
Non-interactive VSS using Class Groups and Application to DKG
Aniket Kate

Supra Research/Purdue University

aniket@purdue.edu

Easwar Vivek Mangipudi

Supra Research

e.mangipudi@supraoracles.com

Pratyay Mukherjee

Supra Research

p.mukherjee@supraoracles.com

Hamza Saleem

Supra Research/University of

Southern California

h.saleem@supraoracles.com

Sri Aravinda Krishnan

Thyagarajan

NTT Research

t.srikrishnan@gmail.com

ABSTRACT
Verifiable secret sharing (VSS) allows a dealer to send shares of a

secret value to parties such that each party receiving a share can

verify (often interactively) if the received share was correctly gen-

erated. Non-interactive VSS (NI-VSS) allows the dealer to perform

secret sharing such that every party (including an outsider) can

verify their shares along with others’ without any interaction with

the dealer as well as among themselves. Existing NI-VSS schemes

employing either exponentiated ElGamal or lattice-based encryp-

tion schemes involve zero-knowledge range proofs, resulting in

higher computational and communication complexities.

In this work, we present cgVSS, a NI-VSS protocol that uses class
groups for encryption. In cgVSS, the dealer encrypts the secret

shares in the exponent through a class group encryption such that

the parties can directly decrypt their shares. The existence of a

subgroup where a discrete logarithm is tractable in a class group

allows the receiver to efficiently decrypt the share though it is avail-

able in the exponent. This yields a novel-yet-simple VSS protocol

where the dealer publishes the encryptions of the shares and the

zero-knowledge proof of the correctness of the dealing. The linear

homomorphic nature of the employed encryption scheme allows

for an efficient zero-knowledge proof of correct sharing. Given the

rise in demand for VSS protocols in the blockchain space, espe-

cially for publicly verifiable distributed key generation (DKG), our

NI-VSS construction can be particularly impactful. We implement

our cgVSS protocol using the BICYCL library and compare its per-

formance with a simplified version of the state-of-the-art NI-VSS

by Groth. Our implementation shows that cgVSS outperforms (a

simplified implementation of) Groth’s protocol in overall commu-

nication complexity by 5.6x and about 2.4 − 2.7x in computation

time per node (for a 150 node system).

1 INTRODUCTION
In a (threshold) secret sharing scheme [8, 51], a dealer distributes

a secret among a set of 𝑛 parties so that the secret can be recon-

structed only if a threshold number of 𝑡 + 1 or more parties provide

their shares. In a verifiable secret sharing (VSS) scheme [24], each

party receives a share of the secret and proof that their share is a

valid part of the secret. This ability, to confirm the validity of the

shares without reconstructing the secret itself, is useful in several

secret-sharing applications such as secure multi-party computation,

threshold cryptography, and distributed key generation.

The recent adoption of threshold cryptosystems [28] in the

blockchain space has invariably increased the demand for VSS

mechanisms. In the blockchain space, two additional complemen-

tary properties are emerging as crucial: public verifiability and

non-interactivity. Public verifiability allows any party to verify the

correctness of a protocol execution, and non-interactivity forgoes

interaction among parties improving the round complexity of the

protocols.

In a traditional (computational) VSS [7, 33], the validity of shares

is assured only to the protocol participants through an interactive

process; however, in publicly verifiable secret sharing (PVSS) [52],

anybody can verify the correctness of the sharing. A typical VSS

protocol [45] consists of the dealer generating and sending verifi-

able secret shares to all the others. Every party receiving the share

verifies their share and broadcasts a complaint when the verifica-

tion fails. When more than 𝑡 parties raise the complaint, the dealing

is marked as invalid; else, the dealer gets an opportunity to publish

the correct public response for every complaint. A PVSS proto-

col [52] instead involves publishing encrypted shares and proving

the correctness of the encryptions and sharing [34, 36, 50]. Multi-

ple encryption schemes including ElGamal [36] and Lattice-based

encryption schemes [35] have been employed to realize publicly

verifiable VSS. If the proof mechanism is non-interactive, the proto-

col will be a non-interactive VSS protocol that removes the need for

the complaint phase and the corresponding interactive verification.

Moreover, a publicly verifiable protocol ensures the correctness of

the protocol even in the case of a security compromise, as anybody

can verify the correctness of the secret sharing. However, since we

employ public-key encryption in PVSS, unlike in VSS, we have to

surrender the possibility of unconditional secrecy/hiding of secret

sharing in PVSS.

In a PVSS, a dealer generates shares 𝑠𝑖 for each party 𝑃𝑖 in the sys-

tem and encrypts them. ‘Exponentiated’ or ‘lifted’ ElGamal encryp-

tion (with the scalar in the exponent) of a message𝑚 as (𝑔𝑟 , 𝑔𝑚 ¯ℎ𝑟 ) is
a natural candidate for the encryption, as it allows linear homomor-

phic operations on the message𝑚. Here, 𝑔 is a random generator

of the underlying group G of prime order 𝑞, 𝑟 is a random scalar

from Z𝑞 and
¯ℎ is the public key of the party.

If a share value 𝑠𝑖 is encrypted as (𝑔𝑟 , 𝑔𝑠𝑖 ¯ℎ𝑟
𝑖
) for the public key

¯ℎ𝑖 of the party indexed 𝑖 , the receiver is expected first to decrypt

the value 𝑔𝑠𝑖 and then solve the discrete logarithm to compute

the share value 𝑠𝑖 . However, if solving the discrete logarithm is

considered difficult in the underlying group G, the decryption is

inefficient and computationally hard. To avoid such a predicament,

one can divide each share value 𝑠𝑖 into smaller ‘chunks’ 𝑠𝑖 𝑗 where
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𝑠𝑖 = 𝑠𝑖1 | |𝑠𝑖2 | | · · · | |𝑠𝑖𝑚 , encrypt each chunk individually using expo-

nentiated ElGamal encryption as (𝑔𝑟 𝑗 , 𝑔𝑠𝑖 𝑗 ¯ℎ𝑟𝑖 ) (an approach taken

by Groth et al. [36]). It would now be easier for the receiver to com-

pute the values 𝑠𝑖 𝑗 by solving the discrete logarithm through, for

example, a brute-force search. The receiver computes the smaller

chunks 𝑠𝑖 𝑗 and uses them to retrieve the share value 𝑠𝑖 . Apart from

the correctness of sharing, this approach would require the dealer

to prove in zero-knowledge that the size of each chunk is “suf-

ficiently small” and within a small range. The whole process of

dividing shares into smaller chunks, individually encrypting them,

and proving that the chunks are correctly formed makes the mes-

sage complexity of the whole system 𝑂 (𝑚 · 𝑛) for 𝑛 shares and𝑚

chunks per share. Chunking could be avoided if there is an efficient

way to obtain the share value 𝑠𝑖 from the exponent in 𝑔𝑠𝑖 following

the decryption. We propose to use a class group-based encryption

mechanism to achieve this.

1.1 Our Work
This work considers an encryption scheme in the class-group set-

ting [21]. Unlike traditional (elliptic curve and finite field) discrete

logarithm settings, in a class group, there exists a subgroup where

solving discrete logarithms is efficient i.e., given a value 𝑓 𝑠𝑖 in the

subgroup and the corresponding generator 𝑓 , computing 𝑠𝑖 is effi-

cient. For VSS using class groups, the dealer generates the shares 𝑠𝑖
as evaluations of a random polynomial 𝑓 (𝑥), encrypts each 𝑠𝑖 as

(𝑔𝑟 , 𝑓 𝑠𝑖ℎ𝑟
𝑖
). Here, 𝑔1 is the generator of the underlying class group

𝐺 , 𝑓 is the generator of the subgroup 𝐹 where discrete logarithm is

tractable, ℎ𝑖 is the public key of the receiver, and 𝑟 is an appropriate

scalar. As before, the secret share value is present in the exponent

as 𝑓 𝑠𝑖 allowing for homomorphic operations (in the exponent).

However, since discrete logarithm is tractable in the subgroup 𝐹 ,

the receiver can recover the value 𝑠𝑖 after obtaining 𝑓 𝑠𝑖 following

the decryption. This allows the dealer to publish just the encryp-

tions of the shares and the corresponding zero-knowledge proof,

thereby achieving a message complexity of 𝑂 (𝑛) for 𝑛 shares. The

dealer chooses the parameters such that the order of the subgroup

supports the bit length of the shares that he encrypts.

We propose a non-interactive publicly verifiable VSS scheme

based on class groups; we call it cgVSS. In cgVSS, the dealer pub-
lishes class group encrypted shares and an efficient zero-knowledge

proof (ZKP) of correct sharing. We employ the ZKP of exponent in

class groups and adapt it to achieve efficient proof of sharing – a

non-typical solution direction. The receivers decrypt their shares

after successful verification. We employ the cgVSS and realize a

distributed key generation (DKG) mechanism [32, 36, 39]. A DKG

protocol provides threshold shares of a secret key to each party in

the system such that no set of parties less than the threshold in

number have any information about the secret key. However, any

set of more than the threshold number can compute the secret key

together. The public key corresponding to the shared secret key is

known to all the parties by the end of the protocol. The proposed

cgVSS is used to realize a DKG mechanism in a straightforward

manner where each party acts as the dealer and performs the ver-

ifiable secret sharing. After all the dealers publish the encrypted

1
Notice that we use symbols with bar eg: 𝑔 for generators of prime order (elliptic

curve) groups and without bar eg: 𝑔 for class group generators.

shares and the corresponding proofs of correct sharing, every party

verifies the dealing from public information and agrees on the set of

dealers whose dealing has been verified. Every party computes their

share locally as a summation of verified shares received. Since the

verification is from public information, the parties need not interact

further to agree on the qualified set of dealers whose dealings have

been verified.

The DKG from cgVSS, which we call cgDKG, is non-interactive,
publicly verifiable, and has a message complexity of – 𝑂 (𝑛2) for 𝑛
parties. The improvement in message complexity of DKG is a direct

consequence of the proposed VSS protocol. Non-interactive DKG

(NI-DKG) protocols find increasing use of blockchain as a broadcast

channel; this leads to all the communicated messages being stored

on the blockchain. Using class groups for DKG and reducing the

message complexity also improves the storage complexity of the

blockchain used as the broadcast channel. The proposed DKG proto-

col achieves sharing of an (unpredictable) secret value and is safe for

applications involving discrete logarithm keys. However, it suffers

from the biasing public key attack [32] similar to DKG protocols

proposed earlier [36], [46]. To overcome this, we use an extension

[44] by adding a round of interaction to the protocol where every

party publishes the exponentiated version of their share 𝑠𝑖 with a

different generator 𝑔′ as 𝑔′𝑠𝑖 . This achieves an efficient mechanism

for overcoming the attack (see Appendix B for details).

Benchmarking. We implement our NI-VSS protocol cgVSS and

compare that with the closest existing scheme by Groth’s [36] in

terms of dealer/receiver times, and the total bit-length of the mes-

sage broadcast by the dealer (in Section 6). For comparison, we

implement a simplified version of the VSS mechanism (referred to

as GrothVSS henceforth) proposed by Groth [36] without forward

secrecy. Our implementation shows that the bit-length of the total

broadcast message for a single execution for 150 users is 296.51 Kb

for the cgVSS compared to 1.66 Mb in GrothVSSwhich is a 5.6x im-

provement. Also, in the same setting the gain in dealer’s/receiver’s

computation time is about 2.4 − 2.7x. In summary, our protocol

cgVSS outperforms the state-of-art GrothVSS both in communica-

tion and computation. This is despite the class-group operations

being in the regime of other similar composite order groups, such

as RSA. Essentially the performance gain can be attributed for the

design simplification, in that any range proof (or proof-of-chunking

ala Groth [36]) is totally dispensed with.
2
Importantly, this means

that our scheme cgVSS scales much better with the increasing

number of parties compared to GrothVSS. We also benchmark the

DKG protocols (cf. Sec. 6) end-to-end and compare GrothDKG with

cgDKG. For a 50 node network, GrothDKG takes 43.058sec while

cgDKG takes 17.950sec.

1.2 Related Work
PVSS. In their seminal paper, Chor et al. [24] introduced the notion

of verifiable secret sharing (VSS). Stadler [52] first proposed publicly

verifiable VSS (PVSS) and two constructions using verifiable ElGa-

mal encryption. A long line of works [9, 31, 50] ,[10, 16, 18, 30, 36, 38,

47, 48, 52, 57] realized publicly verifiable and non-interactive VSS

schemes. They typically employ encryption mechanisms, including

2
Moreover, the simplified design itself is a substantial advantage from engineer-

ing/deployment perspective as well.
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Paillier [38, 47, 48], ElGamal-in-the-exponent [36], pairing[29, 55]

and lattice-based encryptions[35]. The schemes, that use Paillier

encryption suffer from long exponentiations and proof size, that use

ElGamal in the exponent [36] requires small exponents due to hard-

ness of DLog. The schemes involving pairing generate shares are

group elements (not scalars) and are not suitable for settings such

as threshold signatures. PVSS schemes based on lattice-encryption

schemes [35] are indeed asymptotically efficient, albeit require

large public keys and ciphertext sizes. In another line of work,

asynchronous VSS schemes [1, 14, 37, 58] are proposed but public

verifiability is not defined in such systems. In addition, they suffer

from a so-called high replication factor (𝑛 > 3𝑡 ) for a threshold 𝑡 .

