Simplex Consensus: A Simple and Fast Consensus Protocol

Benjamin Y Chan* Cornell University byc@cs.cornell.edu Rafael Pass[†]
Tel-Aviv University and Cornell Tech
rafaelpass@tau.ac.il

March 30, 2023

Abstract

We present a theoretical framework for analyzing the efficiency of consensus protocols, and apply it to analyze the optimistic and pessimistic confirmation times of state-of-the-art partially-synchronous protocols in the so-called "rotating leader/random leader" model of consensus (recently popularized in the blockchain setting).

We next present a new and simple consensus protocol in the partially synchronous setting, tolerating $f \leq n/3$ byzantine faults; in our eyes, this protocol is essentially as simple to describe as the simplest known protocols, but it also enjoys an even simpler security proof, while matching and, even improving, the efficiency of the state-of-the-art (according to our theoretical framework).

As with the state-of-the-art protocols, our protocol assumes a (bare) PKI, a digital signature scheme, collision-resistant hash functions, and a random leader election oracle, which may be instantiated with a random oracle (or a CRS).

^{*}Supported in part by NSF CNS-2128519, NSF Award RI-1703846 and AFOSR Award FA9550-18-1-0267 † Supported in part by NSF Award RI-1703846, AFOSR Award FA9550-18-1-0267, a JP Morgan Faculty Award and an award from the Algorand Foundation

1 Introduction

Distributed consensus algorithms [LSP82] allow large numbers of machines to agree on a single ground truth, even when some machines malfunction. Born out of research towards fault-tolerant aircraft control [WLG⁺78] in the 1970s, consensus algorithms have since then touched every corner of the Internet, and are used by the Internet's most important services to replicate data at scale (e.g. Google's Chubby lock service [Bur06], Apache Zookeeper [Apa], and many more). Today, new varieties of consensus algorithms power blockchains such as Bitcoin [Nak08] and Ethereum [B⁺14], where users propose transactions which are then batched into agreed-upon blocks, and where—unlike in classical consensus algorithms—the set of servers is not known ahead of time, and instead miners can join the system at any time (in other words, the system is "permissionless"). Subsequently, blockchains have found new applications in cryptocurrency and also in bringing liquidity to otherwise illiquid markets (such as the market for art [AJK⁺22]).

At their core, consensus algorithms allow people to work together and collaborate without needing to trust each other. In some sense, they (and their evolution as multiparty computation algorithms [Yao82]) are the epitome of enabling collaboration without needing trust. In a society that heavily depends on trust-mitigation protocols (such as markets, democracy, a justice system, etc) to keep people safe, boost productivity, and to provide a high standard of living, continued innovation on trustless algorithms is of fundamental importance.

Relevance of the permissioned setting. In this paper, we return our focus to classical permissioned consensus protocols, where the set of participants is known ahead of time. This setting has by now been studied for four decades [LSP82], but importantly, many modern techniques for realizing scalable, energy efficient permissionless blockchains (see e.g. Ethereum [BG17], Algorand [CGMV18]) rely on classical permissioned consensus as a building block. In particular, blockchain applications bring forth new desiderata for such consensus protocols, and require them to be faster and more robust than ever before, which we will soon make more precise.

Our focus here is on the partially-synchronous model of computation [DLS88], which is specified by a worst-case bound on message delivery Δ , but where the actual message delivery time may be much smaller $\delta < \Delta$. The protocol is aware of Δ , but is not aware of δ ; additionally, even the worst-case bound may not always hold, but is only required to hold after GST (the global stabilization time); liveness is only required to hold after GST, and consistency holds always¹. As we are in the partially-synchronous model, we assume the byzantine attacker can control at most 1/3 of the players (which is optimal [DLS88]). The partial-synchronous model is well-suited for settings that require security even if the network is partitioned (e.g. due to a Denial-of-Service attack), or if message delivery

¹As usual, the model can also be extended a more general model where liveness hold during "periods of synchrony"; for simplicity, we ignore this distinction.

is unreliable (e.g. on today's Internet). Note that the partially-synchronous approach underlies many of the most successful consensus protocols deployed today, including Paxos [LAM98] and PBFT [CL⁺99].

Consensus with rotating/random leaders. In a blockchain protocol or a statemachine replication system, clients send the system a series of transactions (txs) over time and the protocol participants must collectively decide the order in which the transactions are executed, outputting a LOG of transactions. Suppose that there are two conflicting pending transactions txs and txs' (for instance, comprising a double spend), and that the protocol must decide which of them to include in the final log of transactions. Typically, protocols (in the partially synchronous setting) decide which of the transactions to include by either flipping an imperfect global coin [CR93, CKS00] to directly choose one of the transactions, or by electing a leader process to decide on behalf of all of the participants. Nearly all modern protocols deployed in practice fall into the second category, including blockchains, where the leader is equivalent to the block proposer (see Paxos [Lam01], PBFT [CL⁺99], Bitcoin [Nak08], Ethereum [B⁺14], Algorand [GHM⁺17]). The reason is one of scalability: a block proposer can sequence many transactions in a row (as in PBFT), and more importantly also aggregate transactions together into blocks to improve throughput (as in blockchains). In contrast, flipping a global coin for each pair of transactions is expensive and is largely restricted to solving binary consensus, unless the coin is itself used to elect a leader.

Consequently, block proposers (or leaders) have disproportionate power when deciding the order of transactions within blocks, or across blocks if it is proposing many blocks in a sequence. In a system such as Ethereum, where block proposers can profit from ordering transactions at will, such a disproportionate balance of power affects the security and fairness of the underlying protocol (e.g. via "miner extractable value" [DGK⁺20]). Mitigating the power of block proposers to reorder transactions within a block is an active area of research (e.g. see [HCPS19, KZGJ20]). Over multiple blocks, it is prudent to ensure that each new block is proposed by a different, "fresh" block proposer², if only to ensure that no process is 'in power' for too long.

A slow leader can additionally cause blocks to be confirmed slowly and drastically reduce throughput. In a 'stable leader' protocol such as PBFT, where the leader is never changed unless it detectably misbehaves, this can be problematic. Even if there is only a single slow process, if that process is the leader, then every block proposal may take much longer than the true network speed δ . Thus one more reason to rotate leaders frequently is to ensure that a single slow leader cannot slow down the entire operation for too long (e.g. see [AAC⁺05]).

In this paper, we focus on leader-based consensus protocols in the permissioned setting,

²See the related notion of chain quality [GKL15], which (informally) requires that any sufficiently long chain contain a large fraction of blocks that are mined by honest parties.

specifically those protocols that rotate its leaders, or randomly choose their leaders for each block. This seems essential for both fairness and performance in the common case where proposers can be corrupt.

Efficiency measures for consensus with rotating leaders. There has been a recent explosion in new leader-based consensus protocols. To compare these various approaches, and to understand whether they are "optimal" in some well-defined way, we need to specify some efficiency measures. In this paper, we consider the following notions of efficiency:

- Optimistic confirmation time: Suppose that all block proposers are honest. When a transaction is provided to the protocol (after GST), how long does it take for the transaction to be finalized? The optimistic confirmation time is (informally) the sum of the "proposal confirmation time" and the "optimistic block time" (both rather imprecise, but popular, notions):
 - Proposal confirmation time: Suppose an honest proposer is elected and proposes a block; how long does it take for that block to be finalized?
 - Optimistic block time: Suppose all block proposers are honest. How long does a pending transaction need to wait to be included in the next honest block proposal?

If the optimistic confirmation time depends only on the true message delivery time δ and not on the known upper bound Δ , we say that the protocol is *optimistically* responsive [PS18]. In practice, Δ is usually set conservatively s.t. δ is much smaller than Δ , in which case a protocol that runs at the speed of δ (instead of the parameter Δ) is much preferable.

- Pessimistic confirmation time: Suppose that some number f of eligible proposers are corrupt. When a transaction is provided to the protocol (after GST), how long does it take for the transaction to be finalized? This is an important metric in practice, where there are almost certainly leaders who are offline, or even downright malicious. Uncooperative leaders may choose to exclude a transaction from its block proposals, whereas slow leaders may not propose it at all. There are two notions here:
 - Worst-case confirmation time. In the very worst-case, how long must we wait for a transaction to be finalized? The bound must hold for any transaction arrival time t.
 - (Expected) pessimistic confirmation time. In expectation, how long does it take for a transaction to be finalized?
 - Essentially all protocols in the literature consider a "view-based liveness" notion

that is tailored for rotating leader based protocols.³ Following the literature, we will also consider this notion of expected "view-based" liveness: Suppose that the protocol proceeds in incrementing "views" or "iterations" v := 1, 2, ... where each view v is assigned a single leader L_v . Fix some view number v ahead of time, and suppose that a transaction is provided to every honest player at the time they enter view v. How long (in expectation) does it take for the transaction to be finalized, once every honest process has entered view v?

