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Abstract

We describe high-throughput threshold protocols with guaranteed output delivery for gen-
erating Schnorr-type signatures. The protocols run a single message-independent interactive
ephemeral randomness generation procedure (e.g., DKG) followed by a non-interactive multi-

message signature generation procedure. The protocols o�er signi�cant increase in throughput
already for as few as ten parties while remaining highly-e�cient for many hundreds of parties
with thousands of signatures generated per minute (and over 10,000 in normal optimistic case).
These protocols extend seamlessly to the dynamic/proactive setting, where each run of the pro-
tocol uses a new committee, and they support sub-sampling the committees from among an
e�ectively unbounded number of nodes. The protocols work over a broadcast channel in both
synchronous and asynchronous networks.

The combination of these features makes our protocols a good match for implementing a
signature service over an (asynchronous) public blockchain with many validators, where guar-
anteed output delivery is an absolute must. In that setting, there is a system-wide public key,
where the corresponding secret signature key is distributed among the validators. Clients can
submit messages (under suitable controls, e.g. smart contracts), and authorized messages are
signed relative to the global public key.

Asymptotically, when running with committees of n parties, our protocols can generate
Ω(n2) signatures per run, while providing resilience against Ω(n) corrupted nodes, and using
broadcast bandwidth of only O(n2) group elements and scalars. For example, we can sign about
n2/16 messages using just under 2n2 total bandwidth while supporting resilience against n/4
corrupted parties, or sign n2/8 messages using just over 2n2 total bandwidth with resilience
against n/5 corrupted parties.

We prove security of our protocols by reduction to the hardness of the discrete logarithm
problem in the random-oracle model.

*Work done partially while at the Algorand Foundation.
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1 Introduction

In this work we describe a suite of protocols that we call SPRINT1, aimed at generating many
Schnorr signatures at a low amortized cost where a single message-independent interactive run of
ephemeral randomness generation is followed by a non-interactive and robust signature generation
procedure for signing multiple messages.

The initial motivation for this work was implementing distributed Schnorr signatures on a public
blockchain, where the number of participants could be very large (e.g., in the hundreds). Crucially,
such systems require robust protocols with guaranteed output delivery, as it is not feasible in such
systems to restart the protocol and purge misbehaving parties after each failure. On the other hand,
public blockchains provide tools such as a broadcast channel and PKI, which can simplify the design
of higher level protocols. Moreover, the large number of parties makes it reasonable to assume a
large honest majority, a signi�cant advantage when building robust protocols. Our initial goal,
then, was to design practical robust distributed Schnorr signature protocols that scale e�ciently to
hundreds of parties, using PKI and a broadcast channel in a realistic asynchronous regime.

To achieve acceptable performance at the large scale that we wanted, we had to combine many
techniques, mostly centered around e�ective use of amortization. The protocols that we describe
can produce thousands of signatures in each run, �almost for the price of one�. We introduce an
e�ciency parameter a, such that each run of the protocol produces a(n − 2t) signatures. We pay
for this with a slightly reduced resilience: To withstand t corrupted parties, the number of nodes
that we need is n ≥ 3t+2a− 1, compared to n ≥ 3t+1 for a naive protocol that generates a single
signature.2 (Even without giving up any robustness, i.e. in the case of a = 1 and n = 3t+1, we can
still sign n− 2t = t+ 1 messages rather than a single one, with very little increase in complexity.)

The amortization techniques that we use can apply for as few as n = 10 parties, while the
protocols remain feasible with over a thousand parties. Our protocols are useful in the �xed-
committee setting where the same set of parties is used over and over again, but extend seamlessly
to the dynamic/proactive setting where each run of the protocol is done by a di�erent committee
with refreshed shares. They also naturally support huge systems, where committees are periodically
sub-sampled from among the overall population of parties and the required secret state is transferred
to the selected parties. Finally, the protocols are modular and not sensitive to the details of the
communication model. They do not require synchrony and can work over any mechanism that
provides certain agreement properties (see more details below).

Asymptotically, our protocols are bandwidth-optimal upto some not-too-large constants: With
n parties, they can provide resilience against Ω(n) corrupted parties, using broadcast bandwidth
of only O(1) group-elements/scalars per signature, in both the optimistic and the pessimistic
cases. (The pessimistic case features additional complaints, but those add at most O(t/a) group-
elements/scalars per signature.)

For a few examples in the static-committee setting and assuming no complaints, setting the
e�ciency parameter at a = n/5, they withstand t = n/5 corrupted parties and consume broadcast
bandwidth of roughly 17.33 scalars/group-elements per signature. To support t = n/4 we must
reduce the e�ciency parameter to a = n/8, resulting in a per-signature bandwidth of about 34
scalars/group-elements. In the other direction, reducing the resilience to t = n/10 allow us to
increase the e�ciency parameter to a = 7n/20, resulting in broadcast bandwidth of 9 scalars/group-

1SPRINT is a permuted acronym for �Robust Threshold Schnorr with Super-INvertible Packing�.
2Since our technique apply in the asynchronous setting, they inherently require n ≥ 3t+ 1; but see Section 2.11.
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elements per signature. (This is just 4.5 times the bandwidth that it takes to communicate the
signatures themselves!!) See more details in Section 2.10.

1.1 Our Techniques

Achieving high e�ciency requires the use of many ideas and techniques. Below is a list of the main
ones (in no particular order), many of which could be useful also in other contexts. See Section 2
for a detailed overview of the entire protocol and the roles that these techniques play.

As background, recall that Schnorr-type signatures work over a group of prime order p with a
generator G; a signature on a message M relative to secret key s and public key S = s ·G, has the
form (R, r + e · s), where r is an ephemeral random secret, R = r · G, and e = Hash(S,R,M). A
standard way to compute robust threshold Schnorr signatures among n parties that share a long-
term secret key s is to run a distributed key generation (DKG)3 procedure [10] that produces a value
R = r · G where r is a fresh random value secret shared among the parties. Then, the parties
use their shares of s and r to produce signature shares that can be combined into a single standard
Schnorr signature. The bulk of the cost for signature generation is then the DKG procedure that
has quadratic (in n) cost both in terms of bandwidth and computation. Our approach is to amortize
the cost of DKG by producing O(n2) signatures per DKG run.

Less than complete sharing. Many DKG threshold systems require complete secret-sharing, i.e.,
all honest parties must receive shares of all the relevant secrets. This means that honest parties
cannot terminate until they ensure that all other honest parties will eventually learn their shares of
all secrets. This requirement often adds signi�cant complexity to the protocol, and is not needed
in our setting. All we need is for su�ciently many honest parties to learn their shares so that they
can generate signatures, there is no need to ensure that all honest parties get them. (As a technical
comment, our use of the underlying broadcast channel obviate the need to �nd a biclique of dealers
and shareholders, which is sometimes needed when giving up complete sharing, see Sections 2.2
and 4.)

Extreme packing. We use a combination of packed secret sharing [8] and super-invertible matrices
[15] to share a(n−2t) fresh random scalars in a single DKG run, at the price of reducing the resilience
from t < n/3 to t < (n − a + 1)/3. This is described in Sections 2.4 and 2.5. We also describe
some optimizations related to faster multiplication by super-invertible matrices in Section 2.4.1
and Appendix C.

Local SIMD computation. Working with packed secret sharing increases the number of secret
shared, but current MPC solutions for using packed secret sharing entail non-trivial protocols, even
for simple functions. For Schnorr signatures we need to compute s · (e1, . . . , ea)+ (r1, . . . , ra) where
s and the rv's are secret and the ev's are public. While simple, an MPC protocol for computing
that function still seem to require interaction, since it includes a product. Furthermore, when using
simple Shamir sharing for s, some joint processing is needed to create the multiple signatures.

To do better, we introduce an interesting idea (which to the best of our knowledge has not
appeared before) to be able to take full advantage of packing without any interaction: We share
the long term secret key in a packed vector (s, . . . , s) instead of just the single scalar s. This
enables SIMD generation of the partial signature, with each party using only a local multiplication

3Throughout the paper, we use a DKG protocol for di�erent purposes, including ephemeral Schnorr signature
generation, long-term key generator and proactive refreshment; we use the DKG term in all these cases.
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(without degree reduction), with randomization done locally as well. Using this technique, signature
generation becomes non-interactive: The only communication required is for the party to broadcast
their partial signature, after which anyone can assemble the signatures themselves. The cost is a
reduction in the resilience to t < (n− 2a+ 2)/3, see Section 2.6.

Refreshing packed secrets. In the dynamic/proactive setting, we need to refresh the sharing of
the packed vector (s, . . . , s). This requires a small generalization to the GRR protocol from [11],
see Section 2.7 and Appendix B.

An optimized QUAL agreement protocol with veri�able complaints. A main component
in our solutions is the Distributed Key Generation (DKG) protocol from [10] which we use for the
generation of shared ephemeral randomness for the Schnorr protocol. The protocol crucially relies
on an agreement on a set of quali�ed dealers QUAL (those that followed the protocol correctly).
In this work, we describe a simple modular QUAL-agreement protocol over broadcast, with a clean
separation between the underlying broadcast channel, the QUAL-agreement above it, and the high-
level DKG protocol on top.

One advantage of using an underlying broadcast channel, is that it enables �veri�able complaints�
by shareholders, i.e., NIZK proofs that certain dealers sent bad shares. This technique simpli�es
the agreement protocol and saves one round of broadcasts, see Sections 2.2 and 4 for details.

Optimistic runs with pessimistic fallback. While it is crucial that the system is resilient against
upto t corrupted parties, in �normal operations� we often have very few (if any) actual misbehaving
parties. In Section 2.9 we describe a few optimizations that take advantage of this characteristic,
using smaller parameters and signing many more messages in the optimistic case, and falling back
on larger parameters and/or fewer signatures otherwise.

In the best case, the optimistic path can reduce complexity by more than a 3× factor, while
at the same time increasing the number of messages signed by almost 6×. Importantly, these
optimizations will not violate safety along the optimistic paths, even if the optimistic assumptions
that they make are violated. It is only liveness that is (partially) impacted in that case, so the
system can fall back on the pessimistic path to complete the protocol, if needed.

Smaller sub-sampled committees using a beacon. To use our protocols in massive systems
with a huge number of nodes, one needs some mechanism to sub-sample the committees from among
all the nodes in the system. One natural approach would be to use for this purpose self-selection
via VRFs (as done, e.g., in [4]). However, this results in a somewhat loose tail bounds and thus
somewhat-too-big committees.

Instead, we note that we can get smaller committees by using a randomness beacon to implement
the sub-sampling, resulting in better bounds and smaller committees. We therefore augment the
signature protocol to implement also this beacon, which turns out to be almost for free in our case.
See Section 2.8 for more details.

Security of distributed parallel Schnorr signatures. Our base protocol is similar (though
not quite identical) to the GJKR distributed Schnorr signature protocol from [10], and we then
extend and optimize it to sign many messages. However, GJKR-like protocols are known to fail in
the concurrent setting where the protocol is run in parallel for multiple messages; speci�cally, such
protocols are open a ROS-type attacks [3]. Our protocols do not address concurrent security in
general but allow for multiple messages to be signed in parallel in a single run of the protocol. To
enable such multi-message security, we use a mitigation technique from prior work (e.g., [17, 13]). As
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far as we know, that technique was only analyzed in the generic group model for ECDSA signatures
[13]. In our case, we show it su�cient for proving the security of our protocols (for signing a given
set of messages) by reduction to the hardness of the discrete logarithm problem in the random-oracle
model. See Section 2.3 and Appendix A.

Robust threshold signatures. All our protocols provide robustness in a strong sense. They
terminate with signatures for all a2 input messages as soon as t+2a− 2 honest parties output their
shares. Invalid shares can be identi�ed based on public information and discarded. This holds in
both synchronous and asynchronous networks. In the synchronous case, parties output their shares
after just two rounds of broadcast.

1.2 Prior Work

Recent years saw a lot of activities trying to improve e�ciency of VSS, DKG, and signatures
protocols, much of which focused on asynchronous protocols and some emphasizing guaranteed
output delivery. Below we focus on some of the more recent works on these subjects.

Threshold Signatures. Komlo and Goldberg described FROST [18], a non-robust threshold
Schnorr signature protocol that requires a single-round signing protocol after a single-round pre-
processing phase. The improved round complexity comes at the expense of robustness, as it uses
additive sharings and requires correct participation of all prescribed signers. In our case, we use two
rounds of interaction in a message-independent phase but can then generate multiple signatures
non-interactively and with guaranteed output delivery. Our schemes are designed to work in an
asynchronous regime hence requiring a super-majority of honest parties (but see Section 2.11).

ROAST [24] presents a wrapper technique that can transform concurrent-secure non-robust
threshold signature schemes with a single signing round and identi�able abort into a protocol with
the same properties but also robust in the asynchronous model. In particular, this applies to the
FROST protocol resulting in a scheme with concurrent security for any threshold t < n and optimal
robustness for up to n − t parties. The price for this strengthening is signi�cant; in particular, it
involves quadratic (or more) per-signature bit-communication (O(tn2+tnλ), λ a security parameter)
compared to O(λ) in our case.

Garillot et al. [9] implement a threshold Schnorr signature based on deterministic signing, e.g.,
EdDSA, in order to avoid potential dangers of randomness reuse. They present a dishonest-majority
non-robust scheme using MPC (i.e., garbled circuits) and NIZKs techniques that while optimized
for this speci�c application still results in signi�cant more complexity and cost per signature relative
to our solution.

Lindell [19] presents a threshold Schnorr signature scheme proven under standard assumptions
in the UC model. The focus of that work was conceptual simplicity and UC security rather than
optimal e�ciency. As in FROST, it utilizes additive sharings, hence necessitating the choice of a
new set of signers when a chosen set fails to generate a signature.

For ECDSA signatures, Groth and Shoup [12] recently described a rather e�cient ECDSA
signing protocol, with emphasis on guaranteed output delivery over asynchronous channels. (The
underlying VSS in that work achieves completeness, which is not needed in our case.) They use
veri�able complaints in a manner somewhat similar to ours, but do not disqualify dealers upon a
veri�able complaint, instead relying on other shareholders in an attempt to still distribute their
shares.
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Joshi et al. [16] address the lack of concurrent security in the basic threshold Schnorr scheme
from [10] by running two DKG executions per signature and using a mitigation technique similar to
the one we use here to bind a batch of messages to be signed. However, while our solution generates
multiple signatures with a single DKG run, theirs requires two such runs per single signed message.

Distributed Randomness Generation (DKG).4 Neji et al. [20] design a DKG intended to
avoid the need to reconstruct shares of inactive (or slow) shareholders as required in the GJKR
[10] solution. However, they do so at a high computational and communication cost. We achieve a
similar e�ect at a much lower cost by avoiding the additive sharing approach of GJKR.

Yurek et al. [26] described a randomness-generation protocol over asynchronous communication
channels, in the context of the o�ine phase of generic secure-MPC. They provide complete secret
sharing (i.e. requiring that all honest parties have shares on the polynomial), which is needed for
their MPC application. As in [12], this work also uses veri�able complaints, yet unlike our paper,
they do not disqualify dealers upon a veri�able complaint, instead they complete the set of shares.
We can deliver our solution without needing all honest parties to hold valid shares.

Abraham et al. [1] describe Bingo, a packed method for Asynchronous Secret Sharing that allows
a dealer to generate many sharings at an amortized communication cost of O(λn) per secret. This
solution uses pairings and bivariate polynomial to get completeness (which we don't need and do
not provide), and has concrete complexity signi�cantly higher than ours. Also, our agreement sub-
protocol makes a more direct usage of the underlying broadcast channel than the agreement in
Bingo, and is more e�cient.

Various additional papers deal with the question of Asynchronous DKG. However, they do not
relate directly to our paper as the main thrust of their work is reaching agreement in the asyn-
chronous setting, e.g. [5, 6]. In contrast, we assume an underlying broadcast channel, simplifying
agreement signi�cantly.

1.3 Organization

The rest of this manuscript is organized as follows: In Section 2 we provide a high-level step-by-
step overview of our protocols and the various components that are used in them. In Section 3
we describe in more detail our high=level protocol for the �xed-committee and dynamic settings.
In Section 4 we describe and prove our agreement protocol. In Section 5 we discuss issue related
to using SPRINT in our original motivating application, i.e., to implement a large-scale signature
service over a public blockchain. Security proofs for our protocols and some other details are deferred
to the appendices.

2 Technical Overview

For ease of exposition, we begin by describing our protocols in the static committee setting, and
discuss only towards the end the extra components for the dynamic/proactive settings. The basic
protocols for these two settings are shown in Figs. 1 and 2.

