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Abstract

Side-channel attacks, which aim to leak side information on secret system components, are
ubiquitous. Even simple attacks, such as measuring time elapsed or radiation emitted during en-
cryption and decryption procedures, completely break textbook versions of many cryptographic
schemes. This has prompted the study of leakage-resilient cryptography, which remains secure
in the presence of side-channel attacks.

Classical leakage-resilient cryptography must necessarily impose restrictions on the type of
leakage one aims to protect against. As a notable example, the most well-studied leakage model
is that of bounded leakage, where it is assumed that an adversary learns at most ℓ bits of leakage
on secret components, for some leakage bound ℓ. Although this leakage bound is necessary, it is
unclear if such a bound is realistic in practice since many practical side-channel attacks cannot
be captured by bounded leakage.

In this work, we investigate the possibility of designing cryptographic schemes that provide
guarantees against arbitrary side-channel attacks:

• Using techniques from uncloneable quantum cryptography, we design several basic leakage-
resilient primitives, such as secret sharing, (weak) pseudorandom functions, digital signa-
tures, and public- and private-key encryption, which remain secure under (polynomially)
unbounded classical leakage. In particular, this leakage can be much longer than the
(quantum) secret being leaked upon. In our view, leakage is the result of observations
of quantities such as power consumption and hence is most naturally viewed as classical
information.

• In the even stronger adversarial setting where the adversary is allowed to obtain unbounded
quantum leakage (and thus leakage-resilience is impossible), we design schemes for many
cryptographic tasks which support leakage-detection. This means that we can efficiently
check whether the security of such a scheme has been compromised by a side-channel
attack. These schemes are based on techniques from cryptography with certified deletion.

• We also initiate a study of classical cryptographic schemes with (bounded) post-quantum
leakage-resilience. These schemes resist side-channel attacks performed by adversaries
with quantum capabilities which may even share arbitrary entangled quantum states.
That is, even if such adversaries are non-communicating, they can still have “spooky”
communication via entangled states.

∗Part of the work was done while at Carnegie Mellon University.
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1 Introduction

Real-world implementations of cryptographic schemes are often vulnerable to side-channel attacks,
which allow an adversary to obtain side information from secret components such as a secret key.
This can be achieved, for example, by measuring the time elapsed or the electromagnetic radiation
emitted during computations – such simple practical attacks stretch back some decades [Koc96,
QS01, AARR03] and have proven catastrophic for textbook versions of several well known schemes.
As a response to this, leakage-resilient cryptography, the study of cryptographic schemes resilient
against many types of side-channel attacks, has received significant interest. The survey of Kalai
and Reyzin [KR19] is an excellent source for many of the developments in this area.

Arguably the most well studied leakage model is that of bounded leakage. In this model, it is
assumed that the adversary may not leak more than ℓ bits of leakage from a secret component,
where ℓ is some leakage bound. For example, in the setting of secret-key encryption with a secret key
sk ∈ {0, 1}k, the adversary chooses an arbitrary function f : {0, 1}k → {0, 1}ℓ, where ℓ represents
the leakage bound, and learns the bounded leakage f(sk).

Is a leakage bound justified? Generally, the justification for a leakage bound is that in the
absence of one the adversary can just leak the whole secret and no security guarantees are possible.
However, it is quite often the case that real world side channels attacks do not adhere to any a
priori bounded leakage limit [BFO+21]. Moreover, even choosing a leakage bound entails predicting
adversarial capabilities, and these predictions may be wildly incorrect. Nonetheless, the study of
bounded leakage-resilient cryptography has given rise to a beautiful and highly successful area of
research. It has been impactful not just in leakage-resilience but even in other seemingly unrelated
areas in cryptography.

Leakage-resilience in a quantum world. Quantum information behaves in a fundamentally
different way compared to its classical counterpart. In particular, while classical schemes can only
tolerate a bounded amount of leakage, the same may not be true for quantum schemes. This raises
the following tantalizing question:

Is it possible to design cryptographic schemes based on the laws of quantum
mechanics which can tolerate any arbitrary unbounded leakage?

We answer the above question in the affirmative. In particular, we design a host of cryptographic
schemes such as public-key encryption, digital signatures, (weak) pseudorandom functions, and
secret sharing schemes which can tolerate any (polynomially) unbounded classical leakage. In our
view, leakage is the result of observations of quantities such as power consumption, time elapsed,
and temperature fluctuations. Hence, leakage is most naturally viewed as classical information. If
this view is indeed correct, our schemes can even be seen as leakage-proof rather than just leakage-
resilient. Many of our results are obtained by using techniques from uncloneable cryptography.

Leakage-detection in a quantum world. What if an adversary can get quantum leakage after
all? We show that most of our constructions can tolerate a bounded amount of quantum leakage
(in addition to unbounded classical leakage). However, if an adversary can get unbounded quantum
leakage, it can simply leak the whole secret and, similarly to the classical setting, all bets are off.
This raises the following question:

Can we still achieve meaningful security guarantees
in the face of unbounded quantum leakage?
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We design a host of cryptographic scheme which can offer leakage-detection in this case. While
leakage-detection is fundamentally impossible in the classical setting (since an adversary may just
clone secret system components without causing any changes to the system’s state), it has nonethe-
less been widely studied and considered an highly desirable security goal. For example, tamper-
proof audit logs have been extensively studied which, under certain assumptions, can detect if a
machine has been broken into [SYC04, SJEL14, ALP22].

Based on principles of quantum mechanics however, we are able to design public-key encryption
and digital signature schemes supporting leakage-detection. More precisely, our schemes provide the
following guarantee: Suppose that an adversary was able to leak sufficient (quantum or classical)
information to break the security of the primitive (e.g., break indistinguishability in the case of
public-key encryption). Then, there exists a procedure called TestLeakage which takes the residual
secret (e.g., the residual secret key in the case of public-key encryption), and outputs LEAKED with
overwhelming probability, indicating that a leakage attack was performed and security has been
compromised. On the other hand, if the procedure TestLeakage outputs NO LEAKAGE, then, with
overwhelming probability, either there has been either no leakage attack, or any possible leakage
attack was not successful in breaking the scheme’s security! All of our results in this direction are
obtained via a connection to cryptography with certified deletion.

In the quantum setting, the boundary between leakage and tampering is blurred and our results,
in fact, also offer security against tampering attacks. In particular, we allow the adversary to obtain
arbitrary (quantum) leakage, tamper with any non-public secret and even then, if the security
has been compromised, our TestLeakage will output LEAKED. For example in case of public key
encryption, we allow the adversary to arbitrarily tamper with the secret key before the TestLeakage
algorithm is run.

Classical schemes with (bounded) post-quantum leakage resilience. In the settings above
we (necessarily) considered quantum schemes. However, classical schemes are friendlier to everyday
users, and it is thus interesting to investigate whether one can design classical schemes which tolerate
either classical or even quantum leakage by quantum adversaries in the post-quantum setting. As
a first natural question:

Is a classical leakage-resilient scheme automatically “post-quantum leakage-resilient” if
it is based on post-quantum assumptions?

We argue that, unfortunately, the above is not true, as adversaries with access to quantum com-
puters may be able to carry out more devastating leakage attacks. Notably, non-communicating
parties with quantum capabilities can make use of shared entangled quantum states (even if they
are physically far apart from each other, and even if they only output classical bits) to obtain
a strict advantage over fully classical parties in many settings. One early example of this phe-
nomenon is the CHSH game [CHSH69], where a small amount of entanglement allows for a higher
success probability versus non-communicating classical parties with arbitrary correlated classical
randomness.

For example, in the context of public-key encryption one can consider a leakage adversary
and a “main adversary” which tries to break the indistinguishability given the ciphertext and the
output of the leakage adversary. If these adversaries can share unbounded entanglement, then the
leakage adversary can teleport the whole secret to the main adversary without any communication.
Thus, here one must rely on the inability of the leakage adversary to communicate the full set
of classical correction bits to the main adversary. In fact, one can consider settings where many
local leakage adversaries now share entangled quantum states, for example in the context of locally
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leakage-resilient secret sharing [BDIR18, GK18, ADN+19, SV19, CKOS22]. While in the classical
setting such adversaries cannot communicate, in the post-quantum setting, they can have “spooky
communication” via shared entanglement.

Our main contribution in this direction is to again design schemes for several cryptographic
tasks such as secret sharing, pseudorandom functions, public-key encryption, digital signatures,
and general computation which are resilient to bounded post-quantum leakage with shared entan-
glement.

1.1 Our results

1.1.1 Leakage-resilience against unbounded classical leakage

We first show quantum schemes that tolerate any arbitrary (polynomial) amount of classical leak-
age, for a wide range of primitives including secret sharing, PRFs, MACs, signatures, public-key
encryption and private-key encryption. Details can be found in Section 3.

Secret sharing. We consider the model for secret sharing where the adversary can obtain from
each share any unbounded classical leakage. Our first result is an efficient threshold secret sharing
scheme resilient against unbounded classical leakage and in addition a constant rate of quantum
leakage.

Theorem 1 (informal). Given a security parameter λ, there is an efficient t-out-of-n secret sharing
scheme for u-bit secrets with share length w⋆ = O(u+λ3) that tolerates unbounded classical leakage,
and ℓ = Ω(w⋆) qubits of leakage from each share.

To complement our result, we show that such schemes are unachievable if we additionally
allow arbitrary entangled states to be shared between local leakage adversaries, even if we these
adversaries only output classical leakage.

Theorem 2 (informal). Given any quantum secret sharing scheme which encodes a secret m ∈
{0, 1} into w-dimensional shares Shm = (Shm1 ,Sh

m
2 ), there exists a quantum-to-classical local leakage

functions Leak1 and Leak2 sharing N = N(w) EPR pairs and outputting ℓc = ℓc(w) classical bits
each, that breaks the security of the sharing scheme.

We then move to basic cryptographic primitives, including PRFs, MACs, digital signatures,
public-key encryption and private-key encryption. These results are obtained using techniques
from the area of uncloneable and copy-protection cryptography [CLLZ21, LLQZ22].

Basic cryptographic primitives. We first consider the notion of leakage-resilient schemes that
grant security even when the adversary can leak unbounded classical leakage for various basic
cryptographic primitives, including weak pseudorandom functions, message authentication codes,
digital signatures, public-key encryption and secret-key encryption. We consider a main adversary
that participates in the respective security game, but can in addition obtain an unbounded classical
leakage computed by a leakage adversary on the respective keys.

Theorem 3 (informal). Assuming the existence of post-quantum sub-exponentially secure iO and
one-way functions, and the quantum hardness of LWE, there exists unbounded-classical-leakage-
resilient schemes for weak PRFs, weak MACs, digital signatures, public-key encryption and secret-
key encryption.
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Moreover, we also show that we can obtain secret-key encryption schemes from public-key
assumptions.

Theorem 4 (informal). Assuming the existence of a post-quantum public-key encryption, there
exists an unbounded-classical-leakage-resilient scheme for secret-key encryption.

1.1.2 Leakage-detection against arbitrary unbounded quantum leakage

As pointed out in the introduction, tolerating unbounded quantum leakage is impossible, since
the adversary can leak the whole secret. Therefore, we aim to achieve leakage-detection. More
specifically, we aim to design cryptographic primitives with a leakage-detection algorithm, which
can detect if a useful leakage has been obtained on the secret key. We show that this is possible
for public-key encryption and digital signatures.

Theorem 5. Suppose there exists a {public-key encryption, digital signature, functional encryption,
obfuscation, secure software leasing} scheme with certified deletion. Then, there exists a {public-key
encryption, digital signature, functional encryption, obfuscation, software protection} scheme with
leakage-detection.

1.1.3 Classical schemes with bounded post-quantum leakage resilience

The schemes from previous sections are (inherently) quantum schemes, so we then turn our attention
to classical schemes that tolerate classical leakage in the post-quantum setting.

Basic cryptographic primitives. We investigate several cryptographic primitives, including
weak PRFs, PKE and digital signatures, in the setting where there is a main adversary (attempting
to win the corresponding PRF/PKE/signature security game), obtains ℓ bits of leakage from a
leakage adversary. Both adversaries may share arbitrary entanglement. We denote schemes resilient
against such adversaries as ℓ-spooky-classic-leakage resilient schemes. See Section 5.1 for details.

Known constructions for weak PRFs, PKE and signatures [HLAWW16, KV09, FKPR10] can
be proven secure in this setting, by making use of a new min-entropy drop lemma.

Theorem 6 (informal). Assuming the existence of post-quantum one-way functions, for any poly-
nomial ℓ(·), there exists ℓ(λ)-spooky-classic-LR wPRFs.

Theorem 7 (informal). Assuming the existence of post-quantum public-key encryption schemes,
for any polynomial ℓ(·), there exists a ℓ(λ)-spooky-classic-LR public-key encryption scheme.

Theorem 8 (informal). Let n be the size of the secret key. Assuming post-quantum secure universal
one-way hash functions, there exists:

• A one-time signature scheme that tolerates (1/4− ϵ)n spooky-classical-leakage;

• A t-time signature scheme that tolerates θ(n/t2) spooky-classical-leakage;

• A stateful signature scheme that tolerates θ(n/9) spooky-classical-leakage.
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Secret Sharing. We then study secret sharing schemes with spooky local leakage, where each local
leakage adversary Ai can leak ℓ bits from each share Si, and the adversaries may be arbitrarily
entangled with each other. See Section 5.2 for details.

In the classical setting we know schemes with shares of size N which tolerate ℓ = (1− δ)N bits
of local leakage per share, for any constant δ > 0 [ADN+19, SV19, CKOS22]. We first show that
spooky leakage-resilience is impossible if the leakage rate is at least 1/2, via superdense coding.

Theorem 9 (informal). If there exists an (ℓ, ε)-spooky locally leakage-resilient secret sharing scheme
with share space {0, 1}N and error ε < 1, then ℓ < N/2. Moreover, the adversary can guess the
secret with probability δ whenever ℓ ≥ 1

2(N − log(1/δ)).

We then construct a simple and nearly optimal 2-out-of-2 spooky leakage-resilient secret sharing
scheme via quantum-proof two-source extractors.

Theorem 10 (informal). Let ℓ ≥ 0. There exists an efficient 2-out-of-2 ℓ-spooky leakage-resilient
secret sharing scheme which shares one bit into two shares of size N = 2(ℓ+log(1/ε)−1). In other
words, this scheme withstands local leakage of ℓ = N/2 + 1− log(1/ε) qubits from each share.

General leakage-resilient computations. Finally, we show that the compiler by Goldwasser
and Rothblum [GR12] also works if the leakage functions share arbitrary entanglement. More
concretely, we show that the compiler transforms a general computation into an algorithm that
withstands spooky leakage attacks.

The leakage model considered is the only computation leaks model [MR04], where the algorithm
is composed of a sequence of instructions, which are basic subcomputations coming from a fixed
universal set of instructions. The adversary is allowed to learn a bounded local classical leakage
on each operand to an instruction when it is executed, and the leakage functions are decided in
advance and have access to arbitrary entanglement.

Theorem 11 (informal). There exists a compiler and a leakage bound function L = Θ(λ) such
that for every λ, the compiler outputs an algorithm that tolerates L(λ) spooky-leakage.

1.2 Technical overview

A common theme across several of our results is that they are based on techniques from quantum
copy-protection and uncloneability. The connection between leakage resilience and copy-protection
is as follows. Suppose one can obtain classical leakage on a (quantum) secret which is “functionally
equivalent” to the secret itself (e.g., this leakage allows one to decrypt in case the secret is a secret
key). But then, since any classical information can be cloned, this gives us a way of essentially
obtaining multiple states having the same functionality as the quantum secret. If the quantum
secret was “uncloneable”, we arrive at a contradiction. While this basic observation is our starting
point, this is not enough due to our limited understanding of quantum uncloneable cryptography.
For example, we are not aware of any constructions of uncloneable secret sharing in the plain
model. Additionally even for primitives such as PRF or public-key encryption where an uncloneable
counterpart exists, new ideas are required to get a leakage-resilient construction. We provide a more
detailed overview of a selected subset of our results.

1.2.1 Cryptography resilient to unbounded classical leakage

Leakage-resilient secret sharing via random Wiesner encodings. In this section we pro-
vide an overview of our cryptographic schemes resilient to unbounded classical leakage. For the sake
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of exposition, we construct here a more modest 2-out-of-2 secret sharing scheme for 1-bit messages
which is only resilient to unbounded classical leakage on a fixed share. This allows us to illustrate
some of our main underlying ideas. Then, we briefly discuss how we can extend this approach
to construct secret sharing schemes realizing a very general classe of access structures resilient to
unbounded classical leakage on all shares.

More precisely, our more modest goal is to construct a “one-sided leakage-resilient” secret
sharing scheme which maps a secret m ∈ {0, 1} into two possibly quantum shares (Shm1 , Sh

m
2 ) such

that (1) we can perfectly reconstruct m given (Shm1 ,Sh
m
2 ), and (2) for any quantum-to-classical

leakage function Leak chosen a priori it holds that

Sh01, Leak(Sh
0
2) ≈ Sh11, Leak(Sh

1
2), (1)

where ≈ means that these distributions are appropriately close in statistical distance. By “one-
sided”, we mean that if the adversary instead gets leakage on Sh01 and Sh02 in the clear, the scheme
becomes insecure.

The main tool we employ towards this goal are random Wiesner encodings [Wie83]: The Wies-
ner encoding of a classical bitstring X is given by

ρX,θ = Hθ|X⟩ = Hθ1 |X1⟩ ⊗Hθ2 |X2⟩ ⊗ · · · ⊗Hθn |Xn⟩

for a uniformly random string θ ← {0, 1}n. In words, ρX,θ is obtained by independently encoding
each bit ofX in either the computational or Hadamard basis (represented by θ) with probability 1/2.
This encoding has been used in many other contexts within quantum cryptography, including recent
examples such as uncloneable encryption [BL20] and cryptography with certified deletion [BK22].

The key property we require from the random Wiesner encoding ρX,θ is that X is hard to
guess even given the basis θ and any unbounded classical leakage Leak(ρX,θ). More precisely, if
X ← {0, 1}n, then

H∞(X|θ, Leak(ρX,θ)) > 0.2n, (2)

where H∞(·|·) denotes the average conditional min-entropy. We show this via a connection to
Monogamy-of-Entanglement (MoE) games [TFKW13], and, in particular, the BB84 game played
by three parties, Alice, Bob, and Charlie: Alice holds n qubits, and Bob and Charlie hold quantum
registers arbitrarily entangled with Alice’s register. Alice measures each qubit according to the
computational or Hadamard basis uniformly at random, yielding an outcome X, and sends the
measurement basis vector θ to both Bob and Charlie. Then, Bob and Charlie win the game if they
both guess X. Tomamichel, Fehr, Kaniewski, and Wehner [TFKW13] showed that the optimal
success probability in this game is much smaller than 2−0.2n. But, note that the task of guessing X
given (θ, Leak(ρX,θ)) is a particular strategy in the BB84 game, since (θ, Leak(ρX,θ)) is a classical
string and thus can be cloned between Bob and Charlie! This yields Equation (2).

The above leads us to consider the candidate secret sharing scheme

Shm1 = (S, θ,m+ Ext(X,S)),

Shm2 = ρX,θ,

where Ext : {0, 1}n × {0, 1}d → {0, 1} is an average-case strong seeded extractor for min-entropy
0.2n, S ← {0, 1}d is the seed, andX ← {0, 1}n is the extractor’s source. To see why this scheme sat-
isfies Equation (1), note that X and S remain independent after revealing Leak(Shm2 ) = Leak(ρX,θ),
and that, by Equation (2), X retains enough min-entropy so that Ext(X,S) is close to uniform even
given S, θ, and Leak(ρX,θ). This ensures that the secret m remains hidden.
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In the study of uncloneable cryptography, going from unpredictability to indistinguishability
has proven to be a hard problem. For example, the above style of randomness extraction argument
requires the use of random oracles in the setting of uncloneable encryption [AKL+22]. Fortunately,
we are able to make it work in the plain model by relying on the fact that our “cloned states” are
classical.

We also take these ideas further and design secret sharing schemes realizing a large class of
access structures and withstanding unbounded classical leakage on all shares. Roughly speaking,
we combine the approach above using random Wiesner encodings with ideas from the classical
compiler of [CKOS22] which transforms a (non-leakage-resilient) secret sharing scheme satisfying
mild properties into a leakage-resilient secret sharing scheme for the same access structure. In
particular, using Shamir secret sharing as the base scheme, we construct secret sharing schemes
for any threshold access structure resilient to unbounded classical leakage. For more details, see
Section 3.1.

Simultaneously handling arbitrary classical leakage attacks and bounded quantum
leakage. We show that our schemes against unbounded classical leakage also withstand a combi-
nation of unbounded classical leakage and a linear amount of quantum leakage. This is enabled by
the fact that the Wiesner encoding leakage min-entropy bound from Equation (2) can be extended
to this combined setting separating the classical leakage and the quantum leakage, via a chain rule,
yielding

H∞(X|θ, Leak(Hθ|X⟩)) ≥ 0.2n− ℓ,

where ℓ denotes the number of qubits leaked by Leak. Note, however, that standard strong seeded
extractors are not guaranteed to be secure against bounded quantum leakage. Nevertheless, it is
well known that Trevisan’s extractor, which we use in our schemes, remains secure even against
quantum side information [DPVR12].

Impossibility of LRSS with Unbounded Shared Entanglement. The above positive result
on secret sharing resilient to unbounded classical leakage on all shares holds assuming that the
different local leakage adversaries targetting different shares do not have access to shared entangle-
ment. However, say that these adversaries do have access to shared entanglement. Can we hope to
construct secret sharing schemes that remain resilient in this setting?

We show that the answer is “no”. One may wonder whether this negative result may be derived
through the direct use of standard quantum teleportation to teleport one share being held by a local
leakage adversary to another local leakage adversary. If this was possible, then a single local leakage
adversary would be able to access an authorized subset of shares and thus leak the secret. However,
this strategy does not work because it would require the local leakage adversaries to communicate
classical bits among themselves before leaking occurs, since the leakage is fully classical. Instead,
our leakage attack relies on ideas from a recent result of Ananth, Goyal, Liu and Liu [AGLL23] and
applies standard quantum teleportation followed by port-based teleportation [IH08, IH09]. This
is a quantum teleportation protocol from Alice to Bob with the useful property that Bob need
not perform any error-correction operations on his entangled state – Alice’s measurement outcome
simply tells Bob which of the EPR pairs (the ports) to look at. Although this protocol incurs some
error probability, it is known that it can be made arbitrarily close to 0 if the two parties share a
large enough number of EPR states [IH08, IH09, CLM+21].

Suppose that we wish to attack shares (Shm1 ,Sh
m
2 ) of some 2-out-of-2 secret sharing scheme

with local leakage adversaries Leak1 and Leak2 having access to shared entanglement. At a high
level, we first proceed by having Leak1 teleport its share Shm1 in the standard manner to Leak2, who
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receives an encoded version, call it Shm1 . Then, Leak2 uses port-based teleportation to send back to
Leak1 both Shm1 and Shm2 . This information becomes available to Leak1 in some port whose index
is unknown to him. Nevertheless, crucially, Leak1 knows the measurement outcomes necessary to
recover Shm1 from Shm1 ! Therefore, we can have Leak1 apply the decoding procedure of standard
teleportation to every port, then apply the reconstruction procedure of the secret sharing scheme
also to every port, and finally leak all the candidates for the classical secret. At the same time,
Leak2 simply leaks the measurement outcome of the port-based teleportation procedure, which
(with low error probability) identifies the correct port, and thus the correct candidate secret. See
Section 3.1 for more details.

Leakage-resilient PKE from PKE with uncloneable decryption. Our goal is to construct
PKE schemes which withstand arbitrary classical leakage on the decryption key. More precisely,
the scheme first generates a public encryption key pk and a (quantum) decryption key Rdec, and
the adversary is allowed to obtain any polynomial amount of classical leakage Leak(pk,Rdec). Then,
the goal is to ensure that the adversary cannot distinguish between Enc(pk,m0) and Enc(pk,m1)
given the leakage Leak(pk,Rdec) for any two messages m0 and m1.

We begin by considering the recent notion of PKE with uncloneable decryption, studied by
Coladangelo, Liu, Liu, and Zhandry [CLLZ21]. Roughly speaking, a PKE scheme with uncloneable
decryption satisfies the following property: Suppose that the decryption key Rdec is split across two
adversaries in an arbitrary manner, and that two ciphertexts are sent to these adversaries. Then,
the probability that both adversaries are able to correctly decrypt their ciphertexts is negligibly
close to 1/2.

It is natural to wonder whether PKE schemes with uncloneable decryption immediately give
leakage-resilient PKE. However, although PKE schemes with indistinguishability-based uncloneable
decryption guarantees are known, there is an issue that precludes a direct reduction from PKE
with uncloneable decryption to leakage-resilient PKE: On the one hand, note that the adversaries’
baseline success probability in the uncloneable decryption game is 1/2, since one of the adversaries
can simply keep the original decryption key Rdec and correctly distinguish its encoded message
with probability 1. On the other hand, the guarantee in leakage-resilient PKE requires that the
probability of correctly decrypting one ciphertext given the leakage is negligibly close to 1/2. This
means that the probability of correctly decrypting two ciphertexts, as in the uncloneable decryption
game, should be close to 1/4, instead of close to 1/2 as guaranteed by the uncloneable decryption
property.

Fortunately, this issue dissipates if we move to the weaker unpredictability-based security notion
for leakage-resilient PKE, where we only require that the adversary cannot guess a random plaintext
m∗ given the encoding Enc(pk,m∗) and the leakage Leak(pk,Rdec). We are able to show that every
PKE scheme with (unpredictability-based) uncloneable decryption is also (unpredictability-based)
leakage-resilient.

To obtain our final indistinguishability-based leakage-resilient PKE scheme, we show how to
compile an arbitrary unpredictability-based leakage-resilient PKE scheme for random messages
PKE′ into a leakage-resilient PKE scheme for worst-case messages PKE. This is done by combining
the underlying PKE scheme with a seeded randomness extractor. More precisely, if we wish to
encrypt a fixed 1-bit message m ∈ {0, 1}, we first sample fresh randomness k ← {0, 1}ℓ and encrypt
it using the underlying PKE scheme PKE′. Then, one uses this randomness k along with a public
seed r to mask m, yielding the encryption

PKE.Enc(pk,m) = (PKE′.Enc(pk, k), r, ⟨k, r⟩ ⊕m).
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This encoding can be extended to multi-bit messages by encoding each bit separately. Using a
standard argument, guessing between PKE.Enc(pk,m0) and PKE.Enc(pk,m1) for any two messages
m0 and m1 reduces to guessing k, which is randomly chosen, from PKE′.Enc(pk, k) and the leakage
Leak(pk,Rdec). See Section 3.5 for more details.

Leakage-resilient (weak) PRFs from copy-protected PRFs. We focus on weak PRFs in
our setting with leakage, since strong PRFs are impossible to construct even under 1 bit of leakage.
Our goal is to design a PRF that withstands any polynomial amount of classical leakage on its
secret key Rkey. Namely, an adversary has access to Rkey and produces a classical string Leak(Rkey).
Then, given this classical leakage, the adversary must distinguish between the case where it receives
PRF.Eval(Rkey, x

∗) for a random message x∗, or an independent random string y∗.
Our starting point is the notion of copy-protected PRFs studied in [CLLZ21], which is reminis-

cent of the notion of PKE with uncloneable decryption that we used to construct leakage-resilient
PKE: An adversary with access to the PRF secret key Rkey cannot clone it in a way that allows
two parties to distinguish the PRF outputs from random strings. We know how to construct such
objects from post-quantum sub-exponential iO and one-way functions along with quantum-hard
LWE.

We face issues similar to those found in the PKE setting when constructing leakage-resilient
PRFs. As above, although there is no direct reduction from copy-protected PRFs to leakage-resilient
PRFs, we are able to show that copy-protected PRFs do satisfy a weaker notion of unpredictability-
based leakage-resilience. We can then compile PRFs satisfying unpredictability-based leakage-
resilience into the desired (indistinguishability-based) leakage-resilient PRFs by combining the for-
mer objects with seeded randomness extractors. One difficulty in this compiler is figuring out where
to obtain the random seed from. In the PKE setting, we could use part of the randomness from the
encryption procedure as a seed. However, in the PRF setting, there is no ciphertext randomness
nor a public key, and the seed clearly cannot be part of the secret key. Fortunately, the input for
a weak PRF is guaranteed to be random, and so we are able to use part of it as our seed.

Finally, using standard connections between weak PRFs and message authentication codes, we
are able to obtain message authentication codes which are resilient against unbounded classical
leakage. The same holds for secret key encryption resilient against unbounded classical leakage.
See Section 3.2 for more details.

Leakage-resilient SKE from Weaker Assumptions. We can obtain leakage-resilient SKE
by combining our construction of leakage-resilient PRFs with the usual construction of SKE from
PRFs (which does go through even with leakage). However, we investigate whether we can construct
leakage-resilient SKE by other means which allow us to avoid the strong hardness assumptions such
as post-quantum indistinguishability obfuscation which are needed to construct leakage-resilient
PRFs.

In our leakage-resilient SKE, the encryption and the decryption keys may be different and
we allow the adversary to obtain any polynomial amount of classical leakage separately on the
encryption key Renc and the decryption Rdec, yielding Leak(Renc) and Leak(Rdec).

Our insight is that we can combine any (non-leakage-resilient post-quantum) PKE scheme PKE
with random Wiesner encodings and a strong seeded extractor to construct leakage-resilient SKE.
The idea is as follows: Suppose that PKE uses r random bits to generate its public and secret
keys. Sample an extractor source X ← {0, 1}n and seed S ← {0, 1}d for a strong seeded extractor
Ext : {0, 1}n × {0, 1}d → {0, 1}r. Intuitively, we will (1) use Ext(X,S) as the randomness for
PKE.KeyGen, and (2) use a random Wiesner encoding to mask X so that leakage on the encryption
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and decryption keys of the SKE scheme still leaves X with decent min-entropy.
More precisely, we set Renc = (θ, S, pk) for θ ← {0, 1}n the random basis vector and Rdec =

ρX,θ = Hθ|X⟩. To encrypt a message m, we compute ct = PKE.Enc(pk,m) and output the cipher-
text (θ, S, ct), while to decrypt we first recover X from Rdec = ρX,θ and θ, and then recover (pk, sk)
by computing PKE.KeyGen(1λ;Ext(X,S)), after which we can compute m = PKE.Dec(sk, ct).