We focus mainly on the expected pessimistic confirmation time. For our protocol, as well as many other protocols in the literature, we can turn an expected liveness bound into a worst-case liveness bound by losing an additive term of $\omega(\log \lambda) \cdot \Theta(\Delta)$. Note that, if a protocol requires multiple honest leaders in a row to confirm transactions, the worst-case bound will be worse.

The State of the Art. Before describing our contributions, we summarize the current start of the art; we focus only on leader-based protocols that rotate their leaders or elect random leaders. (The interested reader will find further comparisons of related works in Section 4, building on the survey below.) Throughout, denote n the number of participants, and f the number of faults; we consider static corruptions only.

Roughly speaking, the literature has focused on optimizing the *optimistic confirmation times*, but this has come at the expense of sacrificing the *pessimistic confirmation time*. In more details, let's first examine optimistic confirmation time:

• Proposal confirmation-time favoring. The seminal paper of PBFT [CL⁺99] achieves a proposal confirmation time of 3δ for honest block proposals, but has stable leaders. Instead, consider an optimistically responsive "base version" of the Algorand agreement protocol [CGMV18], denote Algorand*⁴, which is similar to PBFT but allows a different leader for each block. Algorand* achieves a proposal confirmation time of 3δ , and an optimistic block time of 3δ . [ANRX21] later showed that a 3δ proposal confirmation time is optimal when $f \geq (n+2)/5$.

 $^{^{3}}$ We may also consider an expected worst-case confirmation time, where, for any transaction arrival time t after GST, both fixed ahead of time, a transaction must be finalized soon after t in expectation over the coins of the execution. Such a bound may be useful to capture real-world liveness, but is typically difficult to analyze in a setting where the adversary can control the scheduling of messages.

⁴While the version of Algorand agreement in [CGMV18] is not optimistically responsive, it can be easily made so if every period has a unique leader known ahead of time (provided by a leader election oracle in lieu of using a VRF). Then, players can simply 'soft-vote' immediately on seeing a proposal from the leader, and 'cert-vote' immediately on seeing 2n/3 soft-votes, much like in PBFT.

⁵We do not consider optimizations of the variety made in Parametrized FaB Paxos [MA06] and SBFT [GAG⁺19], where if f < (n+2)/5, a proposal confirmation time of 2δ is possible without affecting worst-case fault tolerance. We are particularly interested in the case when leaders are honest, but 1/3 of voters are not.

- Block-time favoring. Following Hotstuff [YMR⁺19], a new class of pipe-lined protocols were subsequently designed to improve the optimistic block time of rotating-leader protocols from 3δ to 2δ . These protocols pipe-line proposals, similar to Nakamoto style consensus [Nak08], and achieve an optimistic block time of 2δ . However, these protocols require a worse proposal confirmation time: proposals take 4δ time (Pala [CPS18]), or 5δ time (Jolteon [GKKS⁺22]/Pipelined Fast-Hotstuff [JNFG20]) or 7δ time (Hotstuff [YMR⁺19]) to be confirmed, and additionally require 2, 3, and 4 honest leaders in a row respectively to confirm each block. In essence, these protocols improve the blocktime to just 2δ , but they sacrifice the proposal confirmation time. Moreover, the pessimistic confirmation time blows up significantly.
- Simultaneously proposal confirmation-time and block-time friendly: The recent ICC protocol [CDH⁺22] simultaneously achieves the state-of-the-art 3δ proposal confirmation time and 2δ optimistic block time. However, this protocol again requires (essentially) 2 honest leaders in a row to confirm a block if a faulty leader was previously elected. Requiring multiple honest leaders in a row to finalize a block severely impacts the pessimistic confirmation time, which we will explore next.

Pessimistic liveness. Few protocols explicitly analyze their expected or worst-case confirmation time under pessimistic conditions, despite it being an important performance desiderata in practice—after all, it is natural to assume that a fraction of the participants will be offline if not outright malicious. To explicitly compare the different approaches, we focus on the setting where each "iteration" of the protocol is associated with a randomly selected leader (essentially all the protocols in the literature, for this setting, assume or instantiate such a sequence of leaders). Throughout, assume that $f = \lfloor n/3 \rfloor$.

The current state-of-the-art is achieved by Algorand* (see above and [CGMV18]), which achieves $4\delta + 2\Delta$ expected view-based liveness. Protocols that require multiple honest leaders in a row to confirm transactions generally achieve degraded expected liveness: ICC [CDH+22], PaLa [CPS18], Pipelined Fast-Hotstuff/Jolteon [JNFG20, GKKS+22], and Chained Hotstuff (v6) [YMR+19] have expected liveness of $5.5\delta + 1.5\Delta$, $6.25\delta + 9.25\Delta$, $10.87\delta + 9.5\Delta$, and $19.31\delta + 12.18\Delta$ respectively.⁶ Generally speaking, the more honest leaders required in a row to finalize a block, the worse the expected pessimistic liveness.

These protocols also get an even worse worst-case confirmation time: a protocol that requires k honest leaders in a row would need a longer sequence of random leaders to guarantee that k honest leaders in a row are elected, compared to if it only required 1 honest leader for confirmation. Protocols with random leaders generally require just a sequence of at least $\omega(\log \lambda)$ leaders to guarantee one honest leader.

So, summarizing the state of the art, there is a trade-off between achieving good optimistic liveness bounds, and and achieving pessimistic liveness bounds.

⁶Here, Chained Hotstuff is analyzed using a timeout-based pacemaker from LibraBFT [BCC⁺19] and a timeout of 3Δ , since they don't instantiate their own pacemaker. PaLa is analyzed with a less conservative timeout of $1\min=5\Delta$, and $1\sec=2\Delta$ than the ones presented in their paper.

	Proposal Conf. Time	Optimistic Block Time	Pessimistic Liveness $(f = \lfloor n/3 \rfloor)$
Simplex	3δ	2δ	$3.5\delta+1.5\Delta$
Algorand* [CGMV18]	3δ	3δ	$4\delta + 2\Delta$
ICC [CDH ⁺ 22]	3δ	2δ	$5.5\delta + 1.5\Delta$
PaLa [CPS18]	4δ	2δ	$6.25\delta + 9.25\Delta$
Pipeline Fast-Hotstuff [JNFG20] Jolteon [GKKS ⁺ 22]	5δ	2δ	$10.87\delta + 9.5\Delta$
Chained Hotstuff (v6) [YMR ⁺ 19]	7δ	2δ	$19.31\delta + 12.18\Delta$
Streamlet [CS20a]	10Δ	2Δ	39.56Δ

^{*}Base protocol without sortition.

Table 1: Latency of Popular Consensus Protocols (Random Leaders)

Our contributions. In this paper, we present a simple consensus protocol, named Simplex, that matches the best optimistic liveness bounds, while at the same time matching and even improving the best known pessimistic liveness bounds (both in expectation and in the worst-case). Most importantly, our protocol is simple to describe and has an, in our eyes, very simply proof of correctness. (In terms of simplicity, while the protocol itself is arguable more complicated to describe than Streamlet [CS20a], the proof of correctness is significantly easier.) In more details, assuming a "bare" PKI, collision-resistant hash functions, and a random leader election oracle (which can be instantiated using a Random Oracle), Simplex implements partially synchronous consensus (tolerating the standard $f \leq n/3$ static byzantine faults), while achieving

- an optimal proposal confirmation time of 3δ ;
- an optimistic block time of 2δ ;
- an expected pessimistic confirmation time of $3.5\delta + 1.5\Delta$;
- a worst-case pessimistic confirmation time of $4\delta + \omega(\log \lambda) \cdot (3\Delta + \delta)$;
- and using O(n) multicast complexity.

As observed by [PS17], the Random Oracle can be replaced with a PRF (which follows from collision-resistant hash functions [HILL99]) and a CRS chosen after the public keys.

We also note that using now standard techniques, we can bring down the communication complexity to $polylog(\lambda)$ (in the multi-cast model) and linear (in the point-to-point model) through subsampling the committee of voters [CM19, CPS18]. We do not innovate on this subsampling and therefore just focus on the "base protocol" (which determines the concrete efficiency also of the protocol with subsampling).

