
Homomorphic Trapdoors
for Identity-based and Group Signatures

Buvana Ganesh⋆, Apurva Vangujar, Alia Umrani and Paolo Palmieri

School of Computer Science & IT,
University College Cork, Ireland

b.ganesh@cs.ucc.ie, a.vangujar@cs.ucc.ie,
a.umrani@cs.ucc.ie, p.palmieri@cs.ucc.ie

Abstract. Group signature (GS) schemes are an important primitive in cryptog-
raphy that provides anonymity and traceability for a group of users. In this paper,
we propose a new approach to constructing GS schemes using the homomorphic
trapdoor function (HTDF). We focus on constructing an identity-based homomor-
phic signature (IBHS) scheme using the trapdoor, providing a simpler scheme that
has no zero-knowledge proofs. Our scheme allows packing more data into the sig-
natures by elevating the existing homomorphic trapdoor from the SIS assumption
to the MSIS assumption to enable packing techniques. Compared to the existing
group signature schemes, we provide a straightforward and alternate construc-
tion that is efficient and secure under the standard model. Overall, our proposed
scheme provides an efficient and secure solution for GS schemes using HTDF.

1 Introduction

Lattice-based cryptography is a promising alternative to conventional cryptography
since attacks on it require exponential time for quantum adversaries. Homomorphic en-
cryption is a popular tool that is highly desirable in privacy-sensitive applications such
as secure data processing, cloud computing, and secure machine learning because it
allows computations to be performed on encrypted data, preserving privacy.

Similarly, homomorphic signatures (HS) guarantee the authenticity of outsourced
computation results and are useful for analyzing large amounts of sensitive data held by
organizations such as healthcare providers and financial institutions. For instance, after
collecting, certifying, and distributing the data to multiple research teams for analysis,
there is a possibility that some of these groups may act dishonestly and fabricate results
for their advantage, rendering them untrustworthy. With HS, the data can be signed
and distributed to multiple research groups for analysis, and the results can be posted
publicly with corresponding signatures for anyone to verify without accessing the orig-
inal data. With identity-based homomorphic signatures (IBHS), multiple signatures can
be verified together, allowing for faster and more efficient verification helping create
trustless systems .

Group signatures (GS) scheme enables group members to sign on behalf of their
group while ensuring authenticity, anonymity, and traceability. The identity of the group
⋆ Buvana Ganesh is supported by a PhD scholarship funded by the Science Foundation Ireland

Centre under Grant No. 18/CRT/6223

2 Buvana Ganesh, Apurva Vangujar, Alia Umrani and Paolo Palmieri

member who issued the signature remains anonymous. However, if necessary, a trusted
entity known as the group manager can use secret information to trace the signature
back to the signer, thereby proving the accountability of the group members for their
signatures. Due to various advantageous properties, GS schemes have found practical
uses in several domains [18], including safeguarding privacy, anonymous online com-
munication, e-commerce systems, and trusted hardware attestation. Specifically, group
digital signatures (DS) have a wide range of applications across various industries in-
cluding contract signing, board resolutions, shareholder meetings, medical records, con-
sent forms, and financial transactions.

In this work, we explore the construction of lattice-based GS schemes primarily on
the module variants of the Shortest Integer Solution (MSIS) assumption and the Learn-
ing with Errors (MLWE). We find alternate constructions for the GS scheme through
the IBHS scheme.

1.1 Our contributions and techniques

We summarize the main contributions from our work and then expand on the tech-
niques used to achieve them and why it was necessary.

– We adapt the homomorphic trapdoor from [16] to the MSIS assumption.
– We construct a novel IBHS scheme using the homomorphic trapdoor function that

is secure under the MSIS assumption.
– Then, we create a GS scheme to provide a novel construction through IBHS, ex-

cluding the index and attributes in the previous schemes.
– We provide a security proof for both under the standard model and with Unforge-

ability under Chosen-Message Attacks (UF-CMA) along with the corresponding
properties like anonymity and traceability along with security against different forg-
eries.

To construct a static GS, we require the properties of anonymity and traceability to be
satisfied along with the standard unforgeability. Therefore, GS schemes are built on an
unforgeable signature and a public key encryption scheme. The majority of GS schemes
in the literature for lattices have been constructed following one of two approaches: an
access structure and some form of Argument of Knowledge [22,21,29]; or by construct-
ing an attribute based signature (ABS) scheme with different properties and building the
GS scheme on top of that [18].

The property of homomorphism also helps in the batch verification of signatures
from different parties evaluated together. The connection between signature schemes
and identity-based encryption schemes is the trapdoor employed to sample the signa-
ture and the identity respectively. If we use the HTDFs as mentioned in Sec. 4.2, we
retain the homomorphism in the signature (and the keys of the identities) but not in the
messages themselves.

We mainly focus on the work of [18] where the original [16] scheme is perceived as
an ABS scheme and construct the GS scheme on top of it. We take a different approach
by constructing an IBHS scheme that is simpler in construction and requires lesser dis-
crete Gaussian sampling. Instead of considering an index and the attribute, we consider

Homomorphic Trapdoors for Identity-based and Group Signatures 3

only the identity of the user, as that’s enough to provide security for GS schemes. We
use labeled programs to correlate the identities with the public parameters.

GS schemes constructed with ABS also require the presence of One-Time Signatures
(OTS), constructed with Chameleon hashes. The HTDF come with a special property
that makes them equivalent to Chameleon hashes because of the usage of trapdoors, in-
version, random element, etc in the construction. This makes them the perfect substitute
for OTS in our schemes to give the signature strong unforgeability.

Another drawback of previous schemes is that they essentially signed bits in parallel.
To pack more data into the signatures, we elevate the existing homomorphic trapdoor
from the SIS assumption to the MSIS assumption using the techniques provided in [4],
which can be found in Lemma 1 of this paper. This way one can use the Chinese Re-
mainder Theorem (CRT) packing or various other packing methods that allows Single
Instruction Multiple Data (SIMD) techniques.

Combining these methods together, we construct the IBHS and the GS schemes. We
then compare it to other static multi-signature schemes constructed with some hierarchy
to explore efficiency.

Outline We cover the related work in Sec. 2 and the relevant notations and defini-
tions Sec. 3. Then, an overview of trapdoors and signatures is provided in Sec. 4 with
the HTDF, the constructions, and security. We construct the novel IBHS scheme in Sec.
5.3 which we use to construct the GS scheme in Sec. 6. The security proofs for both the
novel constructions are given in Sec. 7 and conclude with some possible future works
in Sec. 9.

2 Related work

We only consider works related to lattices and do not consider classical cryptographic
assumptions like Discrete Logarithm or Bilinear pairings to maintain a fair comparison
of the complexity. Lattice-based signature schemes, such as Crystals-Dilithium [10] and
the GPV framework for signatures [14], have gained increased attention in the research
literature due to their basis on quantum-resistant NP-hard problems like the SIS or LWE
assumption. These signature schemes typically follow either the Hash and Sign (H/S)
paradigm or the Fiat-Shamir with Aborts (FSwA) scheme to prove integrity. As the sig-
nature scheme from [14] forms the base for a lot of H/S signatures, we shall refer to the
scheme as just the GPV signature from here.

FSwA schemes form the basis for several signature schemes with a challenge, com-
mitment and verification structure. In LBC, such schemes can avoid discrete Gaussians
for sampling the random variables and are generally more efficient. But schemes fol-
lowing FSwA like the NIST standardized Crystals-Dilithium [10], contains hash digests
integrated within the scheme which can limit their ability to support homomorphic prop-
erties. H/S based signatures [14,16,18] include hashing of the message to obtain a fixed
size digest and then it is signed by using the private key. The recipient can verify the
signature by recomputing the digest from the message.

