
Registration-Based Functional Encryption

Pratish Datta1, Tapas Pal2

1 NTT Research, Sunnyvale, CA 94085, USA
pratish.datta@ntt-research.com,

2 NTT Social Informatics Laboratories, Japan 180-8585
tapas.pal.wh@hco.ntt.co.jp

Abstract. This paper introduces registered functional encryption (RFE) that eliminates trust on the central
authority for handling secrets. Unlike standard functional encryption (FE), in an RFE scheme, users create
their secret keys themselves and then register the associated public keys to a key curator along with the
functions they wish to compute on the encrypted data. The key curator aggregates the public keys from the
different users into a single compact master public key. To decrypt, users occasionally need to obtain helper
decryption keys from the key curator which they combine with their own secret keys. We require that the size
of the aggregated public key, the helper decryption keys, the ciphertexts, as well as the encryption/decryption
time to be polylogarithmic in the number of registered users. Moreover, the key curator is entirely transparent
and maintains no secrets. RFE generalizes the notions of registration-based encryption (RBE) introduced
by Garg et al. (TCC 2018) and registered attribute-based encryption introduced by Hohenberger et al.
(EUROCRYPT 2023) who dealt with the “all-or-nothing” variants of FE.
We present an RFE scheme for general functions and arbitrary number of users from indistinguishability
obfuscation and somewhere statistically binding hash functions. Surprisingly, our construction is achieved
via only a minor tweak applied to the registered ABE of Hohenberger et al.

1 Introduction

Functional encryption. Functional encryption (FE) [2,10] is an advanced encryption method
for computing arbitrary functions on encrypted data. In an FE scheme, there is a central au-
thority which holds a master secret key. The authority generates secret keys skf for users. An
encryption of a message m can be decrypted using SKf to recover f(m). FE overcomes the
limitation of ”all-or-nothing“ decryption property of traditional public key encryptions (PKE)
by delivering fine-grained access control and computing capability over encrypted data. As a
result, various forms of FE have been used to solve challenging cryptographic problems such as
constructing indistinguishability obfuscation [3, 8, 5].

Can we trust the central authority forever? Like all other usual PKE schemes, the cur-
rent structure of FE scheme has a central authority or a secret key generation center which is
responsible for keeping users’ secret keys private. In other words, once the central authority is
compromised then we can no longer ensure privacy of our encrypted data. This is because an
adversary can generate skf for any desirable function if it gets hand to the master secret key.
Therefore, it is not advisable to trust the central authority forever while our aim is to build a
sustainable encryption mechanism that keeps our data safe and secure.

Registration-based encryption. Registration-based encryption (RBE), introduced by Garg
et al. [4], is a modern solution to deal with the key escrow problem in the setting of identity-based
encryption (IBE) [12, 11, 1, 4]. The secret keys and ciphertexts are associated with identities of
receivers and senders respectively. If these two identities match then the receiver is able to decrypt
the ciphertext. The role of central authority of IBE is played by a key curator in the case of
RBE. The key curator, instead of generating secret keys, now aggregates independently generated
public keys of the users in the system into a short master public key MPK. More precisely, a
RBE scheme allows users to generate their own public, secret key pairs independently, and then
provide only the public keys along with their identities to the key curator. The key curator runs
an aggregation algorithm to create a master public key MPK having size much shorter than the
number of users in the system. It also generates a helper decryption key for each users to facilitate
successful decryption. Importantly, the key curator does not process any secret information and
it is a public algorithm which deterministically computes MPK and the helper decryption keys.
We can encrypt data using the current MPK and whenever a new user joins the system the
master public key is revised. Consequently, the users need to update their helper decryption keys
whenever it is necessary for a successful decryption during the life-time of the system. If there
are L users in the system then each each user is required to update the helper decryption key
at most O(logL) times. Moreover, the sizes of MPK and the helper decryption keys remain at
most O(logL).

Recently, Hohenberger et al. [7] extends the notion of RBE to registered attribute-based en-
cryption (RABE) with the motivation to solve the key escrow problem in ABE [6,9]. In RABE,
the aggregation of public keys are performed with respect to user specific sets of attributes and
encryption is done under some policies. At the time of decryption, a user recovers the message
if it’s set of attributes satisfies the policy. Although IBE and ABE are a type of FE, both of
these falls under ”all-or-nothing“ encryption mechanism where a successful decryption reveals
all information about the data. This led us to the following open problem.

Open Problem Can we construct a registration-based FE for general circuits?

2

1.1 Our Results

In this paper, we introduce notion of registered functional encryption (RFE) to resolve the key
escrow problem for FE and supporting the arbitrary number of users. This notion generalizes
registration-based encryption (RBE) introduced by Garg et al. [4] and registered Attribute-
based encryption (RABE) introduced by Hohenberger et al. [7] both of which dealt with “all-
or-noting” encryption paradigms. Switching from all-or-nothing to the setting of FE seems to
present additional challenges. However, we show that a minor tweak to the registered ABE of [7]
could lead to an RFE scheme. Indeed, we present an RFE scheme for general functions and an
arbitrary number of users from indistinguishability obfuscation (iO) and somewhere statistically
binding (SSB) hash functions.

While this is mostly a feasibility result, it gives us some insights into the gap between regis-
tered ABE and RFE. Indeed, it is often seen that constructing a standard FE scheme for general
functions (supporting arbitrary collusion of users) is much more difficult compared to ABE. Our
results show that this is not the case for RFE.

2 Cryptographic tools

Definition 1 (Pseudorandom Generator) A pseudorandom generator (PRG) PRG : {0, 1}λ →
{0, 1}λ+`(λ) with stretch `(λ) (` is some polynomial function) is a polynomial-time computable
function that satisfies the following. For any PPT adversary A, it holds that

|Pr[A(PRG(s)) = 1 : s← {0, 1}λ]− Pr[A(r) : r ← {0, 1}λ+`(λ)] ≤ negl(λ)

.

Definition 2 (Secret Key Encryption) Let λ be a security parameter and let p, q, r and s be
some polynomials. A secret key encryption scheme is a tuple of algorithms SKE = (Setup,Enc,Dec)
with plaintext space M := {0, 1}n, ciphertext space C := {0, 1}`c(λ), and secret key space
SK := {0, 1}`k(λ).

Setup(1λ): The setup algorithm takes the security parameter 1λ as input and outputs a secret
key sk ∈ SK.

Enc(sk,m): The encryption algorithm takes sk and a plaintext m ∈ M as input, and outputs
a ciphertext ct ∈ C.

Dec(sk, ct): The decryption algorithm takes sk and ct as input, and outputs a plaintext m′ ∈M
or ⊥.

The algorithms must satisfy the following properties:

Correctness: There exists a negligible function negl such that for any λ ∈ N and m ∈M,

Pr

[
Dec(sk, ct) 6= m :

sk← Setup(1λ)
ct← Enc(sk,m)

]
≤ negl(λ).

3

Security: Let SKE = (Setup,Enc,Dec) be a SKE scheme. We consider the following security
experiment ExptSKEA (λ, b) against a PPT adversary A.

1. The challenger computes sk← Setup(1λ).
2. A sends an encryption query m to the challenger. The challenger computes ct← Enc(sk,m)

and returns ct to A. A can repeat this process polynomially many times.
3. A sends (m0,m1) ∈M2 to the challenger.
4. The challenger computes ct← Enc(sk,mb) and sends ct to A.
5. A sends an encryption query m to the challenger. The challenger computes ct← Enc(sk,m)

and returns ct to A. A can repeat this process polynomially many times.
6. A outputs b′ ∈ {0, 1}. This is the output of the experiment.

We say that SKE is IND-CPA secure if, for any PPT A, it holds that

|Pr[ExptSKEA (λ, 0) = 1]− Pr[ExptSKEA (λ, 1) = 1]| ≤ negl(λ).

Definition 3 (Indistinguishability Obfuscator) A PPT algorithm iO is a secure IO for a
class of circuits {Cλ}λ∈N if it satisfies the following two conditions.

• Functionality: For any security parameter λ ∈ N, circuit C ∈ Cλ, and input x, we have that

Pr[C ′(x) = C(x) | C ′ ← iO(1λ, C)] = 1 .

• Indistinguishability: For any pair of circuits C0, C1 ∈ Cλ satisfying C0(x) = C1(x),∀x and
any PPT distinguisher D, the following holds:∣∣Pr

[
D(iO(1λ, C0)) = 1

]
− Pr

[
D(iO(1λ, C1)) = 1

]∣∣ ≤ negl(λ).

Definition 4 (Somewhere Statistically Binding Hash Function) Let λ be a security pa-
rameter. A somewhere statistically binding (SSB) hash function with block length `blk = `blk(λ),
output length `hash = `hash(λ), and opening length `open = `open(λ) is a tuple of efficient algorithms
SSB = (Setup,Hash,Open,Vrfy) with the following properties:

Setup(1λ, 1`blk, N, i∗): The setup algorithm takes as input a security parameter λ, a block size
`blk, the message length N ≤ 2λ, and an index i∗ ∈ [N], and outputs a hash key hk. Both N
and i∗ are encoded in binary; in particular, this means that |hk| = poly(λ, `blk, logN). We let
Σ = {0, 1}`blk denote the block alphabet.

Hash(hk, x): the hash algorithm takes as input a hash key hk and input x, and outputs a hash
value h ∈ {0, 1}`hash .