Comparison of techniques. Our contributions build on the techniques of many prior works. In contrast with the pipelined protocols of [CS20a, YMR⁺19, CPS18, JNFG20, GKKS⁺22], which generally fall into a streamlined "propose/vote" paradigm where processes only send one vote type, our protocol follows [CL⁺99] and requires processes to multicast a second "finalize" message to finalize blocks (in parallel with the next block proposal). We posit that the resulting protocol is actually simpler despite the second voting step. Moreover, having a second voting step makes for a faster protocol in the optimistic case, matching the proposal confirmation time of PBFT. Another technique that we use is that of a "dummy block": if, during some iteration, a process detects no progress (i.e. due to a faulty leader or network), it will timeout and vote for the dummy block. On seeing 2n/3 votes for the dummy block, a player may move to the next iteration and try again with a new leader. It is similar to the notion of a timeout certificate in [CPS18, GKKS⁺22, YMR⁺19]; the difference is that, in our protocol, a process must either vote for the dummy block of height h, or vote "finalize" for a block of height h (whereas no such stipulation was made in prior work). Then, if a block is finalized, we can be sure that no process saw a competing dummy block at that height. The result is a simpler consistency and liveness proof; moreover, a block proposer never needs to wait extra time before proposing (unlike in [CPS18, BKM18]) even after seeing a timeout block. Without further ado, we proceed to the protocol description.

2 The Protocol

We describe the Simplex consensus protocol in the framework of blockchains, which provides an elegant framework for reasoning about consensus on a sequence of values.

Additionally, we adopt the *multicast model* of communication. In the multicast model, players communicate by multicasting a message to the entire network, as opposed in the point-to-point model, where players send each message to a single recipient (whose identity must usually be known). The multicast model is the model of choice for protocols built for the large-scale peer-to-peer setting (see Bitcoin, Ethereum, and Algorand as examples).

⁷To recover a streamlined protocol, it is possible to "piggyback" the finalize message onto the first vote message of the next block; this would only make liveness a little slower, and consistency would still hold.

To start, the protocol assumes a (bare) public-key infrastructure (PKI), and a digital signature scheme. Additionally, let $H: \{0,1\}^* \to \{0,1\}^*$ be a publicly known collision-resistant hash function.

- Bare PKI setup. Before the protocol execution, a trusted party generates a (pk_i, sk_i) keypair for each process $i \in [n]$ using the key generation algorithm for the digital signature scheme, and for each $i \in [n]$ sends (pk_i, sk_i) to process i. Each process replies with a pk'_i , where honest processes reply with the same $pk'_i = pk_i$. The trusted party then sends $\{pk'_i\}_{i\in[n]}$ to all parties.⁸
- Notation for digital signatures. For any message $m \in \{0,1\}^*$ and a process $p \in [n]$, we denote by $\langle m \rangle_p$ a tuple of the form (m, σ) , where σ is a valid signature for m under process p's public key.

The protocol uses the following data structures.

• Blocks, block heights, and the genesis block. A block b is a tuple (h, parent, txs), where $h \in \mathbb{N}$ is referred to as the height of the block, parent is a string that (typically) is meant to be the hash of a "parent" blockchain, and txs is an arbitrary sequence of strings, corresponding to transactions contained in the block.

Define the genesis block to be the special tuple $b_0 := (0, \emptyset, \emptyset)$.

- **Dummy blocks.** The special dummy block of height h is the tuple $\bot_h := (h, \bot, \bot)$. This is an empty block that will be inserted into the blockchain at heights where no agreement is reached. A dummy block does not point to a specific parent.
- **Blockchains.** A blockchain of height h is a sequence of blocks (b_0, b_1, \ldots, b_h) such that b_0 is the genesis block, and for each $i \in [h]$, either $b_i = \bot_i$ or $b_i = (i, H(b_0, \ldots, b_{i-1}), \mathsf{txs})$ for some txs .
- Notarized blocks and blockchains. A notarization for a block b (which may be the dummy block) is a set of signed messages of the form $\langle \mathsf{vote}, h, b \rangle_p$ from $\geq 2n/3$ unique processes $p \in [n]$, where h is the height of the block b. A notarized block is a block augmented with a notarization for that block.

A notarized blockchain is a tuple (b_0, \ldots, b_h, S) , where b_0, \ldots, b_h is a blockchain, and S is a set of notarizations, one for each block b_1, \ldots, b_h .

⁸Note that this is referred to as a Bare PKI [BCNP04] since malicious parties may pick their own, potentially malformed, public keys.

⁹By the collision-resistance of the hash function H, it suffices to include a hash just the last block $H(b_{i-1})$, instead of the whole parent blockchain $H(b_0, \ldots, b_{i-1})$; but we describe the protocol using parent blockchains for simplicity.

• Finalized blocks and blockchains. A finalization for a height h is a set of signed messages of the form $\langle \text{finalize}, h \rangle_p$ from $\geq 2n/3$ unique processes $p \in [n]$. We say that a block of height h is finalized if it is notarized and accompanied by a finalization for h

A finalized blockchain is either just the genesis block b_0 , or a blockchain accompanied by a finalization for the last block.

• Linearizing a blockchain. Given a blockchain b_0, b_1, \ldots, b_h , denote linearize (b_0, b_1, \ldots, b_h) to be the (most natural) operation that takes the sequences of transactions from each individual block, in order, and outputs the concatenation, to form a total ordering of all transactions in the blockchain.

We are now ready to describe the protocol. The protocol runs in sequential iterations $h = 1, 2, 3, \ldots$ where each process starts in iteration h = 1. Note that each process may advance through iterations at a different speed, and at any given time, two processes may be in two different iterations, due to network delay (since we are in the partially synchronous setting). As local state, each process $p \in [n]$ keeps track of which iteration h it is currently in, and also stores all of the notarized blocks and messages that it has seen thus far.

Additionally, we assume that each iteration h has a pre-determined block proposer or leader $\mathsf{L}_h \in [n]$ that is randomly chosen ahead of time; this is referred to as a random leader election oracle and can be implemented using a random oracle: namely, $\mathsf{L}_h := H^*(h)$ mod n, where $H^*(\cdot)$ is some public hash function modeled as a random oracle. Alternatively, as noted in [PS17], we can replace the random oracle with a common reference string (CRS) that is chosen after the adversary has registered its public keys, and instead use $\mathsf{L}_h = \mathsf{PRF}_{\mathsf{crs}}(h) \mod n$ (and note that existence of PRFs follow from the existence of collision-resistant hash functions [HILL99]).

Player p on entering iteration h does the following:

1. Leader proposal: If $p = L_h$, multicast a single proposal of the form

$$\langle \mathsf{propose}, h, b_0, \dots, b_{h-1}, b_h \rangle_p$$

where $b_h = (h, H(b_0, \ldots, b_{h-1}), \mathsf{txs})$ is p's choice of a new block extending p's choice of a blockchain b_0, \ldots, b_{h-1} of height h-1 that is notarized in p's view. p should include in txs every transaction that it has seen that is not already in b_0, \ldots, b_{h-1} .

2. **Dummy blocks in case of faulty leader:** Each process p starts a new timer T_h , set to fire locally after 3Δ time. ¹⁰ If T_h fires, vote for the dummy block by multicasting $\langle \text{vote}, h, \perp_h \rangle_p$.

¹⁰In addition, we could optimistically fire the timer when the leader "equivocates"; we omit the rule for brevity.

- 3. Notarizing block proposals: On seeing the first (and only the first) proposal of the form $\langle \text{propose}, h, b_0, \dots, b_h \rangle_i$ where $i = \mathsf{L}_h$, check that $b_h = (h, H(b_0, \dots, b_{h-1}), \mathsf{txs})$ for some txs , and that b_0, \dots, b_{h-1} is notarized in p's view. If both checks pass, multicast $\langle \mathsf{vote}, h, b_h \rangle_p$.
- 4. Next iteration and finalize votes: On seeing any notarized blockchain of height h (e.g. by seeing 2n/3 votes for a block as well as its notarized parent chain, or on seeing 2n/3 votes for \perp_h), enter iteration h+1. At the same time, p multicasts its view of the notarized blockchain to everyone else.
 - At this point in time, if the timer T_h did not fire yet: cancel T_h (so it never fires) and multicast $\langle \text{finalize}, h \rangle_p$.
- 5. **Finalized Outputs:** Whenever p sees a finalized blockchain $b_0, \ldots, b_{h'}$ (i.e. by seeing the corresponding notarized chain as well as 2n/3 finalize messages for height h'), output the contents LOG \leftarrow linearize($b_0, \ldots, b_{h'}$).

