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Abstract

Private set intersection (PSI) is a cryptographic primitive that allows two or more
parties to learn the intersection of their input sets and nothing else. In this paper, we
present a private set intersection protocol based on a new secure multi-party quantum
protocol for greatest common divisor (GCD). The protocol is mainly inspired by the
recent quantum private set union protocol based on least common multiple by Liu,
Yang, and Li. Performance analysis guarantees the correctness and it also shows that
the proposed protocols are completely secure in semi-honest model. Moreover, the
complexity is proven to be efficient (poly logarithmic) in the size of the input sets.

Keywords: Multi-party quantum computation, Greatest common divisor, Quan-
tum private set intersection, privacy-preserving matching.

1 Introduction

Private set intersection (PSI) is an important cryptographic primitive for performing joint
set operations in a privacy preserving manner. In particular, PSI protocols allow two or
more parties to jointly compute the intersection of the parties’ secret sets without revealing
each other privacy. PSI is an important problem of secure multi-party computation
(MPC) and has many practical applications, such as testing human genomes [1], contact
discovery [2], remote diagnostic [3], record linkage [4], privacy-preserving data mining [5],
matching data outsourced to cloud storage services [6], checking distance of two parties [7],
etc.

As the field of quantum computing evolves, cryptography is one of the most influenced
field. Most of the existing PSI protocols (multiparty computation in genearal) are based
on traditional classical cryptosystems [8–14], which are proven to be vulnerable in quan-
tum domain. This makes the requirement of quantum computer resistant PSI. Applying
quantum cryptography in the design of PSI is an ideal approach to address these issues.
Quantum cryptography, which can be regarded as the quantum mechanics and classical
cryptography, has been widely investigated on numerous branches such as quantum key
distribution [15–19], quantum secret sharing [20–22], and quantum key agreement [23–25].
On the other hand, there are only few quantum protocols for multiparty quantum com-
putation (MPQC), especially for the private set intersection problem. The first quantum
protocol for two-parties (client and server) PSI was introduced in 2016 by Shi et al. [26].
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Later in 2017, Cheng et al. [27] proved that client’s query can be manipulated by a
dishonest server in the proposed protocol [26] and hence the protocol does not preserve
fairness. In 2018, Maitra [28] proposed a new approach for PSI by extending the oblivious
set member decision protocol of [29]. Most recently, Liu et al. [30], in 2021, proposed a
novel quantum PSI based on quantum Fourier transform and at the same time Debnath
et al. [31] presented a practical and feasible quantum protocol PSI with single photons
and simple single-particle projective measurements.

In this paper, we present a new approach to perform private set intersection in the
quantum setting. Our protocol for PSI is based on another specific purpose multi-
party quantum computation, namely the protocol for computing greatest common divisor
(GCD). The proposed PSI protocol is mainly inspired by the recent protocol for another
set operation, namely the quantum multiparty private set union (PSU) by Liu et al. [32].
The PSU protocol [32] is based on the multiparty quantum computation for least common
multiple (LCM) [33]. The key idea of [32] is by transforming the private set union into
the problem of computing least common multiple. Specifically, each element of the input
sets is encoded to a unique prime number, and hence the input set itself is encoded to a
product of primes. Therefore, computing the prime factors of the least common multiple
of the encoded secret sets gives a way to obtain the union of all the input sets.

