
Non-interactive VSS using Class Groups and
Application to DKG

Aniket Kate∗† Easwar Vivek Mangipudi†§ Pratyay Mukherjee†

Hamza Saleem† Sri Aravinda Krishnan Thyagarajan‡

∗Purdue University
†Supra Research
‡NTT Research

Abstract—Verifiable secret sharing (VSS) allows a dealer to
send shares of a secret value to parties such that each party re-
ceiving a share can verify (often interactively) if the received share
was correctly generated. Non-interactive VSS (NI-VSS) allows the
dealer to perform secret sharing such that every party (including
an outsider) can verify their shares along with others’ without any
interaction with the dealer as well as among themselves. Existing
NI-VSS schemes employing either exponentiated ElGamal or
lattice-based encryption schemes involve zero-knowledge range
proofs, resulting in higher computational and communication
complexities.

This preliminary report presents cgVSS, a NI-VSS protocol
that uses class groups for encryption. In cgVSS, the dealer
encrypts the secret shares in the exponent through a class
group encryption such that the parties can directly decrypt their
shares. The existence of a subgroup where a discrete logarithm
is tractable in a class group allows the receiver to efficiently
decrypt the share though it is available in the exponent. This
yields a novel-yet-simple VSS protocol where the dealer publishes
the encryptions of the shares and the zero-knowledge proof of
the correctness of the dealing. The linear homomorphic nature
of the employed encryption scheme allows for an efficient zero-
knowledge proof of correct sharing. Given the rise in demand for
VSS protocols in the blockchain space, especially for publicly veri-
fiable distributed key generation (DKG), our NI-VSS construction
can be particularly interesting. We implement our cgVSS protocol
using the BICYCL library and compare its performance with
the state-of-the-art NI-VSS by Groth. Our protocol reduces the
message complexity and the bit length of the broadcast message
by at least 5.6x for a 150 party system, with a 1.8x speed-up in the
dealer’s computation time and with similar receiver computation
times.

I. INTRODUCTION

In a (threshold) secret sharing scheme [7], [38], a dealer
distributes a secret among a set of n parties so that the secret
can be reconstructed only if a threshold number of t + 1
or more parties provide their shares. In a verifiable secret
sharing (VSS) scheme [18], each party receives a share of
the secret and proof that their share is a valid part of the
secret. This ability, to confirm the validity of the shares without
reconstructing the secret itself, is useful in several secret-
sharing applications such as secure multi-party computation,
threshold cryptography, and distributed key generation.

The recent adoption of threshold cryptosystems [22] in
the blockchain space has invariably increased the demand for

§Contact author: e.mangipudi@supraoracles.com

VSS mechanisms. In the blockchain space, two additional
complementary properties are emerging as crucial: public
verifiability and non-interactivity. Public verifiability allows
any party to verify the correctness of a protocol execution, and
non-interactivity forgoes interaction among parties improving
the round complexity of the protocols.

In a traditional (computational) VSS [5], [26], the validity
of shares is assured only to the protocol participants through
an interactive process; however, in publicly verifiable secret
sharing (PVSS) [39], anybody can verify the correctness of
the sharing. A typical VSS protocol [33] consists of the
dealer generating and sending verifiable secret shares to all
the others. Every party receiving the share verifies their share
and broadcasts a complaint when the verification fails. When
more than t parties raise the complaint, the dealing is marked
as invalid; else, the dealer gets an opportunity to publish the
correct public response for every complaint. A PVSS protocol
[39] instead involves publishing encrypted shares and proving
the correctness of the encryptions and sharing [27], [29],
[37]. Multiple encryption schemes including ElGamal [29] and
Lattice-based encryption schemes [28] have been employed
to realize publicly verifiable VSS. If the proof mechanism
is non-interactive, the protocol will be a non-interactive VSS
protocol that removes the need for the complaint phase and
the corresponding interactive verification. Moreover, a publicly
verifiable protocol ensures the correctness of the protocol even
in the case of a security compromise, as anybody can verify the
correctness of the secret sharing. However, since we employ
public-key encryption in PVSS, unlike in VSS, we have to
surrender the possibility of unconditional secrecy/hiding of
secret sharing in PVSS.

In a PVSS, a dealer generates shares si for each party Pi

in the system and encrypts them. ‘Exponentiated’ or ‘lifted’
ElGamal encryption (with the scalar in the exponent) of
a message m as (ḡr, ḡmh̄r) is a natural candidate for the
encryption, as it allows linear homomorphic operations on the
message m. Here, ḡ is a random generator of the underlying
group G of prime order q, r is a random scalar from Zq and h̄
is the public key of the party. If a share value si is encrypted
as (ḡr, ḡsi h̄r

i) for the public key h̄i of the party indexed i,
the receiver is expected first to decrypt the value ḡsi and
then solve the discrete logarithm to compute the share value
si. However, if solving the discrete logarithm is considered
difficult in the underlying group G, the decryption is inefficient
and computationally hard. To avoid such a predicament, one

can divide each share value si into smaller ‘chunks’ sij
where si = si1||si2|| · · · ||sim, encrypt each chunk individually
using exponentiated ElGamal encryption as (ḡrj , ḡsij h̄ri) (an
approach taken by Groth et al. [29]). It would now be easier
for the receiver to compute the values sij by solving the
discrete logarithm through, for example, a brute-force search.
The receiver computes the smaller chunks sij and uses them
to retrieve the share value si. Apart from the correctness of
sharing, this approach would require the dealer to prove in
zero-knowledge that the size of each chunk is “sufficiently
small” and within a small range. The whole process of
dividing shares into smaller chunks, individually encrypting
them, and proving that the chunks are correctly formed makes
the message complexity of the whole system O(m · n) for n
shares and m chunks per share. Chunking could be avoided
if there is an efficient way to obtain the share value si from
the exponent in ḡsi following the decryption. We use a class
group-based encryption mechanism to achieve this.

A. Our Work

This work considers an encryption scheme in the class-
group setting [16]. Unlike traditional (elliptic curve and finite
field) discrete logarithm settings, in a class group, there exists
a subgroup where solving discrete logarithms is efficient i.e.,
given a value fsi in the subgroup and the corresponding
generator f , computing si is efficient. For VSS using class
groups, the dealer generates the shares si as evaluations of
a random polynomial f(x), encrypts each si as (gr, fsihr

i).
Here, g1 is the generator of the underlying class group G, f
is the generator of the subgroup F where discrete logarithm
is tractable, hi is the public key of the receiver, and r is
an appropriate scalar. As before, the secret share value is
present in the exponent as fsi allowing for homomorphic op-
erations (in the exponent). However, since discrete logarithm is
tractable in the subgroup F , the receiver can recover the value
si after obtaining fsi following the decryption. This allows
the dealer to publish just the encryptions of the shares and
the corresponding zero-knowledge proof, thereby achieving a
message complexity of O(n) for n shares. The dealer chooses
the parameters such that the order of the subgroup supports
the bit length of the shares that he encrypts.

We propose a non-interactive publicly verifiable VSS
scheme based on class groups; we call it cgVSS. In cgVSS, the
dealer publishes class group encrypted shares and an efficient
zero-knowledge proof (ZKP) of correct sharing. We employ
the ZKP of exponent in class groups and adapt it to achieve
efficient proof of sharing – a non-typical solution direction.
The receivers decrypt their shares after successful verification.
We employ the cgVSS and realize a distributed key generation
(DKG) mechanism [25], [29], [30]. A DKG protocol provides
threshold shares of a secret key to each party in the system
such that no set of parties less than the threshold in number
have any information about the secret key. However, any set of
more than the threshold number can compute the secret key
together. The public key corresponding to the shared secret
key is known to all the parties by the end of the protocol.
The proposed cgVSS is used to realize a DKG mechanism in
a straightforward manner where each party acts as the dealer

1Notice that we use symbols with bar eg: ḡ for generators of prime order
(elliptic curve) groups and without bar eg: g for class group generators.

and performs the verifiable secret sharing. After all the dealers
publish the encrypted shares and the corresponding proofs of
correct sharing, every party verifies the dealing from public
information and agrees on the set of dealers whose dealing
has been verified. Every party computes their share locally as
a summation of verified shares received. Since the verification
is from public information, the parties need not interact further
to agree on the qualified set of dealers whose dealings have
been verified.

The DKG from cgVSS, which we call cgDKG, is non-
interactive, publicly verifiable, and has a message complexity
of – O(n2) for n parties. The improvement in message
complexity of DKG is a direct consequence of the proposed
VSS protocol. Non-interactive DKG (NI-DKG) protocols find
increasing use of blockchain as a broadcast channel; this
leads to all the communicated messages being stored on the
blockchain. Using class groups for DKG and reducing the
message complexity also improves the storage complexity of
the blockchain used as the broadcast channel. The proposed
DKG protocol achieves sharing of an (unpredictable) secret
value and is safe for applications involving discrete logarithm
keys. However, it suffers from the biasing public key attack
[25] similar to DKG protocols proposed earlier [29], [34]. To
overcome this, we use an extension [32] by adding a round
of interaction to the protocol where every party publishes
the exponentiated version of their share si with a different
generator g′ as g′si . This achieves an efficient mechanism for
overcoming the attack (see Appendix B for details).

