk, a membership witness wit, a ciphertext ctxt, and the online information online.
It outputs a message msg.

Correctness and security are defined identically as in Section 7, except for the syntactical modifications
required to split the encryption algorithm in two subroutines Enc := (OfflineEnc,OnlineEnc).

Next we describe how to equip our laconic encryption scheme in Section 7 with pre-processing. We will
make use of the one-time pad for which, for convenience, we define the syntax in the following:

(ciph, key)← OTPEnc(msg) and msg← OTPDec(ciph, key).

We present the online/offline algorithms in Fig. 5. Informally, our scheme pre-computes all possible branches
of the laconic encryption and commits to the corresponding ciphertext elements one by one. In the online
phase, the encryption algorithm can simply open the subset indexed by ind, which then constitutes a valid
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OfflineEnc(pp, st)

r ←$R2

rj ←$Rn
q , ∀j ∈ { 0, . . . , ℓ }

for j = 0, . . . , ℓ− 1 do

ej ←$ χ2m

for b = 0, 1 do

Bj,b :=

(
A0 A1

(b⊕ 1) ·G b ·G

)
cTj,b := (rTj , r

T
j+1) ·Bj,b + eTj mod q

(ciphj,b, keyj,b)← OTPEnc(cj,b)

eℓ ←$ χm, e←$ χ

cTℓ := rTℓ ·B+ eTℓ mod q

d := rT0 · yϵ + e+
⌊ q
2

⌋
· r mod q

ctxt := (ciph0,0, . . . , ciphℓ−1,1, cℓ, d)

rand := (key0,0, . . . , keyℓ−1,1, r)

return (ctxt, rand)

OnlineEnc(pp, st, rand, ind,msg)

parse rand as (key0,0, . . . , keyℓ−1,1, r)

return online := (key0,ind1 , . . . , keyℓ−1,indℓ
, r ⊕msg)

// We abuse notation and treat r ∈ R2 as a bit string.

OnlineDec(sk,wit, ctxt, online)

parse ctxt as (ciph0,0, . . . , ciphℓ−1,1, cℓ, d)

parse online as (key0,ind1 , . . . , keyℓ−1,indℓ
, s)

for j = 0, . . . , ℓ− 1 do

cj ← OTPDec(ciphj,indj+1
, keyj,indj+1

)

ctxt∗ := (c0, . . . , cℓ, d)

return Dec(sk,wit, ctxt∗)⊕ s

Fig. 5. Laconic encryption with pre-processing.

laconic encryption ciphertext. Crucially, the OnlineEnc algorithm is entirely combinatorial, and it does not
perform any expensive public-key operation. Correctness is immediate, and below we state the security of
our scheme.
Theorem 8. If Π is a secure laconic encryption scheme, the offline/online variant in Fig. 5 is also secure.

Proof. The proof follows immediately by observing that OTPEnc hides the unopened messages uncondition-
ally, and thus the ciphertext ctxt∗ is identically distributed to a standard ciphertext of Π for the index ind.
Thus, security follows by an invocation of the security of Π. ut

10.2 Compatibility with Other Public-Keys

Our construction of laconic encryption is tied to a particular encryption algorithm which, at least superficially,
resembles the dual-Regev encryption algorithm [GPV08]. A natural question is whether this forces one to use
this particular encryption scheme for the leaf nodes or whether our laconic encryption paradigm can support
any encryption scheme of our choice. An obvious advantage of the latter is to be able to use already existing
keys for other schemes. In the following we outline how one can modify the laconic encryption algorithm to
achieve this goal.

A Strawman Solution. To gain an intuition on how we can achieve this generically, it is convenient
to observe that laconic encryption implies laconic OT in a black-box sense (this intuition is made formal
in Appendix A). Henceforth, we can assume that we have a laconic OT scheme with essentially the same
complexity and computational overhead of the laconic encryption scheme described in Section 7. Then, a
naive solution to make the scheme compatible with any encryption algorithm is to parse the database as a
collection of public keys of the desired scheme (in their binary encoding), that is, the database is defined as
D = pk1‖ . . . ‖pkn. The hash of the receiver is defined as the output of OTReceive on input D.

To encrypt a message msg with respect of a public-key pki, the encryption algorithm computes a ran-
domized encoding [Yao86] for the function

f(x) = Enc∗(x,msg)
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where Enc∗ is an arbitrary encryption algorithm. Let {labj,0, labj,1}j∈[|pk|] be the corresponding labels, the
encryption algorithm sends the randomized encoding along with

{OTSend((labj,0, labj,1), (i− 1) · |pk|+ j)}j∈[|pk|] .

By executing the decoding algorithm, the receiver can then recover {labj,pkj}j∈[|pk|], which in turn allows it
to run the decoding algorithm for the randomized encoding, which yields a ciphertext c = Enc∗(pki,msg).
Security follows by a standard argument invoking the security of the laconic OT and the simulatability of
the randomized encoding algorithm.

A Black-Box Solution. While the solution sketched above does indeed work for any encryption scheme,
it is not satisfactory because it makes non black-box use of the Enc∗ algorithm, which is a well-known source
of inefficiency. Here we show how to get around this problem when Enc∗ is a linear algorithm (over any
modulus q). Specifically, we assume that there exists a linear map Lr,msg such that

Lr,msg(pk) = Enc∗(pk,msg; r).

Note that this property is satisfied by a large class of encryption algorithms, such as code-based encryp-
tion [Ale03], primal Regev encryption [Reg10] and derivatives, including NIST-standardized algorithms [BDK+17].

First, we observe that Lr,msg(pk) can be still be interpreted as a linear map, even if the public-key is
decomposed in its binary representation. This is because we can rewrite Lr,msg(pk) : Zη×n

q → Zη
q as

Lr,msg(pk) =
(
pk1 · c1, . . . , pkη · cη

)
=

∑
j∈[n]

pk1,j · c1,j , . . . ,
∑
j∈[n]

pkη,j · cη,j

 ,

let then G−1(pki,j) ∈ {0, 1}log(q) be the binary decomposition of the corresponding element of pk, we can
expand the above expression as

=

∑
j∈[n]

∑
κ∈[log(q)]

G−1(pk1,j)κ · 2
κ−1c1,j , . . . ,

∑
j∈[n]

∑
κ∈[log(q)]

G−1(pkη,j)κ · 2
κ−1cη,j

 .

