
Compact Signature Aggregation from Modulo-Lattices
Toi Tomita1 and Junji Shikata1

1 Yokohama National University, Kanagawa, Japan
{tomita-toi-sk, shikata-junji-rb}@ynu.ac.jp

Abstract

An aggregate signature scheme allows multiple signatures generated by different people for different
messages to be aggregated into a compact aggregate signature. We propose the first signature aggregation
scheme that (1) grows the size of the aggregate signature only logarithmically in the number of signatures
to be aggregated, (2) is many-time, (3) supports non-interactive aggregation, (4) its security is based on
the standard lattice assumption in the random oracle model. To obtain the result, we construct a new
compact non-interactive batch argument (BARG) for NP. Our BARG has a very compact proof and its
security is based on the standard modulo lattice assumptions in the random oracle model.

1 Introduction
1.1 Background

The notion of aggregate signature schemes, introduced by Boneh, Gentry, Lynn, and Shacham [BGLS03],
allows individual signatures σ1, . . . , σN for different messages M1, . . . , MN created by N signers to be
aggregated into a compact signature σ̂. The aggregated signature σ̂ gives the verifier confidence that all the
signatures aggregated into σ̂ are valid. The original motivation for signature aggregation was to compress
certificate chains and aggregate signatures in secure BGP. Recently, it has gained significant practical interest
in the context of blockchains.

A plethora of work proposed highly efficient aggregate signature schemes using bilinear maps [BGLS03,
LOS+06, BGOY07, BNN07, FLS12] or trapdoor permutations [LMRS04, Nev08, BGR12, GOR18]. On the
other hand, post-quantum, especially lattice-based aggregate signature schemes have not been proposed
much. Boneh and Kim [BK20] proposed two lattice-based aggregate signature schemes whose security is
based on the standard Short Integer Solution (SIS) assumption, and where the aggregated signature size
grows at most logarithmically with the number of signatures being aggregated. However, the first scheme
is a one-time scheme, and the second scheme requires interactions for aggregation. Subsequently, several
works [DHSS20, BR21, BT23] proposed lattice-based aggregate signature schemes that are many-time and
support non-interactive aggregation. However, the aggregate signature size of their schemes grows linearly
with the number of the number of signatures being aggregated. Based on the above, the following questions
are addressed in this paper:

Can we construct a lattice-based aggregate signature scheme that (1) grows the aggregate signature size
sublinearly, (2) is many-time, and (3) supports non-interactive aggregation?

1.2 Our Contributions
In this paper, we answer the above question in the affirmative. More precisely, we construct the first

lattice-based aggregate signature scheme that only grows the aggregate signature size logarithmically, is not
one-time, and supports non-interactive aggregation. Our scheme is obtained by a general approach using a

1

Table 1: Comparison of lattice-based aggregate signature schemes. The column |σ̂| indicates the size of
aggregate signature. λ is the security parameter and N is the number of signatures to be aggregated. †PFR
stands for the Partial Fourier Recovery assumption, which is a non-standard lattice assumption introduced
in [DHSS20].

Scheme |σ̂| Many-time Non-interactive Assumption
[BK20, Sec. 4] O(log N) · poly(λ) - ✓ SIS
[BK20, Sec. 6] O(log N) · poly(λ) ✓ - SIS
[DHSS20] O(N) · poly(λ) ✓ ✓ PFR†

[BR21, BT23] O(N) · poly(λ) ✓ ✓ MSIS & MLWE
Ours O(log N) · poly(λ) ✓ ✓ MSIS & MLWE

non-interactive batch argument (BARG) for NP.
A BARG for NP allows a prover to construct a proof of m NP statements, where the size of the proof

grows sublinearly with m, and to convince the verifier that all these statements are true. By the following
straightforward construction, a BARG for NP directly yields an aggregate signature scheme. Consider the
NP relation R((vk, M), σ), which takes the verification key-message pair (vk, M) as an NP statement and
the signature σ as an NP witness, and returns 1 if σ is a valid signature on M under vk. An aggregate
signature on (vk1, M1, σ1), . . . , (vkN , MN , σN) is a BARG proof that R((vki, Mi), σi) = 1 for all i = 1, . . . , N .
The compactness of the BARG ensures that the size of the aggregate signature is sublinear in N .

The appeal of this general approach is that BARG can be used to lift any ordinary signature scheme
into an aggregate signature scheme. This means that a lattice-based (full-fledged) aggregate signature can
be constructed from a lattice-based signature scheme and a lattice-based BARG for NP. Recently, several
lattice-based BARGs have been proposed [CJJ22, ACL+22, DGKV22], and we can use these BARGs to
construct lattice-based aggregate signature schemes. Unfortunately, these BARGs have some drawbacks. The
construction of [ACL+22] relies on a new, non-standard lattice assumption. The constructions of [CJJ22]
and [DGKV22] have the proof of size poly(log N, |C|), where C is the circuit for the NP relation.

For our purposes, we construct a new efficient lattice-based BARG for NP. Our BARG has proof size
poly(log N, log |C|), and its security is based on the modulo short integer solution (MSIS) and modulo learning
with errors (MLWE) assumptions, which are known as standard lattice assumptions, in the random oracle
model. Our BARG is obtained by combining LaBRADOR, a highly compact proof system proposed by
Beullens and Seiler [BS22], and the partially-decryptable commitment scheme by Esgin, Steinfeld, and
Zhao [ESZ22].

