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Abstract. Digital signatures are one of the most basic cryptographic building blocks which are utilized
to provide attractive security features like authenticity, unforgeability, and undeniability. The security of
existing state of the art digital signatures is based on hardness of number theoretic hardness assumptions
like discrete logarithm and integer factorization. However, these hard problems are insecure and face a
threat in the quantum world. In particular, quantum algorithms like Shor’s algorithm can be used to solve
the above mentioned hardness problem in polynomial time. As an alternative, a new direction of research
called post-quantum cryptography (PQC) is supposed to provide a new generation of quantum-resistant
digital signatures. Hash based signature is one such candidate to provide post-quantum secure digital
signatures. Hash based signature schemes are a type of digital signature scheme that use hash functions
as their central building block. They are efficient, flexible, and can be used in a variety of applications. In
this document, we provide an overview of the hash based signatures. Our presentation of the topic covers
a wide range of aspects that are not only comprehensible for readers without expertise in the subject
matter, but also serve as a valuable resource for experts seeking reference material.
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1 Introduction

Post-quantum signatures are cryptographic signatures that are designed to be secure against attacks
from quantum computers. Quantum computers have the potential to break many of the crypto-
graphic schemes that are currently in use, including the signature schemes that are used to verify
the authenticity of digital documents and transactions. Quantum computers can use a technique
called Shor’s algorithm to quickly factor large numbers, which is the basis of many cryptographic
systems. This means that the security of many current signature schemes will be compromised once
practical quantum computers are built. Post-quantum signature schemes are designed to be secure
even against attacks from quantum computers. They use mathematical problems that are believed to
be hard even for quantum computers to solve, such as the problem of finding short vectors in lattices
or the problem of solving multivariate polynomials.

As the development of quantum computers continues to progress, the need for post-quantum sig-
natures becomes increasingly important to ensure the security of digital communications and trans-
actions. There are several categories of post-quantum signature schemes, each based on a different
mathematical problem or approach:

1. Hash based signatures: These schemes are based on the use of one-way hash functions, which
are believed to be secure even against quantum computers. Examples include the Merkle signature
scheme [17], XMSSMT [12], and Sphincs [2].

2. Lattice based signatures: These schemes are based on the hardness of certain lattice problems,
which are believed to be hard for both classical and quantum computers. Examples include the
FALCON [8] and Dilithium[7] signature schemes.

⋆ Vikas Srivastava would like to acknowledge the support from International Mathematical Union (IMU) and the
Graduate Assistantships in Developing Countries (GRAID) Program.
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3. Code based signatures: These schemes are based on the hardness of certain coding problems,
which are believed to be hard for quantum computers. Example include the Niederreiter signature
scheme [18].

4. Multivariate polynomial based signatures: These schemes are based on the difficulty of
solving systems of multivariate polynomials, which are believed to be hard for both classical and
quantum computers. Examples include the Rainbow[6] and HFE signature scheme [19].

5. Isogeny based signatures: These schemes are based on the use of isogenies, which are maps
between elliptic curves that are believed to be hard to compute for quantum computers. The
CSI-FiSh signature scheme [4] is one such example of isogeny-based signature.

Each of these categories has its own strengths and weaknesses, and the choice of which post-
quantum signature scheme to use will depend on the specific requirements and constraints of the
application. Among the post-quantum signature candidates, Hash based signature is a promising
candidate to provide secure digital signatures. They rely on the properties of one-way hash func-
tions, which are believed to be secure against both classical and quantum computers. Hash based
signatures are also attractive because they are simple, fast, and efficient. They can be implemented
with relatively small key sizes and require minimal computation for both signing and verification.

The study of hash functions is already a crucial aspect of cryptography, and there have been
various methods and studies aimed at achieving different security properties. Unlike digital signatures
based on difficult number theory problems, if a hash function is attacked, it won’t compromise the
overall security of a hash based signature. The attacked hash function can be replaced by a secure one
easily. Hash functions have been refined and efficiently implemented over several decades, making hash
based signatures highly efficient. Furthermore, by selecting different underlying hash functions and
their parameters, one can balance signature size, time, and storage to cater to diverse application
needs. Particularly, given the symmetric key primitives are considered secure against a quantum
adversary (due to infeasible resource requirement; see, e.g., [13]), it makes intuitive sense to use those
primitives to design asymmetric key alternatives. A chronology for the hash based signatures is given
in Figure 1.
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Fig. 1. Timeline of hash based signatures (in current context)
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2 Background and Motivation

In simple terms, a digital signature scheme provides a cryptographic version of a handwritten sig-
nature that offers much stronger security. These signatures are widely accepted as legally binding in
many countries and can be used to certify contracts, notarize documents, authenticate individuals
or corporations. Digital signatures are also essential for the secure distribution and transmission of
public keys, which is the foundation of public-key cryptography. A digital signature scheme is a type
of public key cryptography where a user, also known as the signer, creates a pair of keys: a private
key and a public key. The user keeps the private key secret and can use it to generate a digital signa-
ture for any message. The process of creating a digital signature involves signer signing the message
using his private key. Only signer can sign a message on his behalf assuming he keeps his private key
secure. The signature algorithm takes both the private key and the message as input. Once signer
has signed the message, he appends the resulting signature σ to m and sends the pair (σ,m) to the
verifier. It is important to note that a digital signature is meaningless without the accompanying
message. Anyone who has access to the public key can verify the authenticity of the message and the
associated digital signature.

A signature scheme is a tuple of algorithms:(Kg,Sign,Ver) along with an associated message space.

(pk, sk)←Kg(κ): Given as input the security parameter κ, the key generation algorithm outputs a
pair of keys (pk, sk). Here, pk is called the public key or the verification key, and sk is known as
the private key, the secret key, or the signing key.

σ ←Sign (m, sk): Given a message m and a secret key sk as input, the algorithm Sign outputs a
signature σ associated with the message m.

0/1←Ver(m,σ, pk): Given as input pk, and a message signature pair (m, σ), Ver outputs a single
bit b. Here b = 1 signifies ‘accept’ and b = 0 signifies ‘reject’.

The digital signatures provides security features like message integrity, authenticity and non-reputation.
As an example of a digital signature scheme, we present the the RSA signature scheme [22]. It is
founded on the concept of number theoretic hardness, specifically on the challenge of factoring a
product of two large prime numbers (which is called the integer factorization problem) in order to
maintain its security. It has been around since 1978 and since then, it has become the most frequently
used digital signature scheme in practical applications. The RSA signature scheme comprises three
algorithms: RSA.Kg, RSA.Sign, and RSA.Ver. Refer to Algorithms 1, 2, and 3 for the exact description.

