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Abstract

We construct a sublinear-time single-server pre-processing Private Information Retrieval
(PIR) scheme with an optimal tradeoff between client storage and server computation (up to
poly-logarithmic factors). Our scheme achieves amortized Õ(

√
n) server and client computation

and O(
√
n) online communication per query, and requires Õλ(

√
n) client storage. Unlike prior

single-server PIR schemes that rely on heavy cryptographic machinery such as Homomorphic
Encryption, our scheme relies only on Pseudo-Random Functions (PRF). To the best of our
knowledge, Piano is the first practical single-server sublinear-time PIR scheme, and we outper-
form the state-of-the-art single-server PIR by 10×−300×. In comparison with the best known
two-server PIR scheme, Piano enjoys comparable performance but our construction is consid-
erably simpler. Experimental results show that for a 100GB database and with 60ms round-trip
latency, Piano achieves 93ms response time, while the best known prior scheme requires 11s or
more.

1 Introduction
Suppose that a server has a public database DB indexed by 0, 1, . . . , n − 1, e.g., the reposi-
tory of DNS entries or a list of blocklisted websites. A client wants to fetch the i-th entry of
the database. Although the database is public, the client wants to hide which entry it is in-
terested in. Chor, Goldreich, Kushilevitz, and Sudan [CGKS95, CKGS98] first investigated this
problem, and they came up with a cryptographic construction called Private Information Re-
trieval (PIR). Later, a long line of work focused on improving the asymptotical and concrete
performance of PIR [CG97,Cha04,GR05,CMS99,KO97,Lip09,OS07,Gas04,DG16,PR93,DCIO98,
BLW17,BGI16,PPY18,IKOS04,Hen16,HH17,IKOS06,LG15,DHS14,ACLS18,MR22,CK20,CHK22,
KCG21,dCP22,LMW22,ZLTS23,LP22,HHCG+22,MW22,LP23,DPC22].
Two classes of PIR schemes. There are two main classes of PIR schemes, depending on
whether they rely on preprocessing. Classical PIR schemes do not perform any preprocessing
of the database, and the server simply stores an original copy of the database DB. In this set-
ting, although we can achieve polylogarithmic communication per query, the server’s computa-
tion overhead must be linear in the size of the database. Beimel, Ishai, and Malkin [BIM00]
showed that the linear server computation overhead is inherent — intuitively, if there is some
entry that is not touched during some query, then the server learns that the client is not inter-
ested in this entry. To overcome this prohibitive linear server computation barrier, Beimel et al.

Note: This is a major revision of the conference version to appear in IEEE S&P 2024. We present a slightly
different but conceptually simpler scheme in this revised version. The initial scheme is presented in the appendix.

1



introduced the preprocessing model [BIM00], which was further explored in several subsequent
works [CK20, SACM21, LP23, CHK22, KCG21, ZLTS23, LP22, LMW22]. In the client-specific pre-
processing model (also called the subscription model), we have each client download and store a
“hint” from the server during preprocessing. In this model, it is known that with Õλ(

√
n) client-side

storage1, each online query can be accomplished with polylogarithmic communication and Õλ(
√
n)

server and client computation [ZLTS23, LP22]. Another possible model is the global preprocess-
ing model, in which the server performs a global preprocessing and computes an encoding of the
database upfront for all clients. In this model, the most recent breakthrough work by Mook, Lin,
and Wichs [LMW22] showed that for any constant ε > 0, with O(n1+ε) amount of server stor-
age, each query can be accomplished with (poly log n)1/ε communication and (poly log n)1/ε server
computation.
Practical landscape for PIR. The community have made various attempts to implement and
optimize PIR for practical applications [MW22,HHCG+22,DPC22,ACLS18,MR22]. In the single-
server setting, to the best of our knowledge, only classical-style PIR schemes with linear server
computation have been implemented. Although recent works [HHCG+22] managed to achieve
server-computation throughput comparable to the native memory bandwidth, the linear amount of
computation severely limits the scalability to larger databases, and precludes various killer appli-
cations such as private DNS (where the database can be as large as 100GB). Unsurprisingly, prior
works ran experiments for databases of size up to 8GB [MW22, HHCG+22], and the server time
per query is more than one second for this data size.

A natural question is why prior implementation efforts did not choose schemes with prepro-
cessing despite their better asymptotical performance. The reason is that known single-server,
preprocessing sublinear PIR schemes are theoretical in nature. In particular, known schemes with
polylogarithmic communication [ZLTS23,LP22,LMW22] require one or more of the following heavy-
weight cryptographic primitives: Fully Homomorphic Encryption (FHE), Privately Programmable
PRFs [BLW17, PS18, KW21], and polynomial encoding data structures [KU11], which introduce
astronomical constants in the concrete performance. Unfortunately, within the limits of known
techniques, we are still very far from making these cryptographic primitives practical (or even
implementable)! Finally, although the work of Corrigan-Gibbs et al. [CHK22] showed how to get
sublinear server computation using only linear homomorphic encryption, they pay the price of much
worse asymptotics, that is, Õλ(n

2/3) for client storage and server computation. Consequently, their
scheme is also not a sweetspot for practical implementation.
Time for a paradigm shift for practical PIR? Given the status quo, we ask the following
question:

Can we have a concretely efficient, single-server PIR scheme with sublinear server computation?

An affirmative answer to the above question promises a paradigm shift for the practical landscape
of single-server PIR! Specifically, our dream is to eventually eschew the linear server computation
regime for practical implementations, and thus allow scaling to large database sizes.

1.1 Our Contributions
We propose a novel single-server PIR scheme called Piano (short for “Private Information Access
NOw”). Piano adopts the client-specific pre-processing model. With roughly Õ(

√
n) client-side

storage, we achieve Õ(
√
n) online communication and computation per query. The most notable

1Throughout the paper, we use Õ(·) or Θ̃(·) to hide polylogarithmic terms, and the subscript in Oλ(·) hides terms
related to some computational security parameter λ.

2



feature of Piano lies in its simplicity. Unlike prior sublinear PIR schemes [CK20,CHK22,ZLTS23,
LP22], we do not need any form of homomorphic encryption or other heavy-weight cryptographic
primitives such as privately puncturable PRFs [BKM17, CC17, BTVW17]. In fact, the only cryp-
tographic primitive we need is pseudorandom functions (PRFs), which can be accelerated through
the AES-NI instruction sets available in most modern processors. Moreover, our construction is
completely self-contained and we need not invoke any existing PIR scheme as a building block.
Optimality. Corrigan-Gibbs, Henzinger and Kogan [CHK22] showed a lower bound for any
adaptive PIR scheme without server-side preprocessing. In particular, their lower bound states
that if the client stores S bits and the amortized server computation time is T, it must be that
ST = Ω(n). Our scheme matches this lower bound (up to poly-logarithmic factors). However,
the per-query Θ(

√
n) communication cost in our scheme is not theoretically optimal – previous

theoretical work [ZLTS23,LP22] can achieve poly-logarithmic communication per query.
Open-source implementation and evaluation results. We implemented Piano in Go. Given
its simplicity, the core implementation contains only around 800 lines of code. We also provide
a reference implementation (for tutorial purposes) that contains only 153 lines of code. Both our
full implementation and the tutorial implementation are open sourced at https://github.com/
pianopir/Piano-PIR.

In our evaluation, we mainly compare with SimplePIR [HHCG+22] and the non-private baseline.
SimplePIR is the state of the art for practical single-server PIR schemes, and has been shown
to outperform all other practical single-server PIR schemes. They also incur roughly Oλ(

√
n)

bandwidth, but their server computation is linear in n. SimplePIR pushed linear-computation PIR
schemes to the very limit: their server performs fewer than one 32-bit multiplication and one 32-bit
addition per database byte. Thus, they were able to fully saturate the memory bandwidth for the
server computation. Nonetheless, the linear computation severely limits their scalability. For this
reason, all prior works on single-server PIR only ran experiments for databases that are at most
8GB in size [MW22,HHCG+22].

We conducted an experiment on a 100GB database with a 60ms RTT coast-to-coast connection.
In particular, we chose an 100GB database to roughly match the size of a typical DNS database. Our
scheme achieves 93ms response time, whereas SimplePIR suffers from 11s or higher response time2.
This represents over 111× speedup relative to SimplePIR. Since our improvement is asymptotical
in nature, the speedup will only become larger as the database size grows. We also ran a non-private
baseline for the same scenario, and the response time is 61ms. Therefore, our slowdown w.r.t. the
non-private baseline is only 1.53×.
Theoretical Contributions. Although our work focuses on making PIR practical, our result may
be of interest from a theoretical perspective, since this is the first time we know how to construct
single-server PIR with sublinear server computation from only one-way functions (OWF). Section 6
provides theoretical comparison with additional related work.

