
Generic Construction of Dual-Server

Public Key Authenticated Encryption with Keyword Search

Keita Emura§

§Kanazawa University, Japan.∗

December 20, 2023

Abstract

Chen et al. (IEEE Transactions on Cloud Computing 2022) introduced dual-server public
key authenticated encryption with keyword search (DS-PAEKS), and proposed a DS-PAEKS
scheme under the decisional Diffie-Hellman assumption. In this paper, we propose a generic
construction of DS-PAEKS from PAEKS, public key encryption, and signatures. By providing
a concrete attack, we show that the DS-PAEKS scheme of Chen et al. is vulnerable. That is,
the proposed generic construction yields the first DS-PAEKS schemes. Our attack with a slight
modification works against the Chen et al. dual-server public key encryption with keyword
search (DS-PEKS) scheme (IEEE Transactions on Information Forensics and Security 2016).
Moreover, we demonstrate that the Tso et al. generic construction of DS-PEKS from public key
encryption (IEEE Access 2020) is also vulnerable. We also analyze other pairing-free PAEKS
schemes (Du et al., Wireless Communications and Mobile Computing 2022 and Lu and Li,
IEEE Transactions on Mobile Computing 2022). Though we did not find any attack against
these schemes, we show that at least their security proofs are wrong.

1 Introduction

Public key encryption with keyword search (PEKS) [2] provides a search functionality over en-
crypted data in a public key setting. A sender encrypts a keyword kw using the public key of
a receiver. The receiver then generates a trapdoor for a keyword kw′ using the secret key of
the receiver. The test algorithm that takes a ciphertext and a trapdoor as input outputs 1 if
kw = kw′. Similar to correctness, (computational) consistency is defined, where no probabilis-
tic polynomial-time (PPT) adversary can produce kw and kw′ such that kw ̸= kw′ and the test
algorithm outputs 1 with a ciphertext of kw and a trapdoor of kw′. It is required that no infor-
mation about keywords is revealed from ciphertexts. However, information about which keyword
is associated with the trapdoor is leaked by running a test algorithm with self-made ciphertexts.
Anyone can generate a ciphertext; hence, the keyword guessing attack is unavoidable in PEKS.
To prevent the keyword guessing attack, public key authenticated encryption with keyword search
(PAEKS) [5,9,10,12,14,15,17,19–22,24] has been proposed, where a sender secret key is required for
encryption. PAEKS requires that no information about the keyword is leaked from both ciphertexts
and trapdoors.

∗The main part of study was done when the author was with the National Institute of Information and Commu-
nications Technology (NICT), Japan.

1

Chen et al. [6] further extended PAEKS by introducing a dual-server setting,1 which they call
dual-server PAEKS (DS-PAEKS). In DS-PAEKS, there are two servers, the assistant server and
the test server that manage their own public and secret keys, respectively. DS-PAEKS can be
regarded as an extension of dual-server PEKS (DS-PEKS) [7] which does not require the secret key
of the sender for encryption. The DS-PAEKS flow is described below. A sender encrypts a keyword
kw using the secret key of the sender skS and the public keys of a receiver pkR, assistant server
pkAS, and test server pkTS and uploads the ciphertext ctDS-PAEKS to the assistant server. A receiver
generates a trapdoor tdkw′ for a keyword kw′ using the secret key of the receiver skR and the public
keys of a sender pkS, assistant server pkAS, and test server pkTS, and uploads tdkw′ to the assistant
server. The assistant server converts the ciphertext and the trapdoor to an intermediate ciphertext
int-ctDS-PAEKS via the transition algorithm using the secret key of the assistant server skAS, and
sends int-ctDS-PAEKS to the test server. Finally, the test server runs the test algorithm, that takes
the intermediate ciphertext int-ctDS-PAEKS and the secret key of the test server skTS as input. Chen
et al. claimed that the dual-server setting prevents running the test algorithm by a single server
that prevents a keyword guessing attack. That is, in PAEKS, the cases that an adversary trivially
wins are excluded in the security definitions, and thus, if a server that runs the test algorithm
obtains a ciphertext and a trapdoor of the challenge keyword for the same sender, then there is
no way to prevent keyword guessing attacks in PAEKS. By introducing dual servers, there is room
for protecting keyword guessing attacks in more strict way. For example, for an adversary that is
modeled as a malicious assistant server, it is guaranteed that no information about the keyword
is leaked from the challenge ciphertext, even if the adversary obtains a trapdoor for the challenge
keyword, and converts the challenge ciphertext and the trapdoor. Similarly, for an adversary that
is modeled as a malicious test server, it is guaranteed that no information about the keyword is
leaked from the challenge ciphertext, even if the adversary obtains the corresponding intermediate
ciphertext converted from the challenge ciphertext and trapdoor.

Chen et al. gave a formal security definition of DS-PAEKS and proposed the DS-PAEKS scheme
under the decisional Diffie-Hellman (DDH) assumption. However, the following restrictions in their
security definitions can be observed:

• An adversary that is modeled as a malicious assistant server is allowed to issue any query,
including challenge keywords, to the encryption, trapdoor, and test oracles.

– Constructing a DS-PAEKS scheme, which is secure in this definition, is impossible be-
cause of the following general attack: An adversary that has the secret key of the assis-
tant server skAS issues a challenge keyword kw∗

0 to the trapdoor oracle. After obtaining
the challenge ciphertext ct∗DS-PAEKS, the adversary prepares an intermediate ciphertext
int-ctDS-PAEKS from ct∗DS-PAEKS, trapdoor tdkw∗

0
, and skAS, and sends int-ctDS-PAEKS to the

test oracle. If ct∗DS-PAEKS is an encryption of kw∗
0, then the test oracle returns 1, and 0

if ct∗DS-PAEKS is an encryption of kw∗
1. This completely breaks the security.

– Even if the adversary is not allowed to query the challenge keywords to the trapdoor
oracle, the DS-PAEKS scheme of Chen et al. is vulnerable. Briefly, the adversary can
prepare an intermediate ciphertext of the challenge keyword from skAS, ct

∗
DS-PAEKS, and a

ciphertext of the challenge keyword obtained via the encryption oracle. We demonstrate

1Cheng and Meng [11] proposed server-aided PAEKS (SA-PAEKS). Though it also introduces two servers, the
roles of these servers are different from those of DS-PAEKS. In SA-PAEKS, these servers are called a sender server
and a receiver server, and they are related to encryption and trapdoor generation, whereas servers are related to
searching in DS-PAEKS.

2

the attack in Section 4. Our attack with a slight modification also works against the
Chen et al. DS-PEKS scheme [7].

Our Contribution. In this paper, we propose a generic construction of DS-PAEKS derived
from PAEKS, two PKE schemes, and two signature schemes. We also introduce a new security
definition of DS-PAEKS that considers the general attack above. As concrete instantiations of the
proposed generic construction, we can employ the Qin et al. pairing-based PAEKS scheme [21] or
the Cheng-Meng lattice-based PAEKS scheme [10] with appropriate PKE and signature schemes.

We also give a concrete attack against the Chen et al. DS-PAEKS scheme [6]. That is, the
proposed generic construction yields the first DS-PAEKS schemes. Our attack with a slight mod-
ification works against the Chen et al. DS-PEKS scheme [7]. Moreover, we demonstrate that a
generic construction of DS-PEKS from PKE [23] is vulnerable. We also analyze other pairing-free
PAEKS schemes [13, 18]. Though we did not find any attack against these schemes, we show that
at least their security proofs are wrong.

2 Preliminaries

2.1 PKE and Signature

PKE. Let PKE = (PKE.KeyGen,PKE.Enc,PKE.Dec) be a PKE scheme. The key generation algo-
rithm PKE.KeyGen takes a security parameter λ as input, and outputs a key pair (PK,DK). The
encryption algorithm PKE.Enc takes PK and a plaintext M , and outputs a ciphertext C. The de-
cryption algorithm PKE.Dec takes DK and C, and outputs M or ⊥. We require that PKE provides
indistinguishability against the chosen-ciphertext attack (IND-CCA), where an PPT adversary A
is allowed to issue decryption queries C ̸= C∗ where C∗ is the challenge ciphertext that is an
encryption of either M∗

0 or M∗
1 . A wins if A can distinguish whether C∗ is an encryption of M∗

0 or
M∗

1 .

Signature. Let Sig = (Sig.KeyGen, Sign,Verify) be a signature scheme. The key generation al-
gorithm Sig.KeyGen takes a security parameter λ, and outputs a key pair (vk, sigk). The signing
algorithm Sign takes sigk and a message M as input, and outputs a signature σ. Here, we explic-
itly assume that the Sign algorithm is probabilistic (See the proof of Lemma 3). The verification
algorithm Verify takes vk, σ, and M as input, and outputs 0 or 1. We require that Sig provides
strongly existential unforgeability under the adaptive chosen message attack (sEUF-CMA), where
a PPT adversary A is allowed to issue a signing query M and obtains σ ← Sign(sigk,M). (M,σ)
is then preserved to a set Set. A wins if A can produce (M∗, σ∗), where Verify(vk, σ∗,M∗) = 1 and
(M∗, σ∗) ̸∈ Set.

2.2 PAEKS

Definition 1 (Syntax of PAEKS). A PAEKS scheme PAEKS consists of the six algorithms
(PAEKS.Setup,PAEKS.KGR,PAEKS.KGS,PAEKS.Enc,PAEKS.Trapdoor,PAEKS.Test) defined as fol-
lows.

PAEKS.Setup: The setup algorithm takes a security parameter λ as input, and outputs a common
parameter pp. We assume that pp implicitly contains the keyword space KS.

PAEKS.KGR: The receiver key generation algorithm takes pp as input, and outputs a public key pkR
and secret key skR.

3

PAEKS.KGS: The sender key generation algorithm takes pp as input, and outputs a public key pkS
and secret key skS.

PAEKS.Enc: The keyword encryption algorithm takes pkR, pkS, skS, and a keyword kw ∈ KS as
input, and outputs a ciphertext ctPAEKS.

PAEKS.Trapdoor: The trapdoor algorithm takes pkR, pkS, skR, and a keyword kw′ ∈ KS as input,
and outputs a trapdoor tdkw′.

PAEKS.Test: The test algorithm takes ctPAEKS and tdkw′ as input, and outputs 1 or 0.

Definition 2 (Correctness). For any security parameter λ, any common parameter pp← PAEKS.Setup(1λ),
any key pair (pkR, skR) ← PAEKS.KGR(pp) and (pkS, skS) ← PAEKS.KGS(pp), and any keyword
kw ∈ KS, let ctPAEKS ← PAEKS.Enc(pkR, pkS, skS, kw) and tdkw ← PAEKS.Trapdoor(pkR, pkS, skR, kw).
Then Pr[PAEKS.Test(ctPAEKS, tdkw) = 1] = 1− negl(λ) holds.

Definition 3 (Computational Consistency). We define the experiment:

ExpconsistPAEKS,A(λ) :

pp← PAEKS.Setup(1λ)

(pkR, skR)← PAEKS.KGR(pp); (pkS, skS)← PAEKS.KGS(pp)

(kw, kw′)← A(pp, pkR, pkS) s.t. kw, kw′ ∈ KS ∧ kw ̸= kw′

ctPAEKS ← PAEKS.Enc(pkR, pkS, skS, kw)

tdkw′ ← PAEKS.Trapdoor(pkR, pkS, skR, kw
′)

If PAEKS.Test(ctPAEKS, tdkw′) = 1, then output 1, and 0 otherwise.

PAEKS is consistent if the advantage

AdvconsistPAEKS,A(λ) := Pr[ExpconsistPAEKS,A(λ) = 1]

is negligible in the security parameter λ for all PPT adversaries A.