Algorithm 1 Key generation algorithm of RSA signature, RSA.Kg
Output: public key: (n, e) and private key: sk = (d)
1: Choose two large primes p and q.
2: Compute n = p× q.
3: Compute ϕ(n) = (p− 1)(q − 1).
4: Select the public exponent e ∈ {1, 2, ..., ϕ(n)− 1} such that gcd(e, ϕ(n)) = 1.
5: Compute the private key d such that de ≡ mod ϕ(n)

Algorithm 2 Signature algorithm RSA.Sign
Input: sk, message m
Output: : signature σ on the message m
1: Computes σ = md mod n
2: Return σ
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Algorithm 3 Verification algorithm RSA.Ver
Input: pk, m, σ
Output: : 0 or 1
1: Computes m′ = σe mod n
2: If m′ = m, then declare the signature message pair (σ,m) as valid and outputs 1; otherwise, reject the signature

and output 0.

A toy example is given here for better clarity:

RSA.Kg : We take p = 3 and q = 11. Compute n = p.q = 33. In the following, computes ϕ(n) =
(3− 1).(11− 1) = 20. Choose e = 3. Computes d ≡ e−1 mod 20 ≡ 7. We set pk = (33, 3)

RSA.Sign : Let m = 4 be the message we want to sign. Signer computes σ = md = 47 = 16 mod 33.
The signer produces (4, 16) as the message signature pair.

RSA.Ver : Verifier given m,σ and pk computes m′ = σe mod n = 163 mod n = 4. Note that
m′ = m, therefore the signature-message pair (σ,m) is valid.

The present-day techniques of digital signature, such as RSA, DSA, and ECDSA, count on the
safety of specific one-way functions with trapdoors. These functions are linked to the difficulty of
factorizing integers and computing discrete logarithms. However, it is uncertain whether these prob-
lems will continue to be hard in the future as it has been demonstrated that quantum computers
can solve them quickly. Therefore, it is crucial to develop alternative digital signature schemes that
provide maximum security and are resistant to quantum computers. These new schemes are re-
ferred to as post-quantum signature schemes and must be designed to prevent quantum computers
from being able to break them to ensure the importance of digital signatures. Some candidate for
post-quantum signatures are: lattice-based signatures, multivariate-based signatures, isogeny-based
signatures, code-based signatures, and hash based signatures. Hash based signature is one such post-
quantum cryptography candidate. Hash based signature schemes are a type of digital signature
scheme that use hash functions as their central building block. They are efficient and flexible, and
can be used in a variety of applications. Hash functions are a crucial component in modern cryptog-
raphy, providing a range of security properties that are essential for protecting sensitive data and
ensuring the security of cryptographic applications. Their efficiency and flexibility make them an
ideal choice for many different applications, and ongoing research and development will continue to
improve their security and performance in the years to come. Hash based signature is a very old area
of research. In the late 1970s, Leslie Lamport invented hash based signature schemes, which were
then improved upon by Ralph Merkle and others. For a long time, these schemes were not given
much attention by the cryptographic community, partly because they generate relatively large signa-
tures and have other complexities. However, in recent years, there has been renewed interest in these
schemes, largely because they are believed to be resistant to significant quantum attacks like Shor’s
algorithm. This is unlike signature schemes based on RSA or the discrete logarithm assumption,
which are vulnerable to such attacks.

Hash functions are mathematical functions that take input data of arbitrary size and produce a
fixed-length output, known as a hash value or digest. They are widely used in various applications,
including data integrity verification, message authentication, and digital signature schemes. One of the
key features of hash functions is their one-wayness property, which means that it is computationally
infeasible to recover the input data from the hash value. This property makes hash functions suitable
for protecting the integrity of data and detecting any changes or tampering. Another important
property of hash functions is collision resistance, which means that it is computationally infeasible to
find two different inputs that produce the same hash value. This property is essential for ensuring the
security of many cryptographic applications, including digital signatures. In recent years, there have
been many attacks on various hash functions, leading to the development of new hash functions and
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the retirement of old ones. Some popular hash functions include SHA-256, SHA-3, and BLAKE-2.
We now introduce the first hash based signature scheme.

3 Lamport OTS

Lamport in 1979 designed the first signature scheme [16] solely based on hash functions. Let us
assume that we possess a hash function that can handle 256-bit inputs and generate 256-bit outputs,
such as SHA-256. Suppose we aim to sign messages of 256 bits. To create our private key, our initial
step is to produce 512 individual random bit sequences, each 256 bits long. We will organize these
bit-strings into two separate lists and label each with an index.

sk0 = sk01, sk
0
2, . . . , sk

0
256

sk1 = sk11, sk
1
2, . . . , sk

1
256

The lists (sk0, sk1) represent the secret key. The public key pk is generated by hash of every one
of those random strings. The hash function H is used for this purpose. The public key is given by:

pk0 = H(sk01), H(sk02), . . . ,H(sk0256)

pk1 = H(sk11), H(sk12), . . . ,H(sk1256)

To sign a 256-bit message with sk, we proceed as follows.

1. Represent m as a sequence of 256 individual bits:

m = m1, . . . ,m256, mi ∈ {0, 1}
2. For i = 1 to 256: If the ith message bit Mi = 0 , take the ith private string (sk0i ) from the sk0,

and output that string as part of our signature.
3. If the message bit Mi = 1, we take the appropriate string (sk1i ) from the sk1 list.
4. Concatenate all the strings together to output the signature

A toy example for the signature generation is given in Figure 2. We now discuss the verification
algorithm for L-OTS. Refer to Figure 3) for an illustrated example. Given a message signature pair
(m,σ) and the public key pk = (pk0, pk1), a verifier proceeds in the following way:

sk0 sk01 sk02 sk03 sk04

sk1 sk11 sk12 sk13 sk14
m 001 1

sk11 sk02 sk03 sk14σ

Fig. 2. Signature Generation of L-OTS for the message m = 1001 with secret key sk = (sk0, sk1)

1. Let σi denotes the ith component of σ.
2. For each i ∈ {1, 256}, the verifier considers the message-bit mi, and calculate H(σi).
3. If Mi = 0, the H(σi) should be equal to the corresponding element from pk0. If Mi = 1, H(σi)

should be equal to the corresponding element in pk1.
4. Signature is declared valid if every component of the signature, when hashed, matches the correct

portion of the pk
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pk0 H
(
sk01