We are now going to show a special-purpose randomized encoding for recovering the i-th element (for i ∈ [η])
of the above expression. The pairs labels of the randomized encoding consist of{

lab0,i,j,κ = ri,j,κ, lab1,i,j,κ = ri,j,κ + 2κ−1ci,j
}
j∈[n],κ∈[log(q)]

where ri,j,κ are sampled uniformly from Zq conditioned on
∑

j∈[n]

∑
κ∈[log(q)] ri,j,κ = 0. There is nothing else

needed from the encoding algorithm. The decoding algorithm, given {labG−1(pki,j)k,i,j,κ
}j∈[n],κ∈[log(q)], can

recover the i-th element of the above sum by simply computing∑
j∈[n]

∑
κ∈[log(q)]

labG−1(pki,j)k,i,j,κ
=
∑
j∈[n]

∑
κ∈[log(q)]

ri,j,κ +G−1(pki,j)κ · 2κ−1ci,j

=
∑
j∈[n]

∑
κ∈[log(q)]

G−1(pki,j)κ · 2κ−1ci,j .

Note that the randomized encoding consists merely of a collection of labels and the decoding algorithm is
very efficient as it only consists of the sum of a subset of such labels. Furthermore, the labels are uniform,
conditioned on them summing up to the desired coefficient, so the scheme is trivially simulatable.

Plugging this scheme into the compiler above, we observe that the encryption algorithm now consists
exclusively of a collection of OT sender messages and the decoding algorithm only sums the resulting messages
to obtain a ciphertext under the desired key.
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11 IBE Construction

Definition. We recall the syntax and the security definition of identity-based encryption (IBE) as follows.

Definition 14 (Identity-based Encryption). An identity-based encryption (IBE) scheme for message
space M is a tuple of PPT algorithms (Setup,KGen,Enc,Dec) with the following syntax:

– (mpk,msk) ← Setup(1λ, 1ℓ): The setup algorithm takes as input the security parameter 1λ and a length
parameter 1ℓ. It generates a master public key mpk and a master secret key msk.

– sk ← KGen(msk, id): The key generation algorithm inputs the master secret key msk and an identity
id ∈ {0, 1}ℓ and outputs an identity secret key sk.

– ctxt ← Enc(mpk, id,msg): The encryption algorithm inputs the master public key mpk, an identity id ∈
{0, 1}ℓ, and a message msg ∈M. It outputs a ciphertext ctxt.

– msg ← Dec(sk, ctxt): The decryption algorithm inputs an identity secret key sk and a ciphertext ctxt. It
outputs a message msg.

Definition 15 (Correctness). An identity-based encryption scheme Π = (Setup,KGen,Enc,Dec) is said
to be statistically correct if for any ℓ = poly(λ), any identity id ∈ {0, 1}ℓ, and any message msg ∈M it holds
that

Pr

Dec(sk, ctxt) = msg

∣∣∣∣∣∣∣
(mpk,msk)← Setup(1λ, 1ℓ)

sk← KGen(msk, id)

ctxt ∈ Enc(mpk, id,msg)

 ≥ 1− negl(λ).

Definition 16 (Pseudorandom Ciphertexts). An identity-based encryption scheme Π = (Setup,KGen,Enc,Dec)
with ciphertext space C is said to be have pseudorandom ciphertexts if for any PPT (stateful) adversary A,
any ℓ = poly(λ), it holds that∣∣Pr[Pseudorandomness0Π,A(1

λ, 1ℓ) = 1
]
− Pr

[
Pseudorandomness1Π,A(1

λ, 1ℓ) = 1
]∣∣

≤ negl(λ) where the experiment PseudorandomnessbΠ,A is defined in Fig. 6.

PseudorandomnessbΠ,A(1λ, 1ℓ)

(mpk,msk)← Setup(1λ, 1ℓ)

(id∗,msg∗)← AKGenO(mpk)

if b = 0 then ctxt∗ ← Enc(mpk, id∗,msg∗)

else ctxt∗ ←$ C

b′ ← AKGenO(ctxt∗)

if id∗ ∈ Q then return 0

return b′

KGenO(id)

sk← KGen(msk, id)

Q := Q∪ { id }
return sk

Fig. 6. The security-experiment for the pseudorandom ciphertexts property for IBE

Trapdoor Sampling. We require the trapdoor generation and sampling algorithms with the following
syntax:

(A, td)← TrapGen(R, n, 2m, q, β) and u← SampPre(td,y,x).
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We require that the following distributions are statistically close:(A,x,y,u) :

A←$Rn×2m
q

x←$Rm
p

u←$ χm

y := A · (x,u) mod q

 and

(A,x,y,u) :

(A, td)← TrapGen(R, n, 2m, q, β)

x←$Rm
p

y←$Rm
p

u← SampPre(td,y,x)

 ,

and that the vectors u from both distributions have ‖u‖ ≤ β with overwhelming probability. Note that
this can be achieved as a standard modification of the [MP12] by sampling a trapdoor matrix (A, td) ←
TrapGen(R, n,m, q, β) along with a uniform Ã← Rn×m

q and defining A∗ to be the row concatenation of Ã
and A. Next, note that sampling u such that A∗ · (x,u) = y reduces to the constraint Au = y + Ãx and
therefore u can be sampled using the standard SampPre algorithm together with the trapdoor td.

Construction Overview. We construct an identity-based encryption scheme for the message space M =
R2 in Fig. 7. Our IBE construction is conceptually similar to the laconic encryption scheme constructed
in Section 7 but with a crucial difference: Instead of encrypting with respect to a Merkle tree opening, we
encrypt with respect to a path in a “trapdoored GGM tree”. Different from a standard GGM tree [GGM84]
which can be publicly computed from the root, a trapdoor is required to traverse down a trapdoored GGM
tree. We will elaborate on this below.

Our construction is parametrised by n,m, p, q ∈ N and distributions χ and χ̄ over R. The master public
key consists of random matrice A ←$ Rn×m

q and B ←$ Rn×m
q , four trapdoored matrices Bb,b′ for (b, b′) ∈

{0, 1}2, where (Bb,b′ , tdb,b′) ← TrapGen(R, 1n, 1m, q, p/2), and a random vector yϵ ←$ Rn
q which serves as

the root label of the GGM tree. Correspondingly, the master secret key consists of the trapdoors tdb,b′ and
a key k ←$ {0, 1}λ for a pseudorandom function PRF. Looking ahead, the GGM tree will be partitioned into
odd and even layers, i.e. with parity 1 and 0, and the trapdoor tdb,b′ will be used to traverse to b-children at
layers with parity b′.

