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Abstract—We put forward the first non-interactive verifiable
secret sharing scheme (NI-VSS) using classgroups – we call
it cgVSS. Our construction follows the standard framework of
encrypting the shares to a set of recipients and generating a
non-interactive proof of correct sharing. However, as opposed
to prior works, such as Groth’s [Eprint 2021], or Gentry et
al.’s [Eurocrypt 2022], we do not require any range proof -
this is possible due to the unique structure of class groups,
that enables efficient encryption/decryption of large field ele-
ments in the exponent of an ElGamal-style encryption scheme.
Importantly, this is possible without destroying the additive
homomorphic structures, which is required to make the proof-
of-correctness highly efficient. This approach not only substan-
tially simplifies the scheme, but also outperforms the state-
of-art schemes significantly. Our implementation shows that
cgVSS outperforms (a simplified implementation of) Groth’s
protocol in overall communication complexity by 5.6x and
about 2.4 − 2.7x in computation time per node (for a 150

node system).
Additionally, we formalize the notion of public verifiability,

which enables anyone, possibly outside the participants, to
verify the correctness of the dealing. In fact, we re-interpret
the notion of public verifiability and extend it to the setting
when all recipients may be corrupt and yet can not defy
public verifiability – to distinguish with state-of-art we call this
strong public verifiability. Our formalization uses the universal
composability framework.

Finally, through a generic transformation, similar to
Groth’s [Eprint 2021], we obtain a NI-DKG scheme for thresh-
old systems, where the secret key is the discrete log of the public
key. Our security analysis in the VSS-hybrid model uses a
formalization that also considers a (strong) public verifiability
notion for DKG, even when more than threshold parties are
corrupt. Instantiating with cgVSS we obtain the first NI-DKG
scheme from class groups – we call it cgDKG.

1. Introduction

In a threshold secret sharing scheme [1], [2], a dealer
distributes a secret among a set of n parties in such a way
that the secret can only be reconstructed if a subset of
t + 1 or more parties contribute their shares. A potential
concern arises when a malicious dealer distributes shares
in a manner that enables two different subsets of t + 1 or

more parties to reconstruct two different secret values. A
verifiable secret sharing (VSS) scheme [3] addresses this
concern and enhances security by ensuring that each party
receives a share and proof that their share is a valid part of
the secret. This crucial feature allows parties to confirm the
validity of their shares without needing to reconstruct the
actual secret, rendering VSS highly valuable for secure dis-
tributed computing (SDC) applications such as randomness
beacon [4], [5], [6], distributed key generation (DKG) [7],
[8], [9], [10] for threshold cryptography [11], [12], [13],
[14], and multiparty computation [15], [16], [17], [18].

Over the past decade, the increasing prominence of
blockchains, cryptocurrencies, and the emergence of de-
centralized finance (DeFi) has sparked substantial practical
interest in VSS and its various SDC applications. These
applications encompass but are not limited to threshold
signatures for wallet security [19], blockchain consensus
certifcates [20], distributed randomness services [21], [22],
[23], as well as generic secure multi-party computation [24].
Like blockchain ledgers, blockchain-based applications rely
heavily on demonstrating the system’s correctness to any
interested party, possibly outside the system. Consequently,
these applications require the employed SDC solutions to
be publicly verifiable [25], [26]. In particular, the protocol
execution transcript should be convincing evidence to any-
one that the system output is correct, even when all parties
are malicious.1 Considering that an interested verifier might
arise after the protocol execution concludes, the verification
procedure should be non-interactive and transferable, allow-
ing it to convince an unlimited number of verifiers.

Until recently, the SDC literature has mostly focused
on unconditionally hiding VSS protocols [7], [27], [28],
[29], [30], [31], [32] as they can offer the best possible
secrecy guarantee using secure and authenticated channels
between the dealer and each party while being efficient
as compared to perfectly secure (or unconditional) VSS
schemes [33] due to their otherwise computational nature.
However, any communication over secure and authenticated
channels is not publicly verifiable [25] so are these VSS

1. Note that when all parties are malicious, no privacy or robustness
(a.k.a. guaranteed termination) properties can be guaranteed. Public ver-
ifiability solely focuses on the correctness of the protocol output, if the
protocol terminates.



schemes.2 Moreover, to the best of our knowledge, re-
placing secure and authenticated channels with public-key
encryption does not solve the problem as these schemes
continue to be incorrect when the number of malicious
parties exceeds the threshold t. Nevertheless the notion of
publicly verifiable secret sharing (PVSS) already exists [3],
[5], [8], [25], [36], [37], [38], [39], [40] assuming a public-
key infrastructure (PKI) is in place and a non-interactive
zero-knowledge (NIZK) proof of correct sharing is feasible.
Furthermore, these protocols require participants to speak
only once, if a PKI is in place (the PKI can be used
unlimited times) and are also termed as non-interactive VSS
(NI-VSS) – this is an important feature that often comes
handy in permissioned blockchain ecosystems, especially
when synchronization among the participants is a problem.
Henceforth, whenever we refer to NI-VSS we mean non-
interactive VSS (in the PKI setup) with public verifiability.

Recent works on NI-VSS [8], [40], developed in the
blockchain context, follow a standard template to construct
a NI-VSS: the dealer, with a secret s creates a share si
for party Pi and then broadcasts a multi-receiver encryption
vector of all si’s encrypted with corresponding public keys,
in that each si is encrypted under pki and so on. Every
party Pi can decrypt their own si with ski, but nothing
else. To enable (public) verifiability, the dealer additionally
provides proof of correct encryption with respect to the
commitments of shares. Notably, if the encryption scheme is
additively homomorphic, then the proof of correctness can
be made specialized and thus more efficient by exploiting
the homomorphic structure. In particular, Gentry, Halevi,
and Lyubashevsky [40] use a variant of Regev’s lattice-based
encryption, whereas Groth [8] uses exponentiated ElGamal
encryption. While the lattice-based approach is asymptot-
ically beneficial in terms of computation complexity, they
additionally needed to employ range proof systems such as
Bulletproofs [41], thereby incurring significant performance
overhead and design complexity. Instead, Groth [8] uses
exponentiated ElGamal encryption over cyclic groups where
discrete log is hard; however, since the plaintexts have to
be small to facilitate efficient decryption (because discrete
log is hard), a so-called “chunking technique”, in that a
standard-sized (say, 256 bit) plaintext is split into small
chunks (say, 16 bits each), is used.3 However, this also re-
quires the dealer to prove that the chunking is done correctly.
To resolve this, a novel Schnorr-style Fiat-Shamir based
NIZK proof technique, called proof-of-correct-chunking was
employed by Groth [8]. While this makes their protocol
more efficient compared to [40], it comes at the cost of
rendering the final design more communication heavy and

2. We consider public verifiability against up to n corruptions here. As
we discuss later, a weaker version of public verifiability has been considered
in the recent literature [34], [35] that holds only when the adversary can
compromise up to t parties. To distinguish, we call our notion strong public
verifiability. Unless otherwise mentioned, by public verifiability we will be
referring to this stronger notion throughout this paper.

3. We note that other ways to encrypt large messages, such as hashed
ElGamal, do not work as they lack the additive homomorphism structure
for the specialized proof of correct sharing to work.

substantially more complex. For example, if we use a sim-
plified variant (that is witout forward secrecy) of Groth’s
protocol [8] for a publicly verfiable DKG with 200 parties,
as much as 441MB data (cf. Fig 7) needs to be communi-
cated over the broadcast channel (or posted on the bulletin
board/ledger) in total.

1.1. Our Contribution

A New and Simple NI-VSS. We propose a new NI-VSS
scheme (in Section 5), which follows the same “encrypt-and-
prove” paradigm as above, but completely avoids any range-
proof and “chunking” of the secret key. In particular, we
use a class group-based additively homomorphic encryption
scheme [42], which is structurally similar to ElGamal, but
supports encryptions of large plaintexts in the exponent.
Specifically, the class group-based encryption puts the plain-
text in the exponent of a sub-group where the discrete log is
easy, thus enabling efficient decryption – security is based
on existing class group-based assumptions. Usage of a class
group in the above template not only significantly simplifies
the design, but also makes considerable gain in the per-
formance compared to the state-of-art (a simplified version
Groth’s NI-VSS [8]) as evident by our implementations
(cf. Section 7). Also, since deploying our NI-VSS scheme
requires a PKI setup for class-group encryptions, we show
in Section 4.1 how to realize that using NIZK proofs of the
argument of knowledge over class groups. Our NIZK proofs
are adapted from prior works such as [43], but supports
a stronger knowledge extraction requirement – for this we
provided a modified analysis in Appendix A.
Generic Transformation to NI-DKG. We then propose
a generic efficiency-preserving transformation of our NI-
VSS scheme to a NI-DKG protocol (in Section 6). In-
stantiating with cgVSS we obtain a simple and efficient
class group-based DKG protocol for key generation in the
discrete log (DLog)-based threshold settings (that supports
popular threshold signatures such as BLS, Schnorr etc.).
The resulting DKG protocol is non-interactive (NI-DKG) as
well as publicly verifiable. However, we remark that due to
the usage of DLog-based commitments our new NI-DKG
protocol is susceptible to the so-called biasing public-key
attack [7]. Nevertheless, as argued in [7], [18], [44] this
suffices for many DLog based applications such as threshold
Schnorr signature, BLS etc. We also note that it appears
that this can be fixed by using the same technique proposed
by Gennaro et al. [7], where they use a perfectly hiding
commitment (such as Pederson’s) instead of the DLog-based
commitments. But this comes at the cost of more rounds
of interactions. The (im)possibility of NI-DKG without the
biasing public-key attack is an interesting and major open
question.
New Definitions with Public Verifiability. Additionally
we propose a new UC-based formal definition for NI-VSS
(cf. Section 5) that takes our stronger notion of public
verifiability into account. We formally prove that our con-
struction cgVSS securely realizes our ideal functionality
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FVSS (cf. Theorem 4). Our generic transformation from
NI-VSS to NI-DKG (cf. Section 6) is provided in FVSS-
hybrid, and is shown to securely realize our DKG func-
tionality FDKG, which also is equipped with (strong) public
verifiability.4 Our NI-DKG definition differs substantially
from existing ones [47], [48], [49] because of two reasons.
Firstly, it is specially equipped to handle public verifiability
as mentioned above. Secondly, our definition is weakened
to account for public-key biasing, whereas prior definitions
do not allow that.5 We also remark that, (variants of) the
prior NI-VSS schemes, namely the works such as Gentry et
al. [40] and Groth [8], plausibly satisfy our definitions too.
We do not investigate that formally.
Benchmarking. Finally, we implement our NI-VSS protocol
cgVSS and compare that with the closest existing scheme by
Groth’s [8] in terms of dealer/receiver times, and the total
bit-length of the message broadcast by the dealer (in Sec-
tion 7). For comparison, we implement a simplified version
of the VSS mechanism (referred to as GrothVSS henceforth)
proposed by Groth [8] without forward secrecy. Our imple-
mentation shows that the bit-length of the total broadcast
message for a single execution for 150 users is 296.51 Kb
for the cgVSS compared to 1.66 Mb in GrothVSS which is
a 5.6x improvement. Also, in the same setting the gain in
dealer’s/receiver’s computation time is about 2.4− 2.7x. In
summary, our protocol cgVSS outperforms the state-of-art
GrothVSS both in communication and computation. This is
despite the class-group operations being in the regime of
other similar composite order groups, such as RSA. Essen-
tially the performance gain can be attributed for the design
simplification, in that any range proof (or proof-of-chunking
ala Groth [8]) is totally dispensed with.6 Importantly, this
means that our scheme cgVSS scales much better with the
increasing number of parties compared to GrothVSS. We
also benchmark the DKG protocols (cf. Sec. 7) end-to-
end and compare GrothDKG with cgDKG; for a 50 node
network, GrothDKG takes 69.7sec and cgDKGtakes 47.9sec.

1.2. Related Work and Discussion

PVSS. In their seminal paper, Chor et al. [3] introduced
the notion of verifiable secret sharing (VSS). Stadler [36]
first proposed publicly verifiable VSS (PVSS) and two con-
structions using verifiable ElGamal encryption. A long line
of works [25], [51], [52] , [5], [8], [36], [38], [39], [53],
[54], [55], [56], [57] realized publicly verifiable and non-
interactive VSS schemes. They typically employ encryption
mechanisms, including Paillier [38], [39], [57], ElGamal-in-
the-exponent [8], pairing [58], [59] and lattice-based encryp-
tions [40]. The schemes, that use Paillier encryption, suffer

4. Note that, this is, in spirit, somewhat similar to the concept of publicly
auditable MPC [45], [46], that allows public verification of transcripts of
an MPC protocol even when all parties are corrupt.

5. A recent simulation-based definition put forward by Katz [50] also
formalizes this, but in a different manner.

6. Moreover, the simplified design itself is a substantial advantage from
engineering/deployment perspective as well.

from long exponentiations and proof size, and one that uses
ElGamal in the exponent [8] requires small exponents due
to the hardness of DLog. The schemes involving pairing
generate shares are group elements (not scalars) and are
not suitable for settings such as threshold signatures. PVSS
schemes based on lattice-encryption schemes [40] are indeed
asymptotically efficient, albeit require large public keys and
ciphertext sizes.
Different notions of public verifiability. While the con-
cept of public verifiability has been around for long time,
we observe that there is a lack of formalization, which
resulted into different interpretations. In particular, for all
non-interactive protocols the public verifiability holds even
if more than t recipients (possibly everyone) are corrupt. A
motivation for this strong notion is the electronic voting
scenario, for which the concept of PVSS was originally
developed. In particular, a correct ballot cast by a voter
via PVSS must be self-verifiable, that is the verifiability
must not depend on any other participants including the
voting servers. Strong public verifiability provides the exact
guarantee that a voter’s ballot cannot be falsely discarded or
manipulated to a different vote even when all voting servers
(i.e., VSS recipients) are compromised. For VSS schemes
that are not publicly verifiable such as [28], it is possible
for a majority of servers to force the voter to reveal her
ballot on the broadcast channel with false complaints, and
the voter would have no way to prove the legitimacy of her
vote in that case.