We compare our cgVSS scheme with the closest existing
scheme by Groth et al. [29] in terms of dealer, receiver times,
and the total bit-length of the message broadcast by the dealer.
To compare, we provide a simplified version of the VSS mech-
anism (referred to as GrothVSS) proposed by Groth et al. [29]
without forward secrecy. Our implementation shows that the
bit-length of the total broadcast message for a single VSS
instance for 150 users is 296.51 Kb for the cgVSS compared to
1.66Mb in GrothVSS which is a 5.6x improvement. The com-
parison also indicates the increase in dealing size is slower for
cgVSS when compared to GrothVSS with increasing number
of nodes. The benchmarks also indicate that for the cgVSS, the
dealer time is lower and the receiver time is similar, compared
to GrothVSS. See Section VI-A for further details.

B. Related Work

In their seminal paper, Chor et al. [18] introduce the
notion of verifiable secret sharing (VSS) and a scheme based
on the intractability of factorization. Benaloh [6] introduced
the notion of non-interactive VSS but with the existence
of a mutually trusted party. Stadler [39] proposed publicly
verifiable VSS and two constructions using verifiable ElGamal
encryption, one for encrypting a share and the other proving
that the encrypted value is a e-th root of a message. A
long line of works [8], [24], [35], [37] proposed publicly
verifiable secret-sharing (PVSS) schemes using factorization
and pairing [42] for applications including electronic voting
and key escrows.

Feldman [23] proposed a non-interactive VSS that employs
randomized encryptions and exploits the homomorphic prop-
erty of the encryption for verification. Pedersen [33] proposed

2

a non-interactive VSS where each party can verify their share
and the dealing; however, they can not verify the shares of
others. Recently, Groth et al. [29] proposed a non-interactive
distributed key generation mechanism that does not involve
any interaction between the parties. The proposed scheme
uses ElGamal encryptions of shared values which can be
publicly verified by all the parties from the commitments
of the polynomial coefficients. This protocol has been par-
ticularly suitable for blockchain-based applications because
of non-interactivity where the broadcast channel is typically
the underlying blockchain. Since the blockchain stores the
broadcast values, the message complexity becomes important.
In this work, we improve the message complexity and the
total bit-length of the information broadcast by each dealer
using a class group encryption scheme. Gentry et al. [28]
realized PVSS using a lattice-based encryption scheme based
on LWE security. However, the scheme incurs huge costs
for generating ZKP of correct sharing and verifying and is
efficient with constant amortized ciphertext/plaintext rate only
asymptotically. This makes the scheme suitable only when the
number of parties is in the thousands.

Paper Outline. Rest of the paper is organized as follows:
In Section II we introduce the preliminaries, including the
class group setting with the multi-receiver encryption scheme.
We propose and describe the non-interactive VSS protocol
cgVSS in Section IV and the non-interactive DKG protocol
cgDKG in Section V. We analyze and compare the cgVSS with
GrothVSS in terms of message complexity, the dealer and
receiver timings and present the experimental details in Sec-
tion VI. Finally, we comment on achieving asynchronous non-
interactive VSS and DKG from our proposed protocols in
Section VII-A.

II. PRELIMINARIES

A. Notation

We use the notation x
$←− D to indicate that x has been

randomly sampled from the distribution D and the notation
h ← y to indicate that the h has been assigned the value y.
Also, for any algorithm A we denote y ← A(x) to express that
A on input x yields the output y. Unless mentioned otherwise,
all algorithms considered in this paper are probabilistic poly-
nomial time (PPT). Sometimes, we explicitly use the notation
A(x; r) to denote the output of the algorithm A when run on
input x and fixed randomness r. Even if A is probabilistic, the
notation A(x; r) indicates that it runs on input x with fixed
randomness r, outputs a unique y – this is also known as
determinization of A. If a group has unknown order, then we
denote it with a hat Ĝ. We indicate the set {1, 2, · · · , n} by
[n]. We use the symbol ?

= to indicate a check of equality of
the left and right-hand side entities of the symbol. (a

?
= b)

returns a boolean value denoting whether the equality holds
or not. The computational security parameter is denoted by λ
(a typical value 128), and the statistical security parameter is
denoted by λst (typical value 40). We say that a function is
negligible in λ, if it grows as 2−Ω(λ).

B. Shamir Secret Sharing

We use Shamir’s secret sharing [38]. In a typical Shamir’s
secret sharing, a field element s ∈ Zq can be shared in a

t out of n fashion by choosing a t-degree uniform random
polynomial P (x)

$←− Zq[x]
t with constraint P (0) = s. The i-

th share is computed as si ← P (i). To reconstruct one may use
Lagrange coefficients Lis as s =

∑t+1
i=1 Lisi. Due to linearity,

this can be performed in the exponent without computing s.

C. Class Groups Setting

Castagnos and Laguillaumie [16] propose an ElGamal-like
encryption scheme using class groups. The main idea is to use
a composite order group of unknown order with an underlying
subgroup of known order where the discrete logarithm is easy.
Since then, a number of works showed the feasibility of several
cryptographic tasks [11], [14], [40], [41] including two-party
ECDSA [14] and multi-party computation [11].

In this paper, we follow the presentation similar to [11].
We consider a finite abelian group Ĝ of unknown order q · ŝ
with an unknown ŝ, and known q such that q and ŝ are co-
prime; Ĝ is factored as Ĝ ≃ Ĝq × F , where F = ⟨f⟩ is the
unique subgroup of order q. An upper bound s̄ is known for
ŝ. We also consider a cyclic subgroup G = ⟨g̃⟩ of Ĝ, such
that G has order q · s – s is known. Unlike Ĝ the elements
of G are not efficiently recognizable. Gq = ⟨g̃q⟩ denotes the
cyclic subgroup of G of the q-th power. So, G can be factored
as G ≃ Gq × F and g̃ = g̃q · f . We also consider two
distributions D and D′ over Z such that {g̃x | x ← D}
and {g̃xq | x ← Dq} induce distributions over G and Gq

respectively, that are statistically close (within distance 2−λst)
to uniform distributions over respective sets. Going forward,
we refer to g̃q simply as g for notational convenience.

The framework specifies two algorithms (CG.ParamGen,
CG.Solve) with the following description:

• (q, λ, λst, s̄, f, g, Ĝ, F,D,D′; ρ) ← CG.ParamGen(1λ,
1λst , q). This algorithm, on input the computational se-
curity parameter λ, the statistical security parameter λst

and a modulus q, outputs the group parameters and the
randomness ρ used to generate them. For convenience, we
include the descriptions of the uniform-like distributions
within the parameters.

• x ← CG.Solve(fx, (q, λ, λst, s̄, f, g, Ĝ, F,D,D′)). This
algorithm deterministically solves the discrete log in
group F .

Hardness assumptions on class groups. The employed
encryption scheme uses the unknown order and the hard
subgroup membership assumptions as described below.

Definition 1 (Unknown order assumption [11]). For the secu-
rity parameters λ, λst ∈ N, modulus q ∈ Z consider a set of
public parameters ppCG := (q, λ, λst, s̄, f, g, Ĝ, F,D,D′; ρ)←
CG.ParamGen(1λ, 1λst , q) generated using a uniform random
ρ. We say that the unknown order assumption holds over
the classgroup framework, if for any PPT adversary A, the
following probability is negligible in λ.

Pr
[
he = 1 | (h, e)← A(ppCG)CG.Solve(·)

]
Definition 2 (Hard subgroup membership assumption
[11]). For the security parameters λ, λst ∈ N, modulus
q ∈ Z consider a set of public parameters ppCG :=

3

(q, λ, λst, s̄, f, g, Ĝ, F,D,D′; ρ) ← CG.ParamGen(1λ, 1λst , q)
generated using a uniform random ρ. Sample x ← D and
x′ ← D′. Sample a bit b∗ $←− {0, 1} uniformly at random. If
b = 0, define h∗ ← g̃x, otherwise if b∗ = 1 define h∗ ← gx

′
.

Then we say that the hard subgroup membership assumption
holds over the classgroup framework, if for any PPT adversary
A, the following probability is negligible in λ.

Pr
[
b = b∗ | b∗ ← A(ppCG, h∗)CG.Solve(·)

]
III. BUILDING BLOCKS

Our NI-VSS scheme is based on three building blocks: (i) a
Schnorr’s NIZK proof for knowledge of exponent (over class-
group); (ii) an ElGamal-like multi-receiver encryption scheme;
(iii) and a Schnorr-like compact proof of correct secret-sharing.
In this section, we present them in order. Without going into
a formal definition, we directly present the constructions.

A. Schnorr’s NIZK for Knowledge of Exponent over class-
groups. [15]

Our construction uses non-interactive zero-knowledge
(NIZK) proof for knowledge of exponents over class groups.
In particular, consider the class-group parameters ppCG =
(q, λ, λst, s̄, f, g, Ĝ, F,D,D′; ρ) an instance inst = (g, h) and
witness wit = k such that h ← gk. Also consider a hash
function H : {0, 1}∗ → B for a bound B = 2O(λ). The
set of public parameters for the proof system is defined as
ppKex ← (H,B) ∪ {ppCG}. Then the proof system consists of
the following two algorithms:

• Kex.Prove(ppKex, inst,wit) → π. This randomized al-
gorithm takes an instance-witness pair (inst,wit) =
((g, h), k) as input. Then it executes the following steps:

◦ Samples a value r
$←− [B · |D| · 2λst]

◦ α← gr;
◦ c← H(g, h, α) ∈ B;
◦ s← r + k · c ∈ Z;
◦ Output the NIZK proof π = (c, s)

• Kex.Ver(ppKex, inst, π) → 1/0. This deterministic algo-
rithm takes an instance inst = (g, h) and a candidate
proof π = (c, s) as input. Then:
◦ Compute α← gs · (hc)−1;
◦ Output (c ?