Next, we define the indistinguishability against the chosen keyword attack (IND-CKA) and that
against the inside keyword guessing attack (IND-IKGA), which ensure that no information about
the keyword is leaked from ciphertexts or trapdoors, respectively.

Definition 4 (IND-CKA). We define the experiment:

ExpIND-CKA
PAEKS,A(λ) :

pp← PAEKS.Setup(1λ)

(pkR, skR)← PAEKS.KGR(pp); (pkS, skS)← PAEKS.KGS(pp)

(kw∗
0, kw

∗
1, state)← AO(pp, pkR, pkS) s.t. kw

∗
0, kw

∗
1 ∈ KS ∧ kw∗

0 ̸= kw∗
1

b
$←− {0, 1}; ct∗PAEKS ← PAEKS.Enc(pkR, pkS, skS, kw

∗
b)

b′ ← AO(state, ct∗PAEKS)

If b = b′ then output 1, and 0 otherwise.

Here, O := {OC(·),OTrap(·)}. OC takes kw ∈ KS as input, and returns the result of PAEKS.Enc(pkR,
pkS, skS, kw). Here, there is no restriction. OTrap takes kw′ ∈ KS as input, and returns the result

4

Figure 1: DS-PAEKS

of PAEKS.Trapdoor(pkR, pkS, skR, kw
′). Here, kw′ ̸∈ {kw∗

0, kw
∗
1}. PAEKS is IND-CKA secure if the

advantage
AdvIND-CKA

PAEKS,A(λ) := |Pr[ExpIND-CKA
PAEKS,A(λ) = 1]− 1/2|

is negligible in the security parameter λ for all PPT adversaries A.

Definition 5 (IND-IKGA). We define the experiment:

ExpIND-IKGA
PAEKS,A (λ) :

pp← PAEKS.Setup(1λ)

(pkR, skR)← PAEKS.KGR(pp); (pkS, skS)← PAEKS.KGS(pp)

(kw∗
0, kw

∗
1, state)← AO(pp, pkR, pkS) s.t. kw

∗
0, kw

∗
1 ∈ KS ∧ kw∗

0 ̸= kw∗
1

b
$←− {0, 1}; td∗kw∗

b
← PAEKS.Trapdoor(pkR, pkS, skR, kw

∗
b)

b′ ← AO(state, td∗kw∗
b
)

If b = b′ then output 1, and 0 otherwise.

Here, O := {OC(·),OTrap(·)}. OC takes kw ∈ KS as input, and returns the result of PAEKS.Enc(pkR,
pkS, skS, kw). Here, kw ̸∈ {kw∗

0, kw
∗
1}. OTrap takes kw′ ∈ KS as input, and returns the result of

PAEKS.Trapdoor(pkR, pkS, skR, kw
′). Here kw′ ̸∈ {kw∗

0, kw
∗
1}. PAEKS is IND-IKGA secure if the

advantage
AdvIND-IKGA

PAEKS,A (λ) := |Pr[ExpIND-IKGA
PAEKS,A (λ) = 1]− 1/2|

is negligible in the security parameter λ for all PPT adversaries A.

3 Definitions of DS-PAEKS

In this section, we introduce the DS-PAEKS definitions. As mentioned in the Introduction, the
definitions given in [16] were not well defined because there is a general attack. Thus, we newly
introduce the DS-PAEKS definitions. Figure 1 describes the DS-PAEKS flow.

Definition 6 (Syntax of DS-PAEKS). A DS-PAEKS scheme DS-PAEKS consists of the nine algo-
rithms (DS-PAEKS.Setup,DS-PAEKS.KGR,DS-PAEKS.KGS,DS-PAEKS.KGAS,DS-PAEKS.KGTS,
DS-PAEKS.Enc,DS-PAEKS.Trapdoor,DS-PAEKS.Transition,DS-PAEKS.Test) defined as follows.

5

DS-PAEKS.Setup: The setup algorithm takes a security parameter λ as input, and outputs a com-
mon parameter pp. We assume that pp implicitly contains the keyword space KS.

DS-PAEKS.KGR: The receiver key generation algorithm takes pp as input, and outputs a public key
pkR and secret key skR.

DS-PAEKS.KGS: The sender key generation algorithm takes pp as input, and outputs a public key
pkS and secret key skS.

DS-PAEKS.KGAS: The assistant server key generation algorithm takes pp as input, and outputs a
public key pkAS and secret key skAS.

DS-PAEKS.KGTS: The test server key generation algorithm takes pp as input, and outputs a public
key pkTS and secret key skTS.

DS-PAEKS.Enc: The keyword encryption algorithm takes pkR, pkS, skS, pkAS, pkTS, and a keyword
kw ∈ KS as input, and outputs a ciphertext ctDS-PAEKS.

DS-PAEKS.Trapdoor: The trapdoor algorithm takes pkR, pkS, skR, pkAS, pkTS, and a keyword kw′ ∈
KS as input, and outputs a trapdoor tdkw′.

DS-PAEKS.Transition: The transition algorithm takes pkR, pkS, pkAS, skAS, ctDS-PAEKS, and tdkw′

as input, and outputs an intermediate ciphertext int-ctDS-PAEKS.

DS-PAEKS.Test: The test algorithm takes pkR, pkS, pkTS, skTS, and int-ctDS-PAEKS as input, and
outputs 1 or 0.

Definition 7 (Correctness). For any security parameter λ, any common parameter pp← DS-PAEKS.Setup(1λ),
any key pair (pkR, skR) ← DS-PAEKS.KGR(pp), (pkS, skS) ← DS-PAEKS.KGS(pp), (pkAS, skAS) ←
DS-PAEKS.KGAS(pp), and (pkTS, skTS) ← DS-PAEKS.KGTS(pp), and any keyword kw ∈ KS, let
ctDS-PAEKS ← DS-PAEKS.Enc(pkR, pkS, skS, pkAS, pkTS, kw) and tdkw ← DS-PAEKS.Trapdoor(pkR,
pkS, skR, pkAS, pkTS, kw). Then, for int-ctDS-PAEKS ← DS-PAEKS.Transition(pkR, pkS, pkAS, skAS,
ctDS-PAEKS, tdkw), Pr[DS-PAEKS.Test(pkR, pkS, pkTS, skTS, int-ctDS-PAEKS) = 1] = 1− negl(λ) holds.

Definition 8 (Computational Consistency). We define the experiment:

ExpconsistDS-PAEKS,A(λ) :

pp← DS-PAEKS.Setup(1λ)

(pkR, skR)← DS-PAEKS.KGR(pp); (pkS, skS)← DS-PAEKS.KGS(pp)

(pkAS, skAS)← DS-PAEKS.KGAS(pp); (pkTS, skTS)← DS-PAEKS.KGTS(pp)

(kw, kw′)← A(pp, pkR, pkS, pkAS, pkTS) s.t. kw, kw′ ∈ KS ∧ kw ̸= kw′

ctDS-PAEKS ← DS-PAEKS.Enc(pkR, pkS, skS, pkAS, pkTS, kw)

tdkw′ ← DS-PAEKS.Trapdoor(pkR, pkS, skR, pkAS, pkTS, kw
′)

int-ctDS-PAEKS ← DS-PAEKS.Transition(pkR, pkS, pkAS, skAS, ctDS-PAEKS, tdkw′)

If DS-PAEKS.Test(pkR, pkS, pkTS, skTS, int-ctDS-PAEKS) = 1,

then output 1, and 0 otherwise.

DS-PAEKS is consistent if the advantage

AdvconsistDS-PAEKS,A(λ) := Pr[ExpconsistDS-PAEKS,A(λ) = 1]

is negligible in the security parameter λ for all PPT adversaries A.

6

Next, we define IND-CKA for the assistant server (IND-AS-CKA), where the adversary is given
skAS. Considering the role of the assistant server, we must guarantee that no information about
the keyword is leaked from the challenge ciphertext, even if the adversary obtains a trapdoor for
the challenge keyword, and runs the DS-PAEKS.Transition algorithm with the challenge ciphertext
and the trapdoor. However, if there is no restriction, then the adversary can trivially break the
IND-AS-CKA security, i.e., by using skAS, the adversary generates an intermediate ciphertext
from the challenge ciphertext and a trapdoor of either kw∗

0 or kw∗
1, and sends the intermediate

ciphertext to the test oracle OTest. Thus, we introduce the following restriction: the adversary is
allowed to issue int-ctDS-PAEKS to OTest where int-ctDS-PAEKS ̸∈ {int-ctDS-PAEKS | int-ctDS-PAEKS ←
DS-PAEKS.Transition(pkAS, skAS, ct

∗
DS-PAEKS, tdkw) ∧ tdkw ∈ TSet}. Here, TSet is a set of trapdoors

for the challenge keywords kw∗
0 and kw∗

1. We remark that kw∗
0 and kw∗

1 are declared during the
challenge phase. Thus, TSet is defined after the challenge phase.

Definition 9 (IND-AS-CKA). We define the experiment:

ExpIND-AS-CKA
DS-PAEKS,A(λ) :

pp← DS-PAEKS.Setup(1λ)

(pkR, skR)← DS-PAEKS.KGR(pp); (pkS, skS)← DS-PAEKS.KGS(pp)

(pkAS, skAS)← DS-PAEKS.KGAS(pp); (pkTS, skTS)← DS-PAEKS.KGTS(pp)

TSet := ∅
(kw∗

0, kw
∗
1, state)← AO(pp, pkR, pkS, pkAS, skAS, pkTS)

s.t. kw∗
0, kw

∗
1 ∈ KS ∧ kw∗

0 ̸= kw∗
1

b
$←− {0, 1}; ct∗DS-PAEKS ← DS-PAEKS.Enc(pkR, pkS, skS, pkAS, pkTS, kw

∗
b)

b′ ← AO(state, ct∗DS-PAEKS)

If b = b′ then output 1, and 0 otherwise.

Here, O := {OC(·),OTrap(·),OTest(·)}. OC takes kw ∈ KS as input, and returns the result of
DS-PAEKS.Enc(pkR, pkS, skS, pkAS, pkTS, kw). Here, there is no restriction. OTrap takes kw′ ∈ KS
as input, and returns tdkw′ ← DS-PAEKS.Trapdoor(pkR, pkS, skR, pkAS, pkTS, kw

′). Here, there is no
restriction, i.e., the challenge keywords can be queried. If kw ∈ {kw∗

0, kw
∗
1}, then TSet := TSet ∪

{tdkw′}. We note that in the challenge phase, TSet is updated by the trapdoors of kw ∈ {kw∗
0, kw

∗
1}

which are generated before A declares (kw∗
0, kw

∗
1). OTest takes int-ctDS-PAEKS, and returns the re-

sult of DS-PAEKS.Test(pkR, pkS, pkTS, skTS, int-ctDS-PAEKS). Here, we restrict that int-ctDS-PAEKS ̸∈
{int-ctDS-PAEKS | int-ctDS-PAEKS ← DS-PAEKS.Transition(pkR, pkS, pkAS, skAS, ct

∗
DS-PAEKS, tdkw)∧tdkw ∈

TSet}. DS-PAEKS is IND-AS-CKA secure if the advantage

AdvIND-AS-CKA
DS-PAEKS,A(λ) := |Pr[ExpIND-AS-CKA

DS-PAEKS,A(λ) = 1]− 1/2|

is negligible in the security parameter λ for all PPT adversaries A.

Next, we define IND-CKA for the test server (IND-TS-CKA), where the adversary is given skTS.
Considering the role of the test server, we must guarantee that no information about the keyword
is leaked from the challenge ciphertext, even if the corresponding intermediate ciphertext is given.
However, if the adversary is allowed to obtain a trapdoor for the challenge keyword, the adversary
can trivially break the IND-TS-CKA security. Thus, we restrict the input of the trapdoor oracle
OTrap as kw′ ̸∈ {kw∗

0, kw
∗
1}.

