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Abstract. Side-channel analysis (SCA) attacks manifest a significant challenge to
the security of cryptographic devices. In turn, it is generally quite expensive to
protect from SCAs (energy, area, performance etc.). In this work we exhibit a
significant change in paradigm for SCA attacks: our proposed attack is quite different
from conventional SCA attacks and is able to filter out physical measurement noise,
algorithmic noise, as well as thwart various countermeasures, and extract information
from the entire leakage waveform as a whole and not only points-of-interest. We
demonstrate on measured devices break of masking schemes of orders 2 and 3,
supported by a model and also shuffling and dual-rail based countermeasures model;
all performed efficiently with the same methodology, and with orders of magnitude
less measurements and smaller computation time; underpinning the importance of
this form of attack. In essence, in our attack we assume nothing different than a
standard side-channel attack, i.e., a known plaintext scenario. However, we further
group and classify leakages associated with specific subsets of plaintexts bits. The
fact that we group specific (sub-)plaintexts associated leakages, and than in the
next stage group or concatenate the associated leakages of these large groups in a
predefined ordered sequence (modulation), enables far stronger attacks against SCA
protected and unprotected designs. The evaluation-domain or the modulation-domain
is the frequency domain in which per frequency it is possible to build a two feature
constellation diagrams (amplitude and phase) and construct distinguishers over these
diagrams. On top of the methodological contribution of this new SCA, the main
observation we push forward is that practically such an attack is devastating for
many countermeasures we were used to consider as secure to some level, such as
masking or shuffling with large permutation size. As an example, leakage from a third
order masked design can be detected with merely 100 leakage traces from the first
statistical moment of the leakage as compared to 15 · 106 traces with conventional
SCA leakage detection test from the third statistical order.
Keywords: Chosen plaintext · Frequency attacks · Known plaintext · Leakage
modulation · Leakage ordering · Masking · SCA · Side-channel attacks · Shuffling
· Spectral modulation · Plaintexts grouping

1 Introduction
Side-channel analysis attacks (SCAs) are efficient cryptanalysis methods where adver-

saries does not only utilize communicated information within a cryptographic protocol and
publicly available mathematical properties of the cryptographic algorithm, but also utilizes
knowledge related to physical properties of the implementation and so called side-channel
leakages, stemming from the implementation of the algorithm.

Most side-channel attacks discussed in literature assume known-plaintext (or ciphertext)
adversarial scenarios. Chosen plaintext (or ciphertext) assisted SCA attacks were previously
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considered in several scenarios: side-channel collision attacks were proposed and evaluated
in [SWP03, SLFP04, Bog07] where collisions in certain internal variables for different
executions were detected utilizing side channel information. Some known/chosen-plaintext
abilities including precomputations were required.

Various attacks which also utilize chosen plaintexts combined with algebraic anal-
ysis of block ciphers and precomputation of internal values exist (just to name few,
[YWQ09, ZWG11]). These attacks utilize destinguishers based on side channel leakages
for classification. In essence, profiled side channel attacks also work by profiling leakages
associated with chosen plaintexts [CRR02, MS16]. These are later used in the attack phase
to predict (parts) of the internal secret state of a device. However, no great advantage is
given to the adversary by restricting the plaintext space or only building a model for a
subset of plaintexts leakages. In fact, generally, the chosen-plaintext profiled scenario is a
limiting factor for the adversary as he needs to screen the known plaintexts in the attack
phase [SKS09].

In this work in essence we assume nothing different than a standard side-channel attack.
I.e., a known plaintext scenario. However, we further group and classify leakages
associated with specific subsets of plaintexts bits. The fact that we group
specific (sub-)plaintexts associated leakages, and later combine the associated
leakages of these large groups in a predefined ordered sequence (modulation),
enables far stronger attacks against SCA protected and unprotected designs
in the modulation-domain which is the frequency domain, as discussed below.
Therefore, such methodologies should be considered while evaluating side-channel security.
I.e., the conceptually different approach of leakage modulation assisted by plaintext
grouping, sets’ ordering of leakages from within groups and spectral distinguishers, may
show surprisingly efficient in breaking some countermeasures and therefore dangerous. The
proposed methodology directs the leakage to where it is most vulnerable in the spectrum.
We discuss in later sections the implications relating to some countermeasures. For example,
it is already interesting to hint here that (e.g.) shuffling based countermeasures [LBS20,
VCMKS12, LKF15], which are known to be more sensitive with frequency based alignment
and distinguishers [LCS+21, LH20, vWWB11, MvWB11, TGWC18, PHF08], should be
much more vulnerable in the proposed attack scenario. Dual rail based countermeasures
(or current-flattening techniques) [TV04, LBBS20] would also be much more vulnerable
to this form of attack as well owing to the cumulative signal properties of the attack
moving the problem to the spectrum domain with a (far) less noisy signal. Owing to the
spectral modulation and mixing of different leakages sets (grouping and ordering), which
is a non-linear transformation, information which appear naturally in higher statistical
moments of the leakage appear directly in the transform space (amplitude and phase).
As shown below it makes masking based countermeasures [CJRR99, ISW03, CGLS20]
sensitive to leak in the first statistical order with only few traces, lower than the theoretical
security order (d). We demonstrate these properties and how attack data complexity
reduces exponentially with d, by using our modulation and distinguisher. E.g., whereas a
standard T-test require about 18 million traces with a given noise-level and d = 3 to get
significant information, our distinguisher and modulation detects leakage with about 1000
traces from the first moment leakage. Another feature which makes this possible is the
fact that noise influence becomes negligible (and noise is very important with masking).
This is because: (1) when taking a very long trace (a concatenated set of traces) and
performing an FFT over it, the spectral characteristics extracted in each freq. performs
an averaging effect/eliminating noise (2) our proposed data-augmentation technique by
permutations within the leakages sets (within class) can be used to generate surprisingly
large number of leakages from tiny leakages sets; this later property can not be achieved
with standard SCA attacks and is indeed very important in our proposed methodology.

Notably, the scenario of adaptive selection of the plaintexts in an SCA context was
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evaluated in [VCS10], supported by theoretical model and experimentation. We note that
the same gains achieved by the adaptive adversary equally apply in the context of this
paper.

Our Contribution: We first provide a set of different and powerful techniques for SCAs
and security-evaluation. These are all novel leading to a game-breaking scenario in the
SCA context, as shown below. As a more holistic discussion, in this paper we show another
significant ability which exist in the adversary’s tool-set. Namely, the ability to shape the
characteristics of the physical leakage. This is achieved by jointly utilizing these three
proposed techniques: (i) subset-grouping and classification of small number of plaintext
(or ciphertext) bits, (ii) efficient leakages sets ordering or modulation in accordance with
(i), and then (iii) applying dedicated spectrum based distinguishers.

We demonstrate that by using such a methodology and crafted set of techniques, several
very dangerous abilities are given to the adversary A:

1. Leakage modulation: sensitive information can be tuned to leak in any slice
of the spectral domain the adversary wishes. This is possible due to utilization of
leakage classification, grouping and ordering techniques in accordance with plaintexts.
Ideally, such tuning can target a noiseless/activity-less spectral slice. I.e., directing
the leakage to where it is most vulnerable.

