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Abstract—Tremendous efforts have been made to improve the
efficiency of secure Multi-Party Computation (MPC), which
allows n ≥ 2 parties to jointly evaluate a target function
without leaking their own private inputs. It has been confirmed
by previous researchers that 3-Party Computation (3PC) and
outsourcing computations to GPUs can lead to huge per-
formance improvement of MPC in computationally intensive
tasks such as Privacy-Preserving Machine Learning (PPML).
A natural question to ask is whether super-linear performance
gain is possible for a linear increase in resources. In this paper,
we give an affirmative answer to this question.

We propose Force, an extremely efficient 4PC system for
PPML. To the best of our knowledge, each party in Force

enjoys the least number of local computations, smallest graphic
memory consumption and lowest data exchanges between par-
ties. This is achieved by introducing a new sharing type X -share
along with MPC protocols in privacy-preserving training and
inference that are semi-honest secure with an honest-majority.
Our contribution does not stop at theory. We also propose en-
gineering optimizations and verify the high performance of the
protocols with implementation and experiments. By comparing
the results with state-of-the-art researches, we showcase that
Force is sound and extremely efficient, as it can improve the
PPML performance by a factor of 2 to 38 compared with other
latest GPU-based semi-honest secure systems, such as Piranha

(including SecureML, Falcon and FantasticFour), CryptGPU

and CrypTen.

Index Terms—MPC, privacy-preserving machine learning, four
party computation

1. Introduction

Values have been constantly generated from machine
learning (ML) over mass data collected from different users.
On the other hand, the importance of privacy and data
security have also been increasingly recognized, and more
than 70% of world countries and regions have installed
legislation for privacy and data security [69]. Technically,
it is a good starting point to always keep sensitive data

at local storage and never reveal them on the Internet in
plaintext, but to preserve the usability of data distributed
across owners remains challenging.

Secure multi-party computation protocols (MPC) have
been designed for multiple parties to jointly compute a
function without revealing their own secret inputs. Start-
ing from the two-party case (2PC), frameworks have been
proposed [38, 41, 59] to offer various trade-offs of security
and performance. Extending 2PC to three party protocols
(3PC), especially by tailoring the secret shares such that a
single corrupted party cannot learn anything useful about
the complete secret value, leads to a large leap in per-
formance [6, 7] in the honest majority setting. Follow-up
works [1, 42, 67] have proposed algorithmic and engineering
optimizations to bring MPC closer to real-world and high-
throughput applications, such as privacy-preserving machine
learning (PPML), although a giant gap still remains.

Thus natural questions to ask are: Can 4PC be non-
trivially faster than 3PC? Can 4PC undertake tasks that
are previously impossible in 3PC? In this paper, we give
an affirmative answer to these questions. By introducing
a new sharing type X -share and a new set of protocols,
our new Force framework for 4PC is not only secure at
its cryptographic core, but more importantly, it outperforms
cutting-edge 2PC/3PC/4PC solutions for privacy-preserving
machine learning remarkably by a factor of 2 to 38.

More specifically, we make the following contributions.
• New 4PC Protocols for Multiplication on GPU. Our

idea is inspired by the 3PC multiplication based on
replicated sharing [1, 13], but with a brand new sharing
types called X -share (§4.1.3) tailored for four non-
colluding parties. Benefiting from these new shares, our
4PC matrix multiplication protocol achieves the lowest
number of local multiplications and number of ring
elements sent/received by each party (See Table 2).

• New 4PC Protocol for Comparison, Sharing Type
Conversion and Truncation. There are a large number
of non-linear operations in PPML, so we still follow
the mixed-protocol approach proposed by ABY-style
MPC frameworks [20, 54, 59] and design novel share
conversion protocols. With a new type of correlated



TABLE 1: Comparison of Force and state-of-the-art works against semi-honest adversaries. In both LAN and WAN setting,
we show our max boosting factor against other frameworks. We denote Parallel-prefix Adders circuit as PPA.