7

Definition 10 (IND-TS-CKA). We define the experiment:

ExpIND-TS-CKA
DS-PAEKS,A(λ) :

pp← DS-PAEKS.Setup(1λ)

(pkR, skR)← DS-PAEKS.KGR(pp); (pkS, skS)← DS-PAEKS.KGS(pp)

(pkAS, skAS)← DS-PAEKS.KGAS(pp); (pkTS, skTS)← DS-PAEKS.KGTS(pp)

(kw∗
0, kw

∗
1, state)← AO(pp, pkR, pkS, pkAS, pkTS, skTS)

s.t. kw∗
0, kw

∗
1 ∈ KS ∧ kw∗

0 ̸= kw∗
1

b
$←− {0, 1}; ct∗DS-PAEKS ← DS-PAEKS.Enc(pkR, pkS, skS, pkAS, pkTS, kw

∗
b)

b′ ← AO(state, ct∗DS-PAEKS)

If b = b′ then output 1, and 0 otherwise.

Here, O := {OC(·),OTrap(·),OTrans(·, ·)}. OC takes kw ∈ KS as input, and returns the result of
DS-PAEKS.Enc(pkR, pkS, skS, pkAS, pkTS, kw). Here, there is no restriction. OTrap takes kw′ ∈ KS
as input, and returns the result of DS-PAEKS.Trapdoor(pkR, pkS, skR, pkAS, pkTS, kw

′). Here, kw′ ̸∈
{kw∗

0, kw
∗
1}. OTrans takes ctDS-PAEKS and tdkw, and returns the result of DS-PAEKS.Transition(pkAS,

skAS, ctDS-PAEKS, tdkw). Here, there is no restriction. DS-PAEKS is IND-TS-CKA secure if the
advantage

AdvIND-TS-CKA
DS-PAEKS,A(λ) := |Pr[ExpIND-TS-CKA

DS-PAEKS,A(λ) = 1]− 1/2|

is negligible in the security parameter λ for all PPT adversaries A.

Next, we define IND-IKGA for the assistant server (IND-AS-IKGA) where the adversary is
given skAS.

Definition 11 (IND-AS-IKGA). We define the experiment:

ExpIND-AS-IKGA
DS-PAEKS,A (λ) :

pp← DS-PAEKS.Setup(1λ)

(pkR, skR)← DS-PAEKS.KGR(pp); (pkS, skS)← DS-PAEKS.KGS(pp)

(pkAS, skAS)← DS-PAEKS.KGAS(pp); (pkTS, skTS)← DS-PAEKS.KGTS(pp)

CTSet := ∅
(kw∗

0, kw
∗
1, state)← AO(pp, pkR, pkS, pkAS, skAS, pkTS)

s.t. kw∗
0, kw

∗
1 ∈ KS ∧ kw∗

0 ̸= kw∗
1

b
$←− {0, 1}; td∗kw∗

b
← DS-PAEKS.Trapdoor(pkR, pkS, skR, pkAS, pkTS, kw

∗
b)

b′ ← AO(state, td∗kw∗
b
)

If b = b′ then output 1, and 0 otherwise.

Here, O := {OC(·),OTrap(·),OTest(·)}. OC takes kw ∈ KS as input, and returns ctDS-PAEKS ←
DS-PAEKS.Enc(pkR, pkS, skS, pkAS, pkTS, kw). Here, there is no restriction. If kw ∈ {kw∗

0, kw
∗
1},

then CTSet := CTSet ∪ {ctDS-PAEKS}. We note that in the challenge phase, CTSet is updated by
the ciphertexts of kw ∈ {kw∗

0, kw
∗
1} generated before A declares (kw∗

0, kw
∗
1). OTrap takes kw′ ∈ KS

as input, and returns the result of DS-PAEKS.Trapdoor(pkR, pkS, skR, pkAS, pkTS, kw
′). Here, kw′ ̸∈

{kw∗
0, kw

∗
1}. OTest takes int-ctDS-PAEKS, and returns the result of DS-PAEKS.Test(pkR, pkS, pkTS,

skTS, int-ctDS-PAEKS). Here, int-ctDS-PAEKS ̸∈ {int-ctDS-PAEKS | int-ctDS-PAEKS ← DS-PAEKS.Transition(pkR,

8

pkS, pkAS, skAS, ctDS-PAEKS, td
∗
kw∗

b
)∧ctDS-PAEKS ∈ CTSet}. DS-PAEKS is IND-AS-IKGA secure if the

advantage
AdvIND-AS-IKGA

DS-PAEKS,A (λ) := |Pr[ExpIND-AS-IKGA
DS-PAEKS,A (λ) = 1]− 1/2|

is negligible in the security parameter λ for all PPT adversaries A.

Finally, we define IND-IKGA security for the test server (IND-TS-IKGA), where the adversary
is given skTS.

Definition 12 (IND-TS-IKGA). We define the experiment:

ExpIND-TS-IKGA
DS-PAEKS,A (λ) :

pp← DS-PAEKS.Setup(1λ)

(pkR, skR)← DS-PAEKS.KGR(pp); (pkS, skS)← DS-PAEKS.KGS(pp)

(pkAS, skAS)← DS-PAEKS.KGAS(pp); (pkTS, skTS)← DS-PAEKS.KGTS(pp)

(kw∗
0, kw

∗
1, state)← AO(pp, pkR, pkS, pkAS, skAS, pkTS)

s.t. kw∗
0, kw

∗
1 ∈ KS ∧ kw∗

0 ̸= kw∗
1

b
$←− {0, 1}; td∗kw∗

b
← DS-PAEKS.Trapdoor(pkR, pkS, skR, pkAS, pkTS, kw

∗
b)

b′ ← AO(state, td∗kw∗
b
)

If b = b′ then output 1, and 0 otherwise.

Here, O := {OC(·),OTrap(·),OTrans(·, ·)}. OC takes kw ∈ KS as input, and returns the result
of DS-PAEKS.Enc(pkR, pkS, skS, pkAS, pkTS, kw). Here, kw ̸∈ {kw∗

0, kw
∗
1}. OTrap takes kw′ ∈ KS

as input, and returns the result of DS-PAEKS.Trapdoor(pkR, pkS, skR, pkAS, pkTS, kw
′). Here, kw′ ̸∈

{kw∗
0, kw

∗
1}. OTrans takes ctDS-PAEKS and tdkw, and returns the result of DS-PAEKS.Transition(pkAS,

skAS, ctDS-PAEKS, tdkw). Here, there is no restriction. DS-PAEKS is IND-TS-IKGA secure for the
test server if the advantage

AdvIND-TS-IKGA
DS-PAEKS,A (λ) := |Pr[ExpIND-TS-IKGA

DS-PAEKS,A (λ) = 1]− 1/2|

is negligible in the security parameter λ for all PPT adversaries A.

4 Vulnerability of Previous Schemes

4.1 Vulnerability of the Chen et al. DS-PAEKS scheme

The Chen et al. DS-PAEKS scheme [6] is described below:

DS-PAEKS.Setup(λ): The setup algorithm takes a security parameter λ as input, and outputs a
common parameter pp = (G, p, g1, g2, g3,H), where G is a DDH-hard group with prime order
p, g1, g2, g3 ∈ G are distinct generators, and H : {0, 1} → Zp is a collision-resistant hash
function.

DS-PAEKS.KGR(pp): Choose d
$←− Zp. Output pkR = gd3 and skR = d.

DS-PAEKS.KGS(pp): Choose c
$←− Zp. Output pkS = gc3 and skS = c.

DS-PAEKS.KGAS(pp): Choose a
$←− Zp. Output pkAS = ga1 and skAS = a.

9

DS-PAEKS.KGTS(pp): Choose b
$←− Zp. Output pkTS = gb2 and skTS = b.

DS-PAEKS.Enc(pkR, pkS, skS, pkAS, pkTS, kw): Choose r1
$←− Zp. Compute C1 = gr11 , C2 = gr12 ,

and C3 = pkAS
r1pkTS

r1(pkR
skS)H(kw) and output ctDS-PAEKS = (C1, C2, C3). Here, C3 =

(ga1)
r1(gb2)

r1(gcd3)H(kw) holds.

DS-PAEKS.Trapdoor(pkR, pkS, skR, pkAS, pkTS, kw
′): Choose r2

$←− Zp. Compute T1 = gr21 , T2 =
gr22 , and T3 = pkAS

r2pkTS
r2/(pkS

skR)H(kw′), and output tdkw′ = (T1, T2, T3). Here, T3 =
(ga1)

r2(gb2)
r2/(gcd3)H(kw′) holds.

DS-PAEKS.Transition(pkR, pkS, pkAS, skAS, ctDS-PAEKS, tdkw′): Parse skAS = a, ctDS-PAEKS = (C1, C2, C3),

and tdkw′ = (T1, T2, T3). Choose r3
$←− Zp. Compute ICT1 = {(C3 · T3)/(C1 · T1)

a}r3 =
{(ga1)r1+r2(gb2)

r1+r2(gcd3)H(kw)−H(kw′)/(gr1+r2
1)a}r3 = (gb2)

r3(r1+r2)(gcd3)r3(H(kw)−H(kw′)) and ICT2 =

(C2 · T2)
r3 = g

r3(r1+r2)
2 . Output int-ctDS-PAEKS = (ICT1, ICT2).

DS-PAEKS.Test(pkR, pkS, pkTS, skTS, int-ctDS-PAEKS): Parse skTS = b and int-ctDS-PAEKS = (ICT1, ICT2).
Output 1 if ICT1 = ICT b

2 holds, and 0 otherwise.

Chen et al. claimed that ICT1 = (gb2)
r3(r1+r2)(gcd3)r3(H(kw)−H(kw′)) = (gb2)

r3(r1+r2) = (g
r3(r1+r2)
2)b =

ICT b
2 holds if kw = kw′. Due to the collision resistance of H, H(kw) ̸= H(kw′) holds if kw ̸= kw′.

Thus, the DS-PAEKS.Test algorithm outputs 0 if kw ̸= kw′.
Our attack is described here. The main problem is that the forms of ciphertext ctDS-PAEKS =

(C1, C2, C3) and trapdoor tdkw′ are almost the same, and an intermediate ciphertext int-ctDS-PAEKS

can be constructed from two ciphertexts (and skAS = a) without using any trapdoor. Let ct∗DS-PAEKS =

(C∗
1 , C

∗
2 , C

∗
3) be the challenge ciphertext where C

∗
1 = g

r∗1
1 , C∗

2 = g
r∗1
2 , and C∗

3 = pkAS
r∗1pkTS

r∗1 (pkR
skS)H(kw∗

b).
The adversary that has skAS = a issues kw∗

0 to the encryption oracle OC , and obtains ctDS-PAEKS =
(C1, C2, C3) where C1 = gr11 , C2 = gr12 , and C3 = pkAS

r1pkTS
r1(pkR

skS)H(kw∗
0). The adversary then

prepares an intermediate ciphertext as follows:

• Choose r3
$←− Zp.

• Compute ICT1 = {(C∗
3/C3)/(C

∗
1/C1)

a}r3 and ICT2 = (C∗
2/C2)

r3 . Here,

ICT1 = {(C∗
3/C3)/(C

∗
1/C1)

a}r3

= {(ga1)r
∗
1−r1(gb2)

r∗2−r2(gcd3)H(kw∗
b)−H(kw∗

0)/(g
r∗1−r1
1)a}r3

= (gb2)
r3(r∗2−r2)(gcd3)r3(H(kw∗

b)−H(kw∗
0))

ICT2 = (C∗
2/C2)

r3

= g
r3(r∗2−r2)
2

hold. The adversary sends int-ctDS-PAEKS = (ICT1, ICT2) to the test oracle OTest. If b = 0,
then ICT1 = ICT b

2 holds and thus, the oracle outputs 1, and 0 otherwise. Thus, the adversary
wins.