The identity secret key generation algorithm takes as input an identity id = (id1, . . . , idℓ) ∈ {0, 1}ℓ and
traverses down the GGM tree from the root to the leaf indexed by id. For i ∈ [ℓ], write ⊕i for the parity of
i. At each node id1:i, it samples xid1:i ←$Rm

p using PRF(k, 0‖id1:i−1) as randomness, then computes12

yid1:i
:= B · xid1:i mod q,

uid1:i := −G−1(yid1:i), and
vid1:i ← SampPre(tdidi,⊕i,yid1:i−1

−A · u1:i mod q;PRF(k, 1‖id1:i−1)).

Note that (uid1:i ,vid1:i) and uid1:i−1
satisfy

G · uid1:i−1︸ ︷︷ ︸
−yid1:i−1

+A · uid1:i +Bidi,⊕i · vid1:i = 0 mod q

and (uid,xid) satisfy
G · uid +B · xid = 0 mod q.

The key generation algorithm finally outputs skid := (u[id],xid) where

uT
[id] := (uT

id1 ,v
T
id1 ,u

T
id1:2 ,v

T
id1:2 , . . . ,u

T
id1:ℓ ,v

T
id1:ℓ).

12We remark that only xid = x1:ℓ is included in skid while the only purpose of x1:i, for i ∈ [ℓ − 1], is to derive
yid1:i

. Therefore we could simplify the key generation algorithm by sampling yid1:i
directly using PRF(k, 0∥id1:i−1) as

randomness. We decide to present the construction in its current form to highlight the structure.
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To encrypt a message msg ∈ M to an identity id, the encryptor performs dual-Regev encryption using
(Aid,v) as the public key, where

Aid :=



A Bid1,1

G A Bid2,0

G
. . . . . .

A Bidℓ−1,⊕(ℓ−1)

G A Bidℓ,⊕ℓ

G B


and v :=


yϵ

0
...
0



In other words, the message msg ∈M is encrypted as (c, d) ∈ R(2ℓ+1)m
q ×Rq where

cT = rT ·Aid + eT mod q

d = rT · v + e+
⌊q
2

⌋
·msg mod q

for some random LWE secret r and small noises e and e. In Fig. 7, we write the expressions of the ciphertext
components explicitly without referring to Aid and v.

Note the the secret key skid satisfies the relation

Aid ·
(
u[id]

xid

)
= v mod q and

∥∥u[id]

∥∥ ≤ p/2.

Therefore, to decrypt a ciphertext (c, d), the user with identity secret key skid computes d−cT ·u[id] mod q and
round the result to the nearest multiple of q

2 . The decryption is correct whenever
∣∣e− eT · u[id]

∣∣ < (q − 1)/4.

Analysis. We analyze the correctness and security of the IBE construction.

Theorem 9. Let R, ℓ,m, p, q, s, t be such that s < t, χ = DR,s, χ̄ = DR,t, and q > ((2ℓ+1) ·m · γR · p+4) ·√
λ · s+ 1. The construction in Fig. 7 is correct with overwhelming probability in λ.

Proof. Write
eT :=

(
eT0 . . . eTℓ−1 eTℓ

)
.

Observe that decryption is correct whenever |e− eT · skid| < (q − 1)/4. By Lemma 2, with overwhelming
probability in λ, we have ‖e‖ ≤

√
λ
2 · t and ‖e‖ ≤

√
λ
2 · s <

√
λ
2 · t. Since skid ∈ R

(2ℓ+1)m
p , we have ‖skid‖ ≤ p/2.

Combining these facts yields∥∥∥∥e− eT ·
(
u[ind]

xind

)∥∥∥∥ ≤ (2ℓ+ 1) ·m · γR ·
√
λ

2
· s · p

2
+
√
λ · s < (q − 1)/4

with overwhelming probability in λ. ut

We next argue about security. Before stating our main theorem, for each (b, b′) ∈ {0, 1}2, we describe
a useful stateful oracle KGenO∗

b,b′ that generates keys like the standard KGenO oracle, except that it only
uses three out of four trapdoors, i.e. excluding tdb,b′ . The oracle KGenO∗

b,b′ maintains a binary tree of depth
at most ℓ where a node (indexed by) id1:i = (id1, . . . , idi) ∈ {0, 1}i is labelled by (uid1:i ,vid1:i). A node id1:i
is said to be a challenge node if idi = b and ⊕i = b′. Between each invocation of KGenO∗

b,b′ , the following
invariant is maintained for each node id1:i of the tree:

Rule 1. If id1:i is labelled, its parent id1:i−1 is also labelled.
Rule 2. If id1:i is a challenge node and its parent id1:i−1 is labelled, then id1:i is also labelled.
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Setup(1λ)

A,B←$Rn×m
q , yϵ ←$Rn

q

(Bb,b′ , tdb,b′)← TrapGen(R, 1n, 1m, q, p/2), ∀(b, b′) ∈ {0, 1}2

k ←$ {0, 1}λ

mpk :=
(
A,B, (Bb,b′)(b,b′)∈{0,1}2 ,yϵ

)
msk :=

(
(tdb,b′)(b,b′)∈{0,1}2 , k

)
return (mpk,msk)

KGen(msk, id ∈ {0, 1}ℓ)

for i ∈ [ℓ] do

xid1:i

PRF(k,0∥id1:i−1)

←$ Rm
p

yid1:i
:= B · xid1:i mod q

uid1:i := −G
−1(yid1:i

)

vid1:i ← SampPre(tdidi,⊕i,y1:i−1 −A · uid1:i mod q;PRF(k, 1∥id1:i−1))

uT
[id] := (uT

id1 ,v
T
id1 ,u

T
id1:2 ,v

T
id1:2 , . . . ,u

T
id1:ℓ ,v

T
id1:ℓ)

return skid := (u[id],xid)

Enc(mpk, id,msg)

rj ←$Rn
q , ∀j ∈ { 0, . . . , ℓ }

for j ∈ [ℓ] do

ej−1 ←$ χ2m

cTj−1 := (rTj−1, r
T
j) ·
(
A Bidj ,⊕j

G

)
+ eTj−1 mod q, ∀j ∈ [ℓ]

eℓ ←$ χm, e←$ χ̄

cTℓ := rTℓ ·B+ eTℓ mod q

d := rT0 · yϵ + e+
⌊ q
2

⌋
·msg mod q

return ctxt := (c0, . . . , cℓ, d)

Dec(mpk, id, skid, ctxt)

µ̄ := d−
ℓ∑

j=1

cTj−1 ·
(
uid1:j

vid1:j

)
− cTℓ · xid mod q

if |µ̄| < q/4 then return 0

else return 1

Fig. 7. Construction of identity-based encryption.
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On input a new identity id, the oracle KGenO∗
b,b′ samples uid1:ℓ ←$Rm

p , then proceeds to label the nodes on
the path id from leaf to root as follows. For each i from ℓ to 1:

– If uid1:i−1
is not set, meaning that vid1:i is also not set (Rule 1), then they will be set as follows.