Let us informally describe why this protocol works. In each iteration, the processes collectively try to get the leader's block (proposal) notarized; if this fails due to a faulty leader or a faulty network, then the timer will fire. The timer thus upper bounds the amount of time each leader has to get its block notarized; when it fires, processes now have the option of voting for the dummy block and (on seeing a notarization for this dummy block) moving to next height to try again with the next leader. Eventually we will hit a good leader or enter good network conditions and an iteration h will complete without the timer T_h firing for any honest process.

The finality argument is straightforward: a process will only sign a finalize message in iteration h if it did not vote for \bot_h (i.e. it timer T_h did not fire); thus, if someone sees a finalization for h, then \bot_h cannot be notarized in the view of any process. Furthermore, at most one block $b_h \ne \bot_h$ of height h can be notarized; this is because honest processes only vote once per height (other than voting for \bot_h) and thus a competing block at the same height will never get enough votes (by the standard "quorom intersection" lemma). Therefore b_h is the only block of height h that can ever be notarized, and now observing that all finalized blockchains (that are longer than h) must have a notarized block of height h in its prefix, it's clear that all honest parties can only output b_h at height h.

Theorem 2.1 (Simple Consensus). Assuming collision-resistant hash functions, digital signatures, a PRF, a bare PKI, and a CRS, there is a partially-synchronous blockchain protocol for $f \leq n/3$ static corruptions that has O(n) multicast complexity, optimistic confirmation time of 5δ , worst-case confirmation time of $4\delta + \omega(\log \lambda) \cdot (3\Delta + \delta)$, and expected view-based liveness of $3.5\delta + 1.5\Delta$.

Note that the existence of digital signatures and PRFs follows from the existence of collison-resistant hash functions (see [Rom90] and [HILL99] respectively), but we include it here to emphasize what cryptographic building blocks we rely on.

3 Formal Analysis

3.1 Preliminaries

We analyze the Simplex protocol in the framework of blockchains. Throughout, when we say that a message is "in honest view", we mean that it is in the view of some honest process (but perhaps not all honest processes).

The Permissioned Setting. We consider static byzantine corruptions. Denote n the number of players, $f \leq n/3$ of which are set to be "corrupted". The corrupted players are chosen ahead of time, before the setup phase. The remaining players are "honest".

Protocol Execution. In our setting the adversary has power over the network and can choose when to deliver messages sent by honest players. However, in good network conditions, message delivery should occur "quickly". This requires that we formalize a notion of time, in addition to specifying the execution of a distributed protocol. In the spirit of the UC framework [Can01], consider n player machines, an adversary machine \mathcal{A} , and an environment \mathcal{Z} , where each is modeled as an instance of a non-uniform probabilistic polynomial time (nuPPT) interactive Turing Machine (ITM) that takes as input the security parameter 1^{λ} . The adversary \mathcal{A} controls the f (statically corrupted) faulty players. Each player additionally has access to an authenticated multicast channel $\mathcal{F}_{\text{mult}}$ over which \mathcal{A} has scheduling power. We use the notation $\text{EXEC}_{\Pi}(1^{\lambda}, \mathcal{Z}, \mathcal{A})$ to denote a random execution of the protocol Π with \mathcal{A} and \mathcal{Z} , over the coins of the setup, the players, \mathcal{A} , and \mathcal{Z} .

To model time, we consider environments \mathcal{Z} that send special "tick" messages to the n player machines. Fix any execution of a protocol with \mathcal{Z} and \mathcal{A} on some 1^{λ} . Recall that an execution is a sequence of activations of instances of machines. Given an execution, we say that it proceeds in timesteps $t = 0, 1, 2, \ldots$ where timestep t starts at the first point (in the execution) where the environment \mathcal{Z} has sent any player machine exactly t "tick" messages. An event happens before/at/after time t if it occurs before/during/after timestep t in the execution. The execution ends when \mathcal{Z} halts.

Network Model and Clocks. We consider adversaries that are partially synchronous [DLS88]. An environment/attacker tuple $(\mathcal{Z}, \mathcal{A})$ is " δ -bounded partially synchronous" if, for every protocol Π , for every security parameter λ , there exists a time $\mathsf{GST} \in \mathbb{N}$ s.t. in every execution of Π with \mathcal{Z} and \mathcal{A} on 1^{λ} :

• Synchronized clocks. Denote t^* the time at which \mathcal{Z} halts. It must be that \mathcal{Z} sends every honest player exactly one "tick" message at each time $t \in [t^*]$.

¹¹Doing this composably has been visited in-depth in works such as [KLP05, KMTZ13, BMM14, KZZ16, CHMV17, BDD⁺21]. However, here we ignore the question of composability and use an simple stand-alone model for convenience.

• Message delivery guarantee after GST. For every time $t \in \mathbb{N}$, if some honest player sends a message by time t, the message is delivered by time $\max(\mathsf{GST}, t + \delta)$. Note that GST is not publicly known.

Definition of a blockchain protocol. Let $T : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$, and $t \in \mathbb{N}$. A protocol Π , parametrized by Δ , is said to compute a blockchain with (expected) $T(\delta, \Delta)$ -liveness if for every environment \mathcal{Z} and attacker \mathcal{A} , in executions of Π in \mathcal{Z} with \mathcal{A} on 1^{λ} , the following properties hold with all but negligible probability in λ :

- Consistency. If two honest players ever output sequences of transactions LOG and LOG' respectively, either LOG ≤ LOG' or LOG' ≤ LOG, where "≤" means "is a prefix of or is equal to".
- $T(\delta, \Delta)$ -Liveness. Fix any time $t \in \mathbb{N}$. Suppose that $(\mathcal{A}, \mathcal{Z})$ is additionally δ -bounded partially synchronous for some $\delta < \Delta$ and $\mathsf{GST} < t$. Suppose that \mathcal{Z} never halts early and that it always delivers some input txs to every honest player by time t. Then txs is in the output of every honest player by time $t + T(\delta, \Delta)$.

We say that a protocol has $T(\delta, \Delta)$ optimistic confirmation time if it is $T(\delta, \Delta)$ -live when f = 0. Similarly, a protocol has $T(\delta, \Delta)$ worst-case confirmation time if it is $T(\delta, \Delta)$ -live for any $f \leq n/3$. Now, suppose that a protocol proceeds in incrementing views (or iterations) $v = 1, 2, \ldots$, implemented by a local counter on each process. We say that a protocol has expected $T(\delta, \Delta)$ view-based liveness (w.r.t. the counter v) if:

• Expected $T(\delta, \Delta)$ View-Based Liveness. Fix any view $v \in \mathbb{N}$. Suppose that $(\mathcal{A}, \mathcal{Z})$ is additionally δ -bounded partially synchronous for some $\delta < \Delta$ and some GST. Suppose that \mathcal{Z} never halts early and that it always delivers some input txs to every honest player before they enter view v. Suppose that every honest player enters view v by time t. If $t > \mathsf{GST}$, then txs is in the output of every honest player by time $t + T(\delta, \Delta)$, in expectation (over the coins of the execution).

Optimistic Responsiveness. (Variant of definition from [PS18].) We say that a blockchain protocol is *optimistically responsive* if it is has $T(\delta)$ -time liveness for some function $T(\cdot)$ that is not a function of Δ , conditioned on all processes being honest. In other words, when all processes are honest, the liveness depends only on δ , not Δ .

3.2 Consistency of Simplex

In this section, we present a consistency proof for the protocol. We start with a simple fact about digital signatures:

Lemma 3.1. With overwhelming probability in λ , for any honest process i, no honest process will see a valid signature of the form $\langle m \rangle_i$ in honest view unless process i previously signed m.

Proof. This is by a direct reduction to the unforgeability of the signature scheme. \Box

We next state the standard *quorom-intersection lemma*, and for completeness provide its proof.

Lemma 3.2. Let $h \in \mathbb{N}$. It cannot be that two blocks b_h and b'_h of height h s.t. $b_h \neq b'_h \neq \bot_h$ are both notarized in honest view (except with negligible probability in λ).

Proof. Consider a random execution and let b_h and b'_h be any two blocks of height h in the execution transcript, s.t. $b_h \neq b'_h \neq \bot_h$. We call a tuple (i,m) "good" if $m \in \{(\text{vote}, h, b_h), (\text{vote}, h, b'_h)\}$ and there exists a valid signature $\langle m \rangle_i$ in the view of some honest player. By the construction of the protocol, since because $b_h \neq b'_h \neq \bot_h$, it must be that each honest process signs at most one of (vote, h, b_h) and (vote, h, b'_h) . On the other hand, each corrupted player can sign both messages. Applying Lemma 3.1, then there are at most $(n-f)+f\cdot 2=n+f\leq 4n/3$ good tuples with all but negligible probability in the security parameter. Now assume for the sake of contradiction that there are both notarizations for b_h and b'_h in honest view. Then there are > 2n/3 signatures for $\langle \text{vote}, h, b_h \rangle$ and likewise > 2n/3 signatures for $\langle \text{vote}, h, b'_h \rangle$ in honest view; thus there are > 4n/3 good tuples in honest view, which is a contradiction.