DKG. Several DKG protocols to support DLog based threshold

systems have been studied [1, 2, 17, 32, 36, 40, 40, 41, 43] in the

literature in the synchronous and asynchronous settings. However,

to achieve public verifiablity, the nodes need to perform PVSS

(instead of VSS or asynchronous VSS). Any aggregatable PVSS

scheme [43] which supports homomorphic operations on the secret

shares [36, 38, 47] may be employed to realize a publicly verifiable

DKG mechanism. To achieve non-interactive DKG, one should

employ a PVSS for the secret sharing. Groth [36] proposed a non-

interactive distributed key generation mechanism using ElGamal

encryptions of shares that can be publicly verified by all the parties

from the commitments of the polynomial coefficients. We use a

simplified variant of this scheme as our baseline.

Biasing the public key: Recently, Katz [40] proposed two round-

optimal constructions for a ‘robust’ DKG mechanism, where they

define robustness as guaranteed-output-delivery. Their definition
requires that the DKG mechanism outputs an unbiased public key.

However, unbiased public keys are not an absolute requirement for

DKG mechanisms, since it has been shown that biased public keys

can be securely employed for certain systems as long as the secret

key is secure. Gennaro et al. [32] show that biased public keys can

be securely employed for any cryptographic system relying on

the DLog assumption, like the threshold version of the Schnorr

signature scheme. Bacho and Loss [5] show that DKG mechanisms

that output biased public keys can be employed for generating

key shares of adaptively secure BLS scheme as long as they can

be shown to be oracle-aided-algebraic-simulatable (see [5, Sections
3,4.3]. Braun, Damgård, and Orlandi [13] propose an encryption

scheme based on class groups that is secure even with biased public

keys.

2 PRELIMINARIES
2.1 Notation
We use Z for all integers, and N for all natural numbers {1, 2 . . .}.
Vectors are denotes as ®𝑣 . For a vector ®𝑣𝑖 , its 𝑗-th element is denoted

®𝑣𝑖, 𝑗 . We use the notation 𝑥
$←− D to indicate that 𝑥 has been ran-

domly sampled from the distribution D and the notation ℎ ← 𝑦 to

indicate that the ℎ has been assigned the value 𝑦. Also, for any algo-

rithm𝐴we denote𝑦 ← 𝐴(𝑥) to express that𝐴 on input 𝑥 yields the

output 𝑦. Unless mentioned otherwise, all algorithms considered

in this paper are probabilistic polynomial time (PPT). Sometimes,

we explicitly use the notation 𝐴(𝑥 ; 𝑟 ) to denote the output of the

algorithm 𝐴 when run on input 𝑥 and fixed randomness 𝑟 . Even

if 𝐴 is probabilistic, the notation 𝐴(𝑥 ; 𝑟 ) indicates that it runs on
input 𝑥 with fixed randomness 𝑟 , outputs a unique 𝑦 – this is also

known as determinization of𝐴. If a group has unknown order, then

we denote it with a hat𝐺 . We indicate the set {1, 2, · · · , 𝑛} by [𝑛].
We use the symbol

?

= to indicate a check of equality of the left and

right-hand side entities of the symbol. (𝑎 ?

= 𝑏) returns a boolean
value denoting whether the equality holds or not. The computa-

tional security parameter is denoted by 𝜆 (a typical value 128), and

the statistical security parameter is denoted by 𝜆st (typical value

40). We say that a function is negligible in 𝜆, if it grows as 2
−Ω (𝜆)

.

2.2 Shamir Secret Sharing
We use Shamir’s secret sharing [51]. In a typical Shamir’s secret

sharing, a field element 𝑠 ∈ Z𝑞 can be shared in a 𝑡 out of 𝑛 fash-

ion by choosing a 𝑡-degree uniform random polynomial 𝑃 (𝑥) $←−
Z𝑞 [𝑥]𝑡 with constraint 𝑃 (0) = 𝑠 . The 𝑖-th share is computed as

𝑠𝑖 ← 𝑃 (𝑖). To reconstruct one may use Lagrange coefficients 𝐿𝑖s

as 𝑠 =
∑𝑡+1
𝑖=1

𝐿𝑖𝑠𝑖 . Due to linearity, this can be performed in the

exponent without computing 𝑠 . We denote this by SSS𝑛,𝑡,𝑞 (𝑠) =
(𝑠1, . . . , 𝑠𝑛).

2.3 Class Groups Setting
Castagnos and Laguillaumie [21] propose an ElGamal-like encryp-

tion scheme using class groups. The main idea is to use a composite

order group of unknown order with an underlying subgroup of

known order where the discrete logarithm is easy. Since then, a

number of works showed the feasibility of several cryptographic

tasks [13, 19, 53, 54] including two-party ECDSA [19] and multi-

party computation [13].

In this paper, we follow a presentation similar to [13]. We con-

sider a finite abelian group𝐺 of unknown order𝑞·𝑠 with an unknown
𝑠 , and known 𝑞 such that 𝑞 and 𝑠 are co-prime; 𝐺 is factored as

𝐺 ≃ 𝐺𝑞 × 𝐹 , where 𝐹 = ⟨𝑓 ⟩ is the unique subgroup of order 𝑞. An

upper bound 𝑠 is known for 𝑠 . We also consider a cyclic subgroup

𝐺 = ⟨𝑔⟩ of 𝐺 , such that 𝐺 has order 𝑞 · 𝑠 . Unlike 𝐺 , the elements of

𝐺 are not efficiently recognizable.𝐺𝑞 = ⟨𝑔𝑞⟩ denotes the cyclic sub-
group of 𝐺 of the 𝑞-th power. So, 𝐺 can be factored as 𝐺 ≃ 𝐺𝑞 × 𝐹
and 𝑔 = 𝑔𝑞 · 𝑓 . We also consider two distributionsD andD𝑞 over Z
{𝑔𝑥 | 𝑥 ← D} and {𝑔𝑥𝑞 | 𝑥 ← D𝑞}, such that they induce distribu-

tions over𝐺 and𝐺𝑞
respectively, that are statistically close (within

distance 2
−𝜆st

) to uniform distributions over respective domains.

The framework specifies algorithms (CG.ParamGen,CG.Solve)
with the following description:

• (𝑞, 𝜆, 𝜆st, 𝑠, 𝑓 , 𝑔𝑞,𝐺, 𝐹,D,D𝑞 ; 𝜌) ← CG.ParamGen(1𝜆, 1𝜆st ,
𝑞). This algorithm, on input the computational security

parameter 𝜆, the statistical security parameter 𝜆st and a

modulus 𝑞, outputs the group parameters and the random-

ness 𝜌 used to generate them. For convenience, we include

the descriptions of the distributions D and D𝑞 as well.

• 𝑥 ← CG.Solve(𝑓 𝑥 , (𝑞, 𝜆, 𝜆st, 𝑠, 𝑓 , 𝑔𝑞,𝐺, 𝐹,D,D𝑞)). This al-
gorithm deterministically solves the discrete log in group

𝐹 .
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Hardness assumptions on class groups. We need the unknown
order and the hard subgroup membership assumptions as described

below.

Definition 2.1 (Unknown order assumption[13]). For the security
parameters 𝜆, 𝜆st ∈ N, modulus𝑞 ∈ Z consider a set of public param-

eters 𝑝𝑝CG := (𝑞, 𝜆, 𝜆st, 𝑠, 𝑓 , 𝑔𝑞,𝐺, 𝐹,D,D𝑞 ; 𝜌) ← CG.ParamGen
(1𝜆, 1𝜆st , 𝑞) generated using a uniform random 𝜌 . We say that the

unknown order assumption holds over the classgroup framework,

if for any PPT adversary A, the following probability is negligible

in 𝜆.

Pr

[
ℎ𝑒 = 1 ∧ ℎ ∈ (𝐺 \ 𝐹 ) ∧ 𝑒 ∈ N | (ℎ, 𝑒) ← A(𝑝𝑝CG)CG.Solve( ·)

]
Definition 2.2 (Hard subgroup membership assumption [13]). For

the security parameters 𝜆, 𝜆st ∈ N and modulus 𝑞 ∈ Z consider a set
of public parameters ppCG := (𝑞, 𝜆, 𝜆st, 𝑠, 𝑓 , 𝑔𝑞,𝐺, 𝐹,D,D𝑞 ; 𝜌) ←
CG.ParamGen(1𝜆, 1𝜆st , 𝑞) generated using a uniform random 𝜌 .

Sample 𝑥 ← D and 𝑥𝑞 ← D𝑞 . Sample a bit 𝑏
$←− {0, 1} uniformly

at random. If 𝑏 = 0, define ℎ∗ ← 𝑔𝑥 , otherwise if 𝑏 = 1 define ℎ∗ ←
𝑔𝑥𝑞 . Then we say that the hard subgroup membership assumption

holds over the classgroup framework, if for any PPT adversary A,

the following probability is negligible in 𝜆.����Pr

[
𝑏 = 𝑏∗ | 𝑏∗ ← A(𝑝𝑝CG, ℎ∗)CG.Solve( ·)

]
− 1

2

����
3 BUILDING BLOCKS
Our NI-VSS scheme is based on three building blocks: (i) a Schnorr’s

NIZK proof for knowledge of exponent (over class-group); (ii) an

ElGamal-like multi-receiver encryption scheme; (iii) and a Schnorr-

like compact proof of correct secret-sharing. In this section, we

present them in order.

3.1 Schnorr’s NIZK for Knowledge of Exponent
over class-groups.[20]

Our construction uses non-interactive zero-knowledge (NIZK) proof

for knowledge of exponents over class groups. In particular, con-

sider the class-group parameters 𝑝𝑝CG = (𝑞, 𝜆, 𝜆st, 𝑠, 𝑓 , 𝑔𝑞,𝐺, 𝐹,D,D𝑞 ; 𝜌)

an instance inst = (𝑔𝑞, ℎ) and witness wit = 𝑘
$←− D𝑞 such that

ℎ ← 𝑔𝑘𝑞 ∈ 𝐺𝑞
. Also consider a hash function 𝐻 : {0, 1}∗ → B

for a bound B = 2
𝑂 (𝜆)

. The set of public parameters for the proof

system is defined as 𝑝𝑝Kex ← (𝐻,B) ∪ {𝑝𝑝CG}. Then the proof

system consists of the following two algorithms:

• Kex.Prove(𝑝𝑝Kex, inst,wit) → 𝜋 . This randomized algo-

rithm takes an instance-witness pair (inst,wit) = ((𝑔, ℎ), 𝑘)
as input. Then it executes the following steps:

– Samples a value 𝑟
$←− [B · |D𝑞 | · 2𝜆st ]

– 𝛼 ← 𝑔𝑟 ;

– 𝑐 ← 𝐻 (𝑔, ℎ, 𝛼) ∈ B;
– 𝑠 ← 𝑟 + 𝑘 · 𝑐 ∈ Z;
– Output the NIZK proof 𝜋 = (𝑐, 𝑠)

• Kex.Ver(𝑝𝑝Kex, inst, 𝜋) → 1/0. This deterministic algo-

rithm takes an instance inst = (𝑔, ℎ) and a candidate proof

𝜋 = (𝑐, 𝑠) as input. Then:
– Compute 𝛼 ← 𝑔𝑠 · (ℎ𝑐 )−1

;

– Output (𝑐 ?

= 𝐻 (𝑔, ℎ, 𝛼)) ∈ {0, 1}.
Security. The completeness and soundness follow immediately

from Schnorr [49]. For zero-knowledge, a crucial difference is the

computation of 𝑠 . Note that we compute it over integer because

the group order is unknown – this is in contrast with the typical

Schnorr setting where the group order is known. We need to ensure

that the value 𝑠 can be simulated without the knowledge of 𝑘 . For

that, we rely on a statistical argument. In particular, we choose a

“mask” 𝑟 randomly from a range larger than the range of 𝑘𝑐 by a

factor of 2
𝜆st

. So, to simulate, it is possible to sample 𝑠 from a range

such that the simulated value is within statistical distance 2
−𝜆st

to

the actual value. The rest can be argued, following the footsteps of

Schnorr’s proof.