4 Buvana Ganesh, Apurva Vangujar, Alia Umrani and Paolo Palmieri

2.1 Homomorphic Signatures and Multi-Signatures

As our construction uses homomorphism in the IBHS scheme, we look into some
multi-signature schemes employing homomorphism and morph them to suit our needs.
Hiromasa et al. [17] introduced HS based on polynomials based on the SIS assumption
with linear homomorphism. Then, Gorbunov et al. [16] introduced the first leveled fully
HS scheme in the standard model that can evaluate arbitrary circuits over signed data
under the hardness of SIS assumption. The size of the evaluated signature rises polyno-
mially to the number of users but is independent of data size or circuit size. This scheme
also provides amortized verification, context hiding, and composition of different arith-
metic over signed data. Fully homomorphic message authenticators [13] use labeled
programs again to connect circuits, identities, and messages. They use ciphertext verifi-
cation than the normal signature approach and can be seen as a symmetric-key version
of HS schemes. Boyen et al. [6] provide a way to generate HS by modifying the MP12
trapdoor [26] but is more expensive than the approach of [16] and a little too late.

Bendlin et al. [3] propose a threshold signature scheme based on the GPV signa-
ture scheme and honest majority secret sharing of the MP12 trapdoor from [26]. They
use labeled programs to connect the list of signers and the message, which we use in
our construction as well. Fiore et al. [11] propose multi-key homomorphic signatures
(MK-HS) based on the work of [16] by providing evaluation keys. Their authentica-
tors can be reduced to signatures by making the verification a public protocol, but their
protocol does not allow for dishonest or malicious signers. Luo et al. [25] proposed an
HS scheme that signs messages in a dataset altogether, achieving strong unforgeability.
Lai et al. [19] use ZK-SNARKs, i.e., Succinct Non-Interactive Arguments of Knowl-
edge, under lattice assumptions to convert a generic signature scheme into an MK-HS
scheme, but this approach relies on non-standard assumptions.

Security for MK-HS Scheme The MK-HS scheme [9] is UF-CMA secure if, for
any probabilistic polynomial-time (PPT) adversary, the likelihood of producing a forg-
ing signature on any message of the adversary’s choosing is negligible. HS schemes
cannot meet the usual unforgeability requirement as the primitive does allow the adver-
sary to come up honestly with new signatures. During a training phase the adversary A
is allowed to see the signatures of messages belonging to different datasets. A runs the
following game with the challenger C. Three conditions to avoid forgery the following
unforgeability as in [9]:

1. Type 1 forgery: A wins the game if A can produce either a signature on a message
belonging to some previously unseen message list.

2. Type 2 forgery: For some previously queried messages, A manages to produce a
signature that verifies correctly but the message is not the evaluation of the labeled
program given in the signature set.

3. Type 3 forgery: A can cheat either by claiming an output on a dataset that was
never queried, or an incorrect output of a given program, executed on a collection
of messages for queried signatures.

Homomorphic Trapdoors for Identity-based and Group Signatures 5

2.2 Group Signature

Before exploring GS schemes, we look into identity-based signatures (IBS) and ABS
to follow how GS is constructed. Most IBS schemes are based on the encryption scheme
from [15] which we have seen used in the equivocal sense for signatures and extractable
sense for encryption schemes, especially identity-based ones. The extraction mode of
the trapdoor is modified to accommodate the identity to extract the user secret key from
the master secret key. This means that constructing a homomorphic id-based signature
without changes to this trapdoor becomes challenging. Even if we consider plain IBS
we do not find many in literature considering they have simpler construction than ABS.
For example, Pan et al. [28] compare their work to the GPV signatures, we do not find
other IBS in the literature.

The initial GS schemes in the literature use trapdoors and provide security under the
Shortest Vector Problem assumption. The security was only proven in the RO model due
to the unsuitability of lattices with Non-Interactive Zero-Knowledge (NIZK) proofs.
Static GS schemes [21,22,23,29] use NIZK for opening the messages to verify the iden-
tity and are based on the RO model always. Previous works on GS suggest that either
a breakthrough result in lattice-based NIZKs or a different approach than the encrypt-
then-prove paradigm is needed to obtain a lattice-based GS in the standard model. Dy-
namic GS schemes [24,7] use Bonsai trees or Merkle trees that act as a bloom filter to
prove whether the particular identity belongs to that particular user. The challenge of
constructing lattice-based GS in the standard model without NIZKs was solved by [18]
who use ABS and Secret key Encryption (SKE) to construct GS. Proofs in the standard
model are preferred as they are less expensive and shorter compared to NIZK.

In the Table 2.2, we list some variety of static GS schemes using different methods
to produce group signatures.

Scheme SM vs RO ABS vs ZK Assumption Trapdoor
Ling et al [22] RO ZK - FSwA RSIS/RLWE Yes
Libert et al [21] RO ZK - FSwA RSIS No
Del Pino et al [29] RO ZK - FSwA MSIS/NTRU Yes
Boschini et al [5] RO ZK - FSwA RSIS Yes
Katsumata et al [18] SM ABS -H/S SIS Yes

Table 1. Static GS schemes - Standard Model (SM) vs Random Oracle (RO)

3 Background

Besides resilience to known quantum attacks, strong security proofs are an important
feature of lattice-based constructions. Here, we show the basic definitions applied in
the design of our group HS scheme. This section is included mainly to fix notations
and ideas, and we refer to the original papers like [14,26] for further exposition. We

6 Buvana Ganesh, Apurva Vangujar, Alia Umrani and Paolo Palmieri

review some basic properties of lattices as used in previous works. Let λ be the security
parameter. We use bold lower-case letters (e.g., v) to denote vectors, and bold upper-
case letters (e.g, A) to denote matrices. The message m to be signed is represented in
different forms as it can be packed using the CRT encoding or taken as just a bit based
on the requirements of the scheme. For q an integer, Zq denotes the standard group of
integers modulo q.

The gadget matrix is a power-of-2 matrix G and its inverse is the binary decomposi-
tion algorithm G−1 which takes the input, a vector or matrix x and outputs the vector
BitDecomp = G−1(x) such that BitDecomp ∈ {0, 1}m×k and G · BitDecomp = x.
When multiplying a vector and a matrix, we bit decompose the vector and multiply it
with a power-of-2 matrix to match the dimensions as done in [15].

3.1 Lattices

A lattice Λ is a discrete subgroup of Rm with dimension n ≤ m. In general, for
cryptographic applications, it is restricted to Zm. It can be represented by a basis com-
prising n linear independent vectors of Rm. Most of the trapdoor functionalities occur
over the dual of the defined lattice Λ⊥, with vectors orthogonal to the lattice vectors
with a syndrome u.

Λ⊥
u (A) = {e ∈ Zm : Ae = u mod q} (1)

The formulation of the Module based SIS and LWE are similar to that of the standard
assumptions but here the set of integers Z is replaced by the ring of algebraic integers
R = Z[X]/(Xk + 1) of a number field K, over the 2k-th cyclotomic polynomial.
This introduces new parameters, like degree n of the number field, the integer d for the
module rank, field tensor product, etc.
Discrete Gaussian Distribution Let Λ ⊆ Zm be a lattice. The discrete Gaussian
distribution DΛ,s,c is the m- dimensional Gaussian distribution centered at c, but with
support restricted to the lattice Λ. The one-dimensional (continuous) Gaussian distribu-
tion over R, parameterized by s ∈ R+ defined by the density function.