In order to construct quantum multiparty PSI using similar approach for PSU [32], a
secure multiparty computation for GCD is required. However, to the best of our knowl-
edge, there is no protocol for GCD, even in the classical setting (in fact, the LCM quan-
tum protocol by Liu et al. [33] is the only known protocol). It was still unclear how to
construct an MPQC for GCD. According to the formula gcd(x, y) = xy

lcm(x,y) , one can
obtain greatest common divisor by using both protocols for multiplication and LCM.
However, the formula is only applicable to two integers and it is obvious that for the
two-party case this is not secure since the two-party multiplication protocol always re-
veals each other inputs. Furthermore, the recursive generalization of the formula, i.e.,
gcd(a, b, c) = gcd(a, gcd(b, c)), does not give any help to build secure protocol. A simple
observation also shows that computing GCD cannot be done using the approach of [33]
for LCM which is based on quantum period-finding algorithm [34]. Fortunately, the ex-
tension of LCM protocol to the private set union [32] seems to be a promising method
to construct a secure protocol for GCD. Specifically, we can transform the GCD problem
to the private set union problem by working iteratively on the set of prime factors of the
secret inputs.

1.1 Our contributions

In this paper, the first MPQC for computing greatest common divisor is proposed. The
protocol is mainly based on the quantum multiparty PSU by Liu, Yang, and Li in [32].
Furthermore, using the same idea of the PSU protocol, we construct a quantum multi-
party private set intersection (PSI) by transforming the PSI problem into the problem of
computing GCD.

1.2 Outline

The rest of the paper is organized as follows: In Section 2, we briefly recall all the necessary
tools and protocols for our results: Shor’s factoring algorithm, Li-Liu’s protocol for LCM,
and the quantum multiparty private set union. Section 3 contains all the proposed MPQC
protocols: the GCD protocol and the private set intersection protocol. Finally, we present
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the performance analysis (security and complexity) of the proposed protocols in Section
4

2 Preliminary

In this section, we give high level descriptions of Shor’s factoring algorithm [34], Li-Liu’s
MPQC protocol for least common multiple [33], and the quantum multiparty private
union by Liuet al. [32].

2.1 Shor’s factoring algorithm

The well-known Shor’s factoring algorithm is able to factor any large integer N efficiently.
Shor’s factoring algorithm is based on a reduction of factoring to period-finding problem
(observed by Miller in the 1970s). The main tool of Shor’s factoring (to factor a large
integer N) is the quantum period-finding algorithm (QPA) to find the period of the func-
tion f : Z → ZN defined by f(x) = ax mod N (where a is chosen at random), i.e., the
smallest positive integer r such that f(x+ r) = f(x). Quantum period-finding algorithm
in modulo N requires O((log n)n3) quantum operations, with O(log n) uses of modular ex-
ponentiation where n = logN . The main subroutines of Shor’s period-finding algorithm
are modular exponentiation and quantum Fourier transform. Modular exponentiation
needs O(n) multiplications [35] and the Quantum Fourier Transform circuit is quadratic in
n [34]. Hence, the main steps to find a factor of an odd number N , given quantum period-
finding algorithm, is as follows: choose a random x mod N and find its period r using the
QPA. Finally, compute gcd(xr/2 − 1, N). Since (xr/2 − 1)(xr/2 + 1) = xr − 1 = 0 mod N ,
thus the gcd(xr/2 − 1, N) fails to be a non trivial divisor of N only for r is odd. Hence,
the procedure yields a non trivial divisor of N with probability at least 1−1/2k−1, where
k is the number of distinct odd prime factors of N . The factoring process will be iterated
over the obtained non trivial factors, then all prime factors of N can be found.

We summarize the key steps of the quantum period finding algorithm (note that we
skip most of the analysis of the exact parameters for simplicity) as follows:

(1) Prepare two m-registers (m = logN) initialized as |0⟩|0⟩ and apply QFT over ZN

to the first register:

|0⟩|0⟩ 7→ 1√
N

∑
x∈ZN

|0⟩.

(2) Apply the oracle function f on the second register:

1√
N

∑
x∈ZN

|0⟩ 7→ 1√
N

∑
x∈ZN

|f(x)⟩

(3) Measures the second register and discarding the measurement outcome. The first
register becomes

1√
n

n−1∑
j=0

|x0 + jr⟩,

where n = ⌊N/r⌋ and x0 is uniformly random of probability n/N .