3.2 Multi-receiver Encryption from Class-group
We present a multi-receiver linearly homomorphic encryption

from class-groups in this section. Our construction adapts the

ElGamal-like encryption scheme from [21] in a multi-receiver set-

ting. The encryption mechanism based on our class-group frame-

work is IND-CPA and employs the class groups 𝐺 with a sub-

group 𝐹 where the discrete log is easy. Let 𝑝𝑝CG be the public

parameters which are the same as the class-group parameters

𝑝𝑝CG := (𝑞, 𝜆, 𝜆st, 𝑠, 𝑓 , 𝑔𝑞,𝐺, 𝐹,D,D𝑞 ; 𝜌). The multi-receiver en-

cryption scheme is comprised of three algorithms CGE.KeyGen,
CGE.mrEnc and CGE.Dec for generating the keys, (multi-receiver)

encryption and decryption, respectively:

• CGE.KeyGen(𝑝𝑝CG) → (𝑠𝑘, ℎ):
– 𝑠𝑘

$←− D𝑞

– ℎ ← 𝑔𝑠𝑘

• CGE.mrEnc(𝑝𝑝CG, {ℎ𝑖 ,𝑚𝑖 }𝑖∈[𝑘 ] ) → (𝑅, {𝐸𝑖 }𝑖∈[𝑘 ] )

– 𝑟
$←− D𝑞

– 𝑅 ← 𝑔𝑟

– For all 𝑖 ∈ [𝑘]: 𝐸𝑖 ← 𝑓𝑚𝑖ℎ𝑟
𝑖

• CGE.Dec(𝑝𝑝CG, 𝑠𝑘, 𝑅, 𝐸) →𝑚

– 𝑀 ← 𝐸
𝑅𝑠𝑘

– 𝑚 ← CG.Solve(𝑝𝑝CG, 𝑀)
In the above, the encryption scheme takes a number of public

keys andmessages as input and produces amulti-receiver ciphertext

containing a common randomness value 𝑅, and a specific message-

dependent part 𝐸𝑖 . Each ciphertext can be individually parsed as

(𝑅, 𝐸𝑖 ).

Definition 3.1 (Security of class-group based multi-receiver En-
cryption). Let (CGE.KeyGen,CGE.mrEnc,CGE.Dec) be a multi-

receiver encryption scheme based on class groups. Then, we say

that the scheme is secure if for a correctly generated class-group

parameters 𝑝𝑝CG, any 𝑛, 𝑡 ∈ N (𝑛 > 𝑡 ) for any PPT adversary A
the probability that the following experiment outputs 1 is bounded

by at most negl(𝜆) away from 1/2:
• Run CG.ParamGen(𝑝𝑝CG) 𝑛 times to get (𝑠𝑘1, ℎ1), . . .,
(𝑠𝑘𝑛, ℎ𝑛).

• Give {ℎ𝑖 }𝑖∈[𝑛] to A.

• Receive 𝐶 ⊂ [𝑛] of size 𝑡 . Give {𝑠𝑘𝑖 }𝑖∈𝐶 to A.

• Receive challenge vectors ( ®𝑚0, ®𝑚1) of length 𝑛 from A
such that for all 𝑖 ∈ 𝐶 :𝑚0,𝑖 =𝑚1,𝑖
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• Choose a uniform random 𝑏 and encrypt (𝑅, {𝐸𝑖 }𝑖∈[𝑛] ) ←
CGE.mrEnc(𝑝𝑝CG, {ℎ𝑖 ,𝑚𝑖 }𝑖∈[𝑛] ).

• Receive 𝑏′ from A, output (𝑏 ?

= 𝑏′).

3.3 Proof of Correct Secret-Sharing.
Looking ahead, in our NI-VSS protocol we shall require the dealer to

produce a non-interactive zero-knowledge proof of correct sharing,

where shares are encrypted with the above multi-receiver encryp-

tion. We essentially use the Groth’s [36] variant of Schnorr proof,

adapted to our class-group setting. The overall idea, as we recall

from [36], is to use Schnorr’s proof for knowledge of exponent in

a compact fashion. Note that, the multi-ciphertext consists of a

group element 𝑅 = 𝑔𝑟 and another 𝑛 group elements (in our case

𝑘 = 𝑛) of the form 𝐸𝑖 = 𝑓 𝑠𝑖ℎ𝑟
𝑖
. The dealer is required to prove that

encrypted messages form a 𝑡 out of 𝑛 Shamir’s secret sharing in

addition to the knowledge of plaintext and randomness. The main

idea is to combine these different knowledge of exponents in a

way such that the exponents are consistent with the evaluation of

𝑡-degree secret polynomial used for secret-sharing – to enable this

dlog commitments of the secret polynomial are used. Let us now

describe the scheme in detail.

Consider any cyclic group 𝐺 of prime order 𝑞 and a randomly

chosen generator 𝑔
$←− 𝐺 . Note that the group 𝐺 is isomorphic to

group 𝐹 . Also, consider hash functions (modeled as random oracles)

𝐻,𝐻 ′ both mapping {0, 1}∗ → Z𝑞 . The public parameter of the

proof system is defined as 𝑝𝑝PoC := {𝑔,𝐺, 𝐻, 𝐻 ′} ∪ 𝑝𝑝CG. We use

the generator 𝑔 for commitments, on group 𝐺 , which is typically

an elliptic curve.

Now consider a secret 𝑠 ∈ Z𝑞 , and let (𝑠1, . . . , 𝑠𝑛) be a 𝑡 out of 𝑛
Shamir’s secret-sharing of 𝑠 , done using a 𝑡-degree secret polyno-

mial 𝑃 (𝑥) over Z𝑞 such that 𝑃 (𝑖) = 𝑠𝑖 for all 𝑖 ∈ [𝑛]. Also, denote
the coefficients of 𝑃 by 𝑎0, 𝑎1, . . . , 𝑎𝑡 each in Z𝑞 and correspond-

ing dlog commitments as 𝐴0, 𝐴1, . . . , 𝐴𝑡 . The shares 𝑠1, . . . , 𝑠𝑛 are

then encrypted by the dealer using the multi-receiver encryption

scheme described above as CGE.mrEnc(𝑝𝑝CG, {ℎ𝑖 , 𝑠𝑖 }𝑖∈[𝑛] ; 𝑟 ) us-
ing randomness 𝑟 (we determinize the encryption algorithm here)

to produce a ciphertext tuple (𝑅, {𝐸𝑖 }𝑖∈[𝑛] ). The proof-system de-

scribed in this section proves a relation ℜCS that consists of an

instance inst and a witness wit where:

• inst =
(
{ℎ𝑖 }𝑖∈[𝑛] , (𝑅, {𝐸𝑖 }𝑖∈[𝑛] ), (𝐴0, . . . , 𝐴𝑡 )

)
;

• wit = ((𝑠1, . . . , 𝑠𝑛), 𝑟 )
for the statement:

• there exists a 𝑡-degree polynomial 𝑃 (𝑥) = 𝑎0+𝑎1𝑥+. . . 𝑎𝑡𝑥𝑡
over Z𝑞 such that for all 𝑖 ∈ [𝑛]: 𝑠𝑖 = 𝑃 (𝑖); and for all

𝑗 ∈ {0, . . . , 𝑡}: 𝐴 𝑗 = 𝑔𝑎 𝑗
;

• encrypting 𝑠1, . . . , 𝑠𝑛 with randomness 𝑟 using public keys

ℎ1, . . . , ℎ𝑛 yields a multi-receiver ciphertext of the form

(𝑅, {𝐸𝑖 }𝑖∈[𝑛] )
For an instance inst which has the same format as a correct in-

stance (as described above), but does not satisfy the statement (and

therefore has no witness), we denote inst ∉ ℜCS. The algorithms

SharingProof and SharingVerify are described in Figure 1.

We require the above algorithms to satisfy the following secrity

requirements.

• SharingProof (𝑝𝑝PoC, inst,wit) → 𝜋CS :

– Parse wit as {(𝑠1, . . . , 𝑠𝑛), 𝑟 }.
– Sample 𝛼,

$←− Z𝑞, 𝜌 ← [𝑞 · |D𝑞 | · 2𝜆st ].
– 𝑊 ← 𝑔

𝜌
𝑞 and 𝑋 ← 𝑔𝛼

– Compute:

∗ 𝛾 ← 𝐻 (inst).
∗ 𝑌 ← 𝑓 𝛼 ·

(
ℎ
𝛾

1
· ℎ𝛾

2

2
. . . · ℎ𝛾

𝑛

𝑛

)𝜌
∈ 𝐺 .

∗ 𝛾 ′ ← 𝐻 ′ (𝛾,𝑊 ,𝑋,𝑌 ).
∗ 𝑧𝑟 ← 𝑟𝛾 ′ + 𝜌 ∈ Z.
∗ 𝑧𝑠 ← 𝛾 ′

∑𝑛
𝑖=1

𝑠𝑖𝛾
𝑖 + 𝛼 ∈ Z𝑞 .

– Finally return 𝜋CS ← (𝑊,𝑋,𝑌, 𝑧𝑟 , 𝑧𝑠 )
• SharingVerify(𝑝𝑝PoC, inst, 𝜋CS) → 1/0 :

– Parse 𝜋CS as (𝑊,𝑋,𝑌, 𝑧𝑟 , 𝑧𝑠 ).
– Compute:

∗ 𝛾 ← 𝐻 (inst).
∗ 𝛾 ′ ← 𝐻 ′ (𝛾,𝑊 ,𝑋,𝑌 ).

– Verify the following equality:

∗ 𝑊 · 𝑅𝛾 ′ ?

= 𝑔
𝑧𝑟
𝑞 ∈ 𝐺𝑞

;

∗ 𝑋 · (∏𝑡
𝑗=0

𝐴

∑𝑛
𝑖=1

𝑖 𝑗𝛾𝑖

𝑗
)𝛾 ′ ?

= 𝑔𝑧𝑠 ∈ 𝐺 ;

∗ (∏𝑛
𝑖=1

𝐸
𝛾𝑖

𝑖
)𝛾 ′ · 𝑌 ?

= 𝑓 𝑧𝑠 ·∏𝑛
𝑖=1
(ℎ𝛾

𝑖

𝑖
)𝑧𝑟 ∈ 𝐺 .

– Return 1 if all of the above holds, and 0 otherwise.

Proof of Correct Sharing

Figure 1: Proof System of Correct Sharing.

Definition 3.2 (Security of Proof of Correct Sharing). Consider the
security parameters 𝜆, 𝜆st ∈ N and a modulus 𝑞 ∈ Z. Consider a
correctly generated 𝑝𝑝PoC as above. Then the pair of algorithms

(SharingProof, SharingVerify) is called a secure NIZK proof system

for correct sharing if they satisfy:

• Completeness. For each legitimate instance-witness pair

(inst,wit) ∈ ℜCS the following probability is 1.

Pr

[
1← SharingVerify(𝑝𝑝PoC, inst, 𝜋CS)

| 𝜋CS ← SharingProof (𝑝𝑝PoC, inst,wit)
]

• Statistical Soundness. For any unbounded adversary A,

the following probability is upper bounded by negl(𝜆st):

Pr[1← SharingVerify(𝑝𝑝PoC, inst, 𝜋CS) ∧ inst ∉ ℜCS

| (inst, 𝜋CS) ← A𝐻,𝐻 ′ (𝑝𝑝PoC)]
• Zero-knowledge. For any PPT adversary, there exists a

PPT simulator SCS such that the following probability is

upper-bounded by negl(𝜆).���� Pr[A𝐻,𝐻 ′,SharingProof (𝑝𝑝PoC,· ) (𝑝𝑝PoC)]

− Pr[A𝐻,𝐻 ′,S′ (𝑝𝑝PoC)]
����

whereS′ on input (inst,wit), returnsSCS (inst) if (inst,wit) ∈
ℜCS, or returns ⊥ if (inst,wit) ∉ ℜCS.

Next we show how the construction (cf. Fig. 1) satisfies the above

definition by formally proving the following theorem.
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Theorem 3.3. For any security parameters 𝜆, 𝜆st ∈ N and any

modulus 𝑞 ∈ N, our construction, described in Fig. 1, satisfies the

security definition given in Def. 3.2 assuming DLog is tractable in

𝐹 , DDH is hard in 𝐺 , the strong root and 𝜔-low order assumptions

[53] hold in 𝐺 in the random oracle model.

We provide the proof sketch for completeness, soundness and

zero-knowledge in Appendix C.

4 NI-VSS USING CLASS GROUPS
We realize cgVSS, a non-interactive verifiable secret sharing mech-

anism from class groups and employ it to achieve a non-interactive

distributed key generation protocol cgDKG. Our cgVSS scheme

uses the encryption scheme and proofs of correct sharing from the

previous sections.