We can also apply the exact same quorum-intersection technique to finalize and \bot messages; for completeness, we write out the proof (again).

Lemma 3.3. If there is a finalization for height h in in honest view, \perp_h cannot be notarized in honest view (except with negligible probability in λ).

Proof. We call a tuple (i,m) "good" if $m \in \{(\text{finalize},h), (\text{vote},h, \perp_h)\}$ and there exists a valid signature $\langle m \rangle_i$ in the view of some honest player. By the construction of the protocol, each honest process signs at most one of $\langle \text{finalize}, h \rangle$ or $\langle \text{vote}, h, \perp_h \rangle$, whereas each corrupted player can sign either message. Applying Lemma 3.1, there are thus at most $(n-f)+f\cdot 2=n+f \leq 4n/3$ good tuples (with all but negligible probability in λ). But now assume for the sake of contradiction that b_h is finalized and \perp_h is also notarized. Since b_h is finalized, there are > 2n/3 signatures for $\langle \text{finalize}, h \rangle$ in honest view, and likewise since \perp_h is notarized, there are > 2n/3 signatures for $\langle \text{vote}, h, \perp_h \rangle$ in honest view; thus there are > 4n/3 good tuples, which is a contradiction.

The main theorem immediately follows.

Theorem 3.1 (Consistency). Suppose that two sequences of transactions, denote LOG \leftarrow linearize (b_0, b_1, \ldots, b_h) and LOG' \leftarrow linearize $(b_0, b'_1, \ldots, b'_{h'})$, are both output in honest view and without loss of generality, assume that $h \leq h'$. Then LOG \leq LOG' (with overwhelming probability in λ).

Proof. We will argue that $b_h = b'_h$; then by collision-resistant property of the hash function $H(\cdot)$, b_h and b'_h must hash the same parent chain $b_0, b_1, \ldots, b_{h-1} = b_0, b'_1, \ldots, b'_{h-1}$, and thus $\mathsf{LOG} \leq \mathsf{LOG}'$.

To prove that $b_h = b'_h$, first observe that both $b'_{h'}$ and b_h are finalized in honest view, and thus both $b'_{h'}$ and b_h are notarized in honest view. Because $b'_{h'}$ is notarized in honest view, then some honest process must have voted for it in iteration h' which implies that b'_h is also notarized in honest view. By Lemma 3.3, observing that b_h is finalized in honest view, it must be that $b_h \neq \bot_h$, and likewise $b'_h \neq \bot_h$ (except with negligible probability in λ). Finally, we apply Lemma 3.2, which says that since b_h and b'_h are both notarized and not the dummy block, it must be that $b_h = b'_h$ (except with negligible probability), concluding the proof.

3.3 Liveness of Simplex

In this section, we analyze the liveness of the protocol. Throughout, suppose that $(\mathcal{A}, \mathcal{Z})$ is additionally δ -bounded partially synchronous, for some $\delta < \Delta$. Recall that the protocol is parametrized by Δ and not δ . When we say that "an honest process has entered iteration h by time t", we mean that the process previously entered iteration h at some time $t' \leq t$; when time t comes around, the process may well be in a larger iteration h' > h.

Lemma 3.4 (Synchronized Iterations). If some honest process has entered iteration h by time t, then every honest process has entered iteration h by time $\max(\mathsf{GST}, t + \delta)$.

Proof. By the assumption that some honest process p has entered iteration h by time t, we know that process p must have seen a notarized blockchain of height h-1 at or before time t. By the protocol design, p will multicast their view of this notarized blockchain immediately before entering iteration h. Sunsequently, every honest process will have seen a notarized blockchain of height h-1, and thus also a notarized blockchain for every height $h' \leq h-1$, by time $\max(\mathsf{GST}, t+\delta)$. Thus, by time $\max(\mathsf{GST}, t+\delta)$, every honest process that is not yet in an iteration $\geq h$ will have incremented its iteration number until it is in iteration h.

We show that the proposal confirmation time is 3δ , and that the optimistic block time is 2δ .

Lemma 3.5 (The Effect of Honest Leaders). Let h be any iteration with an honest leader L_h . Suppose that L_h entered iteration h by some time $t > \mathsf{GST}$. Then, with all but negligible probability, every honest process will have entered iteration h+1 by time $t+2\delta$. Moreover, every honest process will see a finalized block at height h, proposed by L_h , by time $t+3\delta$.

Proof. We first claim that, due to the effect of the honest leader, every honest process will have entered iteration h + 1, and thus seen a notarized blockchain of height h, by time $t + 2\delta$. Observe that L_h will propose a block b_h by time t, and moreover this proposal will

be in the view of every honest process by time $t + \delta$ since $t > \mathsf{GST}$. Also note that before constructing its proposal, the leader process L_h must have seen a notarized blockchain of length h-1 in order to enter iteration h, and then subsequently multicast its view of this notarized blockchain before multicasting its proposal. Thus every honest process must have seen both a valid proposal and a notarized chain of height h-1 by time $t+\delta$. There are now two cases:

- Every honest process p casts a vote $\langle \text{vote}, h, b_h \rangle_p$ by time $t + \delta$. Subsequently every honest process will see a notarization for b_h and thus a notarized blockchain of height h by time $t + 2\delta$, if not earlier, and enter iteration h + 1, as required.
- There is some honest process p that did not multicast a vote $\langle \text{vote}, h, b_h \rangle_p$ by time $t + \delta$. But every honest process must have seen a notarization for height h 1 by time $t + \delta$, so the only way this could happen is if p entered iteration h + 1 before time $t + \delta$. By Lemma 3.4, every honest process will have entered iteration h + 1 by time $t + 2\delta$. (This case may have occurred if, for instance, p saw a notarization for L_h 's proposed block without seeing the proposal itself.)

We next claim that no honest timer for iteration h will have fired before time $t+2\delta$. Let $t' \leq t$ be the time at which the first honest process enters iteration h. By Lemma 3.4, all honest processes—including the leader L_h —will have entered iteration h by $\max(\mathsf{GST}, t' + \delta)$, implying that $t \leq t' + \delta$. Then the earliest an honest timer can fire is at or after $t' + 3\Delta > t' + 3\delta \geq t + 2\delta$ time.

Putting the two claims together, then every honest process will have multicast $\langle \text{finalize}, h \rangle_p$ by time $t+2\delta$. Consequently, every honest process p will have seen a finalization for height h and thus a finalized block b_h at height h by time $t+3\delta$. By Lemma 3.3, $b_h \neq \bot_h$. Thus, with overwhelming probability, some honest process must have voted for b_h (since it is notarized in honest view), implying that b_h must be proposed by L_h . The lemma follows.

Theorem 3.2 (Optimistic Confirmation Time). Simplex has an optimistic confirmation time of 5δ .

Proof. Suppose that there is a set of transactions txs in the view of every honest player by time t, where $t > \mathsf{GST}$, where txs is not yet in the output of any honest player. Let h be the highest iteration that any honest player is in at time t. There are two cases. If L_h has not entered iteration h yet by time t, then by Lemma 3.4, it will enter iteration h by time $t + \delta$, at which point it proposes a blockchain that contains txs; applying Lemma 3.5 then completes the proof. In the second case, by time t, L_h has already started iteration h, and by Lemma 3.5 every honest process will be in iteration h + 1 by time $t + 2\delta$, and see a finalized block from L_{h+1} by $t + 5\delta$.

Now, we are ready to reason about worst-case confirmation time.

Lemma 3.6 (The Effect of Faulty Leaders). Suppose every honest process has entered iteration h by time t, for some $t > \mathsf{GST}$. Then every honest process will have entered iteration h+1 by time $t+3\Delta+\delta$.

Proof. There are two cases. First, suppose that for every honest process, its timer in iteration h fires; then every honest process p will cast a vote $\langle \text{vote}, h, \bot_h \rangle_p$ at some time $\leq t + 3\Delta$, and subsequently this vote will be in the view of every honest process by time $\max(\mathsf{GST}, t + 3\Delta + \delta) = t + 3\Delta + \delta$. These votes comprise a notarization for \bot_h and thus every honest process will see a notarized blockchain of height h by time $t + 3\Delta + \delta$ (if not earlier) and subsequently enter iteration h + 1 as required. The second case is if an iteration h timer does not fire for some honest process p. Then it must be that p entered iteration h + 1 at a time before its timer could fire, i.e. before time $t + 3\Delta$, and applying Lemma 3.4 yields the claim.