2. Cumulative signal: extracting cumulative information on internal variables from
the entire trace waveform, not only a subset of time-samples or points-of-interest as
traditionally performed with conventional SCA attacks and so-called multivariate
attacks or combining functions. The latter suffer from complexity challenges (e.g.,) as
the number of variables or points-of-interests increases. Our proposed methodology
is straight forward, low-complexity and integrates cumulative information or signal
from the entire trace on all correlated internal-variables.

3. Noise independence: in this work we examine a distinguisher which modulates the
side channel leakages. However, before applying our distinguisher an important step
in our attack consist with grouping of leakages in accordance with known subsets
of plaintexts bits (as denoted by subset grouping). The specific modulation into
the spectrum domain is shown to be very efficient to filter the noise in the leakage
to the verge it is quite hard to be utilized as an efficient countermeasure. In fact,
we demonstrate how our proposed data-augmentation technique by leakages-sets
permutations can provide means to remove noise in unprotected designs scenarios,
and in protected designs scenarios such as shuffling, hiding and masking.

4. Countermeasures included: we demonstrate the aforementioned properties on
actual measurements for unprotected software Tiny-AES traces, and we show that
protected designs are becoming an easy targets for such an adversary, A: namely
we model shuffling and hiding (by dual-rail) leakages showing their in-ability to
conceal secrets with our modulation and distinguisher, and we model high-order
Boolean masking leakages up to the fourth order showing how our modulation and
distinguisher lower the effective security order from the theoretical d to leakage in
the first statistical moment with very few measurements. The latter highlight comes
with a contribution of relevant and adapted T-test, relevant to our modulation and
the spectrum samples. We also demonstrate it on actual leakages from d = 2 and 3
masked HW scenario over an FPGA device of the Present algorithm as an example.

Paper organization. The manuscript begins with a technical background in Section 2
where we briefly elaborate on standard and existing SCAs, and needed evaluation metrics.
In Section 3 we layout the proposed methodology and specifically discuss the modulation
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procedures in Sub-section 3.1, and formulate our tailored spectral distinguishers characteris-
tics in Sub-section 3.2. In Sub-section 3.3 we elaborate on the powerful data-augmentation
technique by permutations. In Section 6 we follows with modeling and simulating our
attack on an unprotected model, shuffling and dual-rail leakage models and protected
masking leakage model, including mathematical model of the modulated leakages. Finally,
in Section 5 we show several concrete examples over measured date: experimental results
on both software and hardware masking implementation, while discussing various aspects
of the attack, following which we provide conclusions.

2 Background
Strength and Limitation of Current Time-Domain SCAs: Statistical side

channel attacks (Differential or Correlation power or electromagnetic side channel attacks),
or as termed in the jargon DPAs, are traditionally uni-variate and extract informa-
tion from a single to several proximate time samples in the leakage and from a single
internal variable computed within the algorithm [BCO04, KJJ99, DPRS11], targeting
low(er) adversarial computational effort with relatively large data-complexity (# traces).
However, clearly a univariate methodology can extract little information from the huge
traces collected by the adversary. On the contrary, several reports suggested to perform
a multi-variate attack [BCPZ16, OM93, BGH+17, Riv08, LPR+14]. Such approaches
incur (far-)larger computational effort and to be successful require some adversarial
knowledge; however, indeed reduce data-complexity. In between, several dimensional-
ity reduction techniques [CDP16, BGH+15] were proposed which aim to balance this
trade-off, clearly at the cost of quality. Especially in the masking context where sev-
eral splits or shares of the same internal variables are processed in (e.g.,) different time
samples, for example utilizing combining-functions [FMPR11, CPRR14], utilizing trans-
forms [DSEA+12], filtering techniques which group/combine information from different
time samples [SWL21, BFP22, TGWC18] etc.

Though relatively efficient, none of these time-domain based attacks have the potential
to extract all pieces of information related to or correlated with some hypothesized internal-
variable from the entire trace waveform jointly in a rather agnostic way: i.e., requiring little
knowledge on the implementation and where in time to search for pieces of information
(points of interest, POIs). In this work we propose the first step in achieving this property
with low computational effort. We demonstrate attacks which are far stronger as discussed
below.

Limitations of Current Frequency-Domain SCAs: In the literature, differential
or correlation frequency analysis attacks were proposed (D/CFA) [MG10, Tiu05], where
leakages are transformed to the frequency domain by fast-furrier transform (FFT) or
wavelet based transform, to the wavelets domain [DSEA+12].

The main limitations of such approaches lies in the following facts

1. They operate on each (short) leakage trace independently, where the sampling
theory (Nyquist) tells us that the representation of (sampled) continuous signals with
harmonics is limited and will encompass errors for (rather) short sequences/traces
anyway.

2. Transforms are not accurate in traces boundaries (i.e., initial/final rounds)

The proposed approach in this paper is inherently different: the proposed transform
operates on (public) plaintext1-dependent concatenated sets of traces and then uses tailored
modulations, i.e., interleaving leakages in an anti-symmetric duty-cycled fashion among
data-dependent classes. This modulation enhance the ability of the transform to extract

1we assume a forward attack direction from the plaintext, as typically done in literature, though the
backward direction from the ciphertext is equally applicable
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information accurately and cumulatively from many computations jointly modulated,
and not just one from one leakage trace. In the approach proposed here, we first make
sure that sampling theory (Nyquist) hold for the entire spectrum of information we are
interested in, and by so we capture information from the entire leakage waveform which
is modulated to a low-noise spectral region and chosen harmonies. The information is
captured in the encryption frequency, fenc, which is shifted (modulated) with duty-cycled
(D.C) interleaving of classes associated leakages, and the number of rounds the adversary
wants to consider #R from each trace.

2.1 Necessary Side Channel Attacks (SCAs) Background and Notations
Side channel attacks have repeatedly demonstrated the sensitivity of implemented cryp-

tographic schemes. As such, current National Institute of Standardization and Technology
(NIST) competitions for future symmetric-key, e.g., Authenticated-Encryption [TMC+21]
and public-key Post-Quantum schemes [AASA+20], are considering SCA security as im-
portant aspects. In this subsection we briefly recall some of the necessary SCA basics
and details needed for this manuscript on SCA security evaluation-metrics. In more
details, side channel attacks enable the extraction of secret values manipulated by the
hardware by exploiting the dependencies of secret-key dependent computations and some
physically measurable quantity. Most reports focus on side-channel leakage measured
through power or electromagnetic radiation channels, owing to their ease of access and
rather high signal to noise ratio. These leakages originate mainly as physical outcomes
of dynamic (switching) current dissipation of microelectronic devices. Correlation or
Differential power analysis (C/DPA) [KJJ99, BCO04] are powerful side-channel attacks
that follow a divide-and-conquer approach: an estimation on distinct parts of the key
(denoted by sub-keys) takes place, called hypothesis, and these hypotheses are checked for
correlations with the measured leakage from the device through multiple tests.