• If the sibling of id1:i is a challenge node, meaning that it must not have been labelled since the parent
is not labelled (Rule 2), sample (usibling(id1:i),vsibling(id1:i))←$ (Rm

p )2 and compute

uid1:i−1
:= −G−1

(
A · usibling(id1:i) +B1−idi,⊕i · vsibling(id1:i) mod q

)
and

vid1:i ← SampPre
(
tdidi,⊕i,−

(
G · uid1:i−1

+A · uid1:i mod q
))

.

Note that since the sibling of id1:i is a challenge node, id1:i cannot be a challenge node, i.e. (b, b′) 6=
(idi,⊕i).

• Else, sample v1:i ←$Rm
p and compute

uid1:i−1
:= −G−1 (A · uid1:i +Bidi,⊕i · vid1:i mod q) .

– Else (i.e. uid1:i−1
of the parent is set), if vid1:i is not set, compute

vid1:i ← SampPre
(
tdidi,⊕i,−

(
G · uid1:i−1 +A · uid1:i mod q

))
.

Note that id1:i is not a challenge node, i.e. (b, b′) 6= (idi,⊕i), since the parent node is labelled (Rule 2).

A more precise description of KGenO∗
b,b′ is given below. For notational convenience, we write the algorithm as

sampling uniform terms upon every invocation, whereas the actual oracle will keep track of the randomness
used in previous iterations to keep things consistent. Note that this makes the algorithm stateful, but it does
not affect the scheme since it is only used in the security analysis.

KGenO∗
b,b′(id)

if xid = ⊥ then

xid ←$Rm
p , yid := B · xid mod q, uid := G−1(yid)

for i = ℓ, . . . , 1 do

if uid1:i−1 = ⊥ then

if 1− idi = b ∧ ⊕i = b′ then

s := sibling(id1:i)

xs ←$Rm
p , ys := B · xs mod q, us := −G−1(ys)

vs ←$Rm
p

yid1:i−1
:= A · us +B1−idi,⊕i · vs mod q

uid1:i−1
:= −G−1(yid1:i−1

)

vid1:i ← SampPre
(
tdidi,⊕i,yid1:i−1

−A · uid1:i mod q
)

else

vid1:i ←$Rm
p

yid1:i−1
:= A · uid1:i +Bidi,⊕i · vid1:i mod q

uid1:i−1
:= −G−1(yid1:i−1

)

elseif vid1:i = ⊥ then

vid1:i ← SampPre
(
tdidi,⊕i,yid1:i−1

−A · uid1:i mod q
)

uT
[id] := (uT

id1 ,v
T
id1 ,u

T
id1:2 ,v

T
id1:2 , . . . ,u

T
id1:ℓ ,v

T
id1:ℓ)

return skid := (u[id],xid)
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To conclude the analysis of this algorithm, the following Lemma shows that the distribution induced by
invocations of KGenO∗

b,b′ is computationally close to that of the standard key generation oracle KGenO.

Lemma 14. For all polynomials q, all (b, b′) ∈ {0, 1}2, and all (unbounded) adversaries A making at most
q queries to the oracle, it holds that the following distributions are statistically close:{

AKGenO(mpk) : (mpk,msk)← Setup(1λ)
}

and
{
AKGenO∗

b,b′ (mpk) : (mpk,msk)← Setup(1λ)
}
.

Proof. The statistical distance between each answer to the query is bounded by a negligible function trap(λ),
by the definition of TrapGen and SampPre. Thus, by a union bound, the statistical distance between the two
experiment is bounded by q · trap(λ), which is negligible. ut

The following identities will prove to be useful when simulating ciphertexts. For all j ∈ [ℓ], it holds that(
A Bidj ,⊕j

G

)
·
(
uid1:j

vid1:j

)
=

(
yid1:j−1

−yid1:j

)
mod q

(
rTj−1 rTj

)
·
(
A Bidj ,⊕j

G

)
·
(
uid1:j

vid1:j

)
=
(
rTj−1 rTj

)
·

(
yid1:j−1

−yid1:j

)
mod q

cTj−1 ·
(
uid1:j

vid1:j

)
=
(
rTj−1 rTj

)
·

(
yid1:j−1

−yid1:j

)
+ eTj−1 ·

(
uid1:j

vid1:j

)
mod q.

For any k ∈ [ℓ], summing the above for j ∈ [k] yields the following:

k∑
j=1

cTj−1 ·
(
uid1:j

vid1:j

)
=

k∑
j=1

(
rTj−1 rTj

)
·
(
yid1:j−1

−yid1:j

)
+

k∑
j=1

eTj−1 ·
(
uid1:j

vid1:j

)
mod q

= rT0 · yϵ − rTk · yid1:k +

k∑
j=1

eTj−1 ·
(
uid1:j

vid1:j

)
mod q

= d− rTk · yid1:k +

k∑
j=1

eTj−1 ·
(
uid1:j

vid1:j

)
− e−

⌊q
2

⌋
·msg mod q

d ≈
k∑

j=1

cTj−1 ·
(
uid1:j

vid1:j

)
+ rTk · yid1:k +

⌊q
2

⌋
·msg mod q.

Theorem 10. If dR ≥ λ, m ≥ n · logp q + ω(log λ), the LWER,n,q,χ assumption holds, and PRF is a secure
pseudorandom function, the IBE scheme in Fig. 7 is secure. More specifically, for every PPT adversary A
against the security of the construction in Fig. 7, there exist PPT adversaries A1 against elLWER,n,m,1,q,χ,χ̄,p/2,
ALWE against LWER,n,m+1,q,χ and APRF agains the PRF such that

adv(A) ≥ ℓ · adv(A1) + adv(ALWE) + adv(APRF) + q · trap(λ)

where trap is the statistical distance between TrapGen and SampPre, and q is the number of queries issued by
the adversary.

Proof. In the following let y∗
i = yid∗1:i

for 0 ≤ i ≤ ℓ and let ctxt∗ = (c0, . . . , cℓ, d) be the challenge ciphertext.
Consider the following hybrids.

– H0: Identical to Pseudorandomness0Π,A(1
λ, 1ℓ). Note that in this hybrid

cTj−1 = rTj−1 · (A Bid∗j ,⊕j) + rTj · (G 0) + eTj−1 mod q ∀j ∈ [ℓ],

cTℓ = rTℓ ·B+ eTℓ mod q, and

d = rT0 · y∗
0 + e+

⌊q
2

⌋
·msg mod q.
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– H1: We modify the KGen oracle to use truly random coins for its subroutines but keep a state of previous
invocations to keep things consistent.