Theorem 3.3 (Worst-Case Confirmation Time). Simplex has worst-case confirmation time of $(4\delta + \omega(\log \lambda) \cdot (3\Delta + \delta))$.

Proof. Suppose that there is a set of transactions txs in the view of every honest player by time t, where $t > \mathsf{GST}$, where txs is not yet in the output of any honest player. Let h be the highest iteration that any honest player is in at time t. By Lemma 3.4 every every honest process must have entered iteration h by time $t + \delta$. Now, suppose that at least one iteration $i \in \{h + 1, \ldots, h + k\}$ has an honest leader L_i , for some choice of $k \in \mathbb{N}$. Then, applying Lemmas 3.5 and 3.6, every honest process will see a finalized block containing txs by time $t + 4\delta + k(3\Delta + \delta)$.

It remains to analyze the probability that, in a random execution, there is a sequence of k iterations in a row $h, h+1, \ldots, h+k-1$ s.t. for every $i \in [k]$, L_{h+i-1} is corrupt. First, observe that the attacker (and the environment) is PPT, and so there is a polynomial function $m(\cdot)$ s.t. any execution of the protocol on a security parameter 1^{λ} must contain at most $m(\lambda)$ number of iterations. Fix any $\lambda \in \mathbb{N}$. Recall that, for all $i \in [m(\lambda)]$, L_i is selected using a random oracle, and is thus corrupt with independent probability $f/n \leq 1/3$. (Recall that we instantiated the leader election oracle to be either $\mathsf{L}_i := H^*(i)$ mod n or $\mathsf{L}_i := H^*(\sigma_i) \mod n$, where H^* is a random oracle and σ_i is a unique threshold signature on i.)

To help, we analyze the probability that in a sequence of $m(\lambda)$ unbiased coin flips, there is a consecutive sequence of at least k tails. There are at most $(m(\lambda) - k + 1) \cdot 2^{m(\lambda) - k}$ possible sequences with at least k consecutive tails, out of $2^{m(\lambda)}$ total; thus the probability is less than $\frac{(m(\lambda)-k+1)}{2^k}$. Immediately, the probability there are k corrupt leaders in a row is $<\frac{(m(\lambda)-k+1)}{2^k}$, since the probability a leader is corrupt is less than the probability an unbiased coin is tails. Observing that $\frac{(m(\lambda)-k+1)}{2^k}$ is a negligible function in λ when $k = \omega(\log \lambda)$, the theorem follows.

For the sake of comparisons, we also compute the expected view-based liveness. Recall that it says that, if every honest process sees some transaction txs before they enter iteration h, once every honest process enters iteration h, then txs will soon be confirmed:

Theorem 3.4 (Expected View-Based Liveness). Simplex has expected $3.5\delta + 1.5\Delta$ view-based liveness.

Proof. Fix any iteration $h \in \mathbb{N}$. Suppose that there is a set of transactions txs in the view of every honest player before they enter iteration h, and moreover suppose that every honest player entered iteration h by some time $t > \mathsf{GST}$. Recall that for each iteration i, we defined the leader to be $\mathsf{L}_i := H^*(i) \mod n$, where H^* is a random oracle (chosen independently of GST and h). Immediately, for each $i \in \mathbb{N}$, L_i must be an honest player with independent probability $(n-f)/n \geq 2/3$. Denote X the number s.t. L_{h+X} is honest but, when X > 0, L_i is faulty $\forall i$ where $h \leq i < h + X$. Here X is a random variable, and immediately $\mathbb{E}[X] \leq 3/2 - 1 = 1/2$. Observe that, importantly, L_{h+X} will propose a blockchain that contains txs.

It remains to upper bound the time at which some honest process enters iteration h + X. By Lemma 3.6, every honest process will have entered iteration h + X by time $t + X \cdot (3\Delta + \delta)$. Applying Lemma 3.5, we conclude that every honest process will see a finalized block proposed by L_{h+X} by time $t + 3\delta + (X) \cdot (3\Delta + \delta)$. Moreover, this block contains txs if not already in a previous block. Taking the expectation of the time elapsed since t, the theorem statement follows.

3.4 Communication Complexity

Each iteration of the Simplex protocol (without subsampling) requires O(n) multicasts. Note that we don't make any additional "relay rule assumptions", unlike other protocols in the multicast model (e.g. Streamlet [CS20a], Algorand Agreement [CGMV18], PaLa [CPS18]).

Lemma 3.7. In each iteration h, each honest process will multicast at most 4 messages.

Proof. Follows immediately from the design of the protocol. Observe that for each iteration $h \in \mathbb{N}$, an honest process p will multicast at most one propose message, at most one vote message for a non- \bot block, at most one of $\langle \text{vote}, h, \bot_h \rangle_p$ and $\langle \text{finalize}, h \rangle_p$, and will relay their view of a notarized blockchain of height h at most once.

As previously mentioned, by using now standard techniques, we can bring down the communication complexity to $polylog(\lambda)$ multicasts through sub-sampling the committee of voters [CM19]. We do not innovate on these methods, and focus on the base protocol.

	Proposal Conf. Time	Optimistic Block Time	Expected View-Based Liveness $(\gamma := \frac{n}{n-f})$	Expected Comm. Complexity
Simplex	3δ	2δ	$3\delta + (\gamma - 1) \cdot (3\Delta + \delta)$	O(n) multicasts [†]
Algorand* [CGMV18]	3δ	3δ	$3\delta + (\gamma - 1) \cdot (4\Delta + 2\delta)$	O(n) multicasts
ICC [CDH ⁺ 22]	3δ	2δ	$3\delta + (\gamma - 1) \cdot (\gamma \cdot (2\Delta + 2\delta) + 2\delta)$	O(n) multicasts
PaLa [CPS18]	4δ	2δ	$4\delta + (\gamma^2 - 1) \cdot (5\Delta + \delta) + (\gamma - 1) \cdot 2\delta + \gamma \cdot 2\Delta$	O(n) multicasts
Pipelined Fast-Hotstuff^ [JNFG20] Jolteon^ [GKKS+22]	5δ	2δ	$5\delta + (\gamma^3 - 1) \cdot (4\Delta + \delta) + (\gamma^2 + \gamma - 2) \cdot 2\delta$	$O(n^2)$ messages
Chained Hotstuff (v6)^ [YMR ⁺ 19]	78	2δ	$7\delta + (\gamma^4 - 1) \cdot (3\Delta + \delta) + (\gamma^3 + \gamma^2 + \gamma - 3) \cdot 2\delta$	$O(n^2)$ messages
Streamlet [CS20a]	10Δ	2Δ	$10\Delta + (\gamma^5 + \gamma^4 + \gamma^3 + \gamma^2 + \gamma - 5) \cdot 2\Delta$	O(n) multicasts
Hotstuff (v1) [^] [AGM18, Abh22] Casper FFG [^] [BG17] Chained Tendermint [^] [BKM18, Abh22]	5δ	2δ	$5\delta + (\gamma^3 - 1) \cdot (5\Delta + \delta) + \gamma^2 \cdot 2\Delta$	$O(n^2)$ messages

 $[\]hat{}$ With random leaders. *Base protocol without sortition, with optimistic responsiveness. †Following the techniques of Algorand [GHM+17], by using subsampling, many (if not all) of the protocols here built for the multicast model can be adapted to use only $polylog(\lambda)$ multicasts per block.

Table 2: Extended Comparison of Popular Consensus Protocols (Random Leaders)

4 Related Work

The roots of consensus research in the permissioned and partially-synchronous setting dates back to the seminal paper of [DLS88]. Subsequently, the classical approaches in Paxos [LAM98] and PBFT [CL⁺99] became mainstream and were further studied in [KAD⁺07, GKQV10, MA06, OO14]. These protocols typically adopt an expensive or complex "viewchange" phase for switching out a faulty leader for a new leader, and are built mainly for

the stable leader setting, where a single leader can propose many blocks in a row without ceding its leadership.