In simulated environments we typically estimate a leakage model for some intermediate
values manipulated by the device. A leakage model is aimed at representing to some extent
the actual physical behaviour measured in the SCA paradigm; i.e., the leakage owing to
internal values manipulation. For a commonly practiced leakage model, which typically
nicely represents software implementations leakage, we can consider the Hamming Weight
(HW) leakage model by which an intermediate variable y of n-bits leaks: α · HW(y) +
β + N (µ, σ2). Where, the α factor may represent some signal scaling. The β factor may
represent some current consuming elements which are data-independent. These factors
highly vary between different implementations or devices. N (µ, σ2) is the modeled noise
distribution owing to internal factors within the device and external parameters such as
environmental influences.Within simple first-order estimation models, we typically assume
a Gaussian additive and independent noise semples.

Similarly to traditional cryptographic models, we assume one end of the communication
is exposed to an adversary: decryption-leakages measurements are associated with some
known ciphertexts (or encryption-leakages with their associated plaintexts). SCA attacks,
are typically not sensitive to the forward or backward direction of the attack, i.e., through
plaintexts or ciphertexts. Along the last few decades, the most powerful SCA attacks were
statistical, meaning many such (plaintext / encryption-leakage) pairs were retrieved by
the adversary prior to the attack procedure. Then, the adversary follows a modeling phase
of a key-dependent internal computation in the algorithm, and further models the effect
this value has on the encryption-leakage. Then, a statistical distinguisher is used, with the
goal of eliminating the large measurements noise to extract the key from the leakages.
Model-Based Attacks: Let’s assume that a device performs encryption and that any
randomness used by the protocol is public. Therefore, with conventional CPA [BCO04],
we assume multiple measurements are available to the adversary under the same secret-key,
e.g., considering a symmetric-key block-cipher instantiated. Let lx,k be a leakage trace
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measurement under a plaintext/key x = {x0||x1||...x15}/ k = {k0||k1||...k15} of n-bits where
for example each xi or ki represents one byte of say n =128 bits. To perform a CPA attack,
one should choose a target computation to hypothesize (in the case of an AES, typically the
first round Sbox output). That is, some logical manipulation of the known plaintext (byte)
by a deterministic function and the secret-key (byte), e.g., the target intermediate value
yi = Sbox(xi ⊕ki). Once a specific intermediate value is chosen for an attack, the adversary
builds/computes an hypothesis table per each hypothesized secret-key ki ∈ {0, 1}8 and all xi

related possible measurements of sizeNtr. The leakage model for example can follow directly
the HW of the intermediate hypothesized yi value as discussed above. Next, a distinguisher
can be used to find the hypothesized model which depends on the secret-key which most
correlates with the measured leakage, e.g., a simple and commonly used distinguisher is
the Pearson Correlation Coefficient, ρkh = ρ(ykh

i , lx,k), where ykh

i is yi computed under
an hypothetical key kh, i.e., ykh

i =Sbox(xi ⊕ kh). Eventually, the secret-key (byte) k∗,
which maximizes the correlation, is chosen, namely k∗ = argmaxkh ρkh . In practice, each
leakage trace/measurement is a vector over time ltxi,ki

where t ∈ {0, . . . ,#Samples} and
the correlation in the equation takes the maximum value found over time per hypothesized
key, estimated in a point-of-interest (POI) in time where the secret value yi is being
manipulated by the device [SMY09, LPB+15].

Side Channel Signal to Noise Ratio, SNR: The SNR metric is important for charac-
terization of the leakage signal and the noise level in the measurements for evaluation of
the ability to extract sensitive information. The SNR is a very low computational effort
metric which was first proposed by Mangard et-al. [Man04], namely the SNR applied to
the SCA context. When applied on the measured leakage it can aid in finding a Point
of Interest (POI), a point in time that may be leaking information in correlation with
some intermediate computed and sensitive variable, as well as indicate the strength of the
leakage (information sense). The SNR is calculated for each time sample and requires
multiple leakage samples for each (say) known plaintext byte xi and key bytes k to obtain
the variance and the expected values of the leakage per such class: SNR = Varxi,k(E[lt

xi,k])
Exi,k(Vari[lt

xi,k
] .

As shown, the SNR depends on the first two statistical moments and therefore is quite
relevant for Gaussian distribution leakages. We highlight that the SNR metric was used
here only due to its popularity in literature and as a baseline comparison of results.

Leakage detection by T-test: In this paper, we test for the existence of leakages in high
statistical moments up to the dth moment, denoted as M̂d

s . Moments are computed on a
subset of the leakage samples. The samples are grouped by an internally processed secret
value s (either ‘0’ or a ‘1’); i.e., over lts, the leakage time sample (t ∈ {0, ...,#samples}),
corresponding to different outcome manipulation of s. For the 2nd-order, the second-order
central-moment, CM2,t

s = E((lts − µ)2), is used instead of the raw moment, M ; and for
higher orders (d > 2), the standardized moment is used, SMd,t

s = E(( lt
s−µ
σ )d). Where, µ

and σ are the populations’ means and standard deviations, respectively; µ and σ operate
on the entire vector of observations in a set per time sample lt

s.
Our analysis is based on the Test Vector Leakage Assessment procedure from Cryp-

tography Research, CRI [CMG+, GGJR+11]. The popular leakage detection approach
utilized is the traditional univariate method, based on Welch’s (two-tailed) T-test [Wel47].
It is computed on two input sequences (Set0 and Set1). In this work, we compare two
classes of leakages with so-called specific “fixed vs. random” [Sta19, DS16] tests to detect
leakages, using the following T-test statistic2:

Tvalue =
(
E(SM i

Set0
) − E(SM i

Set1
)
)/√

Var(SM i
Set0

)
/

|Set0| + Var(SM i
Set1

)
/

|Set1|, (1)

2Computed by the generalized fast implementation from [SM15]



Moshe Avital and Itamar Levi 7

3 The Proposed Methodology
The proposed approach is generally based on a different analysis of side-channel

information, compared to conventional attacks. In conventional side channel attacks an
attacker aims to reveal leaked information by trying to classify a specific time range of
the sampled traces (i.e., POIs) using some model on the desired intermediate variable,
as shown in Figure 1a. In contrast, the proposed approach considers the entire sampled
traces. The approach relies on manipulating the sampled sets of traces (the recorded data
for later analysis attack phase), and moving the security evaluation phase to the frequency
domain, extracting much more enhanced information. The methodology can be divided
into two main parts: (i) the recording part, (ii) the modulation part. The recording part
includes sampling and gathering sufficient amount of traces related to known plaintext.
The modulation part include several steps such as classification, grouping, interleaving
and F-transforming. The detailed methodology is described in next sections.

3.1 Modulation
The modulation part includes the signal processing procedure implemented on the

recorded traces for known plaintext (e.g., power consumption, EM measurements), aiming
eventually to characterize the information leakage of the analyzed device. The conventional
data analyses on the time-domain sampled traces such as CPA, t-test etc. assume (ideally)
a single point in time that leaks information. Usually some post-processing on these traces
are necessary such as alignment, to achieve accurate synchronization between the traces. In
contrast, the modulation process of the proposed approach consists of quite different data
analysis, taking into account much more information distributed continuously throughout
many clock cycles of each trace. In the following, we describe the main operations that make
up the overall modulation part. Additionally, this procedure is illustrated in Algorithm 1.
Classification: The first operation of the modulation is the classification C. The purpose
of the operator C is to rearrange the indices of the sampled set of traces, corresponding to
the internal variable y∗

i . The operator receives N such internal y∗
i vectors (for example

created by random N plaintext), the number of the observed\classification bits, b, out
of the entire 128-bit, and the location, ℓ, of the observed bits, relative to the MSB. The
operator in turn outputs classified subsets of the internal variables, {CS}, where each
subset CS contains the internal variables that have the same value of the observed bits b,
at the same location ℓ, as described in Equation 2.