In the static case we have a committee that holds shares of the long-term secret key s, shared
via a degree-d polynomial F(X) with party i holding σi = F(i) (for some degree d that we deter-
mine later). They �rst run a distributed key-generation (DKG) protocol to generate a sharing of

4We use DKG to refer to distributed key generation for long-term keys as well as for the similar process of
generating ephemeral randomness as needed in Schnorr signatures.
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ephemeral randomness, then use their shares of the long-term secret and ephemeral randomness
to generate Schnorr-type signatures on messages. When used in an actual system, the DKG and
signature protocols can be pipelined, where the committee uses the randomness that was received
in the previous run to sign messages, and at the same time prepares the randomness for the next
run.

While the static setting features just a single committee, we still often refer to parties as dealers
when they share secrets to others, and as shareholders when they receive those shares. In the
dynamic/proactive setting these will indeed be di�erent parties, but in the static case they are the
same.

Notations. We use Greek letters (e.g., σ, ρ, π, ϕ) and lowercase English letters (e.g., e, r, s) to
denote scalars in Zp, and also use some English lowercase letters to denote indexes (i, j, k, ℓ) and
parameters (a, b, n, t). We denote the set of integers from x to y (inclusive) by [x, y], and also denote
[x] = [1, x]. Groups elements are denoted by uppercase English letters (G,S,R, etc.), sometimes
with a hat (F̂ , Ĥ). Polynomials are denoted by bold Uppercase English letters (F,H, I,Y,Z).

2.1 Starting Point: The GJKR Protocol

Our starting point is the protocol of Gennaro et al. [10] for distributed key-generation (DKG), and
a variation on their use of that protocol for Schnorr signatures. In their DKG protocol, each dealer
uses VSS to share a random value to everyone, and then all these sharings are added. Speci�cally,
each dealer Di shares a random ephemeral secret using a degree-d′ polynomial Hi (for some degree
d′ that we de�ne later), and commits publicly to this polynomial.

The shareholders then agree on a set QUAL of �quali�ed dealers� whose values will be used,
and a corresponding shareholder set HOLD that were able to receive valid shares. Shareholders in
HOLD can compute shares for the ephemeral secrets from the sub-shares that they received from
these quali�ed dealers. Namely, each shareholder can add the sub-shares that they received from
dealers in QUAL, and the resulting ephemeral secret is shared via the polynomial H =

∑
i∈QUALHi.

In our protocol, shareholders use their shares on H (the ephemeral randomness) and F (the
long-term secret) to compute Shamir shares of the signatures, and then reconstruct the signatures
themselves. We note that this is somewhat di�erent from the signature protocol in [10]. There it is
the dealers in QUAL that generate the signature (and HOLD is only used as a backup to reconstruct
the input of misbehaving dealers), whereas we let the shareholders in HOLD generate the signature
directly. Our variant could be more round-e�cient in some cases, and is easier to depoly in a
proactive setting where the long-term key is shared using Shamir sharing (as opposed to additive
sharing as used in the GJKR protocol). But otherwise these protocols are very similar.

2.1.1 Pedersen vs. Feldman Commitments

It was pointed out by Gennaro et al. [10] that sharing randomness usually requires the dealers
to commit to their sharing polynomials using statistically-hiding commitments such as Pedersen's
[21]. The less expensive Feldman commitments5, where dealers commit to each coe�cient hij
of their polynomials by broadcasting a single group element hij · G, are open to rushing attacks
in general. Luckily, Gennaro et al. prove in [10, Sec 5] that for the purpose of generating the

5Strictly speaking, the so called Feldman commitments do not provide the hiding security of regular cryptographic
commitments, yet they are colloquially referred to as such.
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ephemeral randomness for Schnorr signatures, it is safe to use Feldman commitments, and their
proof techniques extend to our signature protocol as well.

We note that for e�ciency reasons, in our protocols we use commitments to the value of the
polynomials at certain evaluation points rather than to the coe�cients (see Section 2.9).

2.2 The Agreement Protocol

Once the dealers distributed their shares and committed to their polynomials, the shareholders
engage in a protocol to agree on a large enough set of �quali�ed� dealers QUAL and �secret-holding�
shareholders HOLD, such that every shareholder in HOLD received valid shares from every dealer
in QUAL. This protocol is parameterized by some d0, d1 (to be de�ned later), and it ensures that
|HOLD| ≥ d0 and |QUAL| ≥ d1.

In this work we describe an e�cient implementation of the QUAL-agreement protocol over a
total-order broadcast channel, using a PKI (PKI is used for enhanced performance but not in an
essential way). It begins with each dealer Di broadcasting their shares, encrypted under the keys
of their intended recipients, together with commitments to the sharing polynomial Hi. As this
information is visible to all, shareholders that receive sub-shares that are inconsistent with the
commitments can broadcast a veri�able complaint against a dealer, consisting of a NIZK proof that
the dealer has sent them bad shares.

Each shareholder keeps a local candidate for the set QUAL, which is increased with every new
dealer message and decreased with veri�able complaints. Speci�cally, it consists of all the dealers
who broadcasted their message, and for which no veri�able complaint was received (so far). If a
shareholder receive a dealer message with bad sub-shares, it still adds that dealer to the local QUAL
candidate, but at the same time it sent a veri�able complaint against them on the broadcast channel.
The dealer will be removed from QUAL once a veri�able complaint appears on the broadcast channel.
Note that since the QUAL candidates are determined solely by the messages on the broadcast
channel, then all honest shareholders that read up to some point in the channel will agree on their
QUAL candidates.

Every so often, a shareholders Pj will broadcast a �support message�, indicating that their QUAL
candidate is large enough, and that they have no outstanding complaints. (Outstanding complaints
are veri�able complaints that Pj sent, but that still did not appear on the broadcast channel.) In
more detail, Pj records the last point in time τ in which their QUAL reaches size d1. This recorded
time will remain �xed as long as QUAL remains at size d1 or larger, and will reset whenever QUAL
drops below size d1. Pj will send a message �support at τ � whenever the following conditions are
met:

� τ is set (which means that their QUAL candidate has size ≥ d1);

� Pj has no outstanding complaints against dealers in QUAL; and

� Pj never sent a support message with this τ value before.

In other words, Pj will send a �support at τ � message when QUAL grows to size d1 in step τ ,
provided that they have no outstanding complaints against any of those dealers. Otherwise, Pj will
wait until all these bad dealers are purged from QUAL, and then will send a support message if
QUAL is still large enough.

We note again that since the point in which QUAL reaches size d1 is the same for all honest
dealers, then they will all send the same support message, except those that are still waiting on
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outstanding complaints. Similarly, when τ is reset, they all will rest it at the same point in the
broadcast channel.

Finally, Pj counts the number of support messages on the broadcast channel that carry the same
τ as the one that it currently has recorded (whether or not Pj itself sent such a support message).
Again we note that all the honest parties have the same counter value at the same point in the
broadcast channel. If at any time the counter reaches the value d0, then Pj terminates, outputting
the agreed-upon set QUAL at the time of termination. (Note that this may be di�erent from what
it was at the point τ .)

Since the set QUAL and the counters are deterministic functions of the content of the broadcast
channel, then it is clear that upon termination all honest parties will agree on QUAL. Moreover,
once a single honest party terminates, they all do. To see that some honest party must terminate,
observe that it must have terminated by the time that all the dealers messages and all the veri�able
complaints have arrived. Detailed proof is provided in Theorem 1.

2.3 Signing Many Messages

Our large-scale signature service needs to handle signing many messages in parallel, which brings
up a security problem: The proof of security from [10, Sec 5] when using Feldman commitments for
Schnorr signatures, requires that the reduction algorithm makes a guess about which random-oracle
query the adversary intends to use for the signature. When signing many messages in parallel, the
reduction will need to guess one random-oracle query per message, leading to exponential security
loss. Moreover, Benhamouda et al. demonstrated in [3] that this is not just a problem with the
reduction, indeed this protocol is vulnerable to an actual forgery attack when many messages are
signed in parallel. To �x this problem, we use a mitigation technique that was used in [17, 13],
where the ephemeral secrets are all �shifted� by a public random value δ, which is only determined
after all the messages and commitments are known.

As recalled in the introduction, a Schnorr signature on a messageMv relative to secret key s and
public key S = s·G, has the form (Rv, rv+ev ·s), where rv is an ephemeral random secret, Rv = rv ·G,
and ev = Hash(S,Rv,Mv) (Hash maps arbitrary strings into Zp). In our context, we �rst run DKG
to generate all the required rv's and corresponding Rv's, and get from the calling application all the
messages Mv's to be signed. Then we compute δ = Hash(S, (M1, R1), (M2, R2), . . .) and ∆ = δ ·G.
The signature on Mv is then set as (R′

v, r
′
v + e′v · s), where r′v = rv + δ, R′

v = Rv + ∆ = r′v · G
and e′v = Hash(S,R′

v,Mv). With this mitigation technique, the reduction only needs to guess
the random-oracle query in which δ is computed, recovering the argument from [10, Sec 5] and
reducing security to the hardness of computing discrete logarithms in the random-oracle model. See
Appendix A.3. We note that this proves the security of a single run of the protocol on input a set
of multiple messages to be signed, but it does not imply concurrent security for multiple parallel
runs of the protocol on di�erent sets of messages.

2.4 Using Super-Invertible Matrices

As described so far, we would need to run a separate copy of the DKG protocol to generate each
ephemeral secret rv, but we can do much better. For starters, assume that we can ensure many
honest dealers in the set QUAL (say at least b of them). Then we can use a super-invertible matrix
[15] to generate b random ephemeral values in each run of the protocol.
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Recall that the DKG protocol has each dealer Di share a random polynomial Hi, then the
shareholders compute a single random polynomial H′ =

∑
i∈QUALHi and the ephemeral random

secret is H′(0). Intuitively, the polynomial H′ is random if even a single Hi is random, so a single
honest dealer in QUAL is enough to get a random ephemeral value. But if we have many honest
dealers in QUAL, then we can get many random polynomials H′

u. Speci�cally, suppose we have b
honest dealers in QUAL and let Ψ = [ψu

i ] be a b-by-n super-invertible matrix, i.e., each b-by-b sub-
matrix ofΨ is invertible. Then we still have each dealerDi share just a single polynomialHi, but now
the shareholders can construct b random polynomials H1, . . . ,Hb, by setting Hu =

∑
i∈QUAL ψ

u
i Hi

gor all u ∈ [b]. By the same reasoning as before, if we have b honest dealers in QUAL with random
input polynomials Hi, then the b output polynomials will also be random and independent since
the b-by-b matrix corresponding to the rows of these b honest dealers is invertible.

The actual proof is more involved, since we still use Feldman commitments in the protocol,
which means that a rushing adversary can bias the output polynomials somewhat. But using
essentially the same reduction as before, we can still reduce the security of the Schnorr signa-
ture protocol to the hardness of computing discrete log in the random oracle model. One tech-
nical point is that the security proof in the asynchronous-communication model requires that
the set QUAL is included in the hash function query that determines δ. That is, we compute
δ = Hash(S,QUAL, (M1, R1), (M2, R2), . . .). The reason is that in the asynchronous case we cannot
guarantee that all honest parties will be included in QUAL. If we didn't include it in the hash
query, then the simulator would have to guess the set QUAL, incurring at least an

(
n
b

)
loss factor in

security.

2.4.1 Faster Multiplication by a Super-Invertible Matrix

While the use of super-invertible matrices enables us to produce many more random shared secrets
without increasing bandwidth, computing all these sharings require that each shareholder multiply
their sub-shares by that super-invertible matrix �in the exponent�.6 To make these operations more
e�cient, we therefore would like to make the matrix as sparse as possible. In Appendix C we prove
that any matrix of the form S = (I|H) is super-invertible, with I the b× b identity matrix and H
a b × (n − b) hyper-invertible matrix [2] (e.g., a Vandermonde sub-matrix). In our protocol, the
matrix H would be a b × t matrix, which means that multiplying by S takes t products per row
(rather than b+ t). Moreover, for our parameter regime, using Strassen algorithm (or maybe even
FFT-based techniques) could further reduce the computational load.

2.5 Using Packed Secret Sharing

Similarly to above, we can also assume many honest parties among the set HOLD of secret-holding
shareholders, and use packed secret sharing [8] to get even more ephemeral shared values: If HOLD
contains at least 2t + a shareholders (for some a ≥ 1), then we can let each shared polynomial
pack a values rather than just one: Each shared polynomial Hu will have degree d′ ≥ t + a − 1
(rather than d′ = t) and will encode the a values Hu(0),Hu(−1), . . . ,Hu(−a + 1). Importantly,
this ampli�es the e�ect of using super-invertible matrices: We have each dealer Di sharing a single
random polynomial Hi of degree d

′, packing a values, and we derive b random degree-d′ polynomials
Hu from these sharings, which gives us a · b shared random scalars.

6We use additive notation for group operations, but sometimes use the traditional exponentiation terminology.
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In terms of security, we can reduce security of the packed version in a black-box manner to that
of simply running a copies of the non-packed protocol,7 with the v'th copy encoding its secrets at
evaluation point 1− v. See Theorem 4.

2.6 More E�cient Signing

Once the ephemeral secrets are shared, we use them � together with the shared long-term secret
key � to generate many signatures. Computing on the packed ephemeral secrets would generically
requite a full-blown secure-MPC protocol among the shareholders, but we observe that we can gener-
ate all the a signatures from each packed random polynomial with only a single share-reconstruction
operation.

To see how, recall again that a Schnorr-type signature has the form (Rv, rv + ev · s). Our
shareholders hold Shamir sharings of the secret key s and the vector (r1, r2, . . . , ra) of ephemeral
secrets. Also, S and the Mv's and rv's are publicly known, so everyone can compute all the scalars
ev = Hash(S,Rv,Mv). To improve e�ciency, we also share the long-term key s in a packed form,
namely the shareholders hold a Shamir sharing of the vector (s, s, . . . , s), via a polynomial F of
degree d = t + a − 1. All they need to do, therefore, is compute the pointwise linear function
(r1, r2, . . . , ra) + (e1, e2, . . . , ea)⊙ (s, s, . . . , s).

While pointwise addition can be computed locally, computing the pointwise product operation
(e1, e2, . . . , ea)⊙(s, s, . . . , s) seems like it still requires a nontrivial protocol, even for a known vector
of ev's. But we can eliminate even this little protocol, by assuming an even larger honest majority
and using higher-degree polynomials for the ephemeral randomness. Speci�cally, we assume that
HOLD contains at least 2t + 2a − 1 shareholders (so at least t + 2a − 1 honest ones), and modify
the DKG protocol so that the sharing of the ephemeral secrets is done with random polynomials of
degree d′ = d+ a− 1 = t+ 2a− 2 (rather than degree t+ a− 1).

Since the ev's are known, each shareholder can interpolate the unique degree-(a− 1) polynomial
that packs the vector (e1, . . . , ea). Call this polynomial Z. Then each shareholder j with a share
σj = F(j) for the long-term secret, can locally compute σ′j = Z(j) · σj . Note now that the σ′j 's lie
on the polynomial Z · F of degree d+ a− 1 that packs the vector (e1 · s, . . . , ea · s).

Each shareholder j, with share ρj on an ephemeral-randomness polynomial, computes and broad-
casts πj = σ′j+ρj , and we note that these πj 's lie on a polynomial of degree d′ that packs all the values
(r1+e1s, . . . , ra+eas). Moreover, if the ephemeral secrets were shared via a random degree-d′ poly-
nomial, then the πj 's constitute a random sharing of that vector. After seeing d′ + 1 = 2t+ 2a− 1
of these broadcast values, everyone can reconstruct the polynomial and read out all the scalars
ϕv = rv + evs that are needed for these a signatures.

2.7 The Dynamic/Proactive Setting

We are now ready to present the additional components that we need in the dynamic case, where we
have di�erent committees for the dealers and shareholders. Importantly, in all the protocols above
we never assumed that the dealers and shareholders are the same committee, so they all still work
as-in also in the dynamic setting. What is missing is a share-refresh protocol where the dealers can
pass to the shareholders also a sharing of the long-term secret s. Here we essentially just use the

7All these copies share the same δ in the mitigation technique described in Section 2.3.
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GRR protocols of Gennaro et al. from [11], with a minor adaptation since we need to share it in a
packed manner.8

Each dealer Di begins with a share σi of the long-term secret key s, shared using a �packed�
polynomial F(X) of degree d = t+a−1. Namely, σi = F(i), and F(0) = F(−1) = · · · = F(1−a) = s.
In addition, everyone knows a commitment to F. Di reshares its share using a fresh random degree-d
polynomial Fi with Fi(0) = Fi(−1) = · · · = Fi(1− a) = σi, and also commits publicly to Fi.

This is done in parallel to sharing the random degree-d′ polynomial Hi, and the shareholders
then engage in an agreement protocol to determine QUAL and HOLD for both the F's and the H's.
Speci�cally, we run the agreement protocol from Section 2.2 to get |QUAL| ≥ d′ + 1 = t + 2a − 1
and |HOLD| ≥ d′ + 1 + t = 2t+ 2a− 1.