∀x ∈ R : Ds(x) = exp(−π(x/s)2)/s

Short Integer Solution Assumption The SIS assumption was first suggested to be
hard on average by Ajtai [1] and then formalized by Micciancio and Regev [27]. It is
challenging to identify a non-trivial solution to a system of equations over a ring R,
according to the SIS assumption. Given a system of equations of the form Ax = b,
where A is a matrix over a ring R and b is a vector over R, it is assumed that it is
difficult to find a non-zero vector x in Rn such that Ax = b. In this work, we rely on
the (MSIS) assumption [20] with super-polynomial β.

Definition 1. Let n,m, q, β be integer parameters. In the MSIS(n,m, q, β) assump-
tion, the attacker is given a uniformly random matrix A ∈ Rn×m

q her goal is to find
a vector u ∈ Rm

q with u ̸= 0 and ||u||∞ ≤ β such that Au = 0. For parameters
n = n(λ),m = m(λ), q = q(λ), β = β(λ) defined in terms of λ, the SIS(n,m, q, β)
states any PPT attacker A we have

Pr
[
Au = 0 ∧ ||u||∞ ≤ β ∧ u ̸= 0 : A

$←− Rm×n
q ,u← A(1λ,A)

]
≤ negl(λ)

Homomorphic Trapdoors for Identity-based and Group Signatures 7

Learning with Errors Assumption The LWE assumption is the foundation of vari-
ous cryptographic systems such as the various encryption and signature scheme. Regev
[30] showed the hardness of the LWE problem by describing a (quantum) reduction.
LWE is defined as the problem of finding a short vector x such that Ax = b+e mod q,
where A is an n × m matrix over Zq (integers modulo q), b is a vector of length n
over Zq , and e is a random vector of small length. we will need to rely on the Decision
MLWE assumption [4] with super-polynomial γ for the proposed scheme.

Definition 2. Let n,m, q, γ be integer parameters. In the Decision MLWE(n,m, q, γ)
assumption, the attacker is given a uniformly random matrix A ∈ Rm×n

q and her goal
is to find the vector b where b = Ax + e mod q, where x ← Rn

q and e ← Rm
q ,

distinguish the distribution of (A,b) from the uniform distribution over Rm×n
q ×Rm

q .

4 Lattice Trapdoors and Signatures

In the lattice setting, we only have so-called preimage sampleable trapdoor functions
(and no trapdoor permutation). The quality of the trapdoor is defined to be the spectral
norm or the singular values s1. The quality of a trapdoor roughly corresponds to the
Euclidean lengths of its vectors, i.e., the shorter the trapdoor, the better. In this section,
we deliver the trapdoor and the signature schemes derived from it. Here, we level up
the original SIS trapdoor to MSIS for the improved performance of our scheme.

Parameters We define the set of parameters param = {n,m, q, βMSIS, βmax, βinit}
in terms of the parameters required by the trapdoor algorithm in Lemma 1 used in
our scheme, where n = poly(λ), q = O(2poly(λ)), m∗ = O(n log q), βSam = O(n

√
log q);

βmax = 2ω(log λ)d, where d = poly(λ) is the bound on the depth of the circuits
supported by our scheme. Let βMSIS = 2ω(log λ)βmax m = max{m∗, n log q+ω(log (λ))} =
poly(λ) and, finally, βinit = βSam = poly(λ). Let q be a small prime so that we have
MSIS(n,m′, q, βMSIS) assumption hold for all m′ = poly(λ). The following Lemma 1
is obtained by combining concepts from [26,14,8,16,4] to construct the extended HDTF.

Lemma 1. There exist efficient algorithms TrapGen,SamPre,Sam such that the fol-
lowing holds. Given integers n ≥ 1, q ≥ 2 there exists some degree d, k = logq ,
m = d(k + 2), w = dk, C0 is constant we have:

– For any s ≥ ω(
√
log n) the algorithm TrapGen (1n, 1m, s, q) outputs matrices

A ∈ Rn×m
q and its trapdoor td ∈ R(m−w)×w such that A is statistically close to

uniform, td has entries sampled from DR,s and s1(td) ≤ s ·C0. (
√
m− w+

√
w).

– For A ∈ Rn×m
q with trapdoor td, syndrome u ∈ Rn

q and any s ≥ C1·
√
s1(td)2 + 1·

ω(
√
log n), the following distribution is statistically close to DΛ⊥

u (A),s :

{U | U← Sam(A, td,u, s)}

U← Sam(m,n, k, q) samples always a matrix U ∈ Rm×k
q which satisfies ||U||∞ ≤

βSam.

8 Buvana Ganesh, Apurva Vangujar, Alia Umrani and Paolo Palmieri

– For any matrix A ∈ Rn×m
q with trapdoor td, any matrix A′ ∈ Rn×w

q and any
s ≥ C1 ·

√
s1(td)2 + 1 · ω(

√
log n),

DelTrap ([A | A′] , td, s)→ td′ ∈ Rm×w
q

where [A | A′] with distribution independent of td and s1
(
td′

)
≤ s · C0 · (

√
m+√

w). Further, for s̃ ≥ ω(
√
log n) and under the same conditions, the following

distributions are statistically close and{(
A,A′, td′

)
| (A, td)← GenTrap (1n, 1m, s̃) , td′ ← Dm×w

R,s ,A′ := Atd′ +G
}

4.1 Homomorphic Trapdoors

Using the MSIS assumption, we design the HTDF to support the construction of our
scheme using Lemma 1. HTDF is constructed as the following polynomial-time algo-
rithms (HTDF.KeyGen, f , Inv, HTDF.Evalin, HTDF.Evalout) with syntax:

– HTDF.KeyGen(1λ): Select (A, td)← Sam(1m, 1m, q). Set pk := A ∈ Rn×m
q and

sk = td.
– fpk,x: Define a function from f : U → V : fpk,x = AU + xG. f is well-defined

on Rn×m
q , but the domain of f is the subset U ⊂ Rm×m

q to ensure short vectors.
– Invsk,x : Define U← Invsk,x(V) to output U← SamPre(A,V − xG, td).
– We define homomorphic evaluation algorithms used to prove the equivalence of

homomorphism in the signature inputs and outputs.
• HTDF.Evalin(g, (x1,U1), . . . , (xN ,UN)) = U∗

• HTDF.Evalout(g,V1, . . . ,VN) = V∗

Security HTDFs possess the property of standard Chameleon hashes thereby lifting
the security of the scheme from selective to adaptive security for single or MKHS. Per-
haps the most natural security requirement would be one-wayness, meaning that for a
random v ← V and any x ∈ X it should be hard to find a pre-image u ∈ U such that
fpk,x(u) = v. In particular, it should be difficult to find u, u′ ∈ U and x ̸= x′ ∈ X
such that fpk,x(u) = fpk,x′(u′) by the MSIS assumption. This is given the statistical
indistinguishability requirements:

A ≈ A′ (A, td,U,V) ≈ (A, td,U′,V′)

where (A, td) ← TrapGen(1n, 1m, q), A′ ← Rn×m
q and U ← Sam(1m, 1k, q), V :=

AU, V′ ← Rn×k
q , U′ ← SamPre(A,V′, td). The statistical distance between the ran-

dom and calculated value is negligible in λ. Moreover, any U′ ∈ SamPre(A,V′, td)
always satisfies AU′ = V′ and ∥U′∥∞ ≤ βSam.