C
(

{y∗
i }N

1 , b, ℓ
)

= {CS1, ..., CS2b} (2)

As a consequence, the operator C outputs 2b classified subsets, where each can contain
a different number of data, defined as N1, N2, ..., N2b , such that N =

∑2b

i=1 Ni. The
left side of Figure 1b shows an illustration of the classification operator for N internal
variables, b = 3, and ℓ = 0. In this example the 3 observed bits are the 3 MSB bits of the
internal variables. The operator C outputs 8 classes, each corresponds to a different 3-bit
value from 000 to 111.
Grouping-Interleaving: The second step of the modulation part is the grouping-interleaving
operator, GI, that comes after the classification operator. This operator consists of group-
ing and interleaving operations. The first portion starts with setting a predetermined
number of groups, g, each is set to a predetermined size, s. These degrees of freedom
parameters allow us to control the statistical significance between different classifications,
and as a result, to control the amount of the leaked signal compared to the noise. Predeter-
mined large g, s parameters might increase the leaked signal, on the expense of computing
time and available memory. The successive portion of the grouping is the interleaving. This
part interleaves the measured traces (e.g., power, EM) to each of the g groups, according to
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the classification. The classes created during the classification part are divided to pairs of
classes, in an anti-symmetric manner. Meaning, a class relating the observed bits b1b2...bb

is paired with the class relating the anti-symmetric observed bits of b̄1b̄2...b̄b. In such a way,
there are 2b−1 pairs of classes. For each, the interleaving operator assigns the measured
traces according to the indices of the internal variables from both classes of the pair, using
a predefined periodicity, so-called duty− cycle(d.c). For example, the interleaving operator
with d.c = 2 assigns one trace corresponding to an index of an internal variable to a group
from the first class of a pair, and then one trace corresponding to an index of an internal
variable from the other class of the pair, and so on. The interleaving operator with d.c = 3
assigns one trace corresponding to an index of an internal variable to a group from the
first class of a pair, and then two different traces corresponding to two different indices of
an internal variable from the other class of the pair, and so on. This part is repeated for
2b times, where b is the number of the observed bits, for all the g groups. As a result, the
operator outputs anti-symmetric interleaved groups of the index of an internal variable,
{ASG}, as described in Equation 3. {ASGclass1

i }s
1

GI
(

b, g,{CS1, ..., CS2b}, s,d.c
)

=
{{

{ASG1}s
1, {ASG2}s

1, ..., {ASGg}s
1
}

class1
,{

{ASG1}s
1, {ASG2}s

1, ..., {ASGg}s
1
}

class2
, ...,

{
{ASG1}s

1, {ASG2}s
1, ..., {ASGg}s

1
}

class2b

}
(3)

The middle of Figure 1b shows an illustration of the grouping-interleaving operator
for b = 3 and d.c = 2. Note that the group size s can be set to a very large number, as
it acts like a permutation of two classes arrangement. For instance, assuming we have
N = 1000 random plaintext, and therefore 1000 internal variables y∗

i , and assuming that
for b = 3 the first classified subset CS1 and its anti-symmetric classified subset CS8 are
of size 100. Then the the set size s of each of the groups can be predefined to any value
we deem, as there are (100!)2 interleave options.
F-transforming: The third step of the modulation part is the F-transforming operator, F ,
which transforms the interleaved traces prepared in previous part to the frequency domain.
At first, Each of the g anti-symmetric groups ASGi, i = 1, .., g, created by a specific
classification subset, is concatenated to a single vector. For each class, the operator F
transforms (e.g., by using the FFT algorithm) these g concatenated time-domain vectors
to g frequency-domain data, consisting Amplitude A(f) and Phase P (f), as described in
Equation 4.

F
({

{ASG1}s
1, {ASG2}s

1, ..., {ASGg}s
1
}

class1
,{

{ASG1}s
1, {ASG2}s

1, ..., {ASGg}s
1
}

class2
, ...,{

{ASG1}s
1, {ASG2}s

1, ..., {ASGg}s
1
}

class2b

)
={{

(A,P )(f)1, (A,P )(f)2, ..., (A,P )(f)g

}
class1

,{
(A,P )(f)1, (A,P )(f)2, ..., (A,P )(f)g

}
class2

, ...,{
(A,P )(f)1, (A,P )(f)2, ..., (A,P )(f)g

}
class2b

}
(4)

Building constellation diagrams for each of the g obtained spectrum (A, P )(f) for
each of the 2b classes, can be a powerful distinguisher of the leaked information. Next we
show that the modulated classes are arranged in the constellation diagram approximately
along a straight line, where the different amplitudes correspond to different classes, as
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(a)

(b)

Figure 1: Side-Channel attacks apparatus: (a) Conventional Side Channel attack. (b) Side
Channel Modulation Attack apparatus (SCMA).

illustrated in the lower-right part of Figure 1b. This line is tilted with some angle which
is impacted directly by the d.c parameter. Spectra of some class that contain different
groups will be located approximately on the same spot of the constellation with some
differentiation due to different permutations between the groups (i.e., algorithmic noise).

It is important to emphasize the significant advantage of the proposed approach, which
relates to the information accumulation from the entire time points of the sampled trace,
as illustrated in Figure 2. In general, the conventional analysis attacks consider the
present values of the traces at independent POIs. As a result, even if considering the entire
time points of the traces, these attacks do not take into account the information that
may leak along the time (i.e., dependency of different time points) due to the diffusion
characteristic of (e.g.,) an SPN network or a Sponge. In contrast, the described modulation
process of the proposed technique accumulates information from the entire trace, and thus
considers diffused (and even small) information that may exist in a deep level of the SPN.
In addition, since such a technique that considers high amount of data may contain a lot
of noise, the degrees of freedom of the technique such as d.c, b, g, s, allow us to increase
the signal of the leaked information and significantly reduce the noise.

3.2 Spectral Distinguisher and Leakage Shaping
As mentioned, the information leakage is modulated and can be observed in the

frequency domain, utilizing the Amplitude and the Phase, (A, P )(f), of each class and
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Algorithm 1 Leakage Modulation procedure
1: Recording: Store a series of N time-domain leakage traces corresponding to N

random plaintext.
2: Configuration: determine the modulation parameters: g, b, d.c, s, ℓ.
3: Modulation:
4: Classification: rearrange the indices of the N Recording set according to b, ℓ.
5: Loop: for each pair of anti-symmetric 2b classes do:
6: Grouping-Interleaving: create g groups of size s, and interleave the measured

traces in the groups in an anti-symmetric manner according to ℓ, d.c parameters
and the internal y∗

i variables.
7: F-transforming: concatenate each of the g groups and transform them to g

frequency-domain Amplitude and Phase (A,P )(f).
8: Generate constellation diagrams.
9: Extract information from leaked and desired frequency by operating a distin-

guisher over the diagrams.