Once QUAL is set, every shareholder Pj ∈ HOLD sets QUAL′ to be the �rst d+1 = t+a dealers
in QUAL. Having received σij = Fi(j) from each dealer Di ∈ QUAL′, Pj then computes their share
of the long-term secret as σ′j =

∑
i∈QUAL′ λiσij . The λij 's are the Lagrange coe�cients for recovering

Q(0) from {Q(i) : i ∈ QUAL′} for degree-d polynomials Q. As usual, denoting F′ =
∑

i∈QUAL′ λiFi,
the shares of shareholders in HOLD satisfy σ′j = F′(j), and also

F′(0) =
∑

i∈QUAL′

λiFi(0) =
∑

i∈QUAL′

λiF(i) = F(0).

Moreover, since all the Fi's satisfy Fi(0) = Fi(−1) = · · · = Fi(1− a), then so does F′.
When used in a proactive system, the system's time is split into epochs, where in each epoch

there is a current-epoch committee that holds the long-term secret signing key in shared form,
as well as some ephemeral randomness, and utilizes them to sign messages. Between epochs the
parties will run an update protocol where the current-epoch committee refreshes the sharing of
the global long-term secret key to the next committee, and at the same time also shares to them
ephemeral secrets. Then, the next committee uses their shares of the long-term and ephemeral
secrets to sign messages as needed. The membership in the current- and next-epoch committees
could be determined by some auxiliary mechanism (or they may even remain �xed), or they can be
sub-sampled as described below.

2.8 Sub-sampling the Committees

One of the main use-cases for our protocol is an open system (such as a public blockchain), which
could be very large. In this use case, the committees in each epoch must be sub-sampled from the
entire population, and be large enough to ensure su�ciently large honest majority whp.

One way of implementing this sub-sampling would be to use VRFs, but this would result is
a rather loose tail bounds and large committees. We can get smaller committees by having the
committees implement also a randomness beacon, outputting a (pseudo)random value that the
adversary cannot in�uence at the end of each run of the protocol. At the beginning of the T + 1'st
protocol, everyone therefore knows the value UT that was produced by the beacon in the T 'th run.
Members of the T +1'st committee determine the members of the T +2'nd committee by applying
a PRG to that value UT .

To see why this helps, note that when the total population is very large, the number of honest
parties in a committee chosen by VRFs is approximated by a Poisson random variable with param-
eter λ = (1 − f)n, where f is the fraction of faulty parties in the overall population (and n is the

8As described here, the protocol only works for resharing a packed vector of the form (s, s, . . . , s). But it is not very
hard to extend it to reshare arbitrary packed vectors (using somewhat higher-degree polynomials), see Appendix B.
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expected committee size). On the other hand, the number of honest parties in a committee when
using the randomness beacon follow a Binomial distribution with parameters n, p = 1 − f . The
Binomial turns out to be much more concentrated than the Poisson, hence the number of honest
parties is much closer to (1 − f)n with the beacon than with sortition. One reason for the tighter
concentration is that the variance of the Binomial is f(1− f)n, which is smaller than the variance
(1− f)n of the Poisson.

Implementing the randomness beacon for our protocol turns out to be very easy. Since the T 'th
committee held a sharing of the long-term secret scalar s, they could locally compute a �sharing in
the exponent� of s · Hash′(T ) (with Hash′ hashing into the group). Namely, everyone computes the
group element E = Hash′(T ), then each dealer Di in the T 'th committee with share σi can compute
and broadcast UT,i = σi · E. Once the quali�ed set QUAL′ is determined, everyone can interpolate
�in the exponent� and compute UT =

∑
i∈QUAL′ λi · UT,i = s · E, where the λi's are the Lagrange

interpolation coe�cients. The group element UT is the next output of the beacon. Note that the
adversary has no in�uence over the U 's, they are always set as UT = s · Hash′(T ). On the other
hand, before the shares UT,i are broadcast, the value UT is unpredictable (indeed pseudorandom)
from the adversary's point of view.

2.9 More Optimizations

While quite e�cient as-is, in many setting there are additional optimizations that can signi�cantly
improve the performance. A few are described below.

Committing to evaluation points. Clearly, from a security perspective there is no di�erence if
the commitment to the polynomials Hi,Fi is done by committing to their coe�cients or to
their values at some points (or any mix therefore). But di�erent choices have an e�ect on
the computational complexity of the protocols. In particular, our protocol embed the various
secrets at evaluation points 0,−1,−2, . . . ,−a+1, so it makes sense to commit to these values
instead of the coe�cients, this will allow everyone to verify these values without having to
compute them every time.

We use the convention that a commitment to a degree-(d + a) polynomial F consists of the
d+ a+ 1 group elements F (v) ·G for all v ∈ [−a+ 1, d+ 1]. This way, we directly get su ·G
for all the a embedded secrets sv, and also σi · G for the shares σi of the �rst d + 1 parties.
For the shares of the other n − d − 1 parties, i > d + 1, obtaining σi · G requires computing
�linear combinations in the exponent� using the appropriate Lagrange coe�cients.

Also, in some cases we know that some embedded secrets are equal, so we only need to
commit to them once. In particular, our share-refresh protocol uses polynomials Fi such that
Fi(−a+ 1) = · · · = Fi(0) = σi = F (i). Since σi ·G is known ahead of time, there is no need
for Di to send that group element again. Hence, even though Fi is a polynomial of degree
t+ a− 1, the dealer Di only needs to send t group elements to commit to it.

Optimistic parameters. When sub-sampling the committees from a large population, we need
them to be large enough to ensure both safety and liveness with high probability. However,
we may set di�erence con�dence levels for safety and liveness. In particular, we require that
safety holds except with a negligible probability (statitical security of 1 − 2−80), but allow
liveness to be violated with small but not quite non-negligible probability (99.95% of progress),
and re-run the protocol with a new committee in the very rare cases that it failed to make
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progress. Moreover, it may make sense to start from a relatively weak liveness guarantee,
in the hope that the protocol completes, and only switch to larger committees and stronger
liveness guarantee if the initial optimistic attempt fails to produce signatures.

For example, our �main parameters� (see Section 2.10) are chosen to ensure 2−80 assurance
for liveness and 2−11 assurance for safety when 80% of the population are honest. But we
can start from smaller committee that still gives 2−80 assurance for safety at 80% honest,
but only (say) 2−8 liveness assurance at 95% honest. Namely, it gives the same assurance as
before against the adversary learning the secret, but even an adversary controlling only 5% of
the parties already has about 1/300 chance of preventing the generation of signatures. The
parties can run the protocol with these parameters for a while, and if the signatures are not
generated for a while, then timeout and fall back on the more conservative parameters above.

Importantly, in the proactive case, this optimistic approach still ensures the following weak
liveness guarantee: the adversary cannot push the system into an unrecoverable state where
honest parties do not have enough shares to reconstruct the long-term secret key. Concretely,
if the protocol executed with the optimistic parameters succeeds, then at least d + 1 honest
shareholders managed to reconstruct the new shares of the long-term secret key.

Signing more messages. Our QUAL-agreement protocol for DKG ensures at least n− t quali�ed
dealers, but in �normal operation� we can expect more dealers to behave honestly, perhaps even
all of them. In practical deployments we can modify our QUAL-agreement protocol, letting
shareholders wait a little for more dealers to send shares, before broadcasting their support
messages. (For example, wait a few more blocks if we use a blockchain as our broadcast
channel.) This way, if many more dealers are honest and synchronized, we can end up with a
larger QUAL set. This in turn will let us sign a · (|QUAL| − t) > a · b messages in this run. In
the best case we could have as many as |QUAL| = n, letting us sign a(n− t) messages.

User aggregation. In setting such as proof-of-stake blockchains, we may view each token as a
party for the purpose of our protocols, and therefore a node holding many tokens will have to
play the role of many parties. In that case, we can generate, verify, and use the shares of all
these parties together. For example, all the dealers that are hosted in that node can encrypt
their messages together, rather than generating a separate ciphertext per dealer. Also, if any
of the shares sent by that node do not match their commitment, then the node itself will be
considered corrupted and all the dealers on it disquali�ed.

This allows us to aggregate the commitment veri�cation by taking a random linear combina-
tion of all the commitments. Checking d′ commitment from each of x aggregated dealers to
each of y aggregate shareholders can be done using only O(d′x) products instead of the naive
O(d′xy), and moreover all but O(d′) of them could use small scalars (e.g. 80 or fewer bits
rather than 256).

A decryption service. In the blockchain setting, it is not hard to con�gure the parties running
our protocols to also provide a decryption service, not just signatures. For safety, a decryption
service should use a di�erent secret key for decryption than for signatures. This can be done
with a polynomial of degree one larger, using the techniques from Appendix B.

Once the committee has a Shamir sharing of the secret decryption key, they can directly use
it to decrypt ElGamal-type ciphertexts: These ciphertexts include an element R ∈ G, and
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to decrypt it is su�cient to recover s · R where s if the decryption key. The parties holding
Shamir shares σi of s can just broadcast partial decryption shares σi ·R (possibly with some
proof of correctness), enabling anyone to compute s ·R by �interpolating in the exponent.�

2.10 Parameters and Performance

The parameters n, t, a and b. For given parameters t and a, the ephemeral secrets rv are shared
via polynomials of degree t + 2a − 2, so we need at least t + 2a − 1 honest shareholders to obtain
shares in order to be able to use them. All these shareholders must be in HOLD, and there could be
upto t corrupted shareholders there, so the agreement protocol must ensure that HOLD is of size at
least 2t + 2a − 1. As there could be t corrupted parties during the run of the agreement protocol,
then to ensure |HOLD| ≥ 2t+ 2a− 1 the number of shareholder must be n ≥ 3t+ 2a− 1 (for both
the static-committee setting and the dynamic setting). Below we mostly assume n = 3t+ 2a− 1.

For the parameter b, recall that we need b honest dealers in QUAL for the DKG protocol. We
can ensure QUAL as large as n− t (but of course not any larger), so the largest value that we can
ensure for b = n − 2t (i.e., b = (3t + 2a − 1) − 2t = t + 2a − 1 if n is as small as possible). The
number of signatures in each run of the protocol is therefore a · b = a(n − 2t). We note, however,
that at the end of each run of the agreement protocol, everyone knows the size of QUAL, and can
set the parameter b accordingly. If QUAL happens to be larger than n− t in a particular run, then
b can be larger that n − 2t, so we can sign more messages in that run. In the best case, we have
|QUAL| = n, so we can sign a(n− t) messages.

Bandwidth in the static-committee setting. In the static setting we do not need to re-share
the long term secret key, so each dealer only shares a single random polynomial Hi of degree
d′ = t + 2a − 2. This means broadcasting t + 2a − 1 group elements for the commitments, and
n ciphertexts encrypting the shares. Assuming ElGamal encryption (with randomness re-use),
encryption takes n+1 more group elements. The total per dealer is therefore n+ t+2a, for a grand
total of n(n+ t+ 2a) group elements.

In the optimistic case where (almost) everyone is synchronized, the agreement protocol requires
a single broadcast from each shareholder (after the dealers sent their messages). If all the dealers
are good then these messages are short, otherwise each message can include upto t complaints, each
with just a few group elements, for an additional bandwidth of O(nt).

For the signature generation part, we have |HOLD| = 2t+2a− 1 and each shareholder in HOLD
broadcasts b = n − 2t shares, for a total broadcast bandwidth of (2t + 2a − 1)(n − 2t) scalars,
enabling the generation of upto a(n− 2t) signatures.

The total bandwidth (both group elements and scalars) is therefore n(n+ t+ 2a) + (2t+ 2a−
1)(n − 2t) = O(n2), plus at most O(t2) for all the complaints. The amortized bandwidth per
signature (not counting complaints) is about

n · (n+ t+ 2a) + (2t+ 2a− 1) · (n− 2t)

a · (n− 2t)
=

n2 + nt

a(n− 2t)
+

2n

n− 2t
+

2t− 1

a
+ 2.

Asymptotically, setting t = a = Ω(n) we get O(1) group-elements/scalars per signature.
For a few examples, setting t = a = n/5 we get about 17.33 scalars/group-elements per signature.

To get resilience of t = n/4 we can only get a = n/8, yielding about 34 scalars/group-elements per
signature. In the other direction, reducing the resilience to t = n/10 we can set a = 7n/20, getting
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an amortized 9 scalars/group-elements per signature. (That is 4.5 times the bandwidth needed to
communicate just the signatures themselves.)

Computation in the static-committee setting. In terms of computation (and counting only
scalar-by-element products), each dealer needs to compute d′ = t + 2a − 2 products to commit to
their polynomial and n+ 1 more for the encryptions.

Each shareholder must verify all the shares that they received, each costing about d′+1 products,
so n · (d′ + 1) products for each shareholder. For complaints, each shareholder needs to generate at
most t of them, and verify at most 2t of them, since at most t dealers and t shareholders can be
bad. (In the static committee case, only t complaints need to be veri�ed.) Verifying each complaint
can take another d′ + O(1) products (d′ to compute the commitment and O(1) for the proof of
decryption.) Hence, the agreement can take up to (about) (n+ t)(d′ + 1) products for each party,
regardless of how many messages will be signed.

For generating the signatures, the shareholders must �rst compute all the Rv's to be hashed, then
compute their own shares. By our convention, commitments to the Hi's include in particular the
elements Hi(1− v) ·G for v ∈ [a]. Hence, for any v ∈ [a], computing the elements Ru,v = Hu(1− v)
for all u ∈ [b] requires multiplying the vector (Hi(1− v) : i ∈ QUAL) by the super invertible matrix
Ψ of dimension b× (b+ t). Doing it for all v ∈ [a] means computing the matrix product[

Ru,v

]
u∈[b],v∈[a] = Ψ×

[
Hi(1− v) ·G

]
i∈QUAL,v∈[a].

Using the construction from Section 2.4.1, the �rst b columns in Ψ are the identity, so even using
naive matrix multiplication this would take a total of a·b·t products to get all the a·b elements Ru,v.
Using Strassen algorithm (or FFT-based techniques) this can be improved further. Computing the
shares involves only �eld operations.

Once, everyone broadcast their shares, verifying the shares and assembling the signature can
be done by anyone who sees the broadcast channel, not necessarily the parties themselves, and
certainly not all parties need to carry out that veri�cation. 9 Verifying each share takes d′ + 1
products, and at most d′ + t + 1 of them need to be veri�ed before we have d′ + 1 valid ones, for
a total of (d′ + 1)(d′ + t + 1) products, but since not every party needs to carry it out we do not
include these products in the tally below.

Substituting d′ = t + 2a − 2 and b = n − 2t, the overall number of scalar-by-element products
for each party is therefore (n + t + 2a − 1) + (n + t)(t + 2a − 1) + a(n − 2t)t products, and the
per-signature number is

(n+ t+ 2a− 1) + (n+ t)(t+ 2a− 1) + a(n− 2t)t

a(n− 2t)
= t+

(n+ t)(t+ 2a)

a(n− 2t)
+

2− 1
a

n− 2t
.

With a = Ω(n) and n−2t = Ω(n), and when using naive matrix multiplicaiton, this yields complexity
of t+O(1) products per signature. (In the example of t = a = n/5, we get about t+6 products for
each signature.)

Performance in the dynamic/proactive setting. In this setting we also need to refresh the
long-term secret. This means that each dealer broadcasts n + t additional group elements, and

9Veri�cation can even be avoided in the optimistic case, by just trying to reconstruct a polynomial and see that
(almost) all the shares agree with it.
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shareholders may need to broadcast more complaints, but the bandwidth for signature generation
remains unchanged. Therefore, the overall bandwidth in this case (not counting complaints) becomes

2n(n + t + a) + (2t + 2a − 1)(n − 2t), increasing the per-signature bandwidth by n(n+t)
a(n−2t) . (For

example, when t = a = n/5, the bandwidth increases from 17.33 to 27.33 scalars/group-elements
per signature.)

Computation likewise increases much less than 2×. Each dealer performs only t additional
products for the commitments.10 Verifying the sub-shares takes only n(t + 1) more products by
each shareholder, and checking each complaint is only t+O(1) more products.

Some numerical examples. The techniques in this paper are useful even for fairly small com-
mittees. For example:

� With n = 10, we need t ≤ 3 even to sign just a single message, but setting for t = 2 allows
us to set a = 2, b = 6 and sign a · b = 12 messages for the price of a single message. That's a
12× performance improvement for a small drop in resilience.

� For n = 16 and t = 3 we can set a = 4, b = 10 and generate 40 signatures.

� For n = 64 and t = 15 we can set a = 10, b = 34 and generate 340 signatures.

� In Section 5.1 we analyze the committee sizes that we need when sub-sampling the committees
in a few settings. For example, when assuming 80% honest majority in the overall population
and shooting for a 2−80 probability of safety failure and 2−11 probability of liveness error
due to sub-sampling, we can use committees of size n = 992 with t = 336 and a = 40 (and
b = 320). We note that here we have n < 3t+ 1, since we use di�erent thresholds for liveness
and safety errors.