2 Preliminaries
Notations. For positive integer n, let [n] denote the set of integers {1, . . . , n}. For positive integers d and q,
let Rq denote the polynomial ring Zq[X]/(Xd + 1). If a = a0 +

∑d−1
i=1 aiX

i ∈ Rq, then we denote by const(a)
the constant term of a, i.e., const(a) = a0. The ring Rq has a group of automorphisms Aut(Rq) that is
isomorphic to Z×

2d. Let σ−1 ∈ Aut(Rq) be defined by σ−1(X) = X−1.

2.1 Digital Signature and Aggregate Signature
Here, we recall the definition of standard and aggregate signature schemes.

Definition 2.1 (Digital Signature). A digital signature (Sig) scheme with message space M is a tuple of
probabilistic polynomial time (PPT) algorithms ΠSig = (KGen, Sign, Verify) with the following properties:

• KGen(1λ) → (sk, vk): On input of the security parameter λ, the key-generation algorithm outputs a
signing key sk and a verification key vk.

2

• Sign(sk, M)→ σ: On input of the signing key sk and a message M ∈M, the signing algorithm outputs
a signature σ.

• Verify(vk, M, σ) → b: On input of the verification key vk, a message M ∈ M, and a signature σ, the
verification algorithm outputs a bit b ∈ {0, 1}. The verification algorithm is deterministic.

In addition, the above algorithms should have the following properties.

Definition 2.2 (Correctness). A Sig ΠSig is correct if for all λ ∈ N and M ∈M, it holds that

Pr [Verify(vk, M, Sign(sk, M)) = 1] = 1− negl(λ),

where (sk, vk) $← KGen(1λ) and the probability is taken over the randomness of all algorithms.

Definition 2.3 (Unforgeability). Define the signature unforgeability game between an adversary A and a
challenger as follows:

1. The challenger samples (sk, vk) $← KGen(1λ) and gives vk to A.

2. A can now make signing queries on message M ∈M of its choosing. On each query M, the challenger
replies with σ

$← Sign(sk, M).

3. At the end of the game, A outputs a message-signature pair (M∗, σ∗). The output of the game is b = 1
if Verify(vk, M∗, σ∗) = 1 and A did not make a signing query on M∗. Otherwise, the output is b = 0.

A Sig ΠSig is unforgeable if for all PPT adversaries A, it holds that Pr[b = 1] = negl(λ) in the above
unforgeability game.

Definition 2.4 (Aggregate Signature [BGLS03, adapted]). A bounded aggregate signature (AggSig)
scheme with message space M is a tuple of PPT algorithms ΠAggSig = (Setup, KGen, Sign, Verify, Aggregate,
AggVerify) with the following properties:

• Setup(1λ, 1N) → pp: On input of the security parameter λ and an aggregation bound N , the setup
algorithm outputs the public parameter pp.

• KGen(pp) → (sk, vk): On input of the public parameter pp, the key-generation algorithm outputs a
signing key sk and a verification key vk.

• Sign(pp, sk, M)→ σ: On input of the public parameter pp, the signing key sk, and a message M ∈M,
the signing algorithm outputs a signature σ.

• Verify(pp, vk, M, σ)→ b: On input of the public parameter pp, the verification key vk, a message M ∈M,
and a signature σ, the verification algorithm outputs a bit b ∈ {0, 1}.

• Aggregate(pp, {(vki, Mi, σi)}i∈[T])→ σagg: On input of the public parameter pp and a collection of up
to T ≤ N verification keys vki, messages Mi, and signatures σi, the aggregation algorithm outputs an
aggregate signature σagg.

• AggVerify(pp, (vk1, . . . , vkT), (M1, . . . , MT), σagg)→ b: On input of the public parameter pp, a collection
of T ≤ N verification keys vki, messages Mi, and an aggregate signature σagg, the aggregate verification
algorithm outputs a bit b ∈ {0, 1}.

In addition, the above algorithms should have the following properties.

Definition 2.5 (Correctness). An AggSig ΠAggSig is correct if for all λ, N ∈ N and M ∈M, it holds that

Pr [Verify(pp, vk, M, Sign(pp, sk, M)) = 1] = 1− negl(λ),

3

where pp $← Setup(1λ, 1N), (sk, vk) $← KGen(pp), and the probability is taken over the randomness of all
algorithms. In addition, for all collections {(vki, Mi, σi)}i∈[T] where T ≤ N and Verify(pp, vki, Mi, σi) = 1 for
all i ∈ [T],

Pr
[
AggVerify(pp, (vk1, . . . , vkT), (M1, . . . , MT), Aggregate(pp, {(vki, Mi, σi)}i∈[T]))

]
= 1− negl(λ),

where pp $← Setup(1λ, 1N), (ski, vki)
$← KGen(pp) for all i ∈ [T], and the probability is taken over the

randomness of all algorithms.

Definition 2.6 (Unforgeability). Define the unforgeability game for the aggregate signature between an
adversary A and a challenger as follows:

1. The challenger samples pp $← Setup(1λ, 1N) and (sk∗, vk∗) $← KGen(pp) and gives pp and vk∗ to A.

2. A can now make signing queries on messages M ∈M of its choosing. On each query M, the challenger
replies with σ

$← Sign(pp, sk∗, M).

3. At the end of the game, A outputs a tuple of verification keys (vk1, . . . , vkT), a tuple of messages
(M1, . . . , MT) with T ≤ N , and a signature σ∗.

4. The output of the game is b = 1 if there exists an index i∗ ∈ [T], where vki∗ = vk∗, A did not make a
signing query on Mi∗ , and AggVerify(pp, (vk1, . . . , vkT), (M1, . . . , MT), σ∗) = 1. Otherwise, the output is
b = 0.