2 Main Construction
Suppose the database DB[0 . . . n − 1] contains n bits. We divide the indices {0, 1, . . . , n − 1} into√
n chunks each of size

√
n. Specifically, the j-th chunk where j ∈ {0, 1, . . . ,

√
n− 1} contains the

indices {j ·
√
n, . . . , (j + 1) ·

√
n− 1}.

2The open-sourced implementation cannot support network connections or a database as large as 100GB, so this
number is a conservatively extrapolated lower bound estimate of their performance.
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Distribution of a random set. We will use the following simple strategy to sample a random
set of indices of size exactly

√
n: simply sample one random index from every chunk. Henceforth,

we use the notation S to denote such a random set and we use S[j] to denote the index in S
belonging to the j-th chunk.

Client’s hint. Suppose that the client stores the following hint data structure:

1. Primary table: contains Õ(
√
n) entries, where Õ(·) hides polylogarithmic factors. The i-th

entry in the hint table contains

• A random set S of
√
n indices chosen according to the aforementioned distribution;

• The parity bit p = ⊕i∈SDB[i].

2. Replacement entries: for each chunk j ∈ {0, 1,
√
n − 1}, store Õ(1) entries of the form

(i,DB[i]) where each i is a randomly sampled index from chunk j.

3. Backup table (needed for multiple queries): for each chunk j ∈ {0, 1,
√
n − 1}, store Õ(1)

entries of the form (S, p), where S is a random set sampled according to the aforementioned
distribution, and p = ⊕i∈S\{S[j]}DB[i]. In other words, p is the parity of the database bits at
all indices in S except the index corresponding to the j-th chunk.

Compressing client storage using PRFs. For the primary and backup table, if the client
stores the full sets, the storage overhead will be Õ(n). However, in our full scheme we will use a
PRF key to succinctly represent each set in the primary and backup tables, and thus the client’s
storage can be reduced to Õ(

√
n).

Learning the hint in a single streaming pass. For the time being, we may assume that the
client can somehow magically learn this hint table. Later, we will show how the client can learn this
hint table using a streaming algorithm which makes a single linear scan over the database, while
consuming only Õ(

√
n) local storage. The communication and computational overhead of this

preprocessing step is Õ(n). Later in our full scheme, this preprocessing step needs to be performed
every Õ(

√
n) queries. If we spread the Õ(n) work across Õ(

√
n) queries, the amortized cost per

query will be O(
√
n).

We stress that the preprocessing phase does not leak any information to the server, since the
server only observes a linear scan over the database.

Making a single query. To support a single query, we only need to make use of the primary
table and the replacement entries. Specifically, suppose the client wants to learn DB[x]. It will
perform the following:

1. Find an entry (S, p) in the primary table such that x ∈ S. This succeeds with all but negligible
probability.

2. Let j = chunk(x) denote the chunk that x belongs to, and let (r,DB[r]) be the next unconsumed
replacement entry belonging to chunk j.

3. Replace the j-th entry in S with r; let S′ denote the modified set, send S′ to the server.
4. The server sends back p′ = ⊕i∈S′DB[i], and the client computes DB[x] = p′ ⊕DB[r]⊕ p.
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Clearly, the communication overhead is O(
√
n). Further, the set sent to the server has the same

distribution as a freshly sampled random set. Thus, the server learns no information about the
client’s query.

Supporting Õ(
√
n) random, distinct queries. We now discuss how to extend the scheme to

support Q = Õ(
√
n) random, distinct queries. After making a query, the (S, p) consumed should

be removed from the primary table, since if the same entry is used again, it will leak information.
However, simply removing the entry (S, p) is also not secure, since it skews the distribution of the
random sets in the primary table. For example, if the client has made a query for the index 5, it
will consume a set S containing 5. This means the remaining sets in the primary table will less
likely contain 5, which skews the distribution of the future sets sent to the server.

To support multiple queries while ensuring security, we can make the following simple mod-
ification to the scheme. Whenever an entry (S, p) is consumed from the primary table during a
query for DB[x], the client grabs the next unconsumed entry (S′, p′) from the backup table corre-
sponding to chunk(x). It replaces the consumed entry with (S′⟨chunk(x)→ x⟩, p′⊕DB[x]) where3

S′⟨chunk(x) → x⟩ is otherwise the same as S′ except for replacing S′[chunk(x)] with x. Observe
that the consumed entry is a random set subject to containing x, and its replacement is also a
random set subject to containing x. Therefore, the distribution of the sets in the primary table is
unaffected.

The scheme so far can support Q = Õ(
√
n) random distinct queries, because we provisioned

polylogarithmically many replacement entries and backup table entries per chunk. With Q =
Õ(
√
n) random distinct queries, with all but negligible probability, each chunk will only be hit at

most polylogarithmically many times. This means that we will not run out of replacement entries
and backup table entries except with negligible probability.

Supporting unbounded, arbitrary queries. We can easily get rid of the “distinct query”
assumption in the following way: suppose that the client stores the result of the most recent
Q = Õ(

√
n) queries. If a duplicate query is made, it simply looks up the answer locally, and it

sends another random distinct query to the server to mask the fact that it is a duplicate query.
Next, we can get rid of the “random query” assumption in the following way, and the resulting

scheme supports Q = Õ(
√
n) arbitrary queries. Observe that the “random query” assumption is

needed only for load balancing. Imagine that upfront, the server applies a pseudorandom permu-
tation (PRP) to all indices of the database. We may assume that this permutation is independent
of the queries. The server publishes the PRP key, and the client is now able to compute the index
of the query in the shuffled database. If the PRP key is not sampled honestly, it will not affect
privacy, but may affect correctness (which is impossible anyway if the server is malicious).

Finally, we can get rid of the Q-bounded query assumption through a simple pipelining trick:
during the current window of Q queries, we run the preprocessing phase of the next Q queries.
As mentioned earlier, the total communication and computation overhead of the preprocessing is
Õ(n). Thus, in our final scheme, we have a one-time preprocessing phase with Õ(n) communcation
and computation, while consuming only Õ(

√
n) client storage. After the one-time preprocessing,

we can support an unbounded number of arbitrary queries. The communication and computation
cost of each query is O(

√
n).

Detailed description. Figure 1 gives a detailed description of our scheme for supporting Õ(
√
n)

random, distinct queries. As mentioned, it is easy to upgrade such a scheme to one that supports
3Note that since the client just queried the index x, it knows what DB[x] is.
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Single-Server Scheme for Q =
√
n log κ · α(κ) Queries a

Notation. κ denotes a statistical security parameter, λ denotes a computational security
parameter. We use α(κ) to denote an arbitrarily small super-constant function.
Offline preprocessing.

• Client samples M1 =
√
n log κ ·α(κ) PRF keys denoted sk1, . . . , skM1 ∈ {0, 1}λ for the primary

table. Initialize the parities p1, . . . , pM1 to zeros.
• For j ∈ {0, 1, . . . ,

√
n−1}, Client samples M2 = log κ·α(κ) PRF keys denoted skj,1, . . . , skj,M2 ,

representing all the backup keys for the j-chunk. Initialize the parities pj,1, . . . , pj,M2
to zeros.

• Client downloads the whole DB from the server in a streaming way: when the client has the
j-th chunk DB[j

√
n : (j + 1)

√
n]:

– Update primary table: for i ∈ [M1], let pi ← pi ⊕DB[Set(ski)[j]].
– Store replacement entries: sample and store M2 tuples of the form (r,DB[r]) where r

is a random index from the j-th chunk.
– Update backup table: for i ∈ {0, 1, . . . ,

√
n − 1}/{j} and k ∈ [M2], let pi,k ← pi,k ⊕

DB[Set(ski,k)[j]].
– Delete DB[j

√
n : (j + 1)

√
n] from the local storage.

• At this moment, let T := {((ski,⊥), pi)}i∈[M1] denote the client’s primary table, and let
{(skj,i, pj,i)}i∈[M2] denote the backup entries for the j-th chunk.

Online query for index x ∈ {0, 1, . . . , n− 1}.