To see why this SKE scheme is leakage-resilient, note that, by our earlier min-entropy bound on
random Wiesner encodings with leakage (Equation (2)), we know that X retains a decent amount
of min-entropy after Leak(Rdec) = Leak(ρX,θ) is revealed. Since Ext is a strong seeded extractor,
this means that Ext(X,S) is close to uniformly random from the adversary’s view, and so the PKE
secret key sk remains secret.

Finally, we are also able to obtain unbounded leakage resilient digital signatures by relying on
copy protection of digital signatures [LLQZ22]. For more details, see Section 3.3.

1.2.2 Detecting unbounded quantum leakage

We discuss how construct a leakage-detection scheme from any publicly verifiable certified deletion
scheme for a primitive. As an example, we will elaborate on public-key encryption, see Section 4
for the other primitives.

We discuss how to construct public-key encryption schemes that support leakage-detection for
unbounded quantum leakage attacks on the decryption key Rdec. More precisely, the PKE scheme
generates a public key pk, a test key tk (used to test whether leakage occurred), and a (quantum)
decryption key Rdec. An adversary is allowed to produce quantum leakage Rleak and two challenge
messages m0 and m1 based on (pk, tk,Rdec). Note that this may change the state in register
Rdec. Before the distinguishing game proceeds, a leakage-detection step is run and the adversary
automatically loses if its presence is detected, i.e., TestLeakage(tk,Rdec) = LEAKED. If no leakage
is detected, we want to guarantee that it is not possible to distinguish between Enc(pk,m0) and
Enc(pk,m1) given (Rleak,m0,m1, tk, pk) with probability negligibly close to the baseline

1

2
Pr[TestLeakage(tk,Rdec) = NO LEAKAGE].

We construct PKE schemes with these guarantees by establishing a connection to secure software
leasing and cryptography with certified deletion [AL21, BK22, KN22]. We start with the notion of
a PKE scheme with secure key leasing, which features an additional deletion procedure that, given
the secret decryption key Rdec, produces a certificate cert which should certify that this key was
indeed correctly deleted. Roughly speaking, this scheme satisfies the property that an adversary
which is able to produce a valid certificate cert based on Rdec, (validity of cert is checked by a
Verify procedure using a certificate validation key cvk) cannot distinguish between the ciphertexts
Enc(pk,m0) and Enc(pk,m1) using the leftover state. PKE schemes with secure key leasing have
been recently constructed from any post-quantum PKE scheme [AKN+23].

We show that we can construct a PKE scheme that supports leakage-detection from a PKE
scheme with secure key leasing. Starting with a PKE scheme with secure key leasing, we construct
a TestLeakage procedure which essentially tries to produce a deletion certificate for the secret
decryption key Rdec, and outputs NO LEAKAGE if it succeeds. Intuitively, we can argue leakage-
detection security as follows: If an adversary has obtained a leakage that allows it to distinguish
ciphertexts, then we should fail to produce a valid deletion certificate using our leftover state.
Otherwise, one can create a lessee attacker against the key leasing security that pretends to leak
on their key, produces a valid deletion certificate using the leftover state, and still succeeds in
distinguishing ciphertexts using the leakage. However, the major problem with this approach is
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that even when there is no attack, we destroy our key when we test for leakage, since we produce
a deletion certificate.

Crucially, note that producing a valid deletion certificate using an undisturbed key succeeds
with overwhelming probability. Therefore, using the gentle measurement lemma (see Lemma 9),
we are able to construct an algorithm for producing a deletion certificate in such a way that we
can rewind our algorithm afterwards. While seemingly contradictory, this is not a violation of
lessor security. Indeed, in the lessor security game the certificate generation circuit will end with
a measurement, while our leakage-detection procedure will skip this measurement and will instead
run the verification procedure coherently. Furthermore, the leakage-detection procedure will not
trace out the garbage registers that are created while producing a certificate or testing for certificate
validity, which we then use to rewind the algorithm.

Using similar techniques, we can also build digital signatures supporting leakage-detection. See
Section 4 for more details.

1.2.3 Classical schemes with post-quantum leakage-resilience

Generalizing the “min-entropy drop lemma” to side information with entanglement,
and applications. The bulk of the security analysis of many classical leakage-resilient crypto-
graphic schemes is based on the combination of randomness extractors with the following well-
known (and quite general) fact proved by Dodis, Ostrovsky, Reyzin, and Smith [DORS08]: Let
X be an arbitrary random variable. Suppose that an adversary computes some bounded leakage
L = Leak(X) ∈ {0, 1}ℓ. Then, it holds that

H∞(X|L) ≥ H∞(X)− ℓ.

In words, the optimal guessing probability for X grows (on average) by a factor of at most 2ℓ after
the leakage L is revealed.

We would like to be able to use a similar result in the setting of post-quantum leakage, where
adversaries have quantum capabilities and access to shared entanglement. Consider the augmented
setting where the leakage adversary (which computes the leakage L on X) and the distinguisher
(which attempts to guess X given the leakage L) have access to arbitrarily entangled quantum
registers R1 and R2, respectively. We show a post-quantum analogue of the min-entropy drop
lemma of [DORS08], stating that if L = Leak(X,R1) ∈ {0, 1}ℓ, then

H∞(X|L,R2) ≥ H∞(X)− ℓ.

In words, the optimal guessing probability for X grows (on average) by a factor of at most 2ℓ after
the leakage L is revealed also when the leakage adversary and the distinguisher share arbitrary
entanglement. We note that because of shared entanglement, the entire secret X could have been
teleported to the state R2. However the correction bits are only subject to bounded leakage L.

Using our post-quantum min-entropy drop lemma, we are able to show that several existing
constructions in the classical setting can also be proven secure in the post-quantum setting if
we replace the randomness extractors being used by quantum-proof randomness extractors (of
which we know several constructions with good parameters [DPVR12, KK12, CLW14]). This
includes PRFs and PKE schemes [HLAWW16], digital signatures [KV09], and general leakage-
resilient computation [GR12]. See Section 5 for more details.
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2 Notation and preliminaries

2.1 Notation

We denote classical sets, random variables and quantum registers by uppercase letters such asX, Y ,
and Z. We will write |X| to denote the size of the alphabet associated with a register X. Similarly,
we denote both classical sets, ensembles and Hilbert spaces by calligraphic letters such as X and
Y. The distinctions will always be clear from context. We write [n] = {1, . . . , n}. Given a string
s ∈ Sn and a set T ⊆ [n], we denote the projection of s to the coordinates in T by sT = (si)i∈T .
We write S∗ for

⋃∞
i=0 Si. For two operators ρ, σ, writing ρ ≥ σ will mean that ρ ≥ σ. Un denotes

the uniform distribution over the set {0, 1}n, and in the same expression all occurrences of Un will

refer to the same sample rather than independent samples, except when differentiated, such as U
(1)
n

and U
(2)
n . For a joint state ρ of some quantum registers R = {R1, . . . , Rn}, we will use ρ or ρR to

denote the joint state and ρ(Ri)i∈T or ρT to denote the state of the subsystem (Ri)i∈T alone for
some T ⊆ [n], given by TrR\{Ri}i∈T (ρ). Similarly, for a quantum operation Φ, we will sometimes

use a superscript to denote the registers to which it is applied, such as ΦX . We will use H to denote
the Hilbert space associated with a single qubit, that is, H = C{0,1}. Ea,b denotes the matrix that
has 1 in the entry (a, b) and zeroes in all other entries, and its dimensions will be clear from the
context. For a distribution D, we will write x ← D to mean x is sampled from D. Similarly for
a mixed state ρ, we will write R ← ρ to mean that the register R is initialized to the state ρ.
x← A(. . . ) means sample x from the distribution induced by the randomized algorithm A.

Unless otherwise explicitly specified, we will make the following implicit assumptions. All of
our cryptographic assumptions will be against non-uniform QPT adversaries, i.e., QPT algorithms
(Definition 1) with non-uniform quantum advice. Algorithm will mean a quantum algorithm,
and our schemes will be uniform QPT algorithms. Adversaries will be stateless, and separate
adversaries will unentangled. In the computational setting, negligible means negligible in the
security parameter, λ and for two ensembles, ≈ means ≈negl(λ). Sizes and bounds, such as leakage
bounds, will be functions of the security parameter, ℓ = ℓ(λ). In the context of security definitions,
all adversaries will mean all adversaries that have the appropriate input/output size and interactive
structure as required by the security game. Finally, for a quantum algorithm Φ with no input, we
will write Φ(1) to denote the execution of Φλ, since 1 is the only normalized element of C{0}.

Definition 1 (Computational model). We fix a universal set of unitary gates, such as Hadamard,
phase, CNOT, π

8 gates. We define a quantum polynomial time (QPT) algorithm to be a uniform
family of generalized quantum circuits {Φλ}λ with some fixed polynomial p(λ) where each Φλ is
constructed by introducing an ancilla register of size at most p(λ), applying p(λ) many gates from
the fixed set of gates to input and ancilla, and finally tracing out some of the registers. Finally, if
the output of the algorithm is classical, the remaining registers are measured in the computational
basis. Writing Φ will implicitly mean Φλ.

We will also mainly use the quantum registers model. We consider registers as objects storing
quantum states, which can be correlated or entangled with other registers, and whose states evolve
as a result of applying channels to them.

2.2 Concepts from quantum information theory

We assume familiarity with basic concepts from quantum computation, such as registers, pure
and mixed states, density matrices, entanglement, measurements, quantum channels and (vanilla)
quantum teleportation. We refer the reader to the book of Nielsen and Chuang [NC10] and Wa-
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trous [Wat18] for an overview of these concepts. We briefly mention some additional concepts, and
refer the reader to the same references for details.

Trace Distance. We will make use of the notion of trace distance between states.

Definition 2 (Trace distance). The trace distance between two mixed states with associated density
matrices ρ and σ, denoted by D(ρ, σ), is given by

D(ρ, σ) =
1

2
∥ρ− σ∥1,

where ∥ρ∥1 = Tr
[√

ρ†ρ
]
is the trace norm. We write ρ ≈ε σ whenever D(ρ, σ) ≤ ε.

The trace distance is a metric and has the following useful interpretation: If D(ρ, σ) ≤ ε,
then any POVM applied to states with density matrices ρ and σ yields classical measurement
outcome distributions, say (p1, . . . , pm) and (q1, . . . , qm), which are ε-close in statistical distance,
i.e., 1

2

∑m
i=1 |pi − qi| ≤ ε. Therefore, when ρ and σ are classical mixed states, the trace distance

corresponds exactly to the statistical distance between the two probability distributions inducing
ρ and σ.

Definition 3 (Quantum channel [Wat18]). A quantum channel is a linear map Φ : X → Y that is
both trace preserving and completely positive.

Lemma 1 (Post-processing lemma for trace distance [NC10, Theorem 9.2]). Let Φ be a quantum
channel and ρ, σ density matrices. Then,

D(Φ(ρ, σ)) ≤ D(ρ, σ).

Definition 4 (Completely dephasing channel [Wat18]). Let X be a register with alphabet Σ. The
completely dephasing channel over X, denoted by ∆X , is defined as follows.

∆X(ρ) =
∑
a∈Σ

Tr(Ea,aρ)Ea,a

Definition 5 (Quantum-to-classical channel). A quantum channel Φ : X → A⊗B is called classical
over A if

(∆A ⊗ IB)Φ = Φ

Lemma 2 (Tracing out commutes with channel on the traced out system). Let Φ : X → Y be a
quantum channel. Then, for any register A and any joint state ρ of (A,X), we have

TrY ((I
A ⊗ ΦX)(ρ)) = TrX(ρ).

Proof. Let ρ =
∑

i pi|ψi⟩⟨ψi| be a diagonalization of ρ. Let |ψi⟩ =
∑

a,x αi,a,xαi,a,x|a⟩|x⟩. Then,

ρ =
∑

i,a,x,a′,x′

piαi,a,xα
∗
i,a′,x′ |a⟩

〈
a′
∣∣⊗ |x⟩〈x′∣∣.

Since Φ is trace preserving and Tr(|x⟩⟨x′|) = δx,x′ , we get

TrY ((I
A ⊗ ΦX))ρ =

∑
i,a,x,a′,x′

piαi,a,xα
∗
i,a′,x′ Tr

(
Φ(|x⟩

〈
x′
∣∣))|a⟩〈a′∣∣

=
∑

i,a,x,a′

piαi,a,xα
∗
i,a′,x|a⟩

〈
a′
∣∣.
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We also have

TrX(ρ) =
∑

i,a,x,a′,x′

piαi,a,xα
∗
i,a′,x′ Tr

(
|x⟩
〈
x′
∣∣)|a⟩〈a′∣∣

=
∑

i,a,x,a′

piαi,a,xα
∗
i,a′,x|a⟩

〈
a′
∣∣,

which completes the proof.

2.3 Port-based teleportation of quantum states

Port-Based Teleportation (PBT), introduced by Ishizaka and Hiroshima [IH08, IH09] is a quantum
teleportation protocol between two parties, Alice and Bob, with special properties. More precisely,
assuming that Alice and Bob share a large number N of EPR pairs1, Alice can teleport a d-
dimensional quantum state to Bob by performing a joint measurement and communicating its
outcome (determining which EPR pairs contain the teleported state) to Bob, who does not perform
any operation. PBT necessarily incurs some failure probability or non-perfect fidelity between
the original and the teleported states. In contrast, vanilla quantum teleportation has no failure
probability and has perfect fidelity, but requires Bob to perform some corrective operations to its
state.

In the probabilistic version of PBT which we will be using, the protocol may fail with some prob-
ability p(d,N), and otherwise simulates an identity channel perfectly. It is known that p(d,N)→ 0
as N →∞ for every fixed dimension d. In fact, the asymptotics of this failure probability are well
studied [CLM+21], although we will not need them here.

This discussion is summarized in the following theorem.

Theorem 12 (Probabilistic PBT [IH08, CLM+21]). Fix a dimension d > 0. Suppose that Alice and
Bob share N EPR pairs indexed in some prespecified manner. There exists a protocol between Alice
and Bob through which Alice can teleport a d-dimensional quantum state to Bob by performing
a measurement and sending its classical outcome i to Bob. To obtain the teleported state, Bob
does not apply any operations to its state and simply selects its EPR halves indexed by the received
measurement outcome i. The protocol fails with some probability p(d,N) which satisfies p(d,N)→ 0
as N →∞, and otherwise perfectly simulates an identity channel.

2.4 Min-entropy and randomness extractors

As one of our main tools, we will require explicit constructions of seeded randomness extractors
that are secure against quantum side information and multi-source randomness extractors which
are resilient to quantum adversaries with shared entanglement. These objects have been studied
under many different models. For seeded extractors we will use the model of De, Portmann,
Vidick, and Renner [DPVR12] and for multi-source extractors we focus on the model of Kasher
and Kempe [KK12] and Chung, Li, and Wu [CLW14].

We first start with entropy definitions and useful lemmas.

Definition 6 (Min-entropy). The min-entropy of a random variable X supported on a finite set
X , denoted by H∞(X), is given by

H∞(X) = − logmax
x∈X

Pr[X = x].

1Here we focus on the setting where Alice and Bob share EPR pairs. Settings where Alice and Bob share entangled
states optimized for PBT have also been studied. See, e.g., [IH08, IH09, CLM+21].
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Definition 7 (k-source). A random variable X is said to be a k-source if H∞(X) ≥ k.

Definition 8 (Average conditional min-entropy [DORS08]). Let X,Y be two (possibly correlated)
random variables. We define the average conditional min-entropy of X given Y as

H∞(X|Y ) = − logEy←Y max
x

Pr[X = x|Y = y].

Definition 9 (Quantum min-entropy). Let X be a register in the state ρ. We define the min-
entropy of X to be

H∞(X)ρ = − log(λmax(ρ)).

where λmax(ρ) denotes the largest eigenvalue of the density matrix ρ. When the state ρ is clear
from context, we will simply write H∞(X)

Definition 10 (Quantum conditional min-entropy). Let X,Y be registers with state space X ,Y
and joint state ρ. We define the conditional min-entropy of X given Y as

H∞(X|Y )ρ = − logmin
σ∈Y
{min
λ∈R

λI ⊗ σ ≥ ρ}.

When ρ is a cq-state, H∞(X|Y ) has an operational meaning in terms of the optimal guessing
probability for X given Y .

Definition 11. Let X,Y be two registers with state spaces X ,Y and joint cq-state ρ =
∑

x|x⟩⟨x| ⊗
σYx . Then, the guessing probability of X given Y , denoted by pguess(X|Y ), is given by

pguess(X|Y ) = max
{µx}x POVM

Tr
(
µxρ

Y
)
.

Lemma 3 ([KRS09, Theorem 1]). Let X,Y be two registers in a cq-state. Then,

H∞(X|Y ) = − log pguess(X|Y ).

We will also utilize the following lemmas that can be considered quantum variants of chain rule
for classical random variables.

Lemma 4 ([DD10, Lemma 1]). Let X,Y be two registers in an independent state ρ = σ⊗τ . Then,

H∞(X|Y ) = H∞(X).

Lemma 5 (Separable chain rule for quantum min-entropy [DD10, Lemma 7]). Let A,B,C be
registers with some joint, separable state ρ =

∑
i piτ

AB
i ⊗ σCi . Then,

H∞(A|B,C) ≥ H∞(A|B)− log |C|.

Now we move to extractors.

Definition 12 (Strong seeded extractor). A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is said to
be a (k, ε)-strong seeded extractor if for every pair of random variables (X,W ) with X ∈ {0, 1}n
and H̃∞(X|W ) ≥ k it holds that

Ext(X,Ud), Ud,W ≈ε Um, Ud,W.

A seeded extractor Ext is said to be linear if Ext(·, s) is a linear function for every s ∈ {0, 1}d.
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Definition 13 (Quantum-proof seeded extractor [DPVR12]). A function Ext : {0, 1}n×{0, 1}d →
{0, 1}m is said to be a (k, ε)-strong quantum-proof seeded extractor if for any cq-state ρ ∈ H⊗n⊗Y
of the registers X,Y with H∞(X|Y ) ≥ k, we have

Ext(X,S), Y, S ≈ε Um, Y, S

where S ← {0, 1}d.

Note that any quantum-proof seeded extractor is also a classical seeded extractor with the same
parameters. We will use the following explicit linear strong seeded extractor due to Trevisan [Tre01]
with improvements by Raz, Reingold, and Vadhan [RRV02], which was later shown to be quantum-
proof by De, Portmann, Vidick, and Renner [DPVR12].

Lemma 6 ([Tre01, RRV02, DPVR12]). There exists an explicit linear (k, ε)-strong quantum-proof
seeded extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with d = O(log3(n/ε)) and m = k −O(d).

When we do not insist on linearity, we can use the following extractor with slightly improved
parameters.

Theorem 13 ([DPVR12]). There exists an explicit (k, ε)-strong quantum-proof seeded extractor
Ext : {0, 1}n × {0, 1}d → {0, 1}m with d = O(log2(n/ε) logm) and m = k − 4 log(1/ε)−O(1).

We will also need quantum-proof multi-source extractors in some of our constructions.

Definition 14 (Quantum-proof two-source extractor [KK12], adapted). A function Ext : {0, 1}n×
{0, 1}n → {0, 1}m is said to be a strong (ℓ1, ℓ2, k, ε)-quantum-proof two-source extractor if for any
two independent k-sources X, Y supported on {0, 1}n and local adversaries A1 and A2 sharing
arbitrary entanglement, with access to X and Y and with ℓ1 and ℓ2 qubit output, respectively, we
have

Ext(X,Y ), ρAX,Y , Y ≈ε Um, ρ
A
X,Y , Y,

where ρAX,Y denotes the entangled state produced by the adversaries A = (A1,A2) on input X and
Y , respectively.

Additionally, we say that Ext supports efficient preimage sampling if given z ∈ {0, 1}m we can
efficiently sample uniformly at random from the preimage Ext−1(z).

Kasher and Kempe [KK12] showed that the well-known inner product extractor [CG88] is also
quantum-proof with good parameters.

Lemma 7 ([KK12, Corollary 14]). The inner product extractor IP : {0, 1}N × {0, 1}N → {0, 1}
given by IP(x, y) = ⟨x, y⟩ is a strong (ℓ1, ℓ2, k, ε)-quantum-proof two-source extractor whenever

k − ℓ1 ≥ N/2 + log(1/ε)− 1.

The inner product extractor can be extended to output multiple bits in a standard manner,
leading to the following result. To this end, we use the following result of [KK12], which states
the multibit generalization of the inner product extractor from [DEOR04] (which supports efficient
preimage sampling) is quantum-proof.

Lemma 8 ([KK12], adapted). There is an explicit strong (ℓ1, ℓ2 = ∞, k, ε)-quantum-proof two-
source extractor Ext : {0, 1}N × {0, 1}N → {0, 1}M provided that

k − ℓ1 ≥ N/2 +M + log(1/ε)− 1.

Moreover, Ext supports efficient preimage sampling.
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2.5 Almost As Good As New Lemma

For schemes with quantum keys satisfying correctness with overwhelming probability, we will use
the following lemma and the related gentle measurement lemma [Aar05] to argue that the algorithm
can be rewound so that the key can be used polynomially many times.

Lemma 9 (Almost As Good As New Lemma [Aar16], verbatim). Let ρ be a mixed state acting
on Cd. Let U be a unitary and (Π0,Π1 = I − Π0) be projectors all acting on Cd ⊗ Cd′. We
interpret (U,Π0,Π1) as a measurement performed by appending an ancillary system of dimension
d′ in the state |0⟩⟨0|, applying U and then performing the projective measurement Π0,Π1 on the
larger system. Assuming that the outcome corresponding to Π0 has probability 1− ε, we have∥∥ρ− ρ′∥∥

1
≤
√
ε

where ρ′ is the state after performing the measurement, undoing the unitary U and tracing out the
ancillary system.

2.6 Monogamy-of-entanglement games

In this section we introduce the notion of a Monogamy-of-Entanglement game (MoE game), as first
studied by Tomamichel, Fehr, Kaniewski, and Wehner [TFKW13], along with useful games and
associated results.

An MoE game is played by three parties, Alice, Bob, and Charlie and is parameterized by a list
Θ of possible POVM measurements performed by Alice. The game proceeds as follows:

1. Bob and Charlie select a tripartite quantum state ρABC . Alice has access to the contents of
register A, Bob has access to the contents of register B, and Charlie has access to the contents
of register C.

2. Alice samples a POVMmeasurement θ ← Θ and measures the contents of register A according
to θ. Let x denote the measurement outcome. Alice reveals θ to Bob and Charlie.

3. Bob and Charlie win the game if they both guess x given their quantum registers and knowl-
edge of θ.

A quantity of interest in an MoE game is the winning probability of Bob and Charlie, maximized
over the choice of the tripartite quantum state ρABC and strategies of Bob and Charlie. In our work
we will use bounds on the winning probability for the basic n-qubit “BB84” MoE game already
studied in [TFKW13], where register A contains n qubits and for each i ∈ [n] Alice measures the
i-th qubit with respect to the computational or Hadamard basis independently with probability
1/2. The following result was established in [TFKW13].

Lemma 10 ([TFKW13, Theorem 3]). The winning probability of the n-qubit BB84 MoE game is(
1
2 + 1

2
√
2

)n
.

2.7 Secret sharing schemes

We introduce basic definitions of access structures and secret sharing schemes.

Definition 15 (Access structure). We say that Γ ⊆ 2S is an access structure if A ∈ Γ and A ⊆ B
implies that B ∈ Γ. We call sets A ∈ Γ authorized.
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Definition 16 (Secret sharing). A family of functions (Share, (RecT )T∈Γ) is an ε-secret sharing
scheme for an access structure Γ ⊆ 2[n] on n parties with message space X and share space S if
Share : X → S [n] and RecT : ST → X are quantum channels and the following two properties are
satisfied:

• Correctness: If T ∈ Γ (i.e., T is authorized) it holds that

Tr(|x⟩⟨x|RecT (Share(x)T )) = 1

for any message x ∈ X .

• ε-Privacy: If T ̸∈ Γ (i.e., T is unauthorized) it holds that

Share(x)T ≈ε Share(x
′)T

for any two messages x, x′ ∈ X .

In the special case where T ∈ Γ if and only if |T | ≥ t for some threshold t, we say that
(Share,Rec) is a t-out-of-n ε-secret sharing scheme.

2.8 Weak pseudorandom functions

Definition 17. Let K be an efficient ensemble, denoting the key space, and X ,Y be families of sets
denoting the input and output space respectively. A family of functions F = {fk}k is said be weak
pseudorandom if, any QPT A has negligible advantage in the following game.

1. Challenger samples a key k ← Kλ.

2. Challenger samples inputs x1, . . . , xp(λ) ← Xλ.

3. Challenger samples a challenge input x∗.

4. Challenger samples a challenge bit b← {0, 1}. If b = 0, it sets y∗ = x∗. Otherwise, it samples
y∗ ← Yλ.

5. Adversary gets (x1, fk(x1)), . . . , (xp(λ), fk(xp(λ))), (x
∗, y∗), and outputs a guess b′.

6. Challenger outputs 1 if and only if b = b′.

We define the advantage of A to be
∣∣Pr[GameA = 1]− 1

2

∣∣.
2.9 Digital signatures

Definition 18. A digital signature scheme with message space M consists of the following algo-
rithms that satisfy the correctness and security guarantees below.

• Setup(1λ) : Outputs a signing key sk and a verification key vk.

• Sign(sk,m) : Takes the signing key sk, returns a signature for m.

• Verify(vk,m, s) : Takes the public verification key vk, a message m and supposed signature s
for m, outputs 1 if s is a valid signature for m.
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Correctness We require the following for all messages m ∈M.

Pr

[
Verify(vk,m, s) = 1 :

sk, vk ← Setup(1λ)
s← Sign(sk,m)

]
= 1.

Adaptive existential-unforgability security under chosen message attack (EUF-CMA)
Any QPT adversary A with classical access to the signing oracle has negligible advantage in the
following game.

1. Challenger samples the keys sk, vk ← Setup(1).

2. A receives vk, interacts with the signing oracle by sending classical messages and receiving
the corresponding signatures.

3. A outputs a message m that it has not queried the oracle with and a forged signature s for
m.

4. The challenger outputs 1 if and only if Ver(vk,m, s) = 1.

If A outputs the message m before the challenger samples the keys, we call it selective EUF-CMA
security.

2.10 Functional encryption

Definition 19 (Functional encryption). A functional encryption scheme for a family of functions
F consists of the following algorithms that satisfy the correctness and security guarantees below.

• Setup(1): Outputs a master secret key msk and a public key pk.

• QKeyGen(msk, f): Takes in the master secret key and a function f , outputs a functional key
Rf for f .

• Enc(pk,m): Takes in the public key and a message m, outputs an encryption of m.

• Dec(Rf , ct): Takes in a functional key Rf and a ciphertext, outputs evaluation of the encrypted
message under f .

Correctness For all functions f ∈ F and all messages m, we require the following.

Pr

Dec(Rf , ct) = f(m) :
msk, pk ← Setup(1)

Rf ← QKeyGen(msk, f)
ct← Enc(pk,m)

 ≥ 1− negl(λ).

Adaptive indistinguishability security Any QPT adversary A has negligible advantage in the
following game.

1. Challenger samples the keys msk, pk ← Setup(1).

2. The adversary receives pk. It makes polynomially many queries by sending functions f ∈ F
and receiving the corresponding functional key Rf ←← QKeyGen(msk, f).

3. The adversary outputs challenge messages m0,m1.
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4. The challenger samples a challenge bit b← {0, 1} and prepares ct← Enc(pk,mb).

5. The adversary receives ct, and it makes polynomially many functional key queries.

6. The adversary outputs a guess b′.

7. The challenger checks if f(m0) = f(m1) for all f queried by the adversary. If not, it outputs
0 and terminates.

8. The challenger outputs 1 if b′ = b.

We define the advantage of the adversary to be
∣∣Pr[GameA = 1]− 1

2

∣∣. If the adversary outputs the
challenge messages before the keys are sampled, we call it selective indistinguishability security.

2.11 Hash-proof systems

We reproduce the definitions of symmetric- and public-key weak hash-proofs systems from [HLAWW16]
for convenience.

Definition 20 (Symmetric-key weak hash-proof system (wHPS) [HLAWW16], almost verbatim).
Let X ,Y,K be some efficient ensembles and let F = {FK : X → Y}K∈K be some efficient function
family with the following PPT algorithms.

• samK← SamGen(K) takes an input K ∈ K and outputs a sampling key samK.

• X ← Dist1(samK), X ← Dist2(samK) are two distributions that sample X ∈ X using the
sampling key samK. For convenience, we also define the distribution Dist0(samK) which just
samples a uniformly random X ← X and ignores the sampling key samK.

We say that F is a symmetric-key wHPS if it satisfies the following two properties:

• Input indistinguishability. For any polynomial q = q(λ) and any choice of (b1, . . . , bq), (b
′
1, . . . , b

′
q) ∈

{0, 1, 2}q, the following distributions are computationally indistinguishable:

(K,X1, . . . , Xq) ≈ (K,X ′1, . . . , X
′
q)

where K ← Kλ, samK← SamGen(K), {Xi ← Distbi(samK)}, {X ′i ← Distb′i(samK)}.

• Smoothness. For any polynomial q = q(λ), the following distributions are statistically equiv-
alent:

(X1, . . . , Xq, Y1, . . . , Yq, X
∗, Y ∗) ≡ (X1, . . . , Xq, Y1, . . . , Yq, X

∗, U)

where the distributions are defined by K ← Kλ, samK← SamGen(K), {Xi ← Dist1(samK), Yi =
FK(Xi)}i∈[q], X∗ ← Dist2(samK), Y ∗ = FK(X∗) and U ← Y.

Definition 21 (Public-key weak hash-proof system [HLAWW16], almost verbatim). A weak hash-
proof system (wHPS) with output space K consists of the algorithms Gen,Encap,Encap∗,Decap∗ that
satisfy the following properties.

• Correctness. For all (pk, sk) in the range of Gen(1λ),

Pr
[
k = k′ : (c, k)← Encap(pk), k′ = Decap(c, sk)

]
= 1.
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• Ciphertext indistinguishability. We have

(pk, sk, c) ≈ (pk, sk, c∗)

where (pk, sk)← Gen(1λ), (c, k)← Encap(pk), c∗ ← Encap∗(pk).