Setting Ref. Year Platform Linear Ops Non-Linear Ops LAN WAN
Training Inference Inference

2PC Cheetah[34] 2022 CPU FHE cOT - 1234x 70x
P-SecureML[55, 73] 2022 GPU/CPU 2-out-of-2 Arithmetic PPA with 2o2/GC 14x 5.8x 13x

3PC CryptGPU[67] 2021 GPU Replicated Sharing (RS) PPA with RS 6.5x 14x 10x
P-Falcon[71, 73] 2022 GPU/CPU RS PPA with RS 2.1x 3.1x 2.4x

4PC
CrypTen[42] 2021 GPU 4-out-of-4 Arithmetic PPA with 4o4 38x 10x 29x

P-FantasticFour[17, 73] 2021 GPU/CPU RS PPA with RS 4.7x 7.4x 10x
Force 2022 GPU X -share PPA with X -share 1 1 1

TABLE 2: Comparison of Force and existing works in
multiplication at each party, secure against semi-honest
adversary. ℓ: bit-length of a ring element, κ: the statistical
security parameter, Comm: bit-length of data communicated,
Mult: number of local multiplication, Add: number of local
addition.

Setting Ref. Setup Online Local
Comm Comm Rounds Mult Add

2PC P-SecureML[55] 2ℓ(κ+ ℓ) 4ℓ 1 3 5

3PC CryptGPU[67] 0 2ℓ 1 3 3
P-Falcon[73] 0 2ℓ 1 3 3

4PC
CrypTen[42] 2ℓ(κ+ ℓ) 8ℓ 1 3 9
P-FantasticFour[73][17] 0 4ℓ 1 7 5
Force 0 2ℓ 1 1 2

randomness, the X -dabit (§4.3.1), our A2B, B2A and
comparison protocol also achieve the least computa-
tional and communication costs. In addition, thanks to
the symmetry of participants in 4PC, we can elim-
inate the communication in 3PC by turning to the
communication-free truncation proposed by SecureML
[55] to keep the precision consistent.

• Overall Optimized Performance in PPML. We also
make fair comparison between the protocols with the
same security parameters, precision, the newest im-
plementation and hardware. For a better insight, we
also include the latest CPU-only framework Cheetah
[34] for inference comparison. An overview of the
evaluation is shown in Table 1.

• Optimized Graphic Memory Usage. Graphic memory
consumption limits the performance and sometimes
even prohibits executing PPML, especially training. On
the other hand, unlike [38, 49, 53, 62], which provide
inference-only implementations, our aim is to train
real-world ML models such as VGG16 [66] with large
batch size in MPC over GPU.
Given X -share (§4.1.3) and our improved carry out
implementation (§5.3), Force greatly reduce the graphic
memory consumption of each party so that it can per-
form PPML training of one large dataset, ImageNet
[64] on large networks like VGG16 with BatchSize =
16, which was not possible in prior solutions.

The paper is organized as follows. After the introduc-
tion, we survey related work in §2. Notations, operations
in PPML and other primitives are introduced in §3. Our
new sharing type and 4PC protocols are presented in §4.

The implementation and evaluation results in PPML are
presented in §5 and §6. Finally, the conclusion and open
questions can be found in §7.

2. Related Work

The related work is summarized concisely here, and
more details of the primitives, such as correlated random-
ness, detailed sharing types and protocols, can be found in
§3 and §4.

2.1. Choice of Sharing Types

Intuitively, shares are values distributed among parties
that can be used to reconstruct the original inputs.

Given a target function, types of shares determine the
efficiency of protocols. If two parties hold boolean shares
(x0, x1) of x ∈ {0, 1}ℓ, i.e., PA holds x0 and PB has x1
with x0⊕x1 = x, then efficient 2PC protocols for evaluating
binary circuits consisting of AND and XOR gates can be
executed [5, 74]. But boolean shares cannot reach high
throughput in arithmetic operations, as the number of gates
is too large even for moderate sized inputs. For example,
a 64-bit multiplier in Bristol fashion circuit provided by
SCALE-MAMBA [47] needs 4033 AND-gates with a depth
of 63, so evaluating such circuits with BGW protocol [5] or
GMW [27] would result in an explosion in data volume
exchanged. Arithmetic shares with x0 + x1 = x ∈ ZM
are more appropriate for algebraic multiplication protocols.
This sharing type enables high-throughput multiplication
protocols in the pre-processing model, where correlated
randomness such as Beaver’s multiplication triples [4] has
been generated in the set-up phase [41] to accelerate the
online phase. The impact of sharing types thus motivates
the mixed protocol approach adopted by ABY (2015) [20]
in computing complicated functions in 2PC for good over-
all performance. More specifically, Arithmetic shares are
used for integer addition and multiplication, while Boolean
shares and Yao shares are used for non-linear operation
such as comparison, and sharing type conversion protocols
(A2B,A2Y,Y2B) are executed when necessary. The major
update in ABY2.0 also lies in its new ⟨⟩-share (see Section
3.1.3 in [59]), which reduces the the communication during
multiplication by half.