Open(hk, x, i): The open algorithm takes as input a hash key hk, an input x ∈ ΣN and an
index i, and outputs an opening πi ∈ {0, 1}`open .

Vrfy(hk, h, i, xi, πi): The verify algorithm takes as input a hash key hk, a hash value h, an
index i, a value xi ∈ Σ, and an opening πi ∈ {0, 1}`open , and outputs a bit b ∈ {0, 1} indicating
whether it accepts or rejects.

The algorithm must satisfy the following properties:

4

Correctness: For all security parameter λ ∈ N, all block sizes `blk = `blk(λ), all integers N ≤ 2λ,
all indices i, i∗ ∈ [N], and any x ∈ ΣN ,

Pr

[
Vrfy(hk, h, i, xi, πi) = 1 :

hk← Setup(1λ, 1`blk , N, i∗)
h← Hash(hk,x);πi ← Open(hk,x, i)

]
= 1.

• Index hiding: For a bit b ∈ {0, 1} and an adversary A, define the index hiding experiment
ExptindexSSBA (1λ, b) as follows:

1. A chooses an integer N and two indices i0, i1 ∈ [N].
2. The challenger samples hk← Setup(1λ, 1`blk , N, ib) and gives hk to A.
3. A outputs a bit b′ ∈ {0, 1}, which is also the output of the experiment.

We require that for all polynomials `blk = `blk(λ) and for all efficient adversary A, there exists a
negligible function negl(·) such that for all λ ∈ N,

|Pr[ExptindexSSBA (1λ, 0) = 1]− Pr[ExptindexSSBA (1λ, 1) = 1]| = negl(λ).

• Somewhere statistically binding: We say that a hash key hk is statistically binding
for an index i∗ ∈ [N] if there does not exists h ∈ {0, 1}`hash , x 6= x′ ∈ Σ, and π, π′ where
Vrfy(hk, h, i∗, x, π) = 1 = Vrfy(hk, h, i∗, x′, π′). We require that for all polynomial `blk = `blk(λ)
and for all N ≤ 2λ, there exists a negligible function negl(·) such that for all λ ∈ N and all
i ∈ [N],

Pr[hk is statistically binding for index i : hk← Setup(1λ, 1`blk , N, i)] = 1− negl(λ).

• Succinctness: The hash length `hash, and opening length `open are all fixed polynomials in
the security parameter λ and block size `blk (and independent of N).

3 Registered Functional Encryption

In this section, we introduce the notion of registered FE scheme.

Definition 5 (Registered Functional Encryption) Let UF = {Fλ}λ∈N be the universe of
functions andM be the set of messages. A registered functional encryption scheme with function
universe UF and message spaceM is a tuple of efficient algorithms RFE = (Setup,KeyGen,RegPK,
Enc,Update,Dec) that work as follows:

Setup(1λ, 1`f): The setup algorithm takes the security parameter λ, the (maximum) size `f of
the functions in UF as inputs and outputs a common reference string crs.

KeyGen(crs, aux): The key generation algorithm takes the common reference string crs, and a
(possibly empty) state aux as inputs and outputs a public key pk and a secret key sk.

RegPK(crs, aux, pk, fpk): The registration algorithm takes a common reference string crs, a
(possibly empty) state aux, a public key pk and a function fpk ∈ Fλ as inputs and outputs a
master public key MPK and an updated state aux′. This is a deterministic algorithm.

Enc(MPK,m): The encryption algorithm takes a master public key MPK and a messagem ∈M
as inputs and outputs a ciphertext ct.

5

Update(crs, aux, pk): The update algorithm takes a common reference string crs, a state aux
and a public key pk as inputs, and outputs a helper decryption keys hsk. This is a deterministic
algorithm.

Dec(sk, hsk, ct): The decryption algorithm takes a secret key sk, a helper decryption key hsk
and ciphertext ct as inputs and outputs a message m′. This is a deterministic algorithm.
The algorithms must satisfy the following properties:

Correctness and efficiency: For all security parameters λ ∈ N, all messages m ∈ M, all
functions f ∈ Fλ, we define the following experiment between an adversary A and a challenger:

• Setup phase: The challenger starts by sampling the common reference string crs← Setup(1λ, 1`f).
It then initializes the auxiliary input aux ← ⊥ and initial master public key MPK0 ← ⊥. It
also initializes a counter ctr[reg]← 0 to keep track of the number of registration queries and
another counter ctr[enc] ← 0 to keep track of the number of encryption queries. Finally, it
initializes ctr[reg]∗ ←∞ as the index for the target key. It gives crs to A.

• Query phase: During the query phase, the adversary A is able to make the following queries:
– Register non-target key query: In a non-target-key registration query, the adversary
A specifies a public key pk and a function f ∈ UF . The challenger first increments the
counter ctr[reg]← ctr[reg] + 1 and then registers the key by computing (MPKctr[reg],aux′)←
RegPK(crs, aux, pk, f). The challenger updates its auxiliary data by setting aux ← aux′

and replies A with (ctr[reg],MPKctr[reg], aux).
– Register target key query: In a target-key registration query, the adversary spec-

ifies a function f ∗ ∈ UF . If the adversary has previously made a target-key registra-
tion query, then the challenger replies with ⊥. Otherwise, the challenger increments
the counter ctr[reg] ← ctr[reg] + 1, samples (pk∗, sk∗) ← KeyGen(1λ, aux), and regis-
ters (MPKctr[reg],aux′) ← RegPK(crs, aux, pk∗, f ∗). It computes the helper decryption key
hsk∗Update(crs, aux, pk∗). The challenger updates its auxiliary data by setting aux ←
aux′, stores the index of the target identity ctr[reg]∗ ← ctr[reg], and replies to A with
(ctr[reg],MPKctr[reg], aux, pk

∗, hsk, sk∗).
– Encryption query: In an encryption query, the adversary submits the index ctr[reg]∗ ≤
i ≤ ctr[reg] of a public key and a message mctr[enc] ∈ M. If the adversary has not yet
registered a target key the challenger replies with ⊥. Otherwise, the challenger increments
the counter ctr[enc]← ctr[enc]+1 and computes ctctr[enc] ← Enc(MPKi,m). The challenger
replies to A with (ctr[enc], ctctr[enc]).

– Decryption query: In a decryption query, the adversary submits a ciphertext index
1 ≤ j ≤ ctr[enc]. The challenger computes m′jDec(sk

∗, hsk∗, ctj). If m′j = GetUpdate, then
the challenger computes an updated helper decryption key hsk∗ ← Update(crs, aux, pk∗)
and recomputes m′j ← Dec(sk∗, hsk∗, ctj). If m′j 6= f ∗(mj), the experiment halts with
outputs b = 1.

IfA has finished making queries and the experiment has not halted (as a result of a decryption
query), then the experiment outputs b = 0.

We say that RFE is correct and efficient if for all adversaries A making at most polynomial
number of queries, the following properties hold:

• Correctness: There exists a negligible function negl(·) such that for all λ ∈ N, Pr[b =
1] = negl(λ) in the above experiment. We say that the scheme satisfies perfect correctness if
Pr[b = 1] = 0.

6

• Compactness: Let N be the number of registration queries the adversary makes in the
above experiment. There exists a universal polynomial poly(·, ·, ·) such that for i ∈ [N],
|MPKi| = poly(λ, `f , log i). We also require that the size of the helper decryption key hsk∗

satisfy hsk∗ = poly(λ, `f , logN) (at all point of the experiment).
• Update efficiency: Let N be the number of registration queries made by A. Then, in

the course of the above experiment, the challenger invokes the update algorithm Update at
most O(logN) times where each invocation runs in poly(logN) time in the RAM model fo
computation. Specially, we model Update as a RAM program that has random access to its
input; thus, the running time of Update in the RAM model can be smaller than the input
length.

Security: Let b ∈ {0, 1} be a bit. We define the following security experiment ExptRFEA (1λ, b)
played between an adversary A and a challenger.

• Setup phase: The challenger samples a common reference string crs← Setup(1λ, 1`f). It then
initializes the auxiliary input aux ← ⊥, the initial master public key MPK ← ⊥, a counter
ctr← 0 for the number of honest-key-registration queries the adversary has made, an empty
set of keys Cor ← ∅, and an empty dictionary mapping public keys to registered function
D← ∅. For notational convenience, if pk 6∈ D, then we define D[pk] := ∅. The challenger gives
the crs to A.

• Query phase: The adversary A is allowed to query the following queries:

− Registered corrupted key query: In a corrupted key query, A specifies a public key
pk and a function f ∈ UF . The challenger registers the key by computing (MPK′, aux′)←
RegPK(crs, aux, pk, f). The challenger updates its copy of the public key MPK ← MPK′,
its auxiliary data aux← aux′, adds pk to Cor, and updates D[pk]← D[pk]∪{f}. It replies
to A with (MPK′, aux′).

− Registered honest key query: In a honest key query, A specifies a function f ∈ UF .
The challenger increments ctr← ctr+ 1 and samples (pkctr, skctr)← KeyGen(crs, aux), and
registers the key by computing (MPK′, aux′) ← RegPK(crs, aux, pkctr, f). The challenger
updates its public key MPK ← MPK′, its auxiliary data aux ← aux′, adds D[pkctr] ←
D[pkctr] ∪ {f}. It replies to A with (ctr,MPK′, aux′, pkctr).