= H(g, h, α)) ∈ {0, 1}.

Security. The completeness and soundness follow immediately
from Schnorr [36]. For zero-knowledge, a crucial difference is
the computation of s. Note that, we compute it over integer
because the group order is unknown – this is in contrast with
the typical Schnorr setting where the group order is known.
We need to ensure that the value s can be simulated without
the knowledge of k. For that, we rely on a statistical argument,
In particular, we choose a “mask” r randomly from a range
that is larger than the range of kc by a factor of 2λst . So,
to simulate it is possible to sample s from a range such that
the simulated value is within statistical distance 2−λst to the
actual value. The rest can be argued following the footsteps of
Schnorr’s proof.

B. Multi-receiver Encryption from Class-group

We present a multi-receiver linearly homomorphic encryp-
tion from class-groups in this section. Our construction adapts
the ElGamal-like encryption scheme from [16] in a multi-
receiver setting. The encryption mechanism based on our class-
group framework is IND-CPA and employs the class groups
G with a sub-group F where discrete log is easy. Let ppEnc be
the public parameters which is the same as the class-group pa-
rameters ppCG := (q, λ, λst, s̄, f, g, Ĝ, F,D,D′; ρ). The multi-
receiver encryption scheme is comprised of three algorithms
CGE.KeyGen,CGE.mrEnc and CGE.Dec for generating the
keys, (multi-receiver) encryption and decryption, respectively:

• CGE.KeyGen(ppEnc)→ (sk, h):

◦ sk
$←− D

◦ h← gsk

• CGE.mrEnc(ppEnc, {hi,mi}i∈[k])→ (R, {Ei}i∈[k])

◦ r
$←− D

◦ R← gr

◦ For all i ∈ [k]: Ei ← fmihr
i

• CGE.Dec(ppEnc, sk,R,E)→ m

◦ M ← E
Rsk

◦ m← CG.Solve(ppCG,M)

In the above, the encryption scheme takes a number of
public keys and messages as input and produces a multi-
receiver ciphertext containing a common randomness value R,
and a specific message-dependent part Ei. Each ciphertext can
be individually parsed as (R,Ei).

C. Proof of Correct Secret-Sharing.

Looking ahead, in our NI-VSS protocol we shall require
the dealer to produce a non-interactive zero-knowledge proof
of correct sharing, where shares are encrypted with the above
multi-receiver encryption. We essentially use the Groth’s [29]
variant of Schnorr proof, adapted to our class-group setting.
The overall idea, as we recall from [29], is to use a Schnorr’s
proof for knowledge of exponent in a compact fashion. Note
that, the multi-ciphertext consists of a group element R = gr

and another n group elements (in our case k = n) of the form
Ei = fsihr

i . The dealer is required to prove that encrypted
messages basically form a t out of n Shamir’s secret sharing
in addition to the knowledge of plaintext and randomness.
The main idea is to combine these different knowledge of
exponents in a way such that the exponents are consistent
with the evaluation of t-degree secret polynomial used for
secret-sharing – to enable this dlog commitments of the secret
polynomial are used. Let us now describe the scheme in detail.

Consider any cyclic group G of prime order q and a
randomly chosen generator ḡ ∈ G. Also, consider hash
functions (modeled as random oracles) H,H ′ both mapping
{0, 1}∗ → Zq . The public parameter of the proof system
is defined as ppPoC := {ḡ,G, H,H ′} ∪ ppEnc. We use the
generator ḡ for commitments, on group G, which is typically
an elliptic curve.

Now consider a secret s ∈ Zq , and let (s1, . . . , sn) be
a t out of n Shamir’s secret-sharing of s, done using a t-
degree secret polynomial P (x) over Zq such that P (i) = si

4

for all i ∈ [n]. Also, denote the coefficients of P by
a0, a1, . . . , at each in Zq and corresponding dlog commitments
as A0, A1, . . . , At. The shares s1, . . . , sn are then encrypted
by the dealer using the multi-receiver encryption scheme
described above as CGE.mrEnc(ppEnc, {hi, si}i∈[n]; r) using
randomness r (we determinize the encryption algorithm here)
to produce a ciphertext tuple (R, {Ei}i∈[n]). The proof-system
described in this section proves a relation R that consists of
an instance inst and a witness wit where:

• inst =
(
{hi}i∈[n], (R, {Ei}i∈[n]), (A0, . . . , At)

)
;

• wit = ((s1, . . . , sn), r)

for the statement:

• there exists a t-degree polynomial P (x) = a0 + a1x +
. . . atx

t over Zq such that for all i ∈ [n]: si = P (i); and
for all j ∈ {0, . . . , t}: Aj = ḡaj ;

• encrypting s1, . . . , sn with randomness r using public
keys h1, . . . , hn yields a multi-receiver ciphertext of the
form (R, {Ei}i∈[n])

The algorithms SharingProof and SharingVerify are described
in Figure 1.

• SharingProof(ppPoC, inst,wit)→ πPoC :

◦ Parse wit as {(s1, . . . , sn), r}.
◦ Sample α,

$←− Zq, ρ← [q · |D| · 2λst].
◦ W ← gρ and X ← ḡα

◦ Compute:
γ ← H(inst).
Y ← fα ·

(
hγ
1 · h

γ2

2 . . . · hγn

n

)ρ

.
γ′ ← H ′(γ,W,X, Y).
zr ← rγ′ + ρ ∈ Z.
zs ← γ′ ∑n

i=1 siγ
i + α ∈ Zq.

◦ Finally return πPoC ← (W,X, Y, zr, zs)

• SharingVerify(ppPoC, inst, πPoC)→ 1/0 :

◦ Parse πPoC as (W,X, Y, zr, zs).
◦ Compute:

γ ← H(inst).
γ′ ← H ′(γ,W,X, Y).

◦ Verify the following equality:

W ·Rγ′ ?
= gzr ;

X · (
∏t

j=0 A
∑n

i=1 ikγj

j)γ
′ ?
= ḡzs ;

(
∏n

i=1 E
γi

i)γ
′ · Y ?

= fzs ·
∏n

i=1(h
γi

i)zr .
◦ Return 1 if all of the above holds, and 0 otherwise.

Proof of Correct Sharing

Fig. 1: Proof System of Correct Sharing.

Completeness. The completeness can be seen from checking
the verification equations:

• W ·Rγ′
= gρ+rγ′

= gzr ;
• X · (

∏t
j=0 A

∑n
i=1 ikγj

j)γ
′

= X ·
(
A

(γ+γ2+...)
0 ·A(γ+2γ2+...)

1 ·A(γ+22γ2+...)
2 . . .

)γ′

= X·
(
ḡa0(γ+γ2+...) · ḡa1(γ+2γ2+...) · ḡa2(γ+22γ2+...) . . .

)γ′

= X ·
(
ḡ(a0+a1+...)γ+(a0+2a1+22a2+...)γ2+...

)γ′

= X ·
(
ḡs1γ+s2γ

2+...
)γ′

= ḡα+γ′ ∑n
i=1 siγ

i

= ḡzs ;

• (
∏n

i=1 E
γi

i)γ
′ · Y

=
(
fγ′(

∑n
i=1 siγ

i) ·
∏n

i=1 h
rγ′γi

i

)
·
(
fα ·

∏n
i=1 h

ργi

i

)
= fα+γ′ ∑n

i=1 siγ
i ·
∏

i h
(rγ′+ρ)γi

i = fzs ·
∏n

i=1(h
γi

i)zr

Soundness. From a high level, the soundness an be argued
from the two (in reality there are n+1 proofs, each of which
is happening with a power of γ, from 0 to n) Schnorr’s style
proofs being run in parallel plus the additional check via the
third equality, which ties them together. For soundness the third
check becomes crucial. Without that, one may manipulate the
Schnorr proofs, by adequately adjusting exponents to satisfy
the first two equations. But the third equation ensures that such
manipulations do not work. For a full proof we refer to Groth’s
original paper [29]

Zero-knowledge. Similar to the Schnorr proof (cf. Sec-
tion III-A), the zero-knowledge arguments differ from Groth’s
as we compute zr as an integer due to the unknown order of
the corresponding group. So, a similar “statistical masking”
technique is used to achieve zero-knowledge simulatability.

IV. NI-VSS USING CLASS GROUPS

We realize cgVSS, a non-interactive verifiable secret shar-
ing mechanism from class groups and employ it to achieve
a non-interactive distributed key generation protocol cgDKG.
Our cgVSS scheme uses the encryption scheme and proofs of
correct sharing from the previous sections.

A. System Model

For our non-interactive construction, we assume that all
nodes have access to a broadcast channel. The adversary
controls the communication channel and can delay the mes-
sages; however, it has to deliver those before the synchrony
communication bound ∆. The adversary is also rushing and
can delay the messages of the parties and inject its own
messages after observing honest nodes’ messages during the
current round.