Figure 2: Leakage modulation and information accumulation.

each group. The modulation process results in several frequencies that carry the information.
These frequencies include the encryption frequency and its multiplications. The number of
frequencies that carry information, |finfo|, depends on the duty cycle (d.c) and the trace’s
number of samples n, and can be calculated using Equation 5.

|finfo| =
⌊
⌊n · d.c

2 ⌋ · (1 − 1
d.c

)
⌋

(5)

For each such frequency finfo, the corresponding constellation diagram containing the
(A, P )(finfo) of all 2b classes can constitute as a spectral distinguisher. As a consequence
of the modulation operator, the 2b points are arranged approximately along the diagram
diameter in which its rotation angle, ϕrot depends on the examined finfo and the d.c.
Equation 6 describes the rotation angle in degrees.
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ϕrot ≡ 360 ·
(

1 − 1
d.c

)
· finfo (mod 360) (6)

The extent of the ability to separate between each set of g points on the diagram
(related to the g groups), determines the strength of the distinguisher. Figure 3 presents
an example of four constellation diagrams relating to the same informative frequency3.
The points in each diagram represent the g = 16 groups for each one of the 2b=3 classes.
The sub figures of Figure 3 differ in the duty cycle, such that d.c = 2, 3, 4, 5 relate to
Figure 3(a,b,c,d), respectively. As can be seen by this distinguisher, the eight different
classes can be separated in all these cases (circled in dashed lines), and a higher significance
is obtained as the d.c is smaller. However, an improved distinguisher for higher d.c values
can be achieved by increasing the set size s of each group. Furthermore, this modulation
process can be treated as a leakage shaping mechanism. By using this algorithm, an
attacker can build an efficient strategy and actually navigate the attack to a convenient
environment, e.g., a much less noisy frequency area. Meaning, the attacker can control the
specific frequencies that carry the leakage information, by defining the desired b, n, d.c
parameters, and then, depending on the available resources, s\he can control the grouping
g and the set size of each group s in order to optimally determine the sharpness level of
the distinguisher.

The informative constellation diagram allows us to efficiently define distinguishers. As
previously explained, since the modulation process enables an attacker to control the signal
and the noise of the information leakage, an appropriate SNR for the modulation process
is defined, namely, SNRmod. The SNRmod definition is described in Equation 7.

SNR(f)mod ≜
Var

(
E

[
A(f) ·

(
cos(P (f) − ϕrot) + sin(P (f) − ϕrot)

)])
E

(
Var

[
A(f) ·

(
cos(P (f) − ϕrot) + sin(P (f) − ϕrot)

)]) (7)

Similar to the SNR in context of cryptography, this equation takes into account the
distances between different classes as well as distances between the same classes of different
groups. Note that A and P are the Amplitude and the Phase calculated using Equation 4,
and ϕrot is the rotation angle of the constellation diagram calculated in Equation 6.

3.3 Powerful Data Augmentation Technique by Permutations
As described in the previous section, the information in the spectral domain can be

shaped and allocated to a convenient frequency slice by an attacker setting predefined
parameters. A distinguisher can operate on this spectral representation (i.e., constellation)
generated by the F transform (such as FFT algorithm) of the synthetic concatenated traces
of complimentary anti-symmetric pairs of classes. Therefore, the distance between the
points in the spectral constellation that belong to the same pair of classes but to different
groups, depends on the lengths of the concatenated traces. The longer they are, the smaller
distances between different constellation points associated with different sets of classes
pairs. The length of the concatenated traces depends on the set-size parameter s, as well
as the trace’s number of samples n. Low values of s lead to noisy signal or noisy spectral
constellation which hardens the attack. On the other hand, high values of s strengthen
the signal and weaken the noise, and hence increase the SNRmod. Therefore, it allows an
attacker to build an efficient distinguiser that separates different classes much more easily.
Moreover, very high values of s, i.e., Data Augmentation, can be achieved using quite
small set of traces, by performing permutations. In other words, data augmentation can
be achieved by a huge number of available permutations within a group, each corresponds
to a specific concatenation between a pair of complementary anti-symmetric classes. By

3In the next section we relate to the modeling details of the leakage related to the figure which is only
given here as an example
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Figure 3: Leakage modulation and constellation representation. (a) d.c=2. (b) d.c=3. (c)
d.c=4. (d) d.c=5.

this data augmentation, an attacker can significantly increase the efficiency to extract
information. Figure 4 shows an example that demonstrates the Data Augmentation by
increasing the set size s of each group. The figure presents four constellations relating to a
frequency that carries information with d.c = 2, and to three classification bits, i.e., b = 3
that yields 8 classes. Different set sizes s = 213, 216, 219, 222 relate to Figure 4(a,b,c,d),
respectively. As can be noticed, higher set size s increases the ability of an attacker to
distinguish between different classes, and hence to extract information.

4 Modeling and Simulated Attacks
4.1 Unprotected model

As a first step, in order to examine the quality of the modulation technique, an
unprotected model has been defined and implemented, then leakage traces were gathered
using this model, and finally a simulated analysis attack was performed. An AES-128
encryption algorithm was implemented in code (using Matlab). A constant 128-bit key was
set, and known plaintext attacker was assumed (with classification to buckets of subset
plaintext bits). The leakage traces were defined as the Hamming Weight (HW) model
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Figure 4: Permutation-based data augmentation for different set size s. (a) s = 213. (b)
s = 216. (c) s = 219. (d) s = 222.

considering each of the AES rounds. Meaning, the leakage of N plaintext values that
inserted to the AES code, is modeled as a matrix of HW values referring to different
states inside the AES encryption. Its rows refer to the N inserted plaintext, i.e., number
of traces. Its columns refer to the different ten rounds (to examine the impact of the
diffusion characteristic). The analysis attack step examines the modeled leakage traces for a
conventional attack and a modulation-based attack using the (conventional) SNR and and
SNRmod, respectively. For a proper comparison between these attacks, the exact number of
attacked bits (out of the 128-bits) were considered. That is, the number of bits considered
for the classification of the internal attacked variable y∗

i in the conventional attack is the
same number considered for the observed\classification bits, b, in the modulation-based
attack. In addition, these simulated attacks were investigated under various values of
standard normally distributed noise added to the modeled leakage traces points in time
independently.

Figure 5 shows an example of the SNR analysis for the conventional and the modulation-
based attacks on the HW leakage model. In this example, N = 10000 plaintext were
encrypted using the AES-128 algorithm, generating a HW leakage traces for all the ten
rounds. The classification part of the SNR calculation for the conventional attack was
performed using the three MSB bits of an internal variable y∗

i (after one round), taking
into account the entire trace. Similarly, the number of considered classification bits
for the modulation-based attack was set to b = 3. As can be seen in the figure, the
conventional SNR (the surfaces in red) is very low and ranges 10−2 − 100 for different
noise standard-deviation, as shown in the figure. The SNR values slightly depend on the
added noise, however since the values are too small, the SNR surfaces seem flattened
in this figure scale. On the other hand, the SNRmod values (surfaces in grey and blue)
are much higher when calculated on the frequencies that carry information. The same
HW leakage traces (produced by the N = 10000 plaintext) were used for analyzing the
SNRmod, along with the powerful degrees of freedom parameters, such as the set size s
and the duty cycle d.c. The grouping parameter g was set to 16. The SNRmod for d.c = 2
is shown in Figure 5(a). In this case there are five frequencies under evaluation that carry
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Figure 5: Conventional SNR and SNRmod as a function of noise and frequency under
evaluation. (a) d.c=2. (b) d.c=4.