4.2 Vulnerability of the Chen et al. DS-PEKS scheme

The similar attack works against the Chen et al. DS-PEKS scheme [7].2 The ciphertext form
is (gr11 , gr12 , hr11 hr12 H(kw)) (now, no sender secret key is required for encryption). Here, the hash

2Here, we give an attack against the DDH-based construction given in [7]. However, our attack works against
their generic construction from smooth projective hash functions.

10

function H is defined as H : {0, 1}∗ → G. In their security definition (SS-CKA: semantic-security
against the chosen keyword attack, Fig. 1. in [7]), the oracle OT is defined such that it takes a
ciphertext and a keyword kw as input, and the oracle internally generates a trapdoor of kw and the
intermediate ciphertext (internal testing state in [7]), and returns the result of the test algorithm.
Here, kw ̸∈ {kw∗

0, kw
∗
1} is required.3 Thus, the same strategy as above does not work. However,

because of the malleability of the ciphertext, we can modify the challenge ciphertext as follows.

Let (C∗
1 , C

∗
2 , C

∗
3) = (g

r∗1
1 , g

r∗1
2 , h

r∗1
1 h

r∗1
2 H(kw∗

b)) be the challenge ciphertext. The adversary computes

H(kw∗
0) and H(kw) for arbitrary keyword kw ̸∈ {kw∗

0, kw
∗
1}. Then, the adversary chooses r

$←− Zp

and computes hr1h
r
2H(kw)C∗

3/H(kw∗
0) = H(kw)h

r∗1+r
1 h

r∗1+r
2 H(kw∗

b)/H(kw∗
0). If b = 0, then the

ciphertext is an encryption of kw. If b = 1, then the ciphertext is an encryption of an unknown
keyword (i.e., kw′ where H(kw′) = H(kw)H(kw∗

1)/H(kw∗
0) holds). Here, kw is not equal to the

unknown keyword because if the unknown keyword equals kw, then H(kw)H(kw∗
1)/H(kw∗

0) =
H(kw) holds and thus H(kw∗

1) = H(kw∗
0). This contradicts the collision resistance of H because

kw∗
0 ̸= kw∗

1. Thus, the adversary sends (gr1C
∗
1 , g

r
2C

∗
2 , h

r
1h

r
2H(kw)C∗

3/H(kw∗
0))) and kw to OT . If

the oracle returns 1, then b = 0, and b = 1 otherwise. Thus, the adversary wins.

4.3 Vulnerability of the Tso et al. DS-PEKS construction

Tso et al. [23] gave a semi-generic construction of DS-PEKS scheme from a PKE scheme. In their
syntax, there are two servers, back server and front server. Briefly, they employed a Pedersen
commitment grhkw and encrypt Xr by using the underlying PKE scheme using the public key of
the back server, where X = gx is a public key of the front server. A ciphertext is described as
(grhkw,PKE.Enc(pkBS , X

r)). A trapdoor has a similar form: (gr
′
h−kw′

,PKE.Enc(pkBS , X
r′)). The

front server generates an intermediate ciphertext (they call it internal-testing-stage) using the secret
key x such that R((grhkw)(gr

′
h−kw′

))x = RXr+r′hx(kw−kw′), where R is a random value. The inter-
mediate ciphertext is described as (PKE.Enc(pkBS , X

r),PKE.Enc(pkBS , X
r′),H(R), RXr+r′hx(kw−kw′))

where H is a hash function. If kw = kw′, then it is described as (PKE.Enc(pkBS , X
r),PKE.Enc

(pkBS , X
r′),H(R), RXr+r′). The back server decrypts (PKE.Enc(pkBS , X

r),PKE.Enc(pkBS , X
r′)),

obtains (Xr, Xr′), and checks H(RXr+r′hkw−kw′
/XrXr′) = H(R) holds or not. If it holds, then

output 1, and 0 otherwise. They claimed that information about keyword is perfectly hidden by
gr and gr

′
.

The main problem here is that the PKE part is independent of the keyword to be searched
and the CCA security of the PKE scheme is meaningless to hide information about keyword.
Actually, due to the homomorphic property of the commitment part, an adversary A can know
b = 0 or b = 1 as follows. Here, A is modeled as a malicious back server that has the secret
key of the PKE scheme skBS and the public key of the front server X (but A does not know
the secret key of the front server x) (See the definition of IND-CKA-BS in [23]). Let the chal-
lenge ciphertext and the challenge trapdoor be described as cb = (grhkw

∗
b ,PKE.Enc(pkBS , X

r)) and
tb = (gr

′
h−kw∗

b ,PKE.Enc(pkBS , X
r′)). Note that, A declares the challenge keywords (kw∗

0, kw
∗
1), and

the challenge ciphertext and the challenge trapdoor are given to the adversary simultaneously in
their security model. A is allowed to access the front test oracle that takes a ciphertext c ̸= cb and a
trapdoor t ̸= tb, and returns the corresponding intermediate ciphertext. A prepares another cipher-
text from cb as follows. A decrypts PKE.Enc(pkBS , X

r) using skBS and obtains Xr. A randomly

3Tso et al. [23] have pointed out that the Chen et al. DS-PEKS scheme [7] is not as secure as they claimed.
Basically, their attack is almost the same as ours, focusing on the linearity of smooth projective hash functions
and using the test oracle. However, they generated another ciphertext of the challenge keyword from the challenge
ciphertext, and sends the ciphertext and kw∗

1 to the test oracle OT , that contradicts the restriction kw ̸∈ {kw∗
0 , kw

∗
1}.

11

selects r′′ and computes gr
′′
grhkw

∗
b = gr

′′+rhkw
∗
b , Xr′′Xr = Xr′′+r, and PKE.Enc(pkBS , X

r′′+r).
Now c = (gr

′′+rhkw
∗
b ,PKE.Enc(pkBS , X

r′′+r)) is a ciphertext of kw∗
b and c ̸= cb. Then, A generates

a trapdoor t for kw∗
0 and then t ̸= tb. Let r′′′ be used as the randomness. A sends (c, t) to the

front test oracle, and obtains the corresponding intermediate ciphertext. The intermediate cipher-
text is described as (PKE.Enc(pkBS , X

r′′+r),PKE.Enc(pkBS , X
r′′′),H(R), RXr′′+r+r′′′hx(kw

∗
b−kw∗

0)).
If H(RXr′′+r+r′′′hx(kw

∗
b−kw∗

0)/Xr′′+rXr′′′) = H(R), then b = 0, and b = 1 otherwise. Thus, the
adversary wins.

4.4 Analysis of Other Pairing-free Schemes

Du et al. [13] and Lu and Li [18] proposed PAEKS schemes without pairings (in the designated-
tester setting). Though we did not find any attack against the Du et al. scheme and the Lu-Li
scheme, we show that at least their security proofs are wrong.

Du et al. scheme: They employed the hashed Diffie-Hellman (HDH) assumption: given (g, ga, gb,
R), it is hard to decide R = H(gab) or not where H is a hash function. To generate the

challenge ciphertext, t = gH(kw||gab||ga||gb) is computed. Du et al. randomly select R, compute
gR instead of computing gt, and claim that this modification is indistinguishable if the HDH
assumption holds. However, the simulation fails since gR = gH(gab) holds if R = H(gab) and
this does not appropriately simulate gt.

Lu-Li scheme: They employed the DDH assumption: given (g, ga, gb, R), it is hard to decide
R = gab or not. In their security proof, two challenge users, say I and J , are selected and their
keys are set as PKI = (PKI,1, PKI,2) := (gxI , ga) and PKJ = (PKJ,1, PKJ,2) := (gxJ , gb)
where xI and xJ are chosen by the simulator and ga and gb are the DDH instance that a and
b are unknown. A ciphertext of kw generated by SKI = (xI , a) and PKJ consists of IC1 =

gr and IC2 = H3(Q) where Q = (gPK
H2(kw,λ1,λ2)
J,2)r, λ1 = H1(PKI,1, PKJ,1, (PKJ,1)

xI),
and λ2 = H1(PKI,2, PKJ,2, (PKJ,2)

a). An adversary is allowed to issue a ciphertext query
(PKI , PKJ , kw) if kw ̸∈ {kw∗

0, kw
∗
1}. Here, H1, H2, and H3 are hash functions modeled as

random oracles. To respond to the ciphertext query, the simulator needs to compute λ2 that
requires to compute PKa

J,2 = gab. However, this requires to solve the computational Diffie-

Hellman problem: given (g, ga, gb), compute gab. Thus, the simulation fails. In the security
proof, it is assumed that no (ga, gb, S) is queried to H1 where (g, ga, gb, S) is a valid DDH
tuple. However, the adversary can make the query via the ciphertext oracle as above.

As another problem, for PK = (PK1, PK2) = (ga1 , ga2), SK1 = a1 is extracted by an ad-
versary A though A did not send a corruption query for (PK1, PK2). In their scheme, a
trapdoor is td = SK1H2(kw, λ1, λ2). First, A issues a corruption query PK ′ = (PK ′

1, PK ′
2),

obtains (SK ′
1, SK

′
2), and issues a trapdoor query (kw, PK ′, PK). Then the oracle responds

SK1H2(kw, λ1, λ2) where λ1 = H1(PK,PK ′, (PK ′
1)

SK1) = H1(PK,PK ′, PK
SK′

1
1) and λ2 =

H1(PK,PK ′, (PK ′
2)

SK2) = H1(PK,PK ′, PK
SK′

2
2). Since A knows (SK ′

1, SK
′
2), A can com-

pute λ1 and λ2. Thus, from the trapdoor, A can compute SK1 = td/H2(kw, λ1, λ2). Since
both secret keys are required to compute a trapdoor, the situation revealing SK1 does not
immediately break the scheme, i.e., still A is not able to generate a trapdoor that works to
distinguish whether the challenge ciphertext is an encryption of kw∗

0 or kw∗
1. Nevertheless,

the scheme structure should be reconsidered because revealing a part of secret key without
corruption is a fatal error as a cryptographic primitive.

12

5 Proposed Generic construction

Technical Overview: The proposed generic construction employs Chen’s idea [8], i.e., when a
server has a public key, and the test algorithm takes the secret key of the server as input, then it is
sufficient to encrypt a trapdoor by the public key to hide information about the keywords associated
with the trapdoor. In our construction, the assistant and test servers manage public keys of PKE,
respectively. A sender re-encrypts a PAEKS ciphertext using pkAS, and sends it to the assistant
server as a DS-PAEKS ciphertext. A receiver encrypts a PAEKS trapdoor using pkTS, and sends
it to the assistant server as a DS-PAEKS trapdoor. The assistant server then decrypts the DS-
PAEKS ciphertext using skAS, and sets the PAEKS ciphertext and the DS-PAEKS trapdoor as the
intermediate ciphertext. The test server decrypts the DS-PAEKS trapdoor using skTS, and obtains
the PAEKS trapdoor. The test server then runs the test algorithm of the underlying PAEKS
scheme. The construction is basically secure because no information about keywords is leaked from
PAEKS ciphertexts and PAEKS trapdoors due to the security of the underlying PAEKS scheme.
Moreover, no single server can run the PAEKS test algorithm because either a PAEKS ciphertext
or a PAEKS trapdoor is encrypted using the public key of the other server. We also introduce two
signature schemes, where a sender and a receiver sign a PAEKS ciphertext and a PAEKS trapdoor,
respectively, before the encryption to exclude the case of an adversary producing a PKE ciphertext
of self-made PAEKS ciphertexts/trapdoors for the challenge keyword.