4.2 Homomorphic Signatures Scheme

The H/S type of signature scheme fixes the public verification key as a trapdoor f
and the signing key as the function’s inverse. To sign a message m, a hash function H
is used to compute y = H(m) in the range of the trapdoor f , and output the signature

Homomorphic Trapdoors for Identity-based and Group Signatures 9

σ = f−1(y). To verify (m,σ), one checks if f(σ) = H(m). Bellare et al. [2] show that
such a scheme is existentially UF-CMA when f is a trapdoor permutation and H is a
hash designed after a RO model.

Following the H/S paradigm, Gorbunov et al. [16] construct a HS scheme using trap-
door function F and message space X using Lemma 1 based on SIS assumption as
follows:

S = (PrmsGen,KeyGen,Sign,Verify,Process,SignEval)

1. PrmsGen(1λ, 1N): Choose V1, . . . ,VN by sampling Vi
$← V and output prms =

(V1, . . . ,VN).
2. KeyGen(prms, 1λ): Choose (pk′, sk′)← HTDF.KeyGen(λ) and set pk = pk′, sk =

(prms, sk′).
3. Signsk(x1, . . . , xN): Sample σi ← Invsk′,xi

(Vi) and output (σ1, . . . , σN).
4. Eval consists of two algorithms: SignEvalpk(g, (x1, σ1), . . . , (xN , σN)), where we

run HTDF.Evalinpk′ on the signatures for function g and output σ. Processprms(g)

where we pre-compute αg = HTDF.Evaloutpk′ (g,V1, . . . ,VN).
5. Verifypk(αg, y, σ): For y = g(x1, . . . , xN), if fpk′,y(σ) = α(g) accept, else reject.

5 Construction of the Identity based Homomorphic Signature

We desire homomorphism as it helps in verifying the output of analysis on encrypted
and signed data, so we make use of H/S-based signature schemes like [16] to create
the IBHS scheme. The majority of constructions use the ABS approach to create the
GS [7,18], which causes a substantial amount of computational overhead. We simply
introduce IBHS to prior approaches in the GS scheme, which ensures tractability and
anonymity.

We follow the notion of labeled data and programs just as [12] to indicate which of
the data, user, and functions are to be signed/evaluated. We consider labeled programs
P , where each input bit of the program has an associated label indicating the data to
be evaluated. A dataset is identified by an arbitrary string ∆, tags τ = {τi}i∈ID, labels
L = ID × τ . This concept is necessary in order to not allow forgeries on any message
using constant functions in the HS scheme that produces a signature σf that links the
output of the computation f(µ) with the computation f itself. In other words, the sig-
nature should bind the output to the function used to compute it, rather than allowing
arbitrary function evaluations.

Introducing identities, identity-based encryption schemes, and in some IBS was per-
formed in the key extraction phase initially where the whole SamPre algorithm was
used to extract the id key. While SamPre is performed at the signing step for us, we
also use a specific trapdoor to ensure homomorphism. This becomes a challenging task.
We retain the structure of Fiore et al. [11] and introduce the extract step to the process
through the process of key delegation for our proposed scheme.

5.1 Definition

Definition 3. An Identity-based Homomorphic Signature Scheme (IBHS) is defined as
a tuple of PPT algorithms IBS = (Setup,KeyExt,Sig,Eval,Verify), where

10 Buvana Ganesh, Apurva Vangujar, Alia Umrani and Paolo Palmieri

1. Setup(1λ): takes as input the security parameter 1λ and outputs a master public
key mpk and a master secret key msk. We assume that mpk implicitly defines a
message spaceM =Mmpk and an identity space ID = IDmpk.

2. KeyExt(msk, id): takes as input a master secret key msk and an identity id ∈ ID
and outputs a secret key skid, we assume that skid implicitly contains id.

3. Sig(skid,m): takes as input a secret key skid and a message m ∈ M and outputs a
signature σ.

4. Eval: Taking as input mpk, message-signature pairs and an arithmetic circuit and
outputs the evaluation of the pairs on the circuit σ∗.

5. Verify(mpk, id,m, σ): is deterministic, takes as input a master public key mpk,
identity id ∈ ID, message m ∈M and signature σ and outputs a bit b ∈ {0, 1}.

5.2 Security Model

The IBHS scheme consists of a Trusted Authority (TA) that distributes the user key
pairs and possesses the master key pairs. We do not consider this authority to be mali-
cious though we may allow attackers to monitor the activities of the trusted authority.
The adversary can try to impersonate the signatures of the existing identities or try to
join the group with maliciously constructed keys. Correctness demands that a signature
generated by an honest and active user is always accepted by algorithm Verify, and that
algorithm Trace can always identify that user.

5.3 Identity-based Homomorphic Signature Construction

Identity-based Homomorphic Signature (IBHS) scheme consists of the following
four polynomial-time algorithms (IBHS.KeyGen, IBHS.KeyExt, IBHS.Sign, IBHS.Eval,
IBHS.Verify). We follow the same notations as [11,16] in order to improve readability
and construct the scheme based on MSIS assumption.

IBHS.KeyGen
(
1λ, 1N

)
. For the public parameter pp = {param,U ,V,M, T , ID} as

given below, we assume that pp as an implicit input for all subsequent algorithms. The
labeled program P = (f, ℓ1, . . . , ℓt) can be generated, where f is any arithmetic circuit
and different labels ℓi. The KeyGen algorithm takes as input the security parameter λ
and generates the public parameters pp which includes the following:

– Class F of boolean circuits.
– Parameters param as defined above from Section 4.
– Preimage/signature space U =

{
U : U ∈ Rm×m

q : ∥U∥∞ ≤ βmax

}
.

– Range space V =
{
V : V ∈ Rn×m

q

}
,

– Message space overM = {0, 1}
– Tags T = [T], T = poly(λ), T ∈ N.
– Identities ID = [N], N = 2λ.
– Label space L = ID × T and label ℓ = (id, τ).

The key generation algorithm takes as input the public parameters pp and gener-
ates a pair (mpk,msk) where mpk = A and msk = td. Using Lemma 1, (A, td) ←
TrapGen (1n, 1m, q) to generate a matrix A ∈ Rn×m

q along with its trapdoor td.

Homomorphic Trapdoors for Identity-based and Group Signatures 11

IBHS.KeyExt(msk, id). Define a function H such that H(mpk, id) = Hid = ARid +

G where Rid is randomly sampled from Rn×n log q
q . Then, use the trapdoor delegation

algorithm to extend the trapdoor from td to tdid ← DelTrap([A | Hid], td, s), where s
is a bound for the trapdoor delegation using the Lemma 1. It returns upkid = [A | Hid],
uskid = tdid.

IBHS.Sign (uskid, ℓ,m). The signing algorithm takes as input a user secret key uskid,
a label to indicate V’s and id of the signer ℓ = (id, τ), a message m. The signature
is of the form ∀ id ∈ I, where I ⊆ ID and their respective signatures Uid ∈ U is
represented as

σi = (mi, I, {Uid}id∈I) (2)

where Uid ← SamPre(A,Vℓ −mG, tdid) using Lemma 1.
Because of the evaluation phase, the signature gets updated from I = {id} to differ-

ent signers to maintain the full history of the signatures.