An AggSig ΠAggSig is unforgeable if for all PPT adversaries A and all polynomials N = N(λ), it holds that
Pr[b = 1] = negl(λ) in the above unforgeability game.

Definition 2.7 (Efficiency). An AggSig ΠAggSig is efficient if there exists a fixed polynomial poly(·, ·), the
size of the aggregate signature σagg satisfies |σagg| = poly(λ, log T).

2.2 Non-Interactive Batch Arguments for NP
Here, we define non-interactive batch arguments for NP. First, we consider the NP-complete language of

the binary rank-1 constraint system (R1CS). We now define the R1CS language.

Definition 2.8 (Binary Rank-1 Constraint System). Let S, x, w ∈ N be positive integers and (A, B, C) ∈(
{0, 1}S×(x+w))3 be matrices. We define

LR1CS,(A,B,C) :=
{

x ∈ {0, 1}x
∣∣∣∃w ∈ {0, 1}w : A

(
x
w

)
◦B

(
x
w

)
= C

(
x
w

)}
to be the language of (binary) rank-1 constraint system (R1CS), where ◦ denotes the component-wise
multiplication. We also define the relation R(A,B,C) as follows:

R(A,B,C) =
{

(x, w) ∈ {0, 1}x × {0, 1}w
∣∣∣A (

x
w

)
◦B

(
x
w

)
= C

(
x
w

)}
.

Definition 2.9 (Batch Arguments for R1CS). Let (A, B, C) ∈
(
{0, 1}S×(x+w))3 be matrices. A non-

interactive batch argument (BARG) for an R1CS instance (A, B, C) is a tuple of PPT algorithms ΠBARG =
(Setup, Prove, Verify) with the following properties:

• Setup(1λ, 1N) → crs: On input of the security parameter λ ∈ N and the number of instances N ∈ N,
the setup algorithm outputs a common reference string crs.

• Prove(crs, x⃗, w⃗) → π: On input of the common reference string crs, statements x⃗ = (x1, . . . , xN) ∈
({0, 1}x)N , and witnesses w⃗ = (w1, . . . , wN) ∈ ({0, 1}w)N , the prove algorithm outputs a proof π.

4

• Verify(crs, x⃗, π) → b: On input of the common reference string crs, statements x⃗ = (x1, . . . , xN) ∈
({0, 1}x)N , and a proof π, the verification algorithm outputs a bit b ∈ {0, 1}.

In addition, the above algorithms should have the following properties.

Definition 2.10 (Completeness). Let (A, B, C) ∈
(
{0, 1}S×(x+w))3 be matrices. A BARG ΠBARG for an

R1CS instance (A, B, C) is complete if for all λ, N ∈ N, all statements x⃗ = (x1, . . . , xN) ∈ ({0, 1}x)N , and
all witnesses w⃗ = (w1, . . . , wN) ∈ ({0, 1}w)N with (xi, wi) ∈ R(A,B,C) for all i ∈ [N], it holds that

Pr [Verify (crs, x⃗, Prove(crs, x⃗, w⃗))] = 1− negl(λ),

where crs $← Setup(1λ, 1N) and the probability is taken over the randomness of all algorithms.

Definition 2.11 (Somewhere Argument of Knowledge [CJJ22]). Let (A, B, C) ∈
(
{0, 1}S×(x+w))3

be matrices. A BARG ΠBARG for an R1CS instance (A, B, C) is somewhere argument of knowledge if there
exists a pair of PPT algorithms (TrapSetup, Extract) with the following properties:

• TrapSetup(1λ, 1N , i∗)→ (crs∗, td): On input of the security parameter λ ∈ N, the number of instances
N ∈ N, and an index i∗ ∈ [N], the trapdoor setup algorithm outputs a common reference string crs∗

and an extraction trapdoor td.

• Extract(td, x⃗, π)→ w∗: On input of the trapdoor td, statements x⃗ = (x1, . . . , xN) ∈ ({0, 1}x)N , and a
proof π, the extraction algorithm outputs a witness w∗ ∈ {0, 1}w.

We require (TrapSetup, Extract) to satisfy the following two properties:

• CRS indistinguishability: Define the CRS indistinguishability game for the BARG between an
adversary A and a challenger as follows:

1. A declares an index i∗ ∈ [N] and gives i∗ to the challenger.
2. The challenger samples b

$← {0, 1}. If b = 0, the challenger gives crs $← Setup(1λ, 1N) to A. If
b = 1, the challenger samples (crs∗, td) $← TrapSetup(1λ, 1N , i∗) and gives crs∗ to A.

3. At the end of the game, A outputs a bit b′ ∈ {0, 1}.

A BARG ΠBARG is CRS indistinguishable if for all PPT adversaries A, it holds that Pr[b = b′] =
1/2 + negl(λ) in the above game.

• Somewhere extractable in trapdoor mode: Define the somewhere extractable security game between
an adversary A and a challenger as follows:

1. A declares an index i∗ ∈ [N] and gives i∗ to the challenger.
2. The challenger samples (crs∗, td) $← TrapSetup(1λ, 1N , i∗) and gives crs∗ to A.
3. A outputs statements x⃗ = (x1, . . . , xN) ∈ ({0, 1}x)N and a proof π. Let w∗ ← Extract(td, x⃗, π).
4. The output of the game is b = 1 if

Verify(crs∗, x⃗, π) = 1 and (xi∗ , w∗) /∈ R(A,B,C).