In this setting, we can sign 40·320 = 12800messages per run, and each run consumes broadcast
bandwidth of 2n(n+ t+ a) + (2t+ 2a− 1)(n− 2t) = 2, 954, 432 scalars and group elements,
or about 95 megabytes. In terms of computation, each party (playing �rst a shareholder and
then the dealer in the next epoch) needs to perform about (n+2t+2a− 1)+ (n+ t)(t+2a−
1)+n(t+1)+a(n−2t)t = 5, 187, 967 scalar-element products. Moreover, most of the products
are actually dot product between a vector of scalars and a vector of group elements, which
can be done perhaps 3× faster than performing each product separately. On contemporary
servers, even a single-threaded implementation can perform this number of products in under
three minutes, yeilding an amortized rate better than 4000 signatures per minute.

� Running the protocol with optimistic parameters, we may try for a setting that still provides
2−80 safety error with 80% honest but liveness-failure probability of 2−8 with 95% honest.
To get roughly the same number of signatures per run we set a = 64, thus getting n = 676,
t = 250, and b = 176. This yields more or less a 2× lower complexity, with bandwidth of
1,448,832 scalars/group-elements and 3,336,081 scalar-by-element products, while producing
11264 signatures. Moreover, in the even-more-optimistic case where all the dealers happens
to be honest, we can sign as many as a(n − t) = 27264 messages with the same parameters,
another 2× improvement (and a rate of more than 10,000 signatures per minute).

10Using hybrid encryption does not take any more products to encrypt longer messages.
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2.11 Mixed Adversary Model and Dishonest Majority

Focusing on the honest super-majority case (i.e., n > 3t) in our analysis is necessary to preserve
security of SPRINT in the asynchronous setting, including robustness of signatures and the safety
of the global secret across refreshes. Here, we remark on the security of the SPRINT protocol from
Figs. 1 and 2 in some cases where n ≤ 3t or even with dishonest majority n < 2t. Speci�cally, we
consider the mixed adversary model of Hirt et al. [14] that distinguishes between malicious parties
(that can deviate from the protocol in arbitrary ways) and honest-but-curious ones (that run the
protocol as speci�ed but whose internal secrets are available to the attacker). In this model one can
get more relaxed bounds on the number of dishonest parties, including security against a dishonest
majority (involving both malicious and honest-but-curious parties), while preserving robustness.

Denote by h (a lower bound on) the number of honest parties, and m, c (upper bounds on) the
number of malicious and honest-but-curious parties, respectively (here t = m + c). We focus on
the static case, Fig. 1, as the bounds apply to the dynamic case too. Given these parameters (with
n = h+ c+m) and the packing parameter a, we run the protocol from Fig. 1 using polynomials of
degrees d = m + c + a − 1 (for the long-term secret) and d′ = m + c + 2a − 2 (for the ephemeral
randomness), and with d1 = |QUAL| = d0 = |HOLD| = n−m for the agreement-protocol parameters.
To be able to sign, we must ensure that |HOLD|−m = d0−m ≥ d′+1. Substituting d′ = m+c+2a−2
and d0 = n −m we get n − 2m ≥ m + c + 2a − 1, which means a ≤ (n − c − 3m + 1)/2. For the
parameter b, we need b honest parties in QUAL so b = |QUAL| −m− c = n− 2m− c.

Consider the dishonest-majority example n = 100, h = 49,m = 20, c = 31, then we can set
a = 5, b = 29 and we can produce 145 signatures in one run of the protocol with 49% of honest
parties. In another example: n = 16, h = 9,m = 3, c = 4, we get a = 2, b = 6 so 12 signatures. This
is just over one quarter of what can be achieved with n = 16,m = 3 but security here withstands 4
additional honest-but-curious participants.

3 The SPRINT Protocols

3.1 Static-Committee Setting

We begin with our base protocol shown in Fig. 1, namely, a robust threshold Schnorr signature
scheme for the static-committee case where the set of parties is �xed. It follows the design and
rationale presented in Section 2 (particularly, till Section 2.6), resulting in a two-round ephemeral
randomness generation phase (dependent on the number of messages to be signed but not on the
messages themselves) followed by a non-interactive signing procedure. It considers n parties of
which at most t are corrupted, and is given a packing parameter a and an ampli�cation (via a
super-invertible matrix) parameter b. It assumes an asynchronous broadcast channel. The protocol
consists of three parts. An initial setup stage where parties obtain shares σi of a long-term secret
key s, and corresponding public keys S = s · G and Si = σi · G are made public. We assume that
sharing the secret key uses packed secret sharing, namely, the parties' shares σi lie on a polynomial
F of degree d = t+a− 1, such that F(0) = F(−1) = . . . = F(−a+1) = s. This initial setup can be
done via a distributed key generation (DKG) protocol or any other secure initialization procedure.

A second component is the generation of ephemeral randomness for the Schnorr signatures.

Following the DKG blueprint of [22, 10], each party Pi shares a random polynomial Hi by trans-
mitting the value Hi(j) to each other party Pj and committing to Hi(·) over a public broadcast
channel. Our application allows for the use of the more e�cient Feldman commitments [7]. In our
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Parameters: Integers n, t, a ≥ 1, d = t+ a− 1, d′ = t+ 2a− 2.

Setup: (Parties: P1, . . . , Pn)

� Each Pi holds a share σi = F(i), where F is a random degree-d polynomial subject to
F(0) = F(−1) = . . . = F(−a+ 1). Denote s = F(0).

� Public keys S = s ·G and Si = σi ·G are publicly known.

Ephemeral randomness generation

1. Each Pi, i ∈ [n], chooses a random degree-d′ polynomial Hi; it broadcasts Feldman
commitments to Hi of the form Ĥi(v) = Hi(v) ·G for v ∈ [−a+ 1, t+ a− 1], and sends
ρij = Hi(j) privately

a to Pj , ∀j ∈ [n].

2. P1, . . . , Pn run an agreement protocol to agree on sets QUAL,HOLD ⊆ {P1, . . . , Pn} with
d0 = |HOLD| = n − t, d1 = |QUAL| = n − t, and every Pj ∈ HOLD holds valid shares
from all the dealers in QUAL.b

3. Set b = |QUAL| − t; Ψ = [ψu
i ] ∈ Zb×|QUAL|

p a super-invertible matrix.

For u ∈ [b], v ∈ [a], de�ne Hu(·) =
∑

i∈QUAL ψ
u
i Hi(·), ru,v = Hu(1− v), Ru,v = ru,v ·G.c

Each Pj ∈ HOLD sets ρuj = Hu(j) =
∑

i∈QUAL ψ
u
i ρij for all u ∈ [b].

Signature share generation On input messages Mu,v, u ∈ [b], v ∈ [a]:

Each Pj ∈ HOLD, sets δ = Hash
(
S,QUAL, {(Ru,v,Mu,v) : u ∈ [b], v ∈ [a]}

)
and ∆ = δ ·G.

Then, it runs the following procedure, in parallel, for each u ∈ [b]:

1. Computes eu,v = Hash(S,∆+Ru,v,Mu,v) for v ∈ [a];

2. Computes the degree-(a− 1) polynomial Zu, with Zu(1− v) = eu,v for v ∈ [a].

3. Outputs signature share: πuj = Zu(j) · σj + ρuj .

Note: πuj = Yu(j) for the degree-d′ polynomial Yu = Zu · F+Hu

Schnorr signature assembly (from signature shares)
For each issued signature share πuj verify, using commitments to Hi, i ∈ QUAL, and public key
Sj = F(j) ·G, that πuj ·G = Zu(j) · Sj +Hu(j) ·G.
When collecting d′+1 veri�ed shares πuj , reconstruct the polynomial Yu and for all v ∈ [a] set
ϕu,v = Yu(1− v). (Note: ϕu,v = Yu(1− v) = Zu(1− v) · F(1− v) +Hu(v) = eu,v · s+ ru,v.)

For v ∈ [a], u ∈ [b], output the Schnorr signatures (∆ +Ru,v, δ + ϕu,v) on message Mu,v.

aThe shares can be sent via private channels, or encryption over broadcast.
bFor a speci�c instantiation of this protocol over broadcast see Section 4.1.
cThe values Ru,v can be computed from commitments to the polynomials Hi, hence public information.

Figure 1: SPRINT Scheme in the Static-Committee Setting
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case, parties commit to their polynomials H by broadcasting values H(v) · G for d′ + 1 di�erent
evaluation points v where d′ is the degree of H (speci�cally, in our case, this set is de�ned as the
interval [−a+ 1, t+ a− 1]).

A central part of such a protocol is for the parties to agree on a large enough set of dealers
(denoted QUAL) that shared their polynomials correctly, and a large enough set of parties (denoted
HOLD) that received correct sharings from all parties in QUAL. In Section 4.1 we describe an
implementation of such a QUAL-agreement protocol over an asynchronous atomic broadcast channel,
as needed in our motivating applications. However, SPRINT can be used in other communication
settings, possibly with a di�erent agreement protocol.

The source of e�ciency for SPRINT is the use of packing to share a secrets at little more cost
than sharing just one and attaining further ampli�cation, by a factor of b, using super-invertible
matrices [15] (see Section 2.4). Here, b is the number of rows in the super invertible matrix Ψ, e.g.,
a Vandermonde matrix, and is set to its largest possible value (as analysis shows), b = |QUAL| − t
(smaller values of b can be used too, if less messages need to be signed). Once the randomness
generation procedure is completed, each party in HOLD generates (non-interactively!) signature
shares consisting of a point on a polynomial Y that when reconstructed (via interpolation of d′ +1
signature shares) can be evaluated on a points to achieve a signatures. Remarkably, using super-
invertible matrices one can generate b di�erent polynomials Y, hence resulting on a · b signatures
at the cost of a single execution of the (interactive) randomness generation procedure.

In all, we have that after the randomness generation procedure, parties generate their shares
of the signatures without any further interaction. Each party Pj computes locally their signature
shares πuj , u ∈ [b] and publishes them. Reconstructing the signature for each batch of a message

Mu1, . . .Mua can be done by interpolation from any d′ + 1 correct signature shares πuj . Moreover,
signature shares can be veri�ed individually by a Schnorr-like validation πuj ·G = Zu(j) ·Sj +ρuj ·G,
where all the required information is public. Thus, invalid signature shares can be discarded.

An additional ingredient in the protocol is the use of the �mitigation value" δ = Hash(S,QUAL,
{(Ru,v,Mu,v) : u ∈ [b], v ∈ [a]}) needed to achieve security when running the a · b signatures in
parallel, as explained in Section 2.3.

Security of the SPRINT protocol from Fig. 1 is proven in Appendix A (cf. Theorem 4).

3.2 The Dynamic/Proactive Setting

The adaptation of SPRINT to the dynamic setting is shown in Fig. 2. See also Section 2.7. It
requires two types of sharings. One is signature randomness generation as in the static setting,
where dealers have no input, and they just share random polynomials. The other is a share refresh
(i.e., proactive resharing), in which the dealers have shares of the long term secret, and they refresh
the sharing of that secret to the shareholders. These two sharings are enabled by (almost) the same
DKG-like protocol, both using the agreement protocol from Fig. 3 (with the same set HOLD and
two QUAL sets for the two sharings.). Proving security of this protocol is very similar to the static
case; see some more details in Appendix A.7.

4 The Agreement Protocol

We now turn to our agreement protocol where, as explained in Sections 2.2 and 3, parties need
to agree on sets QUAL and HOLD that contain enough information to ensure robust generation
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Parameters: Integers n, t, a ≥ 1, d = t+ a− 1, d′ = t+ 2a− 2.

Parties: Dealers D1, . . . , Dn, shareholders P1, . . . , Pn

Setup: (Di's)

� Each Di holds a share σi = F(i), where F is a random degree-d polynomial subject to
F(0) = F(−1) = . . . = F(−a+ 1). Denote s = F(0).

� Public keys S and Si = σi ·G are publicly known.

Ephemeral randomness generation and Re-sharing (The Di's and Pj 's)

1. Each Di, i ∈ [n], with share σi = F(i) chooses:

� A random degree-d′ polynomial Hi;

� A degree-d polynomial Fi, random subject to Fi(0) = · · · = Fi(1− a) = σi.

Di broadcasts Feldman commitments to Fi,Hi;

Di sends ρij = Hi(j) and σij = Fi(j) privately to Pj ∀j ∈ [n].

2. P1, . . . , Pn run an agreement protocol to agree on HOLD ⊆ {P1, . . . , Pn}, QUAL1,QUAL2
⊆ {D1, . . . , Dn} with d0 = |HOLD| = n− t, d1 = |QUAL1| = n− t, d2 = |QUAL2| = t+ a,
where every Pj ∈ HOLD received valid shares ρij from all the dealers in QUAL1 and valid
shares σij from all the dealers in QUAL2.

a

3. Set b = |QUAL1| − t; Ψ = [ψu
i ] ∈ Zb×|QUAL1|

p a super-invertible matrix.

For u ∈ [b], v ∈ [a], de�ne Hu(·) =
∑

i∈QUAL1
ψu
i Hi(·), ru,v = Hu(1− v), Ru,v = ru,v ·G.

Each Pj ∈ HOLD sets ρuj =
∑

i∈QUAL1
ψu
i ρij for all u ∈ [b].

4. Each Pj ∈ HOLD sets σ′j =
∑

i∈QUAL2
λiFi(j), the λi's are the Lagrange coe�cients for

QUAL2.

Let F′ =
∑

i∈QUAL2
λiFi; a commitment to F′ is obtained from those of the F′

i's.

Signature generation and assembly Same as in the static case in Fig. 1 but using polynomial
F′ instead of F in that �gure.

aValid σij mean in particular that F′
i indeed has the required format, with Fi(0) = · · · = Fi(1−a) = σi = F (i).

Figure 2: SPRINT Scheme in the Dynamic-Committee Setting
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of signatures. This protocol is designed to work over an asynchronous total-order (aka atomic)
broadcast channel, using a PKI. We start with an abstract description of this protocol in Fig. 3,
and then explain in Section 4.1 the speci�cs of how it is used in the context of our signature protocol
(in either the �xed-committee or the dynamic setting).

Recall that a total-order broadcast channel provides the following guarantees:

� Eventual delivery. A message broadcasted by an honest party will eventually be seen (unmod-
i�ed) by all honest parties. However, the adversary can change the order in which messages
are delivered to the broadcast channel.

� Pre�x consistency. Considering the views of the broadcast channel at a given time by two
di�erent honest parties, the view of one is a pre�x of the view of the other.

� Authenticity. Messages that are received on behalf of honest parties were indeed sent by those
honest parties.

Time and Steps. While a total-order broadcast channel is not synchronous, and thus it has no
absolute notion of time, we are still ensured that the parties all see the same messages in the same
order. We can therefore de�ne a �step T � as the time when the T 'th message is delivered. Even
though di�erent parties may see it at di�erent times, they will all agree on the message that was
delivered at step T . If we have a protocol action which is based only on the messages that appeared
on the broadcast channel up to (and including) the T 'th message, we are ensured that all th e honest
parties will take the same action, and they will all know that they did it at �step T �.

PKI. We assume that each party has an encryption public key associated with it known to all
parties.

The protocol below uses only the broadcast channel for communication, private messages are
sent by encrypting them and broadcasting the ciphertext. In the description below we distinguish
between two types of parties, that we call dealers and shareholders (after the role that they play in
our protocol). The protocol begins with the dealers broadcasting messages, then the shareholders
will engage in a protocol among themselves based on the dealer messages that they see on the
channel. For every dealer message and every shareholder, the shareholder either accepts this message
or it complains about it. The goal of this protocol is to agree on a set of dealers QUAL and a set
of shareholders HOLD, such that every shareholder in HOLD accepts all the messages from every
dealer in QUAL. (In some cases, the dealers will send more than one type of messages, and the
shareholders will output a di�erent QUAL for each type separately, all for the same set HOLD.)

An important technique in our protocol is the use of �veri�able complaints�: This is a complaint
by a shareholder about a dealer, that will be accepted by all other honest shareholders. (In our
context, it will be implemented by a NIZK proof that the message sent by that dealer is invalid.) We
say that a dealer message is �locally bad� for shareholder Pj , if that shareholder is able to generate a
veri�able complaint against it. Importantly, we assume that it is impossible to produce a veri�able
complaint against messages sent by honest dealers.

In its most general form, the protocol can deal withm types of messages, withm some parameter.
(In our setting we will only use m = 1 and m = 2.) Each type k of message is associated with some
�nite set of nk dealers that send that type of message, at least dk of them are assumed honest. The
protocol itself is run among a set of n0 shareholders, at least d0 of them are assumed honest. We
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Parameters: d0, d1, . . . , dm (should agree on |HOLD| ≥ d0, |QUALi| ≥ di).
Note: In our application m = 2 for two types: one for sharing of ephemeral randomness and
one for share refreshment. Or m = 1 when only ephemeral randomness is generated.