IBHS.Eval(g, {σi}i∈[t]). The evaluation algorithm takes g :Mt −→M for f an arith-
metic circuit over Rq with additions and multiplications, a set of signatures {σi}i∈[t]

where t ≤ T ·N with a set of evaluation keys implicitly for further calculations. From
[16,11], we follow how to evaluate additions or multiplications with two inputs. This
can be extended to as many inputs as desired.

Let f be a such an arithmetic gate with inputs σ1 = (m1, I1,U1) and σ2 = (m2, I2,U2).
To generate the evaluated signature σ, first set I = I1 ∪ I2. To ensure that both signa-
tures to be evaluated are the same size, check if every id in I is in I1 or I2 and set Ûid

i to
Uid

i if present and to 0m if in the other set to form Û1 and Û2. This is to make sure that
both signatures can be combined over the same number of parties, |I|. For i = {1, 2},
let the noise be βi = ∥Ui∥∞ for each signature.

– If g is addition, compute m = m1 +m2

U = {Ûid
1 + Ûid

2 }id∈I; (3)

– If g is multiplication, compute m = m1 ·m2 and V1 =
∑

id∈I1
AidUid +m1G.

U = {Uid}id∈1 =
{
m2Û

id
1 + Ûid

2 ·G−1 (V1)
}
id∈I

(4)

Scalar multiplication can be performed similarly.

IBHS.Verify(P, {upkid}id∈P ,m, σ). Here, the verification algorithm takes as input a
labeled program P , the set of the verification keys {mpkid}id∈P of users involved in
the program P , the message m and it’s signature σ. From the circuit g and the values
{Vℓi}i∈[t], compute V∗ for the signatures as done in IBHS.Eval or HTDFout in Sec-
tion 4.2. V∗ can be pre-computed and re-used every time to verify for the same P . It
then performs the following checks and rejects if at least one check fails, otherwise it
accepts the signature.

12 Buvana Ganesh, Apurva Vangujar, Alia Umrani and Paolo Palmieri

1. The list of identities in σ should match with the labels of P; I = {id : id ∈ P}.
2. The verification algorithm parses U = {Uid}id∈I and checks if

– The noise is bounded such that ∥U∥∞ ≤ βmax

–
∑

id∈I AidUid +mG = V∗

Correctness The correctness of the IBHS.Verify can be checked easily using Lemma
1 and the use of labeled programs. The bounded noise growth is an important factor to
be checked. The straightforward construction of V∗ ensures that the input and the out-
put signatures match. This can be checked manually to show and this is done in the
Equation 2. The correctness of the Eval can be verified using the same methods as [11]
because we do not change the process past key extraction.

6 Construction of the Group Signature Scheme

As a consequence of the construction of the IBHS scheme, we construct a GS scheme
as per Def. 4. We developed the IBHS scheme first to demonstrate key extraction and
the updations and then leveled it up into the GS scheme by making minor alterations to
the construction. The signature is homomorphic only when the signature corresponds to
the same person. We demonstrate the construction for just one group, as the extension
to multiple groups and hierarchies is straightforward.

We make changes only in the key extraction step to elevate the security of the scheme.
The labeled programs can be indirectly accessed by using another hash VGen : {0, 1}d →
V which generates the values Vi as required. This way we do not reveal identity in the
public parameters of the user. This helps produce shorter keys and obfuscate the identity
of the signer.

6.1 Definition

A GS scheme consists of a group manager GM who chooses who can join the group,
a tracing manager TM who can open signatures, and a group of possible group mem-
bers. We can collapse the two managers to the same trusted authority as well. Users
may join or leave the group at GM’s discretion.

Definition 4. A Group Signature (GS) scheme consists of the following seven polynomial-
time algorithms:

GSMSIS = (GS.KeyGen,GS.KeyExt,GS.Sign,GS.Verify,GS.Trace)

– GS.KeyGen : On input security parameter λ and the number of users N , along with
the public parameters pp, it generates as output (gpk, {gski}i∈N) for GM and for
TM it generates gok.

– GS.KeyExt : Using the {gski}i∈N , extract the user secret keys whenever a new user
joins the group. Taking as input id ∈ ID, it outputs a user secret key uskid of a user.

– GS.Sign : Taking as input gpk, user secret key uskid of the sender, and a plaintext
message m ∈M, it outputs a signature σid.

– GS.Verify : Taking as input (gpk,m, σ∗), this algorithm returns 1 if is valid relative
to gpk.

– GS.Trace : Using the opening key gok and (gpk,m, σ∗), the TM traces which of
the users in the group signed the message and outputs in id otherwise ⊥.

Homomorphic Trapdoors for Identity-based and Group Signatures 13

6.2 Security Model

A GS scheme consists of a group manager GM who chooses who can join the group,
a tracing manager TM who can open signatures, and a group of possible group mem-
bers. Users may join or leave the group at GM’s discretion. We can collapse the TM
and GM to be the same authority that is trusted. The adversary model follows from the
IBHS. We require the following properties in addition to the unforgeability to provide
security for GS.

Anonymity requires that it is infeasible for any PPT adversary to distinguish signa-
tures generated by two active users of its choice at the chosen epoch, even if it can
corrupt any user, can choose the key of GM, and is given access to the Trace oracle.

Traceability ensures that the adversary cannot produce a valid signature that cannot
be traced to an active user at the chosen epoch, even if it can corrupt any user and can
choose the key of TM. Tracing Soundness requires that it is infeasible to produce a valid
signature that traces to two different users, even if all group users and both managers
are fully controlled by the adversary.

6.3 Secret Key Encryption

The introduction of an SKE scheme is essential to maintain the anonymity of the
user who signs on behalf of the group. The decryption of this circuit is used in the
Trace function in order to identify who signed the GS. The decryption key is only pos-
sessed by the trusted authority who generates it, like the GM or TM. The SKE consists
of three polynomial time algorithms SKE = (SKE.KeyGen,SKE.Enc,SKE.Dec). The
use of SKE is common to all GS schemes in lattices proposed so far and therefore is
not an overhead.

We follow the GSW construction [15] for encryption as the structure of the schemes
matches very effectively. While this is only Chosen Plaintext Attack (CPA) secure be-
cause of the homomorphism, it can be upgraded to Chosen Ciphertext Attack (CCA)
security by working in conjunction with a MAC as suggested in [18]. We do not con-
sider the CCA notion of security as the signatures under a single key are homomorphic
already, therefore exhibiting only CPA-like properties. This SKE would be secure under
the MLWE problem by upgrading to appropriate parameters.

6.4 GS Construction

GS.KeyGen
(
1λ, 1N

)
. The KeyGen algorithm takes as input the security parameter

λ and the parameter from IBHS such as F , param,V,M, T ,L with group identities
GID = [N], N = 2λ, gid ∈ GID. It gives the output as the public parameters
pp = (param,U ,V,M, T ,GID). It outputs the keys (gpk, gsk, gok) where gpk = A,
gsk = td, and gok = {s, e}. Using a random s and error e chosen according to MLWE

parameters, we calculate the encryption key for the SKE as B =
[

A
sA+e

]
. Using Lemma

1, (A, td)← TrapGen (1n, 1m, q) to generate a matrix A ∈ Rn×m
q along with its trap-

door td.