Going beyond 2PC, threshold sharing types have often
been proposed to reduce local computation and commu-
nicated data volumes. To outperform generic BGW [5],



Sharemind [6, 7] carefully chose (2, 3)-shares for 3PC.
Replicated shares, a special kind of (2, 3)-share proposed
by Catrina et al. in 2010 [13], are extended by Araki et al.
in 2016 [1] and used by CryptGPU [67] in 2021 to replace
Beaver triples with zero-shares during multiplication, giving
further performance improvement. Therefore, it is logical to
consider new sharing types for efficient 4PC or beyond.

2.2. Privacy Preserving Machine Learning

One of the major challenges for privacy-preserving ma-
chine learning (PPML) is high-throughput. As justified in
[20, 41, 59], correlated randomness, optimal sharing types
and mixed protocol with pre-processing are extremely help-
ful in achieving overall high-throughput. This de facto stan-
dard has been followed by researchers from early attempts
of PPML till now.

To the best of our knowledge, executing neural net-
works (NN) and linear/logic regression in 2PC was first
attempted by SecureML [55] in 2017. The cryptographic
core of SecureML is consisted of ABY shares with correlated
randomness, a suite of 2PC protocols for linear/non-linear
operation and an efficient 2PC truncation, which helps avoid
overflow with high precision. Later attempts like miniONN
(2017) [52], secureNN (2019) [70], Falcon (2020) [71],
Cheetah (2022) [34] and [32, 38, 49, 53, 54, 62, 75] still
follow the mixed protocol approach with various optimiza-
tion for multiplication and approximation methods for other
non-linear operation, such as ReLU and Sigmoid activation
functions. These attempts mainly focus on demonstrating
the asymptotic feasibility of running PPML with 2/3PC or
homomorphic encryption (HE) and provable security of the
system. This might be the primary reason why few of them
has taken advantages of Graphical Processing Unit (GPU)
or adapt the solutions for specific ML frameworks.

2.3. PPML on GPU

Researches on implementing PPML on GPU can be seen
as a tour that starts from two ends and finally meets in the
middle.

The work of Pu et al. [61] in 2011 might be the
first implementation of Yao’s Garbled Circuit (GC) [23]
on GPU. The GFLOPS1 per dollar and watt, as well as
optimized parallelism of GPU, motivated Husted et al. [35]
and Frederiksen and Nielsen [24] to work on more modern
protocols for GC in 2013. Later, cuHE [16] investigated
the accessibility of homomorphic encryption (HE) on GPU.
These pioneering works uncovered the potential of GPU-
friendly MPC, which can usually improve the performance
by a factor up to 60 [24] compared with the CPU-based
peers in high-throughput scenarios.

On the other hand, privacy and security features are
being constantly considered and adopted in ML frameworks.
Secure aggregation and Federated Learning (FL) [8] were
proposed by Google in 2016 for training shared models over

1. Giga (109) Floating Point Operation Per Second

data distributed across users. TensorFlow Privacy was offi-
cially announced [28] in 2019, which incorporates differen-
tial privacy (DP) [21] during the training process. Although
being quite efficient, FL and DP cannot guarantee the same
security as MPC does [39, 68].

Finally, the two ends meet at CrypTen (2020) [42].
While CrypTen still maintains an ABY-style cryptographic
core, the underlying MPC protocols in CrypTen are ab-
stracted in a more ML-oriented way so that it can offer
PyTorch-like [58] interfaces for ML practitioners, mak-
ing the PPML framework more approachable for non-
cryptographers and extensible for arbitrary number of par-
ties.