Otherwise, the output is b = 0.

A BARG ΠBARG is somewhere extractable in trapdoor mode if for all adversaries A and all polynomials
S = S(λ), N = N(λ), it holds that Pr[b = 1] = negl(λ) in the above game.

Definition 2.12 (Succinctness). A BARG ΠBARG is succinct if there exists a fixed polynomial poly(·, ·, ·)
such that for all λ, S, N ∈ N and all crs in the support of Setup(1λ, 1N), the size of proof π satisfies
|π| ≤ poly(λ, log N, log S)1.

1In this work, we consider only the succinctness of the size of the proof, not the size of the CRS and the running time of the
verification time.

5

2.3 Interactive Arguments for NP
Here, we provide the definition of multi-round public-coin interactive arguments for NP in the common

reference string model. An overview is depicted in Figure 1. We begin with a formal definition. Let

Prover: P(crs, x, w) Verifier: V(crs, x)

(st1, res1) $← P1(crs, ch0 = ⊥, st0 = (x, w)) res1

ch1

...
ch1

$← C1

(stµ, resµ) $← Pµ(crs, chµ−1, stµ−1) resµ

chµ chµ
$← Cµ

(stµ+1, resµ+1) $← Pµ(crs, chµ, stµ) resµ+1

b
$← V(crs, x, c⃗h, r⃗es)

Figure 1: Multi-round public-coin interactive argument in the CRS model

R ⊆ {0, 1}x × {0, 1}w be a binary relation. We call (x, w) ∈ R a statement-witness pair, i.e., x ∈ {0, 1}x is
the statement and w ∈ {0, 1}w is a witness for x. Let OutV(P(a), V(b)) be the random variable corresponding
to the output of V upon execution of the protocol between P with input a and V with input b.
Definition 2.13 (Multi-Round Public-Coin Interactive Arguments for NP in the Common
Reference String Model). Let R be an NP relation. A (2µ + 1)-round public-coin interactive argument
(PCIA) for R in the common reference string (CRS) model is a tuple of µ + 3 PPT algorithms ΠPCIA =
(Setup, P = (P1, . . . , Pµ+1), V) and a family of the challenge spaces {Ci}i∈[µ] with the following properties:

• Setup(1λ) → crs: On input of the security parameter λ ∈ N, the setup algorithm outputs a common
reference string crs.

• Pi(crs, chi−1, sti−1)→ (resi, sti): On input of the common reference string crs, a challenge chi−1 ∈ Ci−1,
and a state sti−1, the prove algorithm outputs a response resi and a new state sti, where ch0 = ⊥,
st0 = (x, w), x is a statement, and w is a witness.

• V(crs, x, c⃗h, r⃗es) → b: On input of the common reference string crs, a statements x, challenges c⃗h =
(ch1, . . . , chµ), and responses r⃗es = (res1, . . . , resµ, resµ+1), the verification algorithm outputs a bit
b ∈ {0, 1}.

Definition 2.14 (Completeness). A PCIA ΠPCIA for R is complete if for all λ ∈ N and all statement-witness
pairs (x, w) ∈ R, it holds that

Pr[OutV(P(crs, x, w), V(crs, x)) = 1] = 1− negl(λ),

where crs $← Setup(1λ) and the probability is taken over the randomness of all algorithms.

Definition 2.15 (Soundness). A PCIA ΠPCIA for R is sound if for all λ ∈ N, all statements x such that
(x, ·) /∈ R, and all PPT adversaries P∗, it holds that

Pr[OutV(P∗(crs, x), V(crs, x)) = 1] = negl(λ),

where crs $← Setup(1λ) and the probability is taken over the randomness of all algorithms.

6

2.4 Lattice Preliminaries
Gaussian Measures. For a positive real σ, let Dd

σ denote the discrete Gaussian distribution over Zd.

Assumptions. Here, we define well-known lattice assumptions.

Definition 2.16 (MSIS Assumption). Let n, m, q be positive integers and β be a positive real. The modulo
short integer solution (MSIS) assumption holds if for all PPT adversaries A, there exists a negligible function
negl(λ) such that for all λ ∈ N:

Pr[Au = 0 ∧ ∥u∥ ≤ β|u $← A(1λ, A)] = negl(λ),

where A $← Rm×n
q .

Definition 2.17 (MLWE Assumption). Let n, m, q be positive integers and χ be a distribution over Rq.
The modulo learning with errors (MLWE) assumption holds if for all PPT adversaries A, there exists a
negligible function negl(λ) such that for all λ ∈ N:

|Pr[A(1λ, A, As + e) = 1]− Pr[A(1λ, A, b) = 1]| = negl(λ),

where A $← Rm×n
q , s $← χn, e $← χm, and b $← Rm

q .

3 Our BARG
In this section, we present our BARG for NP. To describe this, we first summarize the results in [BS22].

3.1 Principal Relations
Here, we recall the definition of the principal relation, introduced in [BS22]. The relation is parameterized

by a rank n ≥ 1, a multiplicity r ≥ 1, and a norm bound β > 0. It consists of short solutions to dot product
constraints over Rq. Specifically, a statement consists of a family F := {f (1), . . . , f (K)} of quadratic dot
product functions f : (Rn

q)r → Rq of the form

f(s1, . . . , sr) =
r∑

i=1

r∑
j=1

ϕi,j · s⊤
i sj +

r∑
i=1

ψ⊤
i si − ν,

where ϕi,j , ν ∈ Rq and ψi ∈ Rn
q . Without loss of generality, we assume ϕi,j = ϕj,i. Let F := {f (1), . . . , f (K)}

and F̂ := {f̂ (1), . . . , f̂ (L)} be two families of quadratic dot product functions. Now, a witness consists of r
vectors s1, . . . , sr ∈ Rn

q such that

f(s1, . . . , sr) = 0 for all f ∈ F , const(f̂(s1, . . . , sr)) = 0 for all f̂ ∈ F̂ ,

r∑
i=1
∥si∥2

2 ≤ β2.