Very recently a weaker version of public verifiability
has been considered [34], [35] that holds only against an
adversary which can compromise up to t recipients. This
notion, while falling short of providing guarantee in set-
tings similar to above such as voting, can be interesting
in the blockchain settings over the internet. Nevertheless,
in this paper we focus on the traditional notion of public
verifiability, re-interpret and formally capture through our
UC-based definitions. To distinguish with the weaker variant
(a la [34], [35]) we call it strong public verifiability in this
work.
DKG. Several DKG protocols to support DLog-based
threshold systems have been studied [7], [8], [9], [50], [50],
[60], [61], [62], [63] in the literature in the synchronous
and asynchronous settings. However, to achieve public ver-
ifiablity, the nodes need to perform PVSS (instead of VSS
or asynchronous VSS). Any aggregatable PVSS scheme [9]
which supports homomorphic operations on the secret shares
[8], [38], [39] may be employed to realize a publicly ver-
ifiable DKG mechanism. To achieve non-interactive DKG,
one should employ a PVSS for the secret sharing. Groth
[8] proposed a non-interactive distributed key generation
mechanism using ElGamal encryptions of shares that can be
publicly verified by all the parties from the commitments of
the polynomial coefficients. We use a simplified variant of
this scheme as our baseline.
Biasing the public key. Recently, Katz [50] proposed two
round-optimal constructions for a ‘robust’ DKG mechanism,
where they define robustness as guaranteed-output-delivery.
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Their definition requires that the DKG mechanism outputs
an unbiased public key. However, unbiased public keys are
not an absolute requirement for DKG mechanisms, since it
has been shown that biased public keys can be securely em-
ployed for certain systems as long as the secret key is secure.
Gennaro et al. [7] show that biased public keys can be se-
curely employed for any cryptographic system relying on the
DLog assumption, like the threshold version of the Schnorr
signature scheme. Bacho and Loss [44] show that DKG
mechanisms that output biased public keys can be employed
for generating key shares of adaptively secure BLS scheme
as long as they can be shown to be oracle-aided-algebraic-
simulatable (see [44, Sections 3,4.3]. Braun, Damgård, and
Orlandi [18] propose an encryption scheme based on class
groups that is secure even with biased public keys. In this
work, we explicitly define the functionality (see Figure 5)
to allow the adversary to bias the public key. This allows
us to achieve an efficient non-interactive DKG protocol. We
show (see Appendix E) that our definition is oracle-aided-
simulatable as defined in [44] and hence can be employed
for BLS [64], making it suitable for DLog-based systems
and signature schemes like BLS.
Strong Public Verifiability of DKG. Our NI-VSS to NI-
DKG transformation carries over the strong public verifia-
bility. However, we need to interpret what it actually means
in the context of DKG. First we note that if more than
t parties in a DKG protocol are compromised, we cannot
guarantee the confidentiality of the shared secret/private key:
the adversary can simply interpolate its shares to compute
the secret. As a result for applications such as threshold
signing, the adversary can easily sign any message in this
case. However, we notice that strong public verifiability is
still meaningful for applications such as distributed verifi-
able randomness services [21], [65], [66] (DVRF).7 In this
case, even if the secret-key is known to the adversary, and as
a consequence the DVRF output is predictable, yet the ad-
versary can not deviate from computing a correct value – this
is guaranteed by the VRF definition itself. Intuitively, this
means that the output of the VRF can not biased to a specific
value, desired by the attacker. So, in other words, loss of
unpredictability does not immediately means a loss of so-
called “unbiasability”. Now, in the strong public verifiability
setting, we are pretty much in the same scenario, where more
than t parties are compromised, and the adversary knows the
secret. It turns out, public verifiability can indeed guarantee
an unbiasability even in this case, as long as there is at least
one honest party. We capture this in our UC functionality
FDKG in Section 6. However, to prove that our generic NI-
DKG construction (in FVSS-hybrid) achieves this, we need
to make another assumption, that is the adversary is non-
rusing. Othewrise a rushing adversary would know the deal-
ing of the honest parties before committing its own dealings,
and can actually set the final secret to an arbitrary value of
her choice (for example 0) – rendering the guarantee useless
in practice. However, a non-rushing adversary has to commit

7. Specifically, when a DKG protocol is deployed to support a DVRF
protocol.

the corrupt party’s dealing ahead of time, and thereby can
not execute this attack. It is worth noting that, as long as up
to t parties are corrupt, our protocol continues to securely
realizes the FDKG functionality against rushing adversary.
In a nutshell, we obtain a degraded, yet meaningful security
guarantees (perhaps the best possible) beyond t corruption,
while keeping the full security guarantee up to t corruption.
This is formalized in Theorem 6.

2. Preliminaries

2.1. Notation

We use Z for all integers, and N for all natural numbers
{1, 2 . . .}. Vectors are denotes as v⃗, and it’s i-th element
by vi. For a vector (or ordered set) v⃗i, its j-th element
is denoted v⃗i,j . For a (possibly ordered) set of values
v1, . . . , vn and a subset S ⊆ [n], we write {vi}i∈S to
denote the values {vi}i∈S . We use the notation x

$←− D
to indicate that x is randomly sampled from the distribution
D and the notation h ← y to indicate that the h has been
assigned the value y. Also, for any (possibly randomized)
algorithm A we denote y ← A(x) to express that A on
input x yields the output y. Sometimes we denote AB(·) to
denote that the algorithm A has oracle access to another
algorithm B. Unless explicitly mentioned otherwise, all
algorithms (including the adversary) considered in this paper
are probabilistic polynomial time (PPT). Sometimes, we
explicitly use the notation A(x; r) to determinize A when
run on input x and fixed randomness r. In a multiparty
system, we say an adversary is k-bounded if it may corrupt
upto k parties. We indicate the set {1, 2, · · · , n} by [n]. We
use the symbol ?

= to indicate a check of equality of the left
and right-hand side entities of the symbol. (a ?

= b) returns
a boolean value denoting whether the equality holds or not.
The computational security parameter is denoted by λ (a
typical value 256), and the statistical security parameter is
denoted by λst (typical value 40). To denote that a value
x is polynomial in λ, we write x ∈ poly(λ); similarly
for exponential values, we write x ∈ 2O(poly(λ)). We say
that a function is negligible in λ, if it vanishes faster than
1/poly(λ) for any polynomial poly.

Also, note that for our chosen values, we have 2−λst =
O(negl(λ)).

2.2. Shamir Secret Sharing

We use Shamir’s secret sharing [1]. In a typical Shamir’s
secret sharing, a field element s ∈ Zq can be shared in a
t out of n fashion by choosing a t-degree uniform random
polynomial P (x)

$← Zq[x]
t with constraint P (0) = s. The i-

th share is computed as si ← P (i). To reconstruct one may
use Lagrange coefficients Lis as s =

∑t+1
i=1 Lisi. Due to

linearity, this can be performed in the exponent without com-
puting s. We denote this by Shamirn,t,q(s) = (s1, . . . , sn).
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2.3. DLog Commitments

We will be using discrete log (DLog) commitments,
that are defined over any cyclic group Ḡ of prime order
q. A commitment of a value x ∈ Zq is simply defined
to be ḡx, where ḡ is a generator of Ḡ. Note that, the
commitment scheme does not guarantee hiding, but provides
computational binding, as long as the discrete log is hard
over Ḡ. A commitment of s is generally denoted by cmt(s).

2.4. Definition of NIZK

Let R be an efficiently computable binary NP relation.
For any pair (inst,wit) ∈ R, we refer to inst as the instance
and wit as the witness. If it is computationally hard (in the
average case) to determine a witness from a statement, then
the relation is called a hard relation. For any hard relation R
we define NIZK arguments of knowledge (resp. NIZK proof)
in the random oracle model.

Definition 1 (Non-interactive Zero-knowledge Argument of
knowledge (resp. Proof) in ROM). Let pp be some public
parameters that include a computational security parameter
λ, and a statistical security parameter λst, generated in a
setup, and available to all algorithms. Let H be a hash
function with an appropriate domain/range, modeled as a
random oracle. A secure NIZK for a binary hard relation
R consists of two PPT algorithms Prove and Verify with
oracle access to H defined as follows:
• ProveH(inst,wit). The algorithm takes as input an

instance-witness pair and outputs a proof π if (inst,wit) ∈
R and ⊥ otherwise.

• VerifyH(inst, π). The algorithm takes as input an instance
inst and a candidate proof π, and outputs a bit b ∈ {0, 1}
denoting acceptance or rejection.

We call a ROM-based NIZK scheme a secure argument
of knowledge (resp. proof) if the algorithms satisfy perfect
completeness, statistical zero-knowledge in ROM and ar-
gument of knowledge (resp. statistical soundness in ROM),
defined as follows:
• Perfect completeness: For any (inst,wit) ∈ R,

Pr
[
VerifyH(inst, π) = 1 | π ← ProveH(inst,wit)

]
= 1.

• Statistical Zero-knowledge (in ROM): There must exist
a PPT simulator S such that for any (inst,wit) ∈ R the
statistical distance between the following two probability
distribution is bounded by a negligible function of λst

as long as an unbounded verifier may ask a bounded
(depends on λ, λst) number of queries to the random
oracle (simulated by S):
– Output (inst, π,QH) where π ← ProveH(inst,wit);
– Output (inst, π,QH) where π ← S ′(inst)
where S ′ returns a simulated proof π ← S(inst) on input
(inst,wit) if (inst,wit) ∈ R and ⊥ otherwise and QH

denotes the random oracle query-answer pairs made by
the verifier;

• Argument of knowledge: For all PPT adversary AH ,
there exists a PPT extractor EA such that

Pr
[
(inst,wit) /∈ R and VerifyH(inst, π) = 1 |

(inst, π)← AH(1λ);wit← EA(inst, π)
]
≤ negl(λ)

for some negligible function negl, where A’s RO queries
to H are simulated by the extractor.

• Statistical Soundness (in ROM). For any unbounded
adversary AH , that may ask a bounded numner of RO
queries to H we have that:

Pr[1← VerifyH(inst, π) ∧ inst /∈ R

| (inst, π)← AH(ppPoC)] ≤ negl(λst)

Note that, we necessarily rely on unbounded adversaries
making a bounded number of RO queries. This number,
however, may be sub-exponential in λ, λst. .

2.5. Class Groups

Castagnos and Laguillaumie [42] propose an ElGamal-
like encryption scheme using class groups. The main idea
is to use a composite order group of unknown order with
an underlying subgroup of known order where the discrete
logarithm is easy. Since then, a number of works showed
the feasibility of several cryptographic tasks [18], [43],
[67], [68] including two-party ECDSA [68], multi-party
computation [18] etc.

In this paper, we follow a presentation similar to [18].
We consider a finite abelian group Ĝ of unknown order q · ŝ
with an unknown (and hard to compute) ŝ, and known q such
that q and ŝ are co-prime; Ĝ is factored as Ĝ ≃ Ĝq × F ,
where F = ⟨f⟩ is the unique subgroup of order q. An upper
bound s̄ is known for ŝ. We also consider a cyclic subgroup
G = ⟨g⟩ of Ĝ, such that G has order q · s and s divides
ŝ – hence q and s are also co-prime. Both s, s′ are odd
and all s, s′, q are exponential in λ. Unlike Ĝ, the elements
of G are not efficiently recognizable. Gq = ⟨gq⟩ denotes
the cyclic subgroup of G of the q-th power. So, G can be
factored as G ≃ Gq × F and g = gq · f . We also consider
two distributions D and Dq over Z {gx | x← D} and {gxq |
x ← Dq}, such that they induce distributions over G and
Gq respectively, that are statistically close (within distance
2−λst) to uniform distributions over respective domains.

The framework specifies polynomial time algorithms
(CG.ParamGen,CG.Solve) with the following description:
• (q, λ, λst, s̄, f, gq, Ĝ, F,D,Dq; ρ) ← CG.ParamGen(1λ,
1λst , q). This algorithm, on input the computational se-
curity parameter λ, the statistical security parameter λst

and a modulus q, outputs the group parameters and the
randomness ρ used to generate them. For convenience, we
include the descriptions of the distributions D and Dq as
well.

• x ← CG.Solve(fx, (q, λ, λst, s̄, f, gq, Ĝ, F,D,Dq)). This
algorithm deterministically solves the discrete log in
group F .
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Hardness assumptions on class groups. We formally re-
call some of the computational hardness assumptions we
require for proving the security of our scheme. All as-
sumptions below use a common setup: for the security
parameters λ, λst ∈ N, modulus q ∈ Z consider a set
of public parameters ppCG := (q, λ, λst, s̄, f, gq, Ĝ, F,D,
Dq; ρ) ← CG.ParamGen(1λ, 1λst , q) generated using a uni-
formly random ρ.

Definition 2 (q-Hard subgroup membership assumption
[69]). Sample x

$← Dq and u
$← Zq. Sample a bit

b
$← {0, 1} uniformly at random. If b = 0, define h∗ ← gxq ,

otherwise if b = 1 define h∗ ← fu · gxq . Then we say
that the hard subgroup membership assumption holds over
the classgroup framework, if for any PPT adversary A, the
following probability is negligible in λ.∣∣∣∣Pr [b = b∗ | b∗ ← A(ppCG, h∗)CG.Solve(·)

]
− 1

2

∣∣∣∣
Definition 3 (Low order assumption [70]). Let B ∈ N. Then
we say that the low order assumption over Ĝ holds if for
any PPT algorithm A, the following probability is negligible
in λ:

Pr
[
µd = 1 ∧ 1 ̸= µ ∈ Ĝ ∧ 1 < d < B | (µ, d)

← A(ppCG)CG.Solve(·)
]

Definition 4 (Strong root assumption [70]). Sample Y
$←

Ĝq. Then we say that the strong root assumption holds over
Ĝ, if for any PPT algorithm A and any k ∈ Z the following
probability is negligible in λ:

Pr
[
Xe = Y ∧ e ̸= 2k ∧X ∈ Ĝ | (X, e)

← A(ppCG, Y )CG.Solve(·)
]

2.6. Universal Composability

We follow the Universal Composability Framework [71],
in that a real-world multi-party protocol realizes an ideal
functionality. Similar to the simplified UC framework [72]
we assume the existence of a default authenticated channel
in the real world. This significantly simplifies our definitions
and can easily be removed using an ideal authenticated
channel functionality [73].