There are n nodes in the system. We consider a t-bounded
static adversary who can corrupt at most t nodes. Each node
Pi generates a secret-key-public-key pair of the form (ski, hi)
for public-key encryption. In the setup phase, each node
broadcasts its public key and a proof the knowledge of secret
key ski. In the online phase, node Pi forwards messages to
Pj by encrypting to the public key hj .

B. Definition: Non-Interactive Verifiable Secret Sharing

Definition 3 (Non-interactive Verifiable Secret Sharing
(NI-VSS)). A non-interactive verifiable secret-sharing
(NI-VSS) scheme is a protocol executed between n
parties/nodes P1, . . . , Pn, among them Pn is the dealer
(this is without loss of generality). Let pp be a set of public
parameters that all algorithms have access to. Then a non-
interactive verifiable secret-sharing protocol consists of a tuple
of algorithms (KeySetup,KeyVer,Share,ShareEnc,Verify,
ShareDec) with syntax:

5

• KeySetup(pp) → (sk, pk, π). The setup algorithm pro-
duces a key-pair and a proof that the pair is legitimate.
For a party Pi, the corresponding values are denoted by
(ski, pki, πi).

• KeyVer(pp, (pk, π)) → 1/0. This algorithm verifies the
legitimacy of a public-key pk (that is whether the public-
key owner indeed knows the secret-key) with respect to
the associated proof π.

• Share(pp, s) → ({si}i∈[n], cmt). The sharing algorithm
produces t out of n Shamir’s secret-shares of a value s
and the associated commitment cmt.

• ShareEnc(pp, cmt, {si, pki}i∈[n]) → (R, {Ei}i∈[n], πPoC

). On input n many shares s1, s2, . . ., the associated
commitment cmt, and corresponding public keys , this
algorithm outputs a multi-ciphertext (R,E1, E2, . . . , En)
with a common first element R plus a proof of correct
sharing πPoC.

• Verify(pp, cmt, R, {Ei, pki}i∈[n], πPoC) → 1/0. This al-
gorithm verifies the entire ciphertext tuple with respect to
the proof πPoC and the commitment to output a decision
bit.

• ShareDec(pp, ski, R,Ei) → si. The decryption algo-
rithm uses a specific secret-key ski to decrypt ciphertext
(R,Ei). Note that, only the party who posses ski can
decrypt (R,Ei).

In the protocol the dealer Pn and n−1 receivers P1, . . . , Pn−1

interact as described below in Figure 2.

The correctness requires that if all parties are honest, then
for any pp, any share s, all receivers accepts their shares si,
and the tuple (s1, . . . , sn) constitutes a t out of n Shamir’s
secret sharing of s.

We informally say that a NI-VSS scheme is secure if a
malicious (who can behave completely arbitrarily) adversary
even after corrupting up to t parties, can not learn s or can
not make the honest parties accept inconsistent values (which
does not form a valid secret-share, or is inconsistent with the
public commitments).

C. Our NI-VSS Protocol

In this section we provide a concrete instantiation of
our NI-VSS protocol based on the multi-receiver encryption
scheme (cf. Section III-B), a corresponding proof of correct
sharing (cf. Section III-C) and a Schnorr’s proof for knowledge
of exponent (cf. Section III-A. The instantiation is provided in
Figure 3.

Correctness and Security. The correctness follows stright-
forwardly from the underlying primitives. Arguing security is
more intricate. While the full analysis relies on reducing to
the security properties of the underlying primitives, here we
provide a few intuitive arguments. Recall that our threat model
considers at most t parties can be maliciously corrupt.

• If the dealer is corrupt (and possibly colluding with t −
1 receivers), the honest parties should reject any invalid
share. This can be argued by the soundness of proof of

• Key Generation. Each party Pi runs KeySetup(pp) to
generate (ski, pki, πi) and broadcasts (pki, πi).

• Dealing. The dealer Pn receives {(pki, πi)}i∈[n−1]. It then
runs for all i ∈ [n − 1]: KeyVer(pp, pki, πi). If KeyVer
returns 0 for any i, exit. Otherwise it executes the following
steps.

◦ Sample s
$←− Zq

◦ ({si}i∈[n], {aj}j∈[t], cmt)← Share(pp, s)

◦ Define own share to be sn.

◦ Compute (R, {Ei}i∈[n], πPoC) ← ShareEnc(pp, {si, pki
}i∈[n])

◦ Broadcast (R, {Ei}i∈[n], cmt, πPoC) to all receivers
{Pi}i∈[n−1].

• Receiving. Each party Pi for i ∈ [n − 1] performs the
following steps:

◦ For all j such that (j ∈ [n]) ∧ (j ̸= i), run KeyVer(
pp, pki, πi). If KeyVer returns 0 for any j, then exit;
otherwise go to the next step.

◦ e← Verify(pp, cmt, R, {Ei}i∈[n], πPoC)

◦ If e = 1 then si ← ShareDec(pp, ski, R,Ei) and accept
si as its share corresponding to the dealing. Otherwise, if
e = 0 reject dealing.

cgVSS protocol

Fig. 2: The general structure of an NI-VSS protocol.

correct sharing. Furthermore, the soundness of Schnorr’s
proof guarantees that the public key is legitimate.

• If dealer is honest, and t receivers are corrupt and collud-
ing, then the dealer would aim to protect the secrecy of s,
which can be guaranteed by the Shamir’s secret sharing,
hardness of discrete log over cyclic groups, CPA-security
of the encryption scheme, zero-knowledge property of
the proof of correct-sharing, and also zero-knowledge
property of the Schnorr proof.

V. NI-DKG USING CLASS GROUPS

In an NI-DKG protocol, a number of parties engage in
a one-round (non-interactive) protocol to jointly own a secret-
key and corresponding public-key. In particular, in an t out of n
threshold system at the end of the protocol, each party privately
owns ki such that (k1, . . . , kn) forms a t out of n Shamir’s
secret-sharing of the secret-key k. The individual public keys
ḡki and the whole public-key ḡk should be known to everyone,
where ḡ is a generator of a cyclic group G of prime order. An
NI-DKG protocol can be thought of as a symmetric version
of NI-VSS, with the crucial difference that no one knows the
secret in NI-DKG, in contrast to NI-VSS, the dealer knows
the entire secret. Indeed, following prior works (e.g. [25],
[29], [34]), we construct NI-DKG by augmenting our NI-VSS
protocol naturally. The basic idea is each party Pi now runs an
NI-VSS instance using her own secret zi; after the completion
of protocol, ki is computed by linearly combining own share

6

• Ingredients. The NI-VSS algorithms described below uses
the following ingredients.
◦ A Schnorr proof of knowledge-of-exponent with algo-

rithms (cf. Section III-A) (Kex.Prove,Kex.Ver) and pub-
lic parameters ppKex.
◦ A multi-receiver encryption scheme (cf. Section III-B)

with algorithms (CGE.KeyGen,CGE.mrEnc,CGE.Dec)
and public parameters ppEnc.
◦ An associated proof system of correct sharing (cf. Sec-

tion III-C) with algorithms (SharingProof,SharingVerify)
and public parameters ppPoC.

• Public parameters. The public parameter pp is defined as
pp← {ppEnc, ppPoC, ppKex}.

Construction
• KeySetup(pp)→ (sk, pk, π):
◦ (sk, h)← CGE.KeyGen(ppEnc).
◦ π ← Kex.Prove(ppKex, h, sk).
◦ Set pk ← h.
• KeyVer(pp, (pk, π))→ 1/0:
◦ Output Kex.Ver(ppKex, pk, π).
• Share(pp, s)→ ({si}i∈[n], cmt):

◦ Sample aj
$←− Zq, j ∈ [t].

◦ Set s0 ← s.
◦ Define P (x) = a0 + a1x+ . . .+ atx

t.
◦ For each i ∈ [n]: set si ← P (i).
◦ Compute for all j ∈ {0, . . . , t}: Aj ← ḡaj .
◦ Set cmt← {A0, . . . , At}.
• ShareEnc(pp, cmt, {si, pki}i∈[n]) → (R, {Ei}i∈[n], πPoC)/
⊥.
◦ For all i ∈ [n]: ei ← Kex.Ver(ppKex, hi, πi) (as hi = pki).
◦ If any ei = 0, output ⊥. Otherwise do as follows:

Sample r
$←− D

Compute (R, {Ei}i∈[n]) ← CGE.mrEnc(ppEnc, {hi,
si; r}i∈[n]).
Define:
∗ inst =

(
{hi}i∈[n], (R, {Ei}i∈[n]), cmt

)
.

∗ wit = ((s1, . . . , sn), r).
Compute πPoC ← SharingProof(ppPoC, inst,wit).

• Verify(pp, cmt, R, {Ei, pki}i∈[n], πPoC)→ 1/0:
◦ Parse inst←

(
{hi}i∈[n], (R, {Ei}i∈[n]), cmt

)
.

◦ Output SharingVerify(ppPoC, inst, πPoC).
• ShareDec(pp, ski, R,Ei)→ si:
◦ Compute si ← CGE.Dec(ppEnc, ski, R,Ei).

cgVSS-Algorithms

Fig. 3: Algorithms that constitute cgVSS

of zi with shares of zj received from other Pj . In Figure 4 we
describe this protocol using the NI-VSS algorithms described
in Definition 3.