1. Query:

(a) Client finds a hint Ti := ((ski, x
′), pi) in its primary table T such that x ∈ Set(ski, x

′).
Let S = Set(ski, x

′).
(b) Let j∗ = chunk(x), Client finds the first unconsumed replacement entry from the j∗-th

chunk, denoted (r,DB[r]).
(c) Client sends S′ = S⟨j∗ → r⟩ to the server if the previous two steps succeeded. Otherwise,

send a random set.
(d) Upon receiving a set S′, the server returns q = ⊕k∈S′DB[k].
(e) Client computes the answer β = q⊕pi⊕DB[r] if steps (a) and (b) succeeded. Otherwise,

Client sets the answer β = 0.

2. Refresh:

• Client finds the next unconsumed backup entry
(
skj∗,k, pj∗,k

)
belonging to the j∗-th chunk.

If not found, Client generates a random skj∗,k and lets pj∗,k = 0.
• If steps (a) and (b) of the query phase succeeded, then Client replaces the matched entry

in the primary table with
(
(skj∗,k, x), pj∗,k ⊕ β

)
.

aFor clarity, we present the scheme supporting distinct and random queries. As mentioned before, these
restrictions can be removed by applying PRP and local caching.

Figure 1: Detailed description of Piano.
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unbounded number of arbitrary queries.
In Figure 1, we use the following notation for describing pseudorandom sets. Henceforth let

PRF denote a pseudorandom function whose output is in the range {0, 1, . . . ,
√
n − 1}, and let sk

denote a PRF key.

• For i ∈ {0, 1, . . . , n}, let chunk(i) = ⌊i/
√
n⌋ be the chunk i belongs to.

• Set(sk) := {j ·
√
n+PRFsk(j)}j∈{0,...,√n−1}; It is easy to see that given x ∈ {0, 1, . . . , n− 1}, and

sk, it takes O(1) time to test whether x ∈ Set(sk).
• Set(sk, x) where x ∈ {⊥} ∪ {0, 1, . . . , n− 1} is defined as follows:

Set(sk, x) =

{
Set(sk) if x = ⊥
Set(sk)⟨chunk(x)→ x⟩ o.w.

Recall that the notation S⟨chunk(x) → x⟩ means the set obtained by replacing the index per-
taining to chunk(x) in S with x.

3 Formal Definitions and Security Proofs
3.1 Definitions
We define a single-server private information retrieval (PIR) scheme in the pre-processing setting.
In a single-server PIR scheme, we have two stateful machines called the client and the server. The
scheme consists of two phases:

• Offline setup. The offline setup phase is run only once up front. The client receives nothing
as input, and the server receives a database DB ∈ {0, 1}n as input. The client may interacts
with the server and stored some hints in its local stroage. For simplicity, we assume the entries
in DB are 1-bit4.

• Online queries. This phase can be repeated multiple times. Upon receiving an index x ∈
{0, 1, . . . , n− 1}, the client sends a single message to the server, and the server responds with a
single message. The client performs some computation and outputs an answer β ∈ {0, 1}.

Correctness. Given a database DB ∈ {0, 1}n, where the bits are indexed 0, 1, . . . , n − 1, the
correct answer for a query x ∈ {0, 1, . . . , n− 1} is the x-th bit of DB.

For correctness, we require that given a statistical security parameter κ and a computational
security parameter λ, for any sufficiently large n and any Q, there exists a negligible function negl(κ),
such that for any database DB ∈ {0, 1}n, for any sequence of queries x1, x2, . . . , xQ ∈ {0, 1, ..., n−1},
an honest execution of the PIR scheme with DB and queries x1, x2, . . . , xQ, returns all correct
answers with a probability at least 1− negl(κ)− negl(λ).
Privacy. We now formally define privacy in the following experiment.

Definition 3.1 (Privacy of PIR). We say that a single-server PIR scheme satisfies privacy iff
there exists a probabilistic polynomial-time simulator Sim(1λ, n), such that for any probabilistic
polynomial-time adversary A acting as the server, any polynomially bounded n and Q, any DB ∈
{0, 1}n, A’s views in the following two experiments are computationally indistinguishable:

4Our scheme can directly work with multi-bit entries.
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• Real: an honest client interacts with A(1λ, n,DB) who acts as the server and may arbitrarily
deviate from the prescribed protocol. In every online step t ∈ [Q], A may adaptively choose the
next query xt ∈ {0, 1, . . . , n− 1} for the client, and the client is invoked with xt;

• Ideal: the simulated client Sim(1λ, n) interacts with A(1λ, n,DB) who acts as the server. In
every online step, A may adaptively choose the next query xt ∈ {0, 1, . . . , n − 1}, and Sim is
invoked without receiving xt.

3.2 Proofs
We now provide the (sketched) proofs of privacy and correctness of our PIR scheme. We defer the
full proofs to the appendices. We also provide the performance analysis.

Theorem 3.2 (Privacy). Our PIR scheme satisfies privacy (i.e., Definition 3.1).

Proof. The full proof is deferred to Appendix C. We provide some high-level ideas here.
We can first replace the PRF with true randomness and due to the pseudorandomness of the

PRF, it is indistinguishable to the adversary.
With respect to the view of the server, the edited set can be simulated by just generating a

random set containing
√
n indices, where each one chunk contains exactly one random index.

Therefore, we only need to prove that the distribution of the client’s primary hints are always
“uniformly random” in the view of the adversary. After querying for x, we always replace the hint
with a new hint that contains the current query x. This maintains the distribution of the client’s
primary hint table in the adversary’s view. For intuition, consider a simplified case where the
client just has one local set. Let the query be x. There are two cases:

1. With probability 1− 1/
√
n, the set does not contain x. The client sends a random set to the

server. The local set stays the same.

2. With probability 1/
√
n, the set contains x. The client sends an edited set by replacing x with

a random index from the same chunk. The client samples a new local set containing x.

The key insight is that the adversary does not know which case happens. It only sees some
random set independent of the remaining local set and the client’s new local set is distributed as:

1. With probability 1− 1/
√
n, a random set does not contain x;

2. With probability 1/
√
n, a random set contains x.

This is identically distributed as a uniformly random set.
The Lemma C.2 essentially just extends this calculation to the actual case where the client has

multiple local sets.

Theorem 3.3 (Correctness). Assume n is bounded by poly(λ) and poly(κ). Let α(κ) be any
super-constant function, i.e., α(κ) = ω(1). Setting M1 =

√
n lnκα(κ), M2 = 3 lnκα(κ), all the

Q =
√
n lnκα(κ) queries will be answered correctly with probability at least 1−negl(λ)−negl(κ) for

some negligible function negl(·).

Proof. The full proof is deferred to Appendix C. We provide some high-level ideas here.
There are only two types of events that causes failures: 1) the client cannot find a set that

contains the online query index; 2) the client runs out of hints in a backup group.
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Since each hint contains the querying index with probability exactly 1/
√
n, applying union

bound, we can directly bound the first type of error by Q(1− 1/
√
n)M1 . Plugging in the numbers

and the probability is negligible in κ.
The probability of the second type of error can be bounded by a simple “Q balls into

√
n bins”

argument with the Chernoff bound.

With the amortization technique we discussed before, we can show the following efficiency
theorem:

Theorem 3.4 (Efficiency). Let α(κ) be any super-constant function, i.e., α(κ) = ω(1). The single-
server PIR scheme only need an one-time offline phase and supports unbounded number of queries.
It achieves the following performance bounds:

• Oλ(
√
n log κ · α(κ)) client storage and no additional server storage;

• Offline Phase:

– Oλ(n log κ · α(κ)) client time and O(n) server time;
– O(n) communication;

• Each Online Query:

– Expected Oλ(
√
n) client time and O(

√
n) server time;

– O(
√
n) communication.

Proof. Let’s first consider the scheme that supports Q =
√
n lnκα(κ) online queries.

The client has O(
√
n log κ · α(κ)) local hints and each hint stores a parity and a PRF key. The

client also stores O(
√
n log κ · α(κ)) replacement index-value pairs. Also, during the offline phase,

the client will only store one
√
n-size chunk of the DB at any time. So the client’s storage is

Oλ(
√
n log κ · α(κ)).

For the offline phase, the client downloads the whole DB, so the communication cost is O(n).
For each chunk, the client needs to enumerate all O(

√
n log κ · α(κ)) local hints and update them.