)
H

(
sk02

)
H(sk03) H

(
sk04

)

pk1 H
(
sk11

)
H

(
sk12

)
H

(
sk13

)
H

(
sk14

)

m 001 1

σ1 σ2 σ3 σ4σ

(m = 1001, σ = σ1σ2σ3σ4)

Public Key

Message-Signature Pair

H(σ1)

H

Since m1 = 1, we check the equality H(σ1)= pk11

H(σ2)

H

H(σ3)

H

H(σ4)

H

pk01 pk02 pk03 pk04

pk11 pk12 pk13 pk14

Since m2 = 0, we check the equality H(σ1)= pk02

Since m1 = 0, we check the equality H(σ1)= pk03

Since m2 = 1, we check the equality H(σ1)= pk14

If all the equalities are satisfied
then a signature is considered valid

Fig. 3. Signature Verification of L-OTS for the message m = 1001 with public key pk = (pk0, pk1)
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4 WOTS+

4.1 Preliminaries

In contrast to L-OTS, which generates private and public key pairs for each bit of a message, Win-
ternitz OTS (W-OTS+) [11,2] divides a hashed message into segments. The W-OTS+ approach
aims to reduce the size of signatures and key pairs, albeit at the cost of additional hash evaluations.
Specifically, W-OTS+ first converts the message m into a new form using a base w representation,
and then breaks it down into blocks of length logw. For each block, it applies a ‘function’ up to a
maximum of w− 1 times, and the output of the ‘function’ becomes the signature for that block. The
resulting signatures for each block are concatenated in sequence to form the entire signature for m.

Parameters and Functions: A cryptographic hash function F defined as

F : {0, 1}n → {0, 1}n.

We also need a a family of pseudo-random generators Gλ defined by

Gλ : {0, 1}n → {0, 1}λn

for different values of λ. We fix the message length to be n. Given n and w, we define l1 = ⌈ n
log(w)⌉

and l2 = ⌊ log(l1(w−1))
logw ⌋+ 1. We further define l = l1 + l2.

Chaining function ci(x, r): Given a input value x ∈ {0, 1}n, a iterative counter i ∈ N, and bitmask
r = (r1, . . . , rj) ∈ {0, 1}n×j ( j ≥ i), the chain function works as follows:

1. If i = 0, c0(x, r) = x.

2. If i ≥ 0, ci(x, r) = F (ci−1(x, r)⊕ ri).

Notation: ra,b denotes the substring (ra, . . . , rb) of r. If b is less than a, ra,b is set to be empty string.
Figure 4 summarizes the chain function used in WOTS+.

ci−1(x, r)

ri

F ci(x, r)

. . .

c0(x, r) c1(x, r) c2(x, r) cw−1(x, r)

Fig. 4. Chain function used in WOTS+
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4.2 Protocol Description

(sk, pk)←WOTS+.Kg(S, r): Given on input a seed S ∈ {0, 1}n and bitmasks r = (r1, . . . , rw−1) ∈
{0, 1}n×(w−1) , WOTS+.Kg outputs the secret key and public key by going through following
steps:

1. The secret key is computed using the seed S by employing the pseudo random generator Gλ

sk = (sk1, . . . , skl)← Gl(S)

2. The public key pk is computed by using the bitmask r and the chain function defined above:

pk = (pk1, . . . , pkl) = (cw−1(sk1, r), . . . , c
w−1(skl, r)).

WOTS+.Sig: On input of an n-bit message m, seed S and the bitmasks r, the algorithm WOTS+.Sig
first computes a base-w representation of m. In other words, we consider m = (m1, . . . ,ml1),
mi ∈ {0, . . . , w− 1}. In the following, the checksum C =

∑l−1
i=1(w− 1−Mi) is also represented in

base w representation. Let C = (C1, . . . , Cl2). It is of the length atmost l2. We append both m
and C to get b = m||C, i.e., b = (b1, . . . , bl). The signature of m is

(σ1, . . . , σl) = (cb1(sk1, r), . . . , c
bl(skl, r))

. Refer to Figure 6 for an illustrated workflow of the signature generation in W-OTS+.

WOTS+.Ver: Signature is verified by constructing (b1, . . . , bl) and checking

(pk′1, . . . , pk
′
l)

?
= (cw−1−b1(σ1, rb1+1,w−1), . . . , c

w−1−bl(σ1, rbl+1,w−1))

The public key generation in W-OTS+ is summarized in Figure 5. In addition, we have given a toy
example for W-OTS+ in Figure 7.

sk1

sk2

skl

...

...

c0(sk1, r)

c0(sk2, r)

c0(skl, r)

c1(sk1, r)

c1(sk2, r)

c1(skl, r)

cw−1(sk1, r)

cw−1(sk2, r)

cw−1(skl, r)

...

...

...

...

= pk1

= pk2

= pkl

Fig. 5. Key generation in W-OTS+
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n−bit message (m)

Split m into l1 chunks

where each mi ∈ {0, ..., w − 1}

m1 m2 m3
. . . ml1

Checksum C

Split C into l2 chunks

where each ci ∈ {0, ..., w − 1}

C1 C2 C3
. . . Cl2

Concatenate both the strings and

call the resulting string b

m1 m2 m3
. . . ml1 C1 C2 C3

. . .
Cl2

l = l1 + l2 chunks and each chunk is
interpreted as an unsigned
number 0 ≤ bi ≤ w − 1

b =

b = (m1, . . . ,ml1 , C1, . . . , Cl2) = (b1, b2, . . . , bl)

b1 b2 b3
. . .

bl1 bl1+1 bl1+2 bl1+3
. . .

blb =

σ1 =cb1(sk1, r) σl =c
bl(skl, r)

σ2 =cb2(sk2, r)

σ = (σ1, σ2, . . . , σl)Final signature

Fig. 6. Signature generation in W-OTS+



10

Split m into l1 = 4 chunks

where each mi ∈ {0, w − 1}

0011 1001 0101 1000

Checksum C =

l1∑

i=1

(w − 1−mi)