That is, a principal relation Rpr is defined as

Rpr :=
{

((F , F̂ , β), (s1, . . . , sr))
∣∣∣f(s1, . . . , sr) = 0 ∀f ∈ F , const(f̂(s1, . . . , sr)) = 0 ∀f̂ ∈ F̂ ,

r∑
i=1
∥si∥2

2 ≤ β2

}
.

Recently, Beullens and Seilar [BS22] proposed highly efficient multi-round PCIA for the principal relations.
In the following lemma, we summarize their result.

Lemma 3.1 ([BS22]). There exists a multi-round PCIA Πpr for a principal relation in the CRS model with
the following properties:

7

• Πpr is complete.

• Assuming that the MSIS assumption holds, Πpr is sound.2

• The total size of responses is O(log n + log r) · poly(λ).

3.2 Construction: Our BARG for R1CS
Let Πpr = (Setuppr, P = (P1, . . . , Pµ+1), V) be a PCIA for a principal relation and (A, B, C) ∈

(
{0, 1}S×(x+w))3

be an R1CS instance. We consider random oracles H : {0, 1}∗ → {0, 1}λ×3NS and Hi : {0, 1}∗ → Ci that map
into the respective challenge spaces. Our BARG ΠBARG = (SetupBARG, Prove, Verify) for an R1CS instance
(A, B, C) is described as follows:

• SetupBARG(1λ, 1N)→ crsBARG:

1. Sample Ua, Ub, Uc
$← Rn×NS

q and Uy
$← Rn×N(x+w)

q and set ck := (Ua, Ub, Uc, Uy).

2. Sample crspr
$← Setuppr(1λ).

3. Output crsBARG := (ck, crspr).

• Prove(crsBARG, x⃗, w⃗)→ π:

1. Set

y :=

x1
w1
...

xN

wN

 ∈ {0, 1}N(x+y),
a := (IN ⊗A)y mod 2 ∈ {0, 1}NS ,
b := (IN ⊗B)y mod 2 ∈ {0, 1}NS ,
c := (IN ⊗C)y mod 2 ∈ {0, 1}NS .

2. Set

u := Uaa + Ubb + Ucc + Uyy ∈ Rn
q , P := H(x⃗, u) ∈ {0, 1}λ×3NS

D := P ·

IN ⊗A
IN ⊗B
IN ⊗C

 mod 2 ∈ {0, 1}λ×3N(x+w), d = P ·

a
b
c

−Dy mod 2 ∈ {0, 1}λ.

3. Set ã := σ−1(a), b̃ := σ−1(b), c̃ := σ−1(c), and ỹ := σ−1(y).
4. s := (a, b, c, y, ã, b̃, c̃, ỹ) as witness vectors, we define the statement for the principal relations as

follows:

F(ck,u) := {Uaa + Ubb + Ucc + Uyy− u} , (1)

F̂(P,D,d) :=

ã := σ−1(a), b̃ := σ−1(b),
c̃ := σ−1(c), ỹ := σ−1(y),
a⊤(ã − 1NS), b⊤(b̃− 1NS),
c⊤(c̃− 1NS), y⊤(ỹ− 1N(x+w)),
(a + b− 2c)⊤(ã + b̃− 2c̃− 1NS)

 ∪
P ·

IN ⊗A
IN ⊗B
IN ⊗C

−Dy

 . (2)

5. To prove ((F(ck,u), F̂(P,D,d),
√

q), s) ∈ Rpr, run (sti, resi)
$← Pi(crs, sti−1, chi−1) and set chi :=

Hi(x⃗, u, d, res1, . . . , resi) for i ∈ [µ], and (stµ+1, resµ+1) $← Pµ+1(crs, stµ, chµ).
6. Output π := (u, d, πpr = (res1, . . . , resµ+1)).

2The protocol in [BS22] satisfies knowledge soundness, a stronger notion than the above soundness.

8

• Verify(crsBARG, x⃗, π)→ b:

1. Parse π =: (u, d, πpr = (res1, . . . , resµ+1)).
2. If d has an odd element, then output 0.
3. Set

P := H(x⃗, u), D := P ·

IN ⊗A
IN ⊗B
IN ⊗C

 mod 2 ∈ {0, 1}λ×3N(x+w).

4. Define F(ck,u) and F̂(P,D,d) as Eqs. (1) and (2), respectively.
5. Compute chi := Hi(x⃗, res1, . . . , resi) for i ∈ [µ] and set c⃗h := (ch1, . . . , chµ)
6. To verify ((F(ck,u), F̂(P,D,d),

√
q), s) ∈ Rpr, compute b← V(crspr, x⃗, c⃗h, πpr) and output b.

3.3 Security Proof
Theorem 3.2. The above ΠBARG has the following properties:

• ΠBARG is complete.

• Assuming that the MLWE assumption holds and Πpr is sound, ΠBARG is somewhere argument of
knowledge in the random oracle model.