Correctness and Security.. The correctness follows from the
correctness of underlying NI-VSS, as long as the commitments
cmt has a specific form realized by our construction (cf.
Figure 2). We also note that, the linearity of Shamir’s secret
sharing is crucial to reconstruct individual shares. The only
additional security aspect of NI-DKG, compared to NI-VSS
is that any colluding set of t parties is unable to compute the

• Key Generation. Every party has access to the public pa-
rameters pp. Each Pi runs (ski, pki, πi)← KeySetup(pp)
and broadcasts (pki, πi).
• Dealing. Each party Pi receives {(pkj , πj)}j∈[n]∧j ̸=i. It

then runs for all j ∈ [n] ∧ j ̸= i: KeyVer(pp, pkj , πj). If
KeyVer returns 0 for any j, exit. Otherwise it executes
the following steps.

◦ zi
$←− Zq .

◦ ({sij}j∈[n], cmti)← Share(pp, zi).
◦ (Ri, {Eij}j∈[n], πPoCi)← ShareEnc(pp, cmt, {sij , pkj
}j∈[n])

◦ Broadcast (Ri, {Eij}j∈[n], cmti, πPoCi).
• Receiving. Each party Pi receives n− 1 tuples:

{(Rj , {Ejj′}j′∈[n], cmtj , πPoCj)}j∈[n]∧j ̸=i

then execute the following steps.
◦ For all j ∈ [n] ∧ j ̸= i: compute

ej ← Verify(pp, cmtj , Rj , {Ejj′}j′∈[n], πPoCj})

◦ Let U consist of j if and only if ej = 1.
◦ |U | ≤ t then exit. Otherwise, go to the next step.
◦ Initialize ki ← 0
◦ For all j ∈ U :

sji ← ShareDec(pp, ski, Rj , Eji).
ki ← ki + sji

◦ Define its share to be ki and individual public-key as
ḡki .

◦ To compute the system public-key initialize y = 1 ∈ G
and for each j ∈ U :

Parse cmtj as {A0j , . . . , Atj}.
y = y ·A0j .

◦ Output y as system public key.

cgDKG

Fig. 4: cgDKG- Non-interactive distributed key generation
using class groups

secret k – this is easy to see due to the information theoretic
security of Shamir’s algorithm. Furthermore, this also ensures
that any t+ 1 parties together uniquely holds the secret k.

VI. COMPLEXITY AND PERFORMANCE ANALYSIS

We analyze the message and computational complexity
of our cgVSS and present the performance evaluation using
a reference implementation. Since the non-interactive VSS
presented by Groth et al. [29] is the closest to our scheme,
we compare our scheme against it. We provide a version of
their VSS without forward secrecy for proper comparison (see
Appendix A), we call it GrothVSS.

Class Group NI-VSS. In the cgVSS, the dealer encrypts
the receiver shares si as (gr, fsihr

i). The encryption is a
multi-receiver encryption where the randomness r is reused
across the encryptions, with the total number of elements in
the ciphertext being n + 1 elements. With β bits for each
element, the total ciphertext size is (n + 1) · β bits. For the
n+1 encryptions, the dealer takes O(n) time. The dealer also
generates a NIZK proof of correct sharing and forwards it to

7

all the receivers. The proof consists of two elements from the
class group, one elliptic curve element and two scalars. Let
the length of the NIZK proof be k.

Each receiver decrypts their share and also verifies the
correctness of sharing by the dealer. The receiver i first
ElGamal decrypts the exponentiated share fsi and solves
the discrete-log problem to obtain si. They also verify the
NIZK proof forwarded by the dealer. The decryption and the
verification of the proof by the receiver take O(1) time.

For the DKG protocol, cgDKG each party acts as the dealer
and performs cgVSS. For n parties, the total ciphertext length
broadcast in the system is O(n · (n + 1)β) ∼ O(βn2) bits
while the NIZK proof length is nk. After the dealing phase,
the receivers compute the secret key from the first t+ 1 valid
sharings.

Groth’s NI-VSS. In the GrothVSS, the dealer generates the
shares si and divides each share si into m chunks. Thus there
are a total of m · n chunks for each dealer, for n parties. The
dealer encrypts each of the chunks using ElGamal encryption.
He reuses the randomness rj across encryptions of the chunks
as (ḡrj1 , h̄r

i ·ḡ
mij

1)∀i ∈ [0, n]. Each of the chunks is individually
encrypted, the total time taken for the encryption is O(mn).
Thus the cipher text generated by the dealer consists of mn+m
group elements. The total length of the ciphertext is (m(n +
1) · α) bits with α bits for each element.

For the proof of correctness, each dealer generates proof of
correct sharing and the proof of correct chunking. The proof
of chunking involves showing that each chunk of the share is
smaller than a certain value. For the proof of correct sharing,
the sender forwards three group elements of groups G1,G2 and
2 group Zq elements. For the proof of chunking the dealer uses
approximate range proofs for which the dealer forwards a set
of elements, including 2ℓ + 2 group elements and ℓ + n + 1
masked values of the chunks for a parameter ℓ.

Each party decrypts the m chunks corresponding to their
share to compute their share value. First, the chunks in the
exponentiated form are ElGamal decrypted, and the chunk
value is solved for, using the Baby Step - Gaint step algorithm.
This leads to a decryption time of O(m) (ElGamal and Baby
Step - Gaint Step) per receiver. For the DKG protocol, each
dealer performs the VSS, and the receivers compute the secret
key from the first t+1 valid sharings. For n dealers, the total
broadcast message length is O(n ·m(n+ 1) · α) ∼ O(αmn2)
bits per dealer in the DKG protocol.

A. Experimentation and Performance Analysis

We implement cgVSS in C++ using the BICYCL library
[9]. For comparison, we realize a version of the implemen-
tation of GrothVSS without forward secrecy. We run the
experiments on a Macbook pro machine with an Apple M1 Pro
chip with 10 cores and 16GB RAM. All the reported timings
are averages over 20 runs of the corresponding protocols.

In cgVSS, the dealer generates 256-bit shares for each party
in the system and encrypts them. The encryption of each share
consists of two elements (c, d), where c is the exponentiated
randomness. In the multi-receiver encryption mechanism, the
randomness can be reused across multiple receivers. Hence
while encrypting the share values for n receivers, the dealer

50 100 150 200
0

1,000

2,000

Number of clients

M
es

sa
ge

le
ng

th
(K

b)

GrothVSS
cgVSS

Fig. 5: Comparison of broadcast (dealing) message length
where n = 2t + 1. cgVSS dealing consists of encryptions
and proof of correct sharing, while GrothVSS also consists of
proof of correct chunking.

uses one element for randomness and n elements for the
second element of the encryption tuples. Each element in the
compressed form takes 1752 bits. The dealer commits to the
t coefficients of the polynomial. Hence the total bit-length
length for the multi-receiver encryption and commitments is
(1752)·(n+1)+384·t. For the proof of correctness, the dealer
also forwards 5 elements, including two class group elements,
one elliptic curve element, and two scalars. Figure 5 shows
the total bit-length of the dealing (the broadcast message). For
100 users, the dealer broadcasts a message (dealing) of length
201.55Kb whereas, for 150 users, it is 297.82Kb.

Figure 6 shows the time taken by the dealer and the receiver
in the cgVSS protocol. The dealer time includes the time to
generate the multi-receiver ciphertext and the NIZK proof of
correctness whereas the receiver time includes the decryption
time and the time for proof verification. For a 100 party system,
the dealer takes 1.22sec for generating the ciphertext and
1.02sec to generate the proof whereas for a 150 party system, it
takes 1.80sec for encryption and 1.48sec for proof generation.
The decryption takes 38msec, while the proof verification takes
2.07sec for a 100 user system and 3.30sec for a 150 party
system (the decryption time stays the same irrespective of the
number of parties). Figure 6b shows the total receiver times
taken by the party to verify the sharing and decrypt their shares.
Since the major portion of the time comes from the generation
and verification of the proof of correct sharing, which involves
multiple exponentiations, we expect the timings to come down
when a multi-exponentiation technique is used for the same.

In GrothVSS, to encrypt a share value, (assume) each share
is divided into 24 chunks and encrypted individually. The
ElGamal encryption constitutes two group elements; however,
since the randomness is re-used across different users, the
total number of elements for randomness is 24, amounting
to 24 ∗ 381 = 9144 bits. For n users, the total bit-length of
ciphertexts is 9144 · (n+1), including the random values. The
dealer also commits to the t coefficients of the polynomial,
which amount to 257·t. The dealer generates the NIZK proof of
correctness of sharing, which constitutes 3 multiplicative group
elements and two scalars of 381 bits each. GrothVSS uses the
BLS12-381 curve, and hence the elements are 381 bits each.
The dealer also generates proof of the correctness of chunking
by showing that each ‘chunk’ is in a small range of values. For
this, an approximate range proof is employed where the dealer
forwards a set of elements, including 2ℓ+2 group elements for
a parameter ℓ and ℓ+n+1 masked values of the chunks. Taking
a conservative estimate of 32 bits for the masked chunk value

8

50 100 150 200

2

4

6

8

Number of clients

Ti
m

e
(s

ec
on

ds
)

GrothVSS
cgVSS

(a) Comparison of dealer times. cgVSS dealer time consists of times
for encryption and proof of correct sharing, while GrothVSS also
involves proof of correct chunking.