CryptGPU [67] chooses to extend CrypTen with other
GPU-friendly MPC components in a special case: 3PC.
As mentioned before, the most important measure to boost
MPC performance in CryptGPU are (2, 3)-shares and the
corresponding multiplication/AND protocols besides engi-
neering optimizations. Watson et al. propose Piranha [73], a
modular framework for accelerating generic secret sharing-
based MPC protocols over GPU. With novel engineering
optimizations, Piranha can train real PPML model such as
VGG [66], which was previously impossible on CryptGPU.

For other approaches to implement PPML such as using
designated hardware, we refer the reader to the nice surveys
[10, 30, 57].

3. Preliminaries

TABLE 3: Notations.

Term Meaning
Pi party i
ℓ length of an arithmetic value
ℓB length of a binary value
n number of parties
p number of bits in decimal part
r randomness
θ, ψ, ϕ share-mode of a secret value x, where θ, ψ, ϕ ∈

{AC,AB}
[x]RS a value x is arithmetically replicated shared over Z2ℓ

among three parties
[x]AC a value x is arithmetically AC shared over Z2ℓ ,

where PA, PB hold the same local share, as well
as PC, PD

[x]AB a value x is arithmetically AB shared over Z2ℓ ,
where PA, PC hold the same local share, as well
as PB, PD

[x]4o4 a value x is arithmetically 4-out-of-4 shared over Z2ℓ

[x]
Pi
ψ the local share of Pi of shared value x

⟨x⟩θ a value x is boolean θ shared
⟨xi⟩θ the ith bit of x is boolean shared in θ-mode over Z2

JrKψtoϕ CMS for change share-mode protocol
rPi Pi’s local share of a zero sharing
Πf a protocol for computing function f
Ff4PC ideal functionality for function f in 4PC
sid session id
a

$← S sample a from S uniformly at random

We summarize all important notations in Table 3, and
others will be explained when necessary.



3.1. Layer and Operations in CNN

The development in deep learning and convolutional
neural network (CNN) has brought revolution to computer
vision and other fields [31, 46, 66]. A CNN is usually
consisted of stacked convolutional layers combined with ac-
tivation, (optional) normalization layers, and pooling layers,
and followed by fully connected layers. Here we briefly
introduce each layer.

Convolutional layer A convolutional layer is composed
of d convolutional kernels (See Figure 16 in Appendix).
The input and kernel have same channel depth but different
height and width After one kernel slides over the whole im-
age, a new feature map is produced, i.e., d kernels produce
d feature maps. Stacked d feature maps construct the output
of convolution layer. Convolutional layer mainly involves
matrix multiplication.

Activation layer Activation layer introduces nonlin-
earity to the neural network. Although typical activation
functions include ReLU: f(x) = max(0, x) , Sigmoid :
f(x) = 1

1+exp−x , and Tanh : f(x) = ex−e−x

ex+e−x , in most CNN,
ReLU is preferred, which needs comparison with zero.

Pooling layer Common pooling methods include max
pooling and average pooling. Max pooling selects the largest
value from selected pooling region, while average pooling
computes the average value of the region, i.e., division by
a public constant is included.

Full Connected Layer FC layer computation mainly
involves matrix multiplication and addition. Let W
be the m × n weight matrix. Given the input vec-
tor x = [x0, x1, x2, . . . , xn]

T , the bias vector b =
[b0, b1, b2, . . . , bm]T , the output vector y is computed as
y = Wx+ b.

Optional Normalization Layer Batch normaliza-
tion(BN) [37] is a typical optimization algorithm in neural
network. For a batch input of size (m, d, h, w), each sample
has d feature maps. Firstly, normalization is done over
each feature maps through all the samples in the batch

as x̂ji =
xj
i−E(xj)√
V ar(xj)

and E(xj) = 1
m

k=m∑
k=1

xjk. Then BN

result is achieved by scale and shift as yi = BNγ,β(xi) in
which yji = γx̂ji + β. The scale γ and shift β are trainable
parameters.

Training and Inference of Neural Network The net-
work training includes forward propagation and back prop-
agation. In the forward propagation, the computation is
performed sequentially following the network structure from
the bottom layer until the top output layer.