Proof Sketch. The above ΠBARG is almost the same as the non-interactive variant (via Fiat-Shamir transfor-
mation) of the protocol for binary R1CS, presented in [BS22, Section 6]. Thus, the completeness of ΠBARG
follows directly from the completeness their protocol, and we omit the proof.

Then, we provide the proof sketch that ΠBARG is somewhere argument of knowledge. To do this, we start
by defining the trapdoor setup and extraction algorithms:

• TrapSetup(1λ, 1N , i∗)→ (crs∗
BARG, td):

1. Sample U′
a, U′

b, U′
c

$← R(n−1)×NS
q , U′

x,1, . . . , U′
x,N

$← R(n−1)×x
q , and U′

w,1, . . . , U′
w,N

$← R(n−1)×w
q .

2. Sample z $← Rn−1
q , ea, eb, ec

$← DNS
σ , ex,1, . . . , ex,N

$← Dx
σ, and ew,1, . . . , ew,N

$← Dw
σ .

3. Set

Ua :=
(

U′
a

z⊤U′
a + e⊤

a

)
∈ Rn×NS

q , Ux,i :=
(

U′
x,i

z⊤U′
x,i + e⊤

x,i

)
∈ Rn×x

q for i ∈ [N],

Ub :=
(

U′
b

z⊤U′
b + e⊤

b

)
∈ Rn×NS

q , Uw,i :=
(

U′
w,i

z⊤U′
w,i∗ + e⊤

w,i

)
∈ Rn×w

q for i ∈ [N] \ {i∗},

Uc :=
(

U′
c

z⊤U′
c + e⊤

c

)
∈ Rn×NS

q , Uw,i∗ :=
(

U′
w,i∗

z⊤U′
w,i∗ + e⊤

w,i + t · g⊤

)
∈ Rn×w

q ,

where

g⊤ :=
(
20X0 · · · 2τ−1X0 20X1 · · · 2τ−1X1 · · · 20Xd′ · · · 2ℓ−1Xd′) ∈ R1×w

q ,

τ := ⌈w/d⌉, d′ := ⌊w/τ⌋ (note that d′ ≤ d), and ℓ := w mod τ .
4. Set

Uy :=

Ux,1
Uw,1

...
Ux,N

Uw,N

 ∈ Rn×N(x+w)
q

and ck := (Ua, Ub, Uc, Uy).

9

5. Sample crspr
$← Setup(1λ).

6. Output crs∗
BARG := (ck, crspr) and td := z.

• Extract(td, x⃗, π)→ w∗:

1. Parse π =: (u, d, πpr = (res1, . . . , resµ+1)).
2. Set C ′ :=

(
z⊤ −1

)
u ∈ Rq.

3. Set t̄ := ⌊q/t⌋ and C ′′ := Rndt̄(C ′).
4. Set ω := (t̄)−1 · C ′′ ∈ R and output w∗ := BDτ,w(ω) ∈ {0, 1}w.

Here, the function Rndt̄ rounds each coefficient of C ′ to the nearest integer multiple of t̄, and the
function BDτ,w performs bit decomposition of the coefficients of the ω = ω0 + ω1X + · · ·+ ωd−1Xd−1

and returns the resulting binary vector w∗ = (w0, . . . , ww−1) ∈ {0, 1}w. Namely, for j ∈ 0, 1, . . . , w − 1,
it sets wj to the k-th bit of the coefficient ω⌊j/τ⌋, where k := j mod τ .

Roughly speaking, ck outputted by TrapSetup are a trapdoored commitment key produced by CAddTd
in [ESZ22, Section 5.3], and Extract algorithm is the almost same as the CDecGR algorithm in [ESZ22, Section
5.3].

Clearly, the distribution of ck sampled by TrapSetup(1λ, 1N , i∗) is indistinguishable from the distribution of
ck sampled by Setup(1λ, 1N). This implies ΠBARG is CRS indistinguishable. Next, we briefly describe that if Πpr
is sound then ΠBARG is somewhere extractable in the trapdoor mode. Let A be an adversary in the somewhere
extractable security game for ΠBARG and x⃗ = (x1, . . . , xN) and π = (u, d, πpr = (res1, . . . , resµ+1)) be state-
ments and a proof outputted by A. From the construction, if Verify(crs∗

BARG, π⃗) = 1 then V(crspr, x⃗, c⃗h, πpr) = 1,
where (crs∗

BARG, td) $← TrapSetup(1λ, 1N , i∗), i∗ is the index declared by A, and c⃗h = (ch1, . . . , chµ) is produced
as in the above construction. By the soundness of Πpr (and the reduction from R1CS to principal relation,
described in [BS22]), this implies there exists w⃗ = (w1, . . . , wN) ∈ ({0, 1}w)N such that

u =
(
Ua Ub Uc Uy

)
IN ⊗A
IN ⊗B
IN ⊗C
IN(x+w)

x1
w1
...

xN

wN

 ,

A
(

xi

wi

)
◦B

(
xi

wi

)
= C

(
xi

wi

)
for i ∈ [N].

Now, since ck = (Ua, Ub, Uc, Uy) is produced from TrapSetup, we have(
z⊤ −1

)
u ≈ t · g⊤wi∗ .

Then, from the construction of Extract (and the functionality of CDecGR in [ESZ22]), the output of
Extract(td, x⃗, π) is wi∗ as an extracted witness w∗. Therefore, ΠBARG is somewhere extractable in the
trapdoor mode.

If we instantiate Πpr with the protocol of Beullens and Seilar [BS22, Section 5.2], we immediately obtain
the following corollary due to Lemma 3.1.