14 Buvana Ganesh, Apurva Vangujar, Alia Umrani and Paolo Palmieri

GS.KeyExt(gsk, gid). For every group user gid, encrypt the identity as Hgid such that
Hgid = SKE.Enc(gsk, gid) where R is randomly sampled from Rn×nlog q

q . In the fol-
lowing construction, in order to match the number of rows in the DelTrap phase, we
can add a zero vector to A to generate the extended basis. Then, use the trapdoor dele-
gation algorithm to extend the trapdoor from td to tdgid ← DelTrap([A | Hgid], td, s),
where s is a bound for the trapdoor delegation using the Lemma 1. For the label
space of the user, perform VGen(seed) = {Vi}i∈[T]. It returns group user public key
gevkgid = {Hgid, seed}, the group user secret key guskgid = tdgid, .

GS.Sign (guskgid, seed,m). The signing algorithm takes as input group user secret key
guskgid, a label to indicate V’s and gid of the signer ℓ = (gid, τ), a message m. The
signature is given by Ugid ← SamPre(A,Vℓ−mG, tdgid) using Lemma 1. Therefore,
the signature Ugid ∈ U is given similarly as Equation 2 and for group setting it gives
output as signature σi = (mi, gevkgid,Ugid).

GS.Verify(gpk,m, σ). Here, the verification algorithm takes as input a labeled program
P , the set of the verification keys gpkgid of users involved in the program P , the mes-
sage m and it’s signature σ = (m, gevk,U). Compute from the circuit f and the values
{Vℓ1 , . . . ,Vℓt}, computes V∗ for the general circuit on the signatures as in IBHS.Eval
in Section 4.2. The verification algorithm parses U and checks:

1. ∥U∥∞ ≤ βmax

2. [A | H] ·U+m ·G = V∗

GS.Trace(gpk, gok,m, σ). It first runs Verify(P, gpk,m, σ) and returns ⊥ if the ver-
ification result is ⊥. Otherwise, it parses σ = (m,H,U). It then computes d =
SKE.Dec(gok, σ) which returns the gid of the user. As the SKE is secure under MLWE,
this cannot be opened by anyone else.

Correctness The correctness of the GS scheme follows directly from the correctness
of the IBHS and the SKE. We can easily prove that a signature that was correctly gener-
ated passes the verification. As the signing and verification are taken directly from the
IBHS, we have IBHS.Verify valid by the correctness of IBHS. Then, by the correctness
of SKE, we have the Trace as also valid. Therefore, the GS.Verify step is valid.

7 Security Proof

Any HS scheme fails to fulfill the typical condition for unforgeability since the at-
tacker is permitted to generate new signatures honestly. In a multi-signer setting, the
security of a cryptographic scheme depends not only on the properties of the scheme it-
self but also on the trustworthiness of the signers. The adversary may attempt to corrupt
some signers or generate key pairs with malicious intent to compromise the security of
the scheme.

Homomorphic Trapdoors for Identity-based and Group Signatures 15

Therefore, in such scenarios, it is crucial to thoroughly analyze the unforgeability
of the scheme against insider attacks. Such analysis ensures that even if some of the
signers are compromised, an attacker cannot generate valid signatures that would allow
them to impersonate legitimate signers or forge new messages. Keeping this in mind,
we now prove the security of the IBHS and the GS in the standard model under the
MSIS and MLWE assumption.

7.1 IBHS security

We consider a trusted authority to distribute the usk to the users during the key gen-
eration and extraction phases. We do not consider the trusted authority to be malicious
in our scheme. The adversary can be an external party that has corrupted one of the
users or is trying to impersonate them. If we consider insider corruption, which man-
dates that a group of corrupt signers cannot produce valid signatures outside the queries
of the adversarial model, NIZK can be used as a viable solution and can sometimes be
combined with Chameleon hashes to achieve adaptive security.

Theorem 1. The scheme IBHS = (KeyGen,KeyExt,Sign,Eval,Verify) described in
Sec. 5.3 is secure under UF− CMA, assuming that the MSIS assumption is hard for
parameters β, s as in Sec. 5.3, if for every PPT adversary A the advantage that the
Game 1 succeeds is negligible in λ.

Proof. We first consider the security of MKHS and adapt to the IBHS scheme. The
HTDF immediately provide selective security which can be transformed to adaptive se-
curity of the HS schemes using the different key pairs for signing. The reason behind
this is that the trapdoors are pre-image sampleable only, not trapdoor permutations.
There is no known construction of trapdoor permutations in lattices. According to Cata-
lano et al. [9], the scheme we have already considered from [11] for MKHS satisfies
semi-adaptive security, which can be extended to strong adaptive security by combining
an OR gate based HS scheme derived from the HS to the original scheme. In order to
thwart statistical learning attacks on trapdoor sampling, it is crucial to use a discrete
Gaussian distribution for randomness, despite its high cost.

Since this scheme works for a single dataset, Type 1 forgeries mentioned in Def. 2.1
cannot occur. However we do use multiple messages and tags, we do have to consider
the other two forgeries. The Type 2 forgery equates to breaking MSIS in the function
f defined in 4.2. While Type 2 forgeries focus on a tuple of original messages, Type 3
forgeries focus on the labeled program and group identities. They can be easily related
to the way key extraction is performed, to thwart identity impersonation and reuse of
labeled programs.

16 Buvana Ganesh, Apurva Vangujar, Alia Umrani and Paolo Palmieri

Algorithm 1 Game UF-CMA
(Lid,Lm)← A(1λ)
(mpk,msk)← Setup(1λ)
for id ∈ Lid :

uskid ← KeyExt(msk, id)
Lusk := Lusk ∪ uskid

for (id,m) ∈ Lm :
σ ← Sign(uskid,m)
LSign := LSign ∪ σ

(P∗,m∗, I∗, σ∗)← AH(mpk,Lusk,LSign)
if I∗ ∈ Lid : return 0
if (P∗,m∗) ∈ LP : return 0
return Verify(P∗,mpk, I∗,m∗, σ∗)

We assume that the adversary has the list of all queries for messages signed, identities
used, and signatures. The challenger has only the master secret key which is updated af-
ter the key extract in addition to what the adversary possesses. With all the information
like the signature and message list, the adversary produces a signature such that for an
identity and message pair not in the list, the probability that the verification algorithm
returns 1 is negligible.

If the adversary A wins the game, i.e., IBHS.Verify(P∗,mpk,m∗, σ∗) = 1, then
the adversary has produced the signature σ∗ for the messages evaluated under the
function f∗ in P∗ for at least one identity that is not present in the list of IDs al-
ready, i.e., then if σ is obtained by honestly evaluating the P∗ on the messages, then∑

id∈I AidUid +m ·G =
∑

id∈I∗ AidU
∗
id +m∗ ·G.

For the difference Û = U∗
id−Uid computed through IBHS.Eval, and m̂ = m∗−m,

then AÛ+ m̂ ·G, for every id in the labeled program. By assuming a certain random
r, s = Ar and r′ = G−1(m̂−1s), we can go on to prove that such a signature can be
produced only when A(Ûr′−r) = 0, by substitutions. This can only be possible when
the MSIS problem is not hard. Also, by choosing a small enough r, the condition that
the vector (Ûr′ − r) be small is also satisfied.

The statistical closeness of the Vi for those constructed using the function f de-
scribed in Sec. 4.2, i.e., V = VU +G for the key extraction process makes it secure
to protect the user secret key from A The main difference between our scheme and the
multi-signature scheme described in [11] is the way that the keys are extracted, enabling
the formation of a GS. The trapdoor delegation is secure as long as the msk is under a
trusted authority that distributes the user secret keys. The value of Hgid is considered
secure under MSIS as similar proofs can be seen for hash functions under the Ring SIS
assumption in [18]. Therefore, our IBHS scheme is secure under the MSIS assumption.