– H2: Compute ctxt∗ as follows. Choose c0, . . . , cℓ−1 ←$R2m
q uniformly at random, choose e0, . . . , eℓ−1 ←$

χ2m, and set

d =
ℓ∑

j=1

(cj−1 − ej−1)
T ·wj + rTℓ · y∗

ℓ + e+
⌊q
2

⌋
·msg mod q,

where wj =

(
uid∗1:j

vid∗1:j

)
∈ R2m

p . The remaining term cℓ is computed as in H0 and H1.

– H3: In this hybrid, we choose cℓ ←$Rm
q and d←$Rq uniformly at random.

Note that in H3 all ciphertext components are chosen uniformly at random. Hence the claim of the theorem
follows.

It is clear that for any PPT adversary A there exists a PPT adversary APRF against the security of PRF
and a PPT adversary ALWE against LWER,n,m+1,q,χ such that

|Pr [H0(A) = 1]− Pr [H1(A) = 1] | ≤ adv(APRF)

and
|Pr [H2(A) = 1]− Pr [H3(A) = 1] | ≤ adv(ALWE).

It therefore remains to show that H1 and H2 are computationally indistinguishable, which we will do
in Lemma 15. ut

Lemma 15. There exists a PPT adversary A1 against elLWER,n,m,1,q,χ,χ̄,p/2 such that

|Pr [H1(A) = 1]− Pr [H2(A) = 1] | ≤ ℓ · adv(A1) + q · trap(λ).

where q is the number of queries issued by the adversary and trap is a negligible function.

Proof. To show that H1 and H2 are computationally indistinguishable, we define the following sub-hybrids
H′

0, . . . ,H′
ℓ and H′′

0 , . . . ,H′′
ℓ .

– H′
i (for i = 0, . . . , ℓ): H′

0 is identical to H1 and hybrid H′
ℓ is identical to H2. For the middle cases, i.e.

1 ≤ i < ℓ, we define hybrid H′
i so that c0, . . . , ci−1 and d are computed as in H1, and ci, . . . , cℓ are

computed as in H0. Specifically, different from H1, we choose c0, . . . , ci−1 ←$R2m
q uniformly at random,

choose e0, . . . , ei−1 ←$ χ2m and set

d =

i∑
j=1

(cj−1 − ej−1)
T ·wj + rTi · y∗

i + e+
⌊q
2

⌋
·msg mod q.

– H′′
i (for i = 1, . . . , ℓ): In this hybrid, we compute cj for all j ∈ [0 : ℓ] \ { i− 1 }] as in H′

i, and ci−1 is
computed as follows. Choose ĉi−1 uniformly at random and set

cTi−1 = ĉTi−1 + rTi · (G 0) mod q.

Furthermore, we set

d =

i−1∑
j=1

(cj−1 − ej−1)
T ·wj + (ĉTi−1 − eTi−1) ·wi + e+

⌊q
2

⌋
·msg mod q.

– H′′′
i (for i = 1, . . . , ℓ): This hybrid is almost identical to H′′

i except that the KGenO oracle is replaced
with the KGenO∗

id∗i ,⊕i oracle.
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First, observe that H′
i and H′′

i are in fact identically distributed: In H′′
i , since ĉi−1 is uniformly and

independently distributed, we can equivalently compute it as

ĉTi−1 = c̄Ti−1 − rTi · (G 0)

for a uniformly random and independent c̄i−1. This makes ci−1 = c̄i−1 uniformly random, as in H′
i. Substi-

tuting the new ĉi to the expression of d in H′′
i , we have

d =

i−1∑
j=1

(cj−1 − ej−1)
T ·wj + (ĉTi−1 − eTi−1) ·wi + e+

⌊q
2

⌋
·msg mod q

=

i−1∑
j=1

(cj−1 − ej−1)
T ·wj + (cTi−1 − rTi · (G 0)− eTi−1) ·wi + e+

⌊q
2

⌋
·msg mod q

=

i∑
j=1

(cj−1 − ej−1)
T ·wj − rTi · (G 0) ·wi + e+

⌊q
2

⌋
·msg mod q

=

i∑
j=1

(cj−1 − ej−1)
T ·wj + rTi · y∗

i + e+
⌊q
2

⌋
·msg mod q,

as in H′
i, where the last equality was due to (G 0) ·wi = G · uid∗1:i

= −y∗
i .

Then, by Lemma 14 the hybrids H′′
i and H′′′

i are statistically close for all i ∈ [ℓ]. Note that in H′′′
i the

matrix Bid∗i ,⊕i is uniformly random and the computation throughout H′′′
i does not depend on the trapdoor

tdid∗i ,⊕i.
The main technical part of this proof lies in establishing indistinguishability between hybrids H′

i−1 and
H′′′

i for i ∈ [ℓ]. We will show that these two hybrids are indistinguishable under elLWE. Assume towards
contradiction that

Pr
[
H′

i−1(A) = 1
]
− Pr [H′′′

i (A) = 1] ≥ ϵ.

We will show that this implies a PPT adversary A′
1 against elLWE with advantage ϵ.

The adversary A′
1 is specified as follows. As input it receives a matrix A′ ∈ Rn×2m

q , and it parses A′

as A′ = (A Bid∗i ,⊕i) where A,Bid∗i ,⊕i ∈ Rn×m
q . Now A′

1 simulates H′
i(A) with the matrices A,Bid∗i ,⊕i thus

obtained, until the adversary A queries the challenge ciphertext. Now it chooses z∗ = −wi and sends z∗

to its challenger. Note that z∗ is a legit query as ‖wi‖ ≤ p/2. Now A′
1 obtaining a leak l and y. Next, it

computes the challenge ciphertext as in H′
i−1(A), except that it sets

ci−1 = y + ri · (G 0) mod q

and

d =

i−1∑
j=1

(cj−1 − ej−1)
Twj − yT · z∗ + l +

⌊q
2

⌋
·msg mod q.

Note that the remaining ciphertext components are the same as in H′
i−1(A) and H′′′

i (A). From there on, A′
1

continues the simulation of H′
i−1(A) and outputs whatever H′

i−1(A) outputs.
Now let b ∈ {0, 1} be the challenge bit of the elLWE experiment. We claim that if b = 0, then A′

1 faithfully
simulates H′

i−1(A). On the other hand, we claim that for b = 1 the A′
1 faithfully simulates H′′′

i (A). From
these two claims it follows that A′

1 has advantage ϵ.