We consider a fixed number of parties in the system
and a static corruption model, that is, neither the set
of participants nor the set of corrupt parties can change
during the execution. The corrupt parties can behave in a
completely malicious manner and may collude with each
other. When we say that a real world protocol securely
realizes an ideal world functionality, then we mean that
for all PPT adversary in the real world, there is an ideal
world adversary (simulator) such that no PPT environment
can distinguish between the ideal world and the real world’s
output that consists of the inputs to the parties, the outputs
of the honest parties and the output of the adversary. For a
formal presentation we refer to [71], [72]

3. Building Blocks

Our NI-VSS scheme is based on three building blocks
over the class groups: (i) a NIZK proof for knowledge of
exponent; (ii) a multi-receiver encryption scheme; (iii) and
a non-interactive sigma protocol that ensures compact proof
of correct secret-sharing. Next, we present them in order.

3.1. NIZK for Knowledge of exponent

Now we present our NIZK construction for knowledge
of exponents over class groups. We use a simpler variant
of different sigma protocols used in prior works [43], [70],
[74]. Similarly to those, we show that NIZK proof system
is a secure argument of knowledge (Def. 1) from two
new assumptions, hardness of finding low-order elements
(Def. 3), and hardness of finding a root (Def. 4) over group
Ĝ. Below we describe the construction.

Consider the class group parameters ppCG = (q,
λ, λst, s̄, f, gq, Ĝ, F,D,Dq; ρ) generated using
CG.ParamGen(1λ, 1λst, q), an instance inst = (gq, h) ∈
Gq×Gq and witness wit = k

$← Dq such that h← gkq ∈ Gq.
Also, consider a hash function H (modeled as random
oracle) which maps to a range [B] for an integer B = 2λ.
The set of public parameters for the proof system is defined
as ppKex ← (H,B) ∪ {ppCG}. Then the proof system
consists of the following two algorithms (for simplicity we
keep the RO notation implicit):
• Kex.Prove(ppKex, inst,wit) → π. This randomized al-

gorithm takes an instance-witness pair (inst,wit) =
((gq, h), k) as input. Then it executes the following steps:

– Samples an integer r $←− [B · |Dq| · 2λst ]
– a← grq ;
– c← H(gq, h, a) ∈ B;
– s← r + kc ∈ Z;
– Output the NIZK proof π = (c, s)

• Kex.Ver(ppKex, inst, π) → 1/0. This deterministic algo-
rithm takes an instance inst = (gq, h) and a candidate
proof π = (c, s) as input. Then:
– Check if s ≤ (2λst + 1) · B · |Dq|;
– If the above check fails output 0 and stop. Else compute

a← gsq · (hc)−1;

– Output (c ?
= H(gq, h, a)) ∈ {0, 1}.

Security. As detailed in Definition 1, a NIZK proof sys-
tem is called secure argument of knowledge if it satisfies
completeness, statistical zero-knowledge and argument of
knowledge. Completeness follows immediately. The statis-
tical zero-knowledge argument is analogous to Schnorr’s
proof over cyclic groups, except that now the simulator
needs to sample s carefully to match the range. Since we
compute it over an integer as the group order is unknown, we
need to ensure that the value s can be simulated without the
knowledge of k. For that, we rely on a statistical argument.
In particular, we choose a “mask” r randomly from a range,
which is larger than the range of kc by a factor of 2λst . So,
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to simulate, it is possible to sample s from a range such
that the simulated value is within statistical distance 2−λst

to the actual value. The argument of knowledge is more
intricate, and uses two more assumptions over class groups
– this can be done by carefully adjusting analysis from prior
works [43], [70], [74]. The main difference from Schnorr’s
proof is again that due to unknown order s is an integer.
Nevertheless, using the class group structure we can ensure
that unless the witness k is extracted, one of the low-order
or strong root assumptions is broken. Formally we prove the
following theorem.

Theorem 1. For any λ, λst ∈ N and any modulus q ∈ Z,
for a correctly generated class group parameters ppCG ←
CGE.KeyGen(1λ, 1λst, q) as long as the low order assump-
tions (Def. 3) and the strong root assumption (Def. 4) holds
over the class group Ĝ, the NIZK proof system described
above is secure argument of knowledge in the random oracle
model.

We defer the full proof to Appendix A.

3.2. Multi-receiver Encryption from Class groups

We first provide a definition of multi-receiver encryption
by simply extending from prior notions [75], [76] where the
adversary can corrupt t out of n parties and possibly know
their secrets too.

Definition 5 (Multi-receiver Encryption). Let n, t,∈ N such
that n > t. Let pp be a set of public parameters. A multi-
receiver encryption scheme consists of three algorithms
(KeyGen,Enc,Dec) with the following syntax:
• KeyGen(pp). The algorithm takes a set of system param-

eters and return a pair of keys (sk, pk).
• mrEnc(pp, p⃗k, m⃗). The algorithm takes a vector of mes-

sages and a vector of public keys to generate a vec-
tor of ciphertext of the form (R, E⃗), with the common
randomness-dependent part R and message-dependent
(and key-dependent) individual parts E1, . . . , En.

• Dec(pp, sk, (R,E)). The algorithm takes a specific secret
key sk and the corresponding ciphertext (R,E) to output
a message m.

Security. Before describing the security definition, first let
us define an admissible adversary, which chooses a corrupt
set C ⊆ [n], for which it generates keys by correctly running
(ski, pki) ← KeyGenpp for all i ∈ C. Looking ahead, this
assumption is removed in the PKI setup (cf. Section 4.1)
by making every party producing a NIZK argument of
knowledge (cf. Definition 1) of the ski for a public key pki
(in the construction pki = gski

q , so a knowledge-of-exponent
argument suffices).

We call a multi-receiver encryption scheme secure, if
for any correctly generated pp any n, t ∈ N (n > t) and
for any admissible PPT adversary A the probability that
the following experiment outputs 1 is bounded by at most
negl(λ) away from 1/2:
• Once generated, give pp to A

• From A receive C ⊂ [n]. Define t ← |C| and H ←
[n] \ C.

• For all i ∈ H run KeyGen(pp) (each time with fresh ran-
domness) to obtain {(ski, pki)}i∈H . Give all {pki}i∈H

to A. Receive {pki}i∈C from A.
• Receive challenge vectors (m⃗0, m⃗1) of length n from A

such that for all i ∈ C : m0,i = m1,i; if this does not
hold then output a random bit and abort.

• Choose a uniform random b and encrypt

(R, {Ei}i∈[n])← mrEnc(pp, {pki,mb,i}i∈[n])

.
• Receive b′ from A, output (b ?

= b′).

3.2.1. Construction of the Encryption. We present multi-
receiver encryption from class groups in this section. This
is a simple adaptation of the base scheme from [42].

Let ppCG be the public parameters generated by running
(q, λ, λst, s̄, f, gq, Ĝ, F,D,Dq) ← CG.ParamGen(1λ, 1λst, q)
for some appropriately chosen λ, λst, q. Let n, t ∈ N be
such that n > t. The multi-receiver encryption scheme is
comprised of three algorithms CGE.KeyGen, CGE.mrEnc
and CGE.Dec for generating the keys, (multi-receiver) en-
cryption and decryption, respectively:
• CGE.KeyGen(ppCG)→ (sk, h):

– sk
$←− Dq

– h← gskq
• CGE.mrEnc(ppCG, {hi,mi}i∈[n])→ (R, {Ei}i∈[n])

– r
$←− Dq

– R← grq
– For all i ∈ [n]: Ei ← fmihr

i

• CGE.Dec(ppCG, sk,R,E)→ m

– M ← E
Rsk

– m← CG.Solve(ppCG,M)

In this description, we use the notation h for the public
key instead of pk. Throughout the paper, we use them
interchangeably.
Security. The security argument of single-receiver scheme
provided in [42] can be extended easily to the multi-receiver
setting. Formally we can prove the following theorem:

Theorem 2. For any λ, λst and any modulus q ∈ Z let (q, λ,
λst, s̄, f, gq, Ĝ, F,D,Dq; ρ) ← CG.ParamGen(1λ, 1λst, q) be
a set of correctly generated class group parameters. Then,
for that set of parameters as long as hard subgroup assump-
tions (Def. 2) holds, the above multi-receiver encryption
scheme is secure according to Definition 5 for any n, t ∈ N
such that n > t.

We defer the proof to Appendix B.

3.3. Proof of Correct Secret Sharing

Looking ahead, in our NI-VSS protocol we shall require
the dealer to produce a NIZK proof of correct sharing,
where shares are encrypted with the above multi-receiver
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encryption. We essentially use the Groth’s [8] variant of
sigma protocol, adapted to our class group setting. The
overall idea, as we recall from [8], is to use Schnorr-like
proof for knowledge of exponent in a compact fashion. Note
that, the multi-ciphertext consists of a group element R = grq
and another n group elements of the form Ei = fsihr

i .
The dealer is required to prove that the encrypted messages
vector forms a legitimate t out of n Shamir’s secret sharing.
The crux of the idea is to combine these different exponents
in a way such that they are consistent with the evaluation
of t-degree secret polynomial used for secret-sharing – to
enable these DLog commitments of the secret polynomial
are used. Let us now describe the scheme in detail.

Consider any cyclic group (typically an elliptic curve)
⟨ḡ⟩ = Ḡ of prime order q. Note that Ḡ is isomorphic to F .
Also, consider hash functions (modeled as random oracles in
the proof) H,H ′ both mapping→ Zq. The public parameter
of the proof system is defined as ppPoC := {ḡ, Ḡ,H,H ′} ∪
ppCG, where ppCG ← CG.ParamGen(1λ, 1λst, q).

Now consider a secret s ∈ Zq, and let (s1, . . . , sn) be a
t out of n Shamir’s secret-sharing of s, which is generated
by randomly choosing a t-degree secret polynomial P (x)
over Zq such that P (i) = si for all i ∈ [n]. Also, denote
the coefficients of P by a0, a1, . . . , at each in Zq and cor-
responding DLog commitments over Ḡ as A0, A1, . . . , At

where Ai = ḡai for i ∈ {0, . . . , t}. The shares s1, . . . , sn are
then encrypted using the multi-receiver encryption scheme
described above as CGE.mrEnc(ppCG, {hi, si}i∈[n]; r) using
randomness r ∈ Dq (we determinize the encryption algo-
rithm here) to produce a ciphertext tuple (R, {Ei}i∈[n]). The
NIZK proof we describe below proves a hard relation RCS

that consists of instances (inst, wit) where each inst and the
corresponding witness wit are of the form:

• inst =
(
{hi}i∈[n], (R, {Ei}i∈[n]), (A0, . . . , At)

)
;

• wit = ((s1, . . . , sn), r)

such that the following holds:

• there exists a t-degree polynomial P (x) = a0 + a1x +
. . . atx

t over Zq such that for all i ∈ [n]: si = P (i); and
for all j ∈ {0, . . . , t}: Aj = ḡaj ;8

• encrypting s1, . . . , sn with randomness r using pub-
lic keys h1, . . . , hn yields the multi-receiver ciphertext
(R, {Ei}i∈[n])

Our proof of correct sharing consists of two algorithms
PoCS.Prove and PoCS.Ver, which are described in Figure 1.

Next we show that our construction (cf. Fig. 1) is a
NIZK proof in ROM (as Def. 1) by formally proving the
following theorem.

Theorem 3. For any security parameters λ, λst ∈ N and
any modulus q ∈ N, our NIZK construction described in
Fig. 1 is a secure proof system (as described in Def. 1) in
the random oracle model.

8. Note that, the coefficients a0, a1, . . . of polynomial P can be com-
puted from the evaluations s1, . . . , sn, therefore we do not include the
coefficients within the witness separately.

• PoCS.Prove(ppPoC, inst,wit)→ πCS :

– Parse wit as {(s1, . . . , sn), r}.
– Sample α,

$← Zq, ρ← [q · |Dq| · 2λst ].
– W ← gρq and X ← ḡα

– Compute:
∗ γ ← H(inst).
∗ Y ← fα ·

(
hγ
1 · h

γ2

2 . . . · hγn

n

)ρ

∈ G.
∗ γ′ ← H ′(γ,W,X, Y ).
∗ zr ← rγ′ + ρ ∈ Z.
∗ zs ← γ′ ∑n

i=1 siγ
i + α ∈ Zq.

– Finally return πCS ← (W,X, Y, zr, zs)

• PoCS.Ver(ppPoC, inst, πCS)→ 1/0 :

– Parse πCS as (W,X, Y, zr, zs).
– Compute:
∗ γ ← H(inst).
∗ γ′ ← H ′(γ,W,X, Y ).

– Verify the following equality:

∗ W ·Rγ′ ?
= gzrq ∈ Gq;

∗ X · (
∏t

j=0 A
∑n

i=1 ikγj

j )γ
′ ?
= ḡzs ∈ Ḡ;

∗ (
∏n

i=1 E
γi

i )γ
′ · Y ?

= fzs ·
∏n

i=1(h
γi

i )zr ∈ G.
– Return 1 if all of the above holds, and 0 otherwise.

Proof of Correct Sharing

Figure 1: Proof System of Correct Sharing.

We provide the proof sketch for completeness, soundness
and zero-knowledge in Section C.

4. Our Model

Communication Model. For our non-interactive construc-
tions, similar to all previous NI-VSS and NI-DKG con-
struction schemes (such as [5], [8], [37]), we assume that
every party has access to a broadcast channel. This is a
common assumption for non-interactive publicly verifiable
multiparty computation protocols [77], [78], where the ad-
versary controls the communication channel and can delay
the messages; however, it has to deliver those before the
synchrony communication bound ∆. The adversary is also
rushing and can delay the messages of the parties and
inject its own messages after observing honest nodes’ mes-
sages during the current round. Moreover, unlike interactive
VSS/DKG constructions [7], [27], [28], we do not need
any communication links between parties. Furthermore, we
consider static corruption, in that the set of corrupt parties
is fixed at the beginning of the execution and stays the same
until the end.