When training, the loss is computed after each forward
propagation to evaluate the distance between prediction and
true value. In the back propagation, optimization of the
network parameters is done to minimize loss. Stochastic
Gradient Descent (SGD) is the optimization algorithm we
implement, where multiplication and division-by-constant
are used.

3.2. From Layers to Protocols in Force

It is straightforward to see that each layer in CNN can
be decomposed into more fundamental operations, such as
multiplication, division-by-constant and comparison. When
the MPC protocols for each operation are improved in
efficiency, so will the whole system. Therefore, we resort
to the modular approach to organize the building blocks of
Force as shown in Figure 1. where operations and protocols
on each level depends on one or more components below,
which are also protocols.

Force

CNN Layer Conv./FC. Pool. Act. Norm.

Operation Mult. Division Comparison

Protocol L.-1 ΠMult (§4.1.3) ΠDiv (§4.1.5) ΠComp (§4.4)

Protocol L.-0 Πtrunc (§5.2) ΠBitToA (§4.3.2) ΠchMode (§4.1.4)

Pre-processing FPre
4PC impl. by ΠCMSGen §4.1.4 X -dabit (§4.3.1)

Fig. 1: Overview of Force protocols

From bottom up, correlated randomness is prepared dur-
ing the pre-processing phase by FPre

4PC for all parties. When
executing protocols above, parties can use the correlated
randomness and their private inputs to compute the operation
and finally assemble the results.

3.3. Correlated Randomness

Correlated randomness are random values with special
(algebraic) structural relations that are generated during the
pre-processing phase [20, 41, 54, 59] to accelerate the online
phase in MPC.

3.3.1. Replicated Shared Secrets and Zero Shares. As
defined in [1], a secret value x ∈ Z2ℓ is said to be replicated
shared in 3PC, if three random values x0, x1, x2 ∈ Z2ℓ

are sampled with x = x0 + x1 + x2, and the pairs
(x0, x1), (x1, x2) and (x2, x0) are owned by each of the
three parties respectively. We denote such sharing type as
[ ]RS. Addition and subtraction of two replicated shares [x]RS
and [y]RS can be locally computed by parties.

The multiplication of [x]RS and [y]RS in 3PC, however,
requires parties to interact. More specifically, Pi is able to
compute zi = xiyi + xi+1yi + xiyi+1, yielding a 3-out-
of-3 sharing of xy. In order to recover the replicated share
[xy]RS, Pi has to re-share their masked local result zi +αi
to one of the other two parties, where

∑
αi = 0. Such zero

sharing is the correlated randomness that can be derived
from a pseudorandom function (PRF) PRF() with shared
keys [67].

We also call such a sharing type as replicated share in
general, if any share value xi is held by more than one
party. For better readability, we defer the definition of our
new replicated share X -share to §4.1, together with the
corresponding multiplication protocol in 4PC.



3.3.2. For Type Conversion : dabit. The dabit (doubly au-
thenticated bit) is a type of correlated randomness proposed
by Rotaru and Wood [63] to mainly support secure compar-
ison protocol and sharing type conversion. Let b $← {0, 1}
be the randomness to be shared,

∑
the arithmetic sum in

the ring, ⊕ the binary XOR operation. Formally, dabit is
defined as

dabit := ([b], ⟨b⟩) such that b =
∑

[b], b = ⊕⟨b⟩.

To securely generate dabits [63] uses the same tech-
niques explained in [56] such as cut-and-choose in the pre-
processing phase.

3.3.3. Extended dabit : edabit. Recent work [22] of Es-
cudero et al. extends dabit to edabit (extended doubly
authenticated bit). Similar to dabit, an edabit is a tuple of
shares for b = (b0, · · · , bℓ−1)

$← Z2ℓ defined as

edabit := ([b], ⟨b⟩ := (⟨b0⟩, ⟨b1⟩, · · ·, ⟨bl−1⟩))
with b =

∑
[b] and bi = ⊕⟨bi⟩.

Note that parties can generate edabit by simply combin-
ing ℓ dabit, which can be performed locally. Meanwhile, it is
also possible to directly generate edabit without generating
dabit in advance. [22] proposes a protocol to convert locally
generated edabits to a global effective edabit by evaluat-
ing n-input binary adder and then executing a Boolean-to-
Arithmetic (B2A) protocol.