− Corrupt honest query: In a corrupt-honest key query, A specifies an index 1 ≤ i ≤ ctr.
Let (pki, ski) be the i-th public/secret key the challenger samples when responding to the
i-th honest-key-registration query. The challenger adds pki to Cor and replies to A with
ski.

• Challenge phase: The adversary A chooses two messages m∗0,m
∗
1 ∈ M. The challenger

replies with the challenge ciphertext ct∗ ← Enc(MPK,m∗b).
• Output phase: At the end of the experiment, A outputs a bit b′ ∈ {0, 1}, which is the output

of the experiment.

Let S = {fpk ∈ D[pk] : pk ∈ Cor}. We say an adversary A is admissible if for all corrupted slot
indices fpk ∈ Cor, it holds that fpk(m

∗
0) = fpk(m

∗
1). The registration-based functional encryption

scheme RFE is said to be secure if for all admissible adversaries A, there exists a negligible
function negl(·) such that for all λ ∈ N,

|Pr[ExptRFEA (1λ, 0) = 1]− Pr[ExptRFEA (1λ, 1) = 1]| = negl(λ).

7

4 Slotted Registered Functional Encryption

In this section, we introduce the notion of slotted registered FE scheme.

Definition 6 (Slotted Registered Functional Encryption) Let UF = {Fλ}λ∈N be the uni-
verse of functions and M be the set of messages. A slotted registered functional encryption
scheme with function universe UF and message space M is a tuple of efficient algorithms
SlotRFE = (Setup,KeyGen, IsValid,Aggregate,Enc,Dec) that work as follows:

Setup(1λ, 1|UF |, 1L): The setup algorithm takes the security parameter λ, the (maximum) size
|UF | of the functions in UF and the number of slots L (in unary) as inputs and outputs a common
reference string crs.

KeyGen(crs, i): The key generation algorithm takes the common reference string crs, and a slot
index i ∈ [L] as inputs and outputs a public key pki and a secret key ski for the slot i.

IsValid(crs, i, pki): The key-validation algorithm takes a common reference string crs, a slot
index i ∈ [L] and a public key pki as inputs and outputs a bit b ∈ {0, 1}. This is a deterministic
algorithm.

Aggregate(crs, (pk1, f1), . . . , (pkL, fL)): The aggregate algorithm takes a common reference
string crs, a list of L public key-function pairs (pk1, f1), . . . , (pkL, fL) as inputs such that fi ∈ Fλ
for all i ∈ [L] and outputs a master public key MPK and a collection of helper decryption keys
hsk1, . . . , hskL. This is a deterministic algorithm.

Enc(MPK,m): The encryption algorithm takes a master public key MPK and a messagem ∈M
as inputs and outputs a ciphertext ct.

Dec(sk, hsk, ct): The decryption algorithm takes a secret key sk, a helper decryption key hsk
and ciphertext ct as inputs and outputs a message m′. This is a deterministic algorithm.
The algorithms must satisfy the following properties:

Completeness: For all λ ∈ N, all property universes UP , and all indices i ∈ [L],

Pr

[
IsValid(crs, i, pki) = 1 : crs← Setup(1λ, 1|UF |, 1L); (pki, ski)← KeyGen(crs, i)

]
= 1.

Correctness: The SlotRFE is said to be correct if for all security parameters λ ∈ N, all pos-
sible lengths L ∈ N, all indices i ∈ [L], if we sample crs ← Setup(1λ, 1|UF |,1

L
), (pki, ski) ←

KeyGen(crs, i) and for all collections of public keys {pkj}j 6=i (which may be correlated to pki)
where IsValid(crs, j, pkj) = 1, all messages m ∈M, all functions f ∈ Fλ, the following holds

Pr

[
Dec(ski, hski, ct) = f(m) :

(MPK, hsk1, . . . , hskL)← Aggregate(MPK, (pk1, f1), . . . , (pkL, fL));
ct← Enc(MPK,m)

]
= 1.

Compactness: The SlotRFE is said to be compact if there exists a universal polynomial
poly(·, ·, ·) such that the length of the master public key and individual helper secret keys output
by Aggregate are bounded by poly(λ, |UF |, logL).

8

Security: Let b ∈ {0, 1} be a bit. We define the following security experiment ExptSlotRFEA (1λ, b)
played between an adversary A and a challenger.

• Setup phase: The adversary sends a slot count 1L to the challenger. The challenger samples
crs ← Setup(1λ, 1|UF |, 1L) and sends crs to A. The challenger initializes a counter ctr ← 0, a
dictionary D and a set of slot indices Cor.

• Pre-challenge query phase: The adversary A is allowed to query the following queries:
− Key-generation query: In a key-generation query, A specifies a slot index i ∈ [L]. The

challenger samples (pkctr, skctr) ← KeyGen(crs, i) and increments ctr ← ctr + 1. Then,
it sends (ctr, pkctr) to A. The challenger adds the mapping ctr 7→ (i, pkctr, skctr) to the
dictionary D.

− Corruption query: In a corruption query, A specifies an index 1 ≤ c ≤ ctr. The chal-
lenger looks up the tuple (i′, pk′, sk′)← D[c] and sends sk′ to A.

• Challenge phase: For each slot i ∈ [L], A specifies a tuple (ci, pk
∗
i) where either ci ∈

{1, . . . , ctr} to reference a challenger-generated key or ci = ⊥ to reference a key outside
this set. A also specifies two challenge messages m∗0,m

∗
1. The challenger does the following:

− If ci ∈ {1, . . . , ctr}, then the challenger looks up the entry D[ci] = (i′, pk′, sk′). If i = i′,
then the challenger sets pki ← pk′. Moreover, if A previously issues a corruption query on
the index ci, then the challenger adds the slot index i to Cor. Otherwise, if i 6= i′, then
the experiment halts.

− If ci = ⊥, then the challenger checks IsValid(crs, i, pk∗i) = 1. If not, the experiment halts.
If the key is valid, the challenger sets pki ← pk∗i and adds the slot index i to Cor.

The challenger computes (MPK, hsk1, . . . , hskL) ← Aggregate(MPK, (pk1, f1), . . . , (pkL, fL)
and then ct∗ ← Enc(MPK,m∗b). Finally, it sends ct∗ to A. Note that, there is no need to
additionally provide (MPK, hsk1, . . . , hskL) to A since Aggregate is a deterministic algorithm.
Similarly, there is no advantage of allowing A to select the challenge messages after seeing
the aggregated key.

• Post-challenge query phase: The adversary A is allowed to query the following queries:
− In a corruption query, A specifies a slot index c ∈ {1, . . . , ctr}. The challenger picks the

tuple (i′, pk′, sk′)← D[c] and sends sk′ to A. Moreover, if A registered a tuple of the form
(c, pk∗) in the challenge phase for some choice of pk∗, then the challenger adds the slot
index i′ ∈ [L] to Cor.

• Output phase: At the end of the experiment, A outputs a bit b′ ∈ {0, 1}, which is the output
of the experiment.

We say an adversary A is admissible if for all corrupted slot indices i ∈ Cor, it holds that
f(m∗0) = f(m∗1). The slotted registration-based encryption scheme SlotRFE is said to be secure
if for all polynomials L = L(λ) and all efficient and admissible adversaries A, there exists a
negligible function negl(·) such that for all λ ∈ N,

|Pr[ExptSlotRFEA (1λ, 0) = 1]− Pr[ExptSlotRFEA (1λ, 1) = 1]| = negl(λ).

Remark 1 The security definition above allows the adversary to make additional corruption
queries in a post-challenge query phase. However, as shown in [7], the security in the setting
without post-challenge queries implies the security in the setting with post-challenge queries
since the aggregation algorithm is deterministic. Hence, we only consider slotted registered FE
with a security notion that does not involve any post-challenge queries.

9

5 Slotted Registered FE from Indistinguishability Obfuscation

Construction: We use the following cryptographic tools as building blocks:

− A length doubling PRG PRG : {0, 1}λ → {0, 1}2λ.
− A secret key encryption scheme SKE = (Setup,Enc,Dec).
− A somewhere statistically binding hash function SSB = (Setup,Hash,Open,Vrfy).
− An indistinguishability obfuscation iO for P/poly.

The slotted registered functional encryption SlotRFE = (Setup,KeyGen, IsValid,Aggregate,Enc,Dec)
for a function universe UF = {0, 1}`f , and message space M works as follows:

Setup(1λ, 1`f , L): The setup algorithm takes the security parameter λ, the bit-length `f of a
function in UF (in unary) and the number of users L (in binary) as inputs and sets `blk = `f +2λ,
computes hk← SSB.Setup(1λ, 1`blk , L, 1) and sets crs := hk. It outputs crs.

KeyGen(crs, i): The key generation algorithm takes the common reference string crs, and a slot
index i ∈ [L] as inputs and samples si ← {0, 1}λ. It outputs the public key as pki := PRG(si)
and the secret key as ski := si.

IsValid(crs, i, pki): The key-validation algorithm takes a common reference string crs, a slot
index i ∈ [L] and a public key pki as inputs and outputs 1 if pki ∈ {0, 1}2λ; otherwise outputs 0.

Aggregate(crs, (pk1, f1), . . . , (pkL, fL)): The aggregate algorithm takes a common reference
string crs, a list of L public key-function pairs (pk1, f1), . . . , (pkL, fL) as inputs such that fi ∈ UF
for all i ∈ [L]. It computes

h← SSB.Hash(hk, (pk1, f1), . . . , (pkL, fL))

and sets MPK := (hk, h). For each user i ∈ [L], the aggregate algorithm computes

πi ← SSB.Open(hk, ((pk1, f1), . . . , (pkL, fL)), i)

where we treat each pair (pki, fi) ∈ {0, 1}`blk as one SSB hash-block. It sets the helper decryption
key as hski := (i, pki, fi, πi) and outputs MPK, hsk1, . . . , hskL.