So in total, the client offline computation time is O(n log κ · α(κ)).
For the online phase, the client needs to search for the hint that contains the query. Since each

set contains the query with probability 1/
√
n and each membership testing takes Oλ(1) time, the

expected searching time is Oλ(
√
n). Other operations all take Oλ(

√
n) time. The client then sends

an O(
√
n)-sized set to the server. The server computation time is O(

√
n). The client downloads

the response of size O(
√
n) and gets the answer. The refreshing time for each query is O(1).

To support unbounded queries, the client needs to amortize the work of the next offline phase
of the original Q-bounded scheme to the last Q queries. Since Q =

√
n lnκα(κ), the amortized

asymptotic computation and communication costs remain the same. The client stores two sets of
local hints that it uses one for the current online phase and it prepares another one for the next
Q queries. It brings 2x cost to the local storage. The server does not need to have any additional
storage.
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4 Evaluation
We implemented a slightly different variant of the scheme which we describe fully in ??. In
comparison with the version in our main body, the variant in ?? has slightly less client storage, but
slightly more communication overhead.

Our evaluation aims to answer the following questions:

1. How does Piano perform compared to a state-of-art single server PIR scheme (SimplePIR
[HHCG+22])? (Section 4.3)

2. How does Piano perform compared to a non-private retrieval baseline? (Section 4.4)

In particular, we compare to the SimplePIR protocol [HHCG+22] which is the current state-of-
art single-server PIR implementation and is faster than all other single-server PIR schemes by at
least an order of magnitude. We refer the reader to their paper for details, but crucially, their scheme
requires a linear scan on the server, like many other practical single-server PIR implementations.

4.1 Implementation
We implement Piano in Golang in approximately 800 lines of code. We utilize AES-NI hardware
instruction for fast PRF evaluations.
Parallelization. We parallelize the preprocessing on the client side, which is the main bottleneck
of the setup phase. All server-side and online computation is performed on a single thread.
Parameters. We note that the performance of our scheme is more affected by the size of each set
rather than the size of each chunk. To this end, we set the chunk size to be 2

√
n and round it up to

the nearest power of 2, which makes the modulo operation more efficient. The set size is computed
accordingly. It does not affect the theoretical asymptotics of our protocol. We set Q =

√
n lnn. We

set the statistical security parameter κ to 40 and computational security parameter λ to 128. We
adjust M1,M2 accordingly that the failure probability is bounded by 2−κ = 2−40 for all Q queries,
matching the same failure probability as SimplePIR [HHCG+22]. We use 128-bit keys and use AES
to instantiate the PRF.

4.2 Evaluation Setup
We evaluate Piano and the baseline schemes on two AWS m5.8xlarge instances with 128GB of
RAM. For our local area network experiments, we run the PIR scheme on a single machine. This
simulates a scenario where the network is not the bottleneck. We also evaluate our scheme over
a wide-area network. In this case, we place the server machine on the west coast, and the client
machine on the east coast. All communication is performed over TLS on a 2Gbps network la-
tency. The round-trip-time is around 60ms. All query costs are computed as the average over one
thousand queries. We use the open-source implementation of SimplePIR provided by Henzinger et
al. [HHCG+22]. We also implement a non-private database access scheme as the baseline that does
not include caching nor load balancing.

4.3 Experiments in a Local-Area Network
We first compare our protocol to the SimplePIR protocol for 1GB and 2GB databases of 8-byte
entries. Because the open-source SimplePIR implementation does not support parallelization nor
connections across servers, we only compare the protocols run on a single machine. We analyze the
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effect of network latency on our protocol in the following section. We also run our scheme with a
100GB database with 1.6 billion 64-byte entries. To the best of our knowledge, this is by far the
largest database ever supported by any implementation of a single-server PIR scheme. Because the
implementation of SimplePIR does not support databases of this size, we extrapolate the results
by running their scheme for 1GB and 2GB sized databases of 64-byte entries, and extrapolating
their performance to 100GB based on the asymptotic performance discussed in their paper.

1GB(n = 227) 2GB(n = 228) 100GB(n ≈ 1.68× 109)
SimplePIR Piano SimplePIR Piano SimplePIR(∗) Piano

Preprocessing
Client time 293s 1438s/243s 608s 3369s/563s 425min 356min/59min

Communication 123MB 1GB 173MB 2GB 1.2GB 100GB

Per query
Online Time 131.6ms 7.9ms 219.5ms 9.0ms 10.9s 33.3ms

Online Comm. 238KB 64KB 338KB 128KB 2.3MB 900KB
Am. Offline Time 1.4 ms 6.6/1.1ms 2.9ms 10.6/1.7ms 29.6ms 24.6ms/4.1ms

Am. Offline Comm. 0.6KB 4.9KB 0.6KB 6.6KB 1.4KB 120.5KB

Client Storage 123MB 66MB 173MB 75MB 1.2GB 719MB

Table 1: Performance of our scheme and SimplePIR on 1GB, 2GB and 100GB sized databases.
The 1GB and 2GB databases have 8-byte entries and the 100GB database has 64-byte entries. For
preprocessing times in the format of 1438s/243s, the former is with a single thread, and the latter
is with 8 threads. “Am.” is an abbreviation of “Amortized”. “Comm.” stands for communication
cost. We report the online costs as well as the offline costs amortized over Q =

√
n lnn queries.

∗The results for SimplePIR with the 100GB database are extrapolated since their implementation
cannot directly support such a large database.

Metrics and two modes of operation. Table 1 shows the costs of the queries as well as the
one-time pre-processing. For the query costs, we divide it into two parts, the online costs and the
amortized offline costs. The former is on the critical path of the perceived response time, and the
latter is the additional maintainence work needed when we deamortize the periodic preprocessing
costs over the queries. In practice, there are two ways to run our scheme. The first method is
to perform the preprocessing upfront only once, and the subsequent periodic pre-processing costs
are deamortized to the queries in each window. The second method is to periodically rerun the
pre-processing phase, e.g., at night or during periods of inactivity — in this case, the query phase
need not pay the “amortized offline time” and “amortized offline communication”.
Query costs. As seen in Table 1, our protocol outperforms SimplePIR in all online metrics,
including client storage, communication, and online querying time. In particular, for medium-sized
databases (1GB/2GB), we outperform SimplePIR by 16.7x - 24.4x in terms of online querying
latency. This performance gain stems from the fact that our online computation is sublinear in the
size of the database, while SimplePIR is fundamentally limited by the linear scan required of their
protocol. As the database grows larger, the performance gap further increases. For the 100GB
database, Piano only takes 33.3ms for the online query. On the other hand, the extrapolated
online time for SimplePIR is 10.9s, such that we see nearly a 330× performance gap.
Preprocessing costs. Preprocessing costs depend on the size of each entry. When the per-entry
size is bigger, our preprocessing is faster than SimplePIR (see the 100GB case where the entry
size is 64 bytes). When the per-entry size is smaller, our preprocessing is slower than SimplePIR.
In particular, Piano has a quasi-linear preprocessing phase that it takes O(n log κα(κ)) PRF
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evaluations and O(n log κα(κ)) XOR operations between database entries. We observe that the
PRF evaluations are the computation bottleneck when the entry size is not too big (e.g., 64 bytes
or less). Therefore, our scheme’s concrete performance depends more on the number of entries,
rather than the per-entry size.

The table also shows the effect of the parallelization for preprocessing costs (and similarly for
amortized offline costs during the query phase). Since client computation is the bottleneck for the
preprocessing, parallelizing the work using 8 threads significantly improves the running time. For
example, for a 2GB database, parallelization with 8 threads improves the client’s preprocessing
time from 3369s to 563s.

4.4 Experiments over a Wide-Area Network
Next, we report our results for an experiment conducted over a wide-area network. Recall that the
round-trip network latency is around 60ms and the network bandwidth is 2Gbps (see Section 4.2).
The effects of this added network latency are seen in Table 2. Because the open-source SimplePIR
implementation does not support connections across multiple machines, we extrapolate a lower
bound for their querying time based on the summation of thee extrapolated numbers in the previous
section and the network latency.

2GB(n = 228) 100GB(n ≈ 1.68× 109)
Non-Private SimplePIR Piano Non-Private SimplePIR Piano

Preprocessing
Client Time - 608s 3331s/565s - 425min 395min/76min

Communication - 173MB 2GB - 1.2GB 100GB

Per query
Online Time 59.8ms 279.3ms 68.4ms 61.0ms 10.9s 93.4ms

Online Comm. 16B 338KB 128KB 72B 2.3MB 900KB
Am. Offline Time - 1.9ms 10.4ms/1.8ms - 29.6ms 27.2ms/5.3ms

Am. Offline Comm. - 0.6KB 6.6KB - 1.4KB 120.5KB

Client Storage - 173MB 75MB - 1.2GB 719MB

Table 2: Performance of our scheme, SimplePIR and the non-private baseline on 2GB and 100GB
sized databases. The 2GB database has 8-byte entries and the 100GB database has 64-byte entries.
Numbers of the format 10.4ms/1.8ms denote the performance with a single thread and 8 threads,
respectively. “Comm.” stands for communication cost. “Am.” stands for “amortized”.