System Model. For our non-interactive construction, we assume

that all parties have access to a broadcast channel. The adversary
controls the communication channel and can delay the messages;

however, it has to deliver those before the synchrony communi-

cation bound Δ. The adversary is also rushing and can delay the

messages of the parties and inject its own messages after observing

honest nodes’ messages during the current round.

The system consists of 𝑛 + 1 parties, 𝑛 receivers 𝑃1, . . . , 𝑃𝑛 and

a dealer 𝑃𝐷 . We consider a 𝑡-bounded static adversary who can

maliciously corrupt at most 𝑡 parties, which may or may not include

the dealer. We consider static corruption, in that the set of corrupt

parties is decided in the beginning of an execution and stays the

same throughout.While the protocol is non-interactive, we consider

a one-time public-key setup phase, which can be reused across

different VSS execution. Each VSS execution consists of the dealer

broadcasting one message to all receivers.

Ideal Functionality Fvss. We describe the ideal VSS functionality

in Figure 2. To our knowledge this is the first attempt of defining

VSS through an ideal functionality. This is helpful in our context,

as we can capture the weaker security provided by our non-hiding

commitment scheme through the leakage query. Comparing with

the VSS definitions in the literature, such as [23], we observe that

our ideal functionality captures the fundamental properties intu-

tively:

• Correctness. Correctness is captured as if there is no cor-

ruption, each party receives a correct share of the value 𝑠 ,

shared by the dealer, which would verify correctly through

the verification query.

• Privacy (with leakage). If the dealer is honest, and atmost

𝑡 receivers are corrupt, then the value 𝑠 is hidden except

the leakage (looking ahead, that basically comes from the

dlog commitments) – this can be simulated through the

leakage query. A correct simulation in this case means, the

simulator is able to simulate dealer’s message just from the

leakage, and nothing else.

• Strong commitment. In this case the dealer is corrupt,

and the simulator must detect a malformed message, which

is not a correct sharing of a value 𝑠 , from dealer. A good

simulator should be able to capture this and then invoke

the Error query to send ⊥ to parties. If a corrupt dealer

is able to cheat so that the simulator can not detect a mal-

formed message, then the environment would be able to

distinguish the output of honest parties from the real world.

The ideal functionality interacts with 𝑛 parties 𝑃1, . . . , 𝑃𝑛 , and a

dealer 𝑃𝐷 . It also interacts with an ideal adversary or simulator

S. Furthermore, it is parameterized with a leakage function 𝐿, a

threshold 𝑡 < 𝑛 and a modulus 𝑞. It uses a list 𝑇 indexed by the sid
such that each entry𝑇 [sid] contains an 𝑛 + 1 tuple (e.g. (𝑠0, . . . , 𝑠𝑛))
if sid is marked Active and ⊥ otherwise; 𝑠𝑖 can be accessed as

𝑇 [sid] [𝑖].
• On receiving a query (sid, Share, 𝑠) from dealer 𝑃𝐷 :

– If 𝑃𝐷 is corrupt, then skip. Else go to the next step.

– Send (sid, Live) to S.
– When receives (sid, Distribute) from S:

∗ Check if sid is unmarked; if that is not true then do

nothing and stop. Otherwise mark sid Active and go

to the next step.

∗ Choose a uniform random 𝑡 degree polynomial 𝑃 (𝑥) ∈
Z𝑞 [𝑥]𝑡 subject to 𝑃 (0) = 𝑠0.

∗ Append (𝑠0, 𝑠1, . . . , 𝑠𝑛) into the list 𝑇 [sid].
∗ Then for all 𝑖 ∈ [𝑛] send (sid, 𝑠𝑖 ) to each 𝑃𝑖 .

• On receiving a query (sid, Share, 𝑠) from simulator S:
– If 𝑃𝐷 is honest, then skip. Else go to the next step.

– Check if sid is unmarked; if that is not true then do nothing

and stop. Otherwise mark sid Active and go to the next

step.

– Choose a uniform random 𝑡 degree polynomial 𝑃 (𝑥) ∈
Z𝑞 [𝑥]𝑡 subject to 𝑃 (0) = 𝑠0.

– Append (𝑠0, 𝑠1, . . . , 𝑠𝑛) into the list 𝑇 [sid].
– Then for all 𝑖 ∈ [𝑛] send (sid, 𝑠𝑖 ) to each 𝑃𝑖 .

• On receiving (sid, Error) from S:
– If 𝑃𝐷 is honest, then skip. Otherwise go to the next step.

– If sid is marked, then do nothing, else mark it Error and

send ⊥ to all 𝑃𝑖 .

• On receiving a query (sid, Verify, sid, 𝑃 𝑗 ) from 𝑃𝑖 or S:
– If sid is marked Active, then return Success, otherwise

return Failure.
• On receiving a query (sid, Leakage) from S, return 𝐿(𝑠).

Fvss

Figure 2: Ideal Functionality for VSS

Real World. In the real world 𝑛 receivers 𝑃1, . . . , 𝑃𝑛 and a dealer

𝑃𝐷 interacts in a specific way. Let 𝑝𝑝 ∈ PP be a set of public

parameters chosen from a specific set PP, such that 𝑝𝑝 includes a

security parameter 𝜆 ∈ N integers 𝑛, 𝑡 ∈ N (𝑛 > 𝑡 ) and a modulus

𝑞 ∈ Z. Then consider the following algorithms:

• KeySetup(𝑝𝑝) → (𝑠𝑘, 𝑝𝑘, 𝜋). The setup algorithm pro-

duces a key-pair and a proof that the pair is legitimate.

For a party 𝑃𝑖 , the corresponding values are denoted by

(𝑠𝑘𝑖 , 𝑝𝑘𝑖 , 𝜋𝑖 ).
• KeyVer(𝑝𝑝, (𝑝𝑘, 𝜋)) → 1/0. This algorithm verifies the

legitimacy of a public-key 𝑝𝑘 (that is whether the public-

key owner indeed knows the secret key) with respect to

the associated proof 𝜋 .
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• Share(𝑝𝑝, 𝑠) → ({𝑠𝑖 }𝑖∈[𝑛] , cmt). The sharing algorithm

produces 𝑡 out of 𝑛 Shamir’s secret shares of a value 𝑠 such

that (𝑠1 . . . , 𝑠𝑛) = SSS𝑛,𝑡,𝑞 (𝑠) and the associated commit-

ment cmt.
• ShareEnc(𝑝𝑝, cmt, {𝑠𝑖 , 𝑝𝑘𝑖 }𝑖∈[𝑛] ) → (𝑅, {𝐸𝑖 }𝑖∈[𝑛] , 𝜋CS) .

On input 𝑛 many shares 𝑠1, 𝑠2, . . ., the associated commit-

ment cmt, and corresponding public keys , this algorithm

outputs a multi-ciphertext (𝑅, 𝐸1, 𝐸2, . . . , 𝐸𝑛) with a com-

mon first element 𝑅 plus a proof of correct sharing 𝜋CS.

• Verify(𝑝𝑝, cmt, 𝑅, {𝐸𝑖 , 𝑝𝑘𝑖 }𝑖∈[𝑛] , 𝜋CS) → 1/0. This algo-

rithm verifies the entire ciphertext tuple with respect to

the proof 𝜋CS and the commitment to output a decision

bit.

• ShareDec(𝑝𝑝, 𝑠𝑘𝑖 , 𝑅, 𝐸𝑖 ) → 𝑠𝑖 . The decryption algorithm

uses a specific secret-key 𝑠𝑘𝑖 to decrypt ciphertext (𝑅, 𝐸𝑖 ).
Note that, only the partywho posses 𝑠𝑘𝑖 can decrypt (𝑅, 𝐸𝑖 ).

Now consider the protocol Πni-vss described in Figure 3. Finally we

provide the UC definition of a leaky NI-VSS prtocol.

Definition 4.1 (Leaky Non-interactive Verifiable Secret Sharing
(NI-VSS)). Let 𝑝𝑝 ∈ PP be a set of public parameters chosen from

a specific set PP, such that 𝑝𝑝 includes a security parameter 𝜆 ∈
N integers 𝑛, 𝑡 ∈ N (𝑛 > 𝑡 ) and a modulus 𝑞 ∈ Z. Then, we say

that a protocol instantiation of Πni-vss is called an 𝐿-leaky NI-VSS

if it realizes the ideal functionality Fvss with leakage function 𝐿

that is, for every PPT adversary A in the real world, there is a PPT

simulator S in the ideal world such that:

RealA,Πni-vss ≈𝑐 IdealS,Fvss

Input and Output The dealer has an input 𝑠 ∈ Z𝑞 . No receiver

has any input. After execution, each receiver 𝑃𝑖 has an output

𝑦𝑖 , the dealer has no output.

• Key Generation. Each receiver 𝑃𝑖 runs KeySetup(𝑝𝑝) to gener-

ate (𝑠𝑘𝑖 , 𝑝𝑘𝑖 , 𝜋𝑖 ) and broadcasts (𝑝𝑘𝑖 , 𝜋𝑖 ).
• Dealing. The dealer 𝑃𝐷 receives {(𝑝𝑘𝑖 , 𝜋𝑖 )}𝑖∈[𝑛] . It then runs

for all 𝑖 ∈ [𝑛]: KeyVer(𝑝𝑝, 𝑝𝑘𝑖 , 𝜋𝑖 ). If KeyVer returns 0 for any 𝑖 ,

exit. Otherwise, it executes the following steps.

– ({𝑠𝑖 }𝑖∈[𝑛] , {𝑎 𝑗 } 𝑗∈[𝑡 ] , cmt) ← Share(𝑝𝑝, 𝑠)
– Compute (𝑅, {𝐸𝑖 }𝑖∈[𝑛] , 𝜋CS) ← ShareEnc(𝑝𝑝, {𝑠𝑖 , 𝑝𝑘𝑖
}𝑖∈[𝑛] )

– Broadcast (𝑅, {𝐸𝑖 }𝑖∈[𝑛] , cmt, 𝜋CS) to all receivers {𝑃𝑖 }𝑖∈[𝑛] .
• Receiving. Each receiver 𝑃𝑖 for 𝑖 ∈ [𝑛] performs the following

steps:

– For all 𝑗 such that ( 𝑗 ∈ [𝑛]) ∧ ( 𝑗 ≠ 𝑖), run KeyVer(𝑝𝑝,
𝑝𝑘𝑖 , 𝜋𝑖 ). If KeyVer returns 0 for any 𝑗 , then exit; otherwise

go to the next step.

– 𝑒 ← Verify(𝑝𝑝, cmt, 𝑅, {𝐸𝑖 }𝑖∈[𝑛] , 𝜋CS)
– If 𝑒 = 1 then 𝑠𝑖 ← ShareDec(𝑝𝑝, 𝑠𝑘𝑖 , 𝑅, 𝐸𝑖 ) and outputs

𝑦𝑖 ← 𝑠𝑖 as its share corresponding to the dealing. Otherwise,

if 𝑒 = 0 reject dealing, and set 𝑦𝑖 ← ⊥.

A generic NI-VSS protocol

Figure 3: The general structure of an NI-VSS protocol.

4.1 Our NI-VSS Protocol: cgVSS
In this section we provide a concrete instantiation of our NI-VSS

protocol based on the multi-receiver encryption scheme (cf. Sec-

tion 3.2), a corresponding proof of correct sharing (cf. Section 3.3)

and a Schnorr’s proof for knowledge of exponent (cf. Section 3.1.

The instantiation is provided in Figure 4.

We state the following theorem:

Theorem 4.2. Let Π
cgVSS
ni-vss be a NI-VSS protocol instantiated with

the cgVSS algorithms. Then the protocol Π
cgVSS
ni-vss realizes the ideal

functionality Fvss as long as as the underlying multi-receiver encryp-
tion scheme (cf. Section 3.2) is secure and the NIZK proof of correctness
is a secure proof system (cf. Section 3.3).

5 NI-DKG USING CLASS GROUPS
In an NI-DKG protocol, a number of parties engage in a one-round

(non-interactive) protocol to jointly own a secret-key and corre-

sponding public-key. In particular, in an 𝑡 out of 𝑛 threshold system

at the end of the protocol, each party privately owns 𝑘𝑖 such that

(𝑘1, . . . , 𝑘𝑛) forms a 𝑡 out of 𝑛 Shamir’s secret-sharing of the secret-

key 𝑘 . The individual public keys 𝑔𝑘𝑖 and the whole public-key 𝑔𝑘

should be known to everyone, where 𝑔 is a generator of a cyclic

group 𝐺 of prime order 𝑞. An NI-DKG protocol can be thought of

as a symmetric extension of NI-VSS, with the crucial difference that

no one knows the secret in NI-DKG. Indeed, following prior works

(e.g. [32, 36, 46]), we construct NI-DKG by deploying our NI-VSS

scheme in Figure 5. Our description directly uses the algorithms

from the NI-VSS scheme, which is then instantiated with cgVSS in

our implementation. The basic idea is each party 𝑃𝑖 now runs an

NI-VSS instance using her own secret 𝑧𝑖 ; after the completion of

protocol, 𝑘𝑖 is computed by linearly combining own share of 𝑧𝑖 with

shares of 𝑧 𝑗 received from other 𝑃 𝑗 .