Enc(MPK,m): The encryption algorithm takes a master public key MPK, and a message
m ∈M as inputs and samples SK0, SK1 ← SKE.Setup(1λ), computes

CT0 ← SKE.Enc(SK0,m) and CT1 ← SKE.Enc(SK1,0|m|).

It writes (CT0,CT1) = (β1, . . . , β`c , β`c+1, . . . , β2`c) ∈ {0, 1}2`c . The algorithm samples uk,β ←
{0, 1}λ for all k ∈ [2`c], β ∈ {0, 1}. It computes V = (vk,β := PRG(uk,β))k∈[2`c],β∈{0,1}. It constructs

the circuit C0 = C[MPK, SK0, V] as defined in Figure 1 and computes C̃0 ← iO(1λ, C0). It

outputs the ciphertext ct := (CT0,CT1, C̃0, σCT := (uk,βk)k∈[2`c]).

Dec(ski, hski, ct): The decryption algorithm takes a secret key ski, a helper decryption key

hski = (i, pki, fi, πi) and ciphertext ct = (CT0,CT1, C̃0, σCT) as inputs and outputs C̃0(ski, i, pki, fi,
πi,CT0,CT1, σCT).

10

Constants: MPK = (hk, h), SKj , V = (vk,β)k∈[2`c],β∈{0,1}
Inputs: ski ∈ {0, 1}λ, i ∈ [L], pki ∈ {0, 1}2λ, fi ∈ {0, 1}`f , πi ∈ {0, 1}`open , SKE ciphertexts {CTj}j∈{0,1} and
σCT = (uk)k∈[2`c]

1. Parse (CT0,CT1) = (β1, . . . , β`c , β`c+1, . . . , β2`c) ∈ {0, 1}2`c .
2. If SSB.Vrfy(hk, h, i, (pki, fi), πi) = 1 ∧ PRG(ski) = pki ∧ (PRG(uk) = vk,βk)k∈[2`c]

a. Compute m̂← SKE.Dec(SKj ,CTj)
b. Output fi(m̂)

3. Else, output ⊥

Fig. 1: The circuit Cj = Cj[MPK, SKj, V] for j ∈ {0, 1}

Completeness: The scheme satisfies completeness since the IsValid algorithm outputs 1 only if
pki ∈ {0, 1}2λ and the KeyGen algorithm computes pki = PRG(si) which belongs to {0, 1}2λ.

Correctness: Consider a secret key ski = si, a helper decryption key hski = (i, pki, fi, πi), and

a ciphertext ct = (CT0,CT1, C̃0, σCT) generated as above. By definition, pki = PRG(ski) and
MPK = (hk, h) where

h←SSB.Hash(hk, (pk1, f1), . . . , (pkL, fL))

πi ←SSB.Open(hk, ((pk1, f1), . . . , (pkL, fL)), i).

Therefore, the check of the circuit C0 passes, i.e., SSB.Vrfy(hk, h, i, (pki, fi), πi) = 1 and PRG(ski) =
pki by the correctness of SSB and PRG. Also, by definition PRG(uk) = vk,βk holds for all k ∈ [2`c]
where σCT = (uk)k∈[2`c]. Then, the SKE decryption SKE.Dec(SK0,CT0) returns m, and hence the
circuit C0 on input (ski, hski,CT0,CT1, σCT) returns fi(m). Therefore, by the correctness of iO,

we get C̃0(ski, hski,CT0,CT1, σCT) = fi(m).

Compactness: Consider the master public key MPK = (hk, h) and the helper decryption key
hski = (i, pki, fi, πi) output by the Aggregate algorithm. Since SSB.Setup is an efficient algorithm
we have |hk| = poly(λ, `blk, logL) and due to the succinctness of SSB.Hash we have |h|, |πi| =
poly(λ, `blk). The maximum length of any function in the universe UF is `f and `blk = `f + 2λ =
log(|UF |)+2λ. Therefore, it must hold that |MPK|, |hski| are bounded by poly(λ, log(|UF |), logL).

Security: We prove the following theorem to show that the SlotRFE is secure.

Theorem 1 Assuming that the PRG is secure, SKE is IND-CPA secure, SSB is correct and
secure, and iO is secure then our SlotRFE is secure.

Proof. We prove the theorem using a sequence of hybrid experiments. We start with a real
experiment which is ExptSlotRFEA (1λ, 0) and end up in ExptSlotRFEA (1λ, 1). The computational indis-
tinguishability between the consecutive hybrids will be argued based on the assumptions stated
in the theorem.

Hybd0: This the real experiment with b = 0. More precisely, it works as follows:

• Setup phase: The adversary sends a slot count 1L to the challenger. The challenger samples
hk ← SSB.Setup(1λ, 1`blk , L, 1) and sends crs := hk to A. The challenger initializes a counter
ctr← 0, a dictionary D and a set of slot indices Cor.

11

• Pre-challenge query phase: The adversary A is allowed to query the following queries:
− Key-generation query: In a key-generation query, A specifies a slot index i ∈ [L]. The

challenger samples s← {0, 1}λ and increments ctr ← ctr + 1. Then, it sends (ctr, pkctr :=
PRGs) to A. The challenger adds the mapping ctr 7→ (i, pkctr, skctr := s) to D.

− Corruption query: In a corruption query, A specifies an index 1 ≤ c ≤ ctr. The chal-
lenger looks up the tuple (i, pk, s)← D[c] and sends s to A.

• Challenge phase: For each slot i ∈ [L], A specifies a tuple (ci, fi, pk
∗
i), and two challenge

messages m∗0,m
∗
1. The challenger does the following:

− If ci ∈ {1, . . . , ctr}, then the challenger looks up the entry D[ci] = (i′, pk′, sk′). If i = i′,
then the challenger sets pki ← pk′. Moreover, if A previously issues a corruption query on
the index ci, then the challenger adds the slot index i to Cor. Otherwise, if i 6= i′, then
the experiment halts.

− If ci = ⊥, then the challenger checks pk∗i ∈ {0, 1}2λ. If not, the experiment halts. Other-
wise, the challenger sets pki ← pk∗i and adds the slot index i to Cor.

The challenger computes h← SSB.Hash(hk, (pk1, f1), . . . , (pkL, fL)) and samples SK0, SK1 ←
SKE.Setup(1λ). Then, it computes CT0 ← SKE.Enc(SK0,m

∗
0), CT1 ← SKE.Enc(SK1,0|m∗0|) and

V = (v∗k,β := PRG(u∗k,β))k∈[2`c],β∈{0,1} where u∗k,β ← {0, 1}λ. Then, it computes C̃0 ← iO(1λ, C0)
and sets σ∗CT = (u∗k,βk)k∈[2`c] where C0 = C[MPK, SK0, V

∗] (as defined in Figure 1) and βk

represents the k-th bit of (CT0,CT1). Finally, it sends ct∗ := (CT0,CT1, C̃0, σ
∗
CT) to A.

• Output phase: At the end of the experiment, A outputs a bit b′ ∈ {0, 1}, which is the output
of the experiment.

Hybd1: It is the same as hybrid 0 except the challenger sets CT1 ← SKE.Enc(SK1,m
∗
1) and com-

putes CT0, C̃0 ← iO(1λ, C0), σ
∗
CT as before.

Hybd2: It is the same as Hybd1 except the computation of V ∗ = (v∗k,β)k∈[2`c],β∈{0,1}. Let ct∗ =

(CT0,CT1, C̃0, σ
∗
CT) be the challenge ciphertext where CT0 ← SKE.Enc(SK0,m

∗
0), CT1 ← SKE.Enc(SK1,m

∗
1)

and (CT0,CT1) = (β1, . . . , β`c , β`c+1, . . . , β2`c) ∈ {0, 1}2`c . Then, the challenger computes v∗k,β as
follows:

v∗k,β ←

{
PRG(u∗k,βk) for u∗k,βk ← {0, 1}

λ, if β = βk

{0, 1}2λ, if β = 1− βk

for all k ∈ [2`c]. Note that, the challenger defines C0 := C0[MPK, SK0, V
∗] and sets σ∗CT :=

(u∗k,β)k∈[2`c] as in the previous hybrid.

Hybd3: It is the same as hybrid 1 except the challenger computes C̃slot
0 ← iO(1λ, Cslot

0) instead

of C̃0 where the circuit Cslot
0 = Cslot

0 [MPK, SK0, SK1, V
∗, 0] is defined in Figure 2. The other

components of the challenge ciphertext, i.e., CT0,CT1 remain the same as in the previous hybrid.