50 100 150 200
1

2

3

4

Number of clients

Ti
m

e
(s

ec
on

ds
)

GrothVSS
cgVSS

(b) Comparison of receiver times. cgVSS receiver time consists of de-
cryption time and verification of correct sharing, while GrothVSS also
involves verification of correct chunking.

Fig. 6: Comparison of dealer and receiver times for cgVSS and
GrothVSS.

summations, we have the total bit-length of the approximate
range proof to be (2ℓ+ 2) · 381 + (ℓ+ n+ 1) · 32.

The total bit-length of the broadcast message (see Figure 5)
for GrothVSS for a 150 party is 1.66Mb. This indicates a
5.6x improvement in total broadcast message length while
using cgVSS when compared to GrothVSS for a 150 party
system. The comparison also indicates that the broadcast
message length increases slower in cgVSS when compared to
GrothVSS. In GrothVSS, for a 100 party system, the dealer
takes 1.36sec for generating ciphertexts, 68msec for generating
the proof of correct sharing, and 2.41sec for generating proof
of correct chunking, whereas the corresponding numbers for
a 150 party system are 2.03sec, 101msec and 3.92 sec re-
spectively. For decrypting their share, each receiver decrypts
all the corresponding chunks, which amounts to 338msec. For
verification, in a 100 party system, the receiver takes 341msec
for proof of correct sharing and 1.32sec for proof of correct
chunking; for a 150 party system, the receiver takes 804msec
for proof of correct sharing and 2.00sec for the proof of correct
chunking.

To also give a sense of how the scheme compares to other
existing state-of-the-art PVSS schemes, we briefly mention
the timing reported by Gentry et al. [28] for their LWE-based
PVSS scheme. We present their reported numbers, though their
performance has been evaluated on a more powerful machine
(with 32 cores and 250GB RAM) compared to our benchmarks
(10 core 16GB RAM machine). For 128 parties, their system
takes 4.2sec for generating ciphertexts and 22.9sec for gener-
ating the proof of correctness of sharing totaling 27.1sec of
dealer time, whereas for 256 parties, the total dealer time is
28.1sec. The receiver takes 1.4msec to decrypt and 15.3sec to
verify the dealing totaling 15.301sec. The total receiver time
for 256 parties is 15.901sec.

VII. ASYNCHRONOUS VSS AND DKG

In the asynchronous communication setting, the adver-
sary controls the communication links and may delay, or re-
order messages between any two honest parties as long as
it eventually delivers all the messages by honest parties. In
this section, we discuss an easy extension of our VSS and
DKG to the asynchronous communication setting. We first
propose a new asynchronous VSS (AVSS) scheme using our
NI-VSS and any reliable broadcast protocol [10] and then
develop an asynchronous DKG (ADKG) using our AVSS
scheme and asynchronous agreement ideas from the recent
ADKG protocols by Das et al. [19], [21].

A. Asynchronous VSS using Class Groups

In the asynchronous communication setting, Cachin
et al. [12] proposed the first asynchronous verifiable secret
sharing (AVSS) protocol with computational security relevant
to threshold cryptography in 2002. Several works have reduced
the communication complexity of AVSS process over the last
two decades. [4], [20], [43] Relevant to threshold signing for
state-machine replication (SMR) protocols, there also have
been efforts to define high-threshold VSS schemes [3], [19],
[21], where the secret sharing threshold t can be doubled. Now,
we describe an easy way to develop an AVSS protocol using
NI-VSS.

The non-interactive nature of cgVSS makes the process
of designing an AVSS significantly easy: A trivial approach of
reliably broadcasting the NI-VSS vector is sufficient. Given the
linear size of the vector, it is ideal to use the communication-
balanced reliable broadcast primitives such as [2], [13], [20].
This will reduce the communication complexity of AVSS
to O(n2κ) bits. In this straightforward approach, the nodes
do not verify the correctness of sharing until they deliver
the sharing in the deliver/output step of a reliable broadcast.
However, in practice, it will be better not to leave the NI-VSS
verification until the end. Instead, every node should verify
the correctness of sharing the first time it receives/computes
the entire NI-VSS vector and not proceed with the reliable
broadcast instance if the verification fails. Notice that, in
the asynchronous communication setting, similar to reliable
broadcast, termination is not guaranteed for AVSS.

B. Asynchronous DKG using Class Groups

Kate et al. [30] combined AVSS by Cachin et al. [12] with
the PBFT flow [17] towards developing a DKG beyond the
bounded-synchronous setting. However, their approach makes
the partial-synchrony communication assumption. While it is
possible to employ a randomized Byzantine agreement prim-
itive towards working in the asynchronous setting, generating
common coins required for the randomized protocol itself
requires DKG-like primitives. This seems to create a circular
requirement.

Recently, in a seminal work, Kokoris-Kogias et al. [31]
offer a novel efficient way towards breaking the circularity
condition and propose a quartic communication complexity
DKG protocol in the asynchronous communication setting.
Improved asynchronous DKG (ADKG) constructions are al-
ready available that reduce communication complexity to be

9

quadratic in the number of parties [1], [21] as well as to allow
high-threshold secret sharing [19], [21].

These papers indeed make developing asynchronous DKG
based on our NI-VSS significantly easy. A straightforward
approach is to replace the employed AVSS (or its high-
threshold version) with above mentioned AVSS based on class
groups and then employ the agreement on a common subset
procedure as it is from [19], [21]. This offers a quadratic
communication complexity ADKG. Nevertheless, in the future,
it will be interesting to improve this agreement process and
ADKG as well.

ACKNOWLEDGEMENTS

We thank Adithya Bhat and Ioanna Karantaidou for par-
ticipating in the early conversations on non-interactive VSS
and DKG. We also thank Dan Boneh for the encouraging
discussion on using the class-group setting for VSS.

REFERENCES

[1] Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn,
Gilad Stern, and Alin Tomescu. Reaching consensus for asynchronous
distributed key generation. In PODC’21, pages 363–373, 2021.

[2] Nicolas Alhaddad, Sourav Das, Sisi Duan, Ling Ren, Mayank Varia,
Zhuolun Xiang, and Haibin Zhang. Balanced byzantine reliable broad-
cast with near-optimal communication and improved computation. In
Alessia Milani and Philipp Woelfel, editors, ACM PODC, pages 399–
417. ACM, 2022.

[3] Nicolas Alhaddad, Mayank Varia, and Haibin Zhang. High-threshold
AVSS with optimal communication complexity. In Nikita Borisov and
Claudia Diaz, editors, FC, pages 479–498, 2021.

[4] Michael Backes, Amit Datta, and Aniket Kate. Asynchronous computa-
tional VSS with reduced communication complexity. In CT-RSA, pages
259–276, 2013.

[5] Michael Backes, Aniket Kate, and Arpita Patra. Computational verifi-
able secret sharing revisited. In Advances in Cryptology—ASIACRYPT,
pages 590–609, 2011.

[6] Josh Cohen Benaloh. Secret sharing homomorphisms: Keeping shares
of a secret secret (extended abstract). In Andrew M. Odlyzko, editor,
Advances in Cryptology — CRYPTO’ 86, pages 251–260, Berlin,
Heidelberg, 1987. Springer Berlin Heidelberg.

[7] G. R. BLAKLEY. Safeguarding cryptographic keys. In 1979 Interna-
tional Workshop on Managing Requirements Knowledge (MARK), pages
313–318, 1979.

[8] Fabrice Boudot and Jacques Traoré. Efficient publicly verifiable secret
sharing schemes with fast or delayed recovery. In Vijay Varadharajan
and Yi Mu, editors, Information and Communication Security, pages
87–102, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

[9] Cyril Bouvier, Guilhem Castagnos, Laurent Imbert, and Fabien Laguil-
laumie. I want to ride my bicycl: Bicycl implements cryptography
in class groups. Cryptology ePrint Archive, Paper 2022/1466, 2022.
https://eprint.iacr.org/2022/1466.

[10] Gabriel Bracha. An asynchronous [(n - 1)/3]-resilient consensus
protocol. In ACM PODC, 1984.

[11] Lennart Braun, Ivan Damgård, and Claudio Orlandi. Secure multiparty
computation from threshold encryption based on class groups. Cryp-
tology ePrint Archive, Paper 2022/1437, 2022. https://eprint.iacr.org/
2022/1437.

[12] Christian Cachin, Klaus Kursawe, Anna Lysyanskaya, and Reto Strobl.
Asynchronous verifiable secret sharing and proactive cryptosystems. In
Proceedings of the 9th ACM Conference on Computer and Communi-
cations Security, pages 88–97, 2002.

[13] Christian Cachin and Stefano Tessaro. Asynchronous veri.able infor-
mation dispersal. In IEEE SRDS, pages 191–202, 2005.

[14] Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico
Savasta, and Ida Tucker. Two-party ecdsa from hash proof systems and
efficient instantiations. In Annual International Cryptology Conference,
pages 191–221. Springer, 2019.

[15] Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico
Savasta, and Ida Tucker. Bandwidth-efficient threshold ec-dsa. In
Public-Key Cryptography–PKC 2020: 23rd IACR International Confer-
ence on Practice and Theory of Public-Key Cryptography, Edinburgh,
UK, May 4–7, 2020, Proceedings, Part II, pages 266–296. Springer,
2020.