When compared to the non-private baseline, our protocol has a 14% − 53% latency overhead.
SimplePIR, on the other hand, has a 4.6x - 178.7x latency overhead.
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4.5 Performance Breakdown

Figure 2: Cost breakdown

In Figure 2, we provide a detailed performance breakdown of the online time when running Piano
on wide-area-network (the same setup as in Table 2). We see that the online time is mostly
dominated by the network transmission time. The network transmission time is bounded by the
physical distance – a 60ms RTT is required even the payload is negligible. The overhead of more
data being transmitted is small since the bandwidth is 2GB/s in our setup and we transmit at most
900KB per query. The client computation time is the second largest factor and it is dominated
by the time to find a matched hint, which requires expected O(

√
n) PRFs evaluations. The server

computation time is much faster since the server-side algorithm only requires some RAM accesses
with some non-cryptographic computation.

5 Additional Optimizations
We provide some additional optimization ideas.
Compressing local storage. Instead of generating a λ-bit key for each hint, the client just needs
to generate a master secret key msk and a unique short key ski (e.g. 32 bits) for the i-th hint. This
idea could save the local storage by up to 50%.
Compressing offline bandwidth. During the offline phase, the server will streamingly send
the whole database to the client. The server can compress each chunk using loseless compression
algorithms to reduce communication.

6 Additional Related Work
In this section, we provide some additional comparisons with related work.
Single-server PIR schemes. Section 6 compares Piano with existing single-server PIR schemes.
Although our paper primarily focuses on enhancing the practical performance of PIR, our proposed
scheme is also of interest from a theoretical perspective. Notably, it is the first single-server PIR
scheme that relies solely on one-way functions (OWF) and has sublinear server computation.

Early theoretical works aimed at improving the communication cost of PIR, such as the studies
by Chachin, Micali and Stadler [CMS99], Yan-Cheng Chang [Cha04], and Genry and Ramzan [GR05].
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Scheme Assumpt. Comm. Per-query time Extra space
Theoretical Single-server PIR Schemes

Standard CRA or
Õ(1) 0[Cha04,CMS99,GR05] ϕ-hiding

or LWE
O(n)

[CHR17,BIPW17] OLDC nϵ nϵ mn
[BIPW17] OLDC, VBB nϵ nϵ n

[LMW22] RingLWE poly((log n)1/ε) poly((log n)1/ε) Õλ(n
1+ε)

[CK20] LWE Õλ(
√
n) Õλ(n) Õλ(

√
n)

[CHK22] LWE Õλ(
√
n) Õλ(

√
n) Õλ(

√
n)

[ZLTS23,LP22] LWE Õλ(1) Õλ(
√
n) Õλ(

√
n)

Practical Single-server PIR Schemes (with implementations)
XPIR(d = 2) [MBFK16] LWE Õλ(

√
n) O(n) Õλ(1)

PSIR [PPY18] LWE Õλ(
√
n) O(n) Õλ(

√
n)

FastPIR [AYA+21] LWE Õλ(n) O(n) Oλ(1)

OnionPIR [MCR21] LWE Õλ(1) O(n) Õλ(
√
n)

Spiral [MW22] LWE Õλ(1) O(n) O(1)

FrodoPIR [DPC22] LWE Õλ(
√
n) O(n) Õλ(

√
n)

SimplePIR [HHCG+22] LWE Õλ(
√
n) O(n) Õλ(

√
n)

Ours OWF O(
√
n) Õλ(

√
n) Õλ(

√
n)

Table 3: Comparison of single-server PIR schemes. m is the number of clients, n is the
database size, d is the dimension of the hypercube representation of the DB, ϵ ∈ (0, 1) is some
suitable constant. ‘Comm.” means communication per query. “CRA” means the composite residu-
osity assumption, ϕ-hiding is a number-theoretic assumption described in [CMS99], “OLDC” means
oblivious locally decodable codes, “VBB” means virtual-blackbox obfuscation, and “OWF” means
one-way function. The extra space denotes the client’s extra storage, except for the schemes based
on OLDC and also Lin, Mook and Wichs [LMW22], where the server stores the extra storage.
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Beimel, Ishai and Malkin [BIM00] proved an important lower bound that dictates the per-query
time of any PIR scheme without preprocessing to be Ω(n). Inspired by their work, many subsequent
studies followed the “pre-processing” model to achieve amortized sublinear per-query time.

In the “global-preprocessing” model, also known as Doubly Efficient PIR (DEPIR), the server
first preprocesses the database, and subsequently, it can answer queries with sublinear computation
time. However, early works [CHR17,BIPW17] relied on non-standard assumptions or VBB obfus-
cation. A recent breakthrough work by Lin, Mook and Wichs [LMW22] presented a method to
construct DEPIR based on the standard RingLWE assumption. In their approach, for any constant
ε > 0, the server preprocesses the database and stores a data structure of size Õλ(n

1+ε). Later, the
server can answer queries in poly((log n)1/ε) time with poly((log n)1/ε) communication cost, where
poly is a fixed polynomial.

Our scheme falls under the “client-preprocessing” model, also known as the subscription model.
Corrigan-Gibbs and Kogan [CK20] were the first to present a construction under this model with
O(n) offline time and Õλ(

√
n) online time. However, their scheme only supports a single query.

Later, Corrigan-Gibbs, Henzinger and Kogan [CHK22] showed how to transform a single-query
scheme into a

√
n-query scheme with polylogarithmic overhead using FHE. Zhou et al. [ZLTS23]

and Lazzaretti and Papamanthou [LP22] further extended the idea and achieved polylogarithmic
communication cost.

In terms of practical schemes, all the previous works supporting adaptive queries had Õ(n)
per-query computation time. Most of them relied on homomorphic encryption (usually not just
linear homomorphic encryption) and required the LWE assumption. XPIR [MBFK16] was among
the first to implement a single-server PIR scheme that only consumes Õλ(

√
n) per-query commu-

nication cost. PSIR [PPY18] utilized client-side preprocessing to reduce the online cryptographic
operation number to Õ(

√
n), but the server still needs to perform O(n) plaintext operations. Fast-

PIR [AYA+21] made concrete improvements to online time, but it comes at the cost of O(n)
per-query communication for the client. OnionPIR [MCR21], on the other hand, choosed homo-
morphic encryption parameters carefully to compress communication. Among the state-of-the-art
single PIR schemes, Spiral [MW22], FrodoPIR [DPC22], and SimplePIR [HHCG+22] are notewor-
thy. Spiral [MW22] combined two different homomorphic encryption schemes to control noise in
the ciphertext, thereby achieving polylogarithmic communication. Meanwhile, FrodoPIR [DPC22]
and SimplePIR [HHCG+22] shared a similar idea that in the evaluation of the Regev’s HE scheme,
most of the computation can be performed without knowing the message upfront and thus can
be preprocessed. Their schemes require an one-time offline setup where the client downloads and
stores the query-irrelevant parts of the HE evaluation in advance. As a result, for each online
query, the server only needs to compute the query-relevant part, and the cost is almost the same
as plaintext evaluation over the entire DB. SimplePIR [HHCG+22] had the best performance and
claimed that online query time is already limited by the server’s memory I/O speed. Nonetheless,
all these schemes have linear online server time.
Batch PIR schemes. Pioneered by Ishai et. al [IKOS04], Batch PIR schemes [AS16, ACLS18,
MR22,LLWR22] are designed for batched queries. If a client submits a batch of Q parallel queries
to the server, the server’s computation cost can be amortized to Õ(n/Q) per query, even though
the server still performs O(n) computation for the entire batch. Batch PIR schemes have two
main limitations. First, a client must make many parallel queries simultaneously to amortize
the computation cost. In practical applications, the client may wish to adaptively decide their
following queries based on previous querying results. Asymptotically, only when the client makes
O(
√
n) parallel queries, the amortized computation time can match Piano. Second, these schemes

require the server to run some form of homomorphic encryption evaluations on the entire DB and
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incur O(n) computation per batch, making the overall latency significant. In contrast, our scheme
only requires the server to perform O(

√
n) plaintext evaluation.