12

Constants: MPK = (hk, h), SK0, SK1, V
∗ = (v∗k,β)k∈[2`c],β∈{0,1}, j ∈ [0, L]

Inputs: ski ∈ {0, 1}λ, i ∈ [L], pki ∈ {0, 1}2λ, fi ∈ {0, 1}`f , πi ∈ {0, 1}`open , SKE ciphertexts {CTj}j∈{0,1} and
σCT = (uk)k∈[2`c]

1. Parse (CT0,CT1) = (β1, . . . , β`c , β`c+1, . . . , β2`c) ∈ {0, 1}2`c .
2. If SSB.Vrfy(hk, h, i, (pki, Pi), πi) = 1 ∧ PRG(ski) = pki ∧ (PRG(uk) = v∗k,βk)k∈[2`c]

3. Compute m̂←

{
SKE.Dec(SK0,CT0) if i > j

SKE.Dec(SK1,CT1) if i ≤ j
4. Output F (Pi, m̂)
5. Otherwise, output ⊥

Fig. 2: The circuit Cslot
j = Cslot

j [MPK, SK0, SK1, V
∗, j] for j ∈ [0, L]

Hybd3+j(j ∈ [L]): It is the same as hybrid 2 + (j − 1) except the challenger computes C̃slot
j ←

iO(1λ, Cslot
j) instead of C̃slot

j−1 where the circuit Cslot
j = Cslot

j [MPK, SK0, SK1, F, j] is defined in
Figure 2.

Hybd4+L: It is the same as hybrid 3+L except the challenger computes C̃1 ← iO(1λ, C1) instead

of C̃slot
L where the circuit C1 = C1[MPK, SK1, V

∗] is defined in Figure 1. That is, the challenge

ciphertext becomes ct∗ = (CT0,CT1, C̃1, σ
∗
CT).

Hybd5+L: It is the same as hybrid 4 +L except the challenger sets CT0 ← SKE.Enc(SK0,m
∗
1) and

computes CT1, C̃1 ← iO(1λ, C0), σ
∗
CT as before.

Hybd6+L: It is the same as hybrid 5+L except the challenger computes C̃0 ← iO(1λ, C0) instead

of C̃1 where the circuit C0 = C0[MPK, SK0, V
∗] is defined in Figure 1.

Hybd7+L: It is the same as Hybd6+L except the computation of V ∗ = (v∗k,β)k∈[2`c],β∈{0,1}. Let

ct∗ = (CT0,CT1, C̃0, σ
∗
CT) be the challenge ciphertext where CT0 ← SKE.Enc(SK0,m

∗
1), CT1 ←

SKE.Enc(SK1,m
∗
1) and (CT0,CT1) = (β1, . . . , β`c , β`c+1, . . . , β2`c) ∈ {0, 1}2`c . Then, the challenger

computes v∗k,β as follows:

v∗k,β ←

{
PRG(u∗k,βk) for u∗k,βk ← {0, 1}

λ, if β = βk

PRG(u∗k,1−βk) for u∗k,1−βk ← {0, 1}
λ, if β = 1− βk

for all k ∈ [2`c]. Note that, the challenger defines C0 := C0[MPK, SK0, V
∗] and sets σ∗CT :=

(u∗k,β)k∈[2`c] as in the previous hybrid.

Hybd8+L: It is the same as hybrid 7 + L except the challenger sets CT1 ← SKE.Enc(SK1,0|m∗1|).

Observe that this hybrid is the same as ExptSlotRFEA (1λ, 1).

Let HybdAi (λ) be the output of the hybrid experiment i. We show that the each pair of
consecutive hybrids are indistinguishable from A’s view in the following lemmas.

13

Lemma 1 If SKE is IND-CPA secure then for all efficient and admissible adversaries A, for
all λ ∈ N there exists a negligible function negl such that

|Pr[HybdA0 (λ) = 1]− Pr[HybdA1 (λ) = 1]| = negl(λ).

Proof. The only difference between hybrid 0 and 1 is that the challenge ciphertext component
CT1 is an SKE encryption of m∗1 instead of 0|m∗0|. We show that if A distinguishes between the
hybrids with a non-negligible advantage ε(λ) then there exists an adversary B who breaks the
IND-CPA security of SKE with at least an advantage of ε(λ). The adversary B works as follows:

1. B receives the slot count L from A and then plays the role of the challenger as in the hybrid
0 for the setup and pre-challenge query phase.

2. When B receives the challenge query ({(ci, fi, pk∗i)}i∈[L],m∗0,m∗1) from A, it works exactly
the same as the challenger in hybrid 0 except it uses the SKE-challenger to compute CT1. In
particular, B sends the challenge message pair (0|m∗0|,m

∗
1) to the SKE-challenger and gets back

a ciphertext CT∗1. Finally, B sends the challenge ciphertext ct∗ = (CT0,CT1 := CT∗1, C̃0, σ
∗
CT)

to A. Note that, B does not require the secret key SK1 to compute the components CT0,
C̃0, σ

∗
CT of ct∗.

3. At the end of the experiment, A outputs a guess b′ ∈ {0, 1} which is also the output of B.

If the SKE-challenger computes CT∗1 ← SKE.Enc(SK1,0|m∗0|) then B perfectly simulates hybrid 0.
On the other hand, if the SKE-challenger computes CT∗1 ← SKE.Enc(SK1,m

∗
1) then B perfectly

simulates hybrid 1. Therefore, B breaks the IND-CPA security of SKE with advantage at least
ε(λ) if A distinguishes between the hybrids advantage ε(λ). Hence, the lemma follows. ut

Lemma 2 If PRG is secure then for all efficient and admissible adversaries A, for all λ ∈ N,
and j ∈ [L] there exists a negligible function negl such that

|Pr[HybdA1 (λ) = 1]− Pr[HybdA2 (λ) = 1]| = negl(λ).

Proof. We prove the lemma using a sequence of 2`c hybrids Hybd1,k for k ∈ [2`c + 1] where we
sample v∗t,1−βt ← {0, 1}

2λ for all t < k in Hybd1,k and βt represents the t-th bit of (CT0,CT1).
Note that, Hybd1,1 is identical to Hybd1 and Hybd1,2`c+1 is identical to Hybd2. We only show
that the distinguishing advantage of A between the hybrids Hybd1,k and Hybd1,k+1 is negligible
for each k ∈ [2`c]. In particular, we show that if A distinguishes between the hybrids with a
non-negligible advantage ε(λ) then there exists an adversary B that breaks the security of PRG
with at least an advantage of ε(λ). The adversary B works as follows:

1. B receives a string v∗ ∈ {0, 1}2λ from the PRG-challenger.
2. B plays the role of the challenger as in the experiment Hybd1,k or Hybd1,k+1. It receives the

slot count L from A and runs the setup phase and sends crs to A.
3. After that, B simulates the pre-challenge query phases as in Hybd1,k or Hybd1,k+1.
4. At the challenge query phase, B computes CT0 ← SKE.Enc(SK0,m

∗
0), CT1 ← SKE.Enc(SK1,m

∗
1)

and writes (CT0,CT1) = (β1, . . . , β`c , β`c+1, . . . , β2`c) ∈ {0, 1}2`c . Then, it computes v∗t,β as fol-
lows:

v∗t,β ←

PRG(u∗t,βt) for u∗t,βt ← {0, 1}

λ, if β = βt

{0, 1}2λ, if β = 1− βt and t < k

v∗ if β = 1− βk
PRG(u∗t,1−βt) for u∗t,1−βt ← {0, 1}

λ, if β = 1− βt and t > k

14

for all t ∈ [2`c]. Finally, it sets V ∗ = (v∗t,β)t∈[2`c],β∈{0,1}, σ
∗
CT = (u∗t,βt)t∈[2`c], C̃0 ← iO(1λ, C0)

where C0 = C0[MPK, skj, V] and sends ct∗ = (CT0,CT1, C̃0, σ
∗
CT) to A as in the previous

hybrid.
5. At the end of the experiment, A outputs a guess b′ ∈ {0, 1} which is also the output of B.

If the PRG-challenger computes v∗ ← PRG(uk,1−βk) for some uk,1−βk ← {0, 1}λ then B perfectly
simulates Hybd1,k. On the other hand, if the PRG-challenger samples v∗ ← {0, 1}2λ then B
perfectly simulates Hybd1,k+1. Therefore, B breaks the security of SSB with advantage at least
ε(λ) if A distinguishes between the hybrids advantage ε(λ). Hence, the lemma follows. ut

Lemma 3 If iO is secure then for all efficient and admissible adversaries A, for all λ ∈ N there
exists a negligible function negl such that

|Pr[HybdA2 (λ) = 1]− Pr[HybdA3 (λ) = 1]| = negl(λ).

Proof. The only difference between the hybrids 2 and 3 is that the ciphertext component C̃0

is replaced by C̃slot
0 . Since iO is secure it is sufficient to show that the two circuits C0 and

Cslot
0 are equivalent. Let (ski, i, pki, fi, πi,CT0,CT1, σCT) be an arbitrary input to the circuits.

The programming of the circuits differ only in step 2 where m̂ is computed via SKE decryption
algorithm. The circuit C0 always decrypts CT0 using SK0 whereas the circuit Cslot

0 decrypts CT0

using SK0 if i > 0, otherwise it CT1 using SK1. Since i ∈ [L] and i > 0 holds for all possible inputs
(ski, i, pki, fi, πi,CT0,CT1, σCT), the circuit Cslot

0 always decrypts CT0 using SK0 in step 2. Thus,
the circuits C0 and Cslot

0 are equivalent. By the security of iO, the distinguishing advantage of
A is negligible in λ. ut

Lemma 4 If the PRG is secure, SSB is correct and secure, and iO is secure then for all efficient
and admissible adversaries A, for all λ ∈ N there exists a negligible function negl such that

|Pr[HybdA3+j(λ) = 1]− Pr[HybdA3+(j−1)(λ) = 1]| = negl(λ).