Precondition: For k = 1, . . . ,m we have upto nk dealers, at least dk of which are honest,
broadcasting messages of type k.

Shareholder Pj: (out of n0 shareholders)

Initialize HOLD = QUAL1 = · · · = QUALm = ∅, T = 0, sent = false.

Execute until |HOLD| ≥ d0:
Enlarge QUALk. When receiving �rst broadcast message of type k from dealer Di at some

step τ :

1. Set QUALk := QUALk ∪ {Di};
2. If T = 0 and |QUALk′ | ≥ dk′ for all k′, set T = τ ;

3. If the message is locally bad, broadcast a veri�able complaint against it.

Contract QUALk. When receiving a veri�able complaint against a type-k message of some
dealer Di:

1. Set QUALk := QUALk \ {Di};
2. If |QUALk| < dk set HOLD = ∅, T = 0, sent = false.

Broadcast Approval. After processing any message, if |QUALk| ≥ dk for all k and sent =
false, and you didn't send veri�able complaints against any dealer in any of the current
QUALk's, then broadcast "Pj approves in time T" and set sent = true.

Enlarge HOLD. When receiving message "Pj′ approves in time T":
If T ′ = T :

1. Set HOLD = HOLD ∪ {Pj′};
2. If |HOLD| ≥ d0 then output HOLD, QUAL1, . . . ,QUALm and terminate.

Figure 3: Agreeing on QUAL, Shareholder Actions

require that the protocol terminates, and that all honest shareholders outputs the same sets HOLD,
QUAL1, . . . ,QUALm, with |HOLD| ≥ d0 and |QUALi| ≥ di for i = 1, 2, . . . ,m.

The protocol is described in Fig. 3, and proven in Theorem 1. In the protocol, each shareholder
continuously update its candidates for the QUALi's by adding dealers whose broadcast message
they receive, and removing them if a veri�able complaint is lodged against them. Every so often
a shareholder may send a message �approving� some QUALi candidates, once they all reach the
desired sizes di. Once enough shareholders approve, the protocol terminates and the sets HOLD,
QUALi are determined.

Theorem 1. Consider an execution of the agreement protocol from Fig. 3 over a total-order broad-
cast channel, among a set of n0 shareholders of which at least d0 are honest. For all k = 1, 2, . . . ,m,
assume that at most some nk type-k messages were sent on the channel, at least dk of which were
sent by honest dealers, and that no veri�able complaint can be constructed against any honest
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dealer message. Then all honest shareholders will eventually terminate, all outputting the same
sets with |HOLD| ≥ d0 and |QUALk| ≥ dk for all k. Moreover, for all k, no shareholder in HOLD
complained against the type-k message of any dealer in QUALk.

Proof. Recall that we refer to shareholders that read τ messages from the channel as being �in
step τ �.

Agreement is easy to verify: The sets QUALk that a shareholder maintains are a deterministic
function of the messages on the broadcast channel. Hence, at any given step, all shareholders will
have the same QUALk's. This means that they also agree on the steps in which |QUALk| grows
to size dk or drops below size dk. Therefore, all the shareholders at a given step must have the
same step value for their step variable T . This, in turn, implies that they will all count the same
support message from the channel, and hence will have the same set HOLD. It follows that as soon
as one honest party terminates at some step τ , all honest parties will terminate at that step with
the same HOLD and QUALk's. It can be veri�ed by inspection that when that happens, we have
|HOLD| = d0 and |QUALk| ≥ dk for all k. Also, no shareholder ever broadcasts support for QUALk
that includes dealers that they complain against, so no dealer in HOLD sent a complaint against
any type-k message in QUALk (for any k).

Proving termination is a little more subtle. We �rst note that the only case where an honest
shareholder Pj with all |QUALk| ≥ dk since step T did not yet broadcast a support for T , is if there
are outstanding veri�able complaints that Pj sent but did not yet hit the broadcast channel. Then,
assume towards contradiction that the protocol never terminates. Since there are a �nite number
of dealer messages and shareholders, then due to eventual delivery (and since the protocol never
terminates), there will be some step τ at which:

� All dealer messages have arrived;

� All shareholder complaints have arrived; and

� All sent shareholder support messages have arrived.

Since there are at least dk honest dealer messages for all k, then at step τ all these dealers are part
of QUALk for every honest shareholder, which means that they all have |QUALk| ≥ dk at step τ .

Let τ∗ be the last time before τ where all the QUALk's (which are the same for all honest
shareholders) grew to size |QUALk| ≥ d + k. (That is, in step τ∗ − 1 one of the QUALk's was still
too small.) At that step, all honest shareholders set their step variable to T = τ∗, and since the
QUALk's never dips below dk since step τ∗, then all shareholder still have T = τ∗ also at step τ .

We conclude that by step τ , all honest shareholders have |QUALk| ≥ dk for all k, and none of
them have outstanding complaints. By the observation above, all of them must have already sent
a support message with τ∗, and by our choice of τ all these messages have already arrived. Hence,
every honest shareholder must have all the other honest shareholders in HOLD. As there ≥ d0 of
them, it means that every honest shareholder must have |HOLD| ≥ d0, and therefore must have
terminated. Contradiction.

4.1 Agreement in SPRINT

To use the above agreement protocol in the context of SPRINT, we need to set its parameters and
specify how the dealer's messages and veri�able complaints are generated and veri�ed.
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Dealer Di (sharing a degreed-d polynomial, Fi(X) =
∑d

k=0 fikX
k):

1. Compute F̂ik = fik ·G for k = 0, . . . , d;

2. Let σij = Fi(j) and Eij = ENCPKj (σij) for all j ∈ [n];

3. Broadcast
(
{Ei1, . . . , Ein}, {F̂i0, . . . , F̂id}

)
.

Shareholder Pj:

1. Decrypt σij = DECSKj (Eij) and verify σij ·G
?
=

∑d
k=0 j

k · F̂ik;

2. If veri�cation failed, create a veri�able complaint against Eij , consisting of the decrypted
value σij and a proof-of-correct-decryption of Eij relative to PKj .

Figure 4: Dealer Actions and Shareholder Complaints (in SPRINT the commitments to coe�cients
are replaced with commitments to polynomial evaluations)

In our protocols, a dealer message is just a Shamir sharing of secret(s) via polynomial(s). Each
shared polynomial corresponds to a di�erent type of message and a di�erent QUAL set. (In particular
we will have one type for DKG messages and another for share-refresh messages.) We assume a
PKI, and the dealers encrypt and broadcast all the shares under the public keys of their intended
recipient, and also broadcast Feldman commitments to the polynomial(s) themselves. For simplicity,
here we describe these commitments as commitments to the coe�cients of the polynomial, but in
our protocols, for e�ciency reasons, we instead commit to the values of the polynomial at certain
points (e.g., a commitment to the value F(v) will be F̂ (v) = F(v) · G). In particular, we use
commitments at those evaluation points where the secrets are encoded.

Note that there are checks that all shareholders can perform on public information that the dealer
broadcasted. That includes verifying that the committed polynomials are of the right degree, and
that the dealer's message includes all the ciphertexts that it is supposed to. However, a shareholder
is the only one that can check if the share encrypted under their public key is consistent with the
committed polynomial.

If the encrypted share is not consistent the committed polynomial, the shareholder will create
a veri�able complaint. It utilizes the fact that the dealer's message is visible to all. A veri�able
complaint from shareholder Pj , denoted πji, consists of the decrypted value and a proof-of-correct-
decryption relative to Pj 's public key. Once other parties see the decrypted value they can all verify
that the share indeed is not consistent with the committed polynomial.

A description of the dealer messages and shareholder complaints are described in Fig. 4. We
note that the idea for disquali�cation via a veri�able complaint which we introduce reduces in-
teraction and bandwidth. One can reduce interaction further by resorting to a non-interactive
publicly veri�able secret sharing scheme; however these schemes are much more costly in terms of
computation.

Agreement in the static-committee setting. In the static-committee setting, each dealer
shares a single random polynomial Hi of degree d

′ = t+2a−2. To ensure that the resulting random
polynomials can be recovered we need at least d′ + 1 honest parties in HOLD, so we have to set
d0 ≥ t+d′+1 = 2t+2a−1. But we can set it even bigger, it can be as large as n− t since we know
that there are at least as many honest shareholders. (This implies that we need n− t ≥ 2t+2s− 1,
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namely n ≥ 3t+ 2a− 1.)
We note that for the DKG protocol, the size of QUAL is unrelated to the degree of the poly-

nomials Hi. The only constraint on it is that to get b output random polynomials we need
|QUAL| = d1 ≥ b + t. To get the best amortized e�ciency, we want to make b as large as pos-
sible, which means using as large a set QUAL as we can get. Every party can serve as a dealer for
the DGK protocol, so we have at least n− t honest dealers and can set d1 = n− t (and therefore
b = n− 2t).

Hence, we run agreement protocol with parameters d0 = d1 = n − t. (If we have less messages
to sign, we can make do with a smaller b, which means smaller d1, any value d1 > t would work.)

Agreement in the dynamic/proactive setting. In this setting each dealer shares two polyno-
mials, a random polynomial Hi of degree d

′ = t + 2a − 2 and a packed re-sharing of its share via
Fi of degree d = t+ a− 1. Hence, we have two types of messages and two QUAL's, one for H and
the other for F. For H we have the same parameters as above, d0 = d1 = n − t. For F, we need
d+1 = t+a dealers in QUAL2 in order for shareholders in HOLD to be able to recover their shares,
so we set d2 = t+ a.

(We note that the dealers in QUAL2 must have shares of the long term secret, so they had to be
in HOLD in the previous epoch. Hence, the pool of dealers could be as small as d0 = n − t, and t
of them could be corrupted, so we cannot set d2 any larger than n− 2t. This implies the constraint
n − 2t ≥ t + a or n ≥ 3t + a, which is weaker than the constraint n ≥ 3t + 2a − 1 that we had
above.)

5 Deploying in a Blockchain Environment

Next we describe how the protocols from above can be used to implement a large-scale Schnorr-
signature service over a public blockchain. Such implementation would use all the techniques from
Section 2. Speci�cally,

� It would use the QUAL-agreement protocol from Section 4, where the blockchain serves as the
underlying total-order broadcast channel;

� It includes the proactive share refresh from Section 3.2, which is run periodically every few
blockchain rounds (called an epoch);

� The committees in each epoch are sub-sampled from among the validators using the random-
ness beacon as discussed in Section 2.8;

� It would include all the optimizations from Section 2.9, such as optimistic runs and user
aggregation.

Below we discuss a few other aspects of such implementation, such as the required committee sizes,
how to use the single blockchain key s to sign on behalf of multiple smart contracts, and plausible
mechanisms for recovering from catastrophic failures.

5.1 Committee Sizes

We assume a huge network, consisting of many millions of parties, from which we sub-sample the
committees. We note that this model is sometimes applicable even for a blockchain with only a
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handful of validators. Speci�cally, in a proof-of-stake blockchain we may want to give high-stake
nodes more power in the computation than low-stake ones, to align the trust model of the signature
service with that of the underlying consensus protocol. (E.g., both the consensus protocol and the
higher-level signature scheme remain secure as long as at least 80% of the stake is controlled by
honest parties.)

In that case, we may want to view each token as a party, where a physical node is running the
protocol on behalf of all the tokens that it controls. Even if the network only has a few dozen physical
nodes, this view may require that we use our protocols with many millions of virtual parties.11

Below we denote the overall number of parties by N , and we assume a PKI where we have a
list of all N parties, each with their public encryption key. Also set f be (an upper bound on) the
fraction of corrupted parties, namely we assume that we have at most fN corrupted parties and at
least (1− f)N honest ones.

Recall that we sub-sample each committee based on a (pseudo)random value from the random-
ness beacon, expanded using a PRG. In more detail, for some parameter n (to be determined below),
we expand the latest randomness beacon value U into a (pseudo)random vector of n indexes in [N ]
(with repetitions), PRG(U) = (i1, i2, . . . , in) ∈ [N ]n. The next committee then consists of the n
parties that are indexed by i1, . . . , in in the PKI.12

Chosen this way, the committee size will be exactly n, and the number of corrupted parties in
the committee will be upper-bounded by XC ∼ Binn,f , a Binomial random variable with parameters
n, f . Similarly, the number of honest parties in the committee is lower-bounded by XH ∼ Binn,1−f .
Conveniently, these two random variables do not depend on N , the total number of parties in the
system.

The parameters n, t will be chosen based on a and f (and the required safety and liveness
guarantees εsafety, εliveness), to ensure the following conditions:

Safety. To prevent the corrupted parties from learning the secret key, we need Pr[XC > t] ≤ εsafety.

Liveness. We need Pr[XH < 2t+ 2a− 1] ≤ εliveness to ensure that honest parties can reconstruct
the signatures.

To �nd suitable parameters, we therefore wrote a simple program that takes as input f, a,
εsafety, εliveness, and searches for the smallest values for n, t that satisfy these two conditions. See
Appendix D. Once those parameters are set, we instantiate the system with a QUAL-agreement
protocol from Fig. 3 with parameters d0 = d1 = n − t and d2 = t + a. This implies a parameter b
(the dimension of the super-invertible matrix) which is b = |QUAL1| − t = n− 2t.

5.1.1 Optimistic Parameters

As mentioned in Section 2.9, we can also attempt to run with optimistic parameters, i.e., smaller
committee, as long as it is only liveness that we sacri�ce, not safety. For that purpose, we modi�ed
the parameter-searching program to take another set of parameters f ′, ε′liveness, then de�ne X ′

H ∼
Binn,1−f ′ and search also for parameters that satisfy Pr[XC > t] ≤ εsafety and Pr[X ′

H < 2t+2a−1] ≤
ε′liveness.

11This is also the setting where the user-aggregation ideas from Section 2.9 will have the most impact.
12If an index i ∈ [N ] appears more than once in the vector, then the corresponding party will have more than one

seat on the committee and will get more than one share of the relevant secrets.
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5.2 Uses of Additive Key Derivation

Additive key derivation (cf. [13]) allow a single secret key to be used to sign on behalf of multiple
public keys. Let s be a �master secret key� with corresponding public key S = s ·G. Then a derived
key-pair can be speci�ed by a public �tweak� u ∈ Zp, which de�nes the secret key s′ = s + u and
the public key S′ = S + u · G. This is a well known technique, which is used in many blockchains
(including Bitcoin [25]). To generate a Schnorr signature on message M relative to the derived key
S′, one can use the master secret key in conjunction with the public tweak.

In the context of a blockchain signature service, we consider a blockchain master key whose
secret key is shared among the validators as described in this work. We can then give each smart
contract its own derived key, by setting the tweak value u to be (say) a hash of the smart contract
identity I (or code): u = Hash(I). This way, each smart contract �owns� its own key, and can ask
the blockchain to sign messages relative to that key. When a smart contract with identity I asks
to sign a message M , the validators will execute the Schnorr signature protocol exactly as speci�ed
in this work, except that they use the public scalar e = Hash(S′, R,M) for that message (instead
of e = Hash(S,R,M)). This will result in a pair (R, es + r), that can be converted to standard
Ed25519 signature by adding e · Hash(I) to the second entry in the pair.

5.3 Recovery from Catastrophic Failures

In the proactive setting that we consider, the system relies on adequate connectivity to make progress
and refresh the secret key from one committee to the next. A plausible attack vector is mounting
a network partition attack. This will stall progress and deprive the parties of the ability to refresh
the sharing and erase their old shares. If the outage lasts for a long time, it may become necessary
for nodes to delete their old shares without refreshing them, for fear that a long-held secret may
become an easy target for an attack. If that happens, how can the system recover and return to
normal operation once the outage is over?

One recovery approach is to fall back on centralized trust: the master key can be kept in (very)
cold storage, perhaps shared among a handful of highly trusted parties, and recovered from them in
the event of such a devastating attack. This solution, however, has the drawback that these �highly
trusted� parties may not be trustworthy after all: They can recover the key even with no attack,
and there would not even be any way of knowing if they did it.

A somewhat better approach would be to equip those highly trusted parties with an independent
recovery decryption key, with the corresponding public key embedded in the blockchain code. This
key is never used, except when a shareholder needs to delete their share without being able to pass
it forward. In that situation, the shareholder will encrypt their share under the recovery public key
before deleting it from memory. Once the outage is over, they will run a special recovery protocol,
in which the highly trusted parties help them to recover the share and continue where they left of.
It is even possible to implement a hybrid approach, where some small number of shares are always
encrypted under the public key, but most other shares are only encrypted when an attack happens.
This way the highly trusted parties can �ll in for some shareholders that lost interest after the
attack and did not participate in the recovery process.