From a practical standpoint, as mentioned in Henzinger et al. [HHCG+22], the state-of-the-art
batch PIR scheme, SealPIR [ACLS18], has 100x worse throughput than SimplePIR [HHCG+22].
Multi-server PIR schemes. The multi-server PIR schemes assume there are mulitple non-
colluding servers and each one of them stores a copy of the DB. This assumption was first shown
to improve the communication cost to O

(
n1/3

)
[CGKS95, CKGS98] and later schemes based

on [GI14,BGI16] further improved the cost to be polylogarithmic.
Corrigan-Gibbs and Kogan [CK20,KCG21] proposed the client-side preprocessing idea to achieve

Õλ(
√
n) amortized per-query time under the two-server model with Õλ(

√
n)-size per-query commu-

nication and Õλ(
√
n) client side storage. Shi et al. [SACM21] and TreePIR [LP23] by Lazzaretti and

Papamathou further extended this idea and achieved polylogarithmic per-query communication.
The sublinear schemes in the multi-server model are practical. The PRP-based PIR [CK20]

is implemented by Ma et al. [MZRA22]. Checklist [KCG21] and TreePIR [LP23] also provided
implementations.

TreePIR reported the best performance among these implementations, providing one imple-
mentation with polylogarithmic per-query communication cost by invoking a recursive scheme
and another one with O(

√
n) per-query communication cost without the recursion. For an 8GB

database with 228 entries, the best amortized online time results reported in TreePIR are 23ms for
the non-recursive scheme and 84ms for the recursive scheme. For comparison, our scheme has an
amortized 20ms per-query time under the same setting with 4x local storage. The blowup of the
local storage comes from the backup hints and the deamortization of the setup phase, which are
inherently required for the single-server setting.

7 Limitations and Suitable Use Cases
The main limitation of Piano is its communication cost: 1) the client has to download the whole
database during the setup phase; 2) the online communication cost per query is O(

√
n). Compared

to previous solutions like Zhou et al. [ZLTS23] and Lazzaretti and Papamanthou [LP22] which have
Õλ(1) communication overhead per query, the cost of Piano is O(

√
n). However, we argue that

this sacrifice is actually what makes our solutions practical. The streaming preprocessing avoids
the need of using FHE during the offline phase. Also, private programming of PRF is required
to achieve Õλ(1) online bandwidth in previous solutions [ZLTS23,LP22] and this primitive is only
known in theory. By sending the whole edited set,we can do puncturing or programming without
need of complicated constructions. That being said, designing a truly practical single-server PIR
with Õλ(1) communication overhead is one of the major future questions to be explored. We provide
two possible use cases for Piano.

• Private Light-weight Blockchain Node. When a light-weight blockchain node needs to
fetch data from the blockchain, it makes queries to other full nodes. A light-weight node
needs to make a verification pass over the blockchain history, and it has frequent queries,
which makes Piano a suitable privacy-preserving solution.

• Private DNS Service. DNS queries are usually made frequently and usually made during a
period periodically (e.g., daytime). Piano is also suitable for building a private DNS service.
Users can preprocess during rest time and make queries during the online phase.
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8 Conclusion
We propose an extremely simple single-server PIR scheme called Piano. Unlike previous practical
single-server PIR schemes, Piano achieves sublinear server computation. This allows us to scale
Piano to database sizes that are much larger than previous implementations. For example, for a
100GB database over a coast-to-coast link, Piano achieves 93.4ms response time, which is only
1.53× slowdown w.r.t. a non-private baseline. Our work pushes the frontier of the practical
PIR landscape, and opens up possibilities for new applications, especially ones that involve larger
databases.
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A A Variant of Piano
We present a variant of Piano in this section5. This variant has less storage but comes with more
online communication. The only difference will be in the online stage.

5This is the initial scheme when we publicized the paper in March 2023. Although both being easy to implement,
we consider the new main scheme is conceptually simpler. Henceforce, we decided to present the initial scheme as a
variant.
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Client side: A different approach to hide the query point. Recall that for each query
x, the client will find a preprocessed set S containing x and the client wants to learn the parity
S/{x} (which is enough for it to learn DB[x]). The main point is to learn the parity S/{x} while
preserving privacy. In the scheme presented in Section 2, the client will replace the query point x
by some preprocessed replacement indices r from the same chunk to ensure privacy. The query set
will look random in the view of the server and the client can learn the parity of (S/{x}) ∪ {r}.

The variant takes a different method to hide the query point. Given a set S that contains
one index from each chunk, we first write its “offset vector” as ∆ = (S[0] mod

√
n, S[1] mod√

n, . . . , S[
√
n − 1] mod

√
n). For example, if the DB size is 16 and the set is {2, 4, 11, 13}, the

offset vector will be (2, 0, 3, 1). Let j be x’s chunk index. Consider the following offset vector that
removes the offset of x and compacts the remaining offsets:

∆−x =
(
S[0] mod

√
n, . . . , S[j − 1] mod

√
n, S[j + 1] mod

√
n, . . . , S[

√
n− 1] mod

√
n
)

For example, removing the offset of 4 from the offset vector of the last example will result in a
vector of (2, 3, 1). We observe that after removing the offset of x from the vector, the compacted
remaining vector completely hides the information of x.

Therefore, the client can directly send ∆−x to the server.

Server side: Returning the correct parity efficiently. The server cannot directly recover
the set S/{x} from the vector ∆′ = (δ0, . . . , δ√n−2) it receives, because the chunk index of the
removed index is unknown. However, the server can guess all

√
n possible cases and reconstruct a

possible set for each guess. For example, if the server guesses the removed point is from the i-th
chunk, the server can reconstruct a set as

Si = {δ′0, δ′1 +
√
n, . . . , δi−1 + (i− 1) ·

√
n,⊥, δi + (i+ 1) ·

√
n, . . . , δ√n−2 + (

√
n− 1) ·

√
n},

where⊥ is simply a placeholder for the removed index. Denote the parity for Si as qi = ⊕k∈Si
DB[k].

Suppose the server can compute all q0, . . . , q√n−1 efficiently, it can return all the guessed parities
to the client with O(

√
n) communication cost. The client can directly pick up the correct guess qj

because it knows exactly where the removed point is!
Now we show that computing q0, . . . , q√n−1 only takes O(

√
n) time. The naive approach is to

recover the whole set for each guess and compute their parities directly. Since we have
√
n guesses

and each guess reconstructs a (
√
n − 1)-size set, the computation time will be O(n). However,

observe that the symmetric difference between each two consecutive reconstructed set Si and Si+1

will only be two elements: ∆′
i + (i + 1) ·

√
n and ∆′

i + i ·
√
n. Therefore, computing qi+1 from qj

only takes two extra xor operations. The algorithm can just compute q0 directly in O(
√
n) time,

and compute q1, q2, . . . , q√n−1 in sequence, each takes O(1) time. So the total computation time is
O(
√
n). We list the algorithm in Figure 3.

Comparison with the main scheme. The efficiency for this variant is nearly the same as the
scheme presented before. The difference as follows. On the one hand, in this variant, the client
does not have to store all the replacement index-value pairs. However, since other parts of the
storage already consume O(

√
n log κα(κ)) space, the asymptotic stroage cost stay the same. On

the other hand, this variant has O(
√
n) download cost per query whereas the main scheme has O(1)

download cost. However, the upload costs are both O(
√
n) for the two schemes. So the asymptotic

communication cost stays the same as O(
√
n). In short, the two schemes have the same asymptotic

behaviors and they provide a tradeoff between the local storage and the online communication (up
to a constant factor).
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1. Upon receiving the offset vector ∆′, parse ∆′ as (δ0, . . . , δ√n−2).
2. q0 = ⊕i∈{1,...,

√
n−1}DB [δi−1 + i ·

√
n].

3. For i = 0, . . . ,
√
n− 2, compute qi+1 = qi ⊕DB [δi + (i+ 1) ·

√
n]⊕DB [δi + i ·

√
n].

4. Return (q0, . . . , q√n−1).

Figure 3: O(
√
n)-time server-side algorithm for one query.

Correctness and Privacy Proof. The correctness proof and the privacy proof are nearly the
same as the proofs presented in Appendix C. The failure probability analysis remains the same for
the correctness proof. For the privacy proof, the only difference is that the simulation strategy for
the simulator. It now sends a uniform vector ∆′ $←{0, 1, . . . ,

√
n− 1}

√
n−1 instead of a random set.