Split C into l2 = 2 chunks

where each ci ∈ {0, w − 1}

0010 0011

b = (b1, b2, b3, b4, b5, b6) = (3, 9, 5, 8, 2, 3)

b1 = 3 b2 = 9 b3 = 5 b5 = 2b =

σ6 =c3(skl, r)

m = 0011 1001 0101 1000

Let n = 16, w = 16

l1 = d n

log w
e =⇒ l1 = d16/ log(16)e = 4

l2 = b log(l1(w − 1))

log w
c+ 1 =⇒ l2 = blog(4× 15)/ log(16)c = b5.907/4c+ 1 = 2

l = l1 + l2 = 6

sk = (sk1, sk2, sk3, sk4, sk5, sk6)Secret key

Message

m = 0011 1001 0101 1000

m1 = 3 m2 = 9 m3 = 5 m4 = 8 c1 = 2 c2 = 3

0011 1001 0101 1000 0010 0011

m1 = 3 m2 = 9 m3 = 5 m4 = 8 c1 = 2 c2 = 3

b =

b4 = 8 b6 = 3

σ1 =c3(sk1, r) σ2 =c2(sk2, r) σ3 =c5(sk3, r) σ4 =c8(sk4, r) σ5 =c2(sk5, r)

Final signature σ = (σ1, σ2, σ3, σ4, σ5, σ6)

concatenate

Fig. 7. A toy example for W-OTS+ signature generation with n = 16, w = 16
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5 Merkle Signature Scheme (MSS)

Motivation and Overview: Because L-OTS and W-OTS+ can only sign one message at a time, if
multiple messages need to be signed, there must be many keys. The Merkle Tree Signature Scheme
(commonly called “MSS”) [17] was invented by Ralph Merkle to manage OTS keys.

The basic idea is to use Merkle tree leaves to store OTS keys. Because the Merkle tress are binary
trees, a Merkle tree of height h has 2h leaves. The leaves are used to manage digests of OTS keys,
and a Merkle tree can manage 2h OTS key pairs. When signing a message, one OTS key pair needs
to be picked up from the tree that has not been used before. The signature consists of the index of
the leaf, the OTS public key, the digest of the OTS public key (the leaf), and the authentication
path of that leaf.

5.1 Protocol Description

MSS.Kg: We now describe the key generation algorithm of the MSS. Refer to Figure 8 for an illus-
trated diagram.

1. Generate N = 2n public key-private key pairs

(OTSPK0 , OTSSK0), . . . (OTSPKN−1
, OTSSKN−1

)

of some OTS scheme.

2. For each i ∈ {0, 2n − 1}, compute hi = H(OTSPKi)

3. The hash values hi are placed as leaves and hashed recursively to form a binary tree. The
details are presented below.

(a) Let ai,j denote the node in the tree with height i, and left-right position j.
(b) The hash values hi = a0,i are the leaves.
(c) The inner nodes are calculated by

ai,j = H(ai−1,2j ||ai−1,2j+1)

where i = 1, . . . , h and j = 0, . . . , 2i−1.
(d) The public key pub is the root of the tree an,0

4. The private key of the Merkle signature scheme is the entire set of (OTSPKi , OTSSKi) pairs

MSS.Sig: 1. The signer selects the ith public key say OTSPKi from the tree, and signs the message
using the corresponding OTS secret key OTSSKi resulting in a signature σOTSi

2. In addition, the final signature consists of the index of the leaf, the OTS public key, and the
authentication path of that leaf.

σ = (i, OTSPKi , σOTSi , Authi)

MSS.Ver: Given σ and m, verifier proceeds to verify the message-signature pair by going through
following steps. Note that verifier already knows the master public key pub.

1. First, the receiver verifies the one-time signature σOTSi of the message m using the one-time
signature public key OTSPKi . If σOTSi is a valid signature on the message m, then proceeds
further, otherwise aborts the process and rejects the signature.

2. Verifier computes a0,i = H(OTSPKi) by hashing the public key of the OTS.

3. Using the authentication path Authi computes the root of the Merkle tree (say pub’. If
pub’=pub, then the verifier declares the signature as valid otherwise rejects.

Refer to Figure 9 for an illustrative toy example depicting signature generation of MSS.
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a00 a01 a02 a04 a05a03 a07a06

a20

a13a12a11a10

a21

a30

OTSPK0 OTSPK1 OTSPK3 OTSPK4
OTSPK5

OTSPK6 OTSPK7OTSPK2

H H H H H H H H

Root of the tree

Height

0

1

2

3
ai,j = H(ai−1,2j ||ai−1,2j+1)

Leaves
of the tree

Fig. 8. Key generation of Merkle signature scheme with Merkle tree having height h = 3 and 2h = 8 leaves.

6 HORS

In this section, we will briefly have an overlook over HORS [20] and HORS (HORS with Trees) [2].
Hash to Obtain Random Subset (HORS) is an FTS (few-times signature) signature algorithm. Unlike
OTS, an FTS algorithm can be used to sign messages for a few times, each time it is used, some
information is exposed, reducing the key’s security.

6.1 Protocol Description of HORS

(SK,PK)← KeyGen(1n): Given the security parameter 1n, the algorithm generate t random n-bit
strings to produce the secret key: SK = (s1, . . . , st). In the following, public key is computed as
PK = (k, v1, . . . , vt) where vi = F (ski).

σ ← Sign(m,SK): Given the message m and the secret key SK, the signature σ over m is computed
as:

1. Computes a = Hash(m)

2. Split a into k substrings a1, . . . ak, of length log2 t bits each

3. Interpret each aj as an integer ij for 1 ≤ j ≤ k

4. Outputs the signature σ = (ski1 , . . . , skik)

1/0← Ver(m,σ, PK): Given a message - signature pair (m,σ = (s′1, . . . , s
′
k), a verifier asserts the

validity of the signature by going through the following steps:

1. Compute a = Hash(m)

2. Split a into k substrings a1, . . . ak, of length log2 t bits each

3. Interpret each aj as an integer ij for 1 ≤ j ≤ k
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a00 a01 a02 a04 a05a03 a07a06

a20

a13a12a11a10

a21

a30

OTSPK3

H

Root of the tree

Height

0

1

2

3

Let i = 3,i.e., the signer selects OTS key pair (OTSPKi , OTSSKi) for the signature on the
message m. The signature is given by

σ = (i = 3, OTSPK3
, σOTSSK3

,Auth3 = (a02, a10, a21))

Fig. 9. A toy example illustrating signature generation of MSS
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4. If for each j (where 1 ≤ j ≤ k), vij = F (skj), then accepts the signature and outputs 1.
Otherwise rejects and outputs 0.

Remark: F is a one way function and Hash denotes a hash function. Both F and Hash can be
realized using a standard hash function like SHA3-256. A toy example of HORS is given in Figure
10.