3.4. Threat Model

A semi-honest adversary cannot deviate from the pro-
tocol description, but may try to infer information about
the secret input. As a well studied model, security against
semi-honest adversaries [50] in the honest majority setting
often leads to 2PC and 3PC protocols with good efficiency
[1, 42, 54, 55, 59, 62, 67, 75], while the ones with malicious
security [2, 14, 19, 25, 40, 41, 51, 71, 72] are still too heavy
for large-scale applications in practice [23]. The honest
majority setting is also adopted by 4PC frameworks with
semi-honest or malicious security [9, 15, 17, 42, 43, 44, 60],
where (strictly) less than one half of the parties can be
controlled by an adversary.

We assume confidential, authenticated, and peer-to-peer
channels between different parties. Thanks to the channel,
the adversary can only read, delay or delete messages as
any non-trivial modification can be detected by the parties.

An n-party protocol can be seen as a (probabilistic)
process that maps n inputs to n outputs (one for each
participant). We name such a process as a functionality.
We denote a n-party input as

f = (f1, f2, · · · , fn) :
(
{0, 1}∗

)n → (
{0, 1}∗

)n
, (1)

where f1(), · · · , fn() are process executed by party 1 to
party n, respectively. If we refer to a crytographically secure
functionality, we also call it an ideal functionality or ideal
in short.

Let REALΠ,A,Z denote the output of an environment
machine Z interacting with the adversary A executing the
protocol Π in the real world. Let IDEALF,S,Z denote the
output of Z interacting with a simulator S connected to an
ideal functionality F in the ideal world.

Definition 1 (UC security). Let F be a four-party func-
tionality and let Π be a four-party protocol that computes
F . Protocol Π is said to uc-realizes F with abort in the
presence of static semi-honest adversaries if for every non-
uniform probabilistic polynomial time (PPT) adversary A,
there exists a non-uniform PPT adversary S, such that for
any environment Z

IDEALF,S,Z
c≡ REALΠ,A,Z .

We follow the universally composable framework (UC)
described in detail in [11]. More specifically, we use the
hybrid model, where provably UC-secure components are
abstracted as an ideals in the next proof, to analyze the
security of all components layer by layer in the honest
majority setting.

4. 4PC Protocols

We construct efficient 4PC protocols as building blocks
of Force for PPML. In §4.1, we introduce our new sharing
type X -share and how parties can perform 4PC fixed-point
computations. We highlight that the multiplication based
on X -share reduces the local computation of each party
to only one multiplication. To best of our knowledge, this
becomes the least computation cost comparing to other
sharing construction such as replicated sharing or 2-out-of-2
sharing. In §4.1.4 and §4.3 we show how to utilize a X -dabit
transmitted from dabit [63] to perform conversions between
sharing types and share-mode.

In all the protocol descriptions, we use the term public
parameters to denote all security parameters and cipher-
suites identifiers, and sid the session identifier.

4.1. X -share and Arithmetic Computation

In this section, we show how to perform computations
with decimal fixed-point arithmetic shares with X -share. We
define a fixed point value as a ℓ bit integer using two’s
complement representation, consists of both integer part and
decimal part with ℓ−p bits and p bits respectively. Normally,
addition and subtraction will be directly performed on Z2ℓ ,
since the result is supposed to remain below 2ℓ. Meanwhile,
although the multiplication could be performed in the same
manner, the result must be divided by 2p to maintain the
same p decimal bit precision.

4.1.1. X -share and Share-mode. We begin by introducing
our new sharing type X -share used in our 4PC computa-
tions. X -share can work over both Z2ℓ and Z2 rings in two
modes.

• [·]AC-sharing : We say that a value x is [·]AC-shared
among parties {Pi}, if PA and PB hold the same



Share [x]AC [y]AB [xy]4o4 Resharing as [xy]AC

PA x0 y0 x0y0 x0y0 + rPA + x0y1 + rPB

PB x0 y1 x0y1 x0y0 + rPA + x0y1 + rPB

PC x1 y0 x1y0 x1y0 + rPC + x1y1 + rPD

PD x1 y1 x1y1 x1y0 + rPC + x1y1 + rPD

TABLE 4: Multiplication given two shared values with
inconsistent share modes

value x0, PC and PD hold the same value x1 such
that x = x0+x1. We define [·]Pi

AC to be the share value
of Pi.