4.1. PKI Setup for Class-groups

Though non-interactive in the online phase, our NI-
VSS and NI-DKG protocols require a PKI setup for class-
group encryptions. Once a PKI is successfully established,
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unbounded number of non-interactive executions can take
place. Here we describe how a PKI is established for our
multi-receiver encryption scheme (cf. Section 3.2).

Protocol for PKI setup. We realize the
PKI for the multi-receiver encryption scheme
(CGE.KeyGen,CGE.mrEnc,CGE.Dec) with class-group
parameters ppCG ← CG.ParamGen((q, λ, λst, s̄, f, gq, Ĝ, F,
D,Dq)) along with the NIZK argument for knowledge of
exponent (cf. Sec 3.1), that is for a pair (x, gxq ), the NIZK
argument would produce a proof of knowledge of x given
gxq . An instantiation is provided in Section 3.1.

Suppose that the NIZK has algorithms (Kex.Prove,
Kex.Ver) and public parameters ppKex, which is consis-
tent with ppCG. Then we describe a protocol Πpp

PKI where
pp = {ppCG ∪ ppKex} as follows:
• Each party Pi executes:

– (ski, pki)← CGE.KeyGen(ppCG).
– πi ← Kex.Prove(ppKex, pki, ski).
– Broadcast (pki, πi).

• On receiving {(pkj , πj)}j ̸=i each Pi runs for all j ̸= i:
Kex.Ver(ppKex, pkj , πj). Create the list Q by including all
j for which Kex.Ver returns 1 and also include i. Output
(ski, {pki}i∈Q).

Security Argument. Now we can argue that the protocol
always terminates with a unique set of {pki}i∈Q and each
honest party Pi receiving a corresponding ski, and with
knowledge of no one else’s secret key.

First, from the security of underlying NIZK argument of
knowledge (cf. 1) we obtain that if Kex.Ver(pki, πi) returns
1 for some i, then Pi indeed has a correct key pair (ski, pki)
such that pki = gski

q ∈ Gq. The statistical zero-knowledge
guarantees that everyone only knows their own key and
nothing else. Finally, from the completeness of NIZK and
the correctness of the encryption scheme it is straightforward
to see that the protocol always terminates with a unique set
of public keys output by the honest parties.

In the following sections, when we say that we assume
a PKI setup, we imply that participants already executed
the protocol Πpp

PKI. Without loss of generality, we assume
that Q = {1, . . . , n} – this will simplify the notations.

5. NI-VSS using Class Groups

We realize cgVSS, a non-interactive verifiable secret
sharing mechanism from class groups. In Section 6 we
provide a generic transformation to a NI-DKG, instantiating
that with cgVSS we obtain a class-group based NI-DKG
protocol cgDKG.

Our cgVSS scheme first establishes a PKI setup. Once a
PKI is successfully established the online execution is non-
interactive, in that a dealer just broadcasts a single message
to the recipients in the online phase. The message contains
the class-group based multi-receiver ciphertext (Section 3.2)
and associated proofs of correct sharing (Section 3.3). Each
recipient then locally decrypt and verify the shares.

5.1. Definition:NI-VSS

Ideal Functionality FVSS. Following the UC paradigm [71]
we provide a VSS ideal functionality, that captures all the
properties we desire. The ideal functionality is described in
Figure 2.

The functionality is parameterized with a set of public
parameters pp, a cyclic group of prime order Ḡ with a uni-
form random generator ḡ; integers n, t such that n ≥ 2t+1.
It interacts with the following ideal (dummy) parties: the
dealer PD, n recipients P1, . . . , Pn a public verifier PV , and
an ideal world adversary (a.k.a. simulator) S. It initializes
a list T [sid] for any sid with all entries set to ⊤ by default.
Since we are in the static setting, the set of corrupt parties,
C is known in the beginning. Based on that we mark sid
either honest when |C| ≤ t or corrupt when |C| > t.

We discuss how the ideal functionality captures different
properties, explicitly captured (and not captured) in existing
definitions.

• Privacy. This only makes sense when PD is honest and
sid is marked honest as well. This is guaranteed by
the fact that the simulator only obtains ḡs in this case.
This is captured by virtually all existing definitions in
the literature, and also referred to as secrecy in some
of them.

• Uniqueness. For a potentially corrupt dealer, unique-
ness guarantees that, a dealing is always associated with
a unique value (which maybe ⊥ when dealing fails
to verify). Now, when sid is marked honest, then
this is captured as T [sid] is populated only once with
either a valid pair (s, ḡs) or ⊥. Also, in this case a
successful reconstruction is guaranteed, as long as the
honest parties agree to participate in the reconstruction.
When sid is marked corrupt there is a possibility
that T [sid] has (⋆, h̄). In this case, nonetheless, any
reconstruction effort fixes T [sid] to a specific (s, h̄)
such that h̄ = ḡs (as checked in Step 3(b)iB). So,
once the verifier is committed to a certain s in the
exponent through h̄, reconstruction becomes unique
and consistent. However, when sid is corrupt then a
successful reconstruction can not be guaranteed. In the
literature, similar properties have been captures and are
called uniqueness (in [47], [79]), or strong commitment
(in [80]).

• Strong Public Verifiability. This is guaranteed by
Step 4. In particular, whenever T [sid] is populated,
immediately after that any party (including the public
verifier) can verify whether the dealing succeeded or
not. Note that, in this step, the ideal adversary does
not engage, which implies if a dealer is honest, this
holds even if all recipients are dishonest (when sid is
marked corrupt). Due to this we call this property
strong public verifiability, as it holds regardless of the
corruption of the recipients. In contrast, the public
verifiability as defined in Das et al. [35] only holds
when |C| ≤ t, which is equivalent to honest sid
in our setting. Therefore, to differentiate we call our
property strong public verifiabaility.
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1) Upon (sid,Dealing, s) from PD: only if PD is honest, and T [sid] = ⊤: compute a (n, t) secret sharing
(s1, . . . , sn). Send (sid, si) to each i ∈ H and (sid, {ḡsi}i∈[n]) to everyone. Additionally send {si}i∈C to the
adversary. Set T [sid]← (s, ḡs, {ḡsi}i∈[n]). /*In this case all properties, including privacy holds, as dealer is honest
and the corruption threshold is below t+ 1. Also this facilitates “guaranteed dealing”.*/

2) Upon (sid,Corrupt-Dealing) from S: only if PD is corrupt and T [sid] = ⊤:
a) If sid is honest: wait for S to send either (sid, {si}i∈H , {h̄i}i∈[n], s), in that case set T [sid] ←

(s, ḡs, {h̄i}i∈[n]); or (sid,⊥), in which case set T [sid]← ⊥.
b) Else (when sid is corrupt): wait for S to send either (sid, {si}i∈H , {h̄i}i∈[n], ⋆), in that case reconstruct h̄

using Lagrange in the exponent from {h̄i}i∈[n] and set T [sid]← (⋆, h̄, {h̄i}i∈[n]); or S sends (sid,⊥) when set
T [sid]← ⊥.

c) In any case, if T [sid] ̸= ⊥ then send (sid, si) to each i ∈ H and (sid, {h̄i}i∈[n]) to everyone; otherwise if
T [sid] = ⊥, send (sid,⊥) to everyone.
/*In this case, a corrupt dealer can not break uniqueness. When sid is corrupt the dealing is committed via
DLog commitment.*/

3) Upon (sid,Recon) from any party P if T [sid] = ⊤ then skip. Else if T [sid] = ⊥, then reply Dealing-Failed
to P . Else:

a) Send (sid,Recon) to the simulator, and when S responds back with the same message, send it to the honest
parties {Pi}i∈H .

b) Wait for S to reply with {s̃i}i∈C , where each s̃i ∈ {si,⊥,No-Response} and the honest parties Pi to reply
with s̃i ∈ {si,No-Response} . Now based on the replies there are three cases:
i) In total at least t + 1 parties replies with si /∈ {⊥,No-Response} then reconstruct using Lagrange

interpolation to get s.
A) If T [sid] ̸= (⋆, · · · ) then check whether T [sid] = (s, ·), and if that succeeds then send back s to P ;

otherwise send back Recon-Error to P .
B) Else if T [sid] = (⋆, h̄, · · · ), check if h̄ = ḡs, if that fails send back Recon-Error, otherwise send

back s to P and set T [sid]← (s, h̄).
/*There are responses from at least t + 1 parties. However, the responses must be consistent with the
committed value during dealing in either cases.*/

ii) Else if there are ≥ t+1 i for which s̃i = No-Response then reply with Recon-Declined to P ./*Parties
decline to the reconstruction request.*/

iii) Else, reply with Recon-Error to P ./*In this case there are not enough values, and also not enough
explicit decline. This implies there is an error in the execution. It is important to distinguish this from
Recon-Declined, as in the previous case there is no error in the protocol execution.*/

4) Upon (sid,Verify, {h̄i}i∈[n]) from any party P : if T [sid] = (· · · , {h̄i}i∈i) return Dealing-Succeeded.
Otherwise, return Dealing-Failed. /*This facilitates “strong public verifiability”, in any case.*/

Figure 2: Our VSS ideal functionality Fvss

• Guaranteed Dealing. This is a new property we ob-
serve. This implies that, in no circumstances, an honest
dealer can be prevented from committing to a correct
dealing. This property is captured by our ideal func-
tionality in the same step as above, when T [sid] is
immediately populated in Step 1. Once this is populated
with a correct value, this is uniquely defined, and can
not be reconstructed to anything else, (not even ⊥).
Note that, any attempt to reconstruct to anything else
invokes a Recon-Error message. Weaker properties,
called completeness and termination are defined by Das
et al. [35]. Their completeness guarantee comes close
to this property, however, only considers an honest
majority. In fact, their interactive VSS protocol only
achieves that, falling short of the guaranteed dealing
that we consider. Their termination is basically the
same as guaranteed output delivery, as considered in

the MPC literature, and is only achievable in an honest
majority setting.

Real World NI-VSS protocol. In the real world we describe
a generic NI-VSS protocols protocol ΠNI-VSS assuming a
PKI setup. So there are n recipients P1, . . . , Pn, each Pi

knows a secret key ski, corresponding to which there is a
public key pki. There are two other parties, a dealer PD and
a public verifier PV who do not hold any secret. Everyone
knows all public keys {pki}i∈[n], in addition to the public
parameters pp. For a threshold t such that n ≥ 2t + 1 an
NI-VSS protocol consists of the following algorithms:
• Share(pp, s) → ({si}i∈[n], cmt(s), {cmt(si)}i∈[n]).

The sharing algorithm produces t out of n
Shamir’s secret shares of a value s such that
(s1 . . . , sn) = Shamirn,t,q(s) and the associated
commitments cmt(s), cmt(s1), . . . , cmt(sn). Define
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cmt← (cmt(s), cmt(s1), . . . , cmt(sn)).
• ShareEnc(pp, cmt, {si, pki}i∈[n]) → (R, {Ei}i∈[n], πCS).

On input n many shares s1, s2, . . ., the associated commit-
ments cmt, and corresponding public keys , this algorithm
outputs a multi-receiver ciphertext (R,E1, E2, . . . , En)
plus a proof of correct sharing πCS.

• Verify(pp, cmt, R, {Ei, pki}i∈[n], πCS)→ 1/0. This algo-
rithm verifies the entire ciphertext tuple with respect to
the proof πCS and the commitment to output a decision
bit.

• ShareDec(pp, ski, R,Ei) → si. The decryption algo-
rithm uses a specific secret-key ski to decrypt ciphertext
(R,Ei). Note that, only the party who posses ski can
decrypt (R,Ei).

• CmtVer(cmt, i, si) → 1/0. This algorithm checks the
consistency of the i-th opening si with commitment cmt.

In the real world protocol, ΠNI-VSS The parties execute these
algorithms and interact as described in Figure 3. Corruption
in real world is attributed to adversary denoted by A. We
consider n-bounded PPT adversaries.

Definition 6 (NI-VSS). We say an instantiation of the
protocol ΠNI-VSS a secure NI-VSS if it securely realizes the
ideal functionality FVSS in the PKI setup.

5.2. Our NI-VSS Protocol: cgVSS

In this section we provide a concrete instantiation of
a ΠNI-VSS protocol based on the multi-receiver encryption
scheme (cf. Section 3.2), a corresponding proof of correct
sharing (cf. Section 3.3) in the class group setting, assuming
a PKI setup for class-groups (cf. Section 4.1). The instantia-
tion is provided in Figure 4. We call our instantiation cgVSS.
We prove the following theorem:

Theorem 4 (Security of cgVSS). cgVSS is is a secure
NI-VSS assuming a PKI for class-groups as long as the un-
derlying multi-receiver encryption scheme is secure (Def 5)
and the NIZK proof of correctness is a secure proof system
(Def 1).

Proof. Consider four mutually exclusive and exhaustive
cases:

• CASE-1 When PD is honest and |C| ≤ t.
• CASE-2 When PD is corrupt and |C| ≤ t.
• CASE-3 When PD is corrupt and |C| > t.
• CASE-4 When PD is honest and |C| > t.

For each Case-i we construct a separate simulator Si.
Our actual simulator S first obtains ppCG by running
CG.ParamGen and then invokes the PKI setup with the
adversary by choosing secret keys {ski}i∈H for the honest
parties. At the end it receives all public keys {pki}i∈[n].
Then it simply runs Si with input ppCG, {pki}i∈[n] based
on which case it is in – since we are in the static corruption
model, this will be known in the beginning. We describe
each simulators in details now, and argue that why the
simulation is correct.

• Input. Only the dealer PD has an input s ∈ Zq.
• Dealing. The dealer PD executes:

– ({si}i∈[n], {aj}j∈[t], cmt)← Share(pp, s)
– Compute (R, {Ei}i∈[n], πCS) ← ShareEnc(pp,
{si, pki}i∈[n])

– Broadcast dealing D = (R, {Ei}i∈[n], cmt, πCS)
to all receivers {Pi}i∈[n].