More recently, the rise of blockchain applications (in particular, Proof-of-Stake systems) motivated a new line of work towards building fairer and simpler consensus protocols, where each leader generally only gets to propose a single block. In particular, Casper FFG [BG17], Hotstuff (v1) [AGM18], Tendermint [BKM18], and PaLa [CPS18] introduced a new "streamlined" approach where consensus is reached on many pipelined blocks at once, largely avoiding the complexity of a dedicated view-change subroutine. All four protocols proceed in incrementing epochs $e=1,2,\ldots$ and have a similar voting rule, where voters vote only for proposals extending the "freshest block" they've seen, that is, the one with the highest epoch number. As a consequence of the voting rule, the protocols maintain some intricacy when arguing liveness (i.e. the proposer may have to wait an extra 2Δ before proposing a new block, if the previous proposer crashed). (Note that Simplex does not have this intricacy.) Somewhat separately, but also building on the streamlined paradigm, Streamlet [CS20a] achieves a simple protocol description but has worse optimistic and pessimistic liveness.

PBFT [CL⁺99] remains the fastest protocol when leaders are honest, requiring only 3δ timesteps to confirm transactions; [ANRX21] showed that this is optimal in the partially synchronous setting for $f \leq n/3$. (We mention works such as Parametrized FaB Paxos [MA06] and SBFT [GAG⁺19], which achieve even faster optimistic confirmation when $f \leq n/5$, but this requires that the fraction of faulty voters also be small, in addition to honest leaders.) However, we are more interested in the setting with rotating/random leaders, due to issues of fairness. (Random leaders also give better worst-case confirmation time.) Consequently, many works have adapted PBFT to a setting with rotating leaders; we mention Algorand [CGMV18], Fast-Hotstuff [JNFG20], and Jolteon [GKKS⁺22]. In particular, Pipelined Fast-Hotstuff and Jolteon propose streamlined versions of PBFT-like protocols that also seek to reduce the complexity of the view-change, again by pipelining proposals; both are slower than Algorand. Algorand and Fast-Hotstuff (without pipelining) achieve 3δ proposal confirmation time, but worse 3δ block time.

A major concern when designing modern consensus protocols is that of communication complexity. A low communication complexity is essential for a scalable protocol. In the multicast model, Algorand [CM19] showed an elegant way to subsample the committee of voters to achieve $polylog(\lambda)$ multicasts (or O(n) messages in the point-to-point model). We remark that their techniques also apply to our protocol. (If we additionally trade off optimistic responsiveness, Algorand [CM19] can also achieve adaptive security.) In the point-to-point messaging model, a line of works, starting with Hotstuff [YMR⁺19], seeked to reduce communication complexity by funneling all messages through the leader (a technique from [Rei94]) and by using threshold signatures to reduce the size of certificates (a technique from [CKS00]). Hotstuff, Pipelined Fast-Hotstuff [JNFG20] and Jolteon [GKKS⁺22] all

¹²Sometimes, this is referred to as the 'hidden lock problem'.

achieve O(n) messages per block optimistically, but $O(n^2)$ messages in the case of a faulty leader (depending on the implementation of the 'pacemaker'). It remains unclear how realistic it is to funnel communication through a single leader on a peer-to-peer network. We note that their optimizations to message size using threshold signatures or aggregate signatures can also be applied to other protocols; of course, threshold signatures require a much stronger private setup (e.g. see [CKS00]) that we wish to avoid.

Our protocol has a similar 'notarize/finalize' voting procedure to that of [CDH⁺22] (Dfinity ICC) and an old variant of Streamlet ([CS20b], Appendix A), but uses different techniques for proposals and for switching leaders. The ICC protocol [CDH⁺22] does not use timeout/dummy blocks, and incurs some complexity in how they rank leaders and allow multiple leaders in each round (they additionally assume threshold signatures and a trusted private setup, which we avoid). Consequently, if the first leader in a round is corrupt, they need essentially two honest leaders in a row to confirm a subsequent block. It is worth exploring whether their techniques for block dissemination can be used to improve Simplex. Independently, we also note structural similarities between Simplex and the Graded Binding Crusader Agreement protocol (using a weak common coin) in [ABDY22], albeit that protocol is for the asynchronous setting.

We summarize the comparisons in Table 3.4 (for the random leader setting). When computing the expected view-based liveness, we define a parameter $\gamma := n/(n-f)$ that corresponds to the inverse fraction of eligible leaders who are honest.¹³ Table 1 presents concrete values for expected liveness when $f = \lfloor n/3 \rfloor$. Importantly, we remark that the landscape of consensus protocols is rich and ever-changing; this survey may not be comprehensive. In particular, while we compare only theoretical works here, much has been done to improve the performance of consensus protocols in practice by the systems community.

5 Other Remarks

In practice, one may in fact choose to run Simplex on three disjoint sets of players: a set of proposers, a set of validators (who validates blocks and votes for valid blocks only), and a set of "progress detectors" (who sends finalize votes or \bot votes). Members of the validating set do not send \bot votes. Importantly, no state needs to be shared across the three roles, making it easy to distribute the work necessary to run the protocol, and also to incentivize each role in a different way. For example, the block itself only needs to be delivered to the block validators (and clients).

¹³Another reason we use a different variable is to make clear that it is possible to elect leaders from an entirely different set of processes than the main set of protocol processes; indeed, our protocol supports a setting where most leaders are corrupt (i.e. $\gamma > 3/2$) even when the number of faulty voters is required to be small $(f \le n/3)$.

Bibliography

- [AAC⁺05] Amitanand S Aiyer, Lorenzo Alvisi, Allen Clement, Mike Dahlin, Jean-Philippe Martin, and Carl Porth. Bar fault tolerance for cooperative services. In *Proceedings of the twentieth ACM symposium on Operating systems principles*, pages 45–58, 2005.
- [ABDY22] Ittai Abraham, Naama Ben-David, and Sravya Yandamuri. Efficient and adaptively secure asynchronous binary agreement via binding crusader agreement. Cryptology ePrint Archive, 2022.
- [Abh22] Ittai Abhraham. Two round hotstuff. https://decentralizedthoughts.github.io/2022-11-24-two-round-HS/, 2022. Accessed: 2022-12-30.
- [AGM18] Ittai Abraham, Guy Gueta, and Dahlia Malkhi. Hot-stuff the linear, optimal-resilience, one-message bft devil. *CoRR*, *abs/1803.05069*, 2018.
- [AJK⁺22] Sarah Allen, Ari Juels, Mukti Khaire, Tyler Kell, and Siddhant Shrivastava. Nfts for art and collectables: Primer and outlook. 2022.
- [ANRX21] Ittai Abraham, Kartik Nayak, Ling Ren, and Zhuolun Xiang. Good-case latency of byzantine broadcast: A complete categorization. In *Proceedings* of the 2021 ACM Symposium on Principles of Distributed Computing, pages 331–341, 2021.
- [Apa] Apache Software Foundation. ZooKeeper internals. https://zookeeper.apache.org/doc/r3.4.13/zookeeperInternals.html. Accessed: 2023-02-24.
- [B⁺14] Vitalik Buterin et al. A next-generation smart contract and decentralized application platform. white paper, 3(37):2–1, 2014.
- [BCC⁺19] Mathieu Baudet, Avery Ching, Andrey Chursin, George Danezis, François Garillot, Zekun Li, Dahlia Malkhi, Oded Naor, Dmitri Perelman, and Alberto Sonnino. State machine replication in the libra blockchain. *The Libra Assn.*, *Tech. Rep*, 7, 2019.
- [BCNP04] Boaz Barak, Ran Canetti, Jesper Buus Nielsen, and Rafael Pass. Universally composable protocols with relaxed set-up assumptions. In 45th Annual IEEE Symposium on Foundations of Computer Science, pages 186–195. IEEE, 2004.
- [BDD⁺21] Carsten Baum, Bernardo David, Rafael Dowsley, Jesper Buus Nielsen, and Sabine Oechsner. Tardis: a foundation of time-lock puzzles in uc. In *Annual International Conference on the Theory and Applications of Cryptographic Techniques*, pages 429–459. Springer, 2021.