• Smoothness.
(pk, c∗, k∗) ≡ (pk, c∗, k).

where (pk, sk)← Gen(1λ), k ← K, c∗ ← Encap∗(pk), k∗ = Decap∗(c∗, sk).

3 Cryptographic schemes resilient to unbounded classical leakage

In this section, we use quantum resources to design leakage-resilient schemes that are impossible to
break using any classical leakage attack. For the computationally secure constructions, unbounded
will mean any polynomial amount of classical leakage while the size of the scheme does not depend
on the amount of classical leakage allowed.

We first present a lemma regarding unbounded classical leakage on BB84 states that will be
useful in most of our schemes.

Lemma 11 (Entropy loss of BB84 states with unbounded classical leakage). Let X, θ be indepen-
dent and uniformly distributed over {0, 1}λ and consider the BB84 state Hθ|X⟩. Let Leak be any
quantum-to-classical channel. Then, we have that

H∞(X|Leak(Hθ|X⟩), θ) ≥ CBB84 · λ

where CBB84 = − log
(
1
2 + 1

2
√
2

)
> 0.22.

Proof. The desired statement follows by framing the task of guessing X as an instance of the λ-
qubit BB84 MoE game from Section 2.6. To see this, consider the tripartite quantum state ρABC

constructed as follows:

1. Generate λ EPR pairs |Φ1⟩, . . . , |Φλ⟩. Store the first half of each pair in Alice’s register A,
and the second half in another register A′.

2. Compute the classical leakage L by applying Leak to the contents of A′.

3. Store L in Bob’s and Charlie’s registers, B and C.

Note that if Alice samples θ uniformly at random from {0, 1}λ and measures the i-th qubit
in A according to the computational basis if θi = 0 and the Hadamard basis if θi = 1 obtaining
the measurement outcome X ∈ {0, 1}λ, then, after these measurements, the register A′ holds the
state Hθ|X⟩. Moreover, since the measurements above and the leakage function Leak are applied to
disjoint sets of registers, these operations commute and so L← Leak(Hθ|X⟩). As Bob and Charlie
both have access to (L, θ), the winning probability of this MoE game equals the optimal probability
of guessing X given (L, θ). According to Lemma 10, this probability is exactly(

1

2
+

1

2
√
2

)λ

,

and so

H∞(X|L, θ) = − log pguess(X|L, θ) = −λ · log
(
1

2
+

1

2
√
2

)
= CBB84 · λ,

where the first equality uses Lemma 3.
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We can also extend Lemma 11 against attacks that are composed of unbounded classical leakage
and bounded quantum leakage.

Lemma 12 (Entropy loss of BB84 states with unbounded classical and bounded quantum leakage).
Let X, θ be independent and uniformly distributed over {0, 1}λ and consider the BB84 state Hθ|X⟩.
Let ℓc(λ), ℓq(λ) be functions denoting the classical leakage and qubit leakage size, respectively. Then,
for any quantum channel Leak with ℓc(λ) bit classical output and ℓq(λ) qubit output, we have

H∞(X|Leak(Hθ|X⟩), θ) ≥ CBB84 · λ− ℓq(λ).

We first need a technical lemma that will help show that the quantum leakage will be unentan-
gled from the rest of the system.

Lemma 13 ([HSR03, Theorem 1]). Any channel of the form

Φ(ρ) =
∑
k

Rk Tr(Fkρ)

where {Fk}k is a POVM and each Rk is a density matrix, is entanglement breaking.
More formally, for such a channel Φ on register X, for any other register Y and any state σ of

(X,Y ), we have that (ΦX ⊗ IY )(σ) is separable.

Proof. Without loss of generality assume that the first ℓc(λ) registers of the output of Leak are
classical. Define the registers A,B,C,D where C will contain the classical leakage and D will
contain the quantum leakage, and consider the cccq state

ρ =
∑
x

1

2λ
|x⟩⟨x| ⊗

(∑
θ

1

2λ
|θ⟩⟨θ| ⊗ Leak(Hθ|x⟩)

)

over these registers.
We have (∆C ⊗ ID)Leak = Leak by Definition 5. We also have ∆C(σ) =

∑
a Tr(Ea,aρ)Ea,a by

Definition 4 where each Ea,a is a density matrix while {Ea,a}a form a POVM. Hence, by Lemma 13,
is ∆C is an entanglement breaking channel and therefore

Leak(Hθ|x⟩) =
∑
i

pθ,xi (τ θ,xi )C ⊗ (ξθ,xi )D.

for some density matrices {τ θ,xi }i, {ξ
θ,x
i }i and probability distribution {pθ,xi } for each θ, x. Then,

ρ =
∑
x,θ,i

pθ,xi

4λ
|x⟩⟨x| ⊗ |θ⟩⟨θ| ⊗ (τ θ,xi )C ⊗ (ξθ,xi )D.

Hence, D is separable from rest of the system, and then by Lemma 5 we have

H∞(A, (B,C), D) ≥ H∞(A|B,C)− ℓq(λ) (3)

since D consists of ℓq(λ) qubits.
Observe that H∞(A|B,C) is H∞(X|θ, C) and C is classical. Hence, by Lemma 11 we have

H∞(A|B,C) ≥ CBB84 · λ. Finally combining this with Equation (3) yields the result.
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3.1 Leakage-resilient secret sharing for general access structures

We describe and analyze an efficient compiler that takes as input an appropriate secret sharing
scheme realizing an access structure without singletons2 and outputs a secret sharing scheme for
the same access structure which is additionally leakage-resilient against unbounded classical local
leakage and bounded quantum leakage. The compiler is inspired by the approach of Chandran,
Kanukurthi, Obbattu, and Sekar [CKOS22] for bounded classical leakage (which itself improves a
previous compiler of [ADN+19]) and uses the entropic monogamy-of-entanglement properties of
random BB84 states, as shown in Lemmas 11 and 12.

Definition 22 (Unbounded-leakage-resilient secret sharing). We say that a secret sharing scheme
(Share, (RecT )T∈Γ) is ε-unbounded-leakage-resilient if for any unauthorized set T ̸∈ Γ, any family
of leakage functions {Leaki}i ̸∈T with possibly quantum input but classical output (but not sharing
entangled states), and any two messages m,m′ ∈M we have that

(Shi)i∈T , (Leaki(Shi))i ̸∈T ≈ε (Sh
′
i)i∈T , (Leaki(Sh

′
i))i ̸∈T , (4)

where (Shi)i∈[n] ← Share(m) and (Sh′i)i∈[n] ← Share(m′).
Similarly, we say that the scheme is ε-leakage-resilient to (∗, ℓ)-leakage if it satisfies Equation (4)

for any family of leakage functions {Leaki}i ̸∈T whose outputs each consist of arbitrary size classical
bits and ℓ qubits.

Now we move to our construction. Let n be the number of parties and Γ be the access structure.
We will assume access to the following objects:

• A secret sharing scheme (Share,Rec) for the access structure Γ, mapping a u-bit message m
to w-bit shares Zm

1 , . . . , Z
m
n with εpriv-privacy, i.e.,

(Zm
i )i∈T ≈εpriv (Z

m′
i )i∈T

for any unauthorized set T ̸∈ Γ and any two secrets m and m′. We additionally enforce the
marginal uniformity property that Zm

i ≈εunif Uw for all i ∈ [n] and m ∈ {0, 1}u. We also
require that the access structure Γ ⊆ 2[n] realized by (Share,Rec) contains no singletons.3 For
the special case of threshold access structures, Shamir’s secret sharing scheme satisfies these
properties with εpriv = εunif = 0.

• An explicit linear (k = CBB84 · N − ℓ, εext)-strong quantum-proof seeded extractor Ext :
{0, 1}N × {0, 1}d → {0, 1}w, such as Trevisan’s extractor from Lemma 6 with seed length
d = O(log3(w/εext)) and such that

w ≥ k −O(d) = CBB84 ·N − ℓ−O(d).

As already shown in [CKOS22, Lemma 2], every such linear extractor Ext is equipped with
an efficient inversion procedure InvExt(z, s) which either samples x uniformly at random from
the preimage {x ∈ {0, 1}N : Ext(x, s) = z} or outputs ⊥ if this set is empty. If S ← {0, 1}d
and Z ≈εunif Um are independent, it holds that

Pr[InvExt(Z, S) = ⊥] ≤ εext + εunif . (5)

To see this, note that InvExt(Z, S) ≈εunif InvExt(Um, Ud), and that at most an εext-fraction of
output-seed pairs (z, s) ∈ {0, 1}w × {0, 1}d can have an empty preimage with respect to Ext.
Then, a union bound yields Equation (5).

2Local leakage-resilience is trivially unachievable for access structures with singletons.
3Note that locally leakage-resilient secret sharing is unachievable over any access structure with singletons.
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• 2-out-of-n Shamir secret sharing schemes (Share2-n,Rec2-n) for N -bit and d-bit secrets.4

We construct a leakage-resilient secret sharing scheme (Share⋆,Rec⋆) realizing Γ using the objects
above. On input a secret m ∈ {0, 1}u, the sharing procedure Share⋆ proceeds as follows:

1. Compute (Z1, . . . , Zn)← Share(m).

2. Sample a basis θ ← {0, 1}N and a seed S ← {0, 1}d. Compute the 2-out-of-n Shamir shares
(θ1, . . . , θn)← Share2-n(θ) and (S1, . . . , Sn)← Share2-n(S).

3. For each i ∈ [n], sample Xi ← InvExt(Zi, S).

4. If Xi ̸= ⊥, set Shi = (Hθ|Xi⟩, Si, θi). Else, if Xi = ⊥ set Shi = (⊥, Zi).

The reconstruction procedure Rec⋆ is straightforward. Moreover, it is easy to show that (Share⋆,Rec⋆)
realizes Γ and satisfies εpriv-privacy. To conclude the argument, we proceed to show that (Share⋆,Rec⋆)
is resilient to local unbounded classical leakage.

Theorem 14. The secret sharing scheme (Share⋆,Rec⋆) for the access structure Γ is εleak-unbounded-
leakage-resilient with

εleak = 5n(εext + εunif) + εpriv.

Proof. We prove Theorem 14 via a hybrid argument. Fix an unauthorized set T ̸∈ Γ of size t.
Without loss of generality we may assume that T = {1, . . . , t}. For a secret m ∈ {0, 1}u and local
quantum-to-classical leakage functions

Leakt+1, . . . , Leakn,

let Leakm denote the output of the leakage experiment on m, i.e.,

Leakm = (Shi)i∈[t], (Leakj(Shj))j∈{t+1,...,n},

where (Sh1, . . . ,Shn) ← Share⋆(m). The desired result follows if we show that Leakm ≈εleak Leak
m′

for any two secrets m,m′ ∈ {0, 1}u. By Equation (5) and a union bound over all n shares, it follows
that the probability that there is at least one share of the form (⊥, Zi) is at most

n(εext + εunif).

Consequently, from here onwards we assume that no inversion procedure fails in the sharing phase,
and will add this term to the final leakage error εleak.

Towards this end, we consider hybrids Hybmi for i = t, . . . , n which behave like Leakm, but where
Xj ← {0, 1}N for every j ∈ {t + 1, . . . , i}. Note that Leakm ≡ Hybmt and, by εpriv-privacy of the
underlying scheme (Share,Rec), we also have

Hybmn ≈εpriv Hyb
m′
n .

Therefore, it suffices to establish the following.

Claim 1. For every secret m ∈ {0, 1}u and i ∈ {t+ 1, . . . , n} it holds that

Hybmi−1 ≈2(εext+εunif) Hyb
m
i .

4For the sake of simplicity, we avoid parameterizing these schemes by the secret length.
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Assuming Claim 1, repeated application of the triangle inequality yields

Leakm ≡ Hybm0 ≈2n(εext+εunif) Hyb
m
n−t ≈εpriv Hyb

m′
n−t ≈2n(εext+εunif) Hyb

m′
0 ≡ Leakm

′
.

The triangle inequality applied to this chain leads to Theorem 14. We proceed to prove Claim 1,
which concludes our argument.

Proof of Claim 1. Note that Hybmi−1 and Hybmi only differ in the computation of the i-th share Shi.
We begin by observing that we may write Hybmi−1 and Hybmi as

Hybmi−1 = f(i, Zi, Si, S, θi, θ, Leaki(H
θ|InvExt(Zi, S)⟩, Si, θi))

and
Hybmi = f(i, Zi, Si, S, θi, θ, Leaki(H

θ|X⟩, Si, θi))

for the same randomized function f (with randomness independent of the input). Therefore, by
the post-processing property of trace distance, it suffices to show that

Zi, Si, S, θi, θ, Leaki(H
θ|InvExt(Zi, S)⟩, Si, θi) ≈2(εext+εunif) Zi, Si, S, θi, θ, Leaki(H

θ|X⟩, Si, θi). (6)

We claim that we can replace the Shamir shares Si and θi by Shamir shares of 0 and Zi by the
uniform distribution on {0, 1}w. Let S̃i and θ̃i denote the i-th Shamir secret sharing of 0. Since
Zi ≈εunif Uw and Zi and X are independent of each other and of Si, S, θi, θ, the 0-privacy of Shamir
secret sharing implies that

Zi, Si, S, θi, θ,X ≈εunif Uw, S̃i, S, θ̃i, θ,X.

Since both sides of Equation (6) are randomized functions of Zi, Si, S, θi, θ,X, in order to show
Equation (6) it is enough to argue that

Uw, S̃i, S, θ̃i, θ, Leaki(H
θ|InvExt(Um, S)⟩, S̃i, θ̃i) ≈2εext Uw, S̃i, S, θ̃i, θ, Leaki(H

θ|X⟩, S̃i, θ̃i). (7)

As S̃i and θ̃i are independent of X and θ, Lemma 11 guarantees that

H∞(X|Leaki(Hθ|X⟩, S̃i, θ̃i), θ̃i, θ) ≥ CBB84 ·N.

Therefore, invoking the strong extractor properties of Ext and the fact that S̃i, θ̃i, and θ are
independent of X and the seed S yields

Um, S̃i, S, θ̃i, θ, Leaki(H
θ|X⟩, S̃i, θ̃i)

≈εext Ext(X,S), S̃i, S, θ̃i, θ, Leaki(H
θ|X⟩, S̃i, θ̃i)

≡ Ext(X,S), S̃i, S, θ̃i, θ, Leaki(H
θ|InvExt(Ext(X,S), S)⟩, S̃i, θ̃i)

≈εext Um, S̃i, S, θ̃i, θ, Leaki(H
θ|InvExt(Um, S)⟩, S̃i, θ̃i),

and so Equation (7) follows by the triangle inequality.
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3.1.1 Setting parameters in the compiler

In this section we show how to instantiate the compiler from Theorem 14 to obtain efficient threshold
secret sharing schemes resilient against unbounded classical leakage and a constant rate of quantum
leakage with exponentially small error. To be more precise, we obtain the following corollary.

Corollary 1 (Theorem 1, restated). Given a security parameter λ, there is an efficient t-out-of-n
secret sharing scheme for u-bit secrets with the following properties:

• Its share length w⋆ satisfies w⋆ = O(u+ λ3);

• It is (εleak = O(n2−λ))-unbounded-leakage-resilient to (∗, ℓ)-leakage for ℓ = Ω(w⋆) qubits of
leakage from each share.

Proof. Let λ be a security parameter. Our goal is to instantiate the compiler so that the resulting
scheme (Share⋆,Rec⋆) achieves leakage error εleak = O(n2−λ), where n is the number of parties,
while withstanding unbounded classical leakage and ℓ = Ω(w⋆) qubits of leakage from each share,
where w⋆ denotes the share length of (Share⋆,Rec⋆), and so that w⋆ is not much larger than the
original share size w of the underlying (non-leakage-resilient) secret sharing scheme.

Choose the underlying scheme (Share,Rec) to be a t-out-of-n Shamir secret sharing scheme
with secret size u and share size w = u. Note that (Share,Rec) satisfies (εpriv = 0)-privacy and
(εunif = 0)-uniformity. Lemma 6 guarantees the existence of an efficient linear (k, εext)-strong
quantum-proof seeded extractor Ext : {0, 1}N × {0, 1}d → {0, 1}w with error εext = 2−λ, input
source length N = C(w + λ3) for a sufficiently large constant C > 0, min-entropy requirement
k = cN for an arbitrary constant c > 0, and seed length d ≤ C ′ log3(N/εext) = C ′(λ3 + log3N) for
a sufficiently large constant C ′ > 0.

Combining the objects above with the compiler of Theorem 14 yields an efficient threshold
secret sharing scheme (Share⋆,Rec⋆) with share size w⋆ = 2N +d = O(w+λ3). It remains to argue
that we may set ℓ = Ω(w⋆) and εleak = O(n2−λ). Note that under these constraints we may assume
that CBB84N − ℓ ≥ cN for some constant c > 0, thus satisfying the min-entropy requirement of
the extractor Ext above, and obtaining final leakage error

εleak = 5n(εext + εunif) + εpriv = O(n2−λ).

3.1.2 Breaking leakage-resilience with unbounded shared entanglement and classical
leakage

We have designed secret sharing schemes which are resilient against unbounded classical leakage.
To complement this result, relying on ideas from a recent result of Ananth, Goyal, Liu and Liu
[AGLL23], we show that such schemes are unachievable if we additionally allow arbitrary entangled
states to be shared between local leakage adversaries, even if these adversaries only output classical
leakage and share no entanglement with the distinguisher. For simplicity, we present the result for
2-out-of-2 threshold secret sharing schemes, but the argument is easily generalizable to quantum
secret sharing schemes realizing arbitrary access structures.

Theorem 15 (Theorem 2, restated). Given any quantum secret sharing scheme which encodes a
secret m ∈ {0, 1} into w-dimensional shares Shm = (Shm1 , Sh

m
2 ), there exists quantum-to-classical

local leakage functions Leak1 and Leak2 outputting ℓc = ℓc(w) classical bits each, for N and ℓc
sufficiently large functions of w, and a distinguisher D such that

Pr
[
D(Sh1i , Ri, Leak3−i(Sh

1
3−i, R3−i)) = 1

]
− Pr

[
D(Sh0i , Ri, Leak3−i(Sh

0
3−i, R3−i)) = 1

]
≥ 0.99
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for any i ∈ {1, 2} where R1, R2 is initialized to N = N(w) EPR pairs shared between them.

Proof. Suppose that a secretm ∈ {0, 1} is secret-shared into w-dimensional shares Shm = (Shm1 , Sh
m
2 ).

Consider the local leakage functions Leak1, Leak2 sharing N EPR pairs and where Leaki has access
to Shmi defined as follows:

1. Using the halves of their first w shared EPR pairs, Leak1 teleports Shm1 to Leak2. Let k, k
′ ∈

{0, 1}w denote the measurement outcome of the quantum teleportation protocol, so that the
halves of the w EPR pairs held by Leak2 now contain the state

Sh
m
1 =

(
XkiZk′i(Shm1 )i

)
i∈[w]

2. Leak2 now has access to Shm2 and the hidden share Sh
m
1 . Exploiting probabilistic PBT (see

Section 2.3), Leak2 teleports (Sh
m
1 ,Sh

m
2 ) to Leak1 using the remaining EPR pairs. Let i⋆

denote the measurement outcome of the PBT protocol.

3. Using the measurement outcomes (k, k′) from the initial teleportation step, Leak1 applies⊗w
i=1X

kiZk′i to the EPR halves of each port corresponding to Sh
m
1 , and then applies the

reconstruction algorithm of the given quantum secret sharing scheme to the EPR halves
corresponding to each port. Finally, Leak1 leaks the classical output of the reconstruction
algorithm on each port.

4. Leak2 leaks the PBT measurement outcome i⋆.

Conditioned on the probabilistic PBT protocol succeeding, the EPR halves held by Leak1 cor-
responding to port i⋆ contain the state (Shm1 ,Sh

m
2 ). Therefore, the output of Leak1’s operations

on port i⋆, call it Li⋆ , satisfies Li⋆ = m. By Theorem 12, if the number N of EPR pairs shared
by Leak1 and Leak2 is large enough then it holds that the probabilistic PBT protocol succeeds
with probability at least 0.99. As a result, the distinguisher D which outputs Li⋆ , which can be
computed given the classical outputs of Leak1 and Leak2, succeeds with the desired advantage.

These results also have further implications for communication complexity. Namely, together
they imply that there is a quantum circuit with classical output satisfying the following:

• For parties not sharing entanglement, it is impossible to have a 1-round protocol with clas-
sical message that has non-negligible success probability, even with unbounded amount of
communication;

• For parties that can share entanglement, there is a 1-round protocol computing it perfectly.

3.2 Pseudorandom functions

In this section, we define leakage protection schemes for weak PRFs (Definition 17) and show how
to construct schemes resilient against unbounded classical leakage from copy protection schemes
for PRFs. We start by generalizing the PRF copy protection definition of Coladangelo, Liu, Liu,
and Zhandry [CLLZ21] to allow for other security models.

Definition 23 (PRF protection scheme). A protection scheme PRF for a wPRF F = {fk}k consists
of the following QPT algorithms.

• Setup(1) : Outputs a classical PRF key k for F .
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• QKeyGen(k, 1t) : Takes the key k and a collusion bound t, outputs quantum key registers
Rkey = (Rkey,i)i∈[t] in some product state.

• Eval(Rkey,i, x): Takes a quantum key and an input x and returns the evaluation fk(x).

It satisfies the following correctness property.

Correctness For all inputs x and all i ∈ [t],

Pr

[
Eval(Rkey,i, x) = fk(x) :

k ← Setup(1)
(Rkey,i)i∈[t] ← QKeyGen(k, 1t)

]
≥ 1− negl(λ).

As argued by [CLLZ21], correctness property implies by gentle measurement lemma [Aar05] that
we can implement evaluation in a way such that we can rewind the algorithm after decryption, and
therefore we can use it polynomially many times. We will assume that Eval is implemented this
way.

Coladangelo et al. [CLLZ21] and Liu et al. [LLQZ22] give two different definitions of copy
protection security. For anti-piracy security, it is required that an adversary that has access to t
copies of the PRF key cannot produce t+1 registers that can all be used to predict the PRF output
at independent random challenges. For the supposedly stronger5 notion of indistinguishability anti-
piracy security, again we provide the adversary with t copies of the PRF key and it produces t+ 1
possibly entangled registers and programs. We require that, when all presented with independent,
random distinguishing challenges, the t+ 1 registers cannot all distinguish the case in which they
are.

Definition 24 (t-bounded collusion resistant anti-piracy security [LLQZ22]). A copy protection
scheme PRF for a wPRF F = {fk}k is said to satisfy anti-piracy security if for all QPT adversaries
A, the advantage of A in the following game is negligible.

1. The challenger runs k ← PRF.Setup(1) and

Rkey = (Rkey,i)i∈[t] ← PRF.QKeyGen(k, 1t).

2. A gets access to Rkey, and it produces t + 1 QPT programs (Ai)i∈[t+1] and t + 1 registers
(Ri)i∈[t+1].

3. The challenger samples challenge input x∗i ←M for each i ∈ [t+ 1].

4. The challenger runs yi ← Ai(Ri, x
∗
i ) for each i ∈ [t+ 1].

5. Output 1 if and only if yi = fk(x
∗
i ) for all i ∈ [t+ 1].

Definition 25 (t-bounded collusion resistant indistinguishability anti-piracy security [LLQZ22]).
A copy protection scheme PRF for a wPRF F = {fk}k is said to satisfy indistinguishability anti-
piracy security if for all QPT adversaries A, the advantage of A in the following game is negligible.

1. The challenger runs k ← PRF.Setup(1) and

Rkey = (Rkey,i)i∈[t] ← PRF.QKeyGen(k, 1t).

5While this definition seems stronger, [CLLZ21] state that it is not clear if this definition implies the previous one.
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2. A gets access to Rkey, and it produces t + 1 QPT programs (Ai)i∈[t+1] and t + 1 registers
(Ri)i∈[t+1].

3. The challenger executes the following for each i ∈ [t+ 1] :

(a) Sample challenge input x∗i ←M .

(b) Sample challenge bit bi ← {0, 1}
(c) If bi = 0, set y∗i = fk(x

∗
i ). If bi = 1, sample y∗i ← Y.

4. The challenger runs bi
′ ← Ai(Ri, x

∗
i , y
∗
i ) for each i ∈ [t+ 1].

5. Output 1 if and only if bi
′ = bi for all i ∈ [t+ 1].

We define the advantage of A to be
∣∣Pr[GameA = 1]− 1

2

∣∣.
Theorem 16 ([CLLZ21], [LLQZ22]). Assume the existence of post-quantum sub-exponentially se-
cure iO and one-way functions, and the quantum hardness of LWE. Let F be a puncturable PRF
family with error 2−λ−1 for min-entropy p1(λ), input space {0, 1}p1(λ) and output space {0, 1}p2(λ)
where p1(·), p2(·) are some polynomials satisfying p1(λ) ≥ p2(λ)+2λ+4. Then, for any t = poly(λ),
there exists a protection scheme PRF for F that satisfies both t-bounded collusion resistant anti-
piracy security and t-bounded collusion resistant indistinguishability anti-piracy security.

Note that PRFs as required by Theorem 16 exist [CLLZ21].
Now we continue with leakage-resilience. Since the adversary can always leak (parts of) the

evaluation of the PRF on an input of its choice, rather than standard (strong) PRFs one generally
considers weak PRFs in the setting of leakage-resilience [HLAWW16]. We also define our model in
this way and we will omit the qualifier weak for PRFs in leakage-resilience context since it will be
implicit. We first start with the further weaker setting where the adversary needs to predict the
output of the PRF on a random input rather than distinguishing a random input and its evaluation
from a pair consisting of a random input and a random sample from the output space. While this
will be sufficient to construct leakage-resilient MACs in Section 3.4, we also show a scheme using
a Goldreich-Levin type construction that satisfies the more standard, indistinguishability-based
security definition.

Definition 26 (Unbounded classical leakage-resilient unpredictable pseudorandom functions). A
protection scheme PRF for a wPRF F = {fk}k is said to be t-copy unpredictable (∗, ℓq(λ))-leakage-
resilient if for all polynomials ℓc(·) and for all QPT adversaries A = (AMain,ALeak) the advantage
of A in the following game is negligible.

1. The challenger runs k ← PRF.Setup(1) and

Rkey = (Rkey,i)i∈[t] ← PRF.QKeyGen(k, 1t).

2. The challenger samples a challenge input x∗ ← X and computes y∗ ← PRF.Eval(Rkey,1, x
∗).

3. The leakage adversary ALeak gets access to Rkey and produces a leakage register Rleak that
consists of ℓq(λ) qubits and ℓc(λ) classical bits.

4. AMain gets Rleak and x∗, and it outputs a guess y
′
.

5. Output 1 iff y
′
= y∗.
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Note that for unpredictable wPRFs (both in the context of copy protection and leakage-
resilience), we will henceforth implicitly require the key space, the input space and the output
space to be all superpolynomial size since otherwise the adversary can guess the key, the challenge
input or the evaluation of the challenge input with non-negligible probability.

Definition 27 (Unbounded classical leakage-resilient pseudorandom functions). A protection scheme
PRF for a wPRF F = {fk}k is said to be t-copy (∗, ℓq(λ))-leakage-resilient if for all polynomials
ℓc(·) and for all QPT adversaries A = (AMain,ALeak) the advantage of A in the following game is
negligible.

1. The challenger runs k ← PRF.Setup(1) and Rkey = (Rkey,i)i∈[t] ← PRF.QKeyGen(k, 1t).

2. The challenger samples a challenge input x∗ ← X and a challenge bit b← {0, 1}. If b = 0, it
sets y∗ ← PRF.Eval(Rkey,1, x

∗) and if b = 1, it samples y∗ ← Y.

3. The leakage adversary ALeak gets access to Rkey and produces a leakage register Rleak that
consists of ℓq(λ) qubits and ℓc(λ) classical bits.

4. AMain gets x∗, y∗ and Rleak. It outputs a guess b′.

5. Output 1 iff b′ = b.

We define the advantage of A to be
∣∣Pr[GameA = 1]− 1

2

∣∣.
We can also define a multi-challenge variant of this security notion, which will be useful in some

applications such as multi-message secure private key encryption constructed in Section 3.6.

Definition 28 (Unbounded classical leakage-resilient pseudorandom functions - multi-challenge
variant). A protection scheme PRF for a wPRF F = {fk}k is said to be t-copy (∗, ℓq(λ))-leakage-
resilient for multiple inputs if for all polynomials p(·) and ℓc(·), for all QPT adversaries A =
(AMain,ALeak) the advantage of A in the following game is negligible.

1. The challenger runs k ← PRF.Setup(1) and Rkey = (Rkey,i)i∈[t] ← PRF.QKeyGen(k, 1t).

2. The challenger samples challenge inputs x∗i ← X for each i ∈ [p(λ)] and a challenge bit
b← {0, 1}.

3. For each i ∈ [p(λ)], the challenger sets y∗i ← PRF.Eval(Rkey,1, x
∗) if b = 0 and it samples

y∗i ← Y if b = 1.

4. The leakage adversary ALeak gets access to Rkey and produces a leakage register Rleak that
consists of ℓq(λ) qubits and ℓc(λ) classical bits.

5. AMain gets (x∗i , y
∗
i )i∈[p(λ)] and Rleak. It outputs a guess b′.

6. Output 1 iff b′ = b.

We define the advantage of A to be
∣∣Pr[GameA = 1]− 1

2

∣∣.
Theorem 17. Let PRF be a t-copy (∗, ℓq(λ))-leakage-resilient PRF protection scheme. Then, PRF
is also t-copy (∗, ℓq(λ))-leakage-resilient for multiple inputs.
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Proof. This can be shown via a simple hybrid argument.
By overwhelming correctness of PRF and by key rewinding, in the leakage game, we can replace

all calls to PRF.Eval with actual evaluations of the PRF. Then, it is easy to see that indistinguisha-
bility based security from Definition 27 is equivalent to indistinguishability of the ensembles

(x, fk(x),ALeak(Rkey)) (8)

and
(x, y,ALeak(Rkey)) (9)

for all admissible ALeak where x← X and y ← Y. Similarly, the indistinguishability based security
from Definition 28 is equivalent to indistinguishability of the ensembles

(x1, . . . , xp(λ), fk(x1), . . . , fk(xp(λ)),ALeak(Rkey)) (10)

and
(x1, . . . , xp(λ), y1, . . . , yp(λ),ALeak(Rkey)) (11)

for all admissible ALeak where xi ← X and yi ← Y for all i ∈ [p(λ)].
Assume (8) ≈ (9) for all admissible ALeak and we will show (10) ≈ (11). For i ∈ [p(λ)], define

Hybi to be
(x1, . . . , xp(λ), fk(x1), . . . , fk(xi−1), yi, . . . , yp(λ),ALeak(Rkey))

Then, we have Hyb1 ≡ (11) and Hybp(λ)+1 ≡ (10). Now suppose for a contradiction that Hybi ̸≈
Hybi+1 for some i ∈ [p(λ)]. Then, it is easy to see that (8) ̸≈ (9) for the adversary A′

Leak constructed
below.