Proof. We first introduce a new set of intermediate hybrids jHybd3+j defined as follows:

jHybd3+j: It works exactly the same as Hybd3+j except the challenger samples hk← SSB.Setup(1λ,

1`blk , L, j + 1) in the setup phase. The hash key hk binds with index (j + 1) instead of 1.

We now show that the distinguishing advantage of A between Hybd3+j and jHybd3+j is negligible
for each j ∈ [L].

Claim 1 If SSB satisfies index hiding then for all efficient and admissible adversaries A, for all
λ ∈ N there exists a negligible function negl such that

|Pr[HybdA3+j(λ) = 1]− Pr[jHybdA3+j(λ) = 1]| = negl(λ).

Proof. We show that if A distinguishes between the hybrids with a non-negligible advantage
ε(λ) then there exists an adversary B who breaks the index hiding security of SSB with at least
an advantage of ε(λ). The adversary B works as follows:

1. B receives the slot count L from A. Then, it sends L and (1, j + 1) to the SSB-challenger.
2. B receives a hash key hk∗ from it’s challenger and sets hk := hk∗. Then, it sends crs := hk to
A.

15

3. After that, B plays the role of the challenger exactly similar to Hybd3+j for simulating the
pre-challenge query and challenge phases.

4. At the end of the experiment, A outputs a guess b′ ∈ {0, 1} which is also the output of B.

If the SSB-challenger computes hk∗ ← SSB.Setup(1λ, 1`blk , L, 1) then B perfectly simulates Hybd3+j.
On the other hand, if the SSB-challenger computes hk∗ ← SSB.Setup(1λ, 1`blk , L, j + 1) then B
perfectly simulates jHybd3+j. Therefore, B breaks the index hiding security of SSB with advan-
tage at least ε(λ) if A distinguishes between the hybrids advantage ε(λ). Hence, the lemma
follows. ut

By Claim 1, proving Lemma 4 is equivalent ot prove the following claim.

Claim 2 If SSB is somewhere statistically binding then for all efficient and admissible adver-
saries A, for all λ ∈ N there exists a negligible function negl such that

|Pr[jHybdA3+j(λ) = 1]− Pr[jHybdA3+(j−1)(λ) = 1]| = negl(λ).

Proof. The only difference between jHybdA3+j(λ) and jHybdA3+(j−1)(λ) is in the second last com-

ponent of the challenge ciphertext where it is C̃slot
j in hybrid jHybdA3+j(λ). The circuits Cslot

j

and Cslot
j−1 behaves differently only for an input of the form (skj, j, pkj, fj, πj,CT0,CT1, σCT). The

analysis of the claim depends on whether the j-th user is corrupted or not. Let (cj, fj, pk
∗
j) be

the tuple specified by A during the challenge query phase. We define an event NonCorrupt as
follows:

1. The index cj satisfies {1, . . . , ctr} meaning that pkj was generated by the challenge on the
cj-th key generation query.

2. A never make a corruption query on index cj.

We also denote NonCorrupt by the event which is complement of NonCorrupt. By definition, we
can write

Pr[jHybdA3+(j−1)(λ) = 1] = Pr[jHybdA3+(j−1)(λ) = 1 ∧ NonCorrupt] + Pr[jHybdA3+(j−1)(λ) = 1 ∧ NonCorrupt]

Pr[jHybdA3+j(λ) = 1] = Pr[jHybdA3+j(λ) = 1 ∧ NonCorrupt] + Pr[jHybdA3+j(λ) = 1 ∧ NonCorrupt]

Thus, it is sufficient to show that

|Pr[jHybdA3+(j−1)(λ) = 1 ∧ NonCorrupt]− Pr[jHybdA3+j(λ) = 1 ∧ NonCorrupt]| =negl(λ) (1)

|Pr[jHybdA3+(j−1)(λ) = 1 ∧ NonCorrupt]− Pr[jHybdA3+j(λ) = 1 ∧ NonCorrupt]| =negl(λ) (2)

We show that the equations 1 and 2 hold in claims 3 and 4 respectively.

Claim 3 If the PRG is secure, SSB is correct and secure, and iO is secure then for all efficient
and admissible adversaries A, for all λ ∈ N there exists a negligible function negl such that

|Pr[jHybdA3+(j−1)(λ) = 1 ∧ NonCorrupt]− Pr[jHybdA3+j(λ) = 1 ∧ NonCorrupt]| = negl(λ).

Proof. The main intuition for proving the claim is that the adversary A does not have skj and
hence the associated public key pkj can be chosen uniformly at random depending on the security
of PRG. Then, with the help of SSB and iO we show that it is possible to change the obfuscated
circuit from C̃slot

j−1to C̃
slot
j . More precisely, we use the following sequence of hybrids:

16

ncHybd3+(j−1),1: It is the same as jHybd3+(j−1) except at the beginning of the experiment, the

challenger samples q ← [Q] where Q = Q(λ) denotes the total number of key generation
queries A makes during the query phase. Let pkq be the public key sampled by the challenger
on the q-th key query (if there is one). The challenger aborts with output 0 if either of the
following events occurs:
− A sends the tuple (cj, fj, pk

∗
j) for registering the j-th user during the challenge query

phase where cj 6= q.
− A makes a corruption query with a index q.
Otherwise, the experiment proceeds exactly similar to jHybd3+(j−1).

ncHybd3+(j−1),2: It is the same as Hybd3+(j−1),1 except the challenger samples pkq ← {0, 1}2λ

during the q-th key generation query. In this hybrid, the challenger is not required to answer
for a corruption query on index q since it immediately aborts with output 0 as soon as it
gets such a query.

ncHybd3+(j−1),3: It is the same as ncHybd3+(j−1),2 except the challenger obfuscates the circuit

Cslot
j instead of Cslot

j−1 while computing the challenge ciphertext.
ncHybd3+(j−1),4: It is the same as ncHybd3+(j−1),3 except the challenger samples skq ← {0, 1}λ

and computes pkq ← PRG(skq) during the q-th key generation query.
ncHybd3+(j−1),5: It is the same as ncHybd3+(j−1),4 except the challenger ignores the abort condi-

tion as defined in ncHybd3+(j−1),1.

As before, we denote ncHybdA3+(j−1),k by the output of the experiment ncHybd3+(j−1),k for each
k ∈ [5]. Next, we show the indistinguishability between any two consecutive hybrids in the
following lemmas.

Lemma 5 For all efficient and admissible adversaries A, for all λ ∈ N, and j ∈ [L] there exists
a negligible function negl such that

Pr[jHybdA3+(j−1)(λ) = 1 ∧ NonCorrupt] = Q · Pr[ncHybdA3+(j−1),1 = 1].

Proof. By definition, the hybrids jHybd3+(j−1) and ncHybd3+(j−1),1 proceeds exactly in the same
way except the challenger aborts with output 0 if cj = q or A makes a corruption query for the
index q. This means that both the experiments output 1 with the same probability if the event
NonCorrupt occurs and cj = q holds. Thus, we can write

Pr[ncHybdA3+(j−1),1 = 1]

= Pr[jHybd3+(j−1) = 1 ∧ NonCorrupt ∧ cj = q]

= Pr[cj = q | jHybdA3+(j−1)(λ) = 1 ∧ NonCorrupt] · Pr[jHybdA3+(j−1)(λ) = 1 ∧ NonCorrupt]

= 1/Q · Pr[jHybdA3+(j−1)(λ) = 1 ∧ NonCorrupt]

since the probability that cj = q holds where q ← [Q] and cj ∈ {1, . . . , ctr} ⊆ [Q] is 1/Q given
the event NonCorrupt has occurred. ut

Lemma 6 If PRG is secure then for all efficient and admissible adversaries A, for all λ ∈ N,
and j ∈ [L] there exists a negligible function negl such that

|Pr[ncHybdA3+(j−1),1 = 1]− Pr[ncHybdA3+(j−1),2 = 1]| = negl(λ).

17

Proof. We show that if A distinguishes between the hybrids with a non-negligible advantage
ε(λ) then there exists an adversary B that breaks the security of PRG with at least an advantage
of ε(λ). The adversary B works as follows:

1. B starts by sampling q ← [Q] and receives a string pk∗ ∈ {0, 1}2λ from the PRG-challenger.
2. B plays the role of the challenger as in the experiment ncHybd3+(j−1),1 or ncHybd3+(j−1),2. It

receives the slot count L from A and runs the setup phase and sends crs to A.
3. After that, B simulates the pre-challenge query phases as in ncHybd3+(j−1),1 or ncHybd3+(j−1),2.
B returns pk∗ when it receives a key generation query for the index q and adds [ctr] 7→
(q, pk∗,⊥) to D. If A makes a corruption query for the index q then B aborts with output 0.

4. At the challenge query phase, B checks if the tuple (cj, fj, pk
∗
j) received from A satisfies cj = q

and then it proceeds with the role of the challenger. If not, B aborts with output 0 as in
ncHybd3+(j−1),1 or ncHybd3+(j−1),2.