7 HORST

HORST is an improvement over HORS because it uses a binary hash-tree structure to reduce the size
of both the public key and signature. In SPHINCS, HORS with trees (HORST) replaces the t-value
public key with a single value that represents the root of the Merkle tree. The leaves of this tree are
the pki’s. A HORST signature includes k ski’s and their respective authentication paths, which are
lists of sibling nodes required to connect each pki to the root. To optimize the process, SPHINCS
includes all nodes at a particular level in the signature because the k authentication paths will often
share high-level authentication nodes.

7.1 Protocol Description

Parameter Description: HORST signs uses parameters k and t = 2τ with kτ = m. The value x is
determined based on t and k such that k(τ − x+ 1) + 2x is minimal.

(sk, pk)← HORST.kg(S,Q) : On input of seed S ∈ {0, 1}n and bitmasks Q ∈ {0, 1}2n×log t, it gen-
erates the secret key-public key pair sk and pk:
1. The internal secret key is computed as sk = (sk1, . . . , skt)← Gt(S).
2. Compute the leaves of the tree by using F : Li = F (ski) for i = 1, . . . , t. A tree is constructed

by utilizing the bitmask Q.
3. The public key pk is computed as the root node of a binary tree of height log t.
4. Outputs sk = sk = (sk1, . . . , skt) and pk
The HORST key generation using binary tree is summarized in Figure 11.

(σ, pk)← HORST.sign(M,S,Q) : The signature on the message M is generated in the following
manner:
1. Given S and Q, internal secret key sk is computed by employing HORST.Kg.
2. M is divided into k chunks each of length log t, i.e., M = (M1, . . . ,Mk). In the following, each

Mi is interpreted as an integer.
3. Each Mi is now utilized as an index value to address a piece of the sk, skMi .
4. The signature σ = (σ1, . . . , σk−1, σk) consists of k blocks σi = (skMi , AuthMi) for i = 1, . . . , k

containing the Mith secret key element and the authentication path connecting pki to the
root.

The signature generation is explined through an illustrated toy example in Figure 12.

0/1← HORST.vf(M,σ,Q) : The verification algorithm proceeds as:
1. M is divided into k chunks each of length log t, i.e., M = (M1, . . . ,Mk). In the following, each

Mi is interpreted as an integer.
2. Initially, the disclosed segments of sk are hashed and the message is divided into k sections.

These sections are then considered as integers and used to locate the appropriate segments
of sk on the corresponding leaves. With the nodes provided in the signature, the path to the
root node can be determined. This process is repeated for all nodes and authentication paths,
ensuring that they all converge on the same root. If they don’t converge on the same root,
the verification fails.
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Split a into k = 4 chunks

of length log2 32 = 5 bits each

01101 10101 11011 11001

Let k = 4, t = 32

a = 01101 10101 11011 11001

m

sk1
. . .

sk2 sk3 sk4 sk5 sk6 sk7 sk8 sk9 sk10 sk13 sk27sk26sk25sk24sk23sk22sk21sk20 sk32

Hash

Interpret each aj as an integer ij

13 21 27 25

. . . . . .sk12 sk19
. . .

sk = (sk1, sk2, . . . , sk32)

pk = (F (sk1), F (sk2), . . . , F (sk32))

σ = (sk13,sk21, sk25, sk27)Final signature

Fig. 10. HORS signature toy example
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sk1 sk2 sk3 sk4

pk1 pk2 pk3 pk4

F FFF

a01 = H(pk1) a03 = H(pk3)a02 = H(pk2) a04 = H(pk4)

H(a01 ⊕ ql1||a02 ⊕ qr1)

a11 = a12 =

H(a03 ⊕ ql1||a04 ⊕ qr1)

a21 = H(a11 ⊕ ql2||a12 ⊕ qr2)pub

ql2

⊕
qr2

ql1 ql1qr1 qr1

⊕

⊕ ⊕ ⊕ ⊕

Fig. 11. HORST key generation

Algorithm 4 Root computation
Input: Leaf index i, leaf Li, authentication path Authi = (A0, . . . , Ah−1) for Li.
Output: Root node Root of the tree that contains Li.

1: Set P0 ← Li;
2: for j ← 1 up to h do

3: Pj =

{
H((Pj−1||Aj−1)⊕Qj), if ⌊i/2j−1⌋ ≡ 0 mod 2

H((Aj−1||Pj−1)⊕Qj), if ⌊i/2j−1⌋ ≡ 1 mod 2

4: end
5: return Ph
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a01 = H(pk1) a03 = H(pk3)a02 = H(pk2) a04 = H(pk4)

qr1

H(a01 ⊕ ql1||a02 ⊕ qr1)

a11 a12

H(a03 ⊕ ql1||a04 ⊕ qr1)

ql2 qr2

a21 = H(a11 ⊕ ql2||a12 ⊕ qr2)pub

k = 2, t = 4 sk = (sk1, sk2, sk3, sk4) pk = pub

m = 1101

m is split into k = 2 blocks of
length log2t = 2 bit-length

11 01

m1 = 3 m2 = 1

Each mi is interpreted as an integer

σ = (skm1
= sk3, Authm1

= Auth3, skm2
= sk1, Authm1

= Auth1)

where Auth3 = (a04, a11) and Auth1 = (a02, a12)

Final signature

ql1 ql1 qr1

⊕ ⊕

⊕ ⊕ ⊕ ⊕

Fig. 12. A toy example illustrating HORST signature generation
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8 Tree Based Authentication: Two Different Approaches

One of the major drawbacks of both OTS and FTS is that a given key pair can only be employed
for signing one or a few number of messages. The technique of tree based public key authentication
is to solve the problem of authenticating public key on a large scale in the context of hash based
cryptography. To effectively authenticate public keys, a tree-based authentication system that uses
the hash tree is widely used to address the key management issue.

8.1 Down-Top Approach

While using the down-top authentication approach, the root node is constructed form the leaf nodes
(bottom layer). Note that root node is the master public key and it can be used to verify all of the
individual OTS public keys (which appear as a leaf node on the hash tree). We now explain this
approach in more details. Merkle hash based signature scheme described in Section 5 is based on
Down-Top tree based authentication.

8.2 Top-Down Approach

Similar to down-top approach, firstly, one generates OTS key pairs. We then, construct the authenti-
cation path in the reverse direction compared with approach discussed above. In other words, we go
from the direction of root node to the leaves. Private key associated to the parent node is employed
to authenticate the child node in top to down order. Refer to Section 10.