A′
Leak(Rkey)

1. Sample x1, . . . , xi−1 ← X

2. For each j ∈ [i− 1], run zj ← PRF.Eval(Rkey, xj).

3. Output x1, . . . , xi−1, z1, . . . , zi−1,ALeak(Rkey)

Therefore, we have Hybi ≈ Hybi+1 for all i ∈ [p(λ)]. Applying the hybrid lemma completes proof.

Now we show that any copy protection scheme with anti-piracy security is also unpredictable
leakage-resilient against unbounded classical leakage given a constant number of copies of the key.

Theorem 18. Let F be a pseudorandom function family and PRF a copy protection scheme for F
that satisfies t-bounded collusion resistant anti-piracy security for some constant t. Then, PRF is
t-copy unpredictable (∗, 0)-leakage-resilient.

Proof. We first start by modifying the unpredictability leakage game by changing the line y∗ ←
PRF.Eval(Rkey,1) to y∗ = fk(x

∗). We are allowed to do this modification by the overwhelming
correctness of the scheme and since we are rewinding the evaluation algorithm after each use.

Let F = {fk} and suppose there is an adversary A = (AMain,ALeak) that wins the (modified)
leakage game with probability 1

p(λ) for some polynomial p(·) and infinitely many values of λ. We then

construct an adversary as follows and show that A′
wins the anti-piracy game with non-negligible

probability. Given Rkey, the adversary A′
runs ALeak on it to produce a classical string L. Then,
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it outputs (AMain, L)i∈[t+1]. Observe that conditioned on fixed values a of the leakage and k
′
of

the keys, the probability of winning the anti-piracy game is Pr[AMain(a, x
∗) = fk′(x

∗) : x∗ ← X ]t+1

since the challenges and the piracy adversaries are all independent. Hence, we can write the winning
probability for the anti-piracy game as

ppiracy =
∑
a,k′

Pr
[
AMain(a, x

∗) = fk′ (x
∗) : x∗ ← X

]t+1 · Pr
[
L = a, k = k

′
]

= EL,k[Pr
x∗
[AMain(L, x

∗) = fk(x
∗)]t+1]

Similarly we can write the probability of winning the leakage game as

pleak =
∑
a,k′

Pr
[
AMain(a, x

∗) = fk′ (x
∗) : x∗ ← X

]
· Pr
[
L = a, k = k

′
]

= EL,k[Pr
x∗
[AMain(L, x

∗) = fk(x
∗)]]

Then, by Jensen’s inequality we see that ppiracy ≥ (pleak)
t+1 = 1

pt+1(λ)
, which shows that A′

has a

non-negligible probability of winning the game for constant t.

Corollary 2. Assume the existence of post-quantum sub-exponentially secure iO and one-way func-
tions, and the quantum hardness of LWE. Let F be a puncturable PRF family with error 2−λ−1 for
min-entropy p1(λ), input space {0, 1}p1(λ) and output space {0, 1}p2(λ) where p1(·), p2(·) are some
polynomials satisfying p1(λ) ≥ p2(λ) + 2λ + 4. Then, for any constant t, there exists a t-copy
unpredictable (∗, 0)-leakage-resilient protection scheme for F .

Proof. Invoke Theorem 16 and Theorem 18.

Finally, from any leakage-resilient unpredictable wPRF, we show how to construct a leakage-
resilient indistinguishable wPRF with the same leakage bound. While we phrase the result in terms
of PRF protection schemes, note that it also applies to the classical leakage-resilience setting by
simply setting the protection scheme for the unpredictable PRF to be the trivial scheme that stores
the key in the plain. Hence, the construction also generalizes the result of Naor and Reingold
[NR98] to the leakage-resilient setting.

Theorem 19. Let F ′
= {f ′

k}k be a wPRF with input space {0, 1}p1(λ) and output space {0, 1}p2(λ).
Let PRF

′
be a t-copy unpredictable (ℓ(λ), 0)-leakage-resilient protection scheme for F ′

. Then, PRF
constructed below is a t-copy (ℓ(λ), 0)-leakage-resilient protection scheme for the wPRF F = {fk}k
defined below.

F = {fk}k

• Key distribution: Same as F ′

• Input space: {0, 1}p1(λ) × {0, 1}p1(λ)

• Output space: {0, 1}1

• Evaluation: fk(x1||x2) = ⟨f
′
k(x1), x2⟩
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PRF

• PRF.Setup(1)

1. Output PRF
′
.Setup(1)

• PRF.QKeyGen(k, 1t)

1. Output PRF
′
.QKeyGen(k, 1t)

• PRF.Eval(Rkey,i, x1||x2)

1. Output ⟨PRF′
.Eval(Rkey,i, x1), x2⟩

Proof. It is easy to see that PRF satisfies correctness. We move to leakage-resilience. As before,
both in the prediction and indistinguishability game, we change the line y∗ ← PRF.Eval(Rkey,1) to

y∗ = fk(x
∗), which is allowed since PRF

′
and PRF both satisfy overwhelming correctness and since

we are rewinding the evaluation algorithm. Since the leakage is only classical, we will denote the
contents of Rleak as L. We claim that PRF is t-copy (ℓ(λ), 0)-leakage-resilient. For a contradiction,
suppose there is an adversary A = (AMain,ALeak) that wins the indistinguishability game against
PRF with non-negligible advantage 1

2 +
1

2w(λ) where w(·) is some polynomial, and let {ρλ}λ denote

the (possibly non-uniform quantum) advice of AMain. That is,

1

2
Pr[AMain(x, fk(x),ALeak(Rkey)) = 0] +

1

2
Pr

y←{0,1}
[AMain(x, y,ALeak(Rkey)) = 1] ≥ 1

2
+

1

2w(λ)

Then, it is easy to see that we have

1

2
Pr[AMain(x, fk(x),ALeak(Rkey)) = 0] +

1

2
Pr
[
AMain(x, fk(x),ALeak(Rkey)) = 1

]
≥ 1

2
+

1

w(λ)
.

Now, we construct the following algorithm D that guesses fk(x) with non-negligible advantage
given the leakage.

B(x, L)

• Sample g ← {0, 1}

• Run AMain(x, g, L). If it outputs 0, output g. Otherwise, output g.

We then have,

Pr[B(x, L) = fk(x)] =
1

2
· Pr[AMain(x, g, L) = 0|g = fk(x)]

+
1

2
· Pr
[
AMain(x, g, L) = 1|g = fk(x)

]
≥ 1

2
+

1

w(λ)
.

For the prediction game for PRF
′
, we construct the following adversary A′

Main with the advice

{ρ⊗q(λ))λ }λ where we set q(λ) =
⌈
log
(
4p1(λ) · w2(λ) + 1

)⌉
. While we will not explicitly state the

advice fed to the adversaries henceforth; since A′Main invokes AMain for q(λ) many times, this advice
is sufficient.
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• A′
Leak(Rkey)

1. Output ALeak(Rkey)

• A′
Main(x

∗, L)

1. For each j ∈ [q(λ)], sample gj ← {0, 1} and rj ← {0, 1}p1(λ)

2. For each index i ∈ [p1(λ)] and subset J ⊆ [q(λ)] with J ̸= ∅,

bJi ← B

x∗∥∥∥∥
⊕

j∈J
rj ⊕ ei

, L


3. For each i ∈ [p1(λ)], set bi to be the majority bit in {bJi }J⊆[q(λ)],
J ̸=∅

.

4. Output (bi)i∈[p1(λ)]

Define the set of good inputs and leakages GOOD as follows:

GOOD =

{
(x, L) : Pr

z←{0,1}p1(λ)
[B((x, z), L) outputs the correct bit] ≥ 1

2
+

1

2w(λ)

}
.

Then, an averaging argument shows that

Pr[(x, L) ∈ GOOD] ≥ 1

2w(λ)
.

Further, indepedently with probability 1
2q(λ)

≥ 1
8p1(λ)·w2(λ)

, we will have that for all j ∈ [q(λ)],

gj = ⟨fk(x∗), rj⟩.

Now condition on x∗, L ∈ GOOD and all gj being correct.
Observe that, conditioned on x∗, L ∈ GOOD, for a fixed i, all calls to AMain are pairwise inde-

pendent. Hence, using the fact that AMain succeeds with probability 1
2 +

1
2w(λ) and by Chebyshev’s

inequality, for any fixed i we get that
bi = (fk(x

∗))i

with probability at least 1− 1
4p1(λ)

. Finally, by a union bound over i ∈ [p1(λ)], we get x
∗ = (bi)i∈[p1(λ)]

with probability at least 3
4 conditioned on x∗, L ∈ GOOD and all gj being correct. Hence, A′

wins

the prediction game against PRF
′
with probability 3

64p1(λ)·w3(λ)
.

Our proof crucially relies on the fact that the leakage is classical, since we run the adversary
AMain multiple times on the leakage. We leave it as an open question to construct qubit leakage-
resilient wPRFs from qubit leakage-resilient unpredictable wPRFs.

By using multiple independent copies of this PRF, we can achieve any desired output length.

Corollary 3. Assuming the existence of post-quantum sub-exponentially secure iO and one-way
functions, and the quantum hardness of LWE, for any constant t and any polynomial p(·), there
exists a wPRF family F with p(λ)-bit output and a protection scheme PRF for F that is t-copy
(∗, 0)-leakage-resilient.
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Proof. By invoking Corollary 2 and Theorem 19, we can obtain a wPRF F ′
= {f ′

k}k with 1-bit

output and a t-copy (∗, 0)-leakage-resilient protection scheme PRF
′
for F ′

. We construct F = {fk}k
by sampling p(λ) many independent keys {ki}i∈[p(λ)] for F

′
and to evaluate fk, we evaluate each of

f
′
ki

and concatenate the outputs. That is, we set

fk(x) = f
′
k1(x)|| · · · ||f

′
kp(λ)

(x).

The protection scheme PRF is constructed the obvious way: by using independent schemes for
each key. A simple hybrid argument proves the security.

3.3 Digital signatures

In this section, we define digital signature schemes secure against unbounded classical leakage and
show how to construct them from copy protection schemes [CLLZ21, LLQZ22]. We will require
that the adversary sign a random challenge message (rather than one selected by it), since with
classical signatures the adversary can always sign a message of its choice and leak the signature.
As in Section 3.2, we first start by generalizing the definition of Liu et al. [LLQZ22] to allow for
different security models.

Definition 29 (Digital signatures with quantum signing key). A digital signature scheme DS
consists of the following QPT algorithms.

• Setup(1) : Outputs a classical signing key sk and a public verification key vk.

• QKeyGen(sk) : Takes the signing key sk, outputs a quantum key register Rsign.

• Sign(Rsign,m): Takes a quantum signing key and a message m, returns a signature for m.

• Ver(vk,m, s): Takes a public verification key, a message m and a (supposed) signature s for
m, returns 1 if s is a valid signature for m.

It satisfies the following correctness property and EUF-CMA security.

Correctness For all messages m,

Pr

Ver(vk,m, s) = 1 :
sk, vk ← Setup(1)

Rsign ← QKeyGen(sk)
s← Sign(Rsign,m)

 ≥ 1− negl(λ).

EUF-CMA security We require the usual EUF-CMA security (Definition 18) to now hold for
keys generated by QKeyGen.

Definition 30 (Unbounded classical leakage-resilient weak digital signatures). DS said to be weak
(∗, ℓq(λ))-leakage-resilient if for all polynomials ℓc(·) and all QPT adversaries A = (AMain,ALeak),
the advantage of A is negligible in the following game.

1. The challenger runs sk, vk ← DS.Setup(1), and then

Rsign ← DS.QKeyGen(sk).

2. The leakage adversary ALeak gets access to Rsign and vk, it produces a leakage register Rleak

consisting of ℓc(λ) classical bits and ℓq(λ) qubits.
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3. The challenger samples a challenge message m∗ ←M.

4. AMain gets Rleak, vk and m∗, and it produces a forged signature s∗.

5. Output 1 iff DS.Ver(vk,m∗, s∗) = 1.

Definition 31 (Anti-piracy security for digital signatures [CLLZ21, LLQZ22]). A digital signature
scheme DS is said to satisfy anti-piracy security if for all QPT adversaries A, the advantage of A
in the following game is negligible.

1. The challenger runs sk, vk ← DS.Setup(1), and then

Rsign ← DS.QKeyGen(sk).

2. A gets access to Rsign and vk, and it produces two QPT programs A1,A2 and a pair of registers
(R1, R2).

3. The challenger samples two challenge messages m∗1,m
∗
2 ←M.

4. The challenger runs s1 ← A1(R1,m
∗
1) and s2 ← A2(R2,m

∗
2).

5. Output 1 if and only if both DS.Ver(vk,m∗1, s1) = 1 and DS.Ver(vk,m∗2, s2) = 1.

Theorem 20 ([CLLZ21]). Assuming post-quantum subexponentially secure indistinguishability ob-
fuscation and subexponentially secure LWE, there exists a digital signature scheme that satisfies
anti-piracy security.

We show that any digital signature scheme with anti-piracy security is also (∗, 0)-leakage-
resilient. Proof follows a similar structure to Theorem 18.

Theorem 21. Let DS be a digital signature scheme satisfying anti-piracy security. Then, DS is
also (∗, 0)-leakage-resilient.

Proof. Suppose for a contradiction that there is an adversary A = (AMain,ALeak) that wins the leak-
age game with probability 1

p(λ) for some polynomial p(·) and infinitely many values of λ. We then

construct an adversary as follows and show that A′
wins the anti-piracy game with non-negligible

probability. Given Rsign, the adversary A′
runs ALeak on it to produce a classical string L. Then,

it outputs (AMain,AMain) and (L,L). Observe that conditioned on fixed values of the leakage and the
keys, the probability of winning the anti-piracy game is Pr[DS.Ver(vk,m∗,AMain(L,m

∗)) = 1 : m∗ ←M]2

since the signing challenges, the piracy adversaries and calls to the verification algorithm are all
independent. Hence, we can write the winning probability for the anti-piracy game as

ppiracy = Esk,vk,L

[
Pr[DS.Ver(vk,m∗,AMain(L,m

∗)) = 1 : m∗ ←M]2
]
.

Similarly we can write the probability of winning the leakage game as

pleak = Esk,vk,L[Pr[DS.Ver(vk,m
∗,AMain(L,m

∗)) = 1 : m∗ ←M]].

Then, by Jensen’s inequality we see that ppiracy ≥ (pleak)
2 = 1

p2(λ)
, which shows that A′

has a

non-negligible probability of winning the anti-piracy game.

Corollary 4. Assuming post-quantum subexponentially secure indistinguishability obfuscation and
subexponentially secure LWE, there exists a digital signature scheme that is (∗, 0)-leakage-resilient.

Proof. Invoke Theorem 20 and Theorem 21.
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3.4 Message authentication codes

In this section, we introduce (weak) message authentication codes resilient against unbounded
classical leakage. In our definition, we will require that an adversary that obtains an unbounded
amount of classical leakage on both the tagging and verification keys cannot tag a random message.
Note that with classical tags, we cannot hope to achieve the stronger, selective or adaptive security
notions where the the message is chosen by the adversary, since then the adversary can just leak
a tag for a message of its choice. We show that the well-known MAC construction from PRFs is
unbounded classical leakage-resilient when the underlying PRF scheme is. Therefore, by instan-
tiating this construction with our wPRF scheme from Section 3.2, we give unbounded classical
leakage-resilient (weak) MACs.

Definition 32 (Unbounded classical leakage-resilient weak MAC). A message authentication code
MAC consists of the following QPT algorithms.

• Setup(1) : Outputs a classical key k.

• QKeyGen(k) : Takes the key k, outputs tagging and verification key registers Rtag, Rver in
some product state.

• Tag(Rtag,m): Takes a tagging key and a message m, returns a tag for m.

• Ver(Rver,m, s): Takes a verification key, a message m and a (supposed) tag s for m, returns
1 if s is a valid tag for m.

It satisfies the following correctness property.

Correctness For all messages m,

Pr

Ver(Rver,m, s) = 1 :
k ← Setup(1)

Rtag, Rver ← QKeyGen(k)
s← Tag(Rtag,m)

 ≥ 1− negl(λ).

MAC said to be weak (∗, ℓq(λ))-leakage-resilient if for all polynomials ℓc(·) and all QPT adver-
saries A = (AMain,ALeak,tag,ALeak,ver), the advantage of A is negligible in the following game.

1. The challenger runs k ← MAC.Setup(1), and then

Rtag, Rver ← MAC.QKeyGen(k)

R
′
tag, R

′
ver ← MAC.QKeyGen(k)

2. The leakage adversaries ALeak,tag and ALeak,ver get access to Rtag and Rver respectively and
they produce leakage registers Rleak,tag and Rleak,ver, each consisting of ℓc(λ) classical bits and
ℓq(λ) qubits.

3. The challenger samples a challenge message m∗ ←M.

4. AMain gets Rleak,tag, Rleak,ver and m
∗, and it produces a forged tag s∗.

5. Output 1 iff MAC.Ver(R
′
tag,m

∗, s∗) = 1.
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In our security definition, we create two verification keys and require that the forged tag passes
verification with respect to the undisturbed key. This is because an adversary measuring the
verification key will collapse it to a state that is known to it, and hence it can produce tags that
will pass the verification with respect to the collapsed key. However, one can construct schemes
where leakage can be detected, after which we can reject all tags until new keys are established.
See Section 4.

Theorem 22. Assuming existence of a (∗, ℓ(λ))-leakage-resilient unpredictable PRF protection
scheme, there exists a (∗, ℓ(λ))-leakage-resilient weak MAC.

Proof. Let PRF be a (∗, ℓ(λ))-leakage-resilient unpredictable PRF. We claim the following construc-
tion MAC is a (∗, ℓ(λ))-leakage-resilient MAC.

MAC

• MAC.Setup(1)

1. Output PRF.Setup(1)

• MAC.KeyGen(k)

1. Output PRF.KeyGen(k, 12)

• MAC.Tag(Rtag,m)

1. Output PRF.Eval(Rtag,m)

• MAC.Verify(Rver,m, s)

1. Output 1 iff PRF.Eval(Rver,m) = s

It is easy to see that correctness is satisfied by the correctness of PRF. Observe that the
leakage-resilient forgery game is exactly the same as the leakage-resilient wPRF unpredictibility
game (Definition 27) with t = 2 played by a (weaker) adversary running independent circuits on
the two copies of the PRF key. Therefore, security of MAC follows by the security of PRF.

3.5 Public-key encryption

In this section, we define unbounded classical leakage resilient schemes for public-key encryption,
and show that we can construct them using public-key encryption schemes with the unclonable
decryption property [CLLZ21]. As a stepping stone, we first define and construct a weaker variant
where we only require that an adversary cannot predict the message given the ciphertext, public
key and the leakage from the secret key. Then, using extractors (more specifically, Goldreich-Levin
bits), we construct a scheme that satisfies the stronger, indistinguishability-based leakage-resilience.

Definition 33 (Public-key encryption). A public-key encryption scheme PKE consists of the fol-
lowing algorithms.

• Setup(1) : Outputs classical secret key sk and a classical public key pk.

• QKeyGen(sk) : Takes the secret key sk, outputs a quantum key register Rdec.

• Enc(pk,m): Takes the public key and a message m, returns an encryption of m.
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• Dec(Rdec, ct): Takes a quantum secret key register and a ciphertext ct, outputs decryption of
ct.

We require that the scheme satisfies correctness and the usual CPA security.

Correctness For all messages m,

Pr

Dec(Rdec, ct) = m :
sk, pk ← Setup(1)

Rdec ← QKeyGen(sk)
ct← Enc(pk,m)

 ≥ 1− negl(λ).

Similar to PRFs, we assume that Dec is rewound after each use, and hence we can decrypt
polynomially many messages.

Definition 34 (Unbounded classical leakage-resilient unpredictable public-key encryption). PKE
is said to be unpredictable (∗, ℓq(λ))-leakage-resilient if for all polynomials ℓc(·) and all QPT ad-
versaries A = (AMain,ALeak), the advantage of A is negligible in the following game.

1. The challenger runs sk, pk ← PKE.Setup(1), and then

Rdec ← PKE.QKeyGen(sk).

2. The leakage adversary ALeak gets access to Rdec and pk, it produces a leakage register Rleak

consisting of ℓc(λ) classical bits and ℓq(λ) qubits.

3. The challenger samples a challenge message m∗ ←M and encrypts it ct← PKE.Enc(pk,m∗).

4. AMain gets Rleak, pk and ct, and it produces a prediction m
′
.

5. Output 1 iff m
′
= m∗.

Definition 35 (Unbounded classical leakage-resilient public-key encryption). A public-key encryp-
tion scheme PKE is said to be (∗, ℓq(λ))-leakage-resilient if for all polynomials ℓc(·) and all (stateful)
QPT adversaries A = (AMain,ALeak), the advantage of A is negligible in the following game.

1. The challenger runs sk, pk ← PKE.Setup(1), and then

Rdec ← PKE.QKeyGen(sk)

2. The leakage adversary ALeak gets access to Rdec and pk, it produces a leakage register Rleak

consisting of ℓc(λ) classical bits and ℓq(λ) qubits.

3. AMain gets Rleak, pk, it outputs two messages m0,m1.

4. The challenger samples a challenge bit b← {0, 1} and prepares the ciphertext ct← PKE.Enc(pk,mb).

5. AMain gets ct, it outputs a prediction b
′
.

6. Output 1 iff b′ = b.

We define the advantage of A to be
∣∣Pr[GameA = 1]− 1

2

∣∣.
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Definition 36 (Anti-piracy security for public-key encryption - random challenge plaintexts [CLLZ21]).
A public-key encryption scheme PKE is said to satisfy anti-piracy security with random challenge
plaintexts if for all QPT adversaries A, the advantage of A in the following game is negligible.

1. The challenger runs sk, pk ← PKE.Setup(1), and then

Rdec ← PKE.QKeyGen(sk).

2. A gets access to Rdec and pk, and it produces two QPT programs A1,A2 and a pair of registers
(R1, R2).

3. The challenger samples two challenge messages m∗1,m
∗
2 ←M.

4. The challenger computes ct1 ← PKE.Enc(pk,m∗1) and ct2 ← PKE.Enc(pk,m∗2).

5. The challenger runs m′1 ← A1(R1, ct1) and m
′
2 ← A2(R2, ct2).

6. Output 1 if and only if both m1
′ = m∗1 and m2

′ = m∗2.

Theorem 23 ([CLLZ21]). Assuming the existence of post-quantum sub-exponentially secure iO
and one-way functions, the quantum hardness of LWE, there exists a public-key encryption scheme
that satisfies anti-piracy security with random challenge plaintexts.

Theorem 24. Let PKE be a public-key encryption scheme satisfying anti-piracy security with ran-
dom challenge plaintexts. Then, PKE is unpredictable (∗, 0)-leakage-resilient.

Proof. An argument similar to proofs of Theorem 18 and Theorem 21 yields the result. Namely, if
there is a classical leakage attack that can distinguish ciphertexts with non-negligible probability,
then we can construct a cloning attack that leaks on the secret key, and clones the classical leakage
to obtain two registers that can both distinguish ciphertext with non-negligible probability.

Theorem 25. Suppose there exists a public-key encryption scheme PKE
′
, encrypting plaintexts

of size m(λ) into ciphertexts of c(λ), that is unpredictable (∗, 0)-leakage-resilient. Then, for any
polynomial p(·), the following public-key encryption scheme satisfies (∗, 0)-leakage-resilience. Fur-
thermore, it encrypts plaintexts of size p(λ) into ciphertexts of size p(λ) · (m(λ) + c(λ) + 1) and it
has the same key size as PKE

′
.

PKE

• PKE.Setup(1)

1. Output PKE
′
.Setup(1).

• PKE.QKeyGen(sk)

1. Output PKE
′
.QKeyGen(sk).

• PKE.Enc(pk,m)

1. For each i ∈ [p(λ)], sample ki, ri ← {0, 1}m(λ).

2. Output (PKE
′
.Enc(pk, ki), ri, ⟨ki, ri⟩ ⊕ ⟨m, ei⟩)i∈[p(λ)].

• PKE.Dec(Rdec, (cti, ri, bi)i∈[p(λ)])
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1. For each i ∈ [p(λ)], compute xi ← bi ⊕ ⟨PKE
′
.Dec(Rdec, cti), ri⟩.

2. Output (xi)i∈[p(λ)].

Proof. It is easy to see that PKE satisfies correctness. Only subtlety is the fact that to decrypt
a ciphertext, we are using PKE

′
.Dec multiple times. However, as discussed before, by overwhelm-

ing correctness of PKE
′
.Dec and by key rewinding, we can correctly decrypt polynomially many

messages with all but negligible probability.
We claim PKE is (indistinguishable) (∗, 0)-leakage-resilient. For each j ∈ {0, 1, . . . , p(λ)}, define

the hybrid game Hybj as follows by modifying the indistinguishability leakage-resilience game. In
PKE.Enc, replace

(PKE
′
.Enc(pk, ki), ri, ⟨ki, ri⟩ ⊕ ⟨m, ei⟩)i∈[p(λ)]

with

(PKE
′
.Enc(pk, ki), ri, U

(i)
1 ⊕ ⟨m, ei⟩)i∈[j], (PKE

′
.Enc(pk, ki), ri, ⟨ki, ri⟩ ⊕ ⟨m, ei⟩)i∈{j+1,...,p(λ)}.

Observe that Hyb0 is the original indistinguishability leakage-resilience game. It is easy to see that
in Hybp(λ), the advantage of any adversary is 0 since each bit of the message is encrypted with a
one-time pad key that is independent from everything else. Now, we will show that Hybj ≈ Hybj+1

for each j ∈ {0, 1, . . . , p(λ)}, and then an applying the hybrid lemma will complete the proof.
Suppose for a contradiction that there is an adversary A = (AMain,ALeak), an index j and a

polynomial w(λ) such that |Hybj −Hybj+1| ≥ 1
w(λ) for infinitely many values of λ. Then, similar to

the construction in the proof of Theorem 19, using A one can construct an adversary B that can
predict ⟨kj+1, r⟩ with probability 1

2 +
1

w(λ) , given PKE′.Enc(pk, kj+1), the leakage ALeak(Rdec) and a
random r. Finally, as in Theorem 19, using B we can construct an adversary that predicts a random
kj+1 with non-negligible probability given PKE′.Enc(pk, kj+1) and the leakage. This violates the

random challenge anti-piracy security of PKE
′
, which is a contradiction. Note that while we need

to run B with the leakage multiple times, it is possible since the leakage is classical.

Corollary 5. Assuming the existence of post-quantum sub-exponentially secure iO and one-way
functions, the quantum hardness of LWE, there exists a public-key encryption scheme that is (∗, 0)-
leakage-resilience.

Proof. Invoke Theorem 23, Theorem 24 and Theorem 25.

3.6 Private-key encryption

We introduce private-key encryption schemes that are resilient against unbounded classical leakage
from encryption and decryption keys. We then show how to construct them in two different ways:
first using PKE assumptions and using our results regarding leakage from BB84 states (Lemma 11,
Lemma 12), and second based on unbounded classical leakage-resilient PRFs (which we construct
in Section 3.2 based on iO, LWE and one-way function assumptions).

Definition 37 (Unbounded classical leakage-resilient private-key encryption). A private-key en-
cryption scheme SKE is said to be (∗, ℓq(λ))-leakage-resilient if for all polynomials ℓc(·) and p(·), for
all tuples of QPT adversaries A = (AMain,ALeak,enc,ALeak,dec) such that the output of ALeak,enc,ALeak,dec

consist of ℓc(λ) classical bits and ℓq(λ) qubits, respectively, the advantage of A in the following game
is negligible.

1. The challenger runs Renc, Rdec ← SKE.KeyGen(1).
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2. Adversary outputs messages

(m
(1)
0 ,m

(1)
1 ), . . . , (m

(p(λ))
0 ,m

(p(λ))
1 )← AMain(1).

3. Challenger samples a challenge bit b← {0, 1}.

4. For i = 1 to p(λ), challenger sets Ri,ct ← SKE.Enc(Renc,m
(i)
b ).

5. The leakage adversaries get access to their keys and produce leakages

Rleak ← ALeak,enc(Renc),ALeak,dec(Rdec).

6. Given the leakage, adversary outputs a guess b′ ← AMain(Rct, Rleak).

7. Output 1 iff b = b′.

We define the advantage of A to be
∣∣Pr[GameA = 1]− 1

2

∣∣.
We also require overwhelming correctness in the natural way, and assume that Dec is rewound

after each use.

Our definition can be seen as an everlasting security for messages encrypted before the leakage
attack. Similar to MACs (Definition 32), this is necessary since the leakage attack will collapse the
key to a state known by the adversary, after which it is impossible to satisfy security. However,
one can use leakage-detection schemes (Section 4) to throw away the key after a leakage attack and
establish new keys.

We present two schemes that satisfy this notion. The first construction is based on public-
key assumptions. The second construction relies on wPRFs that can tolerate unbounded classical
leakage, which we construct in Section 3.2.

Theorem 26. Let m(·) be a polynomial denoting the message size and ℓq(·) be any polynomial
denoting the qubit leakage size. Let PKE be a public-key encryption scheme for message of size
m(λ) whose public-key length is k(λ) and key generation algorithm PKE.KeyGen has randomness
complexity r(λ). Let Ext be the extractor obtained by instantiating Theorem 13 with n = N ,
ε = (log(λ))− log(λ) and k = CBB84 · N − ℓq(λ) where we define N(λ) = 1

CBB84
(ℓq(λ) + r(λ) +

4 log(λ) log(log(λ)). Then, the following private-key encryption scheme SKE is (∗, ℓq(λ))-leakage-
resilient and

• its encryption key consists of N(λ) + k(λ) +O(log2(n) log2(log(n)) log(r(λ))) classical bits,

• its decryption key consists of N(λ) +O(1) qubits.