– For b = 0, it holds that yT = rT ·A′+eT = rT ·(ABid∗i ,⊕i)+eT mod q and l = eT ·z∗+e = −eT ·wi+e mod q.
Renaming r to ri−1 and e to ei−1, it holds that

cTi−1 = yT + rTi · (G 0) mod q

= rTi−1 · (A Bid∗i ,⊕i) + rTi · (G 0) + eTi−1 mod q
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and

d =

i−1∑
j=1

(cj−1 − ej−1)
Twj − yT · z∗ + l +

⌊q
2

⌋
·msg mod q (13)

=

i−1∑
j=1

(cj−1 − ej−1)
T ·wj + (rTi−1 · (A Bid∗i ,⊕i) + eTi−1) ·wi − eTi−1wi + e+

⌊q
2

⌋
·msg mod q (14)

=

i−1∑
j=1

(cj−1 − ej−1)
T ·wj + rTi−1 · y∗

i−1 + e+
⌊q
2

⌋
·msg mod q, (15)

where the last equality holds as y∗
i−1 = (A Bid∗i ,⊕i) ·wi. We can conclude that in this case the simulation

of A′
1 and H′

i−1(A) are identically distributed.
– For b = 1, it holds that y = ĉi−1 for a uniformly random ĉi−1 ←$R2m

q and l = eT · z∗ + e = −eTwi + e.
It therefore holds that

cTi−1 = yT + rTi · (G 0) mod q

= ĉTi−1 + rTi · (G 0) mod q

and

d =

i−1∑
j=1

(cj−1 − ej−1)
T ·wj − yT · z∗ + l +

⌊q
2

⌋
·msg mod q

=

i−1∑
j=1

(cj−1 − ej−1)
T ·wj + ĉTi−1 ·wi − eTi−1wi + e+

⌊q
2

⌋
·msg mod q

=

i−1∑
j=1

(cj−1 − ej−1)
T ·wj + (ĉTi−1 − eTi−1) ·wi + e+

⌊q
2

⌋
·msg mod q.

I.e. it holds that in this case the simulation of A′
1 and H′′′

i (A) are identically distributed. ut

Hybrid IBE/RBE. We also mention that one can envision a hybrid IBE/RBE construction by combining
the above scheme with the laconic encryption presented earlier in this paper. In this hybrid scheme, the key
curator would insert master public keys in the tree, instead of regular keys. This would enable RBE where
each user can delegate decryption of some predicates (specifically identity-based predicates) to other users.
We leave the exact definition and construction of this notion as ground for future work.

12 Implementation

We implemented a prototype of the laconic encryption scheme from Section 7 in Go. We used the Lat-
tigo [lat22] library for fast ring operations such as the number theoretic transform (NTT) for polynomial
multiplications. Our code can be found in the following repository:

https://github.com/ahmadrezarahimi/laconic-encryption

The benchmarks have been conducted on a personal computer with an Intel Core i7-10700 3.8GHz CPU and
128GB of RAM running Ubuntu 22.04.1 LTS with kernel 5.15.0-48-generic.
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Time (milliseconds) Size (MegaBytes)

Rq Setup Upd Enc WGen Dec pp ctxt aux

Zq[X]/(X256 + 1) 47 1200 2.85 0.048 6.00 8 49 367

Zq[X]/(X512 + 1) 85 1389 8.28 0.051 10.86 16 97 699

Zq[X]/(X1024 + 1) 167 1813 13.60 0.055 21.49 32 194 1370

Table 1. Benchmarks for our Laconic Encryption scheme. aux size depends on how many public keys are registered
on the tree, while the rest depends only on the scheme specifications, such as ring type and ℓ.

Parameters. We use the following parameters for our LWE assumption in the implementation: For the
choice of the ring modulo, we set q = 5 · 255 + 1, which is a 58 bit NTT-friendly prime number, and we set
p = 2. We ran the benchmarks for degrees d = 256, 512, 1024 (using the same notations as Section 7) with
parameters:

Rq := Zq[X]/(Xd + 1) Rp := Z2[X]/(Xd + 1)

ℓ = 50 n = 4 m = 232 m̄ = 512.

We sampled the errors from polynomials ring of degree d ∈ { 256, 512, 1024 } where coefficients come from a
truncated discrete Gaussian modulo q with standard deviation 230 and truncation factor of 232.

Benchmarks. The benchmarks were run with three different rings, with d ∈ { 256, 512, 1024 }. Each time
we ran the Setup and created an implicit binary Merkle Tree of depth ℓ and stored it in a SQLite database
(we refer to the database as aux). We also did not include creating an empty database in our Setup time, as
the choice of database might differ based on the application.

Then for the update algorithm, we uniformly sampled 1000 public-key and secret-key pairs {pki, ski}i∈[1000]

from KGen algorithm, and uniformly sampled 1000 indices {ind1, · · · , ind1000} where indi ∈ [0, 250) for
i ∈ [1000] (Here by indi we refer to i-th index, not the i-th bit of ind). We ran the update algorithm
on all {(pki, ii)}i∈[1000] and calculated the running time to create a tree with depth ℓ and updating 1000
leaves and their corresponding paths to the root. Finally, we set pp as the tree’s root.

Using the public parameter, for each idi we sampled a random message msg ←$ Rp and encrypted msg
toward indi with respect to the pp. As part of our implementation, we also provide the randomness and
Gaussian noise as inputs to the encryption algorithm, and we do not include the generation time of the
randomness and Gaussian noise in the time taken to perform the encryption. As soon as each encryption is
completed, we immediately attempt to decrypt the encrypted message by calling the WGen algorithm on the
corresponding ind then we run decryption on with corresponding sk and witnesses. The average run time of
each algorithm (along with the sizes of the public parameters, ciphertexts, and auxiliary information) are
displayed in Table 1.

We emphasize that the run time of Upd,Enc,Dec and WGen only depends on ℓ, which is the depth of
the tree, and not on the number of registered public-keys on the trees. Furthermore, these algorithms can
be parallelized, as the computation for each layer of the tree does not depend on other layers. Hence, we
used this feature and implemented a parallel version of each algorithm using the Goroutines, a feature of Go
language. As a result, our scheme’s run times are significantly improved, and its scalability is demonstrated
for larger identity spaces.
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A Laconic Oblivious Transfer

For completeness, we discuss how to construct laconic OT from a laconic encryption scheme Π at essentially
no cost. The idea is very simple: We sample one public key per database position i and we insert it in position
2 · ind if the corresponding bit is Dind = 0 and in position 2 · ind− 1 if the corresponding bit is Dind = 1. We
sketch the algorithms in the following and for formal definitions, we refer the reader to [CDG+17].