5.1 Complexity analysis
We analyze the message and computational complexity of our

cgVSS and present the performance evaluation using a reference

implementation. Since the non-interactive VSS presented by Groth

et al. [36] is the closest to our scheme, we compare our scheme

against it. We provide a version of their VSS without forward se-

crecy for proper comparison (see Appendix A), we call it GrothVSS.
Class Group NI-VSS. In the cgVSS, the dealer encrypts the re-

ceiver shares 𝑠𝑖 as (𝑔𝑟 , 𝑓 𝑠𝑖ℎ𝑟𝑖 ). The encryption is a multi-receiver

encryption where the randomness 𝑟 is reused across the encryp-

tions, with the total number of elements in the ciphertext being

𝑛 + 1 elements. With 𝛽 bits for each element, the total ciphertext

size is (𝑛+1) ·𝛽 bits. For the 𝑛+1 encryptions, the dealer takes𝑂 (𝑛)
time. The dealer also generates a NIZK proof of correct sharing and

forwards it to all the receivers. The proof consists of two elements

from the class group, one elliptic curve element and two scalars.

Let the length of the NIZK proof be 𝑘 .

Each receiver decrypts their share and also verifies the correct-

ness of sharing by the dealer. The receiver 𝑖 first ElGamal decrypts

the exponentiated share 𝑓 𝑠𝑖 and solves the discrete-log problem to

obtain 𝑠𝑖 . They also verify the NIZK proof forwarded by the dealer.

The decryption and the verification of the proof by the receiver

take 𝑂 (1) time.
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• Ingredients. The NI-VSS algorithms described below uses the

following ingredients.

– A Schnorr proof of knowledge-of-exponent with algorithms

(cf. Section 3.1) (Kex.Prove,Kex.Ver) and public parameters

𝑝𝑝Kex.

– A multi-receiver encryption scheme (cf. Section 3.2) with

algorithms (CGE.KeyGen,CGE.mrEnc,CGE.Dec) and pub-
lic parameters 𝑝𝑝CG.

– An associated proof system of correct sharing (cf. Sec-

tion 3.3) with algorithms (SharingProof, SharingVerify) and
public parameters 𝑝𝑝PoC.

• Public parameters. The public parameter 𝑝𝑝 is defined as 𝑝𝑝 ←
{𝑝𝑝CG, 𝑝𝑝PoC, 𝑝𝑝Kex}.

Construction
• KeySetup(𝑝𝑝) → (𝑠𝑘, 𝑝𝑘, 𝜋):

– (𝑠𝑘, ℎ) ← CGE.KeyGen(𝑝𝑝CG).
– 𝜋 ← Kex.Prove(𝑝𝑝Kex, ℎ, 𝑠𝑘).
– Set 𝑝𝑘 ← ℎ.

• KeyVer(𝑝𝑝, (𝑝𝑘, 𝜋)) → 1/0:
– Output Kex.Ver(𝑝𝑝Kex, 𝑝𝑘, 𝜋).

• Share(𝑝𝑝, 𝑠) → ({𝑠𝑖 }𝑖∈[𝑛] , cmt):

– Sample 𝑎 𝑗
$←− Z𝑞, 𝑗 ∈ [𝑡].

– Set 𝑠0 ← 𝑠 .

– Define 𝑃 (𝑥) = 𝑎0 + 𝑎1𝑥 + . . . + 𝑎𝑡𝑥𝑡 .
– For each 𝑖 ∈ [𝑛]: set 𝑠𝑖 ← 𝑃 (𝑖).
– Compute for all 𝑗 ∈ {0, . . . , 𝑡}: 𝐴 𝑗 ← 𝑔𝑎 𝑗

.

– Set cmt← {𝐴0, . . . , 𝐴𝑡 }.
• ShareEnc(𝑝𝑝, cmt, {𝑠𝑖 , 𝑝𝑘𝑖 }𝑖∈[𝑛] ) → (𝑅, {𝐸𝑖 }𝑖∈[𝑛] , 𝜋CS)/⊥.

– For all 𝑖 ∈ [𝑛]: 𝑒𝑖 ← Kex.Ver(𝑝𝑝Kex, ℎ𝑖 , 𝜋𝑖 ) (as ℎ𝑖 = 𝑝𝑘𝑖 ).

– If any 𝑒𝑖 = 0, output ⊥. Otherwise do as follows:

∗ Sample 𝑟
$←− D𝑞

∗ Compute (𝑅, {𝐸𝑖 }𝑖∈[𝑛] ) ← CGE.mrEnc(𝑝𝑝CG, {ℎ𝑖 , 𝑠𝑖
; 𝑟 }𝑖∈[𝑛] ).

∗ Define:

· inst =
(
{ℎ𝑖 }𝑖∈[𝑛] , (𝑅, {𝐸𝑖 }𝑖∈[𝑛] ), cmt

)
.

· wit = ((𝑠1, . . . , 𝑠𝑛), 𝑟 ).
∗ Compute 𝜋CS ← SharingProof (𝑝𝑝PoC, inst,wit).

• Verify(𝑝𝑝, cmt, 𝑅, {𝐸𝑖 , 𝑝𝑘𝑖 }𝑖∈[𝑛] , 𝜋CS) → 1/0:
– Parse inst←

(
{ℎ𝑖 }𝑖∈[𝑛] , (𝑅, {𝐸𝑖 }𝑖∈[𝑛] ), cmt

)
.

– Output SharingVerify(𝑝𝑝PoC, inst, 𝜋CS).
• ShareDec(𝑝𝑝, 𝑠𝑘𝑖 , 𝑅, 𝐸𝑖 ) → 𝑠𝑖 :

– Compute 𝑠𝑖 ← CGE.Dec(𝑝𝑝CG, 𝑠𝑘𝑖 , 𝑅, 𝐸𝑖 ).

cgVSS-Algorithms

Figure 4: Algorithms that constitute cgVSS

For the DKG protocol, cgDKG each party acts as the dealer and

performs cgVSS. For 𝑛 parties, the total ciphertext length broadcast

in the system is𝑂 (𝑛 · (𝑛 + 1)𝛽) ∼ 𝑂 (𝛽𝑛2) bits while the NIZK proof

length is 𝑛𝑘 . After the dealing phase, the receivers compute the

secret key from the first 𝑡 + 1 valid sharings.

Groth’s NI-VSS. In the GrothVSS, the dealer generates the shares
𝑠𝑖 and divides each share 𝑠𝑖 into𝑚 chunks. Thus there are a total of

𝑚 ·𝑛 chunks for each dealer, for 𝑛 parties. The dealer encrypts each

of the chunks using ElGamal encryption. He reuses the randomness

• Key Generation. Every party has access to the public pa-

rameters 𝑝𝑝 . Each 𝑃𝑖 runs (𝑠𝑘𝑖 , 𝑝𝑘𝑖 , 𝜋𝑖 ) ← KeySetup(𝑝𝑝)
and broadcasts (𝑝𝑘𝑖 , 𝜋𝑖 ).

• Dealing. Each party 𝑃𝑖 receives {(𝑝𝑘 𝑗 , 𝜋 𝑗 )} 𝑗∈[𝑛]∧𝑗≠𝑖 . It
then runs for all 𝑗 ∈ [𝑛] ∧ 𝑗 ≠ 𝑖: KeyVer(𝑝𝑝, 𝑝𝑘 𝑗 , 𝜋 𝑗 ). If
KeyVer returns 0 for any 𝑗 , exit. Otherwise it executes the

following steps.

– 𝑧𝑖
$←− Z𝑞 .

– ({𝑠𝑖 𝑗 } 𝑗∈[𝑛] , cmt𝑖 ) ← Share(𝑝𝑝, 𝑧𝑖 ).
– (𝑅𝑖 , {𝐸𝑖 𝑗 } 𝑗∈[𝑛] , 𝜋CS𝑖 ) ← ShareEnc(𝑝𝑝, cmt, {𝑠𝑖 𝑗 , 𝑝𝑘 𝑗
} 𝑗∈[𝑛] )

– Broadcast (𝑅𝑖 , {𝐸𝑖 𝑗 } 𝑗∈[𝑛] , cmt𝑖 , 𝜋CS𝑖 ).
• Receiving. Each party 𝑃𝑖 receives 𝑛 − 1 tuples:

{(𝑅 𝑗 , {𝐸 𝑗 𝑗 ′ } 𝑗 ′∈[𝑛] , cmt𝑗 , 𝜋CS 𝑗 )} 𝑗∈[𝑛]∧𝑗≠𝑖
then execute the following steps.

– For all 𝑗 ∈ [𝑛] ∧ 𝑗 ≠ 𝑖: compute

𝑒 𝑗 ← Verify(𝑝𝑝, cmt𝑗 , 𝑅 𝑗 , {𝐸 𝑗 𝑗 ′ } 𝑗 ′∈[𝑛] , 𝜋CS 𝑗 })
– Let𝑈 consist of 𝑗 if and only if 𝑒 𝑗 = 1.

– |𝑈 | ≤ 𝑡 then exit. Otherwise, go to the next step.

– Initialize 𝑘𝑖 ← 0

– For all 𝑗 ∈ 𝑈 :

∗ 𝑠 𝑗𝑖 ← ShareDec(𝑝𝑝, 𝑠𝑘𝑖 , 𝑅 𝑗 , 𝐸 𝑗𝑖 ).
∗ 𝑘𝑖 ← 𝑘𝑖 + 𝑠 𝑗𝑖

– Define its share to be 𝑘𝑖 and individual public-key as

𝑔𝑘𝑖 .

– To compute the system public-key initialize 𝑦 = 1 ∈ 𝐺
and for each 𝑗 ∈ 𝑈 :

∗ Parse cmt𝑗 as {𝐴0𝑗 , . . . , 𝐴𝑡 𝑗 }.
∗ 𝑦 = 𝑦 · 𝐴0𝑗 .

– Output 𝑦 as system public key.

cgDKG

Figure 5: cgDKG- Non-interactive distributed key generation
using class groups

𝑟 𝑗 across encryptions of the chunks as (𝑔
𝑟 𝑗
1
, ¯ℎ𝑟

𝑖
· 𝑔𝑚𝑖 𝑗

1
)∀𝑖 ∈ [0, 𝑛].

Each of the chunks is individually encrypted, the total time taken

for the encryption is 𝑂 (𝑚𝑛). Thus the cipher text generated by the

dealer consists of𝑚𝑛 +𝑚 group elements. The total length of the

ciphertext is (𝑚(𝑛 + 1) · 𝛼) bits with 𝛼 bits for each element.

For the proof of correctness, each dealer generates proof of cor-

rect sharing and the proof of correct chunking. The proof of chunk-

ing involves showing that each chunk of the share is smaller than a

certain value. For the proof of correct sharing, the sender forwards

three group elements of groups 𝐺1,𝐺2 and 2 group Z𝑞 elements.

For the proof of chunking the dealer uses approximate range proofs

for which the dealer forwards a set of elements, including 2ℓ + 2

group elements and ℓ + 𝑛 + 1 masked values of the chunks for a

parameter ℓ .

Each party decrypts the𝑚 chunks corresponding to their share

to compute their share value. First, the chunks in the exponentiated

form are ElGamal decrypted, and the chunk value is solved for, using

the Baby Step - Gaint step algorithm. This leads to a decryption

time of𝑂 (𝑚) (ElGamal and Baby Step - Gaint Step) per receiver. For
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the DKG protocol, each dealer performs the VSS, and the receivers

compute the secret key from the first 𝑡 + 1 valid sharings. For 𝑛

dealers, the total broadcast message length is 𝑂 (𝑛 ·𝑚(𝑛 + 1) · 𝛼) ∼
𝑂 (𝛼𝑚𝑛2) bits per dealer in the DKG protocol.

6 EXPERIMENTATION AND PERFORMANCE
ANALYSIS

Implementation and Setup. We implement cgVSS in C++ using

the BICYCL library [11] for class groups, Miracl C++ library for

cryptographic operations with∼ 1858 lines of code. For comparison,

we adapt and realize a version of the implementation of GrothVSS
without forward secrecy in Rust in ∼ 4178 lines of code

3
.

We run the experiments with each node realized on a Google

Cloud Platform (GCP) instance with an Intel Xeon 2.8GHz CPU

with 16 cores and 16GB RAM. We use HotStuff state machine repli-

cation [56] to realize the broadcast. Our SMR instance is realized

over four GCP instances separate from the DKG nodes. All the

reported timings are averages over 10 runs of the protocols.