SKE

• SKE.KeyGen(1)

1. Sample x, θ, s← {0, 1}N(λ).

2. pk, sk ← PKE.KeyGen(1λ;Ext(x, s)).

3. Renc ← (θ, s, pk).

4. Rdec ← Hθ|x⟩.
5. Output (Renc, Rdec).
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• SKE.Enc((θ, s, pk),m)

1. ct← PKE.Enc(pk,m).

2. Output ct, θ, s.

• SKE.Dec(Rdec, (ct, θ, s))

1. Apply H−θ to Rdec.

2. Measure Rdec in computational basis to obtain x.

3. pk, sk ← PKE.KeyGen(1λ;Ext(x, s)).

4. Restore the key as Rdec ← Hθ|x⟩.
5. Output PKE.Dec(sk, ct).

Proof. It is straightforward to show that correctness holds with probability 1.
We will prove the security using a hybrid argument. Observe that, by Theorem 13, the output

length of Ext is r(λ) as required. Define the first hybrid, Hyb0 to be the original security game.
Define the second hybrid Hyb1 by replacing the line

pk ← PKE.KeyGen(1λ;Ext(x, s))

with

pk ← PKE.KeyGen(1λ;Ur(λ))

in SKE.KeyGen. By the entropy lemma for BB84 states given unbounded classical leakage (Lemma 12),
we have that H∞(x|ALeak,dec(Rdec), θ) ≥ CBB84 ·N − ℓ(λ). Hence, since ALeak,dec(Rdec), θ are inde-
pendent of the seed s and Ext is a strong quantum-proof extractor (Definition 13), we get

Ext(x, s), s,ALeak,dec(Rdec), θ ≈ Ur(λ), s,ALeak,dec(Rdec), θ

Then, by post-processing (Lemma 1), it follows that

PKE.KeyGen(1λ;Ext(x, s)), s,ALeak,dec(Rdec), θ ≈ PKE.KeyGen(1λ;Ur(λ)), s,ALeak,dec(Rdec), θ

which implies Hyb0 ≈ Hyb1. Now, for a contradiction, suppose there exists an adversary A =
(AMain,ALeak,enc,ALeak,dec) that wins the leakage-resilience game, Hyb0, with non-negligible advan-
tage. By Hyb0 ≈ Hyb1, the adversary A wins the game Hyb1 also with non-negligible advantage.
We construct the following adversary A′

for the security game of the public-key encryption scheme
PKE.

A′

1. Output AMain(1) as the selected plaintexts.

2. On input (pk, ct), sample x, θ, s← {0, 1}N(λ) and output

AMain(ct, (ALeak,enc(θ, s, pk),ALeak,dec(H
θ|x⟩)))

It is easy to see that Hyb1 is exacty the same as the public-key encryption indistinguishability
game as played by A′

. Hence, A′
breaks the security of PKE, which is a contradiction.
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Theorem 27. Let m(λ) denote the message size. Let PRF be a (∗, 0)-leakage-resilient PRF scheme
with input size g(λ) and output size m(λ), which exists by Corollary 3. Then, the following private-
key encryption scheme SKE is (∗, 0)-leakage-resilient.

• SKE.KeyGen(1)

1. k ← PRF.KeyGen(1).

2. Renc, Rdec ← PRF.QKeyGen(k, 12).

3. Output (Renc, Rdec).

• SKE.Enc(Renc,m)

1. Sample r ← {0, 1}g(λ)

2. Output (r,m⊕ PRF.Eval(Renc, r)).

• SKE.Dec(Rdec, (r, a))

1. Output a⊕ PRF.Eval(Rdec, r).

Proof. It is easy to see that, by multi-challenge security of PRF (Definition 28, Theorem 17), for
any polynomial p(·) and sequence of messages m = (m(i))i∈[p(λ)], we have

r1, . . . , rp(λ), (m
(i) ⊕ PRF.Eval(Renc, ri))i∈[p(λ)],A

′
Leak((Renc, Rdec))

≈

r1, . . . , rp(λ), U
(1), . . . , U (p(λ)),A′

Leak((Renc, Rdec)).

where we define the adversary

A′
Leak((Renc, Rdec)) = (ALeak,enc(Renc),ALeak,dec(Rdec)).

Then, by applying this to m0 and m1, and by hybrid lemma we get

r1, . . . , rp(λ), (m
(i)
0 ⊕ PRF.Eval(Renc, ri))i∈[p(λ)],ALeak,enc(Renc),ALeak,dec(Rdec)

≈

r1, . . . , rp(λ), (m
(i)
1 ⊕ PRF.Eval(Renc, ri))i∈[p(λ)],ALeak,enc(Renc),ALeak,dec(Rdec).

This is equivalent to

SKE.Enc(Renc,m
(1)
0 ), . . . ,SKE.Enc(Renc,m

(p(λ))
0 ),ALeak,enc(Renc),ALeak,dec(Rdec),

≈

SKE.Enc(Renc,m
(1)
1 ), . . . ,SKE.Enc(Renc,m

(p(λ))
1 ),ALeak,enc(Renc),ALeak,dec(Rdec),

which proves the security of SKE.

We note that the construction in Theorem 27 is still secure in the stronger, CPA-style adaptive
leakage security model where both of the leakage adversaries can obtain encryptions of messages
of their choice before producing their leakage. Furthermore, the construction is still secure if the
key leakage adversaries are entangled, or have a quantum channel between. These results follow
from an argument similar to the proof of Theorem 27, using the 2-copy leakage-resilience of the
underlying PRF, so we omit them.
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4 Cryptographic schemes with leakage-detection

In this section, we initiate the study of cryptographic primitives with leakage-detection, yet another
set of schemes that are only possible through utilization of quantum phenomena. We show a
generic way of constructing such primitives from schemes with publicly verifiable certified deletion,
and explicitly show such constructions for public-key encryption, digital signatures, functional
encryption, differing-inputs indistinguishability obfuscation, and software.

In our leakage-detection models, we will require that if our detection algorithm does not detect
leakage after an attack, then the adversary should have negligible advantage in breaking the scheme.
This should hold even if the adversary can arbitrarily tamper with the secret. Intuitively, this means
that any useful (to the adversary) leakage will be detected. Furthermore, we will require that if
there was no leakage attack, then testing for leakage only negligibly disturbs the key. This means
that the honest party can test for leakage a polynomial number of times while preserving the
correctness and security guarantees, as long as there is no leakage attack.

Now, we describe our transformation on a high level. Suppose there exists a scheme with
certified deletion. We will construct a TestLeakage algorithm that essentially tries to produce a
deletion certificate for the secret, and outputs NO LEAKAGE if it succeeds. Intuitively, we can
argue leakage-detection security as follows. If an adversary has obtained a leakage that allows it to
break the underlying security guarantee, then we should fail to produce a valid deletion certificate
using our leftover state. Otherwise, one can create an attacker against the certified deletion game
that pretends to leak on their secret, produces a valid deletion certificate using the leftover state,
and still succeeds in breaking the security guarantee using the leak. The major problem with this
approach is that even when there was no attack, we destroy our key when we test for leakage,
since we produce a deletion certificate. However, note that producing a valid deletion certificate
using an undisturbed secret succeeds with overwhelming probability. Therefore, using Lemma 9,
we can construct an algorithm for producing a deletion certificate in a way such that we can rewind
our algorithm afterwards. While seemingly contradictory, this is not a violation of the certified
deletion security. In the certified deletion game, the certificate generation circuit will end with a
measurement, while our leakage-detection procedure will skip this measurement, and will instead
run the verification procedure coherently. Furthermore, the leakage-detection procedure will not
trace out the garbage registers that are produced while constructing a certificate or testing for
certificate validity, which we then use to rewind the algorithm.

Remark 1. Note that public verification in the certified deletion scheme is essential to build a
leakage detection scheme, since the leakage adversary will have access to the complete state of the
honest parties.

4.1 Public-key encryption with leakage-detection

First, we start with public-key encryption. We define PKE schemes that allow us to test if a
useful leakage has been obtained on the secret decryption key. Then, we show how to construct
them from public-key encryption schemes with secure key leasing. To avoid repetition, we will only
discuss how to construct our schemes from PKE scheme with secure key leasing that have classical
certificates, however, our results also hold for schemes with quantum certificates, with essentially
the same construction.

Definition 38 (Public-key encryption with leakage-detection). A public-key encryption scheme
with leakage-detection is a public-key encryption scheme (Definition 33) with the following addi-
tional algorithms that satisfy the reusability and security guarantees below.
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• QLKeyGen(sk) : Along with a quantum decryption key Rdec
6, also outputs a classical leakage-

detection key tk.

• TestLeakage(tk,Rdec) : Takes the leakage-detection key and the decryption key, outputs LEAKED
if leakage is detected, NO LEAKAGE otherwise.

PKE correctness and security: We require the usual correctness and security (Definition 33)
satisfied for the decryption key generated by QKeyGen to now also hold for the decryption key
generated by QLKeyGen.

Detection correctness:

Pr

[
TestLeakage(tk,Rdec) = NO LEAKAGE :

sk, pk ← Setup(1)
tk,Rdec ← QLKeyGen(sk)

]
= 1.

Reusability after testing: Initialize the decryption register as (Rdec, tk)← QLKeyGen(sk) and
let ρ denote its state. Run the algorithm TestLeakage on tk and Rdec, and let ρ′ denote the state of
the register Rdec immediately afterwards. Then, ∥ρ− ρ′∥1 ≤ negl(λ).

We note that reusability after testing will follow from detection correctness by utilizing Lemma 9.

Leakage-detection security: Consider the following game played by the challenger and an ad-
versary.

1. The challenger runs sk, pk ← PKE.Setup(1), and then

tk,Rdec ← PKE.QLKeyGen(sk).

2. The leakage adversary ALeak gets access to Rdec, tk, and pk, and produces a leakage register
Rleak and two challenge messages m0,m1, along with the updated register Rdec.

3. The challenger runs tb← PKE.TestLeakage(tk,Rdec). If tb is LEAKED, the challenger outputs
0 and terminates.

4. The challenger samples a challenge bit b← {0, 1} and prepares the ciphertext ct← PKE.Enc(
pk,mb).

5. AMain gets Rleak,m0,m1, tk, pk and ct, and outputs a prediction b′.

6. The challenger outputs 1 if b′ = b.

We say that the adversary has won the game if the challenger outputs 1 and we require that any
QPT adversary A = (AMain,ALeak) wins the game with probability at most

Pr[tb = NO LEAKAGE]

2
+ negl(λ).

Similarly to the notions of secure software leasing [AL21] and functional encryption with secure
key leasing [KN22], we define public-key encryption schemes with secure key leasing.

6Note that the public key pk is still classical.
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Definition 39 (Public-key encryption with secure key leasing). A public-key encryption scheme
with secure key leasing is a public-key encryption scheme (Definition 33) with the following addi-
tional algorithms that satisfies the correctness and security guarantees below.

• QVKeyGen(sk) : Along with a quantum decryption key Rdec, also outputs a classical verifica-
tion key cvk.

• Cert(Rdec) : Takes the decryption key and outputs a certificate.

• Verify(cvk, cert) : A classical algorithm that takes the verification key and a deletion certificate,
outputs VALID if it is a valid certificate.

PKE correctness and security: We require the usual correctness and security (Definition 33)
satisfied for the decryption key generated by QKeyGen to now also hold for the decryption key
generated by QVKeyGen.

Verification correctness:

Pr

Verify(cvk, cert) = VALID :
sk, pk ← Setup(1)

cvk,Rdec ← QVKeyGen(sk)
cert← Cert(Rdec)

 = 1.

Lessor security: Consider the following game played by the challenger and an adversary.

1. The challenger runs sk, pk ← PKE.Setup(1), and then

cvk,Rdec ← PKE.QVKeyGen(sk).

2. The adversary A1 gets access to Rdec, cvk and pk, it produces a certificate cert, a state register
R and two challenge messages m0,m1.

3. The challenger runs vb ← PKE.Verify(cvk, cert). If vb is INVALID, challenger outputs 0 and
terminates.

4. The challenger samples a challenge bit b← {0, 1} and prepares the ciphertext ct← PKE.Enc(
pk,mb).

5. A2 gets R, cert,m0,m1, cvk, pk and ct, it outputs a prediction b′.

6. The challenger outputs 1 if b′ = b.

We say that the adversary has won the game if the challenger outputs 1 and we require that any
QPT adversary A = (A1,A2) wins the game with probability at most

Pr[vb = VALID]

2
+ negl(λ).

Now, we move onto our construction of PKE with leakage-detection.

Theorem 28. Suppose there exists a public-key encryption scheme with publicly verifiable secure
key leasing. Then, there exists a public-key encryption scheme with leakage-detection.
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Proof. Let PKE
′
be a public-key encryption scheme with secure key leasing. We construct PKE as

follows. Let PKE.Setup,PKE.Enc,PKE.Dec be the same as those of PKE
′
, and PKE.QLKeyGen be

the same as PKE
′
.QVKeyGen.

Throughout the proof, associate NO LEAKAGE and VALID with 1, LEAKED and INVALID with 0.
Now, we will show how to implement TestLeakage in a way that satisfies reusability. By Definition 1,
a quantum algorithm with a classical output is as a unitary applied to the input and some ancilla
in the state |0⟩⊗a, with some of the output wires being traced out and the rest being measured
in the computational basis. Therefore, let PKE

′
.Cert be such that it introduces an ancilla register

Ranc,1 of size d1 in the state |0⟩⊗d1 , it applies a unitary UCert to Rdec, Ranc,1 to produce registers
Rcert, Rgarbage,1 where Rgarbage,1 is traced out and Rcert is measured. Let UVer be the unitary that
implements the mapping

|b⟩|tk⟩|x⟩|r⟩|0⟩d2 7→
∣∣∣b⊕ PKE

′
.Verify(tk, x; r)

〉
|tk⟩|x⟩|r⟩|0⟩d2 .

Note that, since PKE
′
.Verify is an efficient classical algorithm, it is possible to implement UVer

efficiently using the uncomputation trick. Finally, let d3 denote the size of the randomness used by
PKE

′
.Verify. Then, we define TestLeakagePre as follows.

TestLeakagePre(tk,Rdec)

1. Introduce Ranc,1, Ranc,2, Rrand, Rres, Rtk in the states |0⟩⊗d1 , |0⟩⊗d2 , |0⟩⊗d3 , |0⟩, and |tk⟩.

2. Apply UCert to (Rdec, Ranc,1) to get the registers Rcert, Rgarbage,1.

3. Apply H⊗d3 to Rrand.

4. Apply UVer to (Rres, Rtk, Rcert, Rrand, Ranc,2).

5. Trace out the ancilla registers, measure Rres in computational basis and output the resulting
bit.

TestLeakagePre consists of a unitary and then the projective measurement {|0⟩⟨0|Rres⊗I, |1⟩⟨1|Rres⊗
I}. Then, consider the following algorithm TestLeakage we get from Lemma 9, where UTest denotes
the unitary part of TestLeakagePre.

TestLeakage(tk,Rdec)

1. Introduce Ranc,1, Ranc,2, Rrand, Rres, Rtk in the states |0⟩⊗d1 , |0⟩⊗d2 , |0⟩⊗d3 , |0⟩, and |tk⟩.

2. Apply UTest.

3. Measure Rres in computational basis to get a bit res.

4. Apply U−1Test and trace out the ancilla registers.

5. Output res.

It is easy to see that TestLeakagePre(tk,R) (and hence TestLeakagePre(tk,R)) has the same
output distribution as PKE

′
.Verify(vk,PKE

′
.Cert(R)) for any register R in any state. Therefore, by

the verification correctness of PKE
′
, when we initialize tk,Rdec ← PKE.QLKeyGen(sk), we have

Pr[PKE.TestLeakage(tk,Rdec) = NO LEAKAGE] = 1. (12)
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which shows that PKE satisfies detection correctness.
Now, again initialize tk,Rdec ← PKE.QLKeyGen(sk) and let ρ, ρ′ denote the state of Rdec be-

fore and immediately after PKE.TestLeakage(tk,Rdec), respectively. Then, by Equation (12) and
Lemma 9, we get ∥∥ρ− ρ′∥∥

1
≤ negl(λ),

which shows that PKE satisfies reusability.
Finally, we argue leakage-detection security. For a contradiction, suppose there exists an ad-

versary A = (AMain,ALeak) such that A wins the leakage-detection game with probability

pdetection =
Pr[ELEAKED]

2
+

1

p(λ)

for some polynomial p(·) and infinitely many values of λ where we let ELEAKED be the event that
the output of TestLeakage is LEAKED. Then, we construct the following adversary A′

= (A′
1,A

′
2)

against the secure key leasing game for PKE
′
.

A′
1(Rdec, cvk, pk)

1. Run Rleak,m0,m1 ← ALeak(Rdec, cvk, pk).
7

2. Run cert← PKE
′
.Cert(Rdec).

3. Output cert, Rleak,m0,m1.

A′
2(R, cert,m0,m1, cvk, pk, ct)

1. Run b← AMain(R,m0,m1, cvk, pk, ct).

2. Output b.

Consider the secure key leasing game played by A′
and the leakage-detection game played by

A. Observe that they are exactly the same, except for the following differences. In the leakage-
detection game, the produced certificate is not measured, but Verify is instead run coherently.
Furthermore, we rewind TestLeakage in the leakage detection game, while in the key leasing game,
the challenger does not apply the same rewinding. However, crucially, in the leakage-detection
game, we are effectively tracing out Rdec after testing for leakage, since we never use it again.
Similarly, in the key leasing game, we trace out any garbage left from testing the certificate or
running the verification, and we trace out the certificate itself too (once the verification succeeds),
since A2

′ does not use it. Since applying a channel to a subsystem and then tracing out the
resulting subsystem is equivalent to tracing out without applying the channel, conditioned on the
game not terminating early on8, we can see that the leftover state of Rleak produced by A in the
leakage-detection game is the same as the leftover state used to invoke AMain in the key leasing
game played by A′

. Hence, again conditioned on the game not terminating early, we conclude
that both games have the same output distribution. Finally, since we have already observed that
TestLeakagePre(tk,R) has the same output distribution as PKE

′
.Verify(cvk,PKE

′
.Cert(R)) for any

register R, we see that the probability of terminating early on is the same for both games. Hence,

7Note that the state of Rdec has been altered by applying ALeak, and references to this register afterwards are with
regards to its updated state.

8The game terminates early on when TestLeakage outputs LEAKED in the leakage-detection game or when Verify
outputs INVALID in the key leasing game.
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combined with the previous part, we get that the probability of A′
winning the key leasing game,

pleasing, is the same as the probability of A winning the leakage-detection game. Let EINVALID be
the event that the output of Verify in the secure key leasing game played by A′ is INVALID. Then,

pleasing =
Pr[ELEAKED]

2
+

1

p(λ)

=
Pr[EINVALID]

2
+

1

p(λ)
.

This violates the key leasing security of PKE
′
, which is a contradiction.

We remark that, as discussed in Section 3.5, assuming the existence of the quantum hardness
of LWE, one-way functions and post-quantum sub-exponentially secure iO, one can construct PKE
schemes with unclonable keys, which is a stronger security notion than PKE with publicly-verifiable
key leasing

In addition, a recent work [AKN+23] also builds PKE with key leasing from any post-quantum
PKE. However, this construction lacks public-verifiability, which is crucially needed for leakage-
detection since the leakage adversary gets access to the complete state of the honest party, which
includes the leakage-detection key.

4.2 Digital signature schemes with leakage-detection

We construct digital signatures with leakage-detection from any digital signature scheme with key
leasing, using essentially the same technique as used for PKEs. Note that our results hold only for
uniformly sampled challenge messages. This is necessary with classical signatures, as in the case of
unclonable digital signature keys. In the leakage game with a selective challenge message, a leakage
adversary can sign a message of its choice (which only negligibly disturbs the key) and leak the
signature.

Definition 40 (Digital signatures with leakage-detection). A digital signature scheme with leakage-
detection is a digital signature scheme (Definition 29) with the following additional algorithms that
satisfies the reusability and security guarantees below.

• QLKeyGen(sk) : Along with a quantum signing key Rsign, also outputs a classical leakage-
detection key tk.

• TestLeakage(tk,Rsign) : Takes the leakage-detection key and the signing key, outputs LEAKED
if leakage is detected, NO LEAKAGE otherwise.

Digital signature correctness and security We require the usual correctness and security
(Definition 29) satisfied for the signing key generated by QKeyGen to now also hold for the signing
key generated by QLKeyGen.

Detection correctness

Pr

[
TestLeakage(tk,Rsign) = NO LEAKAGE :

sk, vk ← Setup(1)
tk,Rsign ← QLKeyGen(sk)

]
= 1.
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Reusability after testing Initialize the signing register, Rsign, tk ← QLKeyGen(sk) and let ρ
denote its state. Run the algorithm TestLeakage on tk and Rsign, and let ρ′ denote the state of the
register Rsign immediately afterwards. Then,∥∥ρ− ρ′∥∥

1
≤ negl(λ).

We note that reusability after testing will follow from detection correctness by utilizing Lemma 9.

Leakage-detection security Consider the following game between the challenger and an adver-
sary. We say that the adversary has won the game if the challenger outputs 1 and we require that
any QPT adversary A = (AMain,ALeak) wins the following game with probability at most negl(λ).

1. The challenger runs sk, vk ← DS.Setup(1), and then tk,Rsign ← DS.QLKeyGen(sk).

2. The leakage adversary ALeak gets access to Rsign, tk and vk and it produces a leakage register
Rleak, along with the updated register Rsign.

3. The challenger runs tb ← DS.TestLeakage(tk,Rsign). If tb is LEAKED, challenger outputs 0
and terminates.

4. The challenger samples a challenge message m←M.

5. AMain gets Rleak, tk, vk and m, it outputs a forged signature s.

6. The challenger outputs 1 if DS.Verify(m, s) = 1.

Definition 41 (Digital signatures with secure key leasing). A digital signature scheme with secure
key leasing is a digital signature scheme with the following additional algorithms that satisfies the
correctness and security guarantees below.

• QVKeyGen(sk) : Along with a quantum signing key Rsign, also outputs a classical deletion
verification key cvk.

• Cert(Rsign) : Takes the signing key and outputs a deletion certificate.

• VerifyDeletion(cvk, cert) : A classical algorithm that takes the verification key and a deletion
certificate, outputs VALID if it is a valid certificate.

Digital signature correctness and security We require the usual correctness and security
(Definition 29) satisfied for keys generated by QKeyGen to now also hold for keys generated by
QVKeyGen.

Verification correctness

Pr

VerifyDeletion(cvk, cert) = VALID :
sk, vk ← Setup(1)

cvk,Rsign ← QVKeyGen(sk)
cert← Cert(Rdec)

 = 1.
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Lessor security Consider the following game between the challenger and an adversary. We say
that the adversary has won the game if the challenger outputs 1 and we require that any QPT
adversary A = (A1,A2) wins the following game with probability at most negl(λ).

1. The challenger runs sk, vk ← DS.Setup(1), and then

cvk,Rsign ← DS.QVKeyGen(sk).

2. The adversary A1 gets access to Rsign, cvk and vk, it produces a certificate cert and a state
register R.

3. The challenger runs vb ← VerifyDeletion(cvk, cert). If vb is INVALID, challenger outputs 0
and terminates.

4. The challenger samples a challenge message m←M.

5. A2 gets R, cert, cvk, vk and m, it outputs a forged signature s.

6. The challenger outputs 1 if DS.Ver(m, s) = 1.

Theorem 29. Suppose there exists a digital signature scheme with publicly verifiable secure key
leasing. Then, there exists a digital signature scheme with leakage-detection.

Proof. The construction and the reduction are essentially the same as Theorem 28. Let DS
′

be a public-key encryption scheme with secure key leasing. We construct DS as follows. Let
DS.Setup,DS.Sign,DS.Ver be the same as those of DS

′
, and DS.QLKeyGen be the same as DS

′
.QVKeyGen.

Let UCert be the unitary part of DS
′
.Cert and let UVer be the unitary that implements the mapping

|b⟩|tk⟩|x⟩|r⟩|0⟩d2 7→
∣∣∣b⊕ DS

′
.VerifyDeletion(tk, x; r)

〉
|tk⟩|x⟩|r⟩|0⟩d2 .

Define TestLeakagePre as follows.

TestLeakagePre(tk,Rsign)

1. Introduce Ranc,1, Ranc,2, Rrand, Rres, Rtk in the states |0⟩⊗d1 , |0⟩⊗d2 , |0⟩⊗d3 , |0⟩, and |tk⟩.

2. Apply UCert to (Rsign, Ranc,1) to get the registers Rcert, Rgarbage,1.

3. Apply H⊗d3 to Rrand.

4. Apply UVer to (Rres, Rtk, Rcert, Rrand, Ranc,2).

5. Trace out the ancilla registers, measure Rres in computational basis and output the resulting
bit.

Then, let UTest be the unitary part of TestLeakagePre, and construct TestLeakage as follows.
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TestLeakage(tk,Rsign)

1. Introduce Ranc,1, Ranc,2, Rrand, Rres, Rtk in the states |0⟩⊗d1 , |0⟩⊗d2 , |0⟩⊗d3 , |0⟩, and |tk⟩.

2. Apply UTest.

3. Measure Rres in computational basis to get a bit res.

4. Apply U−1Test and trace out the ancilla registers.

5. Output res.

Same arguments as in the proof of Theorem 28 show the detection correctness and reusability of
DS.

Finally, we argue leakage-detection security. For a contradiction, suppose there exists an ad-
versary A = (AMain,ALeak) such that A wins the leakage-detection game with probability 1

p(λ) for

some polynomial p(·) and infinitely many values of λ. Then, we construct the following adversary
A′

= (A′
1,A

′
2) against the secure key leasing game for DS

′
.

A′
1(Rsign, cvk, vk)

1. Run RleakALeak(Rsign, cvk, vk).

2. Run cert← DS
′
.Cert(Rsign).

3. Output cert, Rleak.

A′
2(R, cert, cvk, vk,m)

1. Run b← AMain(R, cvk, vk,m).

2. Output b.

The same arguments as in the proof of Theorem 28 show that A′
wins the key leasing game for

DS
′
with probability 1

p(λ) , which is a contradiction.

As discussed in Section 3.3, assuming post-quantum subexponentially secure indistinguishability
obfuscation and subexponentially secure LWE, one can construct digital signature schemes with
unclonable signing keys, which is a stronger notion that digital signatures with secure key leasing.

4.3 Functional encryption with leakage-detection

In this section, we introduce the notion of leakage-detection for functional keys of public-key func-
tional encryption schemes, and show how to construct them from functional encryption schemes
with publicly verifiable certified key deletion [BGG+23]. We will have schemes for classical messages
and families of classical functions, with classical public-key and quantum function keys.

Definition 42 (Functional encryption with leakage-detection). A functional encryption scheme
with leakage detection for a family of functions F is a public-key functional encryption scheme
(Definition 19) for F with the following additional algorithms that satisfy the correctness and se-
curity guarantees below.
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• QLKeyGen(msk, f) : Along with a quantum functional key Rf , outputs a classical leakage
detection key tk.

• TestLeakage(tk,Rf ): Takes the leakage detection key and functional key, outputs LEAKED if
leakage is detected, NO LEAKAGE otherwise.

FE correctness and security: We require the usual functional encryption correctness and se-
curity (Definition 19) for keys generated by QLKeyGen.

Detection correctness: For all f ∈ F ,

Pr

[
TestLeakage(tk,Rf ) = NO LEAKAGE :

pk,msk ← Setup(1)
tk,Rf ← QLKeyGen(msk, f)

]
= 1.

Reusability after testing: We require the following for all f ∈ F . Initialize the functional key
register, tk,Rf ← QLKeyGen(msk, f) and let ρ denote its state. Run the algorithm TestLeakage on
tk and Rf , and let ρ′ denote the state of the register Rf immediately afterwards. Then,∥∥ρ− ρ′∥∥

1
≤ negl(λ).

We note that reusability after testing will follow from detection correctness by utilizing Lemma 9.

Leakage detection security: For any polynomial p(·) and any functions f1, . . . , fp(λ) ∈ F , for
any (stateful) QPT adversary A = (AMain,ALeak), the advantage of A in the following game is
negligible.

1. ALeak outputs two messages m0,m1.

2. The challenger runs pk,msk ← FE.Setup(1) and then for all i ∈ [p(λ)],

tk,Rfi ← FE.QLKeyGen(msk, fi).

3. The leakage adversary ALeak gets access to (Rfi)i∈[p(λ)], (fi)i∈[p(λ)], tk and pk, it produces a
leakage register Rleak along with the updated registers (Ri)i∈[p(λ)].

4. The challenger sets tb = 0 and runs the following for each i ∈ [p(λ)].

(a) tbi ← TestLeakage(tk,Rfi).

(b) If tbi = LEAKED and fi(m0) ̸= fi(m1), set tb = 1.

5. If tb = 1, challenger outputs 0 and terminates.

6. The challenger samples a challenge bit b← {0, 1} and prepares the ciphertext ct← FE.Enc(pk,
mb).

7. AMain gets Rleak, (fi)i∈[p(λ)],m0,m1, tk, pk and ct, it outputs a prediction b′.

8. The challenger outputs 1 if b′ = b.

We define the advantage of A to be
∣∣∣Pr[GameA = 1]− Pr[tb=1]

2

∣∣∣.
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Definition 43 (Functional encryption with certified key deletion [BGG+23]). A functional en-
cryption scheme with certified key deletion for a family of functions F is a public-key functional
encryption scheme for F with the following additional algorithms that satisfy the correctness and
security guarantees below.

Theorem 30 ([BGG+23]). Assuming post-quantum indistinguishability obfuscation, public key en-
cryption, and injective one-way functions, there exists functional encryption with selective secret
key publicly verifiable certified deletion.

• QVKeyGen(msk, f) : Along with a quantum functional key Rf , outputs a classical verification
key vk.

• Cert(Rf ): Takes the functional key and outputs a classical deletion certificate.