Corollary 3.3. There exists a BARG ΠBARG for R1CS with the following properties:

• ΠBARG is complete.

• Assuming that the MSIS and MLWE assumptions hold, ΠBARG is somewhere argument of knowledge in
the random oracle model.

• ΠBARG is succinct. More precisely, the proof size of ΠBARG is O(log N + log S) · poly(λ)

10

4 Signature Aggregation from BARG
In this section, we first recall that how to construct an aggregate signature scheme from a BARG for NP

and a standard signature scheme, by Waters and Wu [WW22]. Then, we show

Construction 4.1 (Aggregate Signature from BARG [WW22, Construction 7.3]). Let ΠSig = (KGenSig, SignSig,
VerifySig) be a digital signature scheme, and ΠBARG = (SetupBARG, ProveBARG, VerifyBARG) be a BARG for
NP. We can construct a bounded aggregate signature scheme ΠAggSig = (SetupAggSig, KGenAggSig, SignAggSig,
VerifyAggSig, AggregateAggSig, AggVerifyAggSig) as follows:

• SetupAggSig(1λ, 1N)→ pp: On input of the security parameter λ and the aggregation bound N . Convert
VerifySig (as a circuit) to an R1CS (A, B, C) ∈ ({0, 1}S×(x+w))3. Sample crs $← SetupBARG(1λ, 1N) and
output a public parameter pp = (1λ, crs).

• KGenAggSig(pp) → (sk, vk): On input of the public parameter pp = (1λ, crs), output (sk, vk) $←
KGenSig(1λ).

• SignAggSig(pp, sk, M)→ σ: On input of the public parameter pp = (1λ, crs), the signing key sk, and the
message M ∈M, output σ

$← SignSig(sk, M).

• VerifyAggSig(pp, vk, M, σ)→ b: On input of the public parameter pp = (1λ, crs), the verification key vk,
the message M ∈M, and the signature σ, output VerifySig(vk, M, σ).

• AggregateAggSig(pp, {(vki, Mi, σi)}i∈[T])→ σagg: On input of the public parameter pp = (1λ, crs) and a
collection of tuples {(vki, Mi, σi)}i∈[T]. Convert {(vki, Mi)}i∈[T] to R1CS statements x⃗ = (x1, . . . , xT) ∈
({0, 1}x)T and {σi}i∈[T] to R1CS witnesses w⃗ = (w1, . . . , wT) ∈ ({0, 1}w)T . The aggregation algorithm
computes

π
$← ProveBARG(crs, x⃗, w⃗)

and output σagg := π as an aggregated signature.

• AggVerifyAggSig(pp, (vk1, . . . , vkT), (M1, . . . , MT), σagg) → b: On input of the public parameter pp =
(1λ, crs), verification keys (vk1, . . . , vkT), messages (M1, . . . , MT) ∈M, and an aggregated signature σagg.
Convert {(vki, Mi)}i∈[T] to R1CS statements x⃗ = (x1, . . . , xT) ∈ ({0, 1}x)T . The aggregate verification
algorithm outputs

VerifyBARG(crs, x⃗, σagg).

Lemma 4.2 (Aggregate Signature from Batch Argument [WW22, Thorems 7.4, 7.5, and 7.6]).

• If ΠSig is correct and ΠBARG is complete, then ΠAggSig is correct.

• If ΠBARG is a somewhere argument of knowledge and ΠSig is unforgeable, then ΠAggSig is unforgeable.

• If ΠBARG is succinct, then ΠAggSig is efficient.

If we instantiate ΠSig with a modulo-lattice-based signature scheme (e.g., Dilithium [DKL+18]) and ΠBARG
with our BARG in Section 3.2, we immediately obtain the result due to Corollary 3.3.

Corollary 4.3. There exists an aggregate signature scheme ΠAggSig with the following properties:

• ΠAggSig is correct.

• Assuming that the MSIS and MLWE assumptions hold, ΠAggSig is unforgeable in the random oracle
model.

11

• ΠAggSig is efficient. More precisely, the aggregate signature size of ΠAggSig is O(log N) · poly(λ)

Acknowledgment. This research was (in part) conducted under a construct of “Research and development on
new generation cryptography for secure wireless communication services” among “Research and Development
for Expansion of Radio Wave Resources (JPJ000254)”, which was supported by the Ministry of Internal
Affairs and Communications, Japan.

References
[ACL+22] Martin R. Albrecht, Valerio Cini, Russell W. F. Lai, Giulio Malavolta, and Sri Aravinda Krishnan

Thyagarajan. Lattice-based SNARKs: Publicly verifiable, preprocessing, and recursively compos-
able - (extended abstract). In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022,
Part II, volume 13508 of LNCS, pages 102–132. Springer, Heidelberg, August 2022. (Cited on
page 2.)

[BGLS03] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably encrypted
signatures from bilinear maps. In Eli Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS,
pages 416–432. Springer, Heidelberg, May 2003. (Cited on page 1, 3.)

[BGOY07] Alexandra Boldyreva, Craig Gentry, Adam O’Neill, and Dae Hyun Yum. Ordered multisignatures
and identity-based sequential aggregate signatures, with applications to secure routing. In Peng
Ning, Sabrina De Capitani di Vimercati, and Paul F. Syverson, editors, ACM CCS 2007, pages
276–285. ACM Press, October 2007. (Cited on page 1.)