information, as can be calculated using Equation 5 (where n = 11, adding the plaintext
to the ten rounds). That is, the information is modulated to the encryption frequency and
to four more higher frequencies. As can be seen, when setting the set size parameter to
s = 213 (using permutations on parts of the 10000 traces), the SNRmod values increase
at least by two orders of magnitude comparing to the conventional SNR. Furthermore,
when increasing the set size parameter to s = 216, the SNRmod values significantly rise
by around four orders of magnitude comparing to the conventional SNR. Similarly, The
SNRmod for d.c = 4 is shown in Figure 5(b). This case includes 16 frequencies under
evaluation. As expected, The SNRmod values of both set sizes are lower comparing to the
SNRmod values of the d.c = 2 case. For the same set size, the higher the d.c is, the lower
the number of transients between anti-symmetric classes is. Still, these values are much
higher than the conventional SNR values. Interesting trade-offs can be noticed through the
results of Figure 5: an attacker can increase the number of frequencies carry information
(by increasing the d.c), on the expense of the obtained SNRmod. Alternatively, an attacker
can increase the SNRmod (by increasing s), on the expense of computing time.

4.2 Protected model − Shuffling and Dual-Rail
The second step of examining the modulation technique included an implementation

of protected designs with the HW leakage model, based on Shuffling and Dual-Rail
countermeasures.

Shuffling: The shuffling countermeasure implemented in the HW model is based on
randomized execution of the 16 AES-128 S-boxes, depending on a predetermined shuffling
parameter, shfl. The shuffling implementation in the HW model included the values of
shfl = 2, 4, 8. This parameter actually determines the number of S-boxes that execute
their operation at the same time. As an example, a parameter value of shfl = 2 induces
an 16/shfl = 8 randomly chosen S-boxes to execute at the same time, while the rest
8 S-boxes will execute their computation at a different time/cycle. As expected, the
shuffling implementation significantly decreases the leaked information when examining the
protected model using the conventional SNR, as shown in Figure 6(a). The figure presents a
contour diagram of the SNR and SNRmod as a function of the shfl parameter and the noise,
built using 10000 traces. It can be noticed that the SNR values (red lines) in the contour
diagram decrease with the increase of the shfl parameter value, with slight dependency on
the noise. In contrast, when examining the protected model using the modulation-based
technique, the SNRmod distinguisher remains very effective independently on the shfl
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Figure 6: Conventional SNR and SNRmod for protected model. (a) shuffling countermea-
sure. (b) Dual-Rail countermeasure.

parameter. The SNRmod values (in grey scale), which are around 400 without the shuffling
mode, remain very high (above 30) even for a high shuffling parameter values: shfl = 8,
such that a classification between different observed bits can be easily made by an attacker.
Note that the obtained contour diagram in Figure 6(a) relating the the SNRmod, refers
to the parameter values of b = 3, d.c = 2 and s = 218. As a consequence of the shuffling
investigation, the modulation-based attack is insensitive to shuffling countermeasure, or
alternatively said: time-shuffling does not mask the frequency domain characteristic of
the leakage when sufficiently long concatenated-traces and permutations are taken into
account.

Dual-Rail: The basic idea of the dual-rail approach relies on making the leakage (e.g.,
power consumption) as much as constant or independent of the processed data. To
acheive this, each logical operation is duplicated by using the original operation as well as
its complementary operation. This method makes it difficult for an attacker to extract
information. However, since the efficiency of the dual-rail technique is based on the
symmetry of the gate structure, its immunity in terms of security is sensitive to physical
imbalances of the gate’s transistors, such as process mismatch, coupling capacitances,
process variations, noise, delay imbalance etc. [Tir07, LBBS20]. As a result, the HW
model implemented with the dual-rail method equals to (HWorig + η) + (HWcomp + η),
where the left and right expressions represent the HW (i.e., leakage) of the original and
its complimentary operations, respectively, with the addition of noise η. The imbalances
between the original and the complementary operations lead to a much smaller amount
of leakage, comparing to an unprotected model. That is, the HW leakage model can
be assumed as ϵDR ·HWorig + 2 · η, where ϵDR represents the magnitude of the leakage
fading. Clearly, the more balanced the design is, the smaller the ϵDR. Figure 6(b) shows
the log(SNRmod) and the conventional log(SNR) results of the HW leakage model, as
a function of the dual-rail epsilon ϵDR and the noise. As can be clearly noticed, the
conventional SNR (red surface) drastically decreases with the decrease of ϵDR, and with
the increase of the noise (which completely blurs the residual leakage). On the other hand,
the modulation-based technique results (grey surface), referring to the parameter values of
b = 3, d.c = 2 and s = 218, show a very moderate decrease in SNRmod along the ϵDR axis
(relative to to the conventional SNR surface). Still, the SNRmod values for the smallest
ϵDR are very high which enables to carry out a classification process of the information.
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Figure 7: T-test on HW model. (a) Unprotected model (1st-Order). (b) 3rd-Order Masked
model.

4.3 Protected model − Masking
As an essential investigation of the proposed modulation-based analysis, the leak-

age model was implemented while embedding masking countermeasure. The masking
implementation included the options of d = 2, 3, 4 shares4.

In our model every bit in the AES internal state was masked with d− 1 fresh random
vectors of size 128-bits, ri, where the last share was computed using s

⊕i=d−1
i=0 ri. In

order to evaluate the leaked information, we used the T-test metric, considering Fixed
vs. Random case. Figure 7(a) shows the first-order T-test results in time domain of an
unprotected HW model versus the number of the considered traces, with an added standard
normal distributed noise of σn = 0.1. As clearly shown, the model leaks information after
a small number of traces (around 100 traces). Figure 7(b) shows the T-test results of
a masked HW model implementation with d = 3 shares as a function of time (which
is the AES rounds in the HW model case). As can be noticed, the masked model is
completely immune and does not leak information when examined using the first and
second orders. The model starts leaking information when examined using the third
statistical order only, as expected from theory. However, it requires high computation time
and quite huge data-complexity due to a very large number of analyzed traces (around
15M traces) that are computed for several orders (statistical moments). In contrast to
the time domain, when examining the masked HW model using the modulation-based
attack in the frequency domain, the masked leakage becomes much more informative.
The combination of the grouping-interleaving together with the F-transforming operations
results in leaked information at several informative frequencies. Even though the encryption
is processed on masked data, each informative frequency contains a constellation dependent
on an unmasked data, which enables an attacker to build an efficient distinguisher from
the first statistical moment. The informative masked leakage is analytically explained
as follows: Let’s simplify the discussion to a single bit resolution (i.e., b = 1) and a
duty-cycle d.c = 2 at the informative encryption frequency fenc, considering n samples
for each trace and a set size s. Suppose that z[n] represents the unmasked concatenated
trace in time-domain, we will next show that the information obtained at the encryption
frequency fenc as an output of the F − transforming using the DFT operator can
be classified among all the different interleaving possibilities. This is because different
conditional leakage distributions in the secret z are mixing up, which is outside standard
masking leakage models (e.g., consider the noisy leakage model). In general, the DFT
operation on a time-domain sequence z[n] is defined as Z(k) = 1

M

∑M−1
m=0 z[m]e−i2πkm

M ,
where k = 1, ...,M − 1 represents the frequency domain samples, and M is the number of

4Note that d relates to the number of shares corresponding below to information leakage in the dth-order
statistical moment, where the security order is d − 1
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data samples. Considering the parameters mentioned in this example, M = s·n·d.c = 2·n·s.
Since the encryption occurs every n samples and d.c = 2, the corresponding k

M ratio
of the encryption frequency fenc equals to 1

n . As a result, assuming an identity (value)
attack model on a masked data x[m] (i.e., x[m] = r[m] + r[m] ⊕ z[m], where r[m] is a
random sequence and z[m] is the unmasked data), the DFT operation at the encryption
frequency is then X(kenc) = 1

M

∑M−1
m=0 (r[m] + r[m] ⊕ z[m])e−i2πm

n . Next we show the
different classifications obtained for different interleaving types.