8.3 Hypertree

Hyper-tree is a form of a generalized hash tree which combines both of the two approaches given in
Section 8.1 and Section 8.2. SPHINCS and almost all of its variants such as SPHINCS+, Gravity
SPHINCS make use of hypertree structure.

9 XMSS

The Extended Merkle Tree Signature Scheme (commonly called XMSS) [5] uses Merkle tree to manage
WOTS+ keys in a similar way that MSS uses a Merkle tree to manage Lamport keys. XMSS is a
stateful signature based on MSS and WOTS+.

9.1 XMSS-XOR Tree

The XMSS-XOR tree [2] utilized in XMSS is an improved variant of the Merkle tree (refer to Figure
5 for detailed description of hash tree used in MSS). The nodes on level j, 0 ≤ j ≤ h, are denoted
by ai,j , 0 ≤ i < 2h−j (where h is the height of the tree). Level j, 0 < j ≤ h, is constructed using a
bit-mask (ql,j ||qr,j) ∈R {0, 1}2n. The nodes are computed as

ai,j = Hash((a2i,j−1 ⊕ ql,j)||(a2i+1,j−1 ⊕ qr,j))

A pictorial representation of XMSS tree (using a toy example) is given in Figure 13.
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qr1ql1

H(a01 ⊕ ql1||a02 ⊕ qr1)

qr1

H(a03 ⊕ ql1||a04 ⊕ qr1)

qr1

H(a05 ⊕ ql1||a06 ⊕ qr1)

qr1ql1

H(a07 ⊕ ql1||a08 ⊕ qr1)
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H(a11 ⊕ ql2||a12 ⊕ qr2) H(a13 ⊕ ql2||a14 ⊕ qr2)

qr3

H(a21 ⊕ ql3||a22 ⊕ qr3)

a01 a02 a04a03 a06a05 a08a07

a11 = a12 = a13 = a14 =

a21 = a22 =

ql3

ql2qr2 qr2

ql1
ql1

⊕ ⊕

⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

Fig. 13. Tree structure of XMSS; H = 3 is height of the tree (a tree of height h requires 2h bitmasks).
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9.2 L Tree

The XMSS tree maybe employed to authenticate 2h number of W-OTS (W-OTS+) public keys.
Each individual WOTS+ public keys is utilized for generating one leaf of the XMSS tree. For the
construction of leaves, we make use of a slight variant of the XMSS-XOR tree described above. The
tree which is used to compress the public keys of each WOTS+ is also known as L-tree. The first l
leaves of an L-tree are the l bit strings (pk1, ..., pkl) from the corresponding public key of WOTS+.
Since, it might be possible that l is not a power of 2, hence, “a node with no right sibling is pushed
to a higher level of the L-tree until it becomes the right sibling of another node”. Refer to Figure 14
for an illustrated toy example of L-tree.

pk1

pk5

pk2

⊕⊕

pk3 pk4

⊕⊕

pk5

⊕ ⊕

pk5

⊕ ⊕

Root of L-Tree

bl1

bl2

bl3

bl1

br2

br3

br1br1

Fig. 14. Toy example illustrating the L-tree construction of a WOTS+ public key pk = (pk1, . . . , pk5).

To summarize, unlike MSS, leaves of XMSS-tree is not simply a hash of OTS public key. Root
of another tree (also known as L-tree) is used as the leaves of the XMSS tree. A detailed pictorial
representation of XMSS is given in Figure 15.
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W-OTS+.

Fig. 15. Detailed pictorial representation of XMSS with L-Tree
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9.3 Protocol Description

XMSS.Kg: The key generation algorithm generates 2h WOTS+ public key - secret key pair by using
the algorithms key generation algorithm described in Section 4.

XMSS.Sig : To sign the ith message, the ith W-OTS key pair is used. The signature SIG =
(i, σ, Auth) contains the index i, the W-OTS signature σ, and the authentication path for the
leaf Node0,i. It is the sequence Auth = (Auth0, . . . , AuthH−1) of the siblings of all nodes on the
path from Node0,i to the root.

XMSS.Ver : To verify the signature SIG = (i, σ, Auth), the string (b1, . . . , bl) is computed as described
in the WOTS+ signature generation (refer to Section 4). The ith verification key (pk1, . . . , pkl) is
computed similar to verification algorithm of WOTS+. The corresponding leaf of the XMSS tree
is constructed using the L-tree. This leaf and the authentication path are used to compute the
root. If it matches with the root of the XMSS tree in the public key, the signature is accepted.
Otherwise, it is rejected.

10 XMSSMT : A Hypertree variant of XMSS

XMSSMT [12] is the hypertree variant of XMSS which enables an unlimited number of messages to be
signed cryptographically. It uses XMSS to build the interior authentication path in a subtree (using
down-top approach, refer to Section 8.1). It further utilizes WOTS+ to sign the root of the subtree
by the signature key corresponding to the leaf node on the one layer higher (top-down authentication
approach, refer to Section 8.2). Refer to Figure 16 for pictoirial summary of the construction of
XMSSMT . Each inner subtree in XMSSMT is an XMSS tree. When signing a message using XMSSMT ,
the authentication path within a sub-tree follows a bottom-up approach, and the root node of the
sub-tree is computed from the bottom node to the top. On the other hand, authentication between
sub-trees follows a top-down approach, where the leaf nodes of the higher sub-tree are utilized to
authenticate the root of the sub-tree that is one layer lower.

The trees at the lowest level are utilized for message signing, while the trees at higher levels are
utilized for signing the roots of the trees located on the layer below. To create a signature, all these
WOTS+ signatures along the way to the highest tree are combined. An XMSSMT signature, denoted
as

σ = (i, σ0, Auth0, σ1, Auth1, . . . , σd, Authd),

comprises the following components: the index i, the W-OTS signature σ0 on the message M , and
the corresponding authentication path. Additionally, the signature includes the W-OTS signatures
on the roots of the trees that are currently in use, along with their corresponding authentication
paths.

11 Sphincs

Sphincs [2] is composed of WOTS+ [11], XMSS [5], and HORST[20] building blocks. Refer to Figure
18. Based on HORST and WOTS+, a new stateless hash based signature algorithm called Sphincs
can be constructed. It is important to observe that while past key management systems such as
WOTS+ and HORST can handle a substantial quantity of keys, it is necessary to generate the keys
beforehand to calculate the Merkle root. This acts as a constraint on the number of keys that can
be managed. In contrast, Sphincs can manage a much larger quantity of keys without the need to
pre-compute all the leaves by utilizing two methods:

– Hyper-tree

– Random key path addressing scheme
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Fig. 16. Pictorial description of XMSSMT with 4 layers.