(4) Apply another QFT over ZN to get:

1√
Nn

n−1∑
j=0

∑
k∈ZN

ω
k(x0+jr)
N |k⟩
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(5) Measure the register to obtain k = jN/r with probability 4
π2r2

≥ 1
3r2

= ϕ(r)/r =
O( 1

log log r ) and use the continued fraction method to recover r from k/N = j/r.

2.2 Li-Liu’s MPQC for least common multiple

Multiparty least common multiple problem: Assume that there are n parties:
P0, . . . , Pn−1, where each party Pi has a secret integer ri ∈ {0, 1, . . . , 2m − 1}. All n
parties want to jointly compute the lcm(r0, . . . , rn−1) without revealing their respective
secrets.

The key idea of Li-Liu’s protocol is based on the observation that given functions
f0, . . . , fn−1 with period r0, . . . , rn−1 respectively, then the function f(x) = (f0(x), . . . , fn−1(x))
has period r = lcm(r0, . . . , rn−1). Thus, each party Pi is equipped with the oracle of the
secret function fi (|x⟩|0⟩ 7→ |x⟩|fi(x)⟩) and hence together they compute the superposi-
tion:

1√
N

∑
x∈ZN

|x⟩|f0(x)⟩ . . . |fn−1(x)⟩

where N = 2m. Therefore, the period r = lcm(r0, . . . , rn−1) can be found by applying
the quantum period-finding algorithm. However, because of the probabilistic nature of
the QPA (the probability of the correct output is O(1/ log log r)), an additional voting
procedure is required to check the correctness of the QPA’s output. Namely, each party
votes whether the output divides their secret input. If the output divides all the secret
inputs, then the output passes the verification. The voting procedure is based on the
multiparty quantum summation by Shi et al. in [36].

We summarize the MPQC protocol for computing LCM as follows:

(1) For each Pi, let fi(x) = x mod ri.

(2) For P0:

(a) prepares two m-qubit quantum registers h, t initialized as |0⟩h|0⟩t;
(b) applies H⊗m on h:

|0⟩h|0⟩t 7→
1√
2m

∑
j∈[2m]

|j⟩h|0⟩t;

(c) applies CNOT⊗m on h, t, where h controls t:

1√
2m

∑
j∈[2m]

|j⟩h|0⟩t 7→
1√
2m

∑
j∈[2m]

∑
j∈[2m]

|j⟩h|j⟩t;

(d) prepares an m-qubit quantum register e0 initialized as |0⟩e0 ;
(e) applies Uf0 : |j⟩t|0⟩e0 7→ |j⟩t|f0(j)⟩e0 on t, e0 :

1√
2m

∑
j∈[2m]

|j⟩h|j⟩t|0⟩e0 7→ 1√
2m

∑
j∈[2m]

|j⟩h|j⟩t|f0(j)⟩e0 ;

(f) sends t to P1.

(5) For Pi, 1 ≤ i ≤ n− 1:

(a) prepares an m-qubit registers ei initialized as |0⟩ei ;
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(b) applies Ufi : |j⟩t|0⟩ei 7→ |j⟩t|fi(j)⟩ei on t, ei :

1√
k

∑
j∈[k]

|j⟩h|j⟩t|f0(j)⟩e0 |f(j)⟩e1 . . . |fi−1(j)⟩ei−1 |0⟩ei

7→ 1√
k

∑
j∈[k]

|j⟩h|j⟩t|f0(j)⟩e0 |f(j)⟩e1 . . . |fi−1(j)⟩ei−1 |fi(j)⟩ei ;

(c) sends t to Pi+1.

(6) For P0:

(1) applies CNOT⊗m on h, t, where h controls t:

1√
k

∑
j∈[k]

|j⟩h|j⟩t|f(j)⟩e 7→
1√
k

∑
j∈[k]

|j⟩h|0⟩t|f(j)⟩e,

where f(j) = f0(j)|| . . . ||fn−1(j), e = (e0, . . . , en−1);

(2) measures t, if t is not |0⟩, then rejects, otherwise continues;

(3) Applies QPA to find the period r of f ;

(4) Broadcasts r to all other parties.