Let PAEKS = (PAEKS.Setup,PAEKS.KGR,PAEKS.KGS,PAEKS.Enc,PAEKS.Trapdoor,PAEKS.Test)
be a PAEKS scheme, PKE = (PKE.KeyGen,PKE.Enc,PKE.Dec) be a PKE scheme, and Sig =
(Sig.KeyGen, Sign,Verify) be a signature scheme. We construct a DS-PAEKS scheme DS-PAEKS =
(DS-PAEKS.Setup,DS-PAEKS.KGR,DS-PAEKS.KGS,DS-PAEKS.KGAS,DS-PAEKS.KGTS,DS-PAEKS.Enc,
DS-PAEKS.Trapdoor,DS-PAEKS.Transition,DS-PAEKS.Test) as follows.

DS-PAEKS.Setup(λ): Run pp← PAEKS.Setup(1λ) and output pp. We assume that pp contains the
security parameter λ.

DS-PAEKS.KGR(pp): Run (pk′R, sk
′
R) ← PAEKS.KGR(pp) and (vkR, sigkR) ← Sig.KeyGen(1λ). Out-

put pkR = (pk′R, vkR) and skR = (sk′R, sigkR).

DS-PAEKS.KGS(pp): Run (pk′S, sk
′
S) ← PAEKS.KGS(pp) and (vkS, sigkS) ← Sig.KeyGen(1λ). Out-

put pkS = (pk′S, vkS) and skS = (sk′S, sigkS).

DS-PAEKS.KGAS(pp): Run (PK,DK)← PKE.KeyGen(1λ) and output pkAS = PK and skAS = DK.

DS-PAEKS.KGTS(pp): Run (PK′,DK′)← PKE.KeyGen(1λ) and output pkTS = PK′ and skTS = DK′.

DS-PAEKS.Enc(pkR, pkS, skS, pkAS, pkTS, kw): Parse pkR = (pk′R, vkR), pkS = (pk′S, vkS), and skS =
(sk′S, sigkS). Run ctPAEKS ← PAEKS.Enc(pk′R, pk

′
S, sk

′
S, kw), σ ← Sign(sigkS, ctPAEKS), and

C ← PKE.Enc(pkAS, σ||ctPAEKS). Output ctDS-PAEKS = C.

DS-PAEKS.Trapdoor(pkR, pkS, skR, pkAS, pkTS, kw
′): Parse pkR = (pk′R, vkR), skR = (sk′R, sigkR), and

pkS = (pk′S, vkS). Run td′kw′ ← PAEKS.Trapdoor(pk′R, pk
′
S, sk

′
R, kw

′), σ′ ← Sign(sigkR, td
′
kw′),

and C ′ ← PKE.Enc(pkTS, σ
′||td′kw′). Output tdkw′ = C ′.

DS-PAEKS.Transition(pkR, pkS, pkAS, skAS, ctDS-PAEKS, tdkw′): Parse pkS = (pk′S, vkS) and ctDS-PAEKS =
C. Run σ||ctPAEKS ← PKE.Dec(skAS, C). Output ⊥ if Verify(vkS, ctPAEKS, σ) = 0. Otherwise,
output int-ctDS-PAEKS = (ctPAEKS, σ, tdkw′).

13

DS-PAEKS.Test(pkR, pkS, pkTS, skTS, int-ctDS-PAEKS): Parse pkR = (pk′R, vkR), pkS = (pk′S, vkS), and
int-ctDS-PAEKS = (ctPAEKS, σ, tdkw′). Output 0 if Verify(vkS, ctPAEKS, σ) = 0. Otherwise, run
σ′||td′kw′ ← PKE.Dec(skTS, tdkw′). Output 0 if Verify(vkR, td

′
kw′ , σ′) = 0. Otherwise, output

the result of PAEKS.Test(ctPAEKS, td
′
kw′).

The proposed construction is correct if the underlying PAEKS, PKE, and signature schemes
are correct. Moreover, the proposed construction is computationally consistent if the underlying
PAEKS scheme is computationally consistent. We note that signature schemes are related to the
result of the DS-PAEKS.Test algorithm. However, they are employed for preventing any modification
of the challenge ciphertext and trapdoor. Thus, the proposed construction provides computational
consistency even if signature schemes are insecure (e.g., the Verify algorithm always outputs 1
regardless of the input). Precisely, if the DS-PAEKS.Test algorithm outputs 1, then the PAEKS.Test
algorithm must output 1, and the result of the Verify algorithm is independent.

6 Security Analysis

Theorem 1. The proposed construction is IND-AS-CKA secure if PAEKS is IND-CKA secure,
PKE is IND-CCA secure, and Sig is sEUF-CMA secure.

Basically, the IND-AS-CKA security is reduced to the IND-CKA security of PAEKS. However,
we must consider two main cases: (1) how to simulate OTrap for kw ∈ {kw∗

0, kw
∗
1} because OTrap of

the underlying PAEKS scheme has the restriction that kw ̸∈ {kw∗
0, kw

∗
1}, and (2) how to prevent

any modification of trapdoors of the challenge keyword because if an adversary issues int-ctDS-PAEKS

to OTest, where either int-ctDS-PAEKS ← DS-PAEKS.Transition(pkR, pkS, pkAS, skAS, ct
∗
DS-PAEKS, tdkw∗

0
)

∧ tdkw∗
0
̸∈ TSet or int-ctDS-PAEKS ← DS-PAEKS.Transition(pkR, pkS, pkAS, skAS, ct

∗
DS-PAEKS, tdkw∗

1
) ∧

tdkw∗
1
̸∈ TSet, then the adversary trivially wins. We handled the first issue by employing the IND-

CPA security of the underlying PKE scheme. PAEKS trapdoors are now encrypted by the public
key of the test server. Thus, the PKE ciphertext of the PAEKS trapdoor for kw ∈ {kw∗

0, kw
∗
1} can

be replaced with a PKE ciphertext of 0 due to the IND-CPA security. Then, the simulator does
not have to issue a trapdoor query to the underlying PAEKS scheme. More precisely, we require
that the underlying PKE scheme is IND-CCA secure to simulate OTest that internally runs the
decryption algorithm of PKE. We handled the second issue by employing the sEUF-CMA security
of the underlying signature scheme. That is, a PAEKS trapdoor is signed before encryption to
prevent any PAEKS trapdoor modification. One may think that the signature scheme is redundant
because the PAEKS trapdoors are encrypted by the IND-CCA secure PKE that prevents the PKE
ciphertext modification. However, we must exclude the case in which an adversary produces a PKE
ciphertext of a self-made PAEKS trapdoor for the challenge keyword. Thus, we employ both the
PKE and signature schemes in the proposed construction.

Proof. The proof uses a sequence of games. Let Ei be the event in which A outputs b′ = b in
Game i.

Game 0: This game corresponds to the real game. By definition, AdvIND-AS-CKA
DS-PAEKS,A(λ) = |Pr[E0] −

1/2|.

Game 1: This game is the same as Game 0, except that the response of the OTest oracle is changed
as follows. Let A be an IND-AS-CKA adversary. Assume that A issues int-ctDS-PAEKS =
(ctPAEKS, σ, tdkw′) to OTest. Run σ′||td′kw′ ← PKE.Dec(skTS, tdkw′). If Verify(vkR, td

′
kw′ , σ′) = 1

and (td′kw′ , σ′) was not generated in the OTrap oracle, then the challenger aborts. If the

14

challenger does not abort, then Game 1 is identical to Game 0. Thus, |Pr[E0] − Pr[E1]| ≤
Pr[abort] where abort is the event that the challenger aborts.

Lemma 1. There exists an algorithm B such that Pr[abort] ≤ AdvsEUF-CMA
Sig,B (λ).

Proof. Let A be the adversary of IND-AS-CKA and C be the challenger of the signature scheme.
We construct an algorithm B that breaks the sEUF-CMA security as follows. First, B runs pp ←
PAEKS.Setup(1λ), (pk′R, sk

′
R) ← PAEKS.KGR(pp), (pk′S, sk

′
S) ← PAEKS.KGS(pp), (vkS, sigkS) ←

Sig.KeyGen(1λ), (PK,DK) ← PKE.KeyGen(1λ), and (PK′,DK′) ← PKE.KeyGen(1λ). C runs (vk,
sigk) ← Sig.KeyGen(1λ), and sends vk to B. B sets pkR = (pk′R, vk), skR = (sk′R,−), pkS =
(pk′S, vkS), skS = (sk′S, sigkS), pkAS = PK, skAS = DK, pkTS = PK′, and skTS = DK′, and sends
(pp, pkR, pkS, pkAS, skAS, pkTS) to A. B sets TSet := ∅ and SSet := ∅.

• For OC , B can respond to any query because B has skS.

• ForOTrap, B can respond to a query kw′ fromA as follows. B runs td′kw′ ← PAEKS.Trapdoor(pk′R,
pk′S, sk

′
R, kw

′) and sends td′kw′ to C as a signing query. C returns σ′ ← Sign(sigk, td′kw′) to B.
B computes C ′ ← PKE.Enc(pkTS, σ

′||td′kw′) and returns tdkw′ = C ′ to A. Moreover, B stores
(td′kw′ , σ′) on SSet.

• For OTest, B can respond to a query int-ctDS-PAEKS = (ctPAEKS, σ, tdkw′) from A as follows. B
returns 0 if Verify(vkS, ctPAEKS, σ) = 0. Otherwise, B runs σ′||td′kw′ ← PKE.Dec(skTS, tdkw′). B
returns 0 if Verify(vkR, td

′
kw′ , σ′) = 0. From now on, we assume that Verify(vkR, td

′
kw′ , σ′) = 1.

If (td′kw′ , σ′) is generated in the OTrap oracle, then B returns the result of PAEKS.Test(ctPAEKS,
td′kw′). If (td′kw′ , σ′) was not generated in the OTrap oracle, i.e., (td′kw′ , σ′) ̸∈ SSet, then σ′ is
not a response from C. Thus, B outputs (td′kw′ , σ′) as a forged message and signature pair,
and breaks the sEUF-CMA security of the signature scheme.

In the challenge phase, A declares (kw∗
0, kw

∗
1). B chooses b

$←− {0, 1}, generates ct∗DS-PAEKS ←
DS-PAEKS.Enc(pkR, pkS, skS, pkAS, pkTS, kw

∗
b), and returns ct∗DS-PAEKS to A.

B simulates OC , OTrap, and OTest as in the previous phase, except that if A sends kw ∈
{kw∗

0, kw
∗
1} to OTrap, then B updates TSet = TSet∪{tdkw} where tdkw is the response of the OTrap

oracle. If A does not issue a test query int-ctDS-PAEKS = (ctPAEKS, σ, tdkw′) where, for σ′||td′kw′ ←
PKE.Dec(skTS, tdkw′), Verify(vkR, td

′
kw′ , σ′) = 1 and (td′kw′ , σ′) was not generated in the OTrap oracle,

then B simulates Game 0, and Game 1 otherwise.

Game 2.k (1 ≤ k ≤ qTrap): Let qTrap be the number of trapdoor queries issued by A and Game 2.0
be the same as Game 1. Game 2.k is the same as Game 2.k − 1, except that the response of
the k-th OTrap query is changed as follows. Let A issues kw to OTrap as the k-th query. Let
ℓ be the bit size of the PAEKS trapdoor. Set td′kw = 0|ℓ| and run σ′ ← Sign(sigkR, td

′
kw′), and

C ′ ← PKE.Enc(pkTS, σ
′||td′kw′). Output tdkw′ = C ′.

Lemma 2. For each k ∈ [1, qTrap], Game 2.k is indistinguishable from Game 2.k−1 if the underlying
PKE scheme is IND-CCA secure. Precisely, there exists an algorithm B such that |Pr[E2.k−1] −
Pr[E2.k]| ≤ AdvIND-CCA

PKE,B (λ).