Yet another approach, which relies on anonymous public-key encryption, is as follows: When a
shareholder needs to delete their share without being able to pass it forward, it chooses a random
committee and secret-share its share to them, broadcasting an encryption of the sub-shares under
their anonymous-PKE keys. This way, the adversary does not know who is holding what shares,
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but the parties can still recover those shares when the system resumes.
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A Security Proof

We now turn to proving the security of our base threshold signature protocol for the static-committee
setting from Fig. 1. We build the proof step by step, starting from the proof for the (centralized)
Schnorr signature scheme [23] and a simple threshold Schnorr signature protocol a-la-GJKR, adapt-
ing their proof techniques and adding components as needed for our protocols. Speci�cally, we
de�ne a list of variants of the protocol, and explain how the proof is modi�ed from one variant to
the next:

1. Centralized Schnorr (Appendix A.1): Pointcheval and Stern [23] proved that, under the dis-
crete log assumption, Schnorr signature scheme is secure in the random oracle model. The
key component of their proof is the forking lemma [23, Theorem 10], which we will also use
for our proof in the following variants.

2. Threshold Schnorr for a single message (Appendix A.2): This is similar to (but not exactly
the same as) the GJKR protocol from [10, Fig.4], using Feldman commitments. While using
Feldman allows a rushing adversary to bias the distribution of the ephemeral randomness,
Gennaro et al. proved in [10] that their threshold signature protocol with Feldman commit-
ments is still secure. We prove the same for our protocol by adapting their techniques to our
needs, see Appendix A.2.

3. Parallel Threshold Schnorr signatures (Appendix A.3): It is known that the GJKR proof for
the single-signature threshold scheme does not extend to signing multiple messages in parallel,
in fact the resulting scheme is insecure. We therefore add a mitigation technique that allows
us to recover the security argument when signing a set of messages in parallel as our protocol
does.

4. Non-Packed threshold Schnorr with a super-invertible matrix (Appendix A.4): Our use of a
super-invertible matrix allows each dealer to shares only a single polynomial, but we can still
derive multiple signatures. The security proof for this variant requires a generalization of the
simulation technique, as well as a small change to the protocol itself.

5. Threshold Schnorr with super-invertible matrix and packing (Appendix A.5): This part re-
quires another generalization of the simulation technique.

Combining all these techniques, we describe the �nal reduction in Appendix A.6. Finally, in Ap-
pendix A.7 we then discussed the small changes for the dynamic/proactive setting. We begin with
some preliminaries.
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Assumption 1 (The Discrete-Logarithm Assumption). Let G be a group of prime order p ∈
PRIME(λ) where the generator is G, and λ is the security parameter. De�ne the following attack
game for a discrete log adversary A:

� The challenger and the adversary A take in a description of G, which includes the group order
p and the generator G.

� The challenger chooses s
$←− Zp, and gives A the group element s ·G.

� A outputs s̄.

We say that A wins the game if s̄ = s and we denote the probability of A winning the game as
EDL[A,G]. The discrete logarithm assumption holds if EDL[A,G] negligible in λ, i.e., EDL[A,G] ≤
1/P (λ) for any polynomial P (·).

De�nition 1 (Security of signature scheme). For a signature scheme Σ = (Gen, Sign,Verify), de�ne
a following game for an adversary A:

� The challenger runs Gen(1λ)→ (SK,PK) and sends PK to A.

� A asks the challenger for signatures on M1, . . . ,Mq; and the challenger computes µi ←
Sign(SK,Mi) for i = 1, . . . , q, and sends the corresponding signatures µ1, . . . , µq to A.

� A outputs a pair (M,µ).

We say that A wins the game if M ̸∈ {M1, . . . ,Mq} and yet Verify(PK,M, µ) = 1. The advantage
of A is the probability that A wins the game, denoted Eforge[A,Σ]. We say that the signature scheme
Σ is secure if, for any polynomial-time A, Eforge[A,Σ] is negligible in λ.

A.1 Centralized Schnorr

De�nition 2 (Schnorr signature scheme). Let Hash be a hash function {0, 1}∗ → Zp. Let G be
a group of order p in which discrete log is hard. The Schnorr signature scheme consists of the
following algorithms:

� Gen(1λ) → (SK,PK): a randomized algorithm run by the signer that takes in a security

parameter λ, outputs SK = s
$←− Zp and PK = S = s ·G.

� Sign(s,M) :→ µ: a randomized algorithm run by the signer that on input a message M , a

secret key SK = s, samples r
$←− Zp, computes R = r ·G, e = Hash(S,R,M), and ϕ = r+ es.

Output a signature µ := (R,ϕ).

� Verify(S,M, µ)→ v: a deterministic algorithm run by the veri�er that on input a public key
PK = S, a message M , and a signature µ = (R,ϕ), computes e = Hash(S,R,M) and checks
if ϕ ·G = R+ e · PK. If so, it outputs v = 1 (indicating the signature is valid). Otherwise, it
outputs v = 0 (invalid signature).

Below we brie�y recall the security proof of Schnorr signature scheme, because it helps in
understanding the security proof of the threshold signing.
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Theorem 2 ([23]). The Schnorr signature scheme is secure in the random-oracle model under the
discrete logarithm assumpiton.

Proof. Assume that there exists an attacker A that can forge the signature, then we can build an
attacker Sim that solves discrete log. The task of the attacker Sim is to simulate the view of A as
in the real-world protocol execution (so that A can output a forgery), and then Sim transforms A's
forgery into the ability to compute discrete log. We provide details below.

The discrete log challenger �rst samples a random s and sends S = s · G to Sim. The task for
Sim is to utilize A to �nd s. In the �rst step of the simulation, A sends q messages M1, . . . ,Mq

to Sim, and Sim needs to create signatures on these messages to send to A. However, Sim cannot
create such signatures �without any help� because it does not have the secret key s. To this end,
we assume the hash is a programmable random oracle and Sim programs the random oracle Hash
as follows: for each query (S,R,M) to Hash, it samples e, ϕ from Zp at random, and then computes
R := ϕ ·G− e · S and set Hash(S,R,M) to e; and Sim will give A the tuple (R,ϕ) as the signature
to m. When A veri�es the signature, it computes ϕ · G − R, which equals e · S as random oracle
Hash was programmed this way.

Now we show how A can create a forgery (R∗, ϕ∗) on a messageM∗, whereM∗ ̸∈ {M1, . . . ,Mq}.
In the random oracle model, we assume that A must have queried Hash on (S,R∗,M∗). Then Sim
rewinds A, and answers all the oracle queries before (S,R∗,M∗) with the same value used in the
�rst run, but on the oracle query (S,R∗,M∗), Sim answers with a new e′, randomly chosen from
Zp (note that R∗ is the same as in the �rst run). In the second run, A outputs a forgery and if it
happens to be M∗ again, then Sim can compute the secret key s. Here Sim during rewinding can
guess which message A will forge with uniform probability (choose where to rewind) so that the
probability of success will be at least 1/Q, where Q is the total number of oracle queries made by
A.

A.2 Threshold Schnorr for a single message

Recall the distributed key generation protocol (called JF-DKG as in GJKR [10]):

1. Each party i (acts as a dealer) chooses a random degree-t polynomial Hi(·), where ri = Hi(0)
is the random value that party i wants to (additively) contribute, and Ri = Hi(0) · G is the
corresponding public value. Each party broadcasts 1) ENCPKj (Hi(j)), i.e., the encryption of

share for party j under party j's public key; and 2) the Feldman commitments Ĥi to Hi.

(Below we elide the distinction between committing to coe�cients of H or to its values at
su�ciently many points, since these are equivalent from a security perspective. We just use
the fact that given Ĥi, it is possible to compute Hi(z) ·G for every z ∈ Zp. In particular Ri

is publicly known.)

2. The parties engage in an agreement protocol to agree on sets HOLD and QUAL such that
|HOLD|, |QUAL| ≥ t + 1 and every party in HOLD recived from every party in QUAL shares
that are consistent with the committed polynomials.

3. LetH =
∑

i∈QUALHi, each party j ∈ HOLD compute their share as ρj = H(j) =
∑

i∈QUALHi(j).

The parties also compute a Feldman commitment to H, Ĥ =
∑

i∈QUAL Ĥi. The secret that is
shared among them is r = H(0) =

∑
i∈QUALHi(0) ∈ Zp. The corresponding public value is

R = H(0) ·G =
∑

i∈QUALRi ∈ G, which can be computed from Ĥ.
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We use JF-DKG as a main component in our distributed Schnorr signature protocol, speci�cally
it is run to generate the ephemeral randomness that is needed for these signatures. Our protocol,
described below, is similar (but not exactly the same as) the protocol from [10].

Protocol inputs. A message M to be signed, a degree-t sharing of a secret key s. Each party i
holds a Shamir share of s, denoted as σi = F(i), with F a degree-t polynomial and F(0) = s. Also,
F̂ if publicly known, from which it is possible to compute S = s ·G and Si = σi ·G for all i

Protocol outputs. A Schnorr signature of the form (R,ϕ) on the message M .

Protocol steps. The threshold signing mainly consists of three parts: �rst, generate ephemeral
randomness for signing using JF-DKG; second, every party locally computes hash and its Shamir
share of the signature; �nally, the parties combine the shares to reconstruct the signature.

1. The parties run the JF-DKG protocol above. After this, a set HOLD of parties is determined,
where each party j ∈ HOLD holds a degree-t Shamir share ρj = H(j) of the ephemeral
randomness r = H(0), where H is a degree-t polynomial, and everyone knows a Feldman
commitment Ĥ to H.

Let R = H(0) ·G and R̃j = H(j) ·G for all j ∈ HOLD. These can all be computed from the
Feldman commitment Ĥ.

2. The parties locally compute e = Hash(S,R,M).

3. Each party j ∈ HOLD broadcasts its share of signature, πj = H(j) + e · σj . Each share is
veri�ed by checking if πj ·G = R̃j + e · Sj .

4. If at least t + 1 parties in HOLD broadcast valid shares, use these shares to reconstruct
ϕ = r + e · s. Output a signature on M as (R,ϕ).

The di�erence between this protocol and the one from [10] is that in our protocol, the parties in
HOLD (that hold Shamir sharing of r, s) generate the signature, whereas in [10] it is the parties in
QUAL that do it (using additive sharing of r, s). However, the same security challenge resides here
as in our protocol, the adversary can play with QUAL for the ephemeral randomness (e.g., kick out
a contributed polynomial of an honest party). The security proof is similar to that in [10], but not
identical since the protocols are somewhat di�erent.

A.2.1 Proof of Security

De�nition 3 (Security of threshold signature). De�ne the following game for a threshold signature
protocol Π and an adversary A against a distributed signature protocol Π:

� A while interacting withΠ, comes up withM1, . . . ,Mq, and gets the corresponding q signatures
(µ1, . . . , µq).

� After interacting with Π, A outputs a pair (M,µ).

We say that A wins the game if M ̸∈ {M1, . . . ,Mq} and yet Verify(PK,M, µ) = 1. The advantage
of A to be the probability that A wins the game, denoted as Eforge[A,Π]. We say that a threshold
signature protocol Π is secure if for any polynomial-time A, Eforge[A,Π] is negligible.
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Theorem 3. The threshold signature protocol from above is secure against a static advesary cor-
rupting upto t parties, in the random-oracle model under the discrete logarithm assumption.

Proof. We describe a reduction, in which an adversary A against the threshold scheme can be used
to solve the discrete logarithm problem. The main di�erence from the proof for centralized Schnorr
is that the simulator must also simulate the adversary view of the protocol, not just of the signatures
themselves. The main challenge in this proof is that the adversary can be rushing, which enables it
to bias the distribution of the ephemeral randomness, so the simulator cannot just select the R at
random.

Let Honest be the set of honest parties, let Corrupt = [n] \Honest be the corrupted parties, and
let q be a bound on the number of random-oracle queries of the form (S,R,M) that A makes. The
simulator needs to simulate for A the following aspects:

� The Feldman commitment F̂ to the degree-t polynomial F used to share the long-term key;

� The shares σi = H(i) of the long-term secret key for all i ∈ Corrupt;

� The (encryption of) shares of ephemeral randomness that the honest parties send to the
corrupted parties;

� The Feldman commitments Ĥi to the honest parties' ephemeral randomness polynomials Hi;

� The view of the agreement protocol, including the veri�able complaints and support messages;

� The full degree-t signature polynomial Y such that ϕ = Y(0) is part of the signature (and Y
is consistent with F̂ and the Ĥi's);

� In addition to all the above, the simulator also needs to answer random-oracle queries (S,R,M)
that A makes.

The reduction. The discrete log challenger randomly samples s from Zp as the secret key and
gives Sim the corresponding public key PK = S = s · G ∈ G. The public key is given to A. Now
Sim's task is to �nd s, by utilizing A.

The simulator begins by choosing t random and independent scalars for the secret-key shares σi
for all i ∈ Corrupt and giving them to A. It also �interpolates in the exponent� a commitment to a
degree-t polynomial which is consistent with the public key S and σi ·G for all i ∈ Corrupt.

In more detail, for each z ∈ Corrupt ∪ {0} let Iz be the degree-t polynomial satisfying Iz(z) = 1
and Iz(y) = 0 for all y ∈ Corrupt∪{0}, y ̸= z. Then the polynomial F is F = s·I0+

∑
z∈Corrupt σz ·Iz.

Denoting FCorrupt =
∑

z∈Corrupt σz · Iz, we can write F = FCorrupt + s · I0, where the simulator knows
FCorrupt in the clear.

Next, the simulator chooses at random an honest party i
∗ ∈ Honest, which will be simulated

di�erently than the other honest parties. Sim also chooses a random-oracle query index ℓ ∈ [q],
hoping that the random-oracle query where A asks about (S,R,M) that are used in the signature
is the ℓ'th query.

Throughout the simulation, the simulator answers random-oracle queries with independent ran-
dom scalars e1, . . . , eq, but eℓ will play a special role. Speci�cally, Sim chooses eℓ at the outset,
together with another scalar ϕ̃, and sets Ri∗ = ϕ̃ · G − eℓ · S. For the rest of the honest parties
(i ∈ Honest, i ̸= i

∗
), Sim chooses ri's at random and sets Ri = ri ·G.
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To simulate the Feldman commitments in Step 1 in JF-DKG, Sim simply follows DKG the
protocol as prescribed for honest parties other than i

∗
. For party i

∗
, Sim needs to generate the

commitment Ĥi∗ and the shares ρi∗j = Hi∗(j) for j ∈ Corrupt, without knowing the discrete lorarithm
of Ri∗. These have to remain consistent, namely for all j ∈ Corrupt we need

ρi∗j ·G = Ri∗ +
d∑

k=1

jk · (hi∗,j ·G).

While Sim does not know the polynomial Hi∗ in the clear (since its free term was chosen based on
the unknown secret key), it can still create commitment Ĥi∗ that satis�es the relation above. Sim
chooses at random ρi∗j ← Zp for all j ∈ Corrupt, and uses them as the shares of all the corrupted
parties. Note that {ρi∗j · G : j ∈ Corrupt}, together with Ri∗, uniquely de�ne the polynomial Hi∗,

which satis�es Hi∗(0) = ϕ̃− eℓ · s and Hi∗(j) = ρi∗j for all j ∈ Corrupt. Moreover, Sim can generate

the commitment Ĥi∗ by �interpolating in the exponent�, without needing to know Hi∗ in the clear.
Using similar notations to above we can write

Hi∗ =
∑

j∈Corrupt
ρi∗j · Ij + (ϕ̃− eℓ · s) · I0 =

∑
j∈Corrupt ρi∗j · Ij + ϕ̃ · I0︸ ︷︷ ︸

=HCorrupt

− eℓ · s · I0, (1)

where the simulator knows HCorrupt in the clear.
This completes the simulation of Step 1 of the DKG, the simulator sends all the shares and

commitments of honest parties to the adversary. Then A sends back to Sim the polynomial Hi for
parties i ∈ Corrupt. (Sim gets the shares ρij for j ∈ Honest, and since it controls t + 1 or more
parties it can recover Hi in full).

Next the simulator runs the prescribed agreement protocol on behalf of the honest parties, but
treating i

∗
as an honest dealer, even though the ciphertexts that it broadcasts to the honest parties

encrypt garbage. At the end of the agreement protocol, QUAL and HOLD are detemined, which in
turn de�nes also H =

∑
i∈QUALHi and R = H(0) ·G =

∑
i∈QUALRi. While the simulator does not

know H in the clear, it does know the commitment to it Ĥ.
Sim aborts if either i

∗
/∈ QUAL,13 or if A already made the random-oracle query (S,R,M) and it

was not the ℓ'th query. (If A still did not make the query (S,R,M) by the time that R is de�ned,
then the simulator will answer that query when it arrives with eℓ, regardless of the index of that
query.)