• Receiving. Each recipient Pi for i ∈ [n], on receiving
D performs the following steps:
– e ← Verify(pp, {pk}i∈[n], D) where D = (R,
{Ei}i∈[n], cmt, πCS)

– If e = 1 then si ← ShareDec(pp, ski, R,Ei) and
define yi ← si as its share corresponding to the
dealing D; otherwise, if e = 0 reject dealing D,
and set yi ← ⊥.

– Each recipient has a private output yi.
– Parse cmt as (A0, . . . , At). The common pub-

lic output is (h̄1, . . . , h̄n) where each h̄i ←∏j=t
j=0 A

ij

j .
• Reconstruction. Any party P can broadcast a re-

construction request. On receiving a reconstruction
request each recipient Pi may broadcast share yi. On
receiving the shares yj , the requester P executes:
– For each j, if yj ̸= ⊥ then check bj ←

CmtVer(cmt, j, sj). Set yj ← ⊥ if bj = 0.
– If there are at least t + 1 j (including when

P = Pj) for which yj ̸= ⊥, then reconstruct y
by choosing any t + 1 yj’s (maybe chosen in a
lexicographic order). Otherwise set y ← ⊥.

Figure 3: The generic NI-VSS protocol in the PKI.

Case-1. For simplicity suppose that |C| = t (the other cases
can extended in a straightforward manner). The simulator
S1 obtains ({si}i∈C , {h̄i}i∈[n]) in this case and works as
follows:

• Define (A0, . . . , At) by using a linear transformation
from n evaluations to t+1 coefficients in the exponent.
Let cmt← (A0, . . . , At).

• Let s′i ← 0 for all i ∈ H . and s′i ← si for all i ∈ C.
• Compute (R, {Ei}i∈[n], πCS) ← ShareEnc′(pp, cmt,
{s′i, pki}i∈[n]) where ShareEnc′ is the same as
ShareEnc (as described in Fig. 4) except that the proof
πCS is generated using the zero-knowledge simulator
SPoC.

• Send (R, {Ei}i∈[n], πCS, cmt) to the adversary.
• On receiving (sid,Recon) from the ideal functionality,

it forwards the reconstruction request to the adversary
and then when adversary sends back {s′i}i∈C′ for C ′ ⊆
C, define s̃i ← No-Response for all i ∈ C\C ′. Then
for each i ∈ C ′ checks whether ḡs

′
i = h̄i. If not, then

set s̃i ← ⊥, else set s̃i ← s′i. Finally sends {s̃i}i∈C to
FVSS.

To argue the simulation is correct we start from the real
protocol and through a number of hybrids gradually move
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to the ideal world. The hybrids are described as follows:
• Hybrid Hyb1. This hybrid is the same as cgVSS, except

that the proof of correctness πCS is now simulated, and
thus is independent of the witness wit = ((s1, . . . , sn), r).
Syntactically, instead of ShareEnc in Step 2, ShareEnc′

(as defined above) is run. This step is statistically close
to the real world execution of cgVSS, which follows from
the statistical zero-knowledge property of the proof of
correctness.

• Hybrid Hyb2. This hybrid is the same as Hyb1 except
that now, the secret s is not known, and the honest party’s
shares are defined to be 0.
We provide the details below with the changes highlighted
in blue.

1) Denote the set of corrupt parties by C ⊂ [n] such that
|C| ≤ t and n /∈ C (the dealer is not corrupt). Define
the set of honest parties as H ← [n] \ C.

2) Sample a uniform random s
$← Zq. Run

({si}i∈[n], {aj}j∈[t], cmt)← Share(pp, s),

where cmt = (A0, . . . , At).
3) For all i ∈ [n] sample s′i

$← Zq if i ∈ C, and s′i ← 0 if
i ∈ H . Furthermore, use A0 and {si}i∈C to re-define
cmt = (A0, A1, . . . , At) using Lagrange interpolation
in the exponent.

4) Compute (R, {Ei}i∈[n], πCS) ← ShareEnc′(pp, cmt,
{s′i, pki}i∈[n]), where πCS is a simulated proof.

5) Then give the following to A:
(
R, {Ei}i∈[n], cmt, πCS

)
6) The rest remains unchanged.
We prove that:
Lemma 5. Hyb1 and Hyb2 are computationally indistin-
guishable as long as the underlying multi-receiver encryp-
tion scheme is secure.
Proof. For any adversary A that distinguishes between
the hybrids we construct an admissible reduction which
breaks the security of underlying multi-receiver encryp-
tion scheme as follows:
– Obtain ppCG from the challenger.
– Send C to the challenger obtain {pki}i∈H .
– Sample appropriate ppKex for the NIZK argument of

knowledge to be used in the PKI setup. Let pp ←
{ppCG ∪ ppKex}. Then run a PKI setup protocol Πpp

PKI
to obtain {pki}i∈C

– Obtain ppCG and n public keys pk1, . . . , pkn from the
encryption challenger. Send C to the challenger to get
back {ski}i∈C . Sample additional public parameters to
compute ppPoC for the proof of correct sharing scheme
such that they are consistent with ppCG. Give ppCG ∪
ppPoC ∪ {pki}i∈[n] ∪ {ski}i∈C to A.

– Send m⃗0 and m⃗1 to the challenger where m⃗0 and m⃗1

are computed as follows:

∗ Sample s
$← Zq and si

$← Zq for all i ∈ C. Using
Lagrange interpolation compute {si}i∈H .

∗ For all b ∈ {0, 1} and all i ∈ C set mb,i = si.
∗ For all i ∈ H set m0,i ← si and m1,i ← 0.

– When the challenger returns (R, {Ei}i∈[n]), compute:
∗ cmt ← (A0, . . . , At) computed by linear transfor-

mation to coefficients in the exponent.
∗ Use the zero-knowledge simulator SPoC of the proof

of correct sharing to generate a simulated proof πCS

using the instance:(
{hi}i∈[n], (R, {Ei}i∈[n], cmt)

)
– Send the following to A:(

R, {Ei}i∈[n], cmt, πCS

)
– When A concludes Hyb1 return 0 to the challenger, and

in case A concludes Hyb2, then send 1.
It is easy to argue that if b = 0, A’s view is the same as
in Hyb1, and when b = 1, that is the same as in Hyb2. So
the probability of A’s breaking Hyb1 and Hyb2 is upper
bounded by the probability of the reduction’s breaking the
security of the encryption. This concludes the proof.

Finally we note that Hyb2 is identical to the ideal world is
we just use the simulator S1 instead, as the change is only
syntactic. This concludes the analysis for this case.

Case-2. The simulator S2 works as follows:
• Run ΠPKI with appropriate parameters to get {pki}i∈[n]

and {ski}i∈H .
• Once receive (R, {Ei}i∈[n], πCS, cmt) from the adver-

sary. Parse cmt as (A0, . . . , At). Verify πCS, if that fails
then send (sid,⊥) to FVSS in Step 2a. Otherwise:
– Decrypt using {ski}i∈H to obtain {si}i∈H . The use

Lagrange to compute {si}i∈C . Since there are at
least t + 1 honest parties, reconstruction of all si
is possible. Compute {h̄i}i∈[n] by computing lin-
ear transformation to n evaluations in the exponent
from (A0, . . . , At). Send (sid, {si}i∈H , {h̄i}i∈[n], s)
to FVSS in Step 2a.

• For a (sid,Recon) query, communicate with the adver-
sary about reconstruction. When adversary sends back
{s′i}i∈C′ for C ′ ⊆ C, define s̃i ← No-Response for
all i ∈ C \ C ′. Then for each i ∈ C ′ checks whether
ḡs

′
i = h̄i. If not, then set s̃i ← ⊥, else set s̃i ← s′i.

Finally sends {s̃i}i∈C to FVSS.
To analyze the correctness of simulation we rely on the
soundness of the NIZK proof of correct sharing and the
binding of DLog commitments. In particular, the soundness
ensures that as long as the proof πCS verifies correctly, the
dealer’s message encrypts a share s correctly. Therefore,
using Lagrange interpolation to construct all shares is indeed
correct. Furthermore, the binding of cmt ensures that, as
long as dealing succeeds the session’s secret is uniquely
defined, and hence any effort to reconstruct to another value
is bound to fail.
Case-3. This is similar to Case-2, but now sid is corrupt
and hence the simulator, after PKI has less than t + 1
secret keys {ski}i∈H for |H| < t + 1. Therefore, once it
obtains the message (R, {Ei}i∈[n], cmt, πCS), it first checks
the proof πCS – if that fails then send (sid,⊥) in Step 2b,
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otherwise it obtains < t + 1 values {si}i∈H and send
(sid, {si}i∈H , {h̄i}i∈[n], ⋆), where {h̄i}i∈[n] are computed
from cmt by linear transformation in the exponent. Further-
more, when (sid,Recon) is received, then it ensures that
the response is consistent with the committed value h̄ = ḡs.
So, the correctness follows again from the soundness of
the proof of correct sharing plus the binding of the DLog
commitment. We skip the details.
Case-4. In this case, the simulator obtains (sid, s) in Step 1.
This means, there is no privacy of s and the simulation
becomes straightforward for this part. However, the (sid,
Recon) is handled just like the above. This ensures guar-
anteed dealing, because as long as there are at least t + 1
parties who are willing to reconstruct, the value s can be
(uniquely) reconstructed. Furthermore, even if reconstruc-
tion is not possible, that is either Recon-Declined or
Recon-Error is returned, the corrupt parties can not
prevent a successful (public) verification, as in this case
T [sid] ̸= ⊥. Dealing-Failed is returned by FVSS if
and only if T [sid] = ⊥.

6. NI-DKG using Class Groups

An NI-DKG protocol can be thought of as a symmetric
extension of NI-VSS, with the crucial difference that no
one knows the secret in NI-DKG. Indeed, following prior
works (e.g. [7], [8], [28]), we construct NI-DKG by using
our NI-VSS scheme in Figure 4. First we provide a simple
new definition of DKG in the universal composability (UC)
framework [71]. The ideal functionality FDKG is depicted
in Fig. 5. To avoid confusion with encryption public keys
we denote the output of the functionality as follows: joint
(resp. individual) public key by y (resp. yi) and secret keys
by xi. Then we provide a generic construction (which is
essentially the same as [8]) in Fig. 6 in the FVSS hybrid
model and prove that it satisfies the UC definition.
Different guarantees by FDKG. The functionality provides
different guarantees depending on the modes. In particular,
when n ≥ 2t + 1 and t′ = |C| ≤ t, then the mode is
set STRONG, in which the functionality achieves guarantees
such as privacy and robustness and public verifiability. In
contrast, the WEAK mode only offers public verifiability.
Informally, public verifiability guarantees that, from the
transcript of the protocol anyone (even outside the system)
can verify whether {yi}i∈[n]’s exponents are indeed t out
of n secret sharing of y. The lack of robustness in WEAK
mode is captured in Step 4, which allows the simulator to
abort only in this case. Since this is not allowed in STRONG
mode, that offers robustness.

Privacy follows from the fact that, in STRONG mode
the simulator never obtains the secret keys for the honest
parties, whereas in WEAK mode, the simulator gets their
initial dealings (Step 1(a)ii) and hence can learn all secrets.
However, it is important to note that, the secret can not
be biased in this case, as the simulator only obtains the
secrets after it sends the commitments of the corrupt party’s
secrets. On the flip side this puts a restriction on our

• Ingredients. The NI-VSS algorithms described be-
low uses the following ingredients.
– A multi-receiver encryption scheme (cf.

Section 3.2) with algorithms (CGE.KeyGen,
CGE.mrEnc,CGE.Dec) and public parameters
ppCG.

– An associated proof system of correct
sharing (cf. Section 3.3) with algorithms
(PoCS.Prove,PoCS.Ver) and public parameters
ppPoC, which is consistent with ppCG.

• Public parameters. The public parameter pp is de-
fined as pp← ppCG ∪ ppPoC.

Construction
• Share(pp, s)→ ({si}i∈[n], cmt):

– Sample aj
$←− Zq, j ∈ [t].

– Set a0 ← s.
– Define P (x) = a0 + a1x+ . . .+ atx

t.
– For each i ∈ [n]: set si ← P (i).
– Compute for all j ∈ {0, . . . , t}: Aj ← ḡaj .
– Set cmt← {A0, . . . , At}.

• ShareEnc(pp, cmt, {si, pki}i∈[n]) → (R, {Ei

}i∈[n], πCS)/⊥.

– Sample r
$← D

– Compute (R, {Ei}i∈[n]) ← CGE.mrEnc(ppCG,
{hi, si; r}i∈[n]).

– Define:
∗ inst =

(
{hi}i∈[n], (R, {Ei}i∈[n]), cmt

)
.

∗ wit = ((s1, . . . , sn), r).
– Compute πCS ← PoCS.Prove(ppPoC, inst,wit).

• Verify(pp, cmt, R, {Ei, pki}i∈[n], πCS)→ 1/0:
– Parse inst←

(
{hi}i∈[n], (R, {Ei}i∈[n]), cmt

)
.

– Output PoCS.Ver(ppPoC, inst, πCS).
• ShareDec(pp, ski, R,Ei)→ si:

– Compute si ← CGE.Dec(ppCG, ski, R,Ei).
– CmtVer(cmt, i, si) → 1/0: Parse cmt as

A0, . . . , At. Check if ḡsi ?
=

∏j=t
j=0 A

ij

j .

Figure 4: Concrete instantiation of cgVSS

adversarial model, as the adversary has to be non-rushing in
this case, and in that case the so-called key-biasing is out
of scope. One may contemplate a weaker definition where
the simulator gets honest party’s secret before it sends the
corrupt party’s commitments. This would let us work with
rushing adversaries as well. However, in that case it is not
only impossible to prevent biasing against public-key, but
also against secret-key. In particular, the rushing adversary
may just choose the corrupt secrets once it obtains all the
honest secrets, setting the final secret to, for example, 0.
Such a guarantee seems to be useless.