• Verify(vk, cert) : A classical algorithm that takes the verification key and a deletion certificate,
outputs VALID if it is a valid certificate.

FE correctness and security: We require the usual functional encryption correctness and se-
curity (Definition 19) for keys generated by QVKeyGen.

Verification correctness: For all f ∈ F ,

Pr

Verify(vk, cert) = VALID :
pk,msk ← Setup(1)

vk,Rf ← QVKeyGen(msk, f)
cert← Cert(Rf )

 = 1.

Certified deletion security: For any (stateful) QPT adversary A, the advantage of A in the
following game is negligible.

1. A outputs two messages m0,m1.

2. The challenger runs pk,msk ← FE.Setup(1) and sends pk to the adversary.

3. For p(λ) many times for some polynomial p(·), A adaptively submits a query fi ∈ F and
receives Rfi , vki ← FE.QVKeyGen(msk, fi).

4. The adversary sends a list of deletion proofs cert1, . . . , certp(λ).

5. The challenger sets vb = 0 and runs the following for each i ∈ [p(λ)].

(a) vbi ← Verify(vk, certi).

(b) If vbi = INVALID and fi(m0) ̸= fi(m1), set vb = 1.

6. If vb = 1, challenger outputs 0 and terminates.

7. The challenger samples a challenge bit b ← {0, 1} and prepares the ciphertext ct ← FE.Enc(
pk,mb).

8. The adversary receives ct and for polynomially many times, A adaptively submits a query f ∈
F . For each query f , if f(m0) = f(m1), challenger samples Rf , vk ← FE.QVKeyGen(msk, f)
and sends Rf , vk to the adversary.

9. Adversary outputs a guess b′.
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10. Output 1 if b′ = b.

We define the advantage of A to be
∣∣∣Pr[GameA = 1]− Pr[vb=1]

2

∣∣∣.
Theorem 31. Suppose there exists a functional encryption scheme for a family of functions F
with publicly verifiable certified key deletion. Then, there exists a functional encryption scheme for
F with leakage detection.

Proof. Construction and the security proof are mostly the same as Theorem 28, so we only sketch it.
Let FE′ be a functional encryption scheme with certified deletion for F as in the theorem statement.
We construct a functional encryption scheme FE for F with leakage detection as follows. Define
FE.Setup,FE.Enc,FE.Dec to be the same as those of FE′, and define FE.QLKeyGen to be the same
as FE′.KeyGen.

Now, as in Theorem 28, consider the following algorithm. On input tk,Rf , run the unitary
associated with FE′.Cert on Rf , and then the unitary associated with FE′.Verify on the result, along
with tk, and output the measurement outcome for the result register. Define FE.TestLeakage to be
the rewinding version of this algorithm, obtained from Lemma 9. We associate NO LEAKAGE with
VALID and LEAKED with INVALID.

It is easy to see that usual FE correctness and security, along with detection correctness and
reusability after testing are satisfied by FE. Finally, we argue leakage detection security. Suppose
there exists an adversary A = (AMain,ALeak) that wins leakage detection game with non-negligible
advantage. Then, we define an adversary A′ for the certified deletion game as follows. A′ runs
ALeak to obtain m0,m1 and outputs them. Then, it asks for keys for f1, . . . , fp(λ), and it runs ALeak

on these keys. It runs Cert on all of the updated functional key registers, outputs the resulting
certificates and keeps Rleak as its state. In the second query stage, it does not make any queries.
Finally, when it receives the challenge ciphertext, it runs AMain on the ciphertext and Rleak. An
argument similar to Theorem 28 shows that A′ wins the certified deletion game with non-negligible
advantage. Crucially note that we trace out the certificates in the certified deletion game, and the
after-the-leakage states of the functional keys in the leakage detection game. Hence, the rewinding
of TestLeakage has no effect.

Corollary 6 ([BGG+23]). Assuming post-quantum indistinguishability obfuscation, public key en-
cryption, and injective one-way functions, there exists functional encryption with leakage detection.

Remark 2. It is easy to see that when the underlying functional encryption scheme has adaptive-
function9 security for certified deletion, the leakage detection scheme constructed in Theorem 31
will have leakage detection security even when the functional keys possessed by the honest party
are for functions (adaptively) chosen by the adversary. Similarly, adaptive-message security of the
certified deletion scheme would imply adaptive-message leakage detection security.

4.4 Indistinguishability obfuscation with leakage-detection

In this section, we define leakage-detection for differing-inputs obfuscation with leakage-detection,
and show how to construct such schemes from obfuscation with certified deletion [BGG+23].

Definition 44 (Differing-inputs circuit family [BGG+23]). Let C = {Cλ}λ be a family of circuits
and let D be an efficiently sampleable ensemble associated with C. We say that (C,D) is a differing-
inputs circuit family if for every QPT adversary A, we have

Pr

[
C0(x) ̸= C1(x) :

(C0, C1, aux)← D
x← A(C0, C1, aux)

]
≤ negl(λ).

9Functions adaptively chosen by the adversary by interacting with the functional key generator
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If C0, C1 differ on at most polynomially many inputs for all C0, C1 in the support of D, we say
that (C,D) is a differing-inputs circuit family with polynomially many differing inputs.

Definition 45 (Differing-inputs obfuscation [BCP14, BGG+23]). Let (C,D) be a differing-inputs
circuit family. An obfuscation scheme iO for (C,D) consists of the following algorithms satisfying
the correctness and security guarantees below.

• iO.Gen(C): Takes a circuit C and outputs an (possibly quantum) obfuscation of C.

• iO.Eval(Robf , x) : Takes an obfuscated program and evaluates it on x.

Functionality preservation: For all C ∈ C and all inputs x,

Pr[iO.Eval(Robf , x) = C(x) : Robf ← iO.Gen(C)] = 1.

Obfuscation security For any QPT adversary A,

Pr

b′ = b :

(C0, C1, aux)← D
b← {0, 1}

Robf ← iO.Gen(Cb)
b′ ← A(C0, C1, aux,Robf)

 ≤ 1

2
+ negl(λ).

Definition 46 (Differing-inputs obfuscation with leakage-detection). Let (C,D) be a differing-
inputs circuit family. An obfuscation scheme with leakage detection for (C,D) is an obfuscation
scheme for (C,D) with the following additional algorithms that satisfy the security and correctness
guarantees below.

• QLGen(C): Along with a quantum obfuscation of C, also outputs a leakage detection key tk.

• TestLeakage(tk,Robf): Takes the leakage detection key and the obfuscation, outputs LEAKED
if leakage is detected, NO LEAKAGE otherwise.

Obfuscation correctness and security We require the usual correctness and security satisfied
by the obfuscation scheme to now also hold for obfuscations generated by QLGen.

Detection correctness For all circuits C in the support of D, we require the following.

Pr[TestLeakage(tk,Robf) = NO LEAKAGE : tk,Robf ← QLGen(C)] ≥ 1− negl(λ).

Reusability after testing For all circuits C in the support of D, we require the following.
Initialize the obfuscation register Robf ← QLGen(C), and let ρ denote its states. Run the algorithm
TestLeakage on Robf and tk, and let ρ′ denote the state of the register Robf immediately afterwards.
Then, ∥∥ρ− ρ′∥∥

1
≤ negl(λ).

We note that reusability after testing will follow from detection correctness by utilizing Lemma 9.
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Leakage detection security Any QPT adversary A = (AMain,ALeak) has at most negligible
advantage in the following game.

1. The challenger runs C0, C1, aux← D.

2. The challenger samples a challenge bit b ← {0, 1} and prepares the obfuscation Robf ←
iO.QLGen(Cb).

3. ALeak gets access to Robf , C0, C1, aux and tk, it produces a leakage Rleak along with the updated
register Robf .

4. The challenger runs tb← TestLeakage(tk,Robf). If tb is LEAKED, it outputs 0 and terminates.

5. AMain gets Rleak, C0, C1, aux and tk, it produces a guess b′.

6. Output 1 if b′ = b.

We define the advantage of A to be
∣∣∣Pr[GameA = 1]− Pr[tb=NO LEAKAGE]

2

∣∣∣.
Definition 47 (Differing-inputs obfuscation with certified deletion [BGG+23]). Let (C,D) be a
differing-inputs circuit family. An obfuscation scheme with certified deletion for (C,D) is an ob-
fuscation scheme for (C,D) with the following additional algorithms that satisfy the security and
correctness guarantees below.

• QGen(C): Along with a quantum obfuscation of C, also outputs a verification detection key
vk.

• Cert(Robf): Takes the obfuscation and produces a deletion certificate.

• Verify(vk, cert): Takes the verification key and a deletion certificate, outputs VALID if the
certificate is valid, INVALID otherwise.

Obfuscation correctness and security We require the usual correctness and security satisfied
by the obfuscation scheme to now also hold for obfuscations generated by QGen.

Deletion correctness For all circuits C in the support of D, we require the following.

Pr

[
Verify(vk, cert) = VALID :

vk,Robf ← QGen(C)
cert← Cert(vk,Robf)

]
≥ 1− negl(λ).

Deletion security Any QPT adversary A has at most negligible advantage in the following game.

1. The challenger runs C0, C1, aux← D.

2. The challenger samples a challenge bit b ← {0, 1} and prepares the obfuscation Robf ←
iO.QGen(Cb).

3. A gets access to Robf , C0, C1, aux and vk, it produces a state R and a deletion certificate cert.

4. The challenger runs vb← Verify(vk, cert). If vb is INVALID, it outputs 0 and terminates.

5. A gets R, it produces a guess b′.

6. Output 1 if b′ = b.
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We define the advantage of A to be
∣∣∣Pr[GameA = 1]− Pr[vb=VALID]

2

∣∣∣.
Theorem 32 ([BGG+23]). Assuming post-quantum indistinguishability obfuscation and one-way
functions, there exists differing inputs obfuscation with (publicly-verifiable) certified deletion for
polynomially many differing inputs.

Theorem 33. Let (C,D) be a differing-inputs circuit family. Suppose there exists an obfuscation
scheme with publicly verifiable certified deletion for (C,D). Then, there exists an obfuscation scheme
with leakage detection for (C,D).

Proof. The construction and the proof are mostly the same as Theorem 28 and Theorem 31, so
we only sketch it. Let iO′ be an obfuscation scheme as in the theorem statement. We construct a
leakage-detection scheme iO for (C,D) as follows. Define iO.Eval to be the same as iO′.Eval and
iO.QLGen to be the same as iO′.QGen.

Now, as in Theorem 28, consider the following algorithm. On input tk,Robf , run the unitary
associated with iO′.Cert on Robf , and then the unitary associated with iO′.Verify on the result,
along with tk. Define iO.TestLeakage to be the rewinding version of this algorithm, obtained from
Lemma 9. We associate NO LEAKAGE with VALID and LEAKED with INVALID.

It is easy to see that iO satisfies the obfuscation security and correctness, along with reusuability
after testing and detection correctness. Finally, we argue leakage detection security. Suppose
there exists an adversary A = (AMain,ALeak) that wins leakage detection game with non-negligible
advantage. Then, we define an adversary A′ for the certified deletion game as follows. A′ runs
ALeak on Robf to obtain a leakage, then runs Cert on the updated register. It outputs the resulting
certificate and keeps the leakage as its state. Finally, when it receives the challenge, it runs AMain

on the challenge and Rleak. An argument similar to Theorem 28 and Theorem 31 shows that A′
wins the certified deletion game with non-negligible advantage.

Corollary 7. Assuming post-quantum indistinguishability obfuscation and one-way functions, there
exists differing inputs obfuscation with leakage detection for polynomially many differing inputs.

4.5 Leakage-detection for software

In this section, we introduce the notion of leakage-detection for software10, and show construction
of such schemes from any publicly verifiable, strong secure software leasing (SSL) scheme [AL21,
KNY21, BGG+23], with only finite-term lessor security. This also gives the first natural use case
for SSL schemes that only satisfy the weaker notion of finite-term lessor security, in which the lessee
cannot keep the software forever and has to return it for the security guarantee to hold.

Definition 48 (Leakage-detection for software). Let C = {Cλ}λ be a family of classical circuits,
where C : {0, 1}n(λ) → {0, 1}m(λ) for all C ∈ Cλ, and let D = {Dλ}λ be an ensemble on C. A
β-perfect leakage-detection scheme for (C,D) consists of the following QPT algorithms, with the
correctness and security guarantees below.

• Gen(C): Takes a circuit C, outputs a leakage-detection key and the protected version of C, a
quantum state.

• Eval(Rprog, x) : Takes the protected version of C and an input x, evaluates C on x.

• TestLeakage(tk,Rprog): Takes the leakage-detection key and the program register, outputs
LEAKED if leakage is detected, NO LEAKAGE otherwise.

10Modeled as a sample from a distribution on a family of circuits.

62



Evaluation correctness For all C ∈ C,

Pr
[
∀x ∈ {0, 1}n(λ) Eval(Rprog, x) = C(x) : Rprog, tk ← Gen(C)

]
≥ 1− negl(λ).

Detection correctness For all C ∈ C,

Pr
[
TestLeakage(tk,Rprog) = NO LEAKAGE : Rprog, tk ← Gen(C)

]
≥ 1− negl(λ).

Reusability after testing We require the following for all C ∈ C. Initialize the program register,
Rprog, tk ← Gen(C) and let ρ denote its state. Run the algorithm TestLeakage on tk and Rprog, and
let ρ′ denote the state of the register Rprog immediately afterwards. Then, ∥ρ− ρ′∥1 ≤ negl(λ).

We note that reusability after testing will follow from detection correctness by utilizing Lemma 9.

β-leakage-detection security For all QPT adversaries A = (AMain,ALeak), we require the fol-
lowing.

Pr

 TestLeakage(tk,R
′
prog) = NO LEAKAGE
∧

∀x ∈ {0, 1}n(λ) Pr[AMain(tk,Rleak, x) = C(x)] ≥ β
:

C ← D
Rprog, tk ← Gen(C)

Rleak, R
′
prog ← ALeak(Rprog, tk)

 ≤ negl(λ).

Definition 49 (Strong secure software leasing [BGG+23]). Let C = {Cλ}λ be a family of classical
circuits, where C : {0, 1}n(λ) → {0, 1}m(λ) for all C ∈ Cλ, and let D = {Dλ}λ be an ensemble on C.
A software leasing scheme for (C,D) consists of the following QPT algorithms, with the correctness
and security guarantees below.

• Gen(C): Takes a circuit C, outputs a verification key and the protected version of C, a
quantum state.

• Eval(Rprog, x) : Takes the protected version of C and an input x, returns C(x).

• Verify(vk,Rprog): Takes the verification key and the program register, outputs VALID if the
returned program is valid, INVALID otherwise.

Evaluation correctness For all C ∈ C,

Pr
[
∀x ∈ {0, 1}n(λ) Eval(Rprog, x) = C(x) : Rprog, vk ← Gen(C)

]
≥ 1− negl(λ).

Verifcation correctness For all C ∈ C,

Pr
[
Verify(vk,Rprog) = NO LEAKAGE : Rprog, vk ← Gen(C)

]
≥ 1− negl(λ).

β-perfect finite-term strong lessor security with public verification For all QPT adver-
saries A = (A1,A2), we require the following.

Pr

 Verify(vk,R1) = VALID
∧

∀x ∈ {0, 1}n(λ) Pr[A2(vk,R2, x) = C(x)] ≥ β
:

C ← D
Rprog, vk ← Gen(C)

R1, R2 ← A1(Rprog, vk)

 ≤ negl(λ).
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Theorem 34 ([BGG+23, Theorem 8.4, Corollary 8.18]). Assuming post-quantum indistinguishabil-
ity obfuscation and one-way functions, there exists finite-term publicly-verifiable strong secure soft-
ware leasing for pseudorandom functions, evasive functions, random point functions, and compute-
and compare circuits.

Theorem 35. Let C be a family of classical circuits and let D be an ensemble on C. Suppose there
exists a β-perfect finite-term publicly-verifiable strong secure software leasing scheme for (C,D).
Then, there exists a β-perfect leakage detection scheme for (C,D).

Proof. The proof is mostly the same as that of Theorem 28, so we only sketch it.
Let SSL be a secure leasing scheme as in the theorem statement. We construct a leakage-

detection scheme SLD for (C,D) as follows. Define SLD.Gen and SLD.Eval to be the same as SSL.Gen
and SSL.Eval, respectively. Define SLD.TestLeakage to be the rewinding version of SSL.Verify, as
obtained from Lemma 9, where we associate VALID with NO LEAKAGE and INVALID with LEAKED.

It is easy to see that SLD satisfies evaluation and detection correctness. By verification cor-
rectness of SSL and Lemma 9, SLD satisfies reusability. Finally, we argue detection security as
follows. Suppose there exists an adversary A = (AMain,ALeak) that violates the leakage security
with probability 1

p(λ) for some polynomial p(·). Then, define the adversary A′ = (A′1,A′2) as follows.

A′
1(Rprog, vk)

1. Run Rleak, R
′
prog ← ALeak(Rprog, vk).

2. Output R′prog, Rleak.

A′
2(vk,R2, x)

1. Output ← AMain(vk,R2, x).

As in Theorem 28, one can show that A′ violates the lessor security with probability 1
p(λ) .

Crucially, note that R1 in the lessor security condition for A′ will have the same distribution as
R′prog in the leakage detection condition for A, therefore probability of SLD.TestLeakage outputting
NO LEAKAGE for A is the same SSL.Verify outputting VALID for A. Further, conditioned on
the event NO LEAKAGE, the adversary AMain does not use R′prog, hence rewinding applied by
TestLeakage has no effect. Therefore, R2 in the lessor security for A′ (conditioned on VALID) will
have the same distribution as Rleak in the leakage detection security (conditioned on NO LEAKAGE).

Corollary 8. Assuming post-quantum indistinguishability obfuscation and one-way functions, there
exists leakage detection schemes for pseudorandom functions, evasive functions, random point func-
tions, and compute-and compare circuits.

Proof. Invoke Theorem 34 and Theorem 35.

5 Cryptographic schemes resilient to leakage attacks with un-
bounded shared entanglement

5.1 Spooky classical-leakage resilient primitives

In this section, we study various cryptographic primitives that are secure against spooky classical-
leakage, that is, against adversaries such that the leakage adversary and the main adversary are
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allowed to share unbounded entanglement. While it is known that entanglement (or more gener-
ally, non-signalling correlations) does not increase the classical (Shannon) capacity of a classical
channel, for some classical tasks using classical channels, entanglement allows us to achieve higher
performance compared to best possible classical strategy [CLMW10]. Similarly, even small amount
of quantum side information can break extractors that are secure against classical side information
[GKK+09]. Hence, care must be taken and security of spooky classical-leakage-resilient primitives
must be proven explicitly using appropriate quantum tools.

We start by showing that the min-entropy of a source decreases by at most ℓ in presence
of spooky classical-leakage of size ℓ, generalizing the result of Dodis, Ostrovsky, Reyzin, and
Smith [DORS08] to the setting of spooky classical leakage. Then, we continue by proving that
the constructions of Hazay, López-Alt, Wee, and Wichs [HLAWW16] can be proven secure against
spooky classical-leakage11 by using quantum-proof extractors.

Lemma 14. Let X be a classical random variable, Z be quantum side information on X and R1, R2

be quantum registers initialized to some possibly entangled state that is independent of X and Z.
Let the leakage adversary act on (X,R1) using a quantum operation ALeak with classical output to
produce a classical leakage register L of size ℓ. Then,

pguess(X|Z,L,R2) ≤ 2ℓ · pguess(X|Z)

where guessing probability on the left hand side is with respect to the state after the actions of
leakage adversary.

Proof. Instead of a separate leakage ALeak and main adversary AMain, we will instead consider
the equivalent setting where the adversary has access to both X and R1R2, but we first apply a
quantum-to-classical operation ALeak : X ⊗ R1 → H⊗ℓ and then run AMain on the result, along
with R2. To this end, introduce a new register B that is also initialized to x. Before the leakage,
we can write the state of the register XZBR1R2 as∑

x

Pr[X = x] · |x⟩⟨x| ⊗ ξZx ⊗ |x⟩⟨x| ⊗ ρR1R2 .

Then, we have (L,R1, R2)← (ABR1
Leak⊗I

R2)(|X⟩⟨X|⊗R1⊗R2) and the state of the register XZ(LR2)
after the leakage becomes

σ =
∑
x

Pr[X = x] · |x⟩⟨x| ⊗ ξZx ⊗ (ABR1
Leak ⊗ I

R2)(|x⟩⟨x| ⊗ ρR1R2)

=
∑
x

Pr[X = x] · |x⟩⟨x| ⊗ ξZx ⊗ τx

where we define τx = (ABR1
Leak ⊗ I

R2)(|x⟩⟨x| ⊗ ρR1R2).
Since this is a cqq state, by Lemma 3 we then have

pguess(X|L,Z,R2) = 2−H∞(X|L,Z,R2)

Further, since ALeak is a quantum-to-classical channel, as argued in the proof of Lemma 12 using
Lemma 13, the state of the registers is separable between L and X,Z,R2. Hence, we can apply
Lemma 5 to get

H∞(X|L,Z,R2) ≥ H∞(X|Z,R2)− ℓ.
11With slightly different parameters.
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Now, we see that H∞(X|Z,R2) = H∞(X|Z) due to no-signalling. More formally, we can
proceed as follows. Consider the following cqq-state of XZR2:

σXZR2 = (IXZ ⊗ TrL⊗IR2)
∑
x

Pr[X = x] · |x⟩⟨x| ⊗ ξZx ⊗ (ABR1
Leak ⊗ I

R2)(|x⟩⟨x| ⊗ ρR1R2)

=
∑
x

Pr[X = x] · |x⟩⟨x| ⊗ ξZx ⊗ (TrL⊗IR2)(ABR1
Leak ⊗ I

R2)(|x⟩⟨x| ⊗ ρR1R2)

By Lemma 2,

σXZR2 =
∑
x

Pr[X = x] · |x⟩⟨x| ⊗ ξZx ⊗ TrB,R1(|x⟩⟨x| ⊗ ρ)

=

(∑
x

Pr[X = x] · |x⟩⟨x| ⊗ ξZx

)
⊗ TrR1(ρ).

Hence, by Lemma 4, H∞(X|Z,R2) = H∞(X|Z). Combining with above,

H∞(X|L,Z,R2) ≥ H∞(X|Z)− ℓ.

Finally, again by applying Lemma 3 to both entropies, we get

pguess(X|L,Z,R2) ≤ 2ℓ · pguess(X|Z).

In fact, we can say more.

Lemma 15. Let LeakyGameA be a leakage game as follows, with a (possibly quantum) secret Rsec

and public information pk, played by entangled adversaries A = (AMain,ALeak) such that AMain can
locally test if it has won the game.12

LeakyGameA

1. Initialize R1, R2 ← ρ.

2. Sample the secret Rsec and the public information pk.

3. ALeak gets Rsec, pk,R1, produces a classical leakage L.

4. AMain gets L,R2 and pk, produces an output.

5. Output 1 iff the output of AMain passes the game winning test.

Also define the non-leaky version of the game as follows.

12E.g., a digital signature forgery game where AMain can check using the public verification key if it has succeeded
in forging a valid signature.
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NonLeakyGameB

1. Sample the secret Rsec and the public information pk.

2. B gets pk, produces an output.

3. Output 1 iff the output of B passes the game winning test.

Then, for any {efficient, unbounded} adversary A = (AMain,ALeak) where the output of ALeak

is ℓ bits, there is an {efficient, unbounded} adversary B such that

Pr[LeakyGameA = 1] ≤ 2ℓ · Pr[NonLeakyGameB = 1].

Proof. Take any A where the output of ALeak is ℓ bits. Define B as follows.

B(pk)

1. Initialize R1, R2 ← ρ.

2. Sample L← {0, 1}ℓ.

3. Output AMain(R2, pk, L).

Define the first hybrid Hyb0 to be LeakyGameA. Then, define the second hybrid Hyb1 by mod-
ifying Hyb0 as follows. Instead of running AMain on the leakage L, we sample an independent
string L′ ← {0, 1}ℓ and run AMain using L′. Since we have L = L′ with probability 1

2ℓ
, we get

Pr[Hyb1 = 1] ≥ 2−ℓ Pr[Hyb0 = 1]. Finally, define Hyb2 by modifying Hyb1 so that we do not run
ALeak at all. Note that in Hyb1 and Hyb2, (since AMain ignores L) ALeak and AMain are not commu-
nicating. By no-signalling property of entanglement, AMain cannot detect (without communication)
if ALeak has acted on its part of the entanglement or not. Since the game is testable on the side
of AMain alone, we get Pr[Hyb1 = 1] = Pr[Hyb2 = 1]. It is easy to see that Hyb2 is the same as
NonLeakyGameB, which concludes the proof.

5.1.1 Pseudorandom Functions

Definition 50 (Spooky leakage-resilient weak PRF). We say that a family of functions F = {fk}k
is an ℓ(λ)-spooky-classic-leakage-resilient (spooky-classic-LR) weak PRF if, for all polynomials p(·),
states ρ ∈ Hpoly(λ) and QPT adversaries A = (AMain,ALeak) where the output of ALeak consists of
ℓ(λ) classical bits, advantage of A is negligible in the following game.

1. Challenger samples a key k ← K.

2. Challenger samples random query inputs x1, . . . , xp(λ) ← X .

3. For i ∈ [p(λ)], compute yi = fk(xi).

4. Initialize R1, R2 ← ρ.

5. The leakage adversary get access to the query outputs and the key, outputs an ℓ bit classical
leakage

L← ALeak(R1, k, (xi, yi)i∈[p(λ)]).

6. The challenger samples a challenge input x∗ ← X and a challenge bit b← {0, 1}. If b = 0, it
sets y∗ ← fk(x

∗) and if b = 1, it samples y∗ ← Y.
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7. The adversary gets the leakage, the query outputs and the challenge input, outputs a guess

b′ ← AMain(R2, L, (xi, yi)i∈[p(λ)], x
∗, y∗).

8. Output 1 iff b′ = b.

We define the advantage of A to be
∣∣Pr[GameA = 1]− 1

2

∣∣.
Theorem 36. Assuming the existence of (post-quantum) one-way functions, for any polynomial
ℓ(·), there exists ℓ(λ)-spooky-classic-LR wPRFs.

Proof. Let F ′
= {f ′

k} be a symmetric-key weak hash-proof system (Definition 20) with input size
p1(λ) and output size p2(λ). See [HLAWW16, Section 4.2] for constructions of such schemes from
any wPRF. It can be verified that the construction is post-quantum secure when the underlying
wPRF is. Let Ext be the extractor from Theorem 13 instantiated with k = p2(λ)− ℓ(λ) and some
ε = negl(λ). Let p3(λ), p4(λ) denote the seed length and the output size of Ext respectively. Then,
we claim that the following construction from [HLAWW16, Theorem 4.3] is ℓ(λ)-spooky-classic-LR.

• Key distribution: Same as F ′

• Input space: {0, 1}p1(λ) × {0, 1}p3(λ)

• Output space: {0, 1}p4(λ)

• Evaluation:
fk(x||s) = Ext(f

′
k(x), s)

Proof is mostly the same as that of [HLAWW16, Theorem 4.3], but we repeat an abridged
version for convenience. The significant difference is for showing Hyb1 ≈ Hyb2, which now relies
on the quantum-proof properties of Ext (Definition 13) and the spooky classical leakage lemma
(Lemma 14).

Define the following hybrids. In all of the hybrids, we will consider sampling a uniform (x, s)
as sampling x and s independently, which is equivalent.

Hyb0 The original leakage resilience game with the challenge bit b fixed to 0.

Hyb1 Modify Hyb0 as follows. Let the challenger also choose a sampling key samK ← SamGen(k).
Change the sampling of the (left parts of) query inputs from

x1, . . . , xp(λ) ← {0, 1}p1(λ)

to
x1, . . . , xp(λ) ← Dist1(samK).

Also change the sampling of the (left part of) challenge input from x∗ ← {0, 1}p1(λ) to

x∗ ← Dist2(samK).

By the input indistinguishability of F ′
, we have that for any polynomial number of samples, ad-

versaries cannot distinguish between sampling from

Dist1(samK),Dist2(samK)

or {0, 1}p1(λ), even given the key k in the plain. Hence, the same indistinguishability holds given
the (spooky) leakage from the key, therefore we have Hyb0 ≈ Hyb1.
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Hyb2 Modify Hyb1 by changing the sampling of the challenge from

y∗ ← fk(x
∗)

to
y∗ ← {0, 1}p4(λ).

We argue Hyb1 ≈ Hyb2 as follows. Let P denote the query input-output pairs ((xi, si),Ext(f
′
k(xi),

si))i∈[p(λ)] and L denote the ℓ-bit classical leakage string that ALeak outputs. By smoothness of F ′
,

we can replace f
′
k(x
∗) with Up2(λ) even given P (but not given the leakage). Therefore, we have

H∞(f
′
k(x
∗)|P ) = p2(λ). Then, by Lemma 14, we have H∞(f

′
k(x
∗)|R2, P, L) = p2(λ) − ℓ. Finally,

by Definition 13 and Theorem 13, we can replace Ext(f
′
k(x
∗), s∗) with Up4(λ) even given R2, P and

L, which implies Hyb1 ≈ Hyb2.

Hyb3 Modify Hyb2 by undoing the changes we made from Hyb0 to Hyb1. By the same argument
that shows Hyb0 ≈ Hyb1, we have Hyb2 ≈ Hyb3. Also observe that Hyb3 is the same as the original
leakage-resilience game with the challenge bit b fixed to 1.

Finally, we get Hyb0 ≈ Hyb3, which proves that F is ℓ(λ)-spooky-classic-LR.

5.1.2 Public-key encryption

Definition 51 (Spooky leakage-resilient public-key encryption). We say that a public-key encryp-
tion scheme PKE is an ℓ(λ)-spooky-classic-leakage-resilient PKE if, for all states ρ ∈ Hpoly(λ) and
pairs of QPT adversaries A = (AMain,ALeak) where the output of ALeak consists of ℓ(λ) classical
bits, advantage of A is negligible in the following game.

1. The challenger samples a public key - secret key pair

pk, sk ← PKE.KeyGen(1λ).

2. Initialize R1, R2 ← ρ.

3. The leakage adversary gets access to the keys, and produces an ℓ-bit classical leakage string L
as

L← ALeak(R1, pk, sk).