• [·]AB-sharing : We say that a value x is [·]AB-shared
among parties {Pi}, if PA and PC hold the same
value x0, PB and PD hold the same value x1 such
that x = x0 + x1. Same as above, we denote the share
of Pi as [·]Pi

AB.
We denote the share-mode as ψ, ϕ, θ, with ψ, ϕ, θ ∈

{AC,AB}. We say that a value x is [·]4o4-shared among
parties {Pi}, if Pi hold share xi respectively such that
x =

∑
xi.

At the first glance, this seems to be the same as 2-out-of-
2 sharing in 2PC that is simply re-used to 4PC setting. But
the most attractive part of X -share is that now we are able
to eliminate most of the heavy local computations in 2PC
and replicated-sharing-based 3PC, with reduced or equal
communication volume of each party (See Fig. 2).

4.1.2. Linearity. If the share-modes of both shared val-
ues are identical, it is easy to observe that the linear
computations can be executed locally with X -share. Given
[·]AC-sharing (or [·]AB-sharing) of secret values x, y and pub-
lic constants e0, e1, parties can locally compute e0[x]AC +
e1[x]AC. The trick continues when parties have to compute
[x]AC + e2, where e2 is a public constant.

Now we consider the case if the share modes of secret
x and secret y are different, e.g. [x]AC and [y]AB. In or-
der to keep the output to maintain either [·]AC-sharing or
[·]AB-sharing, parties have to jointly change the share mode
of y (or x) by executing ΠchMode (see §4.1.4), then locally
compute [x]AC + [y]AC.

4.1.3. 4PC Multiplication. The most important application
of X -share is 4PC multiplication. We begin with computing
[z]4o4 = [x]ψ[y]ϕ, where ψ ̸= ϕ. To perform the multiplica-
tion of two secret values, parties have to jointly compute:

xy = (x0 + x1)(y0 + y1)

= x0y0 + x0y1 + x1y0 + x1y1

Suppose the secret value x is [·]AC-shared and the
secret value y is [·]AB-shared (or reversely), each party
can locally compute exactly one out of four terms shown
in the above equation. This yields a 4-out-of-4 sharing
[z]4o4 = [x]AC[y]AB. For further computations, parties send
their own masked share [z]Pi

4o4+r
Pi to their reshare partner,

where
∑
rPi = 0. Since each zero sharing is fresh, parties

can freely choose to rebuild either [z]AC or [z]AB according

MULT
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4o4 + rPB
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[y]Pi
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[z]Pi

θ = [z]Pi
4o4 + rPi + [z]

Pj

4o4 + rPj

Fig. 2: Demonstration of X -share compared with other share
constructions in multiplication protocol.

to the incoming computations. An illustration of a local
share distribution and computation is provided in Table. 4.

Due to the fact that we are using fixed-point numbers
to represent both x and y, the re-shared result z has to be
truncated to maintain the p decimal bit precision. Remark
that after re-sharing, both [z]AC and [z]AB yields a 2-out-of-2
sharing, thus we are free to apply the truncation technique
Πtrunc introduced by secureML [55] to avoid the additional
communication overhead and round within the truncation
protocols Πtrunc1 and Πtrunc2 proposed by ABY3 [54]. A
detailed description of our multiplication protocol is shown
in Fig. 3. We further provide an overview in Fig. 2 of our
4PC multiplication compared with 3PC, regarding size of
local shares, communication and local computation.

In contrast to linear operation, an unwilling situation for
multiplication is when the share-modes of both secrets x and
y are identical. Parties have to execute the ΠchMode (Fig. 5)
to change the share-mode of either x or y (not both) before
multiplication.

4.1.4. Change Share-mode. Here we present the protocol
ΠchMode for changing share-modes. We first define corre-
lated randomness called changeM sharing or shortly CMS,
denoted as JrKψtoϕ:

• JrKACtoAB: We say that a randomness r is J· KACtoAB-
shared among parties {Pi}, if PA and PC hold sepa-
rately r0 and r1, while PB and PD both hold r, such
that r = r0 + r1. We define JrKPi

ACtoAB