The total computation and communication complexity of Li-Liu’s protocol is O(n3m2)
and O(n2m) respectively. However, considering the success probability of the standard
QPA, Li-Liu’s protocol needsO(log log r) ≤ O(log(nm)) repetitions. A simple observation
can show that the repetition itself can lead to some possible attacks. Specifically, the
parties can learn a factor of others in each repetition from the incorrect outputs and their
own secrets. Hence, the risk increases as the repetition grows (the size m of the inputs
grows), especially in the malicious model.

Remark 1. Liu et al. [32] proposed an improved QPA based on extended Knill’s technique
[37] (which is a trade off between classical and quantum computations) to increase the
probability to O(1) to avoid the required repetition (but still probabilistic, there is still
a small probability that the output of the protocol is incorrect). However, as mentioned
in [37], this increases the complexity of the original QPA by a factor (c+ 1)2 of classical
computations if the QPA runs twice in parallel (in [32], the QPA runs s > 2 times in
parallel, which gives worse bound). Furthermore, it is also noted that the trade off is worth
in some specific cases.

Another alternative modified LCM protocol: There is an alternative improvement
of the LCM protocol based on the exact quantum period finding algorithm (EQPA) in [38],
which is an instance of the more general exact quantum algorithm [39]. As the EQPA
requires a multiple of the period r, then we can modify Li-Liu’s protocol by replacing the
first step with the following three steps and using EQPA instead of QPA in step (6.c):

(1) For each Pi, chooses a random q ∈ [2m] such that riq ∼= 2m and sends yi = riq to
P0.

(2) P0 computes k =
∏n−1

i=0 yi (a multiple of the order) and broadcasts it to all parties.

(3) For 0 ≤ i ≤ n− 1 : each Pi holds the function fi : Zk → Zk be fi(x) = x mod ri.
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If k is a given multiple of the period r then, the EQPA’s complexity is O(log4 k). There-
fore, this modified version of Li-Liu’s protocol [33] has also computation complexity
O(log4 k) = O(n4m4) while the communication complexity remainsO(n2m). Since EQPA
is deterministic, then the modified protocol always give a correct output with certainty.
Hence, it eliminates the main drawbacks of [33].

2.3 Quantum multiparty private set union

Private set union problem: Assume that there are n parties: P1, . . . , Pn, where each
party Pi has a secret set Si ⊆ U = {1, 2, 3, . . . , N}: 2m−1 < N ≤ 2m. All n parties want
to jointly compute the

⋃
Si without revealing their respective secret.

The key idea of the quantum multiparty private set union proposed by Li, Yang, and
Liu consists of three main steps: encoding procedure, an improved quantum multiparty
computation for LCM, and decoding procedure. The encoding procedure transforms all
elements of the secret set Si (for all 1 ≤ i ≤ n) to prime numbers and hence encode the
set Si as the product of prime numbers image of all its elements. After the encoding
procedure, the MPQC protocol for LCM (based on an improved QPA) is performed to
find the LCM of all the encoded Si. Finally, decoding procedure is done by (an improved)
Shor’s algorithm to get the union from the prime factors of the LCM obtained in the
previous procedure.

We briefly summarize the quantum protocol for private set union as follows:

(1) Encoding phase: Let pj denotes the jth prime. Each party Pi encode the elements
a of the respective set Si by a 7→ pa and hence encode Si 7→

∏
a∈Si

pa.

(2) LCM Protocol: All parties jointly perform the LCM (only until the step 6.3) of their
encoded sets such that P1 gets:

M = lcm

 ∏
a1∈S1

pa1 ,
∏

a2∈S2

pa2 , . . . ,
∏

an∈Sn

pan

 .