Proof. Let A be the adversary of IND-AS-CKA and C be the challenger of the PKE scheme.
We construct an algorithm B that breaks the IND-CCA security as follows. C runs (PK′,DK′) ←
PKE.KeyGen(1λ) and sends PK′ to B. B runs pp← PAEKS.Setup(1λ), (pk′R, sk

′
R)← PAEKS.KGR(pp),

(vkR, sigkR) ← Sig.KeyGen(1λ), (pk′S, sk
′
S) ← PAEKS.KGS(pp), (vkS, sigkS) ← Sig.KeyGen(1λ), and

15

(PK,DK) ← PKE.KeyGen(1λ). B sets pkTS = (pk′R, vk), skR = (sk′R, sigkR), pkS = (pk′S, vkS), skS =
(sk′S, sigkS), pkAS = PK, skAS = DK, pkTS = PK′, and skTS = −, and sends (pp, pkR, pkS, pkAS, skAS, pkTS)
to A. B sets TSet := ∅, SSet := ∅, and CSet := ∅.

• For OC , B can respond to any query because B has skS.

• For OTrap, B can respond to a query kw′ from A as follows. From 1 to k−1-th queries, B sets
td′kw′ = 0|ℓ|, computes σ′ ← Sign(sigkR, td

′
kw′) and C ′ ← PKE.Enc(pkTS, σ

′||td′kw′), and returns
tdkw′ = C ′ to A. Moreover, B stores (kw′, td′kw′ , σ′) on SSet. From k + 1 to qTrap queries,
B runs td′kw′ ← PAEKS.Trapdoor(pk′R, pk

′
S, sk

′
R, kw

′), σ′ ← Sign(sigkR, td
′
kw′), and C ′ ←

PKE.Enc(pkTS, σ
′||td′kw′), and returns tdkw′ = C ′ to A. Moreover, B stores (kw′, td′kw′ , σ′)

on SSet. For the k-th query, B runs td′kw′ ← PAEKS.Trapdoor(pk′R, pk
′
S, sk

′
R, kw

′) and com-
putes σ′ ← Sign(sigkR, td

′
kw′) and σ′′ ← Sign(sigkR, 0

|ℓ|). B sets (σ′||td′kw′ , σ′′||0|ℓ|) as the
challenge plaintexts, and sends (σ′||td′kw′ , σ′′||0|ℓ|) to C. C returns the challenge ciphertext
C∗. B returns tdkw′ = C∗ to A. Moreover, B stores (kw′, C∗) on CSet.

• For OTest, B can respond to a query int-ctDS-PAEKS = (ctPAEKS, σ, tdkw′) from A as follows.
B returns 0 if Verify(vkS, ctPAEKS, σ) = 0. If tdkw′ = C∗, then B knows the keyword as-
sociated to tdkw′ because (kw′, C∗) is stored on CSet. B runs td′kw′ ← PAEKS.Trapdoor
(pk′R, pk

′
S, sk

′
R, kw

′), and returns the result of PAEKS.Test(ctPAEKS, td
′
kw′). If tdkw′ ̸= C∗,

then B sends tdkw′ to C as a decryption query. If C returns ⊥, then B returns 0 to A.
Otherwise, let σ′||td′kw′ be the response from C. B returns 0 if Verify(vkR, td

′
kw′ , σ′) = 0.

Otherwise, Verify(vkR, td
′
kw′ , σ′) = 1. Due to the modification of Game 1, (td′kw′ , σ′) was

generated in the OTrap oracle. Thus, (kw′, td′kw′ , σ′) ∈ SSet. If td′kw′ = 0|ℓ|, then B runs
td′kw′ ← PAEKS.Trapdoor(pk′R, pk

′
S, sk

′
R, kw

′). B returns the result of PAEKS.Test(ctPAEKS,
td′kw′).

In the challenge phase, A declares (kw∗
0, kw

∗
1). B chooses b

$←− {0, 1}, generates ct∗DS-PAEKS ←
DS-PAEKS.Enc(pkR, pkS, skS, pkAS, pkTS, kw

∗
b), and returns ct∗DS-PAEKS to A.

B simulates OC , OTrap, and OTest as in the previous phase, except that if A sends kw ∈
{kw∗

0, kw
∗
1} to OTrap, then B updates TSet = TSet∪{tdkw} where tdkw is the response of the OTrap

oracle. If the challenge ciphertext C∗ is an encryption of σ′||td′kw, then B simulates Game 2.k − 1,
and if C∗ is an encryption of σ′′||0|ℓ|, then B simulates Game 2.k. Thus, |Pr[E2.k−1]− Pr[E2.k]| ≤
AdvIND-CCA

PKE,B (λ) holds.

Game 3: This game is the same as Game 2.qTrap, except that the response of OTest is changed as
follows. If A issues int-ctDS-PAEKS = (ctPAEKS, σ, tdkw) such that (1) Verify(vkS, ctPAEKS, σ) = 1,
(2) for σ′||td′kw ← PKE.Dec(skTS, tdkw), (td

′
kw, σ

′) was generated in theOTrap oracle for a query
kw (and thus Verify(vkR, td

′
kw′ , σ′) = 1 and (kw, td′kw, σ

′) ∈ SSet), (3) kw ∈ {kw∗
0, kw

∗
1}, and

(4) tdkw ̸∈ TSet, then the challenger aborts. If challenger does not abort, then Game 3 is
identical to Game 2.qTrap. Thus, |Pr[E2.qTrap] − Pr[E3]| ≤ Pr[abort] where abort is the event
when the challenger aborts.

Lemma 3. There exists an algorithm B such that Pr[abort] ≤ qTrap · AdvIND-CCA
PKE,B (λ).

Proof. Due to the modification in Game 1, (kw, td′kw, σ
′) ∈ SSet. Thus, kw ∈ {kw∗

0, kw
∗
1} and

tdkw ̸∈ TSet mean that a PKE ciphertext PKE.Enc(pkTS, σ
′||td′kw) is re-randomized by A that con-

tradicts the IND-CCA security. Let A be the adversary of IND-AS-CKA and C be the challenger of
the PKE scheme. We construct an algorithm B that breaks the IND-CCA security as follows. C runs

16

(PK′,DK′) ← PKE.KeyGen(1λ) and sends PK′ to B. B runs pp ← PAEKS.Setup(1λ), (pk′R, sk
′
R) ←

PAEKS.KGR(pp), (vkR, sigkR) ← Sig.KeyGen(1λ), (pk′S, sk
′
S) ← PAEKS.KGS(pp), (vkS, sigkS) ←

Sig.KeyGen(1λ), and (PK,DK) ← PKE.KeyGen(1λ). B sets pkTS = (pk′R, vk), skR = (sk′R, sigkR),
pkS = (pk′S, vkS), skS = (sk′S, sigkS), pkAS = PK, skAS = DK, pkTS = PK′, and skTS = −, and sends
(pp, pkR, pkS, pkAS, skAS, pkTS) to A. B sets TSet := ∅ and SSet := ∅. We assume that (td′kw, σ

′)
(appeared in the condition (2)) was generated in the OTrap oracle for the k∗-th trapdoor query. B
guesses k∗. From now on, we assume that the guessing of k∗ is correct (with the probability at
least 1/qTrap).

In the challenge phase, A declares (kw∗
0, kw

∗
1). B chooses b

$←− {0, 1}, generates ct∗DS-PAEKS ←
DS-PAEKS.Enc(pkR, pkS, skS, pkAS, pkTS, kw

∗
b), and returns ct∗DS-PAEKS to A.

• For OC , B can respond to any query because B has skS.

• B simulates OTrap oracle as in Game 2.qTrap, except the k∗-th query. B simulates OTrap for
the k∗-th query as follows. We remark that the k∗-th query may be sent from A before
the challenge phase. We also remark that, for a trapdoor query kw, B sets td′kw = 0|ℓ|

regardless of the associated keyword due to the modification of previous games. B computes
σ′
0 ← Sign(sigkR, 0

|ℓ|) and σ′
1 ← Sign(sigkR, 0

|ℓ|), and sets (σ′
0||0|ℓ|, σ′

1||0|ℓ|) as the challenge
plaintexts. We remark that we have explicitly assumed that the Sign algorithm is probabilistic
and thus σ′

0 ̸= σ′
0 holds with overwhelming probability.4 C returns the challenge ciphertext

C∗ ← PKE.Enc(pkTS, σ
′
b′ ||0|ℓ|) where b′ ∈ {0, 1}. B returns tdkw = C∗ to A. B stores

(kw, 0|ℓ|, σ′
0, σ

′
1) to SSet (here, the 4-th entry is added to store two signatures).

• For OTest, B can respond to a query int-ctDS-PAEKS = (ctPAEKS, σ, tdkw′) from A as follows. B
returns 0 if Verify(vkS, ctPAEKS, σ) = 0. If tdkw′ = C∗, then B knows the keyword associated
to tdkw′ because (kw, 0|ℓ|, σ′

0, σ
′
1) is stored on SSet. B runs td′kw ← PAEKS.Trapdoor(pk′R,

pk′S, sk
′
R, kw), and returns the result of PAEKS.Test(ctPAEKS, td

′
kw). If tdkw′ ̸= C∗, then B

sends tdkw′ to C as a decryption query. If C returns ⊥, then B returns 0 to A. Otherwise,
let σ′||td′kw′ be the response from C. B returns 0 if Verify(vkR, td

′
kw′ , σ′) = 0. Otherwise,

Verify(vkR, td
′
kw′ , σ′) = 1. Due to the modification of Game 1, (td′kw′ , σ′) was generated in

the OTrap oracle. If (td′kw′ , σ′) was generated in the OTrap oracle for the k∗-th query, then
td′kw = 0|ℓ|, σ′ ∈ {σ′

0, σ
′
1} where (kw, 0|ℓ|, σ′

0, σ
′
1) ∈ SSet, kw ∈ {kw∗

0, kw
∗
1}, and tdkw ̸∈ TSet.

B outputs 0 if σ′ = σ′
0 and 1 if σ′ = σ′

1 and breaks the IND-CCA security. If (td′kw′ , σ′)
was generated in the OTrap oracle for the k-th query where k ̸= k∗, let (kw′, 0|ℓ|, σ′) ∈ SSet.
B runs td′kw′ ← PAEKS.Trapdoor(pk′R, pk

′
S, sk

′
R, kw

′) and returns the result of PAEKS.Test
(ctPAEKS, td

′
kw′).

Lemma 4. There exists an algorithm B such that |Pr[E3]− 1/2| ≤ AdvIND-CKA
PAEKS,B(λ).

Proof. Let A be the adversary of IND-AS-CKA and C be the challenger of the PAEKS scheme. We
construct an algorithm B that breaks the IND-CKA security as follows. C runs pp← PAEKS.Setup(1λ),
(pk′R, sk

′
R) ← PAEKS.KGR(pp), and (pk′S, sk

′
S) ← PAEKS.KGS(pp), and sends (pp, pk′R, pk

′
S) to B. B

runs (vkR, sigkR) ← Sig.KeyGen(1λ), (vkS, sigkS) ← Sig.KeyGen(1λ), (PK,DK) ← PKE.KeyGen(1λ),
and (PK′,DK′) ← PKE.KeyGen(1λ), and sets pkTS = (pk′R, vk), skR = (−, sigkR), pkS = (pk′S, vkS),
skS = (−, sigkS), pkAS = PK, skAS = DK, pkTS = PK′, and skTS = DK′, and sends (pp, pkR, pkS, pkAS,
skAS, pkTS) to A. B sets SSet := ∅.

4if the Sign algorithm is deterministic, e.g., the BLS signature scheme [3], then two challenge plaintexts are
identical. This is the reason why we employ that a probabilistic signing algorithm in our construction.