[16] Guilhem Castagnos and Fabien Laguillaumie. Linearly homomorphic
encryption from ddh. In Cryptographers’ Track at the RSA Conference,
pages 487–505. Springer, 2015.

[17] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance
and proactive recovery. ACM Trans. Comput. Syst., 20(4):398–461,
2002.

[18] Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch.
Verifiable secret sharing and achieving simultaneity in the presence of
faults. In 26th Annual Symposium on Foundations of Computer Science
(sfcs 1985), pages 383–395, 1985.

[19] Sourav Das, Zhuolun Xiang, Lefteris Kokoris-Kogias, and Ling Ren.
Practical asynchronous high-threshold distributed key generation and
distributed polynomial sampling. Cryptology ePrint Archive, Paper
2022/1389. To appear at Usenix Sec 2023, 2022.

[20] Sourav Das, Zhuolun Xiang, and Ling Ren. Asynchronous data dis-
semination and its applications. In Yongdae Kim, Jong Kim, Giovanni
Vigna, and Elaine Shi, editors, ACM CCS, pages 2705–2721, 2021.

[21] Sourav Das, Thomas Yurek, Zhuolun Xiang, Andrew Miller, Lefteris
Kokoris-Kogias, and Ling Ren. Practical asynchronous distributed key
generation. In 2022 IEEE Symposium on Security and Privacy (SP),
pages 2518–2534. IEEE, 2022.

[22] Yvo G Desmedt. Threshold cryptography. European Transactions on
Telecommunications, 5(4):449–458, 1994.

[23] Paul Feldman. A practical scheme for non-interactive verifiable secret
sharing. In 28th Annual Symposium on Foundations of Computer
Science (sfcs 1987), pages 427–438. IEEE, 1987.

[24] Eiichiro Fujisaki and Tatsuaki Okamoto. A practical and provably
secure scheme for publicly verifiable secret sharing and its applications.
In Kaisa Nyberg, editor, Advances in Cryptology — EUROCRYPT’98,
pages 32–46, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.

[25] Rosario Gennaro, Stanisław Jarecki, Hugo Krawczyk, and Tal Rabin.
Secure distributed key generation for discrete-log based cryptosys-
tems. In Proceedings of the 17th International Conference on Theory
and Application of Cryptographic Techniques, EUROCRYPT’99, page
295–310, Berlin, Heidelberg, 1999. Springer-Verlag.

[26] Rosario Gennaro, Michael O. Rabin, and Tal Rabin. Simplified vss
and fast-track multiparty computations with applications to threshold
cryptography. In ACM PODC, page 101–111, 1998.

[27] Craig Gentry, Shai Halevi, and Vadim Lyubashevsky. Practical non-
interactive publicly verifiable secret sharing with thousands of parties.
In Advances in Cryptology—EUROCRYPT, pages 458–487, 2022.

[28] Craig Gentry, Shai Halevi, and Vadim Lyubashevsky. Practical non-
interactive publicly verifiable secret sharing with thousands of parties.
In Advances in Cryptology–EUROCRYPT 2022: 41st Annual Interna-
tional Conference on the Theory and Applications of Cryptographic
Techniques, Trondheim, Norway, May 30–June 3, 2022, Proceedings,
Part I, pages 458–487. Springer, 2022.

[29] Jens Groth. Non-interactive distributed key generation and key re-
sharing. Cryptology ePrint Archive, Paper 2021/339, 2021. https:
//eprint.iacr.org/2021/339.

[30] Aniket Kate, Yizhou Huang, and Ian Goldberg. Distributed key
generation in the wild. Cryptology ePrint Archive, 2012.

[31] Eleftherios Kokoris Kogias, Dahlia Malkhi, and Alexander Spiegelman.
Asynchronous distributed key generation for computationally-secure
randomness, consensus, and threshold signatures. In Proceedings of
the 2020 ACM SIGSAC Conference on Computer and Communications
Security, pages 1751–1767, 2020.

[32] Wafa Neji, Kaouther Blibech, and Narjes Ben Rajeb. Distributed
key generation protocol with a new complaint management strategy.
Security and Communication Networks, 9(17):4585–4595, 2016.

10

https://eprint.iacr.org/2022/1466
https://eprint.iacr.org/2022/1437
https://eprint.iacr.org/2022/1437
https://eprint.iacr.org/2021/339
https://eprint.iacr.org/2021/339

[33] Torben P. Pedersen. Non-interactive and information-theoretic secure
verifiable secret sharing. In Advances in Cryptology—CRYPTO, pages
129–140, 1991.

[34] Torben Pryds Pedersen. A threshold cryptosystem without a trusted
party. In Workshop on the Theory and Application of of Cryptographic
Techniques, pages 522–526. Springer, 1991.

[35] Alexandre Ruiz and Jorge L. Villar. Publicly verifiable secret sharing
from paillier’s cryptosystem. In Christopher Wulf, Stefan Lucks, and
Po-Wah Yau, editors, WEWoRC 2005 – Western European Workshop
on Research in Cryptology, pages 98–108, Bonn, 2005. Gesellschaft
für Informatik e.V.

[36] C. P. Schnorr. Efficient identification and signatures for smart cards.
In Gilles Brassard, editor, Advances in Cryptology — CRYPTO’ 89
Proceedings, pages 239–252, New York, NY, 1990. Springer New York.

[37] Berry Schoenmakers. A simple publicly verifiable secret sharing scheme
and its application to electronic. In Advances in Cryptology—CRYPTO,
pages 148–164, 1999.

[38] Adi Shamir. How to share a secret. Communications of the ACM,
22(11):612–613, 1979.

[39] Markus Stadler. Publicly verifiable secret sharing. In Advances in
Cryptology—EUROCRYPT’96: International Conference on the Theory
and Application of Cryptographic Techniques Saragossa, Spain, May
12–16, 1996 Proceedings, pages 190–199. Springer, 2001.

[40] Sri Aravinda Krishnan Thyagarajan, Guilhem Castagnos, Fabian Laguil-
laumie, and Giulio Malavolta. Efficient cca timed commitments in
class groups. In Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’21, page 2663–2684,
New York, NY, USA, 2021. Association for Computing Machinery.

[41] Benjamin Wesolowski. Efficient verifiable delay functions. In Advances
in Cryptology–EUROCRYPT 2019: 38th Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques,
Darmstadt, Germany, May 19–23, 2019, Proceedings, Part III 38, pages
379–407. Springer, 2019.

[42] Tsu-Yang Wu and Yuh-Min Tseng. A pairing-based publicly verifiable
secret sharing scheme. Journal of systems science and complexity,
24(1):186–194, 2011.

[43] Thomas Yurek, Licheng Luo, Jaiden Fairoze, Aniket Kate, and An-
drew K. Miller. hbacss: How to robustly share many secrets. In NDSS,
2022.

APPENDIX A
GROTHS NI-VSS WITHOUT FORWARD SECRECY [29]

Groth et al. [29] present non-interactive VSS and DKG
protocols that involve ElGamal encryption of share values. The
authors propose a VSS protocol that offers forward secrecy
using binary tree encryption. However, here we present a
version of their VSS protocol without forward secrecy; we
call it GrothVSS in this paper.

Let pp be a set of public parameters everyone can
access. pp = {ḡ1, ḡ2,G1,G2, H,H ′}. Here, the genera-
tors ḡ1, ḡ2 are generators of prime order groups G1,G2

of order q and H,H ′ : {0, 1}∗ → Zq. The
GrothVSS protocol consists of a tuple of algorithms
(DLKeySetup,Share,ElShareEnc,ElShareDec for the share
encryption mechanism and ElSharingProof,ElSharingVerify)
for the generation and verification of proof of correct sharing.
They are presented in Figure 7, Figure 8. The algorithms
are for key generation, generating shares, encrypting and
decrypting the shares, generating proof of correct sharing, and
verification of all the sharing respectively. Before the start of
the protocol, each party runs the DLKeySetup to sample a
secret-public keys pair along with the proof of knowledge of
the secret key corresponding to the public key. Each party Pi

runs the algorithm to generate (ski, h̄i, πi), and the proof πi

is forwarded to all the parties before the start of the protocol.

Every party has access to the public parameters pp. Each party
Pi runs the key setup to generate the secret key - public key
pairs (ski, h̄i) and the NIZK proof of knowledge πi.
• DLKeySetup(pp)→ (sk, h, π)

◦ sk
$←− Zq

◦ h̄← ḡsk2
◦ π ← ProveDL(sk, h̄)

• Share(pp, s)→ ({si}i∈[n], {Aj}j∈{0,··· ,t}) :

◦ Sample aj
$←− Zq, j ∈ {0, · · · , t}

◦ Set a0 ← s
◦ Compute si ←

∑t
j=1 aji

j , i ∈ [n]

◦ Set Aj ← ḡ
aj

2 , j ∈ {0, · · · , t}
• ElShareEnc(pp, {si, h̄i, πi}i∈[n]) →
({Ru, Ei,u}i∈[n],u∈[m]) :
◦ ei ← Verify(πi, h̄i).

If ei = ⊥, abort.
◦ Chunk si into si,u such that si =

∑m
u=1 si,uB

j−1 and
si,u ∈ [0, B − 1].