These two simulation strategies are both indepedent of the query index. Other parts of the privacy
proof stay the same.

B Extensions
B.1 Supporting Key-Value Queries
Our PIR scheme so far supports memory lookup queries, where the client wants to query some
index x into some database. In some real-world applications such as private DNS, the client wants
to query some search key rather than an index. Our scheme can easily be modified to support a
key-value interface as follows. First, the server can use a Cuckoo hashing scheme to hash all n keys
into a table D of size O(n), along with an overflow pile F which is logarithmic in size except with
negligibly small probability. The server publishes the randomness seed used in the Cuckoo hashing
as well as the overflow pile F . The client will store the overflow table F locally. Moreover, using
the randomness seed, given any key, the client can compute the two relevant indices x0 and x1 in
the table D to look for key. It is guaranteed that key exists in either D[x0] or D[x1], or in the
overflow pile F . The client can retrieve both D[x0] and D[x1] using our PIR scheme that works for
memory lookup.

B.2 Supporting Dynamic Databases
So far, we have focused on a stataic database. In some applications such as private DNS, the
database will evolve over time. It is not hard to transform our static scheme into a dynamic one
using a standard technique called “hierarchical data structures”. This technique was originally
proposed by Bentley and Saxe [BS80]. Since then, it has been used in various cryptographic
applications to transform static schemes into dynamic ones, such as Oblivious RAM [GO96,Gol87],
proof of retrievability [SSP13], searchable encryption [SPS14], and PIR [KCG21].

Below we describe how to use this approach in our context to make the scheme dynamic.
Syntax. Specifically, we want to have a PIR scheme for key-value queries:

• Init(1λ,DB): given a key-value store DB, initialize a PIR scheme.
• Query(key): the client wants to look up the value associated with some key key.
• Insert(key, val): add a new entry (key, val) to the key-value store.
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• Update(key, val): update the value of an existing key to the specified new value.
• Delete(key): delete key from the key-value store.

Construction. Let n be the maximum size of the database. Let Q =
√
n log n ·α(n) where α(·) is

an arbitrarily small super-constant function. We assume that n = 2L ·Q. We will use a hierachical
data structure Γ with logarithmically many levels denoted Γ0,Γ1, . . . ,ΓL, where each level ℓ may
either be empty or have a PIR scheme of size 2ℓ ·Q.

Let t be the number of update operations (including insertions, updates, or deletions) that
have taken place so far including the current operation. We assume that at any point of time, the
client always locally stores the most recent Q updates (including insertions, updates, or deletions).
Further, these most recent Q updates are also stored at the server, in a separate array called Γ−1.

• Init(1λ,DB): Suppose that the size of the database |DB| = 2ℓ ·Q. Run the preprocessing phase
of the PIR scheme with each client, using the key-value store DB. At this moment, we have
only one PIR instance corresponding to the level Γℓ. Every other level is empty.

• Insert(key, val): Record the operation including the type of the operation in Γ−1. If t is a multiple
of Q. Let ℓ∗ be the first empty level. At this moment, we want to merge all PIR schemes in
levels Γ−1,Γ0, . . . ,Γℓ∗−1 into a new PIR scheme in Γℓ∗ . If no empty level is found, then we want
to merge levels Γ−1,Γ0, . . . ,Γℓ∗ into level Γℓ∗ .
The merge is done as follows: first, we examine all the update operations in the levels to be
merged, and perform a duplicate suppression. During the duplicate suppression, the most recent
update to some key should override old ones. Unless we are rebuilding the last level L, if some
key has been deleted, we will explicitly record that its corresponding value is ⊥. Only when we
are rebuilding the last level L, can we actually delete this key.
After the duplicate suppression, we get a key-value store with at most 2ℓ∗ ·Q entries — this will
become the new database at level ℓ∗. The server now runs the preprocessing stage of the PIR
scheme with every client for this key-value store.

• Update(key, val): Same as Insert(key, val).
• Delete(key): Same as Insert(key,⊥).
• Query(key, val): For ℓ = 0, 1, . . . , L, if Γℓ is not empty, invoke the PIR scheme of level Γℓ to query

the value corresponding to key. Let vℓ be the answer obtained from level ℓ. Further, the client
also looks up its local table of the most recent Q updates, and obtains another answer v−1.
Each answer vi may be of the form, “not found” , ⊥ (which indicates that the key is deleted), or
some actual value. If all levels report “not found”, the client outputs “not found”. Otherwise,
it outputs the freshest value found that is possibly ⊥.

In practice, the client need not be constantly online. For the periodic rebuilds that stem from
updates, the client can defer the rebuild work to the next time it comes online and makes queries.
The cost of the periodic rebuilds need to be amortized to the total number of updates — see our
performance analysis later.
Removing known-n assumption. So far, we assumed that we know an upper bound n on the
maximum number of entries in the key-value store. This assumption can easily be removed as
follows. When we are rebuildling the last level L, if we discover that the number of entries has
exceeded n, we update n← 2n as the new upper bound, i.e., increase the number of levels by 1.
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Similarly, when we are rebuilding the last level L, if we discover that the actual number of
entries is less than n/2, we can also update the new upper bound to be n ← n/2, i.e., reduce the
number of levels by 1.
Performance analysis. We now analyze the cost of the scheme. In the analysis below, we will
amortize the cost of periodic rebuilds (i.e., preprocessing) to the updates. The initial preprocessing
is only one-time and will be amortized to an unbounded number of queries, so the amortized cost
is arbitrarily small.

• Online query costs. For each query, the online cost is the sum of the costs of querying
O(log n) PIR schemes, each of size Q, 2Q, . . ., n. The total amortized communication is
Oλ(Q

1
2 + (2Q)

1
2 + . . . + n

1
2 ) = Oλ(

√
n). Using a similar calculation, the amortized online

server computation is O(
√
n). The amortized client online computation is Oλ(

√
n).

• Update costs. Every Q updates, we need to perform the preprocessing phase for a Q-sized
database. The amortized communication is Cλ ·Q/Q = Cλ, the amortized server time is C,
and the amortized client time is Cλ ·log κ·α(κ) for some constant C and another parameter Cλ

related to the security parameter λ. Every 2Q updates, we need to perform the preprocessing
phase for a 2Q-sized database. The amortized communication is Cλ, the amortized server
time is C, and the amortized client time is Cλ log κ · α(κ). Every 4Q updates, we need to
perform the preprocessing phase for a 4Q-sized database, and so on. Therefore, in total,
the amortized communication per update is Oλ(log n), the amortized server computation per
update is O(log n), the amortized client computation per update is Oλ(log n log κ · α(κ)).

• Space. The client space is Oλ(
√
n log κ · α(κ)). The server’s storage is O(n).

C Deferred Proofs
Theorem C.1 (Privacy). Our PIR scheme satisfies privacy (i.e., Definition 3.1).

Proof. Denote the distribution Dn as sampling a random set that draws a random element from
each

√
n chunk. The Ideal experiment is as follows.

• Offline. A receives the streaming signal.

• Online. for query i, the simulated client sends a set sampled from Dn to A.

We define a hybrid experiment Hyb1 as following:

• Offline. A receives the streaming signal.

• Online. For each online round t, A chooses the query xt. The client samples a random set
S

$←Dn conditioned on xt ∈ S and also a random index r from xt’s chunk. The client sends
(S/{xt}) ∪ {r} to the server (received by A).

It should be straightforward to prove the distribution ofA’s views in Ideal and Hyb1 are identical.
In Hyb1, since the Dn chooses a random element in each chunk independently, even conditioned on
containing any particular x, the remaining elements are still independent and uniformly random
within their chunks. Therefore, after replacing x with a random index from the same chunk, the
edited set (S/{xt}) ∪ {r} is identitcally distributed as Dn. So the views are indeed indentically
distributed in these two experiments.

Now we define a hybrid experiment Hyb2:
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• Offline. A receives the streaming signal. The client samples random sets S1, . . . , SM1

$←D[M1]
n .

• Online. For each online round t, A chooses the query xt:

1. The client finds the smallest index j ∈ [M1] that xt ∈ Sj . Denote the set as S∗. If no
such index is found, the client samples a set S∗ $←Dn conditioned on xt ∈ S∗.

2. The client samples a random index r from xt’s chunk. The client sends (S∗/{xt}) ∪ {r}
to the server (received by A).

3. The client samples S′ $←Dn conditioned on xt ∈ S′. If the client finds a set that contains
xt earlier, replace the j-th set in the local sets with S′.