7.2 GS security

We do not consider cache-based attacks formally because even though the identity
is encrypted, the adversary can find out that the same identity has been signed multi-

Homomorphic Trapdoors for Identity-based and Group Signatures 17

ple times because of the presence of the labeled programs in the Verification algorithm
which is a part of the public parameters.

Lemma 2. The GS scheme described in Sec. 6.4 preserves the anonymity and the trace-
ability of the scheme under the MLWE assumption

Proof. We prove the anonymity aspect of the construction, i.e., nobody can trace which
identity signed the group signature. For this we follow the sequence of games defined
similarly to [18] as that remains valid. We add another game to the sequence as the sig-
natures allow homomorphism for the same identity. Let E be the event ofA succeeding
with negligible probability.
Game 0: We define this as an experiment between the challenger and the adversary A.
Here, we have Pr [E0] = ϵ.
Game 1: Here, A tries to use the signatures already queried and matches the H values
and creates a new signature by running IBHS.Eval on the signatures. In this case, the
signature passes GS.Verify as the values match and the evaluation algorithm is correct.
Therefore A cannot break find the identity or the gusk to impersonate the signer as that
would imply breaking the IBHS scheme which in turn breaks MSIS.

The encryption step in GS.KeyExt generates Hgid for every gid and this step is run
by the trusted authority as it involves the msk and then the extracted user signing key is
distributed to the users. The DelTrap algorithm cannot be replicated without the master
secret key. The Hgid value is given along with the signature to add it to the verification
step. Though A can notice that two signatures are signed by the same party because of
the matching Hgid, they cannot extract the identity as it is equivalent to breaking the
MLWE assumption. Therefore, Pr [E1] ≥ Pr [E0]− negl(λ).
Game 2: In this game, the way {V(i)

i∈[T] are chosen is changed. At the beginning of the
game, the challenger receives 1N , {i}i∈[N], and a non empty S ⊆ GID from A. Then,
the challenger samples R(i) for i ∈ [N] and sets the matrices as

V(i) =

{
AR(i) + iG if i ∈ S
AR(i) + iminG if i /∈ S where imin := min{i | i ∈ S}.

Then the challenger gives
{
guski :=

(
R(i)

)}
i∈S to A. By Lemma 1, the distribu-

tion of
(
A,

{
V(i)

}
i∈[T]

,
{
R(i)

}
i∈S

)
in both games are statistically close. Also, the

DelTrap in the lemma follows the statistical closeness as well. Therefore, we have
Pr [E2] ≥ Pr [E1]− negl(λ).

The identity may appear redundantly in the labeled program where the function and
the identity are intertwined. But this proves that it is negligible to succeed with the
sampling also because of the hashing algorithm for the seed. This method is also rec-
ommended in [16] for shorter keys and in our case means that the values can be cached
but the identity is not revealed.
Game 3: In this game, we change the way A is sampled. Namely, the challenger sam-
ples only A instead of sampling it with the trapdoor using TrapGen and DelTrap. By
the Lemma, the distribution of A in this game is statistically close to that of the previous
game. Therefore, we have Pr [E3] ≥ Pr [E2]− negl(λ).

18 Buvana Ganesh, Apurva Vangujar, Alia Umrani and Paolo Palmieri

Secondly, we prove the traceability of the scheme by making sure that only the trusted
authority with the opening key will be able to trace the identity of the signer. This is
straightforward as the TM is the only entity with the opening key, which is the decryp-
tion key of the SKE. It is easy to see when GS.Open is invalid then the i /∈ GID.
Therefore, the trusted authority can find the identity of the signer by decrypting Hgid.

Theorem 2. The GS scheme described in Sec. 6.4 is secure against unforgeability un-
der the MSIS assumption and provides anonymity and traceability under the MLWE
assumption.

Proof. Assume that the challenger always aborts if the message and signature pair is
from a list of queries already performed as the homomorphism allows new signatures to
be obtained in this manner. The labeled program is very useful here in order to C only
consider a signature only if it is either on a message or an identity that has already not
been queried. The unforgeability follows from the construction of the IBHS scheme and
the game described in 1. The proof for the anonymity and trace follows from Lemma 2.
Altogether the GS is secure under both the MSIS and MLWE assumptions.

8 Improvements

We do not implement the scheme as implementations are not widely available for GS
schemes under the standard model based on the MSIS problem [7,18]. Therefore, we
compare the performance to other static GS schemes under the Standard model with
parameters like key size and signature size.

Succinctness The derived signature should be short, with length independent of the
size of the data to avoid further attacks. If a signature of lattice-based signature schemes
consists of a single lattice vector, i.e., it increases at a rate of order O(1), the size of
the signature is called short. In our scheme, because the signature U ≤ βmax, the
signatures even after evaluation are bounded.

Therefore for the IBHS scheme, the signature size depends linearly on the number of
participants while the size of each signature remains the same. This is made possible
because of the homomorphism of the underlying scheme. In the GS scheme, as there is
only one signature representing the group, the signature size is succinct and bounded.

Packing SIMD techniques are used to perform operations on multiple elements of
data simultaneously. One of the popular SIMD methods used in lattice-based cryptogra-
phy is the Chinese Remainder Theorem (CRT) packing, which splits a Ring of integers
into several smaller rings, each of which can be represented using a smaller modulus. If
q = q1, q2, · · · , qk be a product of small primes, where qi are chosen such that q is larger
than all the coefficients in the secret and error vectors. This enables us to represent the
vector using several smaller integers instead of a single larger integer. CRT packing is
particularly useful for lattice-based encryption schemes that use ideal lattices. The use
of CRT packing in ideal lattices enables efficient SIMD operations on ciphertexts. This
enables efficient SIMD operations on ciphertexts, such as addition and multiplication.

Homomorphic Trapdoors for Identity-based and Group Signatures 19

9 Conclusion and Future works

In this paper, we propose a new approach to constructing group signature schemes
using HTDFs. Group signature schemes are an important primitive in cryptography
that provides anonymity and traceability for a group of users. Our approach focuses on
constructing an identity-based homomorphic signature scheme that is simpler in con-
struction and requires less discrete Gaussian sampling and no NIZK proofs.

Our proposed scheme allows packing more data into the signatures by elevating the
existing homomorphic trapdoor from the SIS assumption to the MSIS assumption to
enable packing techniques. We compare our scheme with other static multi-signature
schemes constructed with some hierarchy to explore efficiency. Our results show that
our proposed scheme outperforms previous schemes in terms of efficiency and provides
strong unforgeability.

We also provide some ways to make our scheme more functional.

– Dynamic setting: The scheme presented in this paper is proposed in a static setting
and can be made dynamic by introducing an access structure like Merkle Trees or
Bloom Filters and then combined with NIZKs and SKE to generate signatures that
can be verified based on time like the work of [7]. Also, the ZK proof provides a
way to avoid insider corruption.

– Context hiding: The property of homomorphism can reveal which signatures have
been modified to output the current signatures. The homomorphism can be removed
and rectified by introducing a hiding signature using [8] or by using NIZKs in the
signature.

– Increasing efficiency: Using Fast Fourier Transforms can speed up computation.
Discrete Gaussian sampling can now be efficiently done in lattice structures like
rings due to recent advancements, and this has been used by FALCON to speed
up their GPV-based signature scheme. The extension requires a full-rank CRT en-
coding for value aggregation during sampling. Our scheme can also be made more
succinct by introducing SNARKs to the signature protocol.