Computation Overhead. Figure 7 shows the time taken by the

dealer and the receiver in the cgVSS protocol. The dealer’s com-

putation time includes the time to generate the multi-receiver ci-

phertext and the NIZK proof of correctness whereas a receiver’s

computation time includes the decryption time and the time for

proof verification. We use multi-exponentiation to compute the

product of multiple exponentiated values in the generation and ver-

ification procedures of the proof of correct sharing. For a 100 party

system, the dealer takes 117 msec for generating the ciphertext and

230 msec to generate the proof, whereas for a 150 party system, it

takes 176 msec for encryption and 312msec for the proof generation.

The decryption takes 38 msec, while the proof verification takes

661 msec for a 100 user system and 1.18 sec for a 150 party system

(the decryption time stays the same irrespective of the number of

parties). Figure 7b shows the total receiver times taken by the party

to verify the sharing and decrypt their shares.

Computation Overhead. Figure 7 shows the time taken by the

dealer and the receiver in the cgVSS protocol. The dealer’s com-

putation time includes the time to generate the multi-receiver ci-

phertext and the NIZK proof of correctness whereas a receiver’s

computation time includes the decryption time and the time for

proof verification. We use multi-exponentiation to compute the

product of multiple exponentiated values in the generation and ver-

ification procedures of the proof of correct sharing. For a 100 party

system, the dealer takes 1.22sec for generating the ciphertext and

734msec to generate the proof, whereas for a 150 party system, it

takes 1.80sec for encryption and 377msec for the proof generation.

The decryption takes 38msec, while the proof verification takes

734msec for a 100 user system and 1.23sec for a 150 party system

(the decryption time stays the same irrespective of the number of

parties). Figure 7b shows the total receiver times taken by the party

to verify the sharing and decrypt their shares.

In GrothVSS, to encrypt a share value, (assume) each share is

divided into 24 chunks and encrypted individually. The ElGamal

encryption constitutes two group elements; however, since the

randomness is re-used across different users, the total number of

3
https://github.com/Entropy-Foundation/class-group
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Figure 6: Comparison of broadcast (dealing) message length
where 𝑛 = 2𝑡 + 1. cgVSS dealing consists of encryptions and
proof of correct sharing, while GrothVSS also consists of
proof of correct chunking.
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(a) Comparison of dealer times. cgVSS dealer time consists of times
for encryption and proof of correct sharing, while GrothVSS also
involves proof of correct chunking.
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(b) Comparison of receiver times. cgVSS receiver time consists of de-
cryption time and verification of correct sharing, whileGrothVSS also
involves verification of correct chunking.

Figure 7: Comparison of dealer and receiver times for
cgVSS and GrothVSS.

elements for randomness is 24, amounting to 24 ∗ 381 = 9144 bits.

For 𝑛 users, the total bit-length of ciphertexts is 9144 · (𝑛 + 1),
including the random values. The dealer also commits to the 𝑡 co-

efficients of the polynomial, which amount to 257 · 𝑡 . The dealer
generates the NIZK proof of correctness of sharing, which consti-

tutes 3 multiplicative group elements and two scalars of 381 bits

each. GrothVSS uses the BLS12-381 curve, and hence the elements

are 381 bits each. The dealer also generates proof of the correctness

of chunking by showing that each ‘chunk’ is in a small range of

values. For this, an approximate range proof is employed where the

dealer forwards a set of elements, including 2ℓ + 2 group elements

for a parameter ℓ and ℓ + 𝑛 + 1 masked values of the chunks. Tak-

ing a conservative estimate of 32 bits for the masked chunk value

summations, we have the total bit-length of the approximate range

proof to be (2ℓ + 2) · 381 + (ℓ + 𝑛 + 1) · 32.

The total bit-length of the broadcast message (see Figure 6) for

GrothVSS for a 150 party is 1.66Mb. This indicates a 5.6x improve-

ment in total broadcast message length while using cgVSS when

9
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compared to GrothVSS for a 150 party system. The comparison

also indicates that the broadcast message length increases slower

in cgVSS when compared to GrothVSS. In GrothVSS, for a 100

party system, the dealer takes 1.36sec for generating ciphertexts,

68msec for generating the proof of correct sharing, and 2.41sec for

generating proof of correct chunking, whereas the corresponding

numbers for a 150 party system are 2.03sec, 101msec and 3.92 sec

respectively. For decrypting their share, each receiver decrypts all

the corresponding chunks, which amounts to 338msec. For verifi-

cation, in a 100 party system, the receiver takes 341msec for proof

of correct sharing and 1.32sec for proof of correct chunking; for a

150 party system, the receiver takes 804msec for proof of correct

sharing and 2.00sec for the proof of correct chunking.

To also give a sense of how the scheme compares to other exist-

ing state-of-the-art PVSS schemes, we briefly mention the timing

reported by Gentry et al. [35] for their LWE-based PVSS scheme.

We present their reported numbers, though their performance has

been evaluated on a more powerful machine (with 32 cores and

250GB RAM) compared to our benchmarks (10 core 16GB RAM

machine). For 128 parties, their system takes 4.2sec for generating

ciphertexts and 22.9sec for generating the proof of correctness of

sharing totaling 27.1sec of dealer time, whereas for 256 parties,

the total dealer time is 28.1sec. The receiver takes 1.4msec to de-

crypt and 15.3sec to verify the dealing totaling 15.301sec. The total

receiver time for 256 parties is 15.901sec.

End-to-end Protocol Analysis. We implement the cgDKG and

GrothDKG protocols and compare them. Figure 8 compares the

time taken by each node in each DKG instance; it is the time taken

from the start of dealing to the computation of the system public key

after verifying 𝑡 + 1 valid dealings. The nodes publish the encrypted

shares and commitments using the HotStuff [56] SMR. The SMR

is realized separately from the DKG nodes, which communicate

with the SMR through RPC calls. For 10 nodes, GrothDKG takes

3.434 seconds, with cgDKG taking 2.656 seconds. For a 50 node

network,GrothDKG takes 43.058 secondswhile cgDKGtakes 17.950

seconds. From Figure 7 and Figure 8, it can be observed that the

SMR takes significant time in the overall end-to-end scenario, and

the optimizations in SMR usage (block rate, dummy blocks etc)

would improve the performance.

Our performance analysis demonstrates that cgDKG protocol

is efficient and continues to perform significantly better than the

GrothDKGwith an increasing number of nodes in the system.More-

over, as we improve class-group implementation in the future, we

expect the performance of our cgDKG to improve further.

7 ASYNCHRONOUS VSS AND DKG
In the asynchronous communication setting, the adversary con-

trols the communication links and may delay, or re-order messages

between any two honest parties as long as it eventually delivers all

the messages by honest parties. In this section, we discuss an easy

extension of our VSS and DKG to the asynchronous communication

setting. We first propose a new asynchronous VSS (AVSS) scheme

using our NI-VSS and any reliable broadcast protocol [12] and then

develop an asynchronous DKG (ADKG) using our AVSS scheme and

asynchronous agreement ideas from the recent ADKG protocols by

Das et al. [25, 27].
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Figure 8: Comparison of time taken to perform a DKG.
GrothDKG is realized using GrothVSS where each party acts
as a dealer and runs an instance of GrothVSS. The times re-
ported are aggregates of time taken from starting of dealing
and computation of public key by each node, across nodes;
10 such DKG runs are aggregated.

7.1 Asynchronous VSS using Class Groups
In the asynchronous communication setting, Cachin et al. [14] pro-

posed the first asynchronous verifiable secret sharing (AVSS) pro-

tocol with computational security relevant to threshold cryptog-

raphy in 2002. Several works have reduced the communication

complexity of AVSS process over the last two decades. [6, 26, 58]

Relevant to threshold signing for state-machine replication (SMR)

protocols, there also have been efforts to define high-threshold

VSS schemes [4, 25, 27], where the secret sharing threshold 𝑡 can

be doubled. Now, we describe an easy way to develop an AVSS

protocol using NI-VSS.

The non-interactive nature of cgVSS makes the process of de-

signing an AVSS significantly easy: A trivial approach of reliably

broadcasting the NI-VSS vector is sufficient. Given the linear size

of the vector, it is ideal to use the communication-balanced reliable

broadcast primitives such as [3, 15, 26]. This will reduce the commu-

nication complexity of AVSS to𝑂 (𝑛2𝜅) bits. In this straightforward

approach, the nodes do not verify the correctness of sharing un-

til they deliver the sharing in the deliver/output step of a reliable

broadcast. However, in practice, it will be better not to leave the

NI-VSS verification until the end. Instead, every node should verify

the correctness of sharing the first time it receives/computes the

entire NI-VSS vector and not proceed with the reliable broadcast

instance if the verification fails. Notice that, in the asynchronous

communication setting, similar to reliable broadcast, termination is

not guaranteed for AVSS.

7.2 Asynchronous DKG using Class Groups
Kate et al. [39] combined AVSS by Cachin et al. [14] with the PBFT

flow [22] towards developing aDKGbeyond the bounded-synchronous

setting. However, their approach makes the partial-synchrony com-

munication assumption.While it is possible to employ a randomized

Byzantine agreement primitive towards working in the asynchro-

nous setting, generating common coins required for the randomized

protocol itself requires DKG-like primitives. This seems to create a

circular requirement.

Recently, in a seminal work, Kokoris-Kogias et al. [42] offer a

novel efficient way towards breaking the circularity condition and

propose a quartic communication complexity DKG protocol in

the asynchronous communication setting. Improved asynchronous
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DKG (ADKG) constructions are already available that reduce com-

munication complexity to be cubic in the number of parties [2, 27]

as well as to allow high-threshold secret sharing [25, 27].

These papers indeed make developing asynchronous DKG based

on our NI-VSS significantly easy. A straightforward approach is

to replace the employed AVSS (or its high-threshold version) with

above mentioned AVSS based on class groups and then employ the

agreement on a common subset procedure as it is from [25, 27]. This

offers a cubic communication complexity ADKG. Nevertheless, in

the future, it will be interesting to improve this agreement process

and ADKG as well.
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A GROTHS NI-VSS WITHOUT FORWARD
SECRECY

[36] Groth et al. [36] present non-interactive VSS and DKG proto-

cols that involve ElGamal encryption of share values. The authors

propose a VSS protocol that offers forward secrecy using binary

tree encryption. However, here we present a version of their VSS

protocol without forward secrecy; we call itGrothVSS in this paper.

Let 𝑝𝑝 be a set of public parameters everyone can access. 𝑝𝑝 =

{𝑔1, 𝑔2,G1,G2, 𝐻, 𝐻 ′}. Here, the generators 𝑔1, 𝑔2 are generators of

prime order groupsG1,G2 of order 𝑞 and𝐻,𝐻 ′ : {0, 1}∗ → Z𝑞 . The
GrothVSS protocol consists of a tuple of algorithms (DLKeySetup,
Share, ElShareEnc, ElShareDec for the share encryptionmechanism

and ElSharingProof, ElSharingVerify) for the generation and verifi-

cation of proof of correct sharing. They are presented in Figure 10,

Figure 9. The algorithms are for key generation, generating shares,

encrypting and decrypting the shares, generating proof of correct

sharing, and verification of all the sharing respectively. Before the

start of the protocol, each party runs the DLKeySetup to sample a

secret-public keys pair along with the proof of knowledge of the

secret key corresponding to the public key. Each party 𝑃𝑖 runs the

algorithm to generate (𝑠𝑘𝑖 , ¯ℎ𝑖 , 𝜋𝑖 ), and the proof 𝜋𝑖 is forwarded to

all the parties before the start of the protocol. GrothVSS follows

the same mechanics as cgVSS of Figure 3. Here, we present infor-
mally the variants of the algorithms used forGrothVSS in Figure 10,
Figure 9.

The dealer runs the Share algorithm that generates the shares

of each party 𝑃𝑖 as evaluations on a random 𝑡-degree polynomial

𝑎(𝑦) = ∑𝑡
𝑘=0

𝑎𝑘𝑦
𝑘
. The shares of computed as 𝑠𝑖 = 𝑎(𝑖) ∈ Z𝑞 . The

dealer ‘exponentiated/lifted’ ElGamal encrypts the share value 𝑠𝑖
of 𝑃𝑖 using the public key 𝑝𝑘𝑖 = ¯ℎ𝑖 as (𝑔𝑟𝑖

1
, 𝑔

𝑠𝑖
1

¯ℎ
𝑟𝑖
𝑖
). However, the

discrete logarithm problem is intractable in the underlying group

G; hence, the receiver can not decrypt the value 𝑠𝑖 if it is forwarded

in the exponentiated form as 𝑔
𝑠𝑖
2
directly. To overcome this, the

dealer breaks the value 𝑠𝑖 into𝑚 smaller ‘chunks’ 𝑠𝑖,𝑢 < 𝐵,𝑢 ∈ [𝑚]
such that

∑
𝑢 𝐵

𝑢−1𝑠𝑖,𝑢 = 𝑠𝑖 . Essentially, the concatenation of bits

of 𝑠𝑖,𝑢 form the value 𝑠𝑖 . The dealer encrypts each of the smaller

Every party has access to the public parameters 𝑝𝑝 . Each party 𝑃𝑖
runs the key setup to generate the secret key - public key pairs

(𝑠𝑘𝑖 , ¯ℎ𝑖 ) and the NIZK proof of knowledge 𝜋DL,𝑖 .