The following lemm shows that the view of A in Hyb1 and Hyb2 are identically distributed.

Lemma C.2. In Hyb2, for every online queries xt, even conditioned on A’s view over the first
t− 1 queries,

• The set S′ received by A is distributed as follows. Sample S
$←Dn conditioned on xt ∈ S.

Sample a random index r from xt’s chunk. Let S′ = (S/{xt}) ∪ {r}.

• At the end of the t-th query, the client local sets S1, . . . , SM1 are identically distributed as
S1, . . . , SM1

$←DM1
n even condtioned on the messages received by A during the first t-th queries.

Proof. The proof is similar to Fact 7.3 in [SACM21].
Base case. At the end of the offline phase, indeed S1, . . . , SM1 are indeed distributed as

S1, . . . , SM1

$←D[M1]
n . The set found by the client are indeed distributed as S

$←Dn subject to x ∈ S
(even when the client does not find it in the first M1 sets and generates it on-the-fly).

Inductive case. Suppose that at the end of the t−1-th step, the client’s local sets S1, . . . , SM1

are distributed as S1, . . . , SM1

$←D[M1]
n even when conditioned on A’s view in the first t − 1 steps.

We now prove that the stated claims hold for t. Let xt be the query chosen by A depending on the
first t− 1 queries’ messages. For i ∈ [M1], define αi be the probability that if S1, . . . , SM1 are i.i.d
sampled from Dn, the first set that contains x is i. Let αM1+1 = 1−

∑
i∈[M1]

αi.
Consider the following experiment Expt:

• The client samples u ∈ [M1 + 1] such that u = i with probability αi.

• ∀j < u, the client samples Sj
$←Dn subject to xt /∈ Sj .

• For u, the client samples Su
$←Dn subject to xt ∈ S. The client samples a random index r

from xt’s chunk. The client sends (Su/{xt}) ∪ {r} to the server (received by A).

• For j ∈ [u+ 1,M1], the client samples Sj
$←Dn.

• The client samples S′
u

$←Dn subject to xt ∈ S′
u. If u ≤M1, the client replaces Su with S′

u.

The main random variables sampled in those two cases are (S1, . . . , SM1 , u, S
′
u) where S1, . . . , SM1

are the sets at the beginning of the t-th query, u is the index of the first set containing xt, and
S1, . . . , Su−1,S′

u,Su+1, . . . , SM1 will be the local sets at the end of the t-th query. In Hyb2, by
the induction hypothesis, S1, . . . , SM1 are i.i.d. sampled from Dn. Then u is selected as the first
set’s index that contains xt and its distribution will follow Pr[u = i] = αi. Finally, it samples
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S′
u

$←Dn. In Expt, the sampling order is changed: it first samples u, then samples S1, . . . , SM1

conditioned on u, then samples S′
u. By the definition of α1, . . . , αM+1, we know the joint distri-

bution of (S1, . . . , SM1 , u) are the same in both experiments. Also, S′
u is always just sampled from

Dn subject to xt ∈ S′
u. Therefore, the marginal distributions of (S1, . . . , SM1 , S

′
u) are the same in

both experiment. Now we look at Expt. The message received by A fully depends on Su (with no
dependency on u) and Su’s marginal distribution is exactly Su

$←Dn subject to x ∈ Su. So we prove
that Hyb2 satisfies the first property in the statement. From the definition of Expt, the marginal
distribution of (S1, . . . , Su−1, S

′
u, Su+1, . . . , SM1) will actually be DM1

n . Thus, we prove Hyb2 also
satisfies the second property in the statements.

Notice that Hyb2 is close to the real experiment. We define hybrid experiment Real∗ as following:

• Offline. A receives the streaming signal. The client samples random sets S1, . . . , SM1

$←D[M1]
n

and also Si,j
$←Dn for i ∈ {0, 1, . . .

√
n− 1}, j ∈ [M2].

• Online. For each round t, A chooses the query xt:

1. The client finds the smallest index j ∈ [M1] that xt ∈ Sj . Denote the set as S∗. If no
such index is found, the client samples a set S∗ $←Dn conditioned on xt ∈ S∗.

2. The client samples a random index r from xt’s chunk.
3. The client sends (S∗/{xt}) ∪ {r} to the server.
4. If there is an unconsumed set in Si∗,1, . . . , Si∗,M2 , say Si∗,j , the client consumes it and

set S′ = (Si∗,j/{Si∗,j [i
∗]})∪{xt}. Otherwise, The client samples S′ $←Dn conditioned on

xt ∈ S′. If the client finds a set that contains xt earlier, replace the j-th set in the local
sets with S′.

The view of A in Hyb2 and Real∗ is identically distributed – the experiments only differ in the
refreshing phase. In Hyb2, the client always replaces the set with a freshly generated set S′ subject
to the query index xt is contained. In Real∗, the client first tries to find an unconsumed local backup
set S′ (which has distribution Dn) and manually forces xt into it. Otherwise it is the same as Hyb2.
Notice that Dn samples the element in each chunk independently. Therefore, even in Real∗ that
xt is forced into the set, the elements in other chunks are still uniformly random. Therefore, the
distribution of S′ is identical in both experiments, and A has the same view in these experiments.

Finally, Real∗ is just a rewrite of Real throwing out the terms that we are not interested and
replacing the PRF with real randomness when picking the elements. By a straightforwad reduction
to the pseudorandomness of the PRF, Real∗ and Real are computationally indistinguishable.

Theorem C.3 (Correctness). Assume n is bounded by poly(λ) and poly(κ). Let α(κ) be any
super-constant function, i.e., α(κ) = ω(1). Setting M1 =

√
n lnκα(κ), M2 = 3 lnκα(κ), all the

Q =
√
n lnκα(κ) queries will be answered correctly with probability at least 1−negl(λ)−negl(κ) for

some negligible function negl(·).

Proof. Recall that in our full scheme, the server will first sample a pseudorandom permuta-
tion(PRP) to permute the database upfront and the client will download the key from the server.
Replacing the PRP with a true random permutation only affects the failure probability by a neg-
ligible amount, negl(λ). We also assume that the client does not make any duplicative queries for
those Q queries. Therefore, taking the randomness of the permutation, we can view all Q queries
are randomly sampled from {0, 1, . . . , n− 1} without replacement.
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We assume the client uses a true random oracle to sample the sets, instead of a PRF. Due
to the pseudorandomness of the PRF, this assumption will not affect the failure probability by a
negligible amount, negl(λ).

There are only two types of events that causes failures: 1) the client cannot find a set that
contains the online query index; 2) the client runs out of hints in a backup group.

We analyze the second type of failure events – it only happens when the client makes more
than M2 queries in one group. Since the client is making

√
n lnκα(κ) queries and there are

√
n

groups, we can use a standard balls-into-bins argument. For t ∈ [Q], i ∈ {0, 1, . . . ,
√
n− 1}, define

the random variables Yt,i ∈ {0, 1} such that Yt,i = 1 if and only if the t-th query locates in the
i-th chunk. Denote Xi = Y1,i + · · · + Yt,i be the number of queries located in the i-th chunk. We
know E[Yt,i] = 1/

√
n and E[Xi] = lnκα(κ). Notice that we are taking the randomness of the

permutation and the queries do not have duplication, so Y1,1, . . . , YQ,1 are negatively correlated.
With the Chernoff bound for negatively correlated variables, we know that

Pr[X1 ≥ (1 + 2) lnκα(κ)]

≤ exp

(
−22

2 + 2
lnκα(κ)

)
= κ−Θ(α(κ)).

Taking the union bound over all
√
n chunks, the failure probability is bounded by

√
n·κ−Θ(α(κ)),

which is a negligible function of κ.
For the first type of failure events, by Lemma C.2, the local sets S1, . . . , SM1 (i.e., the set

represented by the keys) will be identically distributed as DM1
n and each set will contain the query

with probability 1/
√
n. So for a particular query x, the probability of no set containing x is(

1− 1/
√
n
)M1 =

(
1− 1/

√
n
)√n lnκ·α(κ)

≤ (1/e)lnκα(κ) = κ−α(κ).

With the union bound, for all
√
n lnκα(κ) queries, the probability of any query cannot find a

set is bounded by
√
n lnκα(κ) · κ−α(κ), which is a negligible in κ since n is bounded by poly(κ).

Then, there is some negligible function negl(·) that all the queries are answered correctly with
probability at least 1− negl(λ)− negl(κ).
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