– OTSetup: The setup algorithm simply runs the setup (pp, st, aux)← Setup(1λ, 1ℓ) of the laconic encryp-
tion.

– OTReceive: On input a database D ∈ {0, 1}d, the receiver algorithm proceeds with the following subrou-
tine. For ind = 1, . . . , d:
• Sample (pkind, skind)← KGen(pp).
• Insert the public key at position 2 · ind−Dind computing pp← Updaux(pp, st, 2 · ind−Dind, pkind) and

generate the corresponding witness witind ←WGenaux(pp, st, 2 · ind−Dind, pkind).
Finally, it sends the updated pp.
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– OTSend: On input two messages (msg0,msg1) and an index ind, the sender algorithm computes ctxt0 ←
Enc(pp, st, 2 · ind,msg0) and ctxt1 ← Enc(pp, st, 2 · ind − 1,msg1) and sends both (ctxt0, ctxt1) to the
receiver.

– OTDecode: The receiver selects ctxtDind
and computes msgDind

← Dec(pp, skind,witind, ctxtDind
).

It is not hard to see that the scheme satisfies semi-honest sender privacy, by the security of the laconic
encryption scheme. Also note that the size of the receiver message pp is only bounded by a polynomial in
λ and in particular it is independent of the size of the database D. Furthermore, the size of the ciphertexts
and the runtime of the decoding algorithm is also independent of the size of the database. Thus, we achieve
the same asymptotics of the scheme in [CDG+17].

A.1 Laconic Program Evaluation

The notion of laconic OT can be generalized to functions f beyond projections, where the receiver hashes
a database D, the sender encrypts a message msg, and at the end of the interaction the receiver learns
msg if and only if f(D,x) = 1, where x is chosen by the sender. This is similar to the notion of laconic
function evaluation (LFE) studied in [QWW18], except for an important difference: in LFE, the runtime
of the decoding algorithm is proportional to the size of D, even if the function f only depends on a few
bits of D. In other words, LFE does not preserve locality in the access of the database, whereas laconic OT
does. Here we sketch how one can obtain the best of both worlds, in a notion that we call laconic program
evaluation (LPE).

Decomposable LFE. To describe our construction, it is necessary to recall a property of the LFE scheme
from [QWW18], which we refer to as decomposability. Loosely speaking, this property says that the encryp-
tion algorithm can be split into subroutines, each depending on, at most, a single bit of msg. Specifically, we
require that the LFE ciphertext is computed as by running the following algorithm.

LFEEnc(pp, x,msg) : LFEEnc1(pp, x1; r), . . . , LFEEncn(pp, xn; r), LFEEncn+1(pp,msg; r)

for some r ←$ {0, 1}∗. It can be verified that the scheme presented in [QWW18] does indeed satisfy this
syntactical requirement.13

Construction of LPE. We are now ready to sketch our construction of LPE, as a generic composition of
a laconic OT and a decomposable LFE schemes. We present the description of the algorithms below.

– LPESetup: The setup algorithm runs the setup of the laconic OT (pp, aux) ← OTSetup(1λ) and of the
LFE ppf ← LFESetup(1λ, f).

– LPEReceive: On input a database D ∈ {0, 1}d, the receiver algorithm updates the public parameters of
the laconic OT pp← OTReceive(pp, D).

– LPESend: On input a message msg and an attribute x ∈ {0, 1}χ, the algorithm samples some randomness
r← {0, 1}∗ and proceeds as follows. Let ∆ be the set of bits of D that are taken as input by f(·, x), and
let δ = |∆|. For all i = 1, . . . , δ:
• Compute ci,0 ← LFEEnci(ppf , 0; r) and ci,0 ← LFEEnci(ppf , 1; r).
• Compute ei ← OTSend(pp,∆i, ci,0, ci,1).

Then for all i = 1, . . . , χ:
• Compute ci ← LFEEncδ+i(ppf , xi; r).

The algorithms also computes d← LFEEncδ+χ+1(ppf ,msg; r) and sends (e1,0, e1, . . . , eδ, c1, . . . , cχ, d) as
the ciphertext.

– LPEDecode: The receiver algorithm proceeds as follows. For all i = 1, . . . , δ:
• Compute c′i ← OTDecode(pp, ei).

Then it defines c := (c′1, . . . , c
′
δ, c1, . . . , cχ, d) and decrypts it using the LFEDec algorithm.

13The scheme is referred to as attribute-based LFE in [QWW18], but here we simply call it LFE to avoid an
overload of notation.
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It is not hard to verify that the construction satisfies the efficiency constraints that we discussed above.
Furthermore, by the security of the laconic OT, the ciphertexts ci,D∆i

⊕1 are computationally hidden and
therefore the view of the adversary consists only of c, which is a well-formed LFE ciphertext. Thus, the
adversary learns msg if and only if f(D,x) = 1.

B Alternative Laconic Encryption Constructions

Here we discuss alternative, to the one in Figure 2, constructions of laconic encryption (LE), which admit a
better asymptotic behaviour by involving a trusted setup.

B.1 Construction from Peikert et. al. Vector Commitment

The construction of Section 7 makes use of a binary Merkle tree with a lattice-based hash function in order
to ’accumulate’ the public keys. In this section we construct an LE scheme using a d-ary tree instead, where
in place of the hash function we use a vector commitment [CF13]. This specialized tree was first described
by Peikert et. al. [PPS21].14 The use of vector commitments at each level of the tree allows for the witness
to contain a single element per level, instead of the d−1 siblings a naive d-ary Merkle-tree would. Therefore,
a witness consists of ℓ = logd(|IND|) = |IND|

log2(d)
elements, where d can be any polynomial in the security

parameter and IND is the indices space. This saves a log(λ) factor in the ciphertexts’ size.
On the downside, the specialized tree requires a private-coin trusted setup: matrices need to be generated

with respect to SIS-trapdoors [GPV08,MP12]. Furthermore, the public parameters pp need to contain O(d)
matrices and the witness generation algorithm requires addional O(d2) matrices.

Notation. We introduce some additional notation for d-ary trees. Let (ind1, . . . , indℓ) be the d-ary repre-
sentation of ind, i.e. ind =

∑ℓ
i=1 indid

i−1. We denote indj the j-th d-digit of ind and more generally ind1:j
the first j d-digits of ind, where trivially ind1:1 := ind1 and ind1:ℓ := ind. For instance, for ind = (342)5 (the
number 273 in digital) we have ind2 = 4, ind1:1 = 3, ind1:2 = 34, ind1:3 = ind = 342.

d-ary specialized trees. To ease the presentation of our construction we briefly recall here the [PPS21]-
based specialized tree.