17

• For OC , B can respond to a query kw from A as follows. B sends kw to C as an encryption
query. Then, C generates ctPAEKS ← PAEKS.Enc(pk′R, pk

′
S, sk

′
S, kw), and sends ctPAEKS to B. B

runs σ ← Sign(sigkS, ctPAEKS) and C ← PKE.Enc(pkAS, σ||ctPAEKS), and sends ctDS-PAEKS = C
to A.

• For OTrap, B can respond to a query kw from A as follows. B sets td′kw = 0|ℓ|, computes
σ′ ← Sign(sigkR, td

′
kw) and C ′ ← PKE.Enc(pkTS, σ

′||td′kw), and returns tdkw = C ′ to A.
Moreover, B stores (kw, 0|ℓ|, σ′) to SSet.

• For OTest, B can respond to a query int-ctDS-PAEKS = (ctPAEKS, σ, tdkw′) from A as follows. B
returns 0 if Verify(vkS, ctPAEKS, σ) = 0. Otherwise, B runs σ′||td′kw′ ← PKE.Dec(skTS, tdkw′).
B returns 0 if Verify(vkR, td

′
kw′ , σ′) = 0. Otherwise, when Verify(vkR, td

′
kw′ , σ′) = 1, σ′ has

been stored such that (kw, 0|ℓ|, σ′) ∈ SSet due to the modification of Game 1. More-
over, kw ̸∈ {kw∗

0, kw
∗
1} due to the modification of Game 3. Thus, regardless of whether

A has declared (kw∗
0, kw

∗
1) or not, B sends kw to C as a trapdoor query. C runs td′kw ←

PAEKS.Trapdoor(pk′R, pk
′
S, sk

′
R, kw) and sends td′kw to B. B returns the result of PAEKS.Test

(ctPAEKS, td
′
kw).

In the challenge phase, A declares (kw∗
0, kw

∗
1). B sends (kw∗

0, kw
∗
1) to C. C generates the

challenge ciphertext ct∗PAEKS ← PAEKS.Enc(pk′R, pk
′
S, sk

′
S, kw

∗
b) and sends ct∗PAEKS to B. B runs

σ ← Sign(sigkS, ct
∗
PAEKS) and C ← PKE.Enc(pkAS, σ||ct∗PAEKS), and sends the challenge ciphertext

ct∗DS-PAEKS = C to A. Finally, A outputs b′. Then B outputs b′. If A breaks the IND-AS-CKA
security, then B breaks the IND-CKA security with the same advantage. Thus, |Pr[E3] − 1/2| ≤
AdvIND-CKA

PAEKS,B(λ) holds.

Now, we have |Pr[E0] − 1/2| ≤ AdvsEUF-CMA
Sig,B (λ) + 2qTrapAdv

IND-CCA
PKE,B (λ) + AdvIND-CKA

PAEKS,B(λ). This
concludes the proof of Theorem 1.

Theorem 2. The proposed construction is IND-TS-CKA secure if PAEKS is IND-CKA secure.

The adversary A is allowed to issue a transition query to OTrans with no restriction. Thus, A
can obtain int-ctDS-PAEKS = (ctPAEKS, σ, tdkw′) for any ctDS-PAEKS = C. Moreover, A has the secret
key of the test server. That is, A has (PK′,DK′) ← PKE.KeyGen(1λ) and can decrypt tdkw = C ′

such that σ′||td′kw′ ← PKE.Dec(skTS, tdkw′). Thus, A observes PAEKS ciphertexts and trapdoors
directly. So, we directly reduce the IND-TS-CKA security to the IND-CKA security.

Proof. LetA be an adversary of the IND-TS-CKA security and C be the challenger of the IND-CKA
security. We construct an algorithm B that breaks the IND-CKA security using A as follows. C
runs pp← PAEKS.Setup(1λ), (pk′R, sk

′
R)← PAEKS.KGR(pp), and (pk′S, sk

′
S)← PAEKS.KGS(pp), and

sends (pp, pk′R, pk
′
S) to B. B runs (vkR, sigkR) ← Sig.KeyGen(1λ), (vkS, sigkS) ← Sig.KeyGen(1λ),

(PK,DK) ← PKE.KeyGen(1λ), and (PK′,DK′) ← PKE.KeyGen(1λ), and sets pkTS = (pk′R, vk),
skR = (−, sigkR), pkS = (pk′S, vkS), skS = (−, sigkS), pkAS = PK, skAS = DK, pkTS = PK′, and
skTS = DK′, and sends (pp, pkR, pkS, pkAS, pkTS, skTS) to A.

• For OC , B can respond to a query kw from A as follows. B sends kw to C as an encryption
query. Then, C generates ctPAEKS ← PAEKS.Enc(pk′R, pk

′
S, sk

′
S, kw), and sends ctPAEKS to B. B

runs σ ← Sign(sigkS, ctPAEKS) and C ← PKE.Enc(pkAS, σ||ctPAEKS), and sends ctDS-PAEKS = C
to A.

• For OTrap, B can respond to a query kw from A as follows. Since kw ̸∈ {kw∗
0, kw

∗
1}, B sends

kw to C as a trapdoor query. C runs td′kw ← PAEKS.Trapdoor(pk′R, pk
′
S, sk

′
R, kw) and sends

18

td′kw to B. B computes σ′ ← Sign(sigkR, td
′
kw) and C ′ ← PKE.Enc(pkTS, σ

′||td′kw), and returns
tdkw = C ′ to A.

• ForOTrans, B can respond to a query (ctDS-PAEKS, tdkw) fromA as follows. B runs σ||ctPAEKS ←
PKE.Dec(skAS, C). B returns⊥ if Verify(vkS, ctPAEKS, σ) = 0. Otherwise, B returns int-ctDS-PAEKS =
(ctPAEKS, σ, tdkw) to A.

In the challenge phase, A declares (kw∗
0, kw

∗
1). B sends (kw∗

0, kw
∗
1) to C. C generates the

challenge ciphertext ct∗PAEKS ← PAEKS.Enc(pk′R, pk
′
S, sk

′
S, kw

∗
b) and sends ct∗PAEKS to B. B runs

σ ← Sign(sigkS, ct
∗
PAEKS) and C ← PKE.Enc(pkAS, σ||ct∗PAEKS), and sends the challenge ciphertext

ct∗DS-PAEKS = C to A. We remark that A may issue ct∗DS-PAEKS to OTrans with some tdkw. Then,
B simply returns (ct∗PAEKS, σ, tdkw) to A. Finally, A outputs b′. Then B outputs b′. If A breaks
the IND-TS-CKA security, then B breaks the IND-CKA security with the same advantage. This
concludes the proof.

Theorem 3. The proposed construction is IND-AS-IKGA secure if PKE is IND-CCA secure and
Sig is sEUF-CMA secure.

Basically, the IND-AS-IKGA security is reduced to the IND-CCA security of PKE because
trapdoors are encrypted by the public key of the test server, and the adversary does not have the
decryption key. To simulate the test oracle OTest, PKE is required to be IND-CCA secure because
the decryption algorithm of PKE is internally run in the DS-PAEKS.Test algorithm. However, we
must consider the following case: how to prevent any modification of DS-PAEKS ciphertexts of the
challenge keyword because if an adversary issues int-ctDS-PAEKS to OTest, where int-ctDS-PAEKS ←
DS-PAEKS.Transition(pkR, pkS, pkAS, skAS, ctDS-PAEKS, td

∗
kw∗

b
), ctDS-PAEKS ̸∈ CTSet, and ctDS-PAEKS is

a DS-PAEKS ciphertext of the challenge keyword, then the adversary trivially wins. To handle the
issue, we employ the sEUF-CMA security of the underlying signature scheme. That is, a PAEKS
ciphertext is signed before encryption that prevents any modification of the DS-PAEKS ciphertext.
Then, it is guaranteed that all DS-PAEKS ciphertexts A obtains are generated by the encryption
oracle OC .

Proof. The proof uses a sequence of games. Let Ei be the event in which A outputs b′ = b in
Game i.

Game 0: This game corresponds to the real game. By definition, AdvIND-AS-IKGA
DS-PAEKS,A (λ) = |Pr[E0] −

1/2|.

Game 1: This game is the same as Game 0, except that the response of the OTest oracle is changed
as follows. Let A be an IND-AS-CKA adversary. Assume that A issues int-ctDS-PAEKS =
(ctPAEKS, σ, tdkw′) to OTest. If Verify(vkS, ctPAEKS, σ) = 1 and (ctPAEKS, σ) is not generated in
the OC oracle, then the challenger abort. If the challenger does not abort, then Game 1 is
identical to Game 0. Thus, |Pr[E0] − Pr[E1]| ≤ Pr[abort] where abort is the event that the
challenger aborts.

Lemma 5. There exists an algorithm B such that Pr[abort] ≤ AdvsEUF-CMA
Sig,B (λ).

Proof. Let A be the adversary of IND-AS-IKGA and C be the challenger of the signature scheme.
We construct an algorithm B that breaks the sEUF-CMA security as follows. B runs pp ←
PAEKS.Setup(1λ), (pk′R, sk

′
R) ← PAEKS.KGR(pp), (pk′S, sk

′
S) ← PAEKS.KGS(pp), (vkR, sigkR) ←

Sig.KeyGen(1λ), (PK,DK)← PKE.KeyGen(1λ), and (PK′,DK′)← PKE.KeyGen(1λ). C runs (vk, sigk)←
Sig.KeyGen(1λ) and sends vk to B. B sets pkS = (pk′S, vk), skR = (sk′R, sigkR), pkS = (pk′S, vk), skS =

19

(sk′S,−), pkAS = PK, skAS = DK, pkTS = PK′, and skTS = DK′, and sends (pp, pkR, pkS, pkAS, skAS, pkTS)
to A. B sets CTSet := ∅ and CTSet′ := ∅.

• ForOC , B can respond to a query kw fromA as follows. B runs ctPAEKS ← PAEKS.Enc(pk′R, pk
′
S,

sk′S, kw) and sends ctPAEKS to C as a signing query. C runs σ ← Sign(sigkS, ctPAEKS) and sends
σ to B. B runs C ← PKE.Enc(pkAS, σ||ctPAEKS) and returns ctDS-PAEKS = C to A. B stores
(kw, ctDS-PAEKS) on CTSet′.

• For OTrap, B can respond to any query from A because B knows skR.

• For OTest, B can respond to a query int-ctDS-PAEKS = (ctPAEKS, σ, tdkw′) from A as follows.
B returns 0 if Verify(vkS, ctPAEKS, σ) = 0. Otherwise, if (ctPAEKS, σ) was not generated in
the OC oracle, then (ctPAEKS, σ) is not a response from C. Thus, B outputs (ctPAEKS, σ)
as a forged message and signature pair, and breaks the sEUF-CMA security of the sig-
nature scheme. If (ctPAEKS, σ) was generated in the OC oracle, then B runs σ′||td′kw′ ←
PKE.Dec(skTS, tdkw′). B returns 0 if Verify(vkR, td

′
kw′ , σ′) = 0. Otherwise, B returns the

result of PAEKS.Test(ctPAEKS, td
′
kw′).

In the challenge phase, A declares (kw∗
0, kw

∗
1). B chooses b

$←− {0, 1}, generates the challenge
trapdoor td∗kw∗

b
← DS-PAEKS.Trapdoor(pkR, pkS, skR, pkAS, pkTS, kw

∗
b), and sends td∗kw∗

b
to A. B

extracts (kw, ctDS-PAEKS) ∈ CTSet′ where kw ∈ {kw∗
0, kw

∗
1} and adds ctDS-PAEKS to CTSet.

B simulates OTrap and OTest oracles as in the previous phase.