• ElSharingProof (𝑝𝑝, 𝑟, {𝑠𝑖 , 𝐴 𝑗 }𝑖∈[𝑛], 𝑗∈{0,· · · ,𝑡 } ) → 𝜋PoC :

– Sample 𝛼, 𝜌
$←− Z𝑞 ,

– Compute and set

∗ 𝑊 ← 𝑔
𝜌

1
, 𝑋 ← 𝑔𝛼

2

∗ 𝛾 ← 𝐻 ({ ¯ℎ𝑖 , 𝐴 𝑗 }𝑖∈[𝑛], 𝑗∈{0,· · · ,𝑡 } )
∗ 𝑌 ← (∏𝑛

𝑖=1

¯ℎ
𝛾𝑖

𝑖
)𝜌𝑔𝛼

1

∗ 𝛾 ′ ← 𝐻 ′ (𝛾,𝑊 ,𝑋,𝑌 )
∗ 𝑧𝑟 ← 𝑟𝛾 ′ + 𝜌 (∈ Z𝑞)
∗ 𝑧𝛼 ← 𝛾 ′

∑𝑛
𝑖=1

𝑠𝑖𝛾
𝑖 + 𝛼 (∈ Z𝑞)

∗ 𝜋PoC ← (𝑊,𝑋,𝑌, 𝑧𝑟 , 𝑧𝛼 )
• ElSharingVerify (𝑝𝑝, 𝜋PoC, {𝑅𝑢 , 𝐸𝑖,𝑢 }𝑖∈[𝑛],𝑢∈[𝑚] ) → 0/1:

– Compute and set

∗ 𝑐 =
∏𝑚

𝑢=1
𝑐𝐵

𝑢−1

𝑢

∗ 𝑑𝑖 =
∏𝑚

𝑢=1
𝑑𝐵

𝑢−1

𝑖,𝑢

∗ 𝛾 ← 𝐻 ({ ¯ℎ𝑖 , 𝐴 𝑗 }𝑖∈[𝑛], 𝑗∈{0,· · · ,𝑡 } )
∗ 𝛾 ′ ← 𝐻 ′ (𝛾,𝑊 ,𝑋,𝑌 )

– Verify

∗ 𝑐𝛾
′
𝑊

?

= 𝑔
𝑧𝑟
1

∗ (∏𝑡
𝑗=0

𝐴

∑𝑛
𝑖=1

𝑖 𝑗𝛾𝑖

𝑗
)𝛾 ′𝑋 ?

= 𝑔
𝑧𝛼
2

∗ (∏𝑛
𝑖=1

𝑑𝑖
𝛾𝑖 )𝛾 ′𝑌 ?

=
∏𝑛

𝑖=1
( ¯ℎ𝛾

𝑖

𝑖
)𝑧𝑟𝑔𝑧𝛼

1

GrothVSS-Proof of correct sharing

Figure 9: Proof system of correct sharing ofGrothVSS[36].We
do not present the proof and verification of correct chunking
here, refer [36, Section 6.5] for it.

chunks in the form (𝑔𝑟𝑢
1
, 𝑔

𝑠𝑖,𝑢
1

¯ℎ
𝑟𝑢
𝑖
), 𝑖 ∈ [𝑛], 𝑢 ∈ [𝑚]. The algorithm

ElShareEnc realizes the chunking and the encryption procedure.

The party 𝑃𝑖 uses the ElShareDec to decrypt their share. When the

party 𝑃𝑖 receives the encryption of the value 𝑔
𝑠𝑖,𝑢
1

, decrypts it and

uses a solver to compute the value 𝑠𝑖,𝑢 . They concatenate the values

𝑠𝑖,𝑢 to compute the share 𝑠𝑖 .

A.1 Proof of correct sharing
Here we present the proof of the correctness of sharing of the NI-

DKG protocol by Groth et al. [36]. The dealer publishes the commit-

ments 𝐴𝑖 = 𝑔
𝑎𝑖
2

to coefficients of the polynomial 𝑎(𝑦) = ∑𝑡
𝑘=0

𝑎𝑘𝑦
𝑘

from which the shares of the nodes have been generated. The

dealer generates the proof of correctness 𝜋PoC of sharing using the

ElSharingProof algorithm. He proves the knowledge of the value∑𝑛
𝑖=1

𝑠𝑖𝑥
𝑖
and uses the relation: 𝑠𝑖 = 𝑎(𝑖) = ∑𝑡

𝑘=0
𝑎𝑘𝑖

𝑘 ∀𝑖 ∈ [𝑛].
The algorithm samples two random values 𝛼, 𝜌 ∈ Z𝑞 and us-

ing the relations 𝑠𝑖 =
∑𝑚

𝑗=1
𝑠𝑖 𝑗𝐵

𝑗−1
, 𝑟 =

∑𝑚
𝑗=1

𝑟 𝑗𝐵
𝑗−1

as a wit-

ness, provides Schnorr based proof using the relation:

∑𝑛
𝑖=1

𝑠𝑖𝑥
𝑖 =∑𝑛

𝑖=1
(∑𝑡

𝑘=0
𝑎𝑘𝑖

𝑘 )𝑥𝑖 = ∑𝑡
𝑘=0

𝑎𝑘 (
∑𝑛
𝑖=1

𝑖𝑘𝑥𝑖 ) for 𝑥 $←− Z𝑞 . Each party

𝑃𝑖 verifies the proof of correct sharing using ElShareVerify before

decrypting their share using ElShareDec.

Correctness of relations being verified by the receivers.
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Every party has access to the public parameters 𝑝𝑝 . Each party 𝑃𝑖
runs the key setup to generate the secret key - public key pairs

(𝑠𝑘𝑖 , ¯ℎ𝑖 ) and the NIZK proof of knowledge 𝜋𝑖 .

• DLKeySetup(𝑝𝑝) → (𝑠𝑘, ℎ, 𝜋)
– 𝑠𝑘

$←− Z𝑞
– ¯ℎ ← 𝑔𝑠𝑘

2

– 𝜋 ← ProveDL (𝑠𝑘, ¯ℎ)
• Share(𝑝𝑝, 𝑠) → ({𝑠𝑖 }𝑖∈[𝑛] , {𝐴 𝑗 } 𝑗∈{0,· · · ,𝑡 } ) :

– Sample 𝑎 𝑗
$←− Z𝑞, 𝑗 ∈ {0, · · · , 𝑡}

– Set 𝑎0 ← 𝑠

– Compute 𝑠𝑖 ←
∑𝑡

𝑗=1
𝑎 𝑗 𝑖

𝑗 , 𝑖 ∈ [𝑛]
– Set 𝐴 𝑗 ← 𝑔

𝑎 𝑗

2
, 𝑗 ∈ {0, · · · , 𝑡}

• ElShareEnc(𝑝𝑝, {𝑠𝑖 , ¯ℎ𝑖 , 𝜋𝑖 }𝑖∈[𝑛] ) →
({𝑅𝑢 , 𝐸𝑖,𝑢 }𝑖∈[𝑛],𝑢∈[𝑚] ) :
– 𝑒𝑖 ← Verify(𝜋𝑖 , ¯ℎ𝑖 ).

∗ If 𝑒𝑖 = ⊥, abort.
– Chunk 𝑠𝑖 into 𝑠𝑖,𝑢 such that 𝑠𝑖 =

∑𝑚
𝑢=1

𝑠𝑖,𝑢𝐵
𝑗−1

and

𝑠𝑖,𝑢 ∈ [0, 𝐵 − 1].
– Sample 𝑟𝑢 ← Z𝑞, 𝑢 ∈ [𝑚]
– Compute 𝑅𝑢 ← 𝑔

𝑟𝑢
1
, 𝑢 ∈ [𝑚]

– Compute 𝐸𝑖,𝑢 ← 𝑔
𝑠𝑖,𝑢
1

¯ℎ
𝑟𝑢
𝑖
, 𝑖 ∈ [𝑛], 𝑢 ∈ [𝑚].

• ElShareDec(𝑝𝑝, 𝑠𝑘𝑖 , {𝑅𝑢 , 𝐸𝑖,𝑢 }𝑖∈[𝑛],𝑢∈[𝑚] ) → 𝑠𝑖 :

– Compute and set

∗ 𝑔
𝑠𝑖,𝑢
1
← 𝐸𝑖,𝑢

𝑅
𝑠𝑘𝑖
𝑢

∀𝑗 ∈ [𝑚].

∗ 𝑠𝑖,𝑢 ← SolveDL (𝑔
𝑠𝑖,𝑢
1
).

∗ 𝑠𝑖 ←
∑𝑚
𝑢=1

𝑠𝑖,𝑢𝐵
𝑢−1

GrothVSS-Algorithms

Figure 10: Share generation, encryption and decryption algo-
rithms of GrothVSS[36].

Here we show the correctness of the relations being verified by

the receivers. The receivers verify the correctness of secret sharing

to accept the share. If the verification fails, the dealing is rejected.

• 𝑐𝛾
′
𝑊 = (𝑔𝑟

1
)𝛾 ′ · 𝑔𝜌

1
= 𝑔

𝑟𝛾 ′+𝜌
1

= 𝑔
𝑧𝑟
1

• (∏𝑡
𝑗=0

𝐴

∑𝑛−1

𝑖=0
𝑖𝑘𝛾𝑖

𝑗
)𝛾 ′𝑋 =

(
𝑔

∑𝑡
𝑗=0

𝑎 𝑗 ·
∑𝑛−1

𝑖=0
𝑖𝑘𝛾𝑖

2

)𝛾 ′ ·𝑔𝛼
2
=
(
𝑔

∑𝑛−1

𝑖=0
𝑠𝑖𝛾

𝑖

2

)𝛾 ′ ·
𝑔𝛼

2
= 𝑔

𝛾 ′ ·∑𝑛−1

𝑖=0
𝑠𝑖𝛾

𝑖+𝛼
2

= 𝑔
𝑧𝛼
2

• (∏𝑛
𝑖=1

𝑑
𝛾𝑖

𝑖
)𝛾 ′ · 𝑌

= (∏𝑛
𝑖=1
(∏𝑚

𝑢=1
𝑑𝐵

𝑢−1

𝑖,𝑢
)𝛾𝑖 )𝛾 ′ · 𝑌

= (∏𝑛
𝑖=1
(∏𝑚

𝑢=1
(𝑔𝑠𝑖,𝑢

1

¯ℎ
𝑟𝑢
𝑖
)𝐵𝑢−1 )𝛾𝑖 )𝛾 ′ · 𝑌

= (∏𝑛
𝑖=1
(∏𝑚

𝑢=1
(𝑔𝑠𝑖,𝑢

1

¯ℎ
𝑟𝑢
𝑖
)𝐵𝑢−1 )𝛾𝑖 )𝛾 ′ · 𝑌

= (∏𝑛
𝑖=1
(𝑔𝑠𝑖

1

¯ℎ𝑟
𝑖
)𝛾𝑖 )𝛾 ′ · (∏𝑛

𝑖=1

¯ℎ
𝛾𝑖

𝑖
)𝜌𝑔𝛼

1

=
∏𝑛

𝑖=1
( ¯ℎ𝛾

𝑖

𝑖
)𝛾 ′𝑟+𝜌 · (𝑔𝛾

′ ·∑𝛾𝑖𝑠𝑖+𝛼
1

)𝜌𝑔𝛼
1

=
∏𝑛

𝑖=1
( ¯ℎ𝛾

𝑖

𝑖
)𝑧𝑟 · 𝑔𝑧𝛼

1

Apart from the proof of correctness of sharing, the dealer pro-

vides zero-knowledge proof of correct chunking showing that

𝑠𝑖 =
∑𝑚

𝑗=1
𝑠𝑖 𝑗 . He also proves that each such 𝑠𝑖 𝑗 < 𝐵 using (ap-

proximate) range proofs. We refer the reader to [36, Section 6.5] for

the proof of correct chunking.

B MITIGATING THE BIASING PUBLIC KEY
ATTACK

cgDKG (and Groth’s NI-DKG) suffer from the same public key

biasing attack as the one presented by Gennaro et al. [32]. This is

because a rushing adversary can observe the first 𝑡 verified secret

sharings and then perform a valid 𝑡 + 1st sharing to bias the public

key while delaying the messages of the other honest parties in the

system. The adversary can first compute the partial public of the 𝑡

honest parties and choose the 𝑡 + 1
𝑠𝑡

party (which the adversary

controls) to bias the public key.