0 → 0 interleaving: In this case, the concatenated interleaved (unmasked) trace in
time-domain can be presented as z[n] = 0z0

1z
0
2 ...z

0
n−10z0

n+1z
0
n+2...z

0
2n−10z0

2n+1z
0
2n+2...

z0
3n−1...0z0

2·n·s−n+1z
0
2·n·s−n+2...z

0
2·n·s−1, where z0

i ∈ {0, 1} belong to the 0 classification.
Therefore, the F − transforming operation of this case using the DFT operator is given
in Equation 8.

X(k) = 1
M

M−1∑
m=0

(r[m]+r[m]⊕z[m])e
−i2πkm

M

∣∣∣
k=kenc

= 1
M

M−1∑
m=0

(r[m]+r[m]⊕z[m])e
−i2πm

n =

2
M

M
n −1∑
m=0

r[nm]e−i2πm

︸ ︷︷ ︸
γ0

+ 1
M

M−1∑
j=0

j ̸=nm

r[j]e
−i2πj

n

︸ ︷︷ ︸
η0

= |γ0 + η0| Φ (8)

1 → 1 interleaving: In this case, the concatenated interleaved (unmasked) trace in
time-domain can be presented as z[n] = 1z1

1z
1
2 ...z

1
n−11z1

n+1z
1
n+2...z

1
2n−11z1

2n+1z
1
2n+2...

z1
3n−1...1z1

2·n·s−n+1z
1
2·n·s−n+2...z

1
2·n·s−1, where z1

i ∈ {0, 1} belong to the 1 classification.
The F − transforming operation of this case is given in Equation 9.

X(k) = 1
M

M−1∑
m=0

(r[m]+r[m]⊕z[m])e
−i2πkm

M

∣∣∣
k=kenc

= 1
M

M−1∑
m=0

(r[m]+r[m]⊕z[m])e
−i2πm

n =

1
M

M
n −1∑
m=0

e−i2πm

︸ ︷︷ ︸
≈0

+ 1
M

M−1∑
j=0

j ̸=nm

r[j]e
−i2πj

n

︸ ︷︷ ︸
η1

= |η1| Θ (9)

0 → 1 interleaving: In this case, the concatenated interleaved (unmasked) trace in
time-domain can be presented as z[n] = 0z0

1z
0
2 ...z

0
n−11z1

n+1z
1
n+2...z

1
2n−10z0

2n+1z
0
2n+2...

z0
3n−1...1z1

2·n·s−n+1z
1
2·n·s−n+2...z

1
2·n·s−1, where z0

i , z
1
i ∈ {0, 1} belong to the 0 and 1 classi-

fications, respectively. The F − transforming operation of this case is given in Equation
10.

X(k) = 1
M

M−1∑
m=0

(r[m]+r[m]⊕z[m])e
−i2πkm

M

∣∣∣
k=kenc

= 1
M

M−1∑
m=0

(r[m]+r[m]⊕z[m])e
−i2πm

n =

2
M

M
2n −1∑
m=0

r[2nm]e−i4πm

︸ ︷︷ ︸
( γ0

2 ) φ

1
M

M
2n∑

m=1
e−i2πm

︸ ︷︷ ︸
≈0

+ 1
M

M−1∑
j=0

j ̸=nm

r[j]e
−i2πj

n

︸ ︷︷ ︸
( η0

2 + η1
2 ) ϕ

=
∣∣∣∣γ0 + η0 + η1

2

∣∣∣∣ ψ (10)
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1 → 0 interleaving: In this case, the concatenated interleaved (unmasked) trace in
time-domain can be presented as z[n] = 1z1

1z
1
2 ...z

1
n−10z0

n+1z
0
n+2...z

0
2n−11z1

2n+1z
1
2n+2...

z1
3n−1...0z0

2·n·s−n+1z
0
2·n·s−n+2...z

0
2·n·s−1, where z0

i , z
1
i ∈ {0, 1} belong to the 0 and 1 classi-

fications, respectively. The F − transforming operation of this case is given in Equation
11.

X(k) = 1
M

M−1∑
m=0

(r[m]+r[m]⊕z[m])e
−i2πkm

M

∣∣∣
k=kenc

= 1
M

M−1∑
m=0

(r[m]+r[m]⊕z[m])e
−i2πm

n =

1
M

M
2n −1∑
m=0

e−i2πm

︸ ︷︷ ︸
≈0

+ 2
M

M
2n∑

m=1
r[2nm]e−i4πm

︸ ︷︷ ︸
( γ0

2 ) π − φ

+ 1
M

M−1∑
j=0

j ̸=nm

r[j]e
−i2πj

n

︸ ︷︷ ︸
( η0

2 + η1
2 ) π − ϕ

≈
∣∣∣∣γ0 + η0 + η1

2

∣∣∣∣ π − ψ

(11)

As can be concluded from these expressions, four contents which differ in their magni-
tudes and phase are obtained, corresponding to a specific set of sampled traces. Namely,
after collecting a sufficient number of traces, the modulation-based analysis on the b bits
(of the masked traces) induces a classifiable constellation map in which the magnitudes
and phases of the different classes are determined by the unmasked data z[n] and the
random sequence of the masking operation r[n]. A different collection of traces may induce
a different but still a classifiable constellation map that can be utilized by an attacker. An
example of a single bit classification (b=1) at the encryption frequency, for duty cycle
d.c = 2 and set size s = 222 is shown in Figure 8. Note that η0, γ0 correspond to the DFT
calculation of r[m], r[nm] of the traces that belong to the 0 class. Similarly, η1 corresponds
to the DFT calculation of r[m] of the traces that belong to the 1 class. The different
constellation of the analytical expressions is illustrated in Figure 8(a). Accordingly, the
constellations for the masked leakage model and a masked FPGA implementation5 analyses
are shown in Figures 8(b) and (c), respectively. It is important to note number of insights:
the 0 → 0 interleaving is indicated in an approximately doubled magnitude relating to
the 0 → 1 and the 1 → 0 cases. The phase difference between the 0 → 1 and the 1 → 0 is
π. The 1 → 1 interleaving results in a random magnitude and phase (noted as $r). For
any masking order separable constellation maps exist, below we also show FPGA based
hardware attack results for d = 3, 4.