Finally, note that in either mode public verifiability is
guaranteed as noted in Step 5. In STRONG mode public
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verifiability is captured easily, because the secret sharing
executed by the functionality itself, and the list L has an
entry only if that is done correctly. However, it is more
involved to see in the WEAK mode, because in that mode
the entries in L is defined by the simulator. Nevertheless,
in Step 3a, the ideal functionality checks that whether the
values returned by the simulator indeed forms a t out of
n secret sharing of y.9 So, similar to VSS, we can refer
to this as strong public verifiability, as opposed to simply
public verifiability, which was considered only in a setting
equivalent to our STRONG mode.

Our definition compared to state-of-art. Our definition
differs from prior UC-based DKG definitions [9], [47],
[48], [49] significantly. This is because, first we formally
capture the strong variant of public verifiability separately
for the first time (as far as we know). We handle two modes
STRONG and WEAK within a single functionality in a more
fine-grained manner. Furthermore, our definition (only in the
STRONG mode) allows biasing of the final public key y in a
manner, as described in Gennaro et al. [7]. Nevertheless, as
also shown in earlier works, this weaker definition suffices
for many threshold applications such as threshold Schnorr’s
signature [7], BLS [44] etc. while offering efficiency benefit.
In fact, as we show in Appendix E, that our definition sat-
isfies the so-called oracle-aided simulatability requirement
as defined by Bacho and Loss [44] which is sufficient for
many important applications. We note that, though Bacho
and Loss showed that a number of prior interactive DKG
(such as JF-DKG [81]) satisfies the required oracle-aided
simulatability, our definition is the first formalization that
captures the biasability of the joint public key in the UC
model. We briefly discuss Appendix D the measures to
remove this “biasability” with a two round protocol. We
note that a recent work by Katz [50] also captures this in a
slightly different manner.

We note that, although the joint public key y can be
biased towards a specific value, it is not possible for the
adversary to execute a more devastating attack. For example,
the adversary can not predict x with non-negligible proba-
bility. This is captured by our functionality, as given the ḡsi

values for honest i, the simulator may fix y = ḡx, but then
x =

∑
i∈H si +

∑
i∈C si. So, predicting x implies knowing∑

i∈H si which is hard due to discrete log over Ḡ.
Our protocol uses a generic transformation from any NI-

VSS scheme to a NI-DKG scheme. This transformation is
sort of “g=folklore” and was used in [8]. The basic idea is
quite simple: each party Pi now runs an NI-VSS instance
using her own secret si; after the completion of the protocol,
si is computed by linearly combining own share of si
with shares of sj received from other Pj . We present the
generic protocol in FVSS-hybrid in Figure 6. When FVSS is
instantiated with cgVSS we call the resulting DKG protocol
cgDKG.

We prove the following theorem formally.

9. This can be done by, for example, a simple linear code check in the
exponent akin to [6].

Theorem 6 (Security of Generic DKG). For parameters
n, t ∈ N such that n ≥ 2t + 1, the generic DKG protocol
securely UC-realizes FDKG in FVSS-hybrid for the following
adversary:

• Any t-bounded PPT adversary.
• Any n-bounded non-rushing PPT adversary.

Proof. We analyze two different modes. First let us consider
the STRONG mode when n ≥ 2t+ 1 and t′ = |C| ≤ t. For
simplicity assume t′ = t.

Specifically, for any PPT adversary A that corrupts a set
C of size ≤ t in the real protocol cgDKG, we construct a
PPT simulator S in the ideal world. The simulator simu-
lates the honest party’s response and the ideal functionality
FVSS’s response to the adversary. It works as follows:

• Obtain {h̄i}i∈H from FDKG. For each i ∈ H:
– Choose {sij}j∈C uniformly at random. Note that

these value together with h̄i uniquely defines all
{sij}j∈[n].

– Compute h̄ij for all j ∈ [n] using Lagrange in the
exponent.

– Send (sidi, {h̄ij}j∈[n], {sij}j∈C) to the adversary.
• For all i ∈ C (assuming, for simplicity, no ⊥ is

returned) receive (sidi, si, {sij}j∈H , {h̄ij}j∈[n]) or ⊥
from FVSS. Reconstruct {h̄i}i∈C using Lagrange in the
exponent. Send {si}i∈C to FDKG.

• Get back {(y, {yi}i∈[n]), {xi}i∈C} from FDKG, which
it outputs.

• Store (sid, {yi}i∈[n], {h̄ij}i,j∈[n]).
• In response to (sid,Verify, {yi}i∈[n]) then look up

an (sid, {yi}i∈[n], {h̄ij}i,j∈[n]), if not found output 0,
otherwise check whether each yi =

∏
j∈[n] h̄ij for all

i ∈ [n]. If all of them satisfies, then output 1, else
output 0.

The simulation is correct because we are in the setting when
t′ ≤ t, which means the simulator can choose the corrupt
party’s shares uniformly at random given each honest party’s
commitments.

In the WEAK mode, we assume a non-rushing adversary.
So, the simulator obtains for all i ∈ C (sidi, {sij}j∈H ,
{h̄ij}j∈[n]) (or ⊥, but for simplicity we assume it does not
receive any ⊥) from multiple instances of FVSS before it
sends anything to the adversary. Then the simulator works
as follows:

• Obtain {si}H from FDKG.
• For all i ∈ H: send (sidi,Dealing, si) to FVSS. Get

back {sij}j∈H and {h̄ij}j∈[n].
• For all i ∈ H compute xi ←

∑
j sij and for all i ∈ [n]

compute yi ←
∏

j∈[n] h̄ij .
• Send (sid, {xi}i∈H , {yi}i∈[n]) to FDKG.
• Store (sid, {yi}i∈[n], {h̄ij}i,j∈[n]).
• It may send (sid,Failure) in certain cases, for ex-

ample if t′ = n and all corrupt party returns ⊥.
• In response to (sid,Verify, {yi}i∈[n]) then look up

an (sid, {yi}i∈[n], {h̄ij}i,j∈[n]), if not found output 0,
otherwise check whether each yi =

∏
j∈[n] h̄ij for all
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The ideal functionality FDKG interacts with n+1 ideal parties P1, . . . , Pn, Pv and an ideal adversary, the simulator S.
The functionality is also parameterized with a reconstruction threshold t < n and a group ⟨ḡ⟩ = Ḡ of prime order q
where discrete log is hard. Since we assume a static corruption setting, we consider another parameter t′ = |C|, that
denotes the number of corrupted parties (also define H = [n]\C). The functionality works in two modes STRONG and
WEAK. If n ≥ 2t+ 1 and t′ ≤ t it sets the mode to STRONG, otherwise it sets to WEAK mode. It works as follows:
1) Upon receiving (sid,Dealing) from all n parties: only if sid is unmarked then:

a) For each i ∈ H choose a uniform random si
$← Zq. Then:

i) If mode is STRONG then send {ḡsi}i∈H to S./*In this mode S gets only the commitments, so privacy holds.*/
ii) Else, when mode is WEAK wait for the simulator to send {ḡsi}i∈C . Then send {si}i∈H to S. /*In this mode,

privacy is not guaranteed since sis are provided to the simulator.*/
2) Upon (sid, {si}i∈C ∈ Zq, ) from S: only if (i) sid is marked Live; (ii) and the mode is STRONG:

a) Initialize a set V , and include i into V only if si ̸= ⊥.
b) Compute s =

∑
i∈H∪V si.

c) Choose uniform random t-degree P (x) ∈ Zt
q[x] subject to P (0) = s. Set x← s and y ← ḡs. Also set yi ← ḡxi

where xi ← P (i) for all i ∈ [n].
d) Finally send (xi, yi, y) to party i ∈ H; (sid, y, {yi}i∈H∪V , {xi}}i∈V ) to S and y to Pv.
e) Mark sid End and store (sid, {yi}i∈[n]) into a list L.
/*This mode offers robustness, privacy and public verifiability.*/

3) Upon (sid, y, {xi}i∈H , {yi}i∈[n]) from S: only if (i) sid is marked Live; and (ii) the mode is WEAK:
a) Let y = ḡx and {yi = ḡxi}i∈[n], where x and {xi}i∈C are unknown. Check whether xi’s are a t out of n

Shamir’s secret sharing of x. This can be checked in the exponent, for example, by choosing a random linear
code in the orthogonal space defined by y0, . . . , yn. If this check fails skip. Else go to the next step.

b) Send(xi, yi, y) to party i ∈ H .
c) Send y, {yi}i∈[n] to Pv.
d) Mark sid End and store (sid, {yi}i∈[n]) into a list L.
/*This modes guarantees only public verifiability.*/

4) Upon (sid,Failure) from S: only if (i) sid is marked Live; and (ii) the mode is WEAK: then send ⊥ to everyone
and mark sid End./*In the WEAK mode, abort is allowed, so robustness does not hold.*/

5) Upon (sid,Verify, {yi}i∈[n]) from any party P: return 1 if and only if ∃ (sid, {{yi}i∈[n]}) ∈ L and 0 otherwise./*In
all modes public verifiability holds.*/

Figure 5: The ideal functionality FDKG

i ∈ [n]. If all of them satisfies, then output 1, else
output 0.

In this case, the simulator obtains honest party’s dealings,
only after it sends corrupt party’s commitments. This is
exactly the reason a non-rushing restriction is needed. Apart
from that, the simulation is very similar to the STRONG case.

7. Experimentation and Performance Analysis

Implementation and Setup. We implement cgVSS in C++
using the BICYCL library [82] for class groups, Miracl C++
library for cryptographic operations with ∼ 1858 lines of
code. For comparison, we adapt and realize a version of
the implementation of GrothVSS without forward secrecy
in Rust in ∼ 4178 lines of code (available at the link https:
//github.com/Entropy-Foundation/class-group)

We run the experiments with each node realized on
a Google Cloud Platform (GCP) instance with an Intel
Xeon 2.8GHz CPU with 16 cores and 16GB RAM. We
use HotStuff state machine replication [83] to realize the

broadcast. Our SMR instance is realized over four GCP
instances separate from the DKG nodes. All the reported
timings are averages over 10 runs of the protocols.

Communication/Storage Overhead. In cgVSS, the dealer
generates 256-bit shares for each party in the system and
encrypts them. The encryption of each share consists of two
elements (c, d), where c is the exponentiated randomness.
In the multi-receiver encryption mechanism, the random-
ness can be reused across multiple receivers. Hence while
encrypting the share values for n receivers, the dealer uses
one element for randomness and n elements for the second
element of the encryption tuples. Each element in the com-
pressed form takes 1752 bits. The dealer commits to the
t coefficients of the polynomial. Hence the total bit-length
length for the multi-receiver encryption and commitments
is (1752) · (n + 1) + 384 · t. For the proof of correctness,
the dealer also forwards 5 elements, including two class
group elements, one elliptic curve element, and two scalars.
Figure 7 shows the total bit-length of the dealing (the
broadcast message). For 100 users, the dealer broadcasts
a message (dealing) of length 201.55Kb whereas, for 150
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Ingredients and parameters. We consider n parties
P1, . . . , Pn are running this protocol with a threshold
t < n/2 in FVSS hybrid. We also consider a separate
public verifier Pv. The functionality is parameterized
by a cyclic group of prime order p with generator ḡ.

Protocol
Dealing. Each party Pi, upon a dealing request
(sid,Dealing), sample si

$← Zq and send
(sidi,Dealing, si) to FVSS where sidi ← (sid, i).
Then:

• For all j ∈ [n] \ {i} receive (sidj , sji,
ḡsj1 , . . . , ḡsjn) or ⊥ from FVSS. Let U denote the
set of j ∈ [n] for which ⊥ is not returned. Also
append i to U .

• Compute the secret key share xi ←
∑

j∈U sji and
individual public key yi ←

∏
j∈U ḡsji .

• Finally compute the system public key y by La-
grange in the exponent from (y1, . . . , yn).

• Store (sid, {yi}i∈[n], {h̄ij}i,j∈[n]) where h̄ij =
ḡ
sj
i .

Public Verifying. Any party P ∈ {P1, . . . , Pn, Pv}
upon input (sid,Verify, {yi}i∈[n]):

• Look up for ({yi}i∈[n], {h̄ij}i,j∈[n]).
• For all i ∈ [n] Send (sidi,Verify, {h̄ij}j∈[n]) to
FVSS.

• If there is at least one Dealing-Succeeded
response, then output 1, otherwise output 0.

Figure 6: Our DKG protocol cgDKG in FVSS-hybrid

users, it is 297.82Kb (vs 1.66MB for GrothVSS).

Computation Overhead. Figure 8 shows the time taken
by the dealer and the receiver in the cgVSS protocol. The
dealer’s computation time includes the time to generate the
multi-receiver ciphertext and the NIZK proof of correctness
whereas a receiver’s computation time includes the decryp-
tion time and the time for proof verification. We use multi-
exponentiation to compute the product of multiple exponen-
tiated values in the generation and verification procedures
of the proof of correct sharing. For a 100 party system, the
dealer takes 117 msec for generating the ciphertext and 230
msec to generate the proof, whereas for a 150 party system,
it takes 176 msec for encryption and 312msec for the proof
generation. The decryption takes 38 msec, while the proof
verification takes 661 msec for a 100 user system and 1.18
sec for a 150 party system (the decryption time stays the
same irrespective of the number of parties). Figure 8b shows
the total receiver times taken by the party to verify the
sharing and decrypt their shares.

In GrothVSS, to encrypt a share value, (assume) each
share is divided into 24 chunks and encrypted individually.
The ElGamal encryption constitutes two group elements;
however, since the randomness is re-used across different
users, the total number of elements for randomness is 24,
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Figure 7: Comparison of broadcast (dealing) message length
where n = 2t + 1. cgVSS dealing consists of encryptions
and proof of correct sharing, while GrothVSS also consists
of proof of correct chunking.
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(a) Comparison of dealer times. cgVSS dealer time consists
of times for encryption and proof of correct sharing, while
GrothVSS also involves proof of correct chunking.
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(b) Comparison of receiver times. cgVSS receiver time consists
of decryption time and verification of correct sharing, while
GrothVSS also involves verification of correct chunking.