The hyper-tree structure in Sphincs is a tree of trees, where the height of the hyper-tree is denoted
by h. This hyper-tree is composed of trees with a height of h/d. It is important to note that the
hyper-tree is a virtual structure, meaning that all sub-trees do not need to be constructed at once.
Instead, only trees along a specific path on the hyper-tree need to be generated when signing a
message. At the bottom level of the Sphincs hyper-tree, there is a level of HORS trees that contain
private keys used for signing messages. When a message needs to be signed, Sphincs selects a HORS
tree to sign the message and generates a signature σH . Above the HORS level, which is level 0, there
are L-trees consisting of WOTS+ key pairs. Each leaf of these trees contains the public key strings
of WOTS+, and their corresponding private keys are used for signing the root of the trees on the
level below.

– There is only one tree on level d− 1 which is the top tree.

– There are 2(d−i−1)∗(h/d) trees on level i, i ∈ [0, d − 2], and the root of the tree in level i will be
signed by the WOTS+ private key of the tree on level i+ 1.
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Table 1. Functions used in Sphincs

F : {0, 1}n → {0, 1}n Cryptographic hash function

H : {0, 1}2n → {0, 1}n Cryptographic hash function

H : {0, 1}n × {0, 1}∗ → {0, 1}m Arbitrary-input randomized hash function

Gλ : {0, 1}n → {0, 1}λn Family of pseudo-random generator

Fλ : {0, 1}λ{0, 1}n → {0, 1}n Ensemble of pseudo-random function families

F : {0, 1}∗{0, 1}n → {0, 1}2n Pseudo-random function family

This implies that the WOTS+ trees and HORS trees are not dependent on each other, despite
being chosen on the same path for signature authentication. This feature is useful in avoiding the
need to pre-compute all the trees during key generation, thereby enabling the management of a
vast number of keys under a single Sphincs public key. This large key space also makes Sphincs a
practically stateless signature scheme. As previously mentioned, Sphincs only identifies specific paths
in the hyper-tree when signing a message. Sphincs generates this path by employing an addressing
scheme to locate the WOTS+ public keys in the hyper-tree. The addressing scheme consists of the
level of the hyper-tree, the tree on that level, and the leaf within that tree. Using this format, we can
uniquely identify the location of each WOTS+ public key at every level of the hyper-tree.

The private key SK of Sphincs consists of:

– An n-bit key SK1 generated using a PRG. It is used to generate random seeds for HORST and
WOTS+ private key generation.

– An n-bit key SK2 is also generated using a PRG. This key is used for generating an unpredictable
index and message hash.

– Bitmasks Q = (Q0, Q1, . . . , Qp−1): Bitmasks are used in HORST, WOTS+, L-tree, and hyper-
tree. WOTS+ needs w− 1 bitmasks, HORST needs 2 log(t) bitmasks, and L-tree needs 2⌈log(l)⌉
bitmasks. In total, the complete Sphincs structure needs p bitmasks where p = max(w− 1, 2(h+
⌈log(l)⌉), 2 log(t)).

The address of the leaves of the tress at the highest layer, i.e., layer d− 1 is given by

A = (d− 1||0||i)(i ∈ [2
h
d − 1)]

We generate the seed SA ←− F (A,SK1) using the n-bit secret key SK1. In the following, we use SA

as the seed for the generation of the private keys of WOTS+. Later, we compute the root of this top
level tree (let’s denote the root by PKroot). The final private key and public key of Sphincs is given
by

SK = (SK1, SK2, Q)

PK = (PKroot, Q)

We use F to denote random seed generation functions across this article. We first give a bird eye
overview of signature generation in Sphincs. To create a signature for a given message, first a HORST
is generated. In the second step, a specific hypertree path of Sphincs is produced. To produce the
HORST key pair, first, the address of the HORST key pair is determined. Once we have the address,
the corresponding random seed can be generated, and in the following, by utilizing the random seed,
HORST key pair is generated. These keys are used to sign the message. All other WOTS+ signatures
is generated in the similar fashion:

determination of address → generation of random seed → key pair generation → signature
generation

The details are presented below.
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– Generate two random n-bits R1 and R2 by F (M,SK2).

– Compute the message digest D ←− H(R1,M).

– Compute HORST address i←− Chop(R2, h). and AddressH = (d||i(0, (d−1)h/d)||i((d−1)h/d, h/d)).
– Generate HORST key pair and HOTST signature

• Generate HORST key pair seed by SeedH ←− F (AddressH , SK1)

• Generate HORST signature and public key by (σH , pkH) by executing the signature generation
algorithm of HORST with (D,SeedH , QH) as inputs.

– Generate all WOTS+ signatures along the Sphincs path

• Compute all addresses of WOTS+ in the path Addressw,j = (j||i(0, (d− 1− j)h/d||i((d− 1−
j)h/d), h/d)) where j is the level and j ∈ [0, d− 1].

• Compute all the seeds Seedw,j = F (Addressw,j , SK1)

• Generate WOTS+ signature σw,j by running the signature generation algorithm of WOTS+
with (pkw,j−1, Seedw,j , QWOTS+) as inputs. Here, pkw,j−1 is the root of the tree of j− 1 level.
Also we need to generate the authentication path authAj of corresponding WOTS+ public
key.

The Sphincs signature is

σSphincs = (i, R1, σH , σw,0, authA0 , σw,1, authA1 , . . . , σw,d−1, authAd−1
)

The verification algorithm in Sphincs involves the following steps:

– The first step involves checking the HORST signature. The verification algorithm computes the
digest D by computing H(R1,M). In the following, the verifier runs verification algorithm of
HORST with (D,QHORST , σH) as inputs to check the validity of the HORST signature σH .

– The second step involves checking all WOTS+ signatures. The verifier first verifies σw,0 by execut-
ing verification algorithm of WOTS+ with (pkH , σw,0, QHORST ) as inputs. In the following, the
verifier verifies σw,i by running the verification algorithm of WOTS+ with (pkw,i, σw,i, QHORST+)
as inputs. Here i ∈ [1, d− 1]

– Reject if any one of the WOTS+ signatures cannot be validated.

– On hyper-tree level d − 1 , the verifier gets the root of the hyper-tree. If the root == PKroot ,
the σSphincs is validated, otherwise reject.