• ForOC , B can respond to a query kw fromA as follows. B runs ctPAEKS ← PAEKS.Enc(pk′R, pk
′
S,

sk′S, kw) and sends ctPAEKS to C as a signing query. C runs σ ← Sign(sigkS, ctPAEKS) and
sends σ to B. B runs C ← PKE.Enc(pkAS, σ||ctPAEKS) and returns ctDS-PAEKS = C to A. If
kw ∈ {kw∗

0, kw
∗
1}, then B stores ctDS-PAEKS on CTSet.

If A does not issue a test query int-ctDS-PAEKS = (ctPAEKS, σ, tdkw′) where, for σ′||td′kw′ ←
PKE.Dec(skTS, tdkw′), Verify(vkR, td

′
kw′ , σ′) = 1 and (td′kw′ , σ′) was not generated in the OTrap oracle,

then B simulates Game 0, and Game 1 otherwise.

Game 2: This game is the same as Game 1, except that the challenge trapdoor td∗kw∗
b
← DS-PAEKS.Trapdoor

(pkR, pkS, skR, pkAS, pkTS, kw
∗
b) is generated as follows. Let ℓ be the bit size of PAEKS trap-

door. Set td′kw∗
b
= 0|ℓ| and run σ′ ← Sign(sigkR, td

′
kw∗

b
), and C ′ ← PKE.Enc(pkTS, σ

′||td′kw′).

Set td∗kw∗
b
= C ′.

Lemma 6. There exists an algorithm B such that |Pr[E1]− Pr[E2]| ≤ AdvIND-CCA
PKE,B (λ).

Proof. Let A be the adversary of IND-AS-IKGA and C be the challenger of the PKE scheme. We
construct an algorithm B that breaks the IND-CCA security as follows. B runs pp← PAEKS.Setup(1λ),
(pk′R, sk

′
R) ← PAEKS.KGR(pp), (vkR, sigkR) ← Sig.KeyGen(1λ), (pk′S, sk

′
S) ← PAEKS.KGS(pp), and

(vkS, sigkS) ← Sig.KeyGen(1λ). C runs (PK′,DK′) ← PKE.KeyGen(1λ) and sends PK′ to B. B sets
pkTS = (pk′R, vk), skR = (sk′R, sigkR), pkS = (pk′S, vkS), skS = (sk′S, sigkS), pkAS = PK, skAS = DK,
pkTS = PK′, and skTS = −, and sends (pp, pkR, pkS, pkAS, skAS, pkTS) to A.

WhenA declares (kw∗
0, kw

∗
1), then B chooses b

$←− {0, 1}, computes td′kw∗
b
← PAEKS.Trapdoor(pk′R,

pk′S, sk
′
R, kw

∗
b), σ

′ ← Sign(sigkR, td
′
kw∗

b
), and σ′′ ← Sign(sigkR, 0

|ℓ|). B sets (σ′||td′kw∗
b
, σ′′||0|ℓ|) as the

challenge plaintexts, and sends (σ′||td′kw∗
b
, σ′′||0|ℓ|) to C. C returns the challenge ciphertext C∗. B

sets td∗kw∗
b
= C∗.

20

• For OC , B can respond to any query because B has skS.

• For OTrap, B can respond to any query from A because B knows skR.

• For OTest, B can respond to a query int-ctDS-PAEKS = (ctPAEKS, σ, tdkw′) from A as follows. B
returns 0 if Verify(vkS, ctPAEKS, σ) = 0. Now, (ctPAEKS, σ) was generated in the OC oracle due
to the modification of Game 1. Thus, B knows the corresponding keyword kw that was sent
to OC and OC returned (ctPAEKS, σ). If tdkw′ = C∗, then B knows kw′ is either kw∗

0 or kw∗
1

because B chooses b. If kw = kw∗
b , then B returns 1, and 0 otherwise. If tdkw′ ̸= C∗, then B

sends tdkw′ to C as a decryption query. If C returns ⊥, then B returns 0 to A. Otherwise, let
σ′||td′kw′ be the response from C. B returns 0 if Verify(vkR, td

′
kw′ , σ′) = 0. Otherwise, B runs

td′kw ← PAEKS.Trapdoor(pk′R, pk
′
S, sk

′
R, kw), and returns the result of PAEKS.Test(ctPAEKS,

td′kw).

If the challenge ciphertext C∗ is an encryption of σ′||td′kw∗
b
, then B simulates Game 1, and if

C∗ is an encryption of σ′′||0|ℓ|, then B simulates Game 2. Thus, |Pr[E1]−Pr[E2]| ≤ AdvIND-CCA
PKE,B (λ)

holds.

Now Pr[E2] = 0 because td∗kw∗
b
is independent of b and information about b is completely

hidden. Thus, we have |Pr[E0]−1/2| ≤ AdvsEUF-CMA
Sig,B (λ)+AdvIND-CCA

PKE,B (λ). This concludes the proof
of Theorem 3.

Theorem 4. The proposed construction is IND-TS-IKGA secure if PAEKS is IND-IKGA secure.

Proof Sketch. SinceA has the secret key of the test server, A can decrypt C ′ ← PKE.Enc(pkTS, σ
′||td′kw′)

and can observe a PAEKS trapdoor td′kw′ directly. Thus, as in IND-TS-CKA, we directly reduce
the IND-TS-IKGA security to the IND-IKGA security. The proof is almost the same as that of
IND-TS-CKA, and we omit the proof.

7 Conclusion

In this paper, we propose a generic construction of DS-PAEKS derived from PAEKS, two PKE
schemes, and two signature schemes. We also show that the DS-PAEKS scheme [6], the DS-PEKS
scheme [7], and the DS-PEKS construction [23] are vulnerable.

Our consistency definition considers the case that a keyword for encryption and a keyword for
trapdoor are different. However, a stronger definition has been considered in [14]. It considers a
multi-sender setting, where a trapdoor associated with a sender does not work against ciphertexts
generated by the secret key of another sender, even if the same keyword is associated. Considering
the stronger definition in the DS-PAEKS context is left as a future work of this paper.

Acknowledgment: The main part of study was done when the author was with the National
Institute of Information and Communications Technology (NICT), Japan. This work was supported
by JSPS KAKENHI Grant Number JP21K11897.

References

[1] Michel Abdalla, Mihir Bellare, Dario Catalano, Eike Kiltz, Tadayoshi Kohno, Tanja Lange,
John Malone-Lee, Gregory Neven, Pascal Paillier, and Haixia Shi. Searchable encryption
revisited: Consistency properties, relation to anonymous IBE, and extensions. Journal of
Cryptology, 21(3):350–391, 2008.

21

[2] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano. Public key
encryption with keyword search. In EUROCRYPT, pages 506–522, 2004.

[3] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing. In
ASIACRYPT, pages 514–532, 2001.

[4] Dan Boneh, Periklis A. Papakonstantinou, Charles Rackoff, Yevgeniy Vahlis, and Brent Wa-
ters. On the impossibility of basing identity based encryption on trapdoor permutations. In
IEEE FOCS, pages 283–292, 2008.

[5] Marco Calderini, Riccardo Longo, Massimiliano Sala, and Irene Villa. Searchable encryption
with randomized ciphertext and randomized keyword search. IACR Cryptol. ePrint Arch.,
page 945, 2022.

[6] Biwen Chen, LibingWu, Sherali Zeadally, and Debiao He. Dual-server public-key authenticated
encryption with keyword search. IEEE Transactions on Cloud Computing, 10(1):322–333,
2022.

[7] Rongmao Chen, Yi Mu, Guomin Yang, Fuchun Guo, and Xiaofen Wang. Dual-server public-key
encryption with keyword search for secure cloud storage. IEEE Transactions on Information
Forensics and Security, 11(4):789–798, 2016.

[8] Yu-Chi Chen. SPEKS: secure server-designation public key encryption with keyword search
against keyword guessing attacks. The Computer Journal, 58(4):922–933, 2015.

[9] Leixiao Cheng and Fei Meng. Security analysis of Pan et al.’s “public-key authenticated
encryption with keyword search achieving both multi-ciphertext and multi-trapdoor indistin-
guishability”. Journal of Systems Architecture, 119:102248, 2021.

[10] Leixiao Cheng and Fei Meng. Public key authenticated encryption with keyword search from
LWE. In ESORICS, pages 303–324, 2022.

[11] Leixiao Cheng and Fei Meng. Server-aided public key authenticated searchable encryption
with constant ciphertext and constant trapdoor. IEEE Transactions on Information Forensics
and Security, 19:1388–1400, 2024.

[12] Tianyu Chi, Baodong Qin, and Dong Zheng. An efficient searchable public-key authenticated
encryption for cloud-assisted medical internet of things. Wireless Communications and Mobile
Computing, 2020:8816172:1–8816172:11, 2020.

[13] Haorui Du, Jianhua Chen, Ming Chen, Cong Peng, and Debiao He. A lightweight authenticated
searchable encryption without bilinear pairing for cloud computing. Wireless Communications
and Mobile Computing, pages 2336685:1–2336685:15, 2022.

[14] Keita Emura. Generic construction of public-key authenticated encryption with keyword search
revisited: Stronger security and efficient construction. In ACM APKC, pages 39–49, 2022.

[15] Qiong Huang and Hongbo Li. An efficient public-key searchable encryption scheme secure
against inside keyword guessing attacks. Information Sciences, 403:1–14, 2017.

[16] Xueqiao Liu, Kai He, Guomin Yang, Willy Susilo, Joseph Tonien, and Qiong Huang. Broadcast
authenticated encryption with keyword search. In ACISP, pages 193–213, 2021.

22

[17] Zi-Yuan Liu, Yi-Fan Tseng, Raylin Tso, Masahiro Mambo, and Yu-Chi Chen. Public-key au-
thenticated encryption with keyword search: Cryptanalysis, enhanced security, and quantum-
resistant instantiation. In ACM ASIACCS, pages 423–436, 2022.

[18] Yang Lu and Jiguo Li. Lightweight public key authenticated encryption with keyword search
against adaptively-chosen-targets adversaries for mobile devices. IEEE Transactions on Mobile
Computing, 21(12):4397–4409, 2022.

[19] Mahnaz Noroozi and Ziba Eslami. Public key authenticated encryption with keyword search:
revisited. IET Information Security, 13(4):336–342, 2019.

[20] Xiangyu Pan and Fagen Li. Public-key authenticated encryption with keyword search achieving
both multi-ciphertext and multi-trapdoor indistinguishability. Journal of Systems Architecture,
115:102075, 2021.

[21] Baodong Qin, Yu Chen, Qiong Huang, Ximeng Liu, and Dong Zheng. Public-key authenticated
encryption with keyword search revisited: Security model and constructions. Information
Sciences, 516:515–528, 2020.

[22] Baodong Qin, Hui Cui, Xiaokun Zheng, and Dong Zheng. Improved security model for public-
key authenticated encryption with keyword search. In ProvSec, pages 19–38, 2021.

[23] Raylin Tso, Kaibin Huang, Yu-Chi Chen, Sk. Md. Mizanur Rahman, and Tsu-Yang Wu.
Generic construction of dual-server public key encryption with keyword search on cloud com-
puting. IEEE Access, 8:152551–152564, 2020.

[24] Lisha Yao, Jian Weng, Anjia Yang, Xiaojian Liang, Zhenghao Wu, Zike Jiang, and Lin Hou.
Scalable CCA-secure public-key authenticated encryption with keyword search from ideal lat-
tices in cloud computing. Information Sciences, 624:777–795, 2023.

23

	Introduction
	Preliminaries
	PKE and Signature
	PAEKS

	Definitions of DS-PAEKS
	Vulnerability of Previous Schemes
	Vulnerability of the Chen et al. DS-PAEKS scheme
	Vulnerability of the Chen et al. DS-PEKS scheme
	Vulnerability of the Tso et al. DS-PEKS construction
	Analysis of Other Pairing-free Schemes

	Proposed Generic construction
	Security Analysis
	Conclusion