Figure 8: Comparison of dealer and receiver times for
cgVSS and GrothVSS.

amounting to 24∗381 = 9144 bits. For n users, the total bit-
length of ciphertexts is 9144 · (n+1), including the random
values. The dealer also commits to the t coefficients of the
polynomial, which amount to 257 · t. The dealer generates
the NIZK proof of correctness of sharing, which constitutes
3 multiplicative group elements and two scalars of 381 bits
each. GrothVSS uses the BLS12-381 curve, and hence the
elements are 381 bits each. The dealer also generates proof
of the correctness of chunking by showing that each ‘chunk’
is in a small range of values. For this, an approximate
range proof is employed where the dealer forwards a set of
elements, including 2ℓ + 2 group elements for a parameter
ℓ and ℓ + n + 1 masked values of the chunks. Taking a
conservative estimate of 32 bits for the masked chunk value
summations, we have the total bit-length of the approximate
range proof to be (2ℓ+ 2) · 381 + (ℓ+ n+ 1) · 32.

The total bit-length of the broadcast message (see Fig-
ure 7) for GrothVSS for a 150 party is 1.66Mb. This
indicates a 5.6x improvement in total broadcast message
length while using cgVSS when compared to GrothVSS for
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a 150 party system. The comparison also indicates that the
broadcast message length increases slower in cgVSS when
compared to GrothVSS. In GrothVSS, for a 100 party
system, the dealer takes 194 msec for generating ciphertexts,
74 msec for generating the proof of correct sharing, and
2.67 sec for generating proof of correct chunking; the corre-
sponding numbers for a 150 party system are 282 msec, 110
msec and 4.34 sec respectively. For decrypting their share,
each receiver decrypts all the corresponding chunks, which
amounts to 338 msec. For verification, in a 100 party system,
the receiver takes 389 msec for proof of correct sharing and
1.485 sec for proof of correct chunking; for a 150 party
system, the receiver takes 895 msec for proof of correct
sharing and 2.19 sec for the proof of correct chunking.

To also give a sense of how the scheme compares to
other existing state-of-the-art PVSS schemes, we briefly
mention the timing reported by Gentry et al. [40] for their
LWE-based PVSS scheme. We present their reported num-
bers, though their performance has been evaluated on a more
powerful machine (with 32 cores and 250GB RAM) com-
pared to our benchmarks (10 core 16GB RAM machine).
For 128 parties, their system takes 4.2 sec for generating
ciphertexts and 22.9 sec for generating the proof of correct-
ness of sharing totaling 27.1 sec of dealer time, whereas for
256 parties, the total dealer time is 28.1 sec. The receiver
takes 1.4 msec to decrypt and 15.3 sec to verify the dealing
totaling 15.301 sec. The total receiver time for 256 parties
is 15.901 sec.

End-to-end Protocol Analysis. We realize the cgDKG and
GrothDKG protocols and compare them. Figure 9 compares
the time taken by each node in each DKG instance; it is the
time taken from the start of dealing to the computation of the
system public key after verifying t+ 1 valid dealings. The
nodes publish the encrypted shares and commitments using
the HotStuff [83] SMR. The SMR is realized separately from
the DKG nodes, which communicate with the SMR through
RPC calls. For 10 nodes, GrothDKG takes 3.434 seconds,
with cgDKG taking 2.656 seconds. For a 50 node network,
GrothDKG takes 43.058 seconds while cgDKGtakes 17.950
seconds. From Figure 8 and Figure 9, it can be observed
that the SMR takes significant time in the overall end-to-
end scenario, and the optimizations in SMR usage (block
rate, dummy blocks etc) would improve the performance.

In summary, our performance analysis demonstrates that
cgDKG is efficient and continues to perform significantly
better than GrothDKG with an increasing number of nodes
in the system. Moreover, as we improve class-group imple-
mentation in the future, we expect the performance of our
cgDKG to improve further.

8. Conclusion

In this work we propose a class-group based NI-VSS
protocol. In particular, we show how the unique structures
provided by class-groups can be used to achieve not only
a significantly simpler protocol, but also a more efficient
one. The generic transformation yields a simpler and more
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Figure 9: Comparison of time taken to perform a DKG.
GrothDKG is realized using GrothVSS where each party
acts as a dealer and runs an instance of GrothVSS. The
times reported are aggregates of time taken from starting of
dealing and computation of public key by each node, across
nodes; 10 such DKG runs are aggregated.

efficient NI-DKG protocol as well. Incorporating class-
group techniques to the regime of VSS/DKG is the primary
contribution of this work.

Additionally, we explore and re-interpret the semantic
of “public verifiability” from the literature in the context of
VSS/DKG. With the growing prominence of threshold cryp-
tography, the importance of the pubic verifiability property
cannot be overstated. We provide the first formalization of
a new public verifiability property (we called strong public
verifiability to distinguish it from the prior notions), noticing
its significance in specific VSS/DKG applications, and also
the lack of rigorous formalization in the literature. We be-
lieve our new comprehensive and detailed formalism holds
independent significance for the broader field of threshold
cryptography.
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Appendix A.
Security of NIZK proof of exponent over class
group

We recall the construction from Section 3.1. We restate
the theorem.
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Theorem 7. For any λ, λst ∈ N and any modulus q ∈ Z,
for a correctly generated class group parameters ppCG ←
CGE.KeyGen(1λ, 1λst, q) as long as the low order assump-
tions (Def. 3) and the strong root assumption (Def. 4) holds
over the class group Ĝ, the NIZK proof system described
above is secure argument of knowledge in the random oracle
model.

Proof. Since completeness is immediate. We focus on sta-
tistical zero-knowledge and knowledge of argument in order.
Statistical Zero-knowledge. We build a simulator S as
follows:
1) Input: (gq, h) ∈ Gq ×Gq.
2) Sample a uniform random s

$← [2λst · B · |Dq|].
3) Sample a uniform random c

$← B
4) Compute a← gsq · (hc)−1.
5) Program the random oracle H(gq, h, a) = c.
6) Output π ← (c, s)

Now note that, the proof (c, s) satisfies the verification
test, because (i) s is in the correct range; (ii) the equation
in Step 4 holds and (iii) the random oracle is correctly
programmed in Step 5. Note that, if a malicious verifies
makes QH many RO queries, then the probability of suc-
cessfully obtaining a correct input-output pair is bounded by
Q2

H/2|B|. Setting Q2
H = 2λ−λst this probability is negl(λst).

Again, if the above event does not happen then the only
event when the simulated s and an actual s produced by the
prover does not match when 2λst ·|Dq|·B ≥ r > 2λst−1 ·|Dq|·
B. This happens with probability 2−λst . So the statistical
distance btween the simulated and real proof is bounded by
negl(λst) as required.
Knowledge of Argument. We can use the low order as-
sumption and strong root assumption to argue knowledge of
argument similar to prior works [43], [70], [74]. The idea
is to use the standard forking/rewinding technique to obtain
two challenges c, c′ for the same a, and subsequently two
different s, s′ such that we have: gsq · h−c = gs

′

q · h−c′ . Let
d = gcd(s− s′, c− c′). Then we define

γ = g
s−s′

d
q · (h−1)

c−c′
d

Clearly, γd = 1. Now there are two cases:
• Case-1: γ ̸= 1. In this case, we have an element γ ∈ Ĝ

which has order d < c− c′ < B. That implies a break of
B-low order assumption. So the probability of this case
is negligible.

• Case-2: γ = 1. In this case we have g
s−s′

d
q = h

c−c′
d .

Define f = c−c′

d Then there are two sub-cases:
– Case-2.(a): f ̸= 2ρ for any integer ρ. In this case we can

write using Euclidean GCD: d = α(s− s′) + β(c− c′)
for integers α, β. Then we have:

gdq = gα(s−s′)+β(c−c′)
q

= hfdαgfdβq

This means we can write:

gq = (hαgβq )
f

So, for Y = gq we get X = hαgβq and f is not a power
of two – this solves the strong root assumption over Ĝ.
We note that, gq may not be a random element in Ĝq,
but in Gq. However, in the reduction we can choose G
to be a random power of Ĝ to resolve this, since we
know that the order of G divides the order of Ĝ (while
both remains unknown) this is possible.

– Case-2.(b): f = 2ρ. In this case let w = s−s′

d ∈ Z
(since d is the gcd of s− s′ and c− c′). Then we have
hf = gwq . However, since the group Gq has an odd
order (the order s divides ŝ), the integer f = 2ρ must
divide w, otherwise we would have an element that has
an even order. Therefore, we can write g

w
f
q = h, where

w
f ∈ Z which is a witness. Note that the witness is in
the range [(2λst + 1) · |Dq| · B] instead of the original
range B. But that suffices as they are equal modulo the
order of Gq.

This concludes the proof for knowledge of argument.

Appendix B.
Security of the multi-receiver encryption
scheme

We provide detailed proof of our class group-based
multi-receiver encryption scheme from the HSM assump-
tion. We restate the theorem below:

Theorem 8. For any λ, λst and any modulus q ∈ Z let (q, λ,
λst, s̄, f, gq, Ĝ, F,D,Dq; ρ) ← CG.ParamGen(1λ, 1λst, q) be
a set of correctly generated class group parameters. Then,
for that set of parameters as long as hard subgroup assump-
tions (Def. 2) holds, the above multi-receiver encryption
scheme is secure according to Definition 5 for any n, t ∈ N
such that n > t.

Proof. The proof idea basically follows footsteps of the
proof for the linearly homomorphic encryption scheme pro-
vided in [69], with adequate changes for the multi-receiver
case. For simplicity of exposition, we assume that n = 2 and
t = 1 – extending to the general case is straightforward.
Suppose that A corrupts sk2, and outputs two message
vectors m⃗0 = (m1,m2) and m⃗1 = (m′

1,m2), where the
second element is the same by condition. Let us call the
indistinguishability game with b = 0: Game0 and with
b = 1: Game1. We show that using the hard subgroup
assumption (Def. 2) we can move from Game0 to a mental
game (via a sequence of hybrids) where the message m1

is statistically hidden. A similar sequence of hybrid can be
constructed to move from Game1 to the same mental game.
To start with first note that in Game0 the adversary’s view
can be expressed as:

sk2, h1 = gsk1
q , h2 = gsk2

q ;R = grq ;E1 = fm1hr
1;E2 = fm2hr

2

where sk1, sk2, r
$← Dq

In Hyb1 we can write E1 = fm1Rsk1 and E2 = fm1Rsk2 ,
and clearly Hyb1 and Game0 are identically distributed.
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In the next hybrid Hyb2, sk1 is sampled as sk1
$← D

instead of Dq. However, since the adversary is given sk1
only in the exponents of gq and R, both of which are in
Gq, information-theoretically A only sees sk1 mod s. Also
drawing sk1

$← Dq induces a distribution with is 2−λst

close to the uniform distribution over Zs in the exponent
and similarly drawing sk1

$← D induces a distribution with
is 2−λst close to the uniform distribution over Zqs in the
exponent. Therefore, we can conclude that the statistical
distance between Hyb1 and Hyb2 is bounded by 2−λst+1.

In Hyb3 we change R to R = fugrq for u
$← Zq. Now

we can argue that Hyb2 is indistinguishable from Hyb3 as
long as the hard sub-group problem (Def. 2) holds. The
reduction simply plugs in the challenge value into R as
there is no dependency on any of exponent. In particular,
the adverasry’s view is computed as:

sk2, h1 = gsk1
q , h2 = gsk2

q ;R;E1 = fm1Rsk1 ;E2 = fm2Rsk2

where sk1
$← D; sk2

$← Dq

Clearly when R = grq Hyb2 is simulated, and when R =
fugrq then Hyb3 is simulated.

In Hyb3 we note that the adversary receives E1 =
fm1+u·sk1hr

1. Given adversary’s view information theoreti-
cally hr

1 is fixed. Hence an unbounded adversary can obtain
m1+u · sk1 mod q (since the order of ⟨f⟩ = F is q). Now,
note that in Hyb2, we change the sampling of sk1 from a
distribution, which is 2−λst close Zq.s. Now, sk1 mod qs
can be written as (sk1 mod q, sk1 mod s) using Chinese
remainder theorem – in that sk1 mod q is uniform ran-
dom in Zq as long as sk1 mod qs is uniform random in
Zqs. Furthermore, sk1 mod q is independent of sk1 mod s.
Therefore, although an unbounded adversary obtains a fixed
sk1 mod s from the public key h1 = gsk1

q (⟨gq⟩ = Gq

has order s), sk1 mod q is indeed s−λst close to uniformly
random value in Zq. So, m1 + u · sk1 mod q is 2−λst close
to uniform random value in Zq. Similarly we can arrive
at Hyb3 starting from Game1. Hence we can conclude that
Game0 and Game1 is computationally indistinguishable –
this concludes the proof.

Appendix C.
Security of NIZK proof of correctness of secret-
sharing

Theorem 9. For any security parameters λ, λst ∈ N and
any modulus q ∈ N, our NIZK construction described in
Fig. 1 is a secure proof system (as described in Def. 1) in
the random oracle model.

Proof. We prove perfect completeness, statistical soundness
in ROM and statistical zero-knowledge in ROM.
Completeness. The completeness can be seen from check-
ing the verification equations:

• W ·Rγ′
= gρ+rγ′

= gzrq ;

• X · (
∏t

j=0 A
∑n

i=1 ikγj

j )γ
′

= X·
(
A

(γ+γ2+...)
0 ·A(γ+2γ2+...)

1 ·A(γ+22γ2+...)
2 . . .

)γ′

= X·
(
ḡa0(γ+γ2+...) · ḡa1(γ+2γ2+...) · ḡa2(γ+22γ2+...) . . .

)γ′

= X ·
(
ḡ(a0+a1+...)γ+(a0+2a1+22a2+...)γ2+...