At the core of the construction is an SIS-based vector commitment [PPS21] that works as follows. At
the setup phase, d random matrices with respective SIS trapdoors [GPV08,MP12] {Ti ∈ Rn×k

q }
i∈Zd

and
d uniformly matrices {Ai ∈ Rn×m

q }
i∈Zd

are generated. Also, using the SIS trapdoors, d2 − d matrices
{Ri,j ∈ Rk×m

p }
i∈Zd,j∈Zd,i ̸=j

are computed such that TiRi,j = Aj . The hash of d elements ui ∈ Rm
p is

computed as:

γ ←
d−1∑
i=0

Aiui

Then in order to verify that an element ui was correctly hashed in γ one needs a single value pi ∈ Rk
q

(instead of the d− 1 siblings {uj }j∈Zd,j ̸=i). This is done as follows:

γ
?
= Tipi +Aiui, where pi ←

d−1∑
j=0,j ̸=i

Ri,juj

The d-ary tree construction recursively computes the hash of dℓ leaves by using the above vector com-
mitment as a hash at each level. Since γ ∈ Rn

q does not match the input space of the vector commitment,

14Peikert et. al. [PPS21] construct a slightly more involved tree construction, towards achieving an additional prop-
erty, stateless updatability. We do not need the aforementioned property, therefore we use a simpler tree construction.
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Rm
p , it is mapped to it by using the gadget matrix, u← −G−1(γ). Overall a witness for the leaf ind is the

path to the root, together with the corresponding p values:

wit :=
(
uind1:1 ,pind1:1 ,uind1:2 ,pind1:2 , . . . ,uind1:ℓ ,pind1:ℓ

)
and the verification that yind) is the ind’th leaf:

Tind1 · pind1:1 +A1 · uind1:1 = yϵ

−G · uind1:1 = yind1:1

Tind2 · pind1:2 +A2 · uind1:2 = yind1:1

−G · uind1:2 = yind1:2

...
Tindℓ · pind1:ℓ +Aℓ · uind1:ℓ = yind1:ℓ−1

−G · uind1:ℓ = yind

Our construction. Similarly to our construction of Section 7, we have the lattice parameters n,m, p, q ∈ N
and a distribution χ over R. Each public and secret key-pair is (x,y) ∈ Rm

p ×Rn
q such that B ·x = y mod q,

where B ∈ Rm
q is a public uniformly sampled matrix. To encrypt a mesasge msg for the index ind we apply

dual-Regev to (Aind,v), where:

Aind :=



Tind1 Aind1

0 G Tind2 Aind2

0 G
. . . . . .

Tindℓ Aindℓ

0 G B


and v :=


yϵ

0
...
0



Finally for this construction it suffices that there is at least one terminator value u∗ = −G−1y∗ at each
hash computed. For this, we append an artificial input to the hash, using a vector commitment of d + 1
inputs where the position d is always reserved for the terminator value.

Our alternative laconic encryption scheme is formally described in Figure 8.

B.2 Construction from Albrecht et. al. Vector Commitment

Albrecht et. al. [ACL+22] recently introduced a vector commitment based on a new lattice assumption that
can virtually achieve optimal public-parameters overhead. That is, the public parameters generated in the
setup phase are O(d) (in contrast to O(d2) of [PPS21]).

Therefore, we can construct a d-ary Merkle tree in the exact spirit to the above: using the lattice-based
vector commitment of Albrecht et. al. as a hash, at each level. This gives us a laconic encryption scheme
with |IND|

log2(d)
-sized ciphertext and an optimal, O(d), storage overhead for the parameters of the Key Curator.

58



Setup(1λ)

T0, . . . ,Td ←$ Zn×k
q // Generate with trapdoors

A0, . . . ,Ad,B←$ Zn×m
q

Ri,j ∈ Zk×m : TiRi,j = Aj // Using the trapdoors

yϵ := y∗ ←$ Zn
q

T := { ϵ }
pp :=

(
{Ai}i∈Zd+1 , {Ti}i∈Zd+1 , {Ri,j}i,j∈Zd+1,i ̸=j ,B,y∗)

st := yϵ

aux := (T , {yv }v∈T )

return (pp, st, aux)

KGen(pp)

x←$ Zm
p

y := B · x mod q

return (pk, sk) := (y,x)

Updaux(pp, st, ind, pk)

if pk = ⊥ then T := T \ { ind }
else

T := T ∪ { ind }
yind := pk

st′ ← TreeUpdateaux(pp, st, ind)

return st′

TreeUpdateaux(pp, st, ind)

for j = ℓ, . . . , 1 do

if (ind1:j∥i) /∈ T , ∀i ∈ Zd then

T := T \ { ind1:j }
else

if (ind1:j∥d) /∈ T then

yind1:j∥d := y∗

uind1:j∥i := −G
−1(yind1:j∥i), ∀i ∈ Zd+1

T := T ∪ { ind1:j }

yind1:j
:=

d∑
i=0

Aiuind1:j∥i mod q

return st

Enc(pp, st, ind,msg)

rj ←$ Zn
q , ∀j ∈ { 1, . . . , ℓ+ 1 }

for j = 1, . . . , ℓ do

ej ←$ χ2m

Bj :=

(
Tindj Aindj

0 G

)
cTj := (rTj−1, r

T
j) ·Bj + eTj mod q

eℓ ←$ χm, e←$ χ

cTℓ+1 := rTℓ ·B+ eTℓ+1 mod q

cϵ := rT0 · yϵ + e+
⌊ q
2

⌋
·msg mod q

return ctxt := (c1, . . . , cℓ+1, cϵ)

WGenaux(pp, st, ind, pk)

for j = ℓ, . . . , 1 do

prefix := ind1:j−1

MSB := indj

uprefix∥i := −G−1(yprefix∥i), ∀i ∈ Zd

pind1:j
:=

d∑
i=0,i ̸=MSB

RMSB,iuprefix∥i

return wit :=
(
uind1:j ,pind1:j

)ℓ
j=1

Dec(sk,wit, ctxt)

parse sk as xind

parse wit := (uind1:1 ,pind1:1
, . . . ,uind1:ℓ ,pind1:ℓ

)

µ̄ := cϵ −
ℓ∑

j=1

cTj ·
(
pind1:j

uind1:j

)
− cTℓ+1 · xind mod q

if |µ̄| < q/4 then return 0

else return 1

Fig. 8. Alternative construction of laconic encryption.
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