(3) Decoding phase: P1 computes the set of the prime factor of M using Shor’s algo-
rithm. Decode the prime factors: pa 7→ a. The set of the decoded prime factors is
exactly the union

⋃n
i=1 Si. Broadcasts the union to all other parties.

The computation and communication complexity of the protocol are claimed to be
O(n3m3k3 log(nmk)) and O(n2mk) respectively where k is the upper bound of the car-
dinalities of the secret inputs Si.

Remark 2. If we use the EQPA [38] as the subroutine in the above protocol, we always
get a correct output with certainty for the LCM protocol (step 2) and while correctness of
the prime decomposition in step 3 can be guaranteed by direct multiplication verification
by P1 before decoded the prime factors. This way, the private set union protocol always
gets the correct output with total computational complexity O(n4m4k3 log(nmk)) while the
communication remains O(n2mk).
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3 Proposed MPQC protocols

3.1 Multiparty quantum computation for GCD.

Multiparty greatest common divisor problem: Assume that there are n parties:
P0, . . . , Pn−1, where each party Pk has a secret integer rk ∈ {0, 1, . . . , 2m−1}. All n parties
want to jointly compute the gcd(r1, . . . , rn) without revealing their respective secret.

The key idea of our proposed protocol is by transforming the greatest common divisor
problem into the private set union problem of all sets of prime factors of each secret
inputs and then finally, apply voting procedure to obtained the greatest prime power of
each prime factors in the union set obtained.

We summarize the protocol for computing greatest common divisor as follows.

(1) Each party Pi (0 ≤ i ≤ n− 1): Apply Shor’s factoring algorithm on the respective
secret input ri to obtain the set Ri of all prime factors of ri.

(2) All parties jointly perform the private set union protocol to get the set R =
⋃n−1

i=0 Ri.

(3) For each prime p ∈ R, do the following iteration: using the voting procedure as
in [33], all parties jointly vote whether p, p2, . . . divide their secret inputs in order to
get the largest power pk that simultaneously divides all their secret inputs. Finally,
the GCD can be obtained by the product of all the largest prime power of all
elements of R.

Correctness proof. In the first step, each party performs Shor’s factoring on their
inputs to get the set of all prime factors of ri. Therefore, each party can easily verify that
they hold a correct set of prime factors of their inputs before applying private set union
protocol in the next step. Since the correctness of the PSU protocol in the second step
follows directly from the remark 2. Then it is left to show that the last step indeed gives
the GCD of the secret inputs ri’s. The last step indeed gives a correct output according
to the definition of greatest common divisor

gcd(pa11 · · · pamm , pb11 · · · pbmm ) = p
max{a1,b1}
1 · · · pmax{am,bm}

m

which is true for computing GCD for any n numbers through the prime factorization.

3.2 Multiparty quantum private set intersection

Private set intersection problem: Assume that there are n parties: P1, . . . , Pn,
where each party Pi has a secret set Si ⊆ U where U is the complete set of cardinality
N : 2m−1 < N ≤ 2m. All n parties want to jointly compute the

⋃
Si without revealing

their respective secret.
The protocol for private set intersection straightforwardly follows the protocol for

private set union. We give the key steps of the protocol as follows:

(1) Encoding phase: Let pj denotes the jth prime. Each party Pi encode the elements
a of the respective set Si by a 7→ pa and hence encode Si 7→

∏
a∈Si

pa.

(2) GCD Protocol: All parties jointly perform the GCD (only until the step 6.3) of their
encoded sets such that P1 gets:

M = gcd

 ∏
a1∈S1

pa1 ,
∏

a2∈S2

pa2 , . . . ,
∏

an∈Sn

pan

 .
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(3) Decoding phase: P1 computes the set of the prime factor of M using Shor’s algo-
rithm. Decode the prime factors back: pa 7→ a. The set of the decoded prime factors
is exactly the union

⋂n
i=1 Si. Broadcasts the union to all other parties.