5. At the end of the experiment, A outputs a guess b′ ∈ {0, 1} which is also the output of B.

If the PRG-challenger computes pk∗ ← PRG(s) for some s← {0, 1}λ then B perfectly simulates
ncHybd3+(j−1),1. On the other hand, if the PRG-challenger samples pk∗ ← {0, 1}2λ then B per-
fectly simulates ncHybd3+(j−1),2. Therefore, B breaks the security of SSB with advantage at least
ε(λ) if A distinguishes between the hybrids advantage ε(λ). Hence, the lemma follows. ut

Lemma 7 If SSB is somewhere statistically binding and iO is secure then for all efficient and
admissible adversaries A, for all λ ∈ N, and j ∈ [L] there exists a negligible function negl such
that

|Pr[ncHybdA3+(j−1),2 = 1]− Pr[ncHybdA3+(j−1),3 = 1]| = negl(λ).

Proof. The only difference between the hybrids is in the circuit which the challenger obfuscated
during the challenge query phase: Cslot

j−1 in ncHybd3+(j−1),2 and Cslot
j in ncHybd3+(j−1),3. We show

that with overwhelming probability over the choice of hk and pkq the circuits Cslot
j and Cslot

j−1 are
equivalent. Let us consider an arbitrary input (skx, x, pkx, fx, πx,CT

′
0,CT

′
1, σCT′) to the circuits.

Note that the programming of the two circuits is different only in step 2 (see Figure 2) where
SKE decryption algorithm is performed. We consider the following cases:

Case 1: If x 6= j, then both the circuits either decrypt CT0 when x > j or CT1 when x < j in
step 2. Hence, output of both the circuits is the same.

Case 2: If x = j and (pkx, fx) 6= (pkq, fq), then we use the somewhere statistically binding
property of SSB to argue that both the circuits return ⊥. Note that, the challenger hardwires
MPK = (hk, h) in both the circuits computed as

hk←SSB.Setup(1λ, 1`blk , L, j)

h←SSB.Hash(hk, (pk1, f1), . . . , (pkq, fq), . . . (pkL, fL))

in ncHybd3+(j−1),2 or ncHybd3+(j−1),3. By the somewhere statistically binding property of SSB,
with overwhelming probability over the choice of hk (which binds index j), there does not
exist any (pk∗, f ∗) 6= (pkq, fq) and π∗ such that SSB.Vrfy(hk, j, (pk∗, f ∗), π∗) = 1. Therefore,
if (pkx, fx) 6= (pkq, fq) then the circuits Cslot

j and Cslot
j−1 output ⊥ due to step 1.

Case 3: If x = j and (pkx, fx) = (pkq, fq), then the we use the fact that pkq is uniformly chosen
to argue that the circuits returns the same value. Let us assume the challenger does not abort
in both experiments ncHybd3+(j−1),2, ncHybd3+(j−1),3. This means that pkx = pkj = pkq where

18

pkq ← {0, 1}2λ is the q-th public key. Since pkq is chosen uniformly at random from {0, 1}2λ
then the probability that there exists some s ∈ {0, 1}λ such that PRG(s) = pkq is at most
1/2λ which is negligible in the security parameter. Therefore, with overwhelming probability
it holds that PRG(skx) 6= pkx = pkq. Consequently, the check in step 2 of both the circuits
does not pass and as a result the circuits Cslot

j and Cslot
j−1 output ⊥.

Hence, for all possible inputs, the circuits Cslot
j and Cslot

j−1 output the same value with overwhelm-
ing probability over the choice of hk, pkq. Therefore, by the security of iO, the lemma follows. ut

Lemma 8 If PRG is secure then for all efficient and admissible adversaries A, for all λ ∈ N,
and j ∈ [L] there exists a negligible function negl such that

|Pr[ncHybdA3+(j−1),3 = 1]− Pr[ncHybdA3+(j−1),4 = 1]| = negl(λ).

The proof follows similar to that of Lemma 6.

Lemma 9 For all efficient and admissible adversaries A, for all λ ∈ N, and j ∈ [L] there exists
a negligible function negl such that

Pr[jHybdA3+j(λ) = 1 ∧ NonCorrupt] = Q · Pr[ncHybdA3+(j−1),1 = 1].

The proof follows similar to that of Lemma 5.
Finally, the proof of Claim 3 follows by combining the Lemmas 5 to 9. ut

Claim 4 If SSB is correct and secure, and iO is secure then for all efficient and admissible
adversaries A, for all λ ∈ N there exists a negligible function negl such that

|Pr[jHybdA3+(j−1)(λ) = 1 ∧ NonCorrupt]− Pr[jHybdA3+j(λ) = 1 ∧ NonCorrupt]| = negl(λ).

Proof. We prove the claim using the following two hybrid experiments:

cHybd3+(j−1),1: It is the same as jHybd3+(j−1) except the challenger aborts with output 0 if the

event NonCorrupt occurs. This means that the output of the experiment can be 1 only if the
public key pkj is either adversarially generated or A makes a corruption query for the index
j. Since A is admissible, in either cases, it must hold that fj(m

∗
0) = fj(m

∗
1) where fj is the

associated function with pkj.
cHybd3+(j−1),2: It is the same as cHybd3+(j−1),1 except that the challenger obfuscates the circuit

Cslot
j instead of Cslot

j−1 while computing the challenge ciphertext.

As before, we denote cHybdA3+(j−1),k by the output of the experiment ncHybd3+(j−1),k for each
k ∈ {1, 2}. By definition, we have that

Pr[jHybdA3+(j−1)(λ) = 1 ∧ NonCorrupt] = Pr[cHybdA3+(j−1),1 = 1]

Pr[jHybdA3+j(λ) = 1 ∧ NonCorrupt] = Pr[cHybdA3+(j−1),2 = 1]

Therefore, it is sufficient to prove that

|Pr[cHybdA3+(j−1),1 = 1]− Pr[cHybdA3+(j−1),2 = 1]| = negl(λ).

We prove the indistinguishability between the hybrids in the following lemma.

19

Lemma 10 If SSB is somewhere statistically binding and iO is secure then for all efficient and
admissible adversaries A, for all λ ∈ N, and j ∈ [L] there exists a negligible function negl such
that

|Pr[cHybdA3+(j−1),1 = 1]− Pr[cHybdA3+(j−1),2 = 1]| = negl(λ).

Proof. The only difference between the hybrids is in the circuit which the challenger obfuscated
during the challenge query phase: Cslot

j−1 in cHybd3+(j−1),1 and Cslot
j in cHybd3+(j−1),2. We show that

with overwhelming probability over the choice of hk the circuits Cslot
j and Cslot

j−1 are equivalent. Let
us consider an arbitrary input (skx, x, pkx, fx, πx,CT

′
0,CT

′
1, σCT′) to the circuits. Note that the

programming of the two circuits is different only in step 2 (see Figure 2) where SKE decryption
algorithm is performed. We consider the following cases:

Case 1: If x 6= j, then both the circuits either decrypt CT0 when x > j or CT1 when x < j in
step 2. Hence, output of both the circuits is the same.

Case 2: If x = j and (pkx, fx) 6= (pkj, fj), then we use the somewhere statistically binding
property of SSB to argue that both the circuits return ⊥. Note that, the challenger hardwires
MPK = (hk, h) in both the circuits computed as

hk←SSB.Setup(1λ, 1`blk , L, j)

h←SSB.Hash(hk, (pk1, f1), . . . , (pkj, fj), . . . (pkL, fL))

in cHybd3+(j−1),1 or cHybd3+(j−1),2. By the somewhere statistically binding property of SSB,
with overwhelming probability over the choice of hk (which binds index j), there does not
exist any (pk∗, f ∗) 6= (pkj, fj) and π∗ such that SSB.Vrfy(hk, j, (pk∗, f ∗), π∗) = 1. Therefore,
if (pkx, fx) 6= (pkj, fj) then the circuits Cslot

j and Cslot
j−1 output ⊥ due to step 1.

Case 3: If x = j and (pkx, fx) = (pkj, fj) ∧ (CT′0 6= CT0 ∨ CT′1 6= CT1), then we use the
fact that v∗k,1−βk ’s are chosen uniformly from {0, 1}2λ for all k ∈ [2`c] to argue that both
the circuits return ⊥. Suppose (CT0,CT1) = (β1, . . . , β`c , β`c+1, . . . , β2`c) and (CT′0,CT

′
1) =

(β′1, . . . , β
′
`c
, β′`c+1, . . . , β

′
2`c

). Since CT′0 6= CT0 or CT′1 6= CT1 there exists t ∈ [2`c] such that
β′t = 1 − βt. Let us assume σCT′ = (u′k)k∈[2`c] where u′k ∈ {0, 1}λ for all k ∈ [2`c]. In order
to pass the check of step 2 in both the circuits, it should hold that PRG(u′t) = v∗t,β′t

. Since

v∗t,β′t
= v∗t,1−βt is chosen uniformly at random from {0, 1}2λ then the probability that there

exists u′ ∈ {0, 1}λ such that PRG(u′) = v∗t,1−βt is at most 1/2λ which is negligible in the
security parameter. Therefore, with overwhelming probability it holds that PRG(u′t) 6= v∗t,β′t

.
Consequently, the check in step 2 of both the circuits does not pass and as a result the circuits
Cslot
j and Cslot

j−1 output ⊥.
Case 4: If x = j and (pkx, fx) = (pkj, fj)∧ (CT′0 = CT0∧CT′1 = CT1), then we use the fact that

pkj is corrupted and A is admissible. Let us assume the challenger does not abort in both
experiments cHybd3+(j−1),1, cHybd3+(j−1),2. This means that pkx = pkj where pkj is either
adversarially generated or it is corrupted. Assuming that the check of step 2 passes in both
the circuits, the SKE decryption algorithm of step 2 recovers m∗0 from CT0 in Cslot

j−1 whereas
it recovers m∗1 from CT1 in Cslot

j . Consequently, on input (skj, j, pkj, fj, πj,CT0,CT1, σCT) the
circuit Cslot

j−1 outputs fj(m
∗
0) and the circuit Cslot

j outputs fj(m
∗
1). Since A is admissible, we

have fj(m
∗
0) = fj(m

∗
1). In other words, both the circuits Cslot

j and Cslot
j−1 output the same

value.