4. The adversary gets the leakage, and outputs two messages and a state R

m0,m1, R← AMain(R2, L).

5. The challenger samples a challenge bit b← {0, 1} and computes ct← PKE.Enc(pk,mb).

6. The adversary gets the challenge ciphertext and outputs a guess

b′ ← AMain(R], L, ct).

7. Output 1 iff b′ = b.

We define the advantage of A to be
∣∣Pr[GameA = 1]− 1

2

∣∣.
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Theorem 37. Assuming the existence of (post-quantum) public-key encryption schemes, for any
polynomial ℓ(·), there exists a ℓ(λ)-spooky-classic-LR public-key encryption scheme.

Proof. Let wHPS (Definition 21) be a public-key weak hash-proof system with output space {0, 1}p1(λ).
See [HLAWW16, Section 3.2] for constructions of such schemes from any PKE. It can verified that
the construction is post-quantum secure when the underlying PKE is. Let Ext be the extractor
from Theorem 13 instantiated with k = p1(λ) − ℓ(λ) and some ε = negl(λ). Let p2(λ), p3(λ) de-
note the seed length and the output length of Ext, respectively. Then, we claim that the following
construction from [HLAWW16, Theorem 3.3] is ℓ(λ)-spooky-classic-LR.

PKE

• PKE.KeyGen(1λ)

1. Output wHPS.KeyGen(1λ).

• PKE.Enc(pk,m)

1. s← {0, 1}p2(λ).
2. c0, k ← wHPS.Encap(pk).

3. c1 = m⊕ Ext(k, s).

4. Output (c0, c1, s).

• PKE.Dec(sk, (c0, c1, s))

1. k ← wHPS.Decap(sk, c0).

2. Output c1 ⊕ Ext(k, s)

Proof is mostly the same as that of [HLAWW16, Theorem 3.2], but we repeat an abridged
version for convenience. The significant difference is for showing Hyb1 ≈ Hyb2, which now relies
on the quantum-proof properties of Ext (Definition 13) and the spooky classical leakage lemma
(Lemma 14).

Hyb0 The original leakage resilience game (Definition 51).

Hyb1 Modify Hyb0 as follows. For the computation of the challenge ciphertext, change

c1 = mb ⊕ Ext(k, s)

to

k
′ ← wHPS.Decap(sk, c0)

c1 = mb ⊕ Ext(k
′
, s).

By the correctness property of wHPS, we have k = k
′
with probability 1 and hence Hyb0 ≡ Hyb1.
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Hyb2 Modify Hyb1 by, for the computation of the challenge ciphertext, changing

c0, k ← wHPS.Encap(pk) (13)

to
c0 ← wHPS.Encap∗(pk) (14)

By the ciphertext indistinguishability property of wHPS, c0 sampled as (13) and as (14) are in-
distinguishable, even given the public key and the private key in the plain. Therefore, they are
indistinguishable given the (spooky) leakage, hence Hyb1 ≈ Hyb2.

Hyb2 Modify Hyb2 by, for the computation of the challenge ciphertext, changing

c1 = mb ⊕ Ext(k
′
, s)

to

r ← {0, 1}p3(λ)

c1 = mb ⊕ r.

Observe the side information we have on k
′
consists only of R2, pk, c0 and the leakage L. By the

smoothness property of wHPS, we have that k
′
is (exactly) uniform even given c0 and pk. Therefore,

we have H∞(k
′ |pk, c0) = p1(λ) and hence by Lemma 14 we get H∞(k

′ |R2, L, pk, c0) ≥ p1(λ)− ℓ(λ).
Finally, by Definition 13 and Theorem 13, we can replace Ext(k

′
, s) with r even given R2, L, pk, c0,

which implies Hyb1 ≈ Hyb2.
Observe that in Hyb2, the message is encrypted with a one-time pad key that is independent of

everything else, which proves the security of PKE.

5.1.3 Digital Signatures

In this section we show classical digital signature schemes resilient to spooky-classical leakage. The
main adversary AMain attempts to succeed in the usual EUF-CMA forgery game with access to a
signing oracle. But in addition there is a leakage adversary ALeak who has knowledge of the secret
key, and the main adversary is allowed to query once this adversary and obtain a bounded amount
of classical leakage. Both adversaries share arbitrary entanglement. With this model in mind,
we show constructions for one-time and t-time signature schemes tolerating different amounts of
classical leakage.

Definition 52. Let λ be a security parameter. A signature scheme is a tuple of PPT algorithms
(Gen,Sign,Vrfy), where:

• Gen is a randomized algorithm that takes as input 1λ and outputs a public key pk and a secret
key sk.

• Sign is a possibly randomized algorithm that takes as input the secret key sk, a message m
and output a signature σ = Signsk(m).

• Vrfy is a deterministic algorithm that takes as input the public key pk, a message and a
signature σ. It outputs a bit b = Vrfypk(m,σ).

We require that for all λ, (pk, sk) = Gen(1λ), we have that

Vrfypk(m,Signsk(m)) = 1.
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Security is defined via the usual notion of existential unforgeability under chosen-message at-
tacks, except that the adversary attempting to win the game is allowed to obtain a bounded string
of classical leakage from a separate local adversary who receives the secret key. Both adversaries
share arbitrary quantum entanglement.

Definition 53 (Spooky leakage-resilient digital signature). Let Π = (Gen,Sign,Vrfy) be a signature
scheme. Given an adversary A = (ALeak,AMain), we define the following experiment, with security
parameter λ.

• Let (pk, sk) = Gen(1λ).

• The local adversary ALeak has as input 1λ, the secret key sk and a quantum register R1. Upon
being queried, it outputs classical leakage ρ = ALeak(1

λ, sk, R1).

• The second adversary AMain has as input 1λ, the public key pk and a quantum register R2,
and has access to a signing oracle Signsk(·) and can query once to ALeak. It outputs a pair
(m∗, σ∗) = AMain(1

λ, pk, ρ, R2).

We say that A succeeds if Vrfypk(m
∗, σ∗) = 1 and m∗ was not queried to the signing oracle

Signsk(·) by AMain. Let L ≥ |ρ| be a bound on the classical leakage from ALeak, q be a bound on the
number of queries to the signing oracle Signsk(·) by AMain, and R1 and R2 be a pair of quantum
registers composing an arbitrary (possibly entangled) quantum state. We denote the probability that

the adversary A wins by Pr
[
SuccL,qA,Π(λ)

]
.

We say that Π is a q-time L-spooky-classic-leakage-resilient signature if the quantity Pr
[
SuccL,qA,Π(λ)

]
is negligible in λ for every PPT adversary A.

One-time signature scheme. The following scheme was originally proposed by Katz and Vaikun-
tanathan [KV09], but its security was only proven against classical adversaries. The scheme is
essentially a variant of Lamport’s signature scheme [Lam79], where the message is encoded using
a linear error correcting code.

Consider a universal one-way hash function (GenH , H), mapping ℓin-bit inputs to λ-bit outputs.
Let ℓ = Rλ and ℓin = 2λ/ε, where R is chosen such that a random binary matrix A ∈ {0, 1}λ×ℓ
defines a code with relative minimum distance 1/2− ε, except with probability negligible in λ.

Key generation: Choose a random binary matrix A ∈ {0, 1}λ×ℓ, and xi,0, xi,1 ∈ {0, 1}ℓin random
strings. Compute s = GenH(1λ). Compute yi,b = Hs(xi, b) for i ∈ {1, . . . , ℓ} and b ∈ {0, 1}. Let
pk = (A, s, {yi,b}) and sk = {xi,b}.

Signing: To sign a message m ∈ {0, 1}λ, compute m = m · A ∈ {0, 1}ℓ. The signature is
x1,m1 , . . . , xℓ,mℓ

.

Verification: Given a signature x1, . . . , xℓ on message m and public key pk = (A, s, {yi,b}),
compute m = m ·A and output 1 if and only if yi,mi = Hs(xi) for all i.

Theorem 38. If (GenH , H) is a post-quantum secure universal one-way hash function, then the
scheme above is a one-time (1/4 − ε)n spooky-classical-leakage-resilient signature scheme, where
n = 2ℓ · ℓin is the size of the secret key.
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Proof. Let δ be the success probability of an adversary A = (ALeak,AMain) in attacking the scheme
Π. We construct an adversary B that succeeds with probability (δ − negl(λ))/(4ℓ) in breaking the
security of the universal one-way hash function (GenH , H).

The adversary B locally randomly generates the matrix A ∈ {0, 1}λ×ℓ, and xi,0, xi,1 ∈ {0, 1}ℓin .
Then, B chooses a random b∗ ∈ {0, 1} and i∗ ∈ {1, . . . , ℓ} and outputs xi∗,b∗ as the initial input

for the hash function experiment. In turn, B receives s = GenH(1λ). (The goal for B to win is to
compute an output y such that Hs(xi∗,b∗) = Hs(y).)

After that, B computes yi,b = Hs(xi,b) and sets pk = (A, s, {yi,b}) and sk = {xi,b}. The secret
key sk is given to ALeak, who computes the leakage ρ, with |ρ| ≤ (1/4− ε)n.

The public key pk and ρ are given to AMain. B answers the signing query from AMain using the
secret key sk. Given that the simulation for A is perfect (since B generates the secret key identically
as in the signature forgery game), we have that AMain outputs a forgery (m∗, σ∗) with probability
δ.

Let m = m · A, where m is the message whose signature was requested by AMain. The view
of AMain about the secret key sk contains the signature (x1,m1 , . . . , xℓ,mℓ

), the values {yi,1−mi}ℓi=1

from the public key and the leakage ρ, as well as the quantum register R2.
Parse the forgery output of AMain as (m∗, σ∗) = (m∗, (x∗1, . . . , x

∗
ℓ )), and let m∗ = m∗ · A. Let

I be the set of indices where m and m∗ differ. Note that it must hold that m and m∗ differ in at
least |I| ≥ (1/2 − ε) · ℓ indices (due to the fact that m ̸= m∗ and A defines a code with relative
minimum distance 1/2− ε with overwhelming probability).

Let E be the event that the view of AMain fixes all values {xi,1−mi}. We will show that the
probability that the event E occurs is bounded by 2L−∆ = negl(λ), where L = ℓ · ℓin + ℓλ+ (1/4−
ε)2ℓ · ℓin and ∆ = H∞(sk)− (1/2 + ε) · ℓ · ℓin.

To see this, consider a hybrid scenario where the leakage adversary ALeak computes ρ from
an independent random string instead of sk. By Lemma 14, it is enough to prove that in this
case the probability that the event occurs in this hybrid scenario is bounded by 2L

′−∆, where
L′ = L− (1/4− ε)2ℓ · ℓin.

In this hybrid scenario, the adversary receives in total L′ bits related to the secret key (here the
leakage from ALeak is independent of the secret key), and the secret key has length 2ℓ · ℓin. Using
standard entropy arguments, we know that the probability that the L′ bits decrease the entropy of
the secret key by more than ∆ = H∞(sk)−(1/2+ε)·ℓ·ℓin (meaning there is less than (1/2+ε)·ℓ·ℓin
entropy left), is at most 2L

′−∆.
Now, observe that whenever the entropy left on the secret key is at least (1/2+ε)·ℓ·ℓin, then the

event E does not hold. To see this, assume the contrary (that the adversary AMain fixes all values for
indices in I). This would mean that H∞(sk | AMain’s view) ≤

∑
i/∈I H∞(xi,1−mi | AMain’s view) ≤

(1/2 + ε)ℓ · ℓin, in contradiction to the assumption on the conditional entropy of sk.
Then, by the argument above, we have that x∗i ̸= xi,m∗

i
for at least an index i∗ and bit b∗.

Therefore, with probability at least 1/(2ℓ) this difference occurs at (i∗, b∗), the initial guess by
B, and in this case B finds a valid collision. Putting all together, B finds a valid collision with
probability at least (δ − Pr[E]− negl(λ))/(4ℓ). Since Pr[E] = negl(λ), the result follows.

Extension to t-time signature scheme with θ(n/t2) leakage. The previous scheme can be
modified to achieve a t-time L-spooky-classical-leakage signature scheme with L = θ(n/t2), n being
the size of the secret key, as also shown in [KV09], using so-called cover-free families.

Definition 54. A family of non-empty sets S = {S1, . . . , Sn}, where Si ⊂ U is a (t, 1/2)-cover free
family if for all S, S1, . . . , St ∈ S it holds that |S \ ∪ti=1Si| ≥ |S|/2.
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Kumar, Rajagopalan, and Sahai [KRS99] construct a (t, 1/2)-cover-free family with n = Ω(2λ)
sets, and where each set has size |Si| = O(λt) from a universe set of size |U | = O(λt3). Let
f : {0, 1}λ → S be an injective function, we define the following scheme:

Key generation: Let ℓ = O(λt3) and ℓin = 8t2λ. Choose xi ∈ {0, 1}ℓin for i = 1, . . . , ℓ. Compute
s = GenH(1λ) and yi = Hs(xi) for i ∈ {1, . . . , ℓ}. Let pk = (s, {yi}) and sk = {xi}.

Signing: To sign a message m ∈ {0, 1}λ, compute f(m) = Sm ∈ S. The signature is {xi}i∈Sm .

Verification: Given a signature {xi} on message m, with respect to public key pk = (s, {yi}),
compute Sm = f(m) and output 1 if and only if yi = Hs(xi) for all i ∈ Sm.

The proof of the following theorem is similar to the proof of Theorem 38.

Theorem 39. If (GenH , H) is a post-quantum secure universal one-way hash function, then the
described scheme is a t-time θ(n/t2) spooky-classical-leakage-resilient scheme, where n = ℓ · ℓin is
the size of the secret key.

Proof. Let δ be the success probability of an adversary A = (ALeak,AMain) in attacking the scheme
Π. We construct an adversary B that succeeds with probability (δ − negl(λ))/(2ℓ) in breaking the
security of the universal one-way hash function (GenH , H).

The adversary B locally randomly generates xi ∈ {0, 1}ℓin . Then, B chooses a random i∗ ∈
{1, . . . , ℓ} and outputs xi as the initial input for the hash function experiment. In turn, B receives
s = GenH(1λ). (The goal for B to win is to compute an output y such that Hs(xi∗) = Hs(y).)

After that, B computes yi = Hs(xi) and sets pk = (s, {yi}) and sk = {xi}. The secret key sk is
given to ALeak. Then, whenever ALeak is queried, he computes the leakage ρ, with |ρ| = θ(n/t2).

The public key pk is given to AMain. When AMain queries ALeak, he gets ρ. Moreover, B answers
the signing query from AMain using the secret key sk. Given that the simulation for A is perfect
(since B generates the secret key identically as in the signature forgery game), we have that AMain

outputs a forgery (m∗, σ∗) with probability δ.
Let m1, . . . ,mt, where mi = f(mi) and mi is the i-th message whose signature was requested by

AMain. Let T = ∪tj=1Smj . The view of AMain about the secret key sk contains the values {xi}i∈T ,
the public-key values {yi}i/∈T and the leakage ρ, as well as the quantum register R2.

Now parse the forgery output of AMain as (m∗, σ∗) = (m∗, {xi}i∈Sm∗ ). Let I be the set of indices
where T and Sm∗ differ. Because S is a (t, 1/2)-cover-free family, we have that these sets differ in
at least |I| ≥ |S|/2 = O(λt) indices.

Let E be the event that the view of AMain fixes all values {xi}i∈Sm∗\T . We will show that the

probability that the event E occurs is bounded by 2L−∆ = negl(λ), where L = λt2 + ℓλ+ θ(n/t2)
and ∆ = H∞(sk)− (ℓ−O(λt))ℓin.

To see this, consider a hybrid scenario where the leakage adversary ALeak computes ρ from
an independent random string instead of sk. By Lemma 14, it is enough to prove that in this
case the probability that the event occurs in this hybrid scenario is bounded by 2L

′−∆, where
L′ = L− θ(n/t2).

In this hybrid scenario, the adversary receives in total L′ bits related to the secret key (here
the leakage from ALeak is independent of the secret key), and the secret key has length ℓ · ℓin.

Using standard entropy arguments, we know that the probability that the L′ bits decrease the
entropy of the secret key by more than ∆ = H∞(sk) − (ℓ − O(λt))ℓin (meaning there is less than
(ℓ−O(λt))ℓin entropy left), is at most 2L

′−∆.
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Now, observe that whenever the entropy left on the secret key is at least (ℓ−O(λt))ℓin, then the
event E does not hold. To see this, assume the contrary (that the adversary AMain fixes all values
for indices in I). This would mean that H∞(sk | AMain’s view) ≤

∑
i/∈I H∞(xi | AMain’s view) ≤

|U \ I| · ℓin = (ℓ−O(λt))ℓin, in contradiction to the assumption on the conditional entropy of sk.
Then, by the argument above, we have that x∗i ̸= xj for j ∈ T for at least an index i∗. Therefore,

with probability at least 1/ℓ this difference occurs at i∗, the initial guess by B, and in this case
B finds a valid collision. Putting all together, B finds a valid collision with probability at least
(δ − Pr[E]− negl(λ))/(2ℓ). Since Pr[E] = negl(λ), the result follows.

Extension to t-time stateful signature scheme with leakage independent of t. The above
scheme tolerates a leakage that decreases with the number of times the signature can be used. In
this section, we show how to improve the scheme from above to a many-times stateful signature
scheme, with leakage that is linear in the size of the secret, by providing a leakage-preserving
compiler that transforms any 3-time spooky leakage signature scheme into a many-times spooky
leakage signature scheme. By instantiating the 3-time spooky leakage resilient scheme with θ(n/9)
leakage from above, we obtain a t-time spooky leakage resilient scheme with the same leakage
tolerance.

The compiler was originally introduced by Faust, Kiltz, Pietrzak, and Rothblum [FKPR10] in
the context of classical leakage-resilience. We show that the scheme also achieves θ(n/9) spooky
leakage resilience.

We first define a stateful signature scheme. The difference with respect to a stateless scheme
is that the signing algorithm outputs in addition an updated secret key sk′, which replaces the
previous secret key.

Definition 55. Let λ be a security parameter. A stateful signature scheme is a tuple of PPT
algorithms (Gen,Sign,Vrfy), where:

• Gen is a randomized algorithm that takes as input 1λ and outputs a public key pk and a secret
key sk.

• Sign is a possibly randomized algorithm that takes as input the secret key sk, a message m
and outputs a signature and the updated secret key (σ, sk′) = Signsk(m).

• Vrfy is a deterministic algorithm that takes as input the public key pk, a message and a
signature σ. It outputs a bit b = Vrfypk(m,σ).

We require the usual correctness properties, that for all λ, any pair of keys (pk, sk′) initially
generated by the Gen algorithm, but where sk′ might have been updated according to the signing
algorithm, we have that Vrfypk(m,Signsk′(m)) = 1.

Security is defined similarly as with stateless signatures, except that the adversary ALeak com-
putes the leakage according to the current updated secret key sk′.

Definition 56 (Spooky leakage-resilient stateful digital signature). Let Π = (Gen,Sign,Vrfy) be a
stateful signature scheme. Given an adversary A = (ALeak,AMain), we define the following experi-
ment, with security parameter λ.

• Let (pk, sk) = Gen(1λ).

• The local adversary ALeak has as input 1λ, the current secret key sk′ and a quantum register
R1. Upon being queried, it outputs classical leakage ρ = ALeak(1

λ, sk′, R1).
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• The second adversary AMain has as input 1λ, the public key pk and a quantum register R2,
and has access to a signing oracle Signsk′(·) (which updates the secret key every time it sends
a message) and can query once to ALeak. It outputs a pair (m∗, σ∗) = AMain(1

λ, pk, ρ, R2).

We say that A succeeds if Vrfypk(m
∗, σ∗) = 1 and m∗ was not queried to the signing oracle by

AMain. Let L ≥ |ρ| be a bound on the classical leakage from ALeak, q be a bound on the number of
queries to the signing oracle by AMain, and R1 and R2 be a pair of quantum registers composing an
arbitrary (possibly entangled) quantum state. We denote the probability that the adversary A wins

by Pr
[
SuccL,qA,Π(λ)

]
.

We say that Π is a q-time L-spooky-classical-leakage-resilient stateful signature if Pr
[
SuccL,qA,Π(λ)

]
is negligible in λ for every PPT adversary A.

Leakage-preserving compiler from 3-time to t-times stateful signature scheme. Given a leakage-
resilient 3-time signature scheme Π, we recall the tree-based leakage-resilient signature scheme
Comp(Π) presented in [FKPR10]. Given any fixed d, the construction can sign up to t = 2d+1 − 2
messages.

At a high level, the stateful signing algorithm traverses the 2d+1 − 1 nodes of a binary tree
of depth d in a depth-first order. Suppose the algorithm is signing the i-th message m, and the
internal state points to the i-th node w (according to the depth-first order). The algorithm first
computes a fresh pair (pkw, skw) for this node. Then, the signature consists of a pair (σ,Γ), where
σ is a signature on m according to the 3-time signature scheme, and Γ contains a signature path
from the root to the node w (where for each node v on the path, its corresponding public key pkv
is signed under the secret key associated to its parent node skpar(v)). The public key of Comp(Π)
is the public key associated to the root node, and verification is done by verifying that all 3-time
signatures on the path are correct.

Let Π = (Gen, Sign,Vrfy) be a leakage-resilient 3-time signature scheme. We describe the com-
piled stateful signature scheme Comp(Π) = (Gen′,Sign′,Vrfy′).

Key generation: Compute (pk, sk) = Gen(1λ). Let S = {sk}, Γ = ∅ and w0 be the root node.
Further let sk′ = (w0, S,Γ) and pk′ = pk. Return the pair of keys (pk′, sk′).

Signing: Let m ∈ {0, 1}λ be the message, and sk′ = (w, S,Γ) be the current secret key. The
signing algorithm is performed as follows.

• Compute the next node w′ (after w) in depth-first order.

• Generate a new key pair (pkw′ , skw′) = Gen(1λ).

• Compute σ = Signskw′ (m).

• Obtain skpar(w′) from S and compute ϕw′ = Signskpar(w′)
(pkw′).

• Remove skpar(w′) from S if w′ is not a left child and add skw′ to S if w′ is not a leaf.

• Given Γ and (pkw′ , ϕw′), update Γ to [(pkw1
, ϕw1), . . . , (pkw′ , ϕw′)] the signature path from

the root to w′.

• Let Σ = (σ,Γ) and sk′ = (w′, S,Γ).

• Return (Σ, sk′) as the signature.
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Verification: Given a signature (Σ, sk′) on message m, with respect to public key pk, parse
Σ = (σ,Γ). Then, verify all signatures in the signature chain Γ and the signature σ on the message.
If all signatures are correct, output 1. Otherwise, output 0.

Theorem 40. Let Π be a 3-time L-spooky-classical-leakage resilient signature scheme. Then,
Comp(Π) is a t-time L-spooky-classical-leakage resilient stateful signature scheme.

Proof. Let A∗ = (A∗Leak,A∗Main) be an adversary that wins in the experiment for the security of the
stateful signature scheme described in Definition 56, with probability δ.

We will show how to construct an adversary A = (ALeak,AMain) that wins with probability δ/t
the experiment for the security of the signature scheme described in Definition 53.

We initialize the quantum register for ALeak to be the quantum register of A∗Leak, i.e., R1 = R∗1.
Similarly, we initialize the quantum register of AMain to be the quantum register of A∗Main, i.e.
R2 = R∗2.

Simulation of public key. On input pk from the challenger of the 3-time signature security
experiment, sample a node w′ at random from the first t nodes. The key (pkw′ , skw′), where
pkw′ = pk, will be the challenge key. [Note that skw′ is not known to AMain.] The other keys
(pkw, skw), for w ̸= w′ are generated (as needed during the simulation of the signing oracle) using
the key generation algorithm Gen of the 3-time signature scheme with fresh randomness. Define
pk′ = pkϵ to be the key corresponding to the root node. Send pk′ to A∗Main.

Simulation of signing oracle. Upon receiving a query to the signing oracle on message m, we
distinguish two cases. First, the computation of the signature (Σ, sk′′) using the current secret key
sk′ does not require the usage of the challenge secret key skw′ . In this case, simply compute the
signature (Σ, sk′′) and return it to A∗Main. Second, computing the signature (Σ, sk′′) requires access
to the challenge secret key skw′ . In this case, compute the signature (Σ, sk′′) using the available
signing oracle of the 3-time signature game.

Simulation of leakage query. Upon receiving a leakage query, compute the leakage by querying
the adversary A∗Leak (who has knowledge on the current secret keys).

The simulation is perfect and has the right distribution. Therefore, the adversaryA∗ = (A∗Leak,A∗Main)
outputs a forgery (m,Σ) with probability δ. Now we argue that we can extract a forgery with re-
spect to at least one of the keys (pkv, skv), v ∈ W , where W is the set of nodes that have been
visited during the signature query phase. Parse Σ = (σ,Γ). Let U = {Γv}v∈W be the set of all
signature chains that have been generated in the experiment. If Γ ∈ U , then Γ = Γv for a node
v ∈W . If Σ is a valid forgery, then σ = Signsku(m), where m was not queried. Otherwise, if Γ /∈ U ,
there is a node v ∈ W such that ϕ ∈ Γ, with ϕ ∈ Signsku(pk

′′), where pk′′ has not been queried
before.

As a consequence, we can extract a forgery with probability δ/t (namely, when the node v from
which we can extract the forgery happens to be the challenge node w).

From Theorems 40 and 39, we obtain the following corollary.

Corollary 9. Assuming a post-quantum secure universal one-way hash function, there exists a
t-time θ(n/9)-spooky-classical-leakage resilient stateful signature scheme, where n is the size of the
secret key.
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5.2 Spooky leakage-resilient secret sharing

In this section we study classical secret sharing schemes which are resilient to side-channel at-
tacks mounted by adversaries with quantum capabilities and shared entanglement. We start by
introducing the leakage model we will be focusing on.

5.2.1 Leakage model

We consider a quantum analogue of the local leakage model in classical leakage-resilient secret
sharing [BDIR18, ADN+19, SV19, CKOS22], which we term spooky local leakage.

Suppose that a secret x is distributed into a tuple of n shares S = (S1, . . . , Sn) according to some
secret sharing scheme. Consider an unauthorized set T ̸∈ Γ. To each share Si for i ̸∈ T , we associate
a local leakage adversary Ai which has access to Si and to a quantum register Ri. We allow an
arbitrary quantum state σ = σR1,...,Rn to be stored across the registers R1, . . . , Rn. Note that the
contents of different registers may be arbitrarily entangled with each other. Let A = (Ai)i ̸∈T . For
a given leakage bound ℓ, we say that (A, σ) is an ℓ-spooky local leakage adversary if each adversary
Ai produces quantum leakage by applying a quantum circuit to Si and the contents of Ri which
outputs a ℓ-qubit quantum state in (H)⊗ℓ into a leakage register Li. We denote the contents of Li

by Ai(Si, Ri) and the joint adversarial state across all registers ((Ri)i∈T , (Li)i ̸∈T ) by A(S, σ).
We are now ready to define secret sharing schemes resilient against spooky local leakage.

Definition 57 (Spooky locally leakage-resilient secret sharing). We say that a tuple of quantum
operations (Share,Rec) is an (ℓ, ε)-spooky locally leakage-resilient secret sharing scheme with mes-
sage space X and share space S for an access structure Γ if (Share,Rec) is an ε-secret sharing
scheme with message space X and share space S for Γ which additionally satisfies the following
property:

• Spooky local leakage-resilience: Fix any two messages x(0), x(1) ∈ X and define Sb =
Share(x(b)) for b ∈ {0, 1}. Then, for any ℓ-spooky local leakage adversary (A, σ) and unau-
thorized set T ̸∈ Γ it holds that

S0
T ,A(S0, σ) ≈ε S

1
T ,A(S1, σ).

5.2.2 A simple upper bound on the tolerable spooky local leakage rate via superdense
coding

In the classical setting, we know several schemes with shares of size N which resist local leakage of
ℓ = (1− δ)N bits from each share for any arbitrary constant δ > 0 [ADN+19, SV19, CKOS22]. It
is natural to wonder whether this is achievable in the setting of spooky local leakage. Superdense
coding provides a negative answer – spooky leakage-resilience is impossible if the leakage rate is at
least 1/2.

Theorem 41 (Theorem 9, restated). If there exists an (ℓ, ε)-spooky locally leakage-resilient secret
sharing scheme with share space {0, 1}N and error ε < 1, we must have

ℓ < N/2.

Moreover, the adversary can guess the secret with probability δ whenever ℓ ≥ 1
2(N − log(1/δ)).

Proof. We first show that access to ℓ ≥ N/2 qubits of leakage from each share allows an adversary
to perfectly recover the secret via superdense coding [NC10, Section 2.3]. This is a method through
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which Alice can communicate an arbitrary N -bit string to Bob by operating on her half of N/2
shared EPR pairs and then sending them to Bob. Suppose that the secret sharing scheme realizing
access structure Γ shares a secret b into n shares S1, . . . , Sn. Let T ̸∈ Γ be an unauthorized set with
T ∪ {i} ∈ Γ for some i. Note that such a set T always exists, by choosing a minimal authorized
set and dropping one of the elements. Assume also that the leakage adversaries Ai and Aj for
some j ∈ T share N/2 EPR pairs. If ℓ ≥ N/2, then we can have Ai prepare its halves of the N/2
EPR pairs according to superdense coding of Si and leak the resulting N/2 qubits. The leakage
adversary Aj simply leaks its half of the N/2 EPR pairs. Therefore, an adversary that has access
to ST along with the leakage from Ai and Aj can recover Si and perfectly reconstruct the secret b
from (ST , Si) since T ∪ {i} ∈ Γ, thus breaking spooky local leakage-resilience.

To see the second part of the theorem statement, consider the modified leakage attack where
superdense coding is used to transmit only the first N − log(1/δ) bits of Si, which requires leaking
1
2(N − log(1/δ)) qubits. The adversary can guess the remaining log(1/δ) bits of Si, and hence
recover the secret, with probability δ.

5.2.3 Nearly optimal 2-out-of-2 spooky locally leakage-resilient secret sharing.

We begin by constructing a simple and nearly optimal 2-out-of-2 spooky leakage-resilient secret
sharing scheme via quantum-proof two-source extractors.