)γ′

= X ·
(
ḡs1γ+s2γ

2+...
)γ′

= ḡα+γ′ ∑n
i=1 siγ

i

= ḡzs ;

• (
∏n

i=1 E
γi

i )γ
′ · Y

=
(
fγ′(

∑n
i=1 siγ

i) ·
∏n

i=1 h
rγ′γi

i

)
·
(
fα ·

∏n
i=1 h

ργi

i

)
= fα+γ′ ∑n

i=1 siγ
i ·

∏
i h

(rγ′+ρ)γi

i = fzs ·∏n
i=1(h

γi

i )zr

Statistical Soundness. The soundness argument is essen-
tially the same as the one given by Groth [8](As men-
tioned in Groth’s paper, we do not actually need simulation
soundness.) but adjusted to our class group setting. The
soundness holds unconditionally with overwhelming prob-
ability (≥ 1 − negl(λst)) in the random oracle model with
appropriately chosen λst.

In particular, we consider an unbounded adversary,
which can, however, make only bounded number of RO
queries – we assume it makes QH queries to H and QH′

queries to H ′. This adversary attempts to produce a “bad”
protocol instance {hi, Ei, Aj , R}i∈[n],j∈[t] which is not in
RCS. Let us elaborate what that means. First, note that
the DLog commitments Aj = ḡaj are perfectly binding
for the coefficients aj ∈ Zq of the hidden polynomial
P . Let P (i) = si for all i ∈ [n]. Furthermore R = ḡrq
information theoretically fixes r ∈ Zs. Also suppose each
Ei has the form f s̃ihr

i . Therefore, a “bad’ instance must
have at least one “bad” Ei = f s̃ihr

i such that s̃i ̸= si ∈ Zq.
Now if the verification passes, that means the proof πCS ←
(W,X, Y, zr, zs) is well-formed, which means it satisfies the
three verification equations. So, the only way the unbounded
adversary wins are in the following three events:
• Event1: The adversary predicts γ′ correctly before fixing
W,X, Y . If this is possible, then the adversary can easily
choose uniform random zr, zs in the correct range plus
γ = H(inst). From these values it can easily compute
X,Y, Z from the verification equations, such that they all
satisfy.

• Event2: The adversary manages to find a γ such that∑n
i=1 s̃iγ

i =
∑

i=1 siγ
i even when s̃j ̸= sj for (possibly

more that one) j. In this case, if the first two equations
verify (which does not depend on this fact), then by this
fact the third equation also verifies. So this constitutes a
break of the soundness.

• Event3: In this event
∑n

i=1 s̃iγ
i ̸=

∑
i=1 aiγ

i, yet all
three equations verify correctly.

Now, we show that:

Pr[Event1 ∨ Event2 ∨ Event3]

≤ Pr[Event1]+Pr[Event2] + Pr[Event3]

≤ 3Pr[Event1]+2Pr[Event2 | ¬Event1]
+Pr[Event3 | ¬(Event1 ∨ Event2)] ≤ negl(λst)
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where the first inequality follows from a union bound, the
second one from simple partitioning and the third one from
the three lemmas we prove next.

Lemma 10. As long as the adversary makes Q many queries
to the RO such that Q2/2q is negl(λst), we have that

Pr[Event1] ≤ negl(λst)

Proof. Assume that the adversary makes at most QH′

queries to H ′, the probability with which the adversary
correctly predicts a corret γ′ is upper bounded by Q2

H′/2q.
For Q2/2q = negl(λst) we can set Q2 = O(2λ−λst), since
q = O(2λ).

Lemma 11. As long as γ is chosen uniformly at random in
Zq, we have that

Pr[Event2 | ¬Event1] ≤ negl(λ)

Proof. First note that, since Event1 does not happen, γ′ is
computed legitimately after computing γ,X, Y, Z. Then, by
definition if Event2 happens, we have that:

n∑
i=1

s̃iγ
i =

n∑
i=1

siγ
i

and there is a s̃j ̸= sj . Denote for each i: sδi = si− s̃i ∈ Zq.
So we can write:

n∑
i=1

sδi γ
i = 0

and by the premise this n-degree polynomial Pδ =∑n
i=1 s

δ
ix

i is not identically zero. Using Schwartz-Zippel
lemma we conclude that as long as γ is chosen uniformly at
random from Zq (which is true as we are in ROM), the prob-
ability of the the polynomial defined by Pδ(γ) = 0 ∈ Zq is
at most n/q which is negl(λ).

Lemma 12. As long as γ′ is chosen uniformly at random,
we have that:

Pr[Event3 | ¬(Event1 ∨ Event2)] ≤ negl(λ)

Proof. In this case since Event1 and Event2 are not hap-
pening, we can assume that all verification equations pass
even when there exists an j for which s̃j ̸= sj . In particular,
the first two equations ensure that zr = rγ′ + ρ mod s and
zs =

∑n
i=1 siγ

i+α mod q. However, since q and s are co-
prime we can write zr = rγ′+ρ+sξ over integer. Now the
third equation over G (which has order qs) can be written
as.

(

n∏
i=1

Eγi

i )γ
′
· Y = fzs ·

n∏
i=1

(hγi

i )rγ
′+ρ+sξ

Now, since each hi is in Gq, which has order s, we have
hs
i = 1 we can re-write the equation as:

(

n∏
i=1

Eγi

i )γ
′
· Y = fzs ·

n∏
i=1

(hγi

i )rγ
′+ρ

Now, expressing each Ei as f s̃ihr
i we can re-write the

equation as:

f
∑n

i=1 s̃iγ
iγ′
·

n∏
i=1

(hγi

i )rγ
′
· Y = fzs ·

n∏
i=1

(hγi

i )rγ
′+ρ

Clearly, Y must be of the form Y = fβ ·
∏n

i=1 h
γiρ
i for

some β ∈ Zq. Using the value of zs we obtain:

γ′
n∑

i=1

s̃iγ
i + β = γ′

n∑
i=1

siγ
i + α mod q

Again, defining sδi = si − s̃i mod q we obtain:

γ′
n∑

i=1

sδi γ
i + α− β = 0 mod q

Unless the last equation is identically 0, for a fixed γ the
probability of this holding equation over the choice of a
uniform random γ′ is at most 1/q which is negl(λ).

This concludes the proof. Finally note that, for example,
a reasonable choice can be q = O(2256) and QH = O(2100),
then the overall probability is smaller than 2−40 which is
negligible in λst for a typical choice of λst = 40.
Statistical Zero-knowledge. Following [8], we argue the
statistical zero-knowledge of the proof of correct sharing in
the ROM. The simulator works as follows:

1) Set H(inst) = γ where γ is uniformly at random.
2) Choose γ′ uniformly at random.
3) Sample zr

$← [q · |Dq| · 2λst].
4) Compute X,Y,W from the three verification equation.
5) Finally program γ′ = H ′(W,X, Y, zr, zs).

Clearly, the verification succeeds always. However, similar
to the proof of exponent, if the verifier asks a RO query on
H ′(W,X, Y, zr, zs) then the simulation fails. But as long as
the verifier makes a bounded number of queries, this proba-
bility can be made ≤ negl(λst) by adjusting the parameters.
Finally, we note that the simulated value zr is identically
distributed to the real zr as long as ρ < q · |Dq|(2λst − 1).
The probability of happening otherwise is upper bounded
by 2−λst , which is negligible in λst.

Appendix D.
Mitigating the biasing public key attack

cgDKG (and Groth’s NI-DKG) suffer from the same
public key biasing attack as the one presented by Gennaro et
al. [7]. This is because a rushing adversary can observe the
first t verified secret sharings and then perform a valid t+1st
sharing to bias the public key while delaying the messages
of the other honest parties in the system. The adversary can
first compute the partial public of the t honest parties and
choose the t + 1st party (which the adversary controls) to
bias the public key.

To overcome this, we use an approach [29] where the
knowledge of the commitments does not aid the adversary
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in biasing the public key. After verifying the dealings, the
parties use the first set of t+ 1 verified dealers to compute
their secret key share. Each party now publishes the public
key computed as exponentiation of the secret key with a
different generator g′ ∈ G1 than g1, the one used in the
initial commitment phase. After computing the qualified
set, each party Pk broadcasts the value (g′)xk along with
a NIZK proof that the exponent in (g′)xk is the same as
the one computed using the verified dealings. The parties
finally compute the public key of the DKG instance as
y =

∏
k∈T (g

′)xk , where T is the set of parties that have
forwarded their public key, the set T has at least t + 1
parties as only a maximum of t parties are corrupted by
the adversary. This adds one round of communication to
the DKG protocol. A previously suggested approach [7]
to overcome the biasing attack is to use perfectly hiding
Pedersen’s commitments. These commitments are published
in the initial commit phase while the public key is computed
in the next phase (round) using discrete log commitments,
which are published along with proof of the equality of the
exponents (shared secret). This approach also needs an extra
round for the parties to agree on the public key. However,
the mentioned approach of using a different generator for
the public key is more efficient as no blinding factors (and
the corresponding exponentiations) are needed.

Appendix E.
Algebraic Simulatability of Fdkg

In this section we argue that any DKG protocol that
satisfies our definition, via the ideal functionality Fdkg,
satisfies a static variant of oracle-aided algebraically sim-
ulatable DKG as defined by Bacho and Loss [84]. As a
consequence, our DKG can be applied to the static settings
of all applications for which their definition suffices – this
includes Schnorr and BLS signature. Note that, the standard
properties such as consistency, correctness and unforgeabil-
ity are easily satisfied by our ideal functionality. The only
thing that remains is to show algebraic simulatability.

In particular, we need to argue that for any DKG that
satisfies our definition, it is possible to construct a simulator
Soa such that the simulator’s output is indistinguishable
with an adversary A’s view that corrupts at most t parties.
Consider a cyclic group ⟨ḡ⟩ = Ḡ of order q. Then we note
that on input k values ḡx1 , ḡx2 , . . . , ḡxk , Soa may access a
discrete log oracle (which, on input h ∈ Ḡ, returns x ∈ Zp

such that h = ḡx ) at most k − 1 times. Now, let us
formally present the definition of algebraic simulatability
adapted from Bacho and Loss [44] in our setting of static
corruption.

Definition 7 (Algebraic Simulatability). A NI-DKG protocol
among n parties with threshold t ≤ 2n+ 1 is said to have
k-algebraic simulatability if for any PPT adversary A that
corrupts at most t parties, there exists an algebraic PPT
simulator Soa that makes k − 1 queries to a discrete log
(for base ḡ) oracle and satisfies the following properties:

• On input ip =
{
(ḡz1 , . . . , ḡzk ∈ Ḡ), C ⊂ [n]

}
such that

|C| ≤ t, Soa simulates the honest parties for a protocol

execution. At the end of the simulation, Soa outputs the
public key pk = ḡsk.

• Let ḡi ∈ Ḡ denote the i-th query to the discrete
log (to the base ḡ) oracle. Define the correspond-
ing algebraic coefficient as (âi, a0,1, . . . , a0,k) where
ḡi = ḡâi ·

∏k
i=1(ḡ

zj )ai,j . Also denote the algebraic co-
efficient of pk as (â, a0,1, . . . , a0,k). Then the following
matrix, called simulatability matrix for Soa over Zq is
invertible:  a0,1 . . . a0,k

... . . .
...

ak−1,1 . . . ak−1,k


• Denote by ViewA,pk,Real the view ofA in a real protocol

execution conditioned on all honest parties outputting
pk as the joint public key; and let ViewA,pk,Soa(ip)

denote the view of A in the simulated execution when
simulator Soa has input ip, conditioned on Soa out-
putting the same pk. Then, for all pk ∈ Ḡ and all input
ip, ViewA,pk,Real is computationally indistinguishable
from ViewA,pk,Soa(ip).

Now note that, if a DKG scheme satisfies our UC-
definition (Fig. 5), there is a PPT simulator S which can
simulate any given PPT A with overwhelming probability.
Therefore, as long as we can construct Soa using S in
a way such that S interacts with A directly while Soa
plays the role of ideal functionality Fdkg to S and this is
indistinguishable from a real execution from A’s point of
view then the implication holds. For simplicity we assume
that there are exactly t corruptions, that implies size of
honest set |H| = t + 1 and size of corrupt set |C| = t.
Now we describe how Soa can use S below:

1) Input: {ḡsi}i∈H and the corrupt set C = [n] \H .
2) Give S oracle access A for the corrupt set C.
3) Send {ḡsi}i∈H to S.
4) Once S returns {si}i∈C do as follows:

a) Let V ⊆ be the set that includes si ̸= ⊥.
b) Compute pk ←

∏
i∈V ∪H ḡsi .

c) Compute pki = ḡP (i) for all i ∈ [n] by choosing
a t-degree polynomial P (X) =

∑t
i=0 ciX

i im-
plicitly subject to ḡc0 = pk and each coefficient
ḡci =

∏
j∈H(ḡsj )rj for uniform random rj

$← Zq.
d) Using the discrete log oracle compute ski = P (i)

from ḡP (i) for all i ∈ C.
e) Finally send (pk, {pki}i∈[n], {ski}i∈C) to S.

Now, first note that, the polynomial P (X) is uniformly ran-
dom in Zq[X], subject to c0 =

∑
i∈H si+

∑
i∈V si, as coef-

ficients c1, c2, . . . are chosen as random linear combinations
of {si}i∈H in the exponent. So, clearly the simulatability
matrix can have a form:

c0 0 . . . 0
c0 r1,1 . . . r1,t+1

...
. . . . . .

...
c0 rt,1 . . . rt,t+1
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which is invertible over Zq as long as c0 ̸= 0. Since our ideal
functionality ensures that honestly chosen si are uniformly
random, this happens only with probability 1/q ≤ negl(λ).
Finally, we note that although in our ideal functionality si
for honest i are chosen uniformly at random, the simulator
S does not depend on that. Basically it works for any si, and
hence when fed with arbitrary ip by Soa, nothing changes
from A’s view in the real and ideal executions. Of course
for a low-entropy distribution would be not useful in the

application. In fact, a closer look into the application of
algebraic simulatability of their proof of BLS (Lemma 4.2)
reveals that these are OMDL instances and hence are uni-
formly random.

With this, we can conclude that any DKG protocol that
satisfies our definition with respect to Fdkg, satisfies the
static oracle aided algebraic simulatability definition from
Bacho and Loss [44].
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