Hence, for all possible inputs, the circuits Cslot
j and Cslot

j−1 output the same value with overwhelm-
ing probability over the choice of hk, pkq. Therefore, by the security of iO, the lemma follows. ut

20

Combining Lemma 2 and 10, the Claim 4 holds. ut

Therefore, the proof of Claim 2 follows from Claims 3 and 3. ut

Finally, the proof of Lemma 4 follows from the Claim 2. ut

Lemma 11 If iO is secure then for all efficient and admissible adversaries A, for all λ ∈ N
there exists a negligible function negl such that

|Pr[HybdA3+L(λ) = 1]− Pr[HybdA4+L(λ) = 1]| = negl(λ).

The proof of Lemma 11 follows from a similar argument as in Lemma 3.

Lemma 12 If SKE is IND-CPA secure then for all efficient and admissible adversaries A, for
all λ ∈ N there exists a negligible function negl such that

|Pr[HybdA4+L(λ) = 1]− Pr[HybdA5+L(λ) = 1]| = negl(λ).

Proof. The only difference between hybrid 4 + L and 5 + L is that the challenge ciphertext
component CT0 is an SKE encryption of m∗1 instead of m∗0. We show that if A distinguishes
between the hybrids with a non-negligible advantage ε(λ) then there exists an adversary B who
breaks the IND-CPA security of SKE with at least an advantage of ε(λ). The adversary B works
as follows:

1. B receives the slot count L from A and then plays the role of the challenger as in the hybrid
3 + L for the setup and pre-challenge query phase.

2. When B receives the challenge query ({(ci, fi, pk∗i)}i∈[L],m∗0,m∗1) from A, it works exactly the
same as the challenger in hybrid 3 +L except it uses the SKE-challenger to compute CT0. In
particular, B sends the challenge message pair (m∗0,m

∗
1) to the SKE-challenger and gets back

a ciphertext CT∗0. Finally, B sends the challenge ciphertext ct∗ = (CT0 := CT∗0,CT1, C̃1, σ
∗
CT)

to A. Note that, B does not require the secret key SK0 to compute the components CT1,
C̃1, σ

∗
CT of ct∗.

3. At the end of the experiment, A outputs a guess b′ ∈ {0, 1} which is also the output of B.

If the SKE-challenger computes CT∗0 ← SKE.Enc(SK1,m
∗
0) then B perfectly simulates hybrid 4+L.

On the other hand, if the SKE-challenger computes CT∗0 ← SKE.Enc(SK1,m
∗
1) then B perfectly

simulates hybrid 5 + L. Therefore, B breaks the IND-CPA security of SKE with advantage at
least ε(λ) if A distinguishes between the hybrids advantage ε(λ). Hence, the lemma follows. ut

Lemma 13 If iO is secure then for all efficient and admissible adversaries A, for all λ ∈ N
there exists a negligible function negl such that

|Pr[HybdA5+L(λ) = 1]− Pr[HybdA6+L(λ) = 1]| = negl(λ).

Proof. The only difference between the hybrids 5+L and 6+L is that the ciphertext component
C̃1 is replaced by C̃1. Since iO is secure it is sufficient to show that the two circuits C0 and C1

are equivalent. Let (skx, x, pkx, fx, πx,CT
′
0,CT

′
1, σ

′
CT) be an arbitrary input to the circuits. The

programming of the circuits differ only in step 3 where m̂ is computed via SKE decryption
algorithm. The circuit C0 always decrypts CT0 using SK0 whereas the circuit C1 decrypts CT1

using SK1.
Let (CT0,CT1) be the part of the challenge ciphertext of hybrid 5 + L or 6 + L. Suppose

(CT0,CT1) = (β1, . . . , β`c , β`c+1, . . . , β2`c) and (CT′0,CT
′
1) = (β′1, . . . , β

′
`c
, β′`c+1, . . . , β

′
2`c

). We have
two cases:

21

Case 1: If (CT′0,CT
′
1) = (CT0,CT1), then both the circuits compute m∗1 ← SKE.Dec(SKj,CTj)

for j ∈ {0, 1} (assuming that the check of step 2 passes for both the circuits). Therefore, out-
put of the circuits C0 and C1 are the same for an input of the from (skx, x, pkx, fx, πx,CT0,CT1, σ

′
CT).

Case 2: If (CT′0,CT
′
1) 6= (CT0,CT1), then we rely on the formation of V ∗ to argue that the

circuits C0 and C1 output ⊥. Since CT′0 6= CT0 or CT′1 6= CT1 there exists t ∈ [2`c] such
that β′t = 1 − βt. Let us assume σCT′ = (u′k)k∈[2`c] where u′k ∈ {0, 1}λ for all k ∈ [2`c]. In
order to pass the check of step 2 in both the circuits, it should hold that PRG(u′t) = v∗t,β′t

.

Since v∗t,β′t
= v∗t,1−βt is chosen uniformly at random from {0, 1}2λ then the probability that

there exists u′ ∈ {0, 1}λ such that PRG(u′) = v∗t,1−βt is at most 1/2λ which is negligible in the
security parameter. Therefore, with overwhelming probability it holds that PRG(u′t) 6= v∗t,β′t

.
Consequently, the check in step 2 of both the circuits does not pass and as a result the circuits
C0 and C1 output ⊥.

Thus, the circuits C0 and C1 are equivalent over the choice of V ∗. By the security of iO, the
distinguishing advantage of A is negligible in λ. ut

Lemma 14 If PRG is secure then for all efficient and admissible adversaries A, for all λ ∈ N,
and j ∈ [L] there exists a negligible function negl such that

|Pr[HybdA6+L(λ) = 1]− Pr[HybdA7+L(λ) = 1]| = negl(λ).

The proof of Lemma 14 follows from a similar argument as in Lemma 2.

Lemma 15 If SKE is IND-CPA secure then for all efficient and admissible adversaries A, for
all λ ∈ N there exists a negligible function negl such that

|Pr[HybdA7+L(λ) = 1]− Pr[HybdA8+L(λ) = 1]| = negl(λ).

The proof of Lemma 15 follows from a similar argument as in Lemma 1.
Finally, the proof the Theorem 1 follows from combining the proofs of the Lemmas 1 to 4

and Lemmas 11 to 15. ut

6 From Slotted Registered FE to Registered FE

Hohenberger et al. [7] showed a transformation from slotted registered ABE to registered ABE.
The same transformation also works for the case of registered FE. Roughly, they use a simple
“powers-of-two” approach for the conversion. If we want to support L = 2` users in the system
then the transformation utilizes (`+ 1) copies of slotted registered ABE to achieve a registered
ABE. Fortunately, the same approach also works for the case of FE. We skip the details since it
is identical to the Section 6 of [7].

References

1. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: CRYPTO 2001. pp. 213–229. Springer
(2001)

2. Boneh, D., Sahai, A., Waters, B.: Functional encryption: Definitions and challenges. In: TCC 2011. pp. 253–273.
Springer (2011)

3. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and
functional encryption for all circuits. SIAM Journal on Computing 45(3), 882–929 (2016)

22

4. Garg, S., Hajiabadi, M., Mahmoody, M., Rahimi, A.: Registration-based encryption: Removing private-key generator
from IBE. In: TCC 2018. pp. 689–718. Springer (2018). https://doi.org/10.1007/978-3-030-03807-6_25

5. Gay, R., Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from simple-to-state hard problems: New as-
sumptions, new techniques, and simplification. IACR Cryptololy ePrint Archive, Report 2020/764 (2020)

6. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for circuits. Journal of the ACM JACM
62(6), 1–33 (2015)

7. Hohenberger, S., Lu, G., Waters, B., Wu, D.J.: Registered attribute-based encryption. Cryptology ePrint Archive,
Paper 2022/1500 (2022), https://eprint.iacr.org/2022/1500, https://eprint.iacr.org/2022/1500

8. Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-founded assumptions. arXiv preprint
arXiv:2008.09317 (2020)

9. Lewko, A., Waters, B.: New proof methods for attribute-based encryption: Achieving full security through selective
techniques. In: CRYPTO 2012. pp. 180–198. Springer (2012)

10. O’Neill, A.: Definitional issues in functional encryption. IACR Cryptology ePrint Archive, Report 2010/556 (2010)
11. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: EUROCRYPT 2005. pp. 457–473. Springer (2005)
12. Shamir, A.: Identity-based cryptosystems and signature schemes. In: CRYPTO 1984. pp. 47–53. Springer (1984)

23

https://doi.org/10.1007/978-3-030-03807-6_25
https://doi.org/10.1007/978-3-030-03807-6_25
https://eprint.iacr.org/2022/1500
https://eprint.iacr.org/2022/1500

	Registration-Based Functional Encryption
	Introduction
	Our Results

	Cryptographic tools
	Registered Functional Encryption
	Slotted Registered Functional Encryption
	Slotted Registered FE from Indistinguishability Obfuscation
	From Slotted Registered FE to Registered FE