◦ Sample ru ← Zq, u ∈ [m]
◦ Compute Ru ← ḡru1 , u ∈ [m]
◦ Compute Ei,u ← ḡ

si,u
1 h̄ru

i , i ∈ [n], u ∈ [m].
• ElShareDec(pp, ski, {Ru, Ei,u}i∈[n],u∈[m])→ si:
◦ Compute and set

ḡ
si,u
1 ← Ei,u

R
ski
u

∀j ∈ [m].

si,u ← SolveDL(ḡ
si,u
1).

si ←
∑m

u=1 si,uB
u−1

GrothVSS-Algorithms

Fig. 7: Share generation, encryption and decryption algorithms
of GrothVSS [29].

GrothVSS follows the same mechanics as cgVSS of Figure 2.
Here, we present informally the variants of the algorithms used
for GrothVSS in Figure 7, Figure 8.

The dealer runs the Share algorithm that generates the
shares of each party Pi as evaluations on a random t-degree
polynomial a(y) =

∑t
k=0 aky

k. The shares of computed as
si = a(i) ∈ Zq. The dealer ‘exponentiated/lifted’ ElGamal
encrypts the share value si of Pi using the public key pki = h̄i

as (ḡri1 , ḡsi1 h̄ri
i). However, the discrete logarithm problem is

intractable in the underlying group G; hence, the receiver can
not decrypt the value si if it is forwarded in the exponentiated
form as ḡsi2 directly. To overcome this, the dealer breaks the
value si into m smaller ‘chunks’ si,u < B, u ∈ [m] such that∑

u B
u−1si,u = si. Essentially, the concatenation of bits of

si,u form the value si. The dealer encrypts each of the smaller
chunks in the form (ḡru1 , ḡ

si,u
1 h̄ru

i), i ∈ [n], u ∈ [m]. The
algorithm ElShareEnc realizes the chunking and the encryption
procedure. The party Pi uses the ElShareDec to decrypt their
share. When the party Pi receives the encryption of the value
ḡ
si,u
1 , decrypts it and uses a solver to compute the value si,u.

They concatenate the values si,u to compute the share si.

A. Proof of correct sharing

Here we present the proof of the correctness of sharing
of the NI-DKG protocol by Groth et al. [29]. The dealer

11

Every party has access to the public parameters pp. Each party
Pi runs the key setup to generate the secret key - public key
pairs (ski, h̄i) and the NIZK proof of knowledge πDL,i.
• ElSharingProof(pp, r, {si, Aj}i∈[n],j∈{0,··· ,t})→ πPoC :

◦ Sample α, ρ
$←− Zq,

◦ Compute and set
W ← ḡρ1 , X ← ḡα2
γ ← H({h̄i, Aj}i∈[n],j∈{0,··· ,t})

Y ← (
∏n

i=1 h̄
γi

i)ρḡα1
γ′ ← H ′(γ,W,X, Y)
zr ← rγ′ + ρ(∈ Zq)
zα ← γ′ ∑n

i=1 siγ
i + α(∈ Zq)

πPoC ← (W,X, Y, zr, zα)

• ElSharingVerify (pp, πPoC, {Ru, Ei,u}i∈[n],u∈[m])→ 0/1:
◦ Compute and set

c =
∏m

u=1 c
Bu−1

u

di =
∏m

u=1 d
Bu−1

i,u

γ ← H({h̄i, Aj}i∈[n],j∈{0,··· ,t})
γ′ ← H ′(γ,W,X, Y)

◦ Verify

cγ
′
W

?
= ḡzr1

(
∏t

j=0 A
∑n

i=1 ijγi

j)γ
′
X

?
= ḡzα2

(
∏n

i=1 di
γi

)γ
′
Y

?
=

∏n
i=1(h̄

γi

i)zr ḡzα1

GrothVSS-Proof of correct sharing

Fig. 8: Proof system of correct sharing of GrothVSS [29]. We
do not present the proof and verification of correct chunking
here, refer [29, Section 6.5] for it.

publishes the commitments Ai = ḡai
2 to coefficients of the

polynomial a(y) =
∑t

k=0 aky
k from which the shares of

the nodes have been generated. The dealer generates the
proof of correctness πPoC of sharing using the ElSharingProof
algorithm. He proves the knowledge of the value

∑n
i=1 six

i

and uses the relation: si = a(i) =
∑t

k=0 aki
k ∀i ∈ [n]. The

algorithm samples two random values α, ρ ∈ Zq and using the
relations si =

∑m
j=1 sijB

j−1, r =
∑m

j=1 rjB
j−1 as a witness,

provides Schnorr based proof using the relation:
∑n

i=1 six
i =∑n

i=1(
∑t

k=0 aki
k)xi =

∑t
k=0 ak(

∑n
i=1 i

kxi) for x $←− Zq
. Each party Pi verifies the proof of correct sharing using
ElShareVerify before decrypting their share using ElShareDec.

Correctness of relations being verified by the receivers.

Here we show the correctness of the relations being verified
by the receivers. The receivers verify the correctness of secret
sharing to accept the share. If the verification fails, the dealing
is rejected.

• cγ
′
W = (ḡr1)

γ′ · ḡρ1 = ḡrγ
′+ρ

1 = ḡzr1

• (
∏t

j=0 A
∑n−1

i=0 ikγi

j)γ
′
X =

(
ḡ
∑t

j=0 aj ·
∑n−1

i=0 ikγi

2

)γ′

· ḡα2 =(
ḡ
∑n−1

i=0 siγ
i

2

)γ′

· ḡα2 = ḡ
γ′·

∑n−1
i=0 siγ

i+α
2 = ḡzα2

• (
∏n

i=1 d
γi

i)γ
′ · Y

= (
∏n

i=1(
∏m

u=1 d
Bu−1

i,u)γ
i

)γ
′ · Y

= (
∏n

i=1(
∏m

u=1(ḡ
si,u
1 h̄ru

i)B
u−1

)γ
i

)γ
′ · Y

= (
∏n

i=1(
∏m

u=1(ḡ
si,u
1 h̄ru

i)B
u−1

)γ
i

)γ
′ · Y

= (
∏n

i=1(ḡ
si
1 h̄r

i)
γi

)γ
′ · (

∏n
i=1 h̄

γi

i)ρḡα1
=

∏n
i=1(h̄

γi

i)γ
′r+ρ · (ḡγ

′·
∑

γisi+α
1)ρḡα1

=
∏n

i=1(h̄
γi

i)zr · ḡzα1
Apart from the proof of correctness of sharing, the dealer

provides zero-knowledge proof of correct chunking showing
that si =

∑m
j=1 sij . He also proves that each such sij < B

using (approximate) range proofs. We refer the reader to [29,
Section 6.5] for the proof of correct chunking.

APPENDIX B
MITIGATING THE BIASING PUBLIC KEY ATTACK

cgDKG (and Groth’s NI-DKG) suffer from the same public
key biasing attack as the one presented by Gennaro et al. [25].
This is because a rushing adversary can observe the first t
verified secret sharings and then perform a valid t+1st sharing
to bias the public key while delaying the messages of the other
honest parties in the system. The adversary can first compute
the partial public of the t honest parties and choose the t+1st

party (which the adversary controls) to bias the public key.

To overcome this, we use an approach [32] where the
knowledge of the commitments does not aid the adversary in
biasing the public key. After verifying the dealings, the parties
use the first set of t+1 verified dealers to compute their secret
key share. Each party now publishes the public key computed
as exponentiation of the secret key with a different generator
g′ ∈ G1 than g1, the one used in the initial commitment phase.
After computing the qualified set, each party Pk broadcasts
the value (g′)xk along with a NIZK proof that the exponent
in (g′)xk is the same as the one computed using the verified
dealings. The parties finally compute the public key of the
DKG instance as y =

∏
k∈T (g

′)xk , where T is the set of
parties that have forwarded their public key, the set T has at
least t+1 parties as only a maximum of t parties are corrupted
by the adversary. This adds one round of communication
to the DKG protocol. A previously suggested approach [25]
to overcome the biasing attack is to use perfectly hiding
Pedersen’s commitments. These commitments are published in
the initial commit phase while the public key is computed in
the next phase (round) using discrete log commitments, which
are published along with proof of the equality of the exponents
(shared secret). This approach also needs an extra round for
the parties to agree on the public key. However, the mentioned
approach of using a different generator for the public key is
more efficient as no blinding factors (and the corresponding
exponentiations) are needed.

12

	Introduction
	Our Work
	Related Work

	Preliminaries
	Notation
	Shamir Secret Sharing
	Class Groups Setting

	Building Blocks
	Schnorr's NIZK for Knowledge of Exponent over class-groups.castagnos2020bandwidth
	Multi-receiver Encryption from Class-group
	Proof of Correct Secret-Sharing.

	NI-VSS using Class Groups
	System Model
	Definition: Non-Interactive Verifiable Secret Sharing
	Our NI-VSS Protocol

	NI-DKG using Class Groups
	Complexity and Performance analysis
	Experimentation and Performance Analysis

	Asynchronous VSS and DKG
	Asynchronous VSS using Class Groups
	Asynchronous DKG using Class Groups

	References
	Appendix A: GrotHs NI-VSS without forward secrecy cryptoeprint:2021/339
	Proof of correct sharing

	Appendix B: Mitigating the biasing public key attack