[BGR12] Kyle Brogle, Sharon Goldberg, and Leonid Reyzin. Sequential aggregate signatures with lazy
verification from trapdoor permutations - (extended abstract). In Xiaoyun Wang and Kazue
Sako, editors, ASIACRYPT 2012, volume 7658 of LNCS, pages 644–662. Springer, Heidelberg,
December 2012. (Cited on page 1.)

[BK20] Dan Boneh and Sam Kim. One-time and interactive aggregate signatures from lattices. preprint,
2020. (Cited on page 1, 2.)

[BNN07] Mihir Bellare, Chanathip Namprempre, and Gregory Neven. Unrestricted aggregate signatures.
In Lars Arge, Christian Cachin, Tomasz Jurdzinski, and Andrzej Tarlecki, editors, ICALP 2007,
volume 4596 of LNCS, pages 411–422. Springer, Heidelberg, July 2007. (Cited on page 1.)

[BR21] Katharina Boudgoust and Adeline Roux-Langlois. Compressed linear aggregate signatures based
on module lattices. Cryptology ePrint Archive, Report 2021/263, 2021. https://eprint.iacr.
org/2021/263. (Cited on page 1, 2.)

[BS22] Ward Beullens and Gregor Seiler. LaBRADOR: Compact proofs for R1CS from module-SIS.
Cryptology ePrint Archive, Report 2022/1341, 2022. https://eprint.iacr.org/2022/1341.
(Cited on page 2, 7, 8, 9, 10.)

[BT23] Katharina Boudgoust and Akira Takahashi. Sequential half-aggregation of lattice-based signatures.
Cryptology ePrint Archive, 2023. (Cited on page 1, 2.)

[CJJ22] Arka Rai Choudhuri, Abhihsek Jain, and Zhengzhong Jin. Snargs for P from lwe. In 2021 IEEE
62nd Annual Symposium on Foundations of Computer Science (FOCS), pages 68–79. IEEE, 2022.
(Cited on page 2, 5.)

[DGKV22] Lalita Devadas, Rishab Goyal, Yael Kalai, and Vinod Vaikuntanathan. Rate-1 non-interactive
arguments for batch-np and applications. In 2022 IEEE 63rd Annual Symposium on Foundations
of Computer Science (FOCS), pages 1057–1068. IEEE, 2022. (Cited on page 2.)

12

https://eprint.iacr.org/2021/263
https://eprint.iacr.org/2021/263
https://eprint.iacr.org/2022/1341

[DHSS20] Yarkın Doröz, Jeffrey Hoffstein, Joseph H. Silverman, and Berk Sunar. MMSAT: A scheme for
multimessage multiuser signature aggregation. Cryptology ePrint Archive, Report 2020/520, 2020.
https://eprint.iacr.org/2020/520. (Cited on page 1, 2.)

[DKL+18] Léo Ducas, Eike Kiltz, Tancrede Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor Seiler, and
Damien Stehlé. Crystals-dilithium: A lattice-based digital signature scheme. IACR Transactions
on Cryptographic Hardware and Embedded Systems, pages 238–268, 2018. (Cited on page 11.)

[ESZ22] Muhammed F Esgin, Ron Steinfeld, and Raymond K Zhao. Efficient verifiable partially-decryptable
commitments from lattices and applications. In IACR International Conference on Public-Key
Cryptography, pages 317–348. Springer, 2022. (Cited on page 2, 10.)

[FLS12] Marc Fischlin, Anja Lehmann, and Dominique Schröder. History-free sequential aggregate
signatures. In Ivan Visconti and Roberto De Prisco, editors, SCN 12, volume 7485 of LNCS,
pages 113–130. Springer, Heidelberg, September 2012. (Cited on page 1.)

[GOR18] Craig Gentry, Adam O’Neill, and Leonid Reyzin. A unified framework for trapdoor-permutation-
based sequential aggregate signatures. In Michel Abdalla and Ricardo Dahab, editors, PKC 2018,
Part II, volume 10770 of LNCS, pages 34–57. Springer, Heidelberg, March 2018. (Cited on
page 1.)

[LMRS04] Anna Lysyanskaya, Silvio Micali, Leonid Reyzin, and Hovav Shacham. Sequential aggregate
signatures from trapdoor permutations. In Christian Cachin and Jan Camenisch, editors,
EUROCRYPT 2004, volume 3027 of LNCS, pages 74–90. Springer, Heidelberg, May 2004. (Cited
on page 1.)

[LOS+06] Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent Waters. Sequential ag-
gregate signatures and multisignatures without random oracles. In Serge Vaudenay, editor,
EUROCRYPT 2006, volume 4004 of LNCS, pages 465–485. Springer, Heidelberg, May / June
2006. (Cited on page 1.)

[Nev08] Gregory Neven. Efficient sequential aggregate signed data. In Nigel P. Smart, editor,
EUROCRYPT 2008, volume 4965 of LNCS, pages 52–69. Springer, Heidelberg, April 2008.
(Cited on page 1.)

[WW22] Brent Waters and David J. Wu. Batch arguments for sfNP and more from standard bilinear
group assumptions. In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part II,
volume 13508 of LNCS, pages 433–463. Springer, Heidelberg, August 2022. (Cited on page 11.)

13

https://eprint.iacr.org/2020/520

	Introduction
	Background
	Our Contributions

	Preliminaries
	Digital Signature and Aggregate Signature
	Non-Interactive Batch Arguments for NP
	Interactive Arguments for NP
	Lattice Preliminaries

	Our BARG
	Principal Relations
	Construction: Our BARG for R1CS
	Security Proof

	Signature Aggregation from BARG