Since there is at least one honest party in QUAL, then the �rst abort event happens with
probability at most (n− 1)/n. The second abort event happens with probability at most (q− 1)/q,
since there are at most q random-oracle queries. Hence, the simulator will proceed with probability
at least 1/qn. If the simulator did not abort, then we have

H =
∑

i∈QUAL\{i∗}Hi +Hi∗ =
∑

i∈QUAL\{i∗}Hi +HCorrupt︸ ︷︷ ︸
=HCLR

−eℓ · s · I0,

where the simulator knows HCLR in the clear.
Now the simulator proceeds to Step 4 of the signature protocol, where the honest parties broad-

cast their signature shares. Note that if the simulator did not abort, then we are ensured that

13While no shareholder will broadcast a complaint against party i
∗
, we cannot ensure that it is in QUAL since this

is an asynchronous network and the adversary can delay the messages from party i
∗
until after QUAL is determined.
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Hash(S,R,M) = eℓ. The required signature is therefore (R, r + eℓ · s), where r = H(0) is the
discrete logarithm of R and s = F(0) is the discrete logarithm of S.

But the simulator needs to produce more than just the signature, it needs to come up with the
full degree-t polynomial Y = H + eℓ · F (where the commitments F̂ , Ĥ to F and H are already
�xed). Luckily, this is easy to do: Recall that F = FCorrupt + s · I0 and H = HCLR − eℓ · s · I0, and
the simulator knows FCorrupt, HCLR in the clear. Hence,

Y = H+ eℓ · F = HCLR − eℓ · s · I0 + eℓ · (FCorrupt + s · I0) = HCLR + eℓ · FCorrupt

which the simulator can output in the clear.
This concludes the simulation portion, and all that is left is to apply the forking lemma exactly

as in the proof of the centralized Schnorr signature. Suppose A creates a forgery on M∗ which is
(R∗, ϕ∗). In the random oracle model, we assume that in order for A to generate such forgery it
must have queried the oracle on (S,R∗,M∗). Let Sim rewind A, changing the answer to the query
(S,R∗,M∗). If A is still able to forge a signature on M∗ with randomness R∗, then the simulator
can extract s from those two signatures.

A.3 Threshold Schnorr for multiple messages

Suppose we wanted to use the protocol from Appendix A.2 to sign multiple messages in parallel. A
natural way of doing this would be to let each dealer Di generate multiple polynomials Hu,i, u ∈ [b],
in b copies of the single-message protocol. However, the security of the parallel threshold Schnorr
cannot be directly derived from the simulation proof for single-message protocol. Recall that in the
proof in Appendix A.2.1, in order to generate valid signatures on the b messages M1, . . . ,M b, the
simulator needs to guess the R's for the b messages, which brings down the succeeding probability
(for guessing the correct oracle queries) from 1/q to 1/qb. Below we only give a brief overview of
how the proof changes; more details are found in Appendix A.6.

Mitigation and proof technique. To mitigate the security downgrade, we add a shift value δ to
the ephemeral randomness where δ is determined after all the R's for the b messages are published.
Speci�cally, let Ru

i be the randomness contributed by party i ∈ [n] in the u-th copy where u ∈ [b].
After QUAL is determined14, the randomness for the u-th messages is Ru :=

∑
i∈QUALR

u
i . Then

each party computes locally

δ = Hash
(
S, {(Ru,Mu) : u ∈ [b]}

)
and ∆ = δ ·G,

and the parties use Ru +∆ and ϕu + δ for the signatures.
The intuition here is that A has very low probability of making a random-oracle query (S,R′,M)

with R′ = Ru +∆ before δ is computed. The simulator, instead of guessing the queries of the form
(S,R,M) for e, now guesses queries for δ of the form (S, {(Ru,Mu) : u ∈ [b]}).

The simulator aborts if the guess was wrong, or if A made a query (S,Ru′,Mu) with the correct
Ru′ = Ru + δ · G before step 2. (For each u ∈ [b] the last event happens with probability at most
1/q, and the total probability for the b messages can be upper bounded by the union bound.) If it
did not abort, then the simulator knows all the Ru′'s, so it is free to program the random-oracle
answers to all these queries (S,Ru′,Mu).

14Even though multiple polynomials are shared, we assume that the agreement protocol (Fig. 1, Step 2) guarantees
the same QUAL for all of them.
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A.4 Threshold Schnorr with a Super-Invertible Matrix

When using the super-invertible optimization, we still have each dealer Di sharing a single polyno-
mial Hi, but we can derive b ephemeral randomness polynomials since we have at least b honest
parties in QUAL.

However, having b honest parties in QUAL also means that we cannot use the same simulation
strategy as above: Recall that in Appendix A.2.1, the simulator picks an honest party i∗ at random,
hoping that it will end up in QUAL. Sim simulates the actions of i

∗
di�erently from all the other

honest partie, embedding a component that depends on S in the randomness Ri∗. Trying to do the
same here, the simulator would have to guess not one but b honest parties from QUAL. Since in
the asynchronous setting we cannot ensure that honest parties end up in QUAL, the probability of
guessing correctly is 1/

(
n
b

)
.

Even worse, the simulator cannot know the linear combination to use for various quantities that
the adversary expects to see, until QUAL is determined: without the super-invertible optimization,
the linear combination of the contributions from parties in QUAL was always a sum. But with this
optimization, the linear combination is determined by a sub-matrix of the super-invertible Ψ, where
the column corresponding to each party depends on QUAL.

To overcome these issues, we let the simulator embed S in the randomness Hi of all the honest

parties, so it no longer needs to guess which honest parties will end up in QUAL. Moreover, we
modify the protocol to includes QUAL in the hash query for δ. This way, once the simulator sees
the random-oracle query, it knows QUAL and can determine which party will correspond to what
column of Ψ.

A.5 Threshold Schnorr with Packing

The main di�erence induced by the packed variant is that the degrees of F and H are no longer
the same. When describing the simulator, and in particular the way it sets up the randomness
polynomials Hi of the honest parties, we can no longer just describe the relevant randomness
scalars r and deduce the unique polynomial which is consistent with them. Instead, we construct
the polynomials Hi in a form that would let the simulator cancel out the terms that depends on
the secret key (that it doesn't know), and deduce the r's from them.

A.6 Putting it All Together

Combining all the modi�cations above, we next describe the threshold signature protocol with the
super-invertible matrix optimization and packing.

Protocol inputs. M1,1, . . . ,M b,a messages to be signed. Each party i holds a Shamir share of
s, denoted as σi = F(i) where F has degree-d = t + a − 1 polynomial and F(0) = F(−1) = · · · =
F(1− a) = s. Also, S = s ·G, Si = σi ·G as well as the Feldman commitment to F are public.

Protocol outputs. Schnorr signatures (Ru,v, ϕu,v) for messages Mu,v for all u ∈ [b], v ∈ [a].

Protocol steps.

1. The parties run step 1 and step 2 of JF-DKG protocol, sharing polynomials Hi of degree
d′ = t+2a− 2, and the agreement in step 2 ensures |QUAL| = t+ b and HOLD = t+ d′ +1 =
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2t + 2a − 1. The polynomials {Hi : i ∈ QUAL} will be used for generating b ephemeral-
randomness polynomials, and we denote ri,v := Hi(1− v) and Ri,v := ri,v ·G.

2. Let Ψ = [ψu
i ]

u∈[b]
i∈QUAL ∈ Zb×(t+b)

p be a super-invertible matrix.

For all u ∈ [b], let Hu =
∑

i∈QUAL ψ
u
i Hi.

Each party j ∈ HOLD locally computes ρuj = Hu(j) =
∑

i∈QUAL ψ
u
i Hi(j).

From the Feldman commitments Ĥi to Hi for i ∈ QUAL, everyone can compute Feldman
commitments Ĥu to the Hu's. For those, anyone can compute the values Hu(j) · G for all
u, j, including Ru,v = Hu(1− v) ·G =

∑
i∈QUAL ψ

u
i ·Ri,v.

3. The parties locally compute δ := Hash(S,QUAL, {(Ru,v,Mu,v) : u ∈ [b].v ∈ [a]}) and∆ = δ·G.
(Note the inclusion of QUAL in this hash query.)

4. For u ∈ [b], run the packed signature protocol with randomnessHu and shift scalar δ: Everyone
computes eu,v = Hash(S,Ru,v + ∆,Mu,v) for all v ∈ [a]. Let Zu be the unique degree-a − 1
polynomials with Zu(1 − v) = eu,v for all v ∈ [a]. Each party j ∈ HOLD sets πu,vj =
Hu(j) + Zu(j) · F(j). Each signature share is veri�ed as πu,vj ·G = Ru,v

j + Z(j) · Sj .

5. Reconstruct Yu = Hu + Zu · F from πuj = Yu(j) for j ∈ HOLD. For each v ∈ [a] let
ϕu,v = Y(1− v), and output the signature as

(Ru,v +∆, ϕu,v + δ).

Theorem 4. Under the discrete log assumption (Assumption 1), Πsuper, pack (Figure 1) is a secure
threshold signature protocol for generating ab signatures in the random oracle model, assuming a
malicious adversary corrupting t parties.

Proof. The discrete log challenger randomly samples s← Zp as the signing secret key and gives the
simulator the corresponding public key S = s ·G. The simulator's task is to �nd s, by utilizing A.
To use A the simulators needs to simulate for it the following aspects of the protocol:

� The Feldman commitment F̂ to the polynomial F of degree d = t + a − 1 that hides the
long-term secret key;

� The shares σi = F(i) of the long-term secret key for i ∈ Corrupt;

� The Feldman commitments Ĥi to the polynomial Hi of degree d
′ = t+2a−2 from each party

i ∈ Honest;

� The (encryption of the) shares ρi,j = Hi(j) for every i ∈ Honest and j ∈ Corrupt;

� The messages in the agreement protocol that decides on QUAL and HOLD, including the
veri�able complaints and the support message;

� The b degree-d′ polynomials Yu, u ∈ [b], that must be consistent with the shares and with
the Feldman commitments F̂ and the Ĥi's;

� Sim also must answer all the oracle queries of A, of the forms (S,QUAL, {(R1,1,M1,1), . . . ,
(Rb,a,M b,a)}) and (S,R,M).
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The simulator needs to �rst simulate the shares of F and the Feldman commitments to F, which
is done similarly to Appendix A.2.1.

It chooses t random and independent scalars for the shares of the secret key, i.e., σi = F(i) for
i ∈ Corrupt, and gives them to A. Now the simulator needs to create the Feldman commitments
to F such that the share veri�cation performed by A will pass. To do this, the simulator uses the
public key S = F(0) · G = · · · = F(1 − a) · G, in conjunction with the t group elements σi · G
for i ∈ Corrupt: For each z ∈ [1 − a, 0] ∪ Corrupt, denote by Iz the degree-d polynomial satisfying
Iz(z) = 1 and Iz(y) = 0 for y ∈ [1− a, 0] ∪ Corrupt and y ̸= z. Denoting I∗ = I0 + I−1 + . . .+ I1−a

and FCorrupt =
∑

z∈Corrupt σzIz, the simulator de�nes the polynomial F = s · I∗ + FCorrupt, where it
knows FCorrupt in the clear.

Next, for each party i ∈ Honest, the simulator picks two random polynomials, Ai of degree d
′

and Bi of degree a− 1, and computes the commitment to Hi as

Ĥi := Ai ·G−Bi · I∗ · S.

This corresponds to the polynomial Hi = Ai + s ·Bi · I∗ (that the simulator does not know in the
clear), and to public random elements

Ri,v = Hi(1− v) ·G = Ai(1− v) ·G−Bi(1− v) · I∗(1− v) · S

that everyone can compute from Ĥi.
Importantly, even though the simulator does not know Hi in the clear, it can compute Hi(j)

in the clear for all j ∈ Corrupt, since I∗(j) = 0 and therefore Hi(j) = Ai(j). This completes the
simulation of step 1 in JF-DKG, and Sim sends to A the corresponding shares and the commitments.

Let q be the upper bound on the number of random-oracle queries for δ; the simulator chooses a
random index ℓ ∈ [q], hoping that this will be the query where A asked on (S,QUAL, {(Ru,v,Mu,v) :
u ∈ [b], v ∈ [a]}) that are used for the signatures. All random oracle queries upto and including
the ℓ'th query of that form are answered with fresh random scalars from Zp. Let QUAL∗ be the
value speci�ed for QUAL in that ℓ'th query, and R∗,u,v the groups elements in it. The simulator
answers that query with a random δ ∈ Zp, and denote ∆ = δ · G. The simulator aborts if QUAL∗
contains less than b honest parties, or if A made am earlier query (S,R∗,u,v + ∆,Mu,v) for any
u ∈ [b], v ∈ [a]. (The latter event can be upper bounded by the union bound, in Lemma 4.1 we
show that it happens with probability at most abq/p. For the former event, we show bellow that it
happens with probability at most 1− 1/q.)

The set QUAL∗ implies the matrix Ψ = [ψu
i ]

u∈[b]
i∈QUAL∗ . After Ψ and ∆ and the R∗,u,v's are de�ned,

the Simulator de�nes the degree-(a− 1) polynomial

Zu =
∑

i∈QUAL∗∩Honest

ψu
i Bi. (2)

Random-oracle queries of the form (S,R∗,u,v +∆,Mu,v) are answered with eu,v = Zu(1− v). Note
that the polynomials Z1, . . . ,Zb are just random and independent polynomials of degree a− 1: The
Bi's are random and independent, and also independent of the view of A (due to the Ai's that
hide them). Moreover, there are at least b of them in QUAL∗ ∩ Honest, and the matrix Ψ is super-
invertible. Hence, the eu,v's are random and independent, and so they are a legitimate programming
of the random oracle. All other queries are still answered with fresh random Zp elements.

Next the simulator runs the agreement protocol on behalf of honest parties; but treating them as
honest dealers even if they broadcast garbage ciphertexts for each other. At the end of the agreement
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protocol, QUAL and HOLD are determined such that |QUAL| ≥ t+ b, |HOLD| ≥ 2t+2a−1. This in
turn de�nes the ephemeral randomness Ru,v =

∑
i∈QUAL ψ

u
i Ri,v for each u ∈ [b], v ∈ [a]. If QUAL ̸=

QUAL∗ or Ru,v ̸= R∗,u,v for some u, v, then the simulator aborts. Since A makes at most q oracle
queries (and we can assume w.l.o.g. that one of them is (S,QUAL, (R1,1,M1,1), . . . , (Rb,a,M b,a))),
then there is at least a 1/q chance that it does not abort. Note that since |QUAL| includes at least
b honest parties, then QUAL = QUAL∗ implies that the �rst abort event from above did not happen
either. Hence, Sim will proceed to the next steps with probability at least 1

q (1−
abq
p ) = 1

q −
ab
p .

If the simulator did not abort, we denote Hu =
∑

i∈QUAL ψ
u
i Hi for every u ∈ [b]. The simulator

does not know the Hu's in the clear (since they depend on the secret key s). But since Hi =
Ai + s ·Bi · I∗ for i ∈ Honest, we can write Hu as

Hu =
∑

i∈QUAL

ψu
i Hi =

∑
i∈QUAL∩Corrupt

ψu
i Hi +

∑
i∈QUAL∩Honest

ψu
i Hi

=
∑

i∈QUAL∩Corrupt
ψu
i Hi +

∑
i∈QUAL∩Honest

ψu
i Ai︸ ︷︷ ︸

=Hu
CLR

− s

 ∑
i∈QUAL∩Honest

ψu
i Bi

 · I∗,
and Sim knows the full Hu

CLR in the clear.
To simulate step 4 and 5 of Πsuper, pack, Sim needs to create in full the signature polynomials

Y1, . . . ,Yb of degree d′. For each u ∈ [b], the u-th signature polynomial can be written as

Yu = Hu + Zu · F = Hu
CLR − s

 ∑
i∈QUAL∩Honest

ψu
i Bi

 · I∗ + Zu · (FCorrupt + s · I∗)

= Hu
CLR + Zu · FCorrupt + s

Zu −
∑

i∈QUAL∩Honest
ψu
i Bi


︸ ︷︷ ︸

=0

·I∗ = Hu
CLR + Zu · FCorrupt,

which Sim known in the clear.
This completes the simulation, �nally we apply the forking lemma as in Appendix A.2.

Lemma 4.1 (Union bound for random oracle queries). Suppose the random oracle outputs elements
in a group G of order p. Let q be the number of queries of the form (S,R,M) that A made to the
random oracle before δ is computed. Let ab be the number of messages to be signed, and denote
by Ru,v, u ∈ [b], v ∈ [a], the group elements that are included in the query where δ is computed.
Then the probability that Ru,v + δ ·G is included in any A's queries before δ is computed is at most
abq/p.