Observe that the inner product extractor IP (Lemma 7) supports efficient preimage sampling,
meaning that we can sample uniformly from the preimages IP−1(b) in an efficient manner. We will
exploit this observation in conjunction with Lemma 7 to prove the following result.

Theorem 42 (Theorem 10, restated). For every leakage bound ℓ ≥ 0 and error ε > 0 there exists
an efficient 2-out-of-2 (ℓ, ε)-spooky leakage-resilient secret sharing scheme which shares one bit into
two shares of size N = 2(ℓ+ log(1/ε)− 1). In other words, this scheme withstands local leakage of
ℓ = N/2 + 1− log(1/ε) qubits from each share.

Proof. Consider the secret sharing scheme which given a bit b ∈ {0, 1} samples (X,Y ) ← IP−1(b)
and sets Sb

1 = X and Sb
2 = Y , where IP : {0, 1}N × {0, 1}N → {0, 1} is the inner product extractor

with N as in the theorem statement. Note that both sharing and reconstruction can be performed
efficiently (i.e., in time polynomial in ℓ and log(1/ε)). The correctness of this scheme is trivial.

We claim that the scheme above is (ℓ, ε)-spooky locally leakage-resilient. Suppose not, for a
contradiction. Then, without loss of generality there is a spooky local leakage adversary (A, σ)
with A = (A1,A2) and a distinguisher D with 1-bit output such that

Pr
[
D(S1

1 , ρ
A,1
Leak) = 1

]
− Pr

[
D(S0

1 , ρ
A,0
Leak) = 1

]
> ε. (15)

We now use D to construct another distinguisher D′ which breaks the extractor property of IP,
contradicting Lemma 8.

Let X and Y be independent and uniformly distributed over {0, 1}N . Consider the game where
a challenger computes the local leakages A((X,Y ), σ) using the leakage adversaries A1 and A2

above on input (X,σR1) and (Y, σR2), respectively, and provides A((X,Y ), σ), X, and a bit Z,
where Z is either IP(X,Y ) or independent and uniformly random. By Lemma 8 and the choice of
N , it follows that for every distinguisher D′ with 1-bit output we have∣∣Pr[D′(A((X,Y ), σ), X, Z = IP(X,Y )) = 1

]
− Pr[D(A((X,Y ), σ), X, Z = U1) = 1]

∣∣ ≤ ε.
However, consider the distinguisher D′ which on input (A((X,Y ), σ), X, Z) computes

b̃ = D(X,A((X,Y ), σ))
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and outputs 1 if and only if b̃ = Z. Then, we have∣∣Pr[D′(A((X,Y ), σ), X, Z = IP(X,Y )) = 1
]
− Pr[D(A((X,Y ), σ), X, Z = U1) = 1]

∣∣
=

∣∣∣∣Pr[D′(A((X,Y ), σ), X, Z = IP(X,Y )) = 1
]
− 1

2

∣∣∣∣
=

∣∣∣∣Pr[b̃ = IP(X,Y )
]
− 1

2

∣∣∣∣
=

∣∣∣∣12 Pr
[
b̃ = IP(X,Y )|IP(X,Y ) = 0

]
+

1

2
Pr
[
b̃ = IP(X,Y )|IP(X,Y ) = 1

]
− 1

2

∣∣∣∣
=

∣∣∣∣12 Pr
[
D(X0,A((X0, Y 0), σ)) = 0

]
+

1

2
Pr
[
D(X1,A((X1, Y 1), σ)) = 1

]
− 1

2

∣∣∣∣
> ε,

where the last inequality follows from Equation (15). This contradicts Lemma 8.

Note that, because of Theorem 9, the local leakage bound ℓ withstood by the scheme from
Theorem 10 is nearly optimal with respect to the share size and the error ε.

5.2.4 Spooky locally leakage-resilient secret sharing for all 3-monotone access struc-
tures

We now show how we can leverage the 2-out-of-2 scheme from Section 5.2.3 to obtain a compiler
for spooky leakage-resilient secret sharing over any 3-monotone13 access structure. To this end,
we show that the approach from [ADN+19] carries over to a setting with shared entanglement if
we use a quantum-proof two-source extractor with the appropriate output length and supporting
efficient preimage sampling.

Let (Share,Rec) be an arbitrary (not necessarily leakage-resilient) secret sharing scheme realizing
a given access structure Γ sharing one bit into n shares of size M . Suppose we have access to an
explicit quantum-proof two-source extractor Ext : {0, 1}N × {0, 1}N → {0, 1}M that supports
efficient preimage sampling. Then, we consider a modified sharing procedure Share defined as
follows on input b ∈ {0, 1}:

1. Compute (S′1, . . . , S
′
n) = Share(b);

2. For i ∈ [n], sample (Xi, Yi)← Ext−1(S′i);

3. Set the i-th share as Si = (Xi, Y−i), where Y−i = (Y1, . . . , Yi−1, Yi+1, . . . , Yn).

Correctness of this compiled scheme is straightforward: We can efficiently recover b given any
set of shares T ∈ Γ. Note also that the total share size is n2 · N , and that sharing is efficient.
It remains to argue that the compiled scheme is spooky leakage-resilient when we instantiate Ext
appropriately. To this end, we use the extractor from Lemma 8 and obtain the following result.

Theorem 43 (Theorem 40, restated). Given an access structure Γ over n parties and a δ-
statistically private secret sharing scheme realizing Γ with shares of size M , there exists an (ℓ, δ +
ε · n · 2M )-spooky leakage-resilient secret sharing scheme realizing Γ with shares of size n ·N with

N = (M + ℓ+ log(1/ε)− 1).

Moreover, the compiled scheme is efficient whenever the underlying one is too.

13We say that an access structure Γ is t-monotone if |T | ≥ t for every authorized set T ∈ Γ.
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Before we prove Theorem 40, we introduce the following useful lemma generalizing [CG17,
Proposition B.3].

Lemma 16. Let (Z, ρ) and (Z ′, ρ′) be mixed quantum states where Z and Z ′ are classical over a
common set Z. Suppose that (Z, ρ) ≈ε (Z ′, ρ′) and let E ⊆ Z be a set such that Pr[Z ∈ E] = p.
Then, it holds that

(Z, ρ|Z ∈ E) ≈ε/p (Z
′, ρ′|Z ′ ∈ E).

Proof. Suppose that
(Z, ρ|Z ∈ E) ̸≈ε/p (Z

′, ρ′|Z ′ ∈ E)

for some event E ⊆ Z with Pr[Z ∈ E] = p. By the operational interpretation of trace distance,
this means that there is a distinguisher D which correctly guesses whether it is interacting with the
mixed state (Z, ρ|Z ∈ E) or (Z ′, ρ′|Z ′ ∈ E) with probability larger than 1/2 + ε/p.

Consider the following distinguisher D′ with 1-bit output which aims to distinguish between
(Z, ρ) and (Z ′, ρ′): Given some mixed classical-quantum state σR1,R2 where the contents of register
R1, denote them by W , are classical, D′ first checks whether W ∈ E. Note that this can be done
without disturbing the overall quantum mixed state since W is classical. If this is not the case,
then D′ outputs a random bit. Otherwise, D′ invokes D on σR1,R2 and simply outputs whatever D
guesses. Then, the probability that D′ guesses (Z ′, ρ′) when σR1,R2 = (Z, ρ) is smaller than

Pr[Z ̸∈ E] · 1
2
+ Pr[Z ∈ E](1/2− ε/p) = 1/2− ε,

which contradicts the fact that (Z, ρ) ≈ε (Z
′, ρ′).

We now proceed to the proof of Theorem 40.

Proof of Theorem 40. The claims about share size and efficiency are straightforward. We prove
spooky local leakage-resilience via a hybrid argument.

Fix shares (S′b1 , . . . , S
′b
n ) of b ∈ {0, 1} from the underlying secret sharing scheme (Share,Rec), an

unauthorized set T ̸∈ Γ and a tuple of local leakage adversaries A = (A1, . . . ,An) with arbitrary
shared entanglement and ℓ-qubit output. Without loss of generality, rename parties so that T =
{1, . . . , t}. Let (Sb

1, . . . , S
b
n) denote the shares obtained by sharing a bit b ∈ {0, 1} using Share,

and ρA,bLeak the corresponding spooky quantum leakage. Consider the modified experiment which
proceeds exactly like Share(b) but replaces (Xt+1, Yt+1) by (X∗t+1, Y

∗
t+1) both sampled independently

and uniformly at random from {0, 1}N . Denote the shares and leakage resulting from this modified

experiment by (Sb,t+1
1 , . . . , Sb,t+1

n ) and ρA,b,t+1
Leak . Then, by the choice of N in the theorem statement

and Lemma 8 it holds that

Ext(X∗t+1, Y
∗
t+1), S

b,t+1
T , ρA,b,t+1

Leak ≈ε UM , S
b,t+1
T , ρA,b,t+1

Leak . (16)

This is so because we can see ρA,b,t+1
Leak as spooky local ℓ-qubit leakage on X∗t+1 and unbounded

leakage on Y ∗t+1, since only S
b,t+1
t+1 depends on X∗t+1. Consider now the event that UM = S′bt+1. Since

this event holds with probability 2−M , it follows from Equation (16) and Lemma 16 that

Sb
T , ρ

A,b
Leak ≈ε·2M Sb,t+1

T , ρA,b,t+1
Leak ,

since Sb,t+1
T , ρA,b,t+1

Leak correspond exactly to Sb
T , ρ

A,b
Leak when conditioned on the event Ext(X∗t+1, Y

∗
t+1) =

S′bt+1.
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More generally, let (Sb,t+1
1 , . . . , Sb,j

n ) and ρA,b,jLeak be the modified shares and leakage obtained via
the modified Share(b) experiment where (Xi, Yi)i=t+1,...,j are all replaced by (X∗i , Y

∗
i ) independent

and uniformly distributed over {0, 1}N . Repeating the argument from the previous paragraph n− t
times and repeatedly invoking the triangle inequality, we conclude that

Sb
T , ρ

A,b
Leak ≈n·ε·2M Sb,n

T , ρA,b,nLeak .

Observe that ρA,b,nLeak is a function of S′bT only. Therefore, since S′0T ≈δ S
′1
T by the δ-statistical privacy

of (Share,Rec), it follows by the triangle inequality that

S0
T , ρ

A,0
Leak ≈δ+n·ε·2M S1

T , ρ
A,1
Leak,

as desired.

5.3 Spooky leakage-resilient computation

In this section we present a compiler that transforms general computations so that they can be run
securely even in the presence of spooky leakage attacks. The compiler was introduced by Goldwasser
and Rothblum [GR12], and we show that it tolerates a spooky-leakage adversary, who learns a
bounded local leakage on each computation instruction, where the leakage functions are computed
using quantum circuits with classical output, and are allowed to share arbitrary entanglement.

The computation is represented by a circuit C taking two inputs, a secret input y and a public
input x, and an output. For example, C can be a public encryption algorithm, y a secret key, and
x a message (known to the encryptor) to encrypt. The compiler takes as input the circuit C and
transforms it into an algorithm that is resilient to spooky-leakage.

More concretely, the leakage model considered is the so-called only computation leaks (alter-
natively, the leaky CPU) model, where the algorithm is composed of a sequence of instructions,
which are basic subcomputations coming from a fixed universal set of instructions. The adversary
learns a bounded local classical leakage on each operand to an instruction when it is executed, and
the leakage functions have access to arbitrary entanglement. The leakage on each instruction can
be the result of a computationally unbounded function of the internal state of the instruction.

Universal set of instructions. The set of instructions that we need for our purposes are:
generating a random matrix/vector of bits, addition and multiplications of matrices, and permuting
a sequence of vectors. All these instructions can be computed by circuits with small polynomial
size.

Security definition. The input to the compiler is a circuit C that is known to all parties, and
takes two inputs. The input y is fixed and secret, whereas the input x is chosen by the user for
evaluation. Security requires that for any unbounded adversary choosing the input x, and with
access to spooky leakage on the transformed computation, the adversary learns nothing more than
the circuit’s outputs.

The compiler consists of two parts, the initialization and the evaluation. The initialization phase
occurs once at the beginning and only depends on the circuit C and the secret input y. This phase
occurs with no leakage. The evaluation phase then occurs whenever the user wants to evaluate the
circuit C(y, ·) on input x, and is computed under leakage.

We consider the notion of L-spooky leakage, which is similar to the one introduced in Sec-
tion 5.2.1 introduced for secret sharing, but adjusted to this setting. More concretely, the adversary
has access to outputs of leakage functions on each instruction step I, where the leakage function
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takes as input the input to the instruction and any randomness used in the instruction, as well as
a quantum register RI , and outputs at most L bits. The leakage functions are decided in advance,
and consist of a quantum circuit with classical output, and the registers {RI}I may be arbitrarily
entangled with each other.

Definition 58 (L- Spooky Leakage Secure Compiler). Let λ be a security parameter and n be a
natural number. We say that a compiler (Init,Eval) for a circuit C on two n-bit inputs is L-spooky-
classical-leakage-resilient secure if for every y ∈ {0, 1}n the following holds:

• Initialization: Init(1λ, C, y) runs in time poly(λ, n) and outputs an initial state st.

• Evaluation: the evaluation procedure Eval is run on state st and input x ∈ {0, 1}n. We
require that with overwhelming probability (over the randomness of Init and invocation of
Eval), C(y, x) = Eval(st, x).

• L-Spooky-Classical-Leakage Security: Consider an execution of Init(1λ, C, y) returning st, fol-
lowed by an execution of Eval(st, x). Let RealA be the view of the adversary in the whole ex-
ecution, including input x, output of Eval(st, x) and L-spooky-classical-leakage on Eval(st, x)
(meaning, local L(λ)-bit bounded leakage from each basic instruction step, with access to ar-
bitrary entanglement). Further let IdealA be the output of the simulator S. The simulator
includes SInit and SEval procedures, where SInit generates the initial state st from the descrip-
tion of the circuit C, and SEval generates the simulated leakage from the input x chosen by
the adversary and the circuit output C(y, x).

We require that there exists a simulator S such that the view RealA of every (potentially com-
putationally unbounded) adversary A choosing input x, and with access to L-spooky leakage
on Eval(st, x), is overwhelming statistically close to the view IdealA generated by S, which only
gets the description of the adversary and the pair (x,C(y, x)).

5.3.1 Spooky leakage-resilient encryption

A main ingredient of the compiler construction is a spooky leakage resilient one-time pad encryp-
tion scheme LROTP. We use the scheme from [GR12] (originally proven secure against classical
adversaries) and show that it is actually resilient under spooky bounded leakage attacks on the key
and the ciphertext. The encryption scheme (KeyGen,Enc,Dec) works as follows:

• Key generation: KeyGen(1λ) outputs a uniform random key k ∈ {0, 1}λ such that k[0] = 1.

• Encryption: Given a message m ∈ {0, 1} and a key k ∈ {0, 1}λ, the encryption algorithm
Enc(k,m) outputs a uniform λ-bit ciphertext c ∈ {0, 1}λ such that c[1] = 1 and ⟨k, c⟩ = m.

• Decryption: Given key k ∈ {0, 1}λ and ciphertext c ∈ {0, 1}λ, the decryption algorithm
Dec(k, c) outputs the message bit ⟨k, c⟩.

Semantic security under L-spooky-classical-leakage. We need that statistical security holds
against a spooky adversary who launches attacks on both key and ciphertext. The attack applies
bounded leakage functions to each part, where the leakage functions have access to arbitrary en-
tanglement. Intuitively, because the leakage is of bounded length and operates separately on key
and ciphertext, these remain high entropy sources and are independent (up to their inner product
being the plaintext). But since the inner product is a strong quantum-proof two-source extractor
(see Lemma 7), the plaintext will be statistically close to uniform even with leakage.
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Definition 59. An encryption scheme (KeyGen,Enc,Dec) is semantically secure under L-spooky-
classical-leakage attacks if for every (potentially unbounded) adversary A, the adversary’s winning
probability in the following game described below is at most 1/2 + negl(λ):

• The game chooses key k ← KeyGen(1λ), chooses uniformly at random a bit b ∈ {0, 1}, and
generates a ciphertext c = Enc(k, b).

• The adversary launches a L-bounded local spooky leakage attack on k and c, and outputs a
guess b′:

b′ ← AL(λ)(1λ)[k, c].

The adversary wins if b′ = b.

Lemma 17. The one-time pad spooky leakage-resilient LROTP scheme is semantically secure under
L-spooky leakage, for L = λ/3.

Proof. The key and ciphertext are both high entropy sources, satisfying ⟨k, c⟩ = b, and from
Lemma 7 we know that IP is a strong quantum-proof two-source extractor for L = λ/3 ≤ λ−λ/2−
log(1/ε) + 1, for ε = 2−λ/6. This means that the plaintext b is statistically close to uniform even
given L-bit spooky leakage.

Key and ciphertext refreshing. The LROTP scheme allows to refresh both the key and cipher-
text, injecting new entropy while maintaining the corresponding plaintext, using the methods de-
scribed below. One can generate new entropy key σ and ciphertext τ , using the methods KeyEntGen
and CipherEntGen, and refresh a known key or ciphertext using KeyRefresh and CipherRefresh. More-
over, using CipherCorrelate, and without knowledge of a key k, one can correlate a known ciphertext
c into a ciphertext c∗, so that the plaintext of c∗ under key k′ ← KeyRefresh(k, σ) is the same as
the plaintext of c under k. And similarly one can correlate keys using ciphertext entropy with the
method KeyCorrelate.

• KeyEntGen(1λ): output a uniformly random σ ∈ {0, 1}λ such that σ[0] = 0.

• KeyRefresh(k, σ): output k ⊕ σ.

• CipherCorrelate(c, σ): modify c[0]← c[0]⊕ ⟨c, σ⟩, and output c.

• CipherEntGen(1λ): output a uniformly random τ ∈ {0, 1}λ such that τ [1] = 0.

• CipherRefresh(c, τ): output c⊕ τ .

• KeyCorrelate(k, τ): modify k[1]← k[1]⊕ ⟨k, τ⟩, and then output k.

Moreover, we note that one can refresh a key ki and a ciphertext ci separately into an updated
ciphertext c∗i encrypted under a newly generated key k such that c∗i (under key k) contains the
same plaintext as ci (under key ki). This is performed as follows:

1. Generate a new key k ← KeyGen(1λ).

2. Let σi ← ki ⊕ k.

3. Let c∗i [0]← ci[0]⊕ ⟨ci, σi⟩, and c∗i [j] = ci[j] for j > 0.
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Homomorphic operations. The LROTP scheme also allows for homomorphic addition of ci-
phertexts c1, c2 under the same k, by computing c← c1 ⊕ c2 (bit-wise). By linearity, the plaintext
underlying c is the XOR of plaintexts underlying c1 and c2. Moreover, one can add a plaintext a to
a ciphertext c (encrypting x under k) to generate a new ciphertext c′ = c⊕ (a, 0, . . . , 0) encrypting
x⊕ a under k.

5.3.2 Compiler overview

Now we proceed to give an overview of the compiler ΠComp. The compiler takes as input a secret
input y and a public circuit C. The circuit C takes as input the secret y and a public input x,
and outputs a single bit. The compiler then outputs a functionally equivalent algorithm Eval, i.e.
C(y, x) = Evaly(x) for all x, consisting of a sequence of instructions, where the adversary can learn
bounded-length leakage on each instruction. Importantly, we assume that the compiler is run once
at the beginning and is not subject to leakage. In particular, there is no leakage on the secret y.
The leakage only occurs during the execution of Evaly(x).

Let us assume that the circuit C is described of NAND gates. The high-level idea is to keep
track of each intermediate wire value vi of the circuit C(y, x) in an encrypted form via a pair
key-ciphertext (ki, ci). The value vi will be protected because no instruction makes use of the key
and ciphertext at once, and the encryption scheme tolerates spooky bounded local leakage on key
and ciphertext (see Section 5.3.1). Moreover, we will have a procedure that allows to compute the
NAND gate in order to evaluate the circuit gate by gate. Details follow below.

Initialization. For each y-input wire i with bit value y[j], generate a leakage-resilient one-time
pad encryption of y[j], (ki, ci). For each x-input wire i, generate an encryption of 0, (ki, ci). For
each internal wire i, choose a random bit ri and generate two encryptions of ri, denoted (li, di) and
(l′i, d

′
i). Finally, for each internal wire i (including the output wire), generate an encryption of 1,

(oi, ei).

Evaluation. Given input x, the algorithm Eval transforms the ciphertexts ci (initially encoding
0 for each x-input wire) to ciphertexts encoding each bit x[j], simply by homomorphically adding
the 0-ciphertext with the plaintext x[j]: ci = ci + (x[j], 0, . . . , 0).

The algorithm Eval then simply computes a pair (ki, ci) for each wire vi following a fixed topo-
logical order gate-by-gate from the inputs to the output. For each NAND gate, given encryptions
of the two bits on the input wires, it computes an encryption of the output wire. The final output
ciphertext is then decrypted.

Computation of NAND. Given two ciphertext pairs (ki, ci) and (kj , cj) encrypting wire values
vi and vj , the procedure first computes the bit ak = (vi NAND vj) ⊕ rk, for random rk. This is
performed in four steps:

1. Key unification: Choose a single key k, and compute ciphertexts (c∗i , c
∗
j , d
∗
k, e
∗
k) encrypting

(vi, vj , rk, 1) under the same key k, using the ciphertext pairs (ki, ci), (kj , cj), (lk, dk) and
(ok, ek), encrypting the wire values vi and vj , and random value rk and 1 (corresponding to
the output wire k, generated in the initialization phase), respectively. See Section 5.3.1.

2. Tuple generation via homomorphism: Given the above ciphertexts under the same key, use
the homomorphic property of LROTP (see Section 5.3.1) to compute the tuple

C ← (d∗k, (c
∗
i ⊕ d∗k), (c∗j ⊕ d∗k), (c∗i ⊕ c∗j ⊕ d∗k ⊕ e∗k)),
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which are ciphertexts encrypting (rk, (vi ⊕ rk), (vj ⊕ rk), (vi ⊕ vj ⊕ rk ⊕ 1)).

3. Tuple permutation: This procedure takes as input a key k and the tuple of four ciphertexts,
and outputs four randomly permuted fresh pairs of key-ciphertext, encrypting the same plain-
texts. Details follow below.

4. Output determination: Decrypt the four ciphertexts. If there is one 0, let ak = 0. Otherwise,
let ak = 1. Compute the output value as kk = l′k and ck = d′k ⊕ (ak, 0, . . . , 0), where d

′
k is the

second ciphertext encrypting rk under key l′k from the initialization phase.

Correctness of the NAND operation follows from the fact that the tuple of ciphertexts C contains
a 0 if and only if (vi NAND vj) ⊕ rk = 0, and correctness of the initialization phase. At a very
high level, security will hold from three main aspects: first, the bit ak can be made public since rk
is random; second, the one-time pad encryption is spooky classical-leakage-resilient and supports
homomorphic plaintext addition; finally, the permutation procedure is made statistically close to
random even under leakage.

Leakage-resilient tuple permutation. This procedure takes as input a key k and the tuple
of four ciphertexts (under the same key k), and outputs four randomly permuted fresh pairs of
key-ciphertext. The procedure guarantees 1) correctness, meaning that the underlying plaintexts
are a random permutation of the plaintexts corresponding to the input ciphertexts; and 2) security,
meaning that the permutation is random in the view of a (possibly) unbounded adversary. More
precisely, there is a simulator that generates the leakage and the pairs of output key-ciphertext, with
access only to the marginal distribution from which the input key and ciphertexts are drawn, and
a random permutation of the plaintexts underlying the input ciphertexts. The joint distribution of
the leakage and the outputs is independent of the used permutation.

The procedure proceeds in iterations. At each iteration, the input and output is a tuple of four
pairs of key-ciphertext, where the output ciphertexts have as underlying plaintexts some permu-
tation of the input ciphertexts. At each iteration, the permutation will look fairly random to a
leakage adversary, and the composition of permutations will be statistically close to uniform. A
description of Permute(k,C), where k is the input key and C is the tuple of four ciphertexts follows:

• Take K0 ← (k, k, k, k), C0 ← C, and ℓ = poly log(λ).

• For i ∈ [ℓ]:

1. for j ∈ [λ], k ∈ [4]: σi[j][k]← KeyEntGen(1λ),
Li[j][k]← KeyRefresh(Ki[k], σi[j][k]).

2. for j ∈ [λ], k ∈ [4]: Di[j][k]← CipherCorrelate(Ci[k], σi[j][k]).

3. for j ∈ [λ], k ∈ [4]: τi[j][k]← CipherEntGen(1λ),
D′i[j][k]← CipherRefresh(Di[j][k], τi[j][k]).

4. for j ∈ [λ], k ∈ [4]: L′i[j][k]← KeyCorrelate(Li[j][k], τi[j][k]).

5. pick πi ∈R Sλ
4 , for j ∈ [λ]: L′′i [j]← πi[j](L

′
i[j]), D

′′
i [j]← πi[j](D

′
i[j]).

6. pick j∗i ∈R [λ]. Save Ki+1 ← L′′i [j
∗
i ], and Ci+1 ← D′′i [j

∗
i ].

• Output (Kℓ, Cℓ)
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Correctness of the permutation procedure is immediate. Security is formalized by the existence
of a simulator that generates the view of the leakage attack. The attack proceeds in two phases:
first an adversary A1 mounts an attack operating separately on key k and tuple of four ciphertexts
C. Then, a second adversary A2 performs an attack on the execution of Permute with those inputs.

The simulator only gets a random permutation of the plaintexts underlying the input k and C,
and simulates the leakage generated by A1 and A2. The following lemma follows from the security
of the one-time pad scheme, and its proof is presented in [GR12].

Lemma 18. There is a simulator SPermute and a leakage bound L(λ) = Ω̃(λ) such that for any λ,
leakage adversaries A1 and A2, and any bit values (b1, b2, b3, b1 + b2 + b3 + 1) the following views
are statistically close:

REAL =
(
AL(λ)

1 [k,C],AL(λ)
2 [(K ′, C ′)← Permute(k,C)],K ′, C ′

)
(k,(c1,c2,c3))∼D

IDEAL =
(
SPermute(⃗b

′,K, C)
)
µ∈RS4 ,⃗b′←µ(⃗b)

,

where D is the distribution for uniform key k and ciphertexts c1, c2 and c3 encrypting the bits b1,
b2 and b3 (respectively), and where C = (c1, c2, c3, (c1 ⊕ c2 ⊕ c3 ⊕ (1, 0, . . . , 0))).

Proof. The simulator takes as input a uniform random permutation b⃗′ of the input bits. It outputs a
leakage and the output (K ′, C ′) as follows. First sample a pair (k,C), where C contains encryptions
of 0 (instead of b⃗ as in the real world).

Then compute the leakage w = (AL(λ)
1 [k,C],AL(λ)

2 [(K ′, C ′) ← Permute(k,C)]). The adversary
then samplesK ′ according to the conditional distribution where the leakage is w, the permutation is
π (the composed distribution used by the Permute procedure), and the pair key-ciphertext is (k,C).
Similarly, sample C ′ from the conditional distribution where the leakage is w, the permutation is
π, the pair key-ciphertext is (k,C), and the inner products of C ′ and K ′ are the bits in b⃗′. The
simulator outputs (w,K ′, C ′).

Note that the pair (k,C) chosen in the real and ideal distributions only differ in the fact that the
plaintexts of C are b⃗ in the real distribution, and 0 in the ideal distribution. Further note that the
Permute procedure operates separately on k and on C. By the security of the one-time pad scheme,
the distributions of the leakage generated in the real and ideal transcripts are statistically close.
Now we need to argue that the joint distribution of (K ′, C ′) in both real and ideal are statistically
close. For that, we first consider a hybrid distribution, which is generated exactly the same as
SPermute does, except that C ′ is generated conditioning on the fact that the inner products of C ′

and K ′ is π(⃗b), rather than b⃗′.
To see that this hybrid distribution is statistically close to the real distribution, observe that

one can sample the real distribution as follows: first sample (k,C), where k is uniform, and C
contains encryptions of the real bits b⃗, and then follow exactly the steps of the hybrid distribution
(where the considered key-ciphertexts tuple is (k,C)). By semantic security of the LROTP scheme,
the distributions for real and hybrid are statistically close.

To see that the hybrid distribution is statistically close to the ideal distribution, observe that
when the pair (k,C), where k is uniform, and C contains encryptions of 0, the composed permuta-
tion π is indistinguishable from uniform random. As such, the only difference between the hybrid
and ideal distributions, is that in the hybrid distribution we condition (K ′, C ′) on the permutation
being π and the leakage w, whereas in the ideal distribution this is conditioned on a uniformly ran-
dom composed permutation (µ ◦ π). But drawing from these two conditional distributions yields
statistically close views.
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The following theorem proves that the compiler is secure. The proof is taken from the proof
presented in [GR12].

Theorem 44. There is a leakage bound function L = Θ(λ) such that for every λ the compiler
ΠComp is a L(λ)-spooky leakage secure compiler as defined in Definition 58.

Proof. We provide a rough sketch of the theorem. The simulator is composed of two parts, SInit
and SEval. The SInit starts by initializing all ciphertexts as in the initialization step of the real
protocol. Then, the simulator SEval computes the values on all the internal wires for the circuit
computation C(0, x), where x is the input. For each internal wire, it chooses a value ai ∈R {0, 1}
and the key-ciphertext pair (ki, ci), and the output wire is set to the real value aout = C(y, x).

The simulator then follows exactly the protocol steps, where the NAND computation is simu-
lated as follows:

The simulator uses the wire value ak and it chooses bits (v′i, v
′
j , r
′
k) such that ak = (v′i NAND v′j)⊕

r′k. The simulator runs the leakage attack on freshly generated keys and ciphertexts encrypting
these bit values, and outputs its view. Given that the tuple permutation operation does not reveal
the order of the ciphertexts, the NAND computation can be simulated as follows.

In the case of the real attack, we have the tuple (rk, (vi ⊕ rk), (vj ⊕ rk), (vi ⊕ vj ⊕ rk ⊕ 1)), and
in the ideal attack we have the tuple (r′k, (v

′
i ⊕ r′k), (v′j ⊕ r′k), (v′i ⊕ v′j ⊕ r′k ⊕ 1)). Note that in both

cases, the number of 0’s and 1’s is the same (three 0’s if ak = 1 and one 0 if ak = 0). Therefore,
both tuples are distributed identically.
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