Figure 9 shows T-test results of the masked HW model using the modulation-based
analysis, with parameter values of: b = 3, d.c = 2, s = 216, σn = 10−1.

In the case of the modulation-based technique, the T-test is calculated as a function
of the frequencies. Similar to the conventional analysis the Fixed vs. Random case is
considered as well. The Fixed traces were defined as the concatenation between traces that
belong to the 000 and 111 classes. The Random traces were defined as the concatenation
between traces from all classes. As expected, the first-order T-test results of an unprotected
HW model show significant anomalies in the discrete frequencies that carry information, as
shown in Figure 9(a). The T-test results of a masked HW model with two, three and four
shares are shown in Figure 9(b),(c),(d), respectively. It can be noticed that the results are
consistent with the absolute classification shown in the analytical expression in Equations
8 − 11 and in the illustrations in Figure 8(a). In all of the masked implementations,
the models significantly leak information already at the first-order analysis, in the same
discrete frequencies. In contrast to the conventional time-domain T-test analysis, the
modulation-based analysis is much more efficient since several parameters and assumptions
can be determined in advance and reduce the computation time: (1) the POIs in the

5details on the hardware FPGA implementation are provided below
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Figure 8: Modulation-based constellations of a masked implementation relating to the four
transitions of the analyzed single bit. (a) analytical description referring to Equations 8-9.
(b) masking model with 3-shares. (c) masked FPGA with 3-shares.

Figure 9: T-test on HW model. (a) unprotected. (b) masking with 2-shares. (c) masking
with 3-shares. (d) masking with 4-shares.

frequency domain can be defined only as the frequencies that carry information. (2) the
set size s can be optimized according to the noise that exists at the analyzed frequency.
(3) only the first-order T-test can be examined, and as such, the longer computation time
(and data complexity) needed for the second-order and higher orders can be saved.
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Figure 10: Conventional SNR and SNRmod as a function of set size and frequency under
evaluation. (a) d.c=2. (b) d.c=3. (c) d.c=4.

5 Implementation and Attacks
The next step after showing the modulation-based attack on a HW model, aims to

investigate the proposed analysis on a real leakage sampled by physical measurements, first
from an unprotected device. For this purpose, an unprotected AES-128 was implemented
in software on an STM32F415 model of 32-bit ARM CPU. A chosen plaintext attack was
assumed, and power consumption traces of this device were sampled for later analysis, when
known random plaintext vectors were encrypted. A conventional SNR and an SNRmod

were analyzed using 10240 traces, considering 100 time samples for each trace, where the
POI was targeted around the first Sbox output. The SNR and SNRmod results are shown
in Figure 10.

The conventional SNR (the red surfaces) was assumed as the maximal obtained SNR
value, which was around 9.5 (high SNR for this STM device). The modulation-based
SNRmod (the grey surfaces) were calculated considering b = 3 observation bits, for various
set sizes between 28 to 218, and for various frequencies that carry information. Figures
10(a,b,c) show the results for d.c = 2, 3, 4, respectively. It can be noticed that the SNRmod

values are smaller than the conventional SNR for a set sizes lower than s = 212. These sizes
are too small such that a meaningful information can not be better classified. However, as
the set sizes increase, the SNRmod increases as well, much more than the conventional
SNR. Furthermore, the information exists at all the frequencies under evaluation, and as
was shown, this information can be significantly strengthened by increasing the set size.
This powerful fact allows an attacker to control the most convenient frequency band for
analysis, extract information with far less traces (orders of magnitude) and much faster.

6 Modeled attacks with countermeasures ON
In this section a hardware based implementation is examined in terms of security

evaluation using the conventional and the modulation-based analysis. For this purpose, a
masked 4-bit Present algorithm Sbox module was implemented in a Spartan6 FPGA device,
with two and three shares. Similar to the previous analysis, a known plaintext attack was
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Figure 11: T-test on a masked Sbox implemented in FPGA. (a) conventional T-test on a
2-shares masking. (b) modulation-based T-test on a 2-shares masking. (c) conventional
T-test on a 3-shares masking. (d) modulation-based T-test on a 3-shares masking.

assumed with classification abilities, and the power consumption of the device was sampled
during the Sbox operations on a standard Sakura-G board utilizing the internal amplifier
to a standars Series-5 Picoscope oscilloscope. This masked module was analyzed using the
T-test metric as a function of time samples for the conventional attack, and as a function
of the frequencies for the proposed modulation-based attack. The results are shown in
Figure 11. Similar to the analysis of the masked model shown previously, a Fixed vs.
Random case was considered. For the modulation-based analysis, the Fixed traces were
defined as the concatenation between traces that belong to the 000 and 111 classes, and
the Random traces were defined as the concatenation between traces from all classes.

The conventional time-domain T-test was analyzed using 10M traces, where considering
100 time samples for each trace for the 2-shares masking measurements (shown in Figure
11(a)), and 10 time samples for the 3-shares masking measurements (shown in Figure
11(c)). The time ranges were both located at the most leaking area. These results show
identifiable information in the second and the third orders for the two and three shares
masking implementations, respectively as expacted. However, the leakages were reveled
within a high computation time required for the high number of traces as well as high
moment calculations. On the other hand, the modulation-based T-tests for the 2-shares
masking (shown in Figure 11(b)) and for the 3-shares masking (shown in Figure 11(d))
were analyzed using only 100 traces, with parameter values of: b = 3, d.c = 2, s = 216.
These results show much higher efficiency than the conventional time-domain analysis,
where significant information leakages are obtained in the relevant discrete frequencies
already at the first-order moments.

7 Conclusion
In this paper we propose a set of different and powerful techniques for SCA, each

provides a contribution by its’ own and all work jointly to achieve a low computational
cost distinguisher and low data complexity SCA attack. As such, opening the question
of how to protect and build sound countermeasures. One possible solution left for future
investigation is in mode-level security such as rekeying, utilization of public tweaks and
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nonces in a way which is meaningful to resist the side channel modulation attack (SCMA).
We demonstrate security-evaluation of our attack against various leakage models,

software implementation and protected designs on an FPGA. All of the discussed techniques
are novel leading to a game-change scenario in the SCA context, as discussed above. We
demonstrate that by using the proposed Classification, Grouping-Interleaving, and F-
transforming techniques an adversary gets access to shape the characteristics of the physical
leakage and its features. Important aspects are to jointly tailor the leakage to the spectrum
based distinguishers, and the validity of the transform by-design utilizing long enough
concatenated traces and the way they are modulated. One more observation is that leakage
is extracted simultaneously from the entire concatenated long-trace. Where, computations or
internal-variables are jointly correlated to each other in a single leakage (with the limitation
of code diffusion characteristics), and this joint-information is modulated periodically by
the grouping-interleaving operator to be efficiently captured in the spectrum.

Practically, such an attack changes the way we comprehend the security of some
countermeasures. It requires re thinking for many countermeasures which we were used
to consider as secure to some level, e.g., masking or shuffling with large permutation size.
The following fact simply highlight this point: 100 leakage traces are sufficient to detect
leakage from a third order masked design by utilizing the first statistical moment alone as
compared to 15 · 106 traces with conventional third statistical order leakage detection.
Acknowledgments. Itamar Levi and Moshe Avital were partially Funded by the Pazy
Foundation Research Grant ID377.
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