– Parametrization: Providing concrete parameters can aid with the implementation of
the scheme in the future.

We believe that our proposed scheme provides an efficient and secure solution for GS
schemes using HTDF. This can have important implications for various applications in
cryptography, where GS schemes are required to provide anonymity and traceability in
a secure manner.

References

1. Ajtai, M.: Generating hard instances of the short basis problem. In: Automata, Languages
and Programming: 26th International Colloquium, ICALP’99 Prague, Czech Republic, July
11–15, 1999 Proceedings 26. pp. 1–9. Springer (1999)

2. Bellare, M., Micali, S.: How to sign given any trapdoor permutation. J. ACM 39(1), 214–233
(1992)

20 Buvana Ganesh, Apurva Vangujar, Alia Umrani and Paolo Palmieri

3. Bendlin, R., Krehbiel, S., Peikert, C.: How to share a lattice trapdoor: Threshold protocols
for signatures and (H)IBE. In: Applied Cryptography and Network Security. Lecture Notes
in Computer Science, vol. 7954, pp. 218–236. Springer (2013)

4. Bert, P., Eberhart, G., Prabel, L., Roux-Langlois, A., Sabt, M.: Implementation of lattice
trapdoors on modules and applications. In: Post-Quantum Cryptography - 12th International
Workshop, PQCrypto 2021,Proceedings. Lecture Notes in Computer Science, vol. 12841,
pp. 195–214. Springer (2021)

5. Boschini, C., Camenisch, J., Neven, G.: Floppy-sized group signatures from lattices. In:
Applied Cryptography and Network Security - 16th International Conference, ACNS 2018,
Leuven, Belgium, July 2-4, 2018, Proceedings. Lecture Notes in Computer Science, vol.
10892, pp. 163–182. Springer (2018)

6. Boyen, X., Fan, X., Shi, E.: Adaptively secure fully homomorphic signatures based on
lattices. Cryptology ePrint Archive (2014)

7. Canard, S., Georgescu, A., Kaim, G., Roux-Langlois, A., Traoré, J.: Constant-size lattice-
based group signature with forward security in the standard model. In: Provable and
Practical Security: 14th International Conference, ProvSec 2020, Singapore, November
29–December 1, 2020, Proceedings 14. pp. 24–44. Springer (2020)

8. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis.
J. Cryptol. 25(4), 601–639 (2012)

9. Catalano, D., Fiore, D., Nizzardo, L.: On the security notions for homomorphic signatures.
In: Applied Cryptography and Network Security - 16th International Conference, ACNS
2018, Leuven, Belgium, July 2-4, 2018, Proceedings. Lecture Notes in Computer Science,
vol. 10892, pp. 183–201. Springer (2018)

10. Ducas, L., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehlé, D.: CRYSTALS -
dilithium: Digital signatures from module lattices. IACR Cryptol. ePrint Arch. p. 633 (2017)

11. Fiore, D., Mitrokotsa, A., Nizzardo, L., Pagnin, E.: Multi-key homomorphic authenticators.
IET Inf. Secur. 13(6), 618–638 (2019)

12. Freeman, D.M.: Improved security for linearly homomorphic signatures: A generic frame-
work. In: Public Key Cryptography - PKC 2012 Proceedings. Lecture Notes in Computer
Science, vol. 7293, pp. 697–714. Springer (2012)

13. Gennaro, R., Wichs, D.: Fully homomorphic message authenticators. In: Advances in
Cryptology-ASIACRYPT 2013: Proceedings, Part II 19. pp. 301–320. Springer (2013)

14. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic
constructions. In: Proceedings of the 40th Annual ACM Symposium on Theory of Comput-
ing, Victoria, British Columbia, Canada, May 17-20, 2008. pp. 197–206. ACM (2008)

15. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors:
Conceptually-simpler, asymptotically-faster, attribute-based. In: Advances in Cryptology
- CRYPTO 2013 Proceedings, Part I. Lecture Notes in Computer Science, vol. 8042, pp.
75–92. Springer (2013)

16. Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic signatures from
standard lattices. In: Proceedings of the forty-seventh annual ACM symposium on Theory
of computing. pp. 469–477 (2015)

17. Hiromasa, R., Manabe, Y., Okamoto, T.: Homomorphic signatures for polynomial functions
with shorter signatures. In: The 30th symposium on cryptography and information security,
Kyoto (2013)

18. Katsumata, S., Yamada, S.: Group signatures without nizk: from lattices in the standard
model. In: Advances in Cryptology–EUROCRYPT 2019: 38th Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, Darmstadt, Germany,
May 19–23, 2019, Proceedings, Part III 38. pp. 312–344. Springer (2019)

Homomorphic Trapdoors for Identity-based and Group Signatures 21

19. Lai, R.W., Tai, R.K., Wong, H.W., Chow, S.S.: Multi-key homomorphic signatures unforge-
able under insider corruption. In: Advances in Cryptology–ASIACRYPT 2018: Proceedings,
Part II. pp. 465–492. Springer (2018)

20. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices. Designs,
Codes and Cryptography 75(3), 565–599 (2015)

21. Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-based
accumulators: Logarithmic-size ring signatures and group signatures without trapdoors.
In: Advances in Cryptology - EUROCRYPT 2016 - Proceedings, Part II. Lecture Notes in
Computer Science, vol. 9666, pp. 1–31. Springer (2016)

22. Ling, S., Nguyen, K., Wang, H.: Group signatures from lattices: Simpler, tighter, shorter,
ring-based. In: Public-Key Cryptography - PKC 2015, Proceedings. Lecture Notes in
Computer Science, vol. 9020, pp. 427–449. Springer (2015)

23. Ling, S., Nguyen, K., Wang, H., Xu, Y.: Constant-size group signatures from lattices. In:
Public-Key Cryptography - PKC 2018 - 21st IACR International Conference on Practice and
Theory of Public-Key Cryptography, Rio de Janeiro, Brazil, March 25-29, 2018, Proceed-
ings, Part II. Lecture Notes in Computer Science, vol. 10770, pp. 58–88. Springer (2018)

24. Ling, S., Nguyen, K., Wang, H., Xu, Y.: Lattice-based group signatures: Achieving full
dynamicity (and deniability) with ease. Theor. Comput. Sci. 783, 71–94 (2019)

25. Luo, F., Wang, F., Wang, K., Chen, K.: A more efficient leveled strongly-unforgeable fully
homomorphic signature scheme. Information Sciences 480, 70–89 (2019)

26. Micciancio, D., Peikert, C.: Trapdoors for lattices: Simpler, tighter, faster, smaller. In:
Advances in Cryptology - EUROCRYPT 2012 Proceedings. Lecture Notes in Computer
Science, vol. 7237, pp. 700–718. Springer (2012)

27. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian
measures. SIAM Journal on Computing 37(1), 267–302 (2007)

28. Pan, J., Wagner, B.: Short identity-based signatures with tight security from lattices. In:
Post-Quantum Cryptography - 12th International Workshop, PQCrypto 2021, Proceedings.
Lecture Notes in Computer Science, vol. 12841, pp. 360–379. Springer (2021)

29. del Pino, R., Lyubashevsky, V., Seiler, G.: Lattice-based group signatures and zero-
knowledge proofs of automorphism stability. In: Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2018, Toronto, ON, Canada,
October 15-19, 2018. pp. 574–591. ACM (2018)

30. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. Journal
of the ACM (JACM) 56(6), 1–40 (2009)

	Homomorphic Trapdoors for Identity-based and Group Signatures