Correctness proof. Since the correctness of the GCD protocol has been proven, then
it is left to show that the prime factors of the GCD indeed gives the intersection of all
input sets Si. Let Enc(Si) denotes the encoding image of Si which is the product of prime
images pa of all elements a of Si. For any element u ∈ U such that pu divides Enc(Si)
for all 1 ≤ i ≤ n, pu divides the GCD M . Conversely, if there exists a set Sj that does
not contain an element u ∈ U , then pu is not a factor of Enc(Sj) and hence pu is not a
factor of the gcd M . Therefore, an element u ∈

⋂n
i=1 Si must correspond to a factor of

the GCD M .

4 Performance analysis

4.1 Security analysis

The private set intersection protocol is based on the multiparty quantum computation for
GCD. Therefore, the security of PSI protocol is mainly follows from the security of the
GCD protocol. However, as the GCD protocol is based on the private set union [32] in
which its security based on the LCM protocol [33], let us first briefly recall the security
analysis of the LCM protocol. Li et al. have proved the security against the following
semi-honest attacks.

(1) Direct measurement attack: Before the QPA process is completed, Pi measures
the register h, t or ei to obtain any useful information.

(2) Pre-period-finding attack: Before the QPA process is completed, Pi applies
the invers QFT to his own registers h, t to obtain the LCM of the parties who have
completed their operations.

(3) Post-period-finding attack: Pi copies the register |j⟩t using the CNOT⊗m and
wait until the QPA process is completed. Then, Pi applies QFT to his own copy |j⟩
to obtain any useful information.

All three attacks cannot leak any useful information from the other secrets mainly
because of the entanglement of the registers and the honest test in step 6.2 of the pro-
tocol. However, because of the probabilistic nature of the standard QPA, the protocol
should be repeated (O(log nm)) followed by a verification procedure to check whether the
QPA’s output is correct. The repetition itself leads to some possible attacks. Specifically,
the parties can learn information about some factors of other parties from the incorrect
outputs and their own secrets.

In order to resolve the drawback of Li-Liu’s protocol, we proposed 2.2 to use the
exact quantum period-finding algorithm [38] by adding some additional steps to fulfill
the requirement of the EQPA, namely a multiple of the period. In the first step, each
Pi sends yi = riq to P0 so that P0 can compute a multiple of the period. However, P0

cannot gain any useful information as yi is a multiplication of the secret input ri with a
random element q. The modified version needs no repetition as the EQPA always gives
a correct output with certainty, and hence the modified protocol is completely secure in
the semi-honest model.
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As a conclusion, the proposed protocol for GCD and PSI are completely secure in the
semi-honest model following the security of the modified LCM protocol and the PSU [32].

4.2 Complexity analysis

Firstly, we analyze the complexity of the GCD protocol 3.1. The use of Shor’s factoring
in the first step of the protocol costs O(nm2 logm) computational complexity. As for the
second step, the computational and communication complexity of the private set union
are O(n3m3k3 log(nmk)) and O(n2mk) respectively where k is the upper bound of the
cardinality of the sets Ri’s. Thus, the second step has O(n3m6 log(nm2)) computational
complexity and communication complexity O(n2m2). Finally, in the last step, there
are at most m iterations of voting procedure, thus the computational and communication
complexity of the last step are O(nm3) and O(nm2) respectively following the complexity
of the voting procedure in [33]. Hence, the total computational and communication
complexity are O(n3m6 log(nm2)) and O(n2m2) respectively. On the other hand, using
the EQPA to get a deterministic output in the subroutine of the PSU protocol gives
extra computational complexity with total computational complexity O(n4m6 log(nm2))
instead of O(n3m6 log(nm2)).

For the private set intersection protocol, it is easily seen that the most expensive
computational cost comes from the use of GCD protocol in the second step. Therefore,
the total computation and communication complexity of the PSI protocol coincide the
complexity of the GCD protocol.
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