- [BG17] Vitalik Buterin and Virgil Griffith. Casper the friendly finality gadget. arXiv preprint arXiv:1710.09437, 2017.
- [BKM18] Ethan Buchman, Jae Kwon, and Zarko Milosevic. The latest gossip on bft consensus. arXiv preprint arXiv:1807.04938, 2018.
- [BMM14] Michael Backes, Praveen Manoharan, and Esfandiar Mohammadi. Tuc: Time-sensitive and modular analysis of anonymous communication. In 2014 IEEE 27th Computer Security Foundations Symposium, pages 383–397. IEEE, 2014.
- [Bur06] Mike Burrows. The chubby lock service for loosely-coupled distributed systems. In *Proceedings of the 7th symposium on Operating systems design and implementation*, pages 335–350, 2006.
- [Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In *Proceedings 42nd IEEE Symposium on Foundations of Computer Science*, pages 136–145. IEEE, 2001.
- [CDH⁺22] Jan Camenisch, Manu Drijvers, Timo Hanke, Yvonne-Anne Pignolet, Victor Shoup, and Dominic Williams. Internet computer consensus. In *Proceedings* of the 2022 ACM Symposium on Principles of Distributed Computing, pages 81–91, 2022.
- [CGMV18] Jing Chen, Sergey Gorbunov, Silvio Micali, and Georgios Vlachos. Algorand agreement: Super fast and partition resilient byzantine agreement. *Cryptology ePrint Archive*, 2018.
- [CHMV17] Ran Canetti, Kyle Hogan, Aanchal Malhotra, and Mayank Varia. A universally composable treatment of network time. In 2017 IEEE 30th Computer Security Foundations Symposium (CSF), pages 360–375. IEEE, 2017.
- [CKS00] Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles in constantinopole: practical asynchronous byzantine agreement using cryptography. In *Proceedings of the nineteenth annual ACM symposium on Principles of distributed computing*, pages 123–132, 2000.
- [CL⁺99] Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance. In OsDI, volume 99, pages 173–186, 1999.
- [CM19] Jing Chen and Silvio Micali. Algorand: A secure and efficient distributed ledger. *Theoretical Computer Science*, 777:155–183, 2019.
- [CPS18] TH Hubert Chan, Rafael Pass, and Elaine Shi. Pala: A simple partially synchronous blockchain. *Cryptology ePrint Archive*, 2018.

- [CR93] Ran Canetti and Tal Rabin. Fast asynchronous byzantine agreement with optimal resilience. In *Proceedings of the twenty-fifth annual ACM symposium on Theory of computing*, pages 42–51, 1993.
- [CS20a] Benjamin Y Chan and Elaine Shi. Streamlet: Textbook streamlined blockchains. In *Proceedings of the 2nd ACM Conference on Advances in Financial Technologies*, pages 1–11, 2020.
- [CS20b] Benjamin Y Chan and Elaine Shi. Streamlet: Textbook streamlined blockchains (earlier version). Cryptology ePrint Archive, Paper 2020/088, 2020. https://eprint.iacr.org/archive/2020/088/20200204:124247.
- [DGK⁺20] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Bentov, Lorenz Breidenbach, and Ari Juels. Flash boys 2.0: Frontrunning in decentralized exchanges, miner extractable value, and consensus instability. In 2020 IEEE Symposium on Security and Privacy (SP), pages 910–927. IEEE, 2020.
- [DLS88] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of partial synchrony. *Journal of the ACM (JACM)*, 35(2):288–323, 1988.
- [GAG⁺19] Guy Golan Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny Pinkas, Michael Reiter, Dragos-Adrian Seredinschi, Orr Tamir, and Alin Tomescu. Sbft: a scalable and decentralized trust infrastructure. In 2019 49th Annual IEEE/IFIP international conference on dependable systems and networks (DSN), pages 568–580. IEEE, 2019.
- [GHM⁺17] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Algorand: Scaling byzantine agreements for cryptocurrencies. In *Proceedings of the 26th symposium on operating systems principles*, pages 51–68, 2017.
- [GKKS⁺22] Rati Gelashvili, Lefteris Kokoris-Kogias, Alberto Sonnino, Alexander Spiegelman, and Zhuolun Xiang. Jolteon and ditto: Network-adaptive efficient consensus with asynchronous fallback. In Financial Cryptography and Data Security: 26th International Conference, FC 2022, Grenada, May 2–6, 2022, Revised Selected Papers, pages 296–315. Springer, 2022.
- [GKL15] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Analysis and applications. In Advances in Cryptology-EUROCRYPT 2015: 34th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part II, pages 281–310. Springer, 2015.

- [GKQV10] Rachid Guerraoui, Nikola Knežević, Vivien Quéma, and Marko Vukolić. The next 700 bft protocols. In Proceedings of the 5th European Conference on Computer Systems, EuroSys '10, pages 363–376, New York, NY, USA, 2010. ACM.
- [HCPS19] T-H Hubert Chan, Rafael Pass, and Elaine Shi. Consensus through herding. In Annual International Conference on the Theory and Applications of Cryptographic Techniques, pages 720–749. Springer, 2019.
- [HILL99] Johan Håstad, Russell Impagliazzo, Leonid A Levin, and Michael Luby. A pseudorandom generator from any one-way function. SIAM Journal on Computing, 28(4):1364–1396, 1999.
- [JNFG20] Mohammad M Jalalzai, Jianyu Niu, Chen Feng, and Fangyu Gai. Fast-hotstuff: A fast and resilient hotstuff protocol. arXiv preprint arXiv:2010.11454, 2020.
- [KAD+07] Ramakrishna Kotla, Lorenzo Alvisi, Michael Dahlin, Allen Clement, and Edmund L. Wong. Zyzzyva: speculative byzantine fault tolerance. In Proceedings of the 21st ACM Symposium on Operating Systems Principles 2007, SOSP 2007, Stevenson, Washington, USA, October 14-17, 2007, pages 45-58, 2007.
- [KLP05] Yael Tauman Kalai, Yehuda Lindell, and Manoj Prabhakaran. Concurrent general composition of secure protocols in the timing model. In *Proceedings* of the thirty-seventh annual ACM Symposium on Theory of Computing, pages 644–653, 2005.
- [KMTZ13] Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas. Universally composable synchronous computation. In *Theory of Cryptography Conference*, pages 477–498. Springer, 2013.
- [KZGJ20] Mahimna Kelkar, Fan Zhang, Steven Goldfeder, and Ari Juels. Order-fairness for byzantine consensus. In Advances in Cryptology—CRYPTO 2020: 40th Annual International Cryptology Conference, CRYPTO 2020, Santa Barbara, CA, USA, August 17–21, 2020, Proceedings, Part III 40, pages 451–480. Springer, 2020.
- [KZZ16] Aggelos Kiayias, Hong-Sheng Zhou, and Vassilis Zikas. Fair and robust multiparty computation using a global transaction ledger. In *Annual Interna*tional Conference on the Theory and Applications of Cryptographic Techniques, pages 705–734. Springer, 2016.
- [LAM98] LESLIE LAMPORT. The part-time parliament. ACM Transactions on Computer Systems, 16(2):133–169, 1998.

- [Lam01] Leslie Lamport. Paxos made simple. ACM SIGACT News (Distributed Computing Column) 32, 4 (Whole Number 121, December 2001), pages 51–58, 2001.
- [LSP82] LESLIE LAMPORT, ROBERT SHOSTAK, and MARSHALL PEASE. The byzantine generals problem. *ACM Transactions on Programming Languages and Systems*, 4(3):382–401, 1982.
- [MA06] Jean-Philippe Martin and Lorenzo Alvisi. Fast byzantine consensus. *IEEE Trans. Dependable Secur. Comput.*, 3(3), 2006.
- [Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. *Decentral-ized business review*, page 21260, 2008.
- [OO14] Diego Ongaro and John Ousterhout. In search of an understandable consensus algorithm. In *Proceedings of the 2014 USENIX Conference on USENIX Annual Technical Conference*, USENIX ATC'14, page 305–320, USA, 2014. USENIX Association.
- [PS17] Rafael Pass and Elaine Shi. The sleepy model of consensus. In *International Conference on the Theory and Application of Cryptology and Information Security*, pages 380–409. Springer, 2017.
- [PS18] Rafael Pass and Elaine Shi. Thunderella: Blockchains with optimistic instant confirmation. In Annual International Conference on the Theory and Applications of Cryptographic Techniques, pages 3–33. Springer, 2018.
- [Rei94] Michael K Reiter. Secure agreement protocols: Reliable and atomic group multicast in rampart. In *Proceedings of the 2nd ACM Conference on Computer and Communications Security*, pages 68–80, 1994.
- [Rom90] John Rompel. One-way functions are necessary and sufficient for secure signatures. In *Proceedings of the twenty-second annual ACM symposium on Theory of computing*, pages 387–394, 1990.
- [WLG⁺78] John H Wensley, Leslie Lamport, Jack Goldberg, Milton W Green, Karl N Levitt, Po Mo Melliar-Smith, Robert E Shostak, and Charles B Weinstock. Sift: Design and analysis of a fault-tolerant computer for aircraft control. *Proceedings of the IEEE*, 66(10):1240–1255, 1978.
- [Yao82] Andrew C Yao. Protocols for secure computations. In 23rd annual symposium on foundations of computer science (sfcs 1982), pages 160–164. IEEE, 1982.

[YMR⁺19] Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abraham. Hotstuff: Bft consensus with linearity and responsiveness. In *Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing*, pages 347–356, 2019.