To overcome this, we use an approach [44] where the knowledge

of the commitments does not aid the adversary in biasing the public

key. After verifying the dealings, the parties use the first set of 𝑡 + 1

verified dealers to compute their secret key share. Each party now

publishes the public key computed as exponentiation of the secret

key with a different generator 𝑔′ ∈ G1 than 𝑔1, the one used in

the initial commitment phase. After computing the qualified set,

each party 𝑃𝑘 broadcasts the value (𝑔′)𝑥𝑘 along with a NIZK proof

that the exponent in (𝑔′)𝑥𝑘 is the same as the one computed using

the verified dealings. The parties finally compute the public key

of the DKG instance as 𝑦 =
∏

𝑘∈𝑇 (𝑔′)𝑥𝑘 , where 𝑇 is the set of

parties that have forwarded their public key, the set 𝑇 has at least

𝑡 + 1 parties as only a maximum of 𝑡 parties are corrupted by the

adversary. This adds one round of communication to the DKG

protocol. A previously suggested approach [32] to overcome the

biasing attack is to use perfectly hiding Pedersen’s commitments.

These commitments are published in the initial commit phase while

the public key is computed in the next phase (round) using discrete

log commitments, which are published along with proof of the

equality of the exponents (shared secret). This approach also needs

an extra round for the parties to agree on the public key. However,

the mentioned approach of using a different generator for the public

key is more efficient as no blinding factors (and the corresponding

exponentiations) are needed.

C FORWARDED PROOFS
Theorem C.1. For any security parameters 𝜆, 𝜆st ∈ N and any

modulus 𝑞 ∈ N, our construction, described in Fig. 1, satisfies the

security definition given in Def. 3.2 assuming DLog is tractable in

𝐹 , DDH is hard in 𝐺 , the strong root and 𝜔-low order assumptions

[53] hold in 𝐺 in the random oracle model.

Proof. We prove completeness, soundness and zero-knowledge

in order.

Completeness. The completeness can be seen from checking the

verification equations:

• 𝑊 · 𝑅𝛾 ′ = 𝑔𝜌+𝑟𝛾
′
= 𝑔𝑧𝑟 ;

• 𝑋 · (∏𝑡
𝑗=0

𝐴

∑𝑛
𝑖=1

𝑖𝑘𝛾 𝑗

𝑗
)𝛾 ′

= 𝑋 ·
(
𝐴
(𝛾+𝛾2+...)
0

· 𝐴(𝛾+2𝛾
2+...)

1
· 𝐴(𝛾+2

2𝛾2+...)
2

. . .

)𝛾 ′
= 𝑋 ·

(
𝑔𝑎0 (𝛾+𝛾2+...) · 𝑔𝑎1 (𝛾+2𝛾2+...) · 𝑔𝑎2 (𝛾+22𝛾2+...) . . .

)𝛾 ′
= 𝑋 ·

(
𝑔 (𝑎0+𝑎1+...)𝛾+(𝑎0+2𝑎1+22𝑎2+...)𝛾2+...

)𝛾 ′
= 𝑋 ·

(
𝑔𝑠1𝛾+𝑠2𝛾

2+...
)𝛾 ′

= 𝑔𝛼+𝛾
′∑𝑛

𝑖=1
𝑠𝑖𝛾

𝑖
= 𝑔𝑧𝑠 ;
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• (∏𝑛
𝑖=1

𝐸
𝛾𝑖

𝑖
)𝛾 ′ · 𝑌

=

(
𝑓 𝛾
′ (∑𝑛

𝑖=1
𝑠𝑖𝛾

𝑖 ) ·∏𝑛
𝑖=1

ℎ
𝑟𝛾 ′𝛾𝑖

𝑖

)
·
(
𝑓 𝛼 ·∏𝑛

𝑖=1
ℎ
𝜌𝛾𝑖

𝑖

)
= 𝑓 𝛼+𝛾

′∑𝑛
𝑖=1

𝑠𝑖𝛾
𝑖 ·∏𝑖 ℎ

(𝑟𝛾 ′+𝜌 )𝛾𝑖
𝑖

= 𝑓 𝑧𝑠 ·∏𝑛
𝑖=1
(ℎ𝛾

𝑖

𝑖
)𝑧𝑟

Statistical Soundness. The soundness argument is essentially

the same as the one given by Groth [36](As mentioned in Groth’s

paper, we do not actually need simulation soundness.) but adjusted

to our class group setting. The soundness holds unconditionally

with overwhelming probability (≥ 1 − negl(𝜆st)) in the random

oracle model.

We consider an unbounded adversary who attempts to produce

a protocol instance {ℎ𝑖 , 𝐸 𝑗 , 𝐴𝑘 , 𝑅}𝑖, 𝑗∈[𝑛],𝑘∈[𝑡 ] such that the shares

𝑠 𝑗 ≠ 𝑎( 𝑗). The adversary must return a well formed proof 𝜋CS ←
(𝑊,𝑋,𝑌, 𝑧𝑟 , 𝑧𝑠 ) to avoid trivial detection.

Let 𝛾 = 𝐻 (inst) and 𝛾 ′ = 𝐻 (𝛾,𝑊 ,𝑋,𝑌 ) where 𝐻 is modeled as

a random oracle. The adversary may try to generate a valid proof

for invalid shares (i.e. 𝑠 𝑗 ≠ 𝑃 ( 𝑗)) in three ways – (i) guess 𝛾 and

obtain 𝛾 ′ ← 𝐻 (𝛾,𝑊 ,𝑋,𝑌 ); (ii) obtain multiple 𝛾 values such that∑𝑛
𝑗=1

𝑠 𝑗𝛾
𝑗 =

∑
𝑗=1

𝑎 𝑗𝛾
𝑗
for some 𝛾 even when 𝑠 𝑗 ≠ 𝑎( 𝑗) for some 𝑗 ;

(iii) while

∑𝑛
𝑗=1

𝑠 𝑗𝛾
𝑗 ≠

∑
𝑗=1

𝑎 𝑗𝛾
𝑗
, yet generate 𝑧𝑟 , 𝑧𝑠 such that the

verification succeeds by choosing𝑊,𝑋,𝑌 after obtaining 𝛾 ′.
For strategy-(i), the adversary needs to guess the correct 𝛾 , the

probability of which is bounded by𝑄2

𝐻
/2𝑞 where𝑄𝐻 is the number

of RO queries to 𝐻 . For strategy-(ii), it can be argues that for each

uniform random 𝛾 value, the probability of the equality holding

is bounded by Schwartz-Zippel lemma over Z𝑞 , making the total

success probability bounded by 𝑂 (𝑡/𝑞). Finally, for strategy-(iii),
we assume that the adversary must produce the tuple (𝑧𝑟 , 𝑧𝑠 , 𝑌 )
such that the verification passes even when 𝑠𝑖 ≠ 𝑃 (𝑖). However,
the first two verification checks ensure that 𝑧𝑟 , 𝑧𝑠 are of the form

𝑧𝑟 = 𝑟𝛾 ′ + 𝜌 ∈ Z𝑠 and 𝑧𝑠 =
∑𝑛
𝑖=1

𝑠𝑖𝛾
𝑖 + 𝛼 ∈ Z𝑞 . The adversary

may potentially choose a 𝑌 carefully such that the third equality

holds over 𝐺 . We need to show that happens only with negligible

probability. Now, let us express the third verification equation over

𝐺 .

(
𝑛∏
𝑖=1

𝐸
𝛾𝑖

𝑖
)𝛾
′
· 𝑌 ?

= 𝑓 𝑧𝑠 ·
𝑛∏
𝑖=1

(ℎ𝛾
𝑖

𝑖
)𝑧𝑟

Now, clearly since 𝛾 is the output of random oracle, and 𝑧𝑟 = 𝑟𝛾 ′ +𝜌
holds over Z𝑠 (and therefore also holds over Z𝑞𝑠 ), the 𝑌 value must

be of the form 𝑓 𝛽 ·∏𝑛
𝑖=1

ℎ
𝜌𝛾𝑖

𝑖
for some 𝛽 ∈ Z𝑞 for the verification

to hold. The equation indicates that,

𝑛∏
𝑖=1

(𝑓 𝑠𝑖ℎ𝑟𝑖 )
𝛾𝑖𝛾 ′ · 𝑓 𝛽 ·

𝑛∏
𝑖=1

ℎ
𝜌𝛾𝑖

𝑖
= 𝑓 𝑧𝑠 ·

𝑛∏
𝑖=1

ℎ
𝛾𝑖 (𝑟𝛾 ′+𝜌 )
𝑖

=⇒
𝑛∏
𝑖=1

(𝑓 𝑠𝑖 )𝛾
𝑖𝛾 ′ ·

𝑛∏
𝑖=1

ℎ
(𝑟𝛾 ′𝛾𝑖+𝜌𝛾𝑖 )
𝑖

· 𝑓 𝛽 = 𝑓 𝑧𝑠 ·
𝑛∏
𝑖=1

ℎ
𝛾𝑖 (𝑟𝛾 ′+𝜌 )
𝑖

Canceling out the ℎ𝑖 terms results in,

𝑛∏
𝑖=1

(𝑓 𝑠𝑖 )𝛾
𝑖𝛾 ′ · 𝑓 𝛽 = 𝑓 𝑧𝑠

=⇒ 𝛾 ′
𝑛∑︁
𝑖=1

(𝑠𝑖 )𝛾
𝑖

+ 𝛽 = 𝛾 ′
𝑛∑︁
𝑖=1

𝑎𝑖𝛾
𝑖 + 𝛼 ∈ Z𝑞𝑠

For the verification to hold, the adversary should guess the cor-

rect 𝛽 such that 𝛾 ′
∑𝑛
𝑖=1
(𝑠𝑖 )𝛾

𝑖 + 𝛽 = 𝛾 ′
∑𝑛
𝑖=1

𝑎𝑖𝛾
𝑖 +𝛼 when 𝑠𝑖 ≠ 𝑃 (𝑖)

for a set of 𝛼,𝛾 ′ and {𝑎𝑖 }𝑖∈[𝑡 ] , which would hold with proba-

bility ≤ 1/𝑞 over the random choice of 𝛾 ′. Hence, taking union

bound over the strategies, the overall probability is bounded by

𝑄2

𝐻
/2𝑞 + 𝑡/𝑞 + 1/𝑞 which is negligible in 𝜆st as long as 𝑞 is chosen

sufficiently larger than 𝑄𝐻 . For example, a reasonable choice can

be 𝑞 = 𝑂 (2256) and 𝑄𝐻 = 𝑂 (2100), then the overall probability is

smaller than 2
−40

(a typical choice of 𝜆st is 40).

Statistical Zero-knowledge. Following [36], we argue the sta-

tistical zero-knowledge of the proof of correct sharing in the pro-

grammable random oraclemodel. The simulator callsO(inst),Oprog
to obtain 𝛾,𝛾 ′ ∈ Z𝑞 . . Now the simulator uniform randomly sam-

ples 𝑧𝑟
$←− [𝑞 · |D𝑞 | · 2𝜆st ], 𝑧𝑠

$←− Z𝑞 and computes the unique

values (𝑊,𝑋,𝑌 ) that satisfy the three verification equations. The

simulator programs the oracle Oprog such that 𝛾 ′ ← O(𝛾,𝑊 ,𝑋,𝑌 );
unless the (𝛾,𝑊 ,𝑋,𝑌 ) has been queried before. In such a case, the

programming fails, and the simulator returns ⊥. Otherwise, the
simulator returns (𝑊,𝑋,𝑌, 𝑧𝑟 , 𝑧𝑠 ) as the proof.

The simulator obtains uniformly random 𝛾,𝛾 ′ and hence 𝜌 ←
𝑧𝑟 −𝑟𝛾 ′ ∈ [𝑞 · |D𝑞 | ·2𝜆st ], 𝛼 ← 𝛾 ′

∑𝑛
𝑖=1

𝑠𝑖𝛾
𝑖 ∈ Z𝑞 are also uniformly

random. In the real proof, 𝛼, 𝜌 are randomly generated; hence in

both simulated and the real proofs, 𝛼, 𝜌 are uniformly random.

Given 𝛼, 𝜌 and 𝛾,𝛾 ′, the values𝑊,𝑋,𝑌 are uniquely determined

by the three verification equations making the real and simulated

proof have the same distribution. It can be seen that since 𝑧𝑟 , 𝑧𝑠
are random, 𝑊,𝑋 are also random in their respective domains

implying that the probability of the simulator already querying on

(𝛾,𝑊 ,𝑋,𝑌 ) is negligible. .
□
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