Proof. Let R := {R ∈ F : R was included in one of the q queries}. By de�nition, we know that
|R| ≤ q. For any element X ∈ G, let R−X = {R −X : R ∈ R}. Then we have |R −X| ≤ q for
every X ∈ G, and therefore:

Pr[∃u ∈ [b], v ∈ [a] such that Ru,v + δG ∈ R]
= Pr[∃u ∈ [b], v ∈ [a] such that δG ∈ R−Ru,v]

≤
∑

u∈[b],v∈[a]

Pr[δG ∈ R−Ru,v] ≤ ab · (q/p).

43



A.7 Security for the Dynamic Setting

The main di�erence between the dynamic and the static cases is that in the dynamic case, it is the
shareholders that need to generate the signatures at the end, while the dealers hold the shares of
the long-term secret key at the beginning. The sets of dealers and shareholders are arbitrary, they
can be the same set, disjoint sets, or anywhere in between. Hence, the dynamic setting requires a
re-share protocol in order for the dealers to pass the shared secret key to the shareholders. (In the
static case the dealers and shareholders are the same set, hence no re-sharing is needed.)

Note that even in the dynamic case we assume that the secret key is uniformly random and
cannot be biased by the adversary. This can be implemented by having a trusted party share
it in the �rst place, or using a non-biased DKG protocol (e.g., the protocol from [10] that uses
statistically-hiding commitments). The Shamir sharing of that unbiased key is an input to the
protocol. While the adversary may bias the new shares if we use Feldman commitments, it cannot
bias the key itself.

The simulation proof for the dynamic case is mostly the same as the static case, so we only
describe brie�y the added components. Speci�cally, the simulator needs to simulate also the degree-
d re-sharing polynomials Fi's from the honest parties. Recall that the simulator in Appendix A.6
generates a Feldman commitment F̂ for F, this allows it to compute SiF(i) · G for every i. Then
it can write Fi just like it did F, namely Fi = Fi,Corrupt + F(i) · I∗, where it knows Fi,Corrupt in the
clear. The rest of the proof follows, with the simulator setting the re-shared polynomial F′ just like
it did the Hu's (except using the Lagrange coe�cients λi rather than the matrix entries ψu

i ).

B Refreshing Packed Secrets

When describing SPRINT, we focused on how to refresh packed secrets in which all the scalars are
equal, i.e., a vector of secrets of the form (s, . . . , s). For our application to high-throughput Schnorr
signatures that was enough, since we needed to put the same secret key in all these slots. But
other applications may want to maintain shares of more general vectors, of the form (s1, s2, . . . , sa),
where the sv's can be di�erent from one another. For sake of completeness, we describe here a
simple method for refreshing sharing of these more general packed secrets.

Below, let Iu for u = 1, 2, . . . , a the unique polynomial of degree a− 1 satisfying Iu(1− u) = 1
and Iu(1−v) = 0 for all v ∈ {1, . . . , a}, v ̸= u. Refreshing a packed sharing of (s1, s2, . . . , sa) roughly
consists of sharing a di�erent polynomials, each containing just one of the sv's, then using the Iu's
to combine them into a single packed polynomial. We describe below two variants of this approach:
One having each dealer share only a single polynomial, and results in a packed polynomial of the
slightly larger degree of t + 2a − 1. The other has each dealer share a di�erent polynomials and
resulting in a packed polynomial of degree t+ a (which is the smallest possible).

B.1 Method One: Sharing One Polynomial

In this method, we maintain the invariant that the vector of secrets (s1, . . . , sa) is shared using a
packed degree-(t+2a− 2) polynomial F with F (1− v) = sv for all v = 1, 2, . . . , a. (Note that even
though we o�er robustness against t corrupted parties and only pack a values, the polynomial that
we keep has degree t+ 2a− 2 and not just t+ a− 1.)
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To refresh, each party re-shares its share via a packed polynomial of degree t+ a− 1. Namely,
Fi of degree t+ a− 1 such that Fi(0) = Fi(−1) = · · · = Fi(1− a) = σi. Each shareholder j gets the
sub-share σij = Fi(j) from each dealer i.

The shareholders then proceed with the usual agreement protocol, agreeing on a set QUAL of
quali�ed dealers with cardinality |QUAL| = t + a, and a set HOLD of secret-holding shareholders
with cardinality |HOLD| ≥ 2t + a, such that all the shareholders in HOLD have valid sub-shares
from all the dealers in QUAL.

Next, a shareholder j ∈ HOLD �rst computes a di�erent temporary shares corresponding to a
polynomials that hold the a di�erent values. Speci�cally, for v = 1, 2, . . . , a consider the Lagrange
coe�cients {λiv : i ∈ QUAL, v = 1, . . . , a}, such that for every degree-(t+a−1) polynomial P (X) it
holds for all v = 1, . . . , a that P (1−v) =

∑
i∈QUAL λi,vP (i). Party j computes for all v = 1, 2, . . . , a

ρj,v =
∑

i∈QUAL

λi,vσij .

Let us denote F ′
v =

∑
i∈QUAL λi,vFi, then clearly all the F ′

v's are degree-(t + a − 1) polynomials
with ρj,v = F ′

v(j), and

F ′
v(1− v) =

∑
i∈QUAL

λi,vFi(1− v) =
∑

i∈QUAL

λi,vF (i) = F (1− v) = sv.

Party Pj computes its �nal share as σ′j =
∑a

v=1 ρj,v · Iv(j). Clearly, this is indeed a share on the
polynomial F ′ =

∑a
v=1 Iv · F ′

v of degree t+ 2a− 2, and for all v = 1, 2, . . . , a we have

F ′(1− v) =
a∑

v′=1

Iv′(1− v) · F ′
v′(1− v) = F ′

v(1− v) = sv,

as needed.
We remark that by construction, the polynomial F ′ cannot reveal more that what's implied by

the polynomials F ′
1, . . . , F

′
a, which in turn only reveal the sv's.

B.2 Method Two: Sharing a Polynomials

In this method, we maintain the invariant that the vector of secrets (s1, . . . , sa) is shared using a
packed degree-(t+ a− 1) polynomial F with F (1− v) = sv for all v = 1, 2, . . . , a.

Each dealer Di has a share σi = F (i), and they prepare a degree-t polynomials Fi,1, . . . , Fi,a,
random subject to the condition that Fi,v(1− v) = σi for all v ∈ [a]. Di shares these polynomials,
with shareholder Pj receiving σi,j,v = Fi,v(j) for all v ∈ [a].

The shareholders agree on sets HOLD, QUAL1, . . . ,QUALv such that for all v ∈ [a], all the
shareholders in HOLD have valid shares of Fi,v from all the dealers in QUALv, and in addition
|HOLD| ≥ t+ a and |QUALv| ≥ t+ 1 for all v ∈ [a].

For all v ∈ [a], let {λi,v : i ∈ QUALv} be the Lagrange coe�cients for recovering F (1− v) from
{F (i) : i ∈ QUALv}. Each shareholder Pj ∈ HOLD computes a share σ′j,v =

∑
i∈QUALv

λi,vσi,j,v.
This share is σ′j,v = F ′

v(j), where F
′
v is the degree-t polynomial F ′

v =
∑

i∈QUALv
λi,vFi,v. As usual,

it is easy to see that we have F ′
v(1− v) = F (1− v) = sv for all v ∈ [a].

Finally, each shareholder Pj sets σ′j =
∑a

v=1 Iv(j) · σ′j,v. Clearly, we have σ′j = F ′(j) for the
polynomial F ′ =

∑a
v=1 Iv · F ′

v of degree t+ a− 1, and F ′(1− v) = sv for all v ∈ [a].
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C Faster Multiplication by a Super-Invertible Matrix

Recall that to compute the group elements Ru,v = ru,v ·G (which is needed in order to compute the
Schnorr challenges eu,v = Hash(S,Ru,v,Mu,v)), the signers must perform a matrix-multiplication �in
the exponent�, [

Ru,v

]
u∈[b],v∈[a] = Ψ×

[
Hi(1− v) ·G

]
i∈QUAL,v∈[a]. (3)

It is therefore bene�cial to make the matrix Ψ ∈ Zb×(b+t)
p as sparse as we can, while ensuring that

it remains super-invertible. Namely, any b× b sub-matrix of Ψ must be invertible. To that end, we
use the construction

Ψ = (I|H),

where I is the b × b identity matrix and H is a b × t hyper-invertible matrix [2]. Recall that H is
hyper-invertible if every square sub-matrix of it is invertible (not just any b × b sub-matrix). For
example, any sub-matrix of a Vandermonde matrix is hyper-invertible.

Lemma 4.2. If H is a hyper-invertible b × t matrix and Ib is the b × b identity matrix, then
Ψ = (Ib|H) is super-invertible.

Proof. Consider any b × b sub-matrix Ψ′ = (I ′|H ′) of Ψ, it consists of some number k of columns
from I and b − k columns from H. By swapping rows we can move all the single 1's from I ′ to
the top k rows, and then by column reduction we can zero out all the other entries in these k top
rows without a�ecting any of the b− k bottom rows. This does not change the rank, but result in
a matrix of the form

Ψ′′ =

[
Ik 0

0 H ′′

]
,

where Ik is the k× k identity matrix and H ′′ is some (b− k)× (b− k) sub-matrix of H. Since H is
hyper-invertible then H ′′ is invertible, and therefore so is Ψ′′ and therefore Ψ′.

We remark that this matrix Ψ is �as sparse as possible�, in that no row of a super-invertible
matrix can have more than b− 1 zeros.

Using this construction, we can reduce the number of scalar-by-element product when computing
Eq. (3) to only a · b · t rather than a · b · (t + b), even when using the naive matrix-multiplication
algorithm. More saving are possible by using Strassen's algorithm or FFT-based techniques.

D The Parameter-Finding Utility

#!/usr/bin/env python3

"""

Computation of committee sizes for secrets-on-blockchain

Modify the parameters at the bottom of the file

"""

import math

from typing import Callable, Tuple

from scipy.stats import binom

# ==============

# Core functions
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# ==============

def binary_search(f: Callable[[int], float], max_val: float, start: int, end: int) -> int:

"""

Find the max integer i between start and end so that f(i) <= max_val

Assumes that f is non-decreasing

start/end included in search

"""

while start != end:

mid = int((start + end + 1) / 2)

if f(mid) <= max_val:

start = mid

else:

end = mid - 1

return start

def liveness_error(n: int, t: int, alpha: float, a: int) -> float:

"""

Return the liveness error for alpha total fraction corrupted

and packing parameter a

"""

# Pr[number honest parties selected < 2*t + 2*a - 1]

# = Pr[number hones parties selected <= 2*t + 2*a - 2]

return binom(n, 1 - alpha).cdf(2 * t + 2 * a - 2)

def safety_error(n: int, t: int, alpha: float) -> float:

"""

Return the safety error for alpha total fraction corrupted

"""

# Pr[number of corrupted parties selected > t]

return binom(n, alpha).sf(t)

def threshold_and_safety_error_for_liveness(n: int, max_liveness_error: float,

alpha_safety: float, alpha_liveness: float, a: int) \

-> Tuple[int, float]:

"""

Find the optimal threshold t and associated safety error

to achieve the given liveness error

"""

# find t for liveness to hold

t = binary_search(lambda t: liveness_error(n, t, alpha_liveness, a), max_liveness_error, 1, n)

# return the associated safety error

return t, float(safety_error(n, t, alpha_safety))

def find_nt(max_n: int, max_liveness_error: float, max_safety_error: float,

alpha_liveness: float, alpha_safety: float, a: int) -> Tuple[int, int]:

"""

Find the optimal number of parties n and threshold t

to achieve the given max_liveness_error and max_safety_error

assuming a fraction alpha_safety of malicious parties for safety

and a fraction alpha_liveness of malicious parties for liveness

The packing parameter is a. a=1 is no packing

"""

# we first search for the minimum n such that the safety error is below max_safety_error

# note that we use negative n here because we want the min and binary_search looks for the max
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n = -1 * binary_search(

lambda n: threshold_and_safety_error_for_liveness(

-n, max_liveness_error, alpha_safety=alpha_safety, alpha_liveness=alpha_liveness, a=a

)[1],

max_safety_error, -max_n, -1

)

t, _ = threshold_and_safety_error_for_liveness(

n, max_liveness_error, alpha_safety=alpha_safety, alpha_liveness=alpha_liveness, a=a

)

return n, t

# =============

def print_setting(max_n: int, max_liveness_error: float, max_safety_error: float,

alpha_liveness: float, alpha_safety: float, a: int) -> None:

"""

See function find_nt

"""

n, t = find_nt(max_n, max_liveness_error, max_safety_error,

alpha_safety=alpha_safety, alpha_liveness=alpha_liveness, a=a)

print(f"number of parties: n = {n}")

print(f"threshold for safety: t = {t}")

print(f"packing parameter: a = {a}")

print(f"corrupt fraction liveness: alpha = {round(alpha_liveness * 100, 2)} %")

print(f"corrupt fraction safety: alpha = {round(alpha_safety * 100, 2)} %")

err = float(liveness_error(n, t, alpha_liveness, a))

print(f"liveness error: {err:.2e} = 2^{round(math.log(err, 2), 2)}")

err = float(safety_error(n, t, alpha_safety))

print(f"safety error: {err:.2e} = 2^{round(math.log(err, 2), 2)}")

# find percentage of corrupt people so safety error goes down to max_safety_error2

# max_safety_error2 = 2**-40

print("safety errors for higher alpha:")

max_safety_error2 = 2 ** -10

alpha2 = 1e-4 * binary_search(

lambda alpha: safety_error(n, t, alpha / 1e4),

max_safety_error2,

0, 1e4

)

delta = (alpha_safety - alpha2) / 8

for i in range(8):

alpha = alpha_safety - (i + 1) * delta

err = float(safety_error(n, t, alpha))

print(f" for alpha = {round(alpha * 100, 2):02.2f} %: "

f" {err:.2e} = 2^{round(math.log(err, 2), 1)}")

# ============================

def main():

# ==========

# Parameters

# ==========

a1 = 64 # packing parameter for optimistic setting

a2 = 40 # packing parameter for pessimistic setting
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max_n = 2 ** 12 # upper bound for the search for n

alpha_safety = 0.2 # total fraction of corrupted parties, for safety - denoted f in the paper

alpha_liveness1 = 0.05 # total fraction of corrupted parties, for liveness (optimistic)

alpha_liveness2 = 0.2 # total fraction of corrupted parties, for liveness (pessimistic)

max_liveness_error1 = 0.005 # 99.5%, optimistic setting

max_liveness_error2 = 2 ** -11 # 99.95%, pessimistic setting

max_safety_error = 2 ** -80

# =======

# Display

# =======

print("Optimistic Setting:")

print_setting(max_n, max_liveness_error1, max_safety_error, alpha_liveness1, alpha_safety, a1)

print("=========================================================")

print()

print("Pessimistic Setting:")

print_setting(max_n, max_liveness_error2, max_safety_error, alpha_liveness2, alpha_safety, a2)

print("=========================================================")

print()

if __name__ == "__main__":

main()

D.1 Example Parameters

$ python math/committee_sizes.py

Optimistic Setting:

number of parties: n = 676

threshold for safety: t = 250

packing parameter: a = 64

corrupt fraction liveness: alpha = 5.0 %

corrupt fraction safety: alpha = 20.0 %

liveness error: 4.35e-03 = 2^-7.85

safety error: 5.89e-25 = 2^-80.49

safety errors for higher alpha:

for alpha = 21.43 %: 1.00e-20 = 2^-66.4

for alpha = 22.86 %: 4.88e-17 = 2^-54.2

for alpha = 24.29 %: 7.71e-14 = 2^-43.6

for alpha = 25.72 %: 4.42e-11 = 2^-34.4

for alpha = 27.16 %: 1.01e-08 = 2^-26.6

for alpha = 28.59 %: 9.86e-07 = 2^-20.0

for alpha = 30.02 %: 4.43e-05 = 2^-14.5

for alpha = 31.45 %: 9.71e-04 = 2^-10.0

=========================================================

Pessimistic Setting:

number of parties: n = 992

threshold for safety: t = 336

packing parameter: a = 40

corrupt fraction liveness: alpha = 20.0 %
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corrupt fraction safety: alpha = 20.0 %

liveness error: 4.12e-04 = 2^-11.24

safety error: 5.95e-25 = 2^-80.48

safety errors for higher alpha:

for alpha = 21.17 %: 8.78e-21 = 2^-66.6

for alpha = 22.35 %: 4.01e-17 = 2^-54.5

for alpha = 23.52 %: 6.29e-14 = 2^-43.9

for alpha = 24.69 %: 3.70e-11 = 2^-34.7

for alpha = 25.86 %: 8.79e-09 = 2^-26.8

for alpha = 27.03 %: 9.01e-07 = 2^-20.1

for alpha = 28.21 %: 4.24e-05 = 2^-14.5

for alpha = 29.38 %: 9.63e-04 = 2^-10.0

=========================================================
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