Although the whole signature scheme looks complicated, the idea is simple: hyper-tree allows a much
bigger key space without the need to pre-computing all keys and intermediary nodes.

How Sphincs Achieves Stateless Property

It’s worth noting that both XMSSMT and Sphincs use a hyper tree structure, which is illustrated in
Figure 16 and Figure 18, respectively. These protocols have the ability to sign an unlimited number of
messages cryptographically. The fundamental difference between these two protocols is that Sphincs
is stateless, while XMSSMT is stateful.

To sign a message using Sphincs, the initial step involves generating a hash of M that is random-
ized along with a random index computed deterministically using a PRF. This index is then used
to determine which HORST to choose for signing the randomized hash of M . Therefore, by using a
deterministic index based on the message, the design of Sphincs was able to eliminate the need for
maintaining state information.
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12 Sphincs+

With an understanding of Sphincs, we now introduce the state-of-art hash based signature scheme
— Sphincs+ [3]. Among the latest hash based signature schemes, Sphincs+ has great advantages in
speed, security and signature size. In general, the ideas of Sphincs+ and Sphincs are quite similar,
but there are some differences:

– FORS ( a FTS) is used for signing message in Sphincs+ in place of HORS.
– A publicly verifiable method for selection of leaf index is used.
– The concept of tweakable hash functions is introduced in Sphincs+, which enables the unification

of the security analysis of hash based signature schemes.

We now introduce the key generation of Sphincs+. The public key PK of Sphincs+ comprises
the following:

– root node of the subtree on the highest layer (i.e. root of the hyper tree structure) PKroot,
– a random seed PK.seed

The private key SK comprises:

– SK.seed. It is an n-bit seed which is utilized for secret key generation of WOTS+ and FORS.
– SK.PRF . It is also an n-bit seed utilized for generation of random message digest.

Sphincs+ varies from the original Sphincs in the methods used to compute the message digest
and leave selection.

– Sphincs+ pseudo-randomly generates a value R (which acts as randomizer). This value R depends
on the message to be signed and SK.PRF . We can make the computation of R non deterministic
by introducing another parameter of randomness OptRand. It might be helpful in circumventing
the side-channel attacks. Here, R = PRF (SK.prf,OptRand,M) which is part of the signature.

– Now by making use of R, we derive the index of the leaf node that is to be used, as well as the
message digest (MD||idx) = Hmsg(R,PK.seed, PK.root,M) where MD means message digest
and idx means leaf index. Hmsg is an additional keyed hash function to compress the message.

Note that in Sphincs+ we use a publicly verifiable method for the selection of the index. It
prevents a malicious party from choosing a random looking index, and combining it with a message
of their choice. Since, the index is publicly verifiable and can be easily computed by the verifier, it is
not a part of the signature in Sphincs+. The Sphincs+ signature is

σSphincs+ = (MD,R, σF , σw,0, authA0 , σw,1, authA1 , . . . , σw,d−1, authAd−1)

where σF is the signature of FORS. To verify a signature σSphincs+, a verifier proceeds in the following
manner:

– Check the FORS signature by first generating MD and idx. Note that the process of generating
MD and idx is same as described in signature generation of Sphincs+. In the following, use
MD, idx and σF as input to the signatures verification algorithm of FORS to verify σF . To verify
the signer’s idx, verifier can also compute Hmsg(R,PK.seed, PK.root,M) and compare it.

– Rest of the process is same as in Sphincs. Basically the verifier checks the WOTS+ signatures of
each level.

13 Improvements/Variants/Follow-ups of Sphincs and Sphincs+

13.1 Korean Sphincs+

The original SPHINCS+ algorithm utilized SHA2, SHAKE, and HARAKA hash functions to produce
hash based signature. The authors of [21] suggested using Korean hash functions such as LSH, CHAM,
and LEA to generate hash based signature. The resulting algorithm is called K-SPHINCS+.
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13.2 Work by Kölbl

1. In [15], performance analysis of SPHINCS algorithm implementation using various cryptographic
hash functions on modern Intel and AMD computer platforms as well as the ARMv8-A platform
commonly found in mobile phones was done.

2. The efficiency of SPHINCS is highly dependent on the effectiveness of two functions, namely F
and H, which must satisfy specific security criteria.

F : {0, 1}256 → {0, 1}256

H : {0, 1}512 → {0, 1}256

For F we require preimage resistance, second-preimage resistance and undetectability, while H
has to be second-preimage resistant.

3. The analysis encompasses the implementation of several cryptographic hash functions, such as
SHA256, Keccak, Simpira, Haraka, and ChaCha, optimized to hash small inputs concurrently by
using vector instructions and cryptographic extensions present in these microprocessors.

13.3 Sphincs-Simpira

1. The integration of AES instructions in modern processors has brought significant changes to the
field of cryptography. Gueron et al.[9] introduced Simpira, a set of cryptographic permutations
designed to achieve high throughput on processors equipped with AES instructions. The authors
in [10] explored the integration of Simpira in SPHINCS-256. In particular, they used Simpira to
instantiate the F and H functions.

2. The post-quantum security guarantees of SPHINCS-Simpira are equivalent to those of the original
SPHINCS algorithm. However, the performance tests in [10] indicate that SPHINCS-Simpira
provides faster key pair generation by 1.5 times, signing of 59-byte messages by 1.4 times, and
signature verification by 2.0 times.

13.4 Sphincs-Streebog

The authors of [14] discussed the use of Russian hash function Streebog in Sphincs and Sphincs+.

13.5 Sphincs-α

The design presented in [23] has the following differences compared to Sphincs

1. Use of an improved Winternitz one-time signature.

2. Use of a variant of a few-time signature scheme FORS, called FORC.

3. By combining the above mentioned improvements with SPHINCS+ framework, the authors
achieve a certain level of improvement in performance.

13.6 Sphincs-Gravity

The following improvements are made by the authors in [1]:

1. Development of PORS, which offers more security when compared to HORS.

2. Secret key caching. The technique helps in speeding up the process of signature generation. In
addition, it also helps in reducing the size of the signature.
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14 Conclusion and Outlook

Hash based signatures have been proposed as an alternative to traditional digital signatures based on
public-key cryptography. Hash based signatures are a promising candidate to provide post-quantum
secure digital signatures. In this document, an effort has been put to gather various ideas and concepts
related to hash based signature together. This document may serve as a starting point for readers
who wants to start working in the field of hash based signatures. A basic classification of hash based
signatures is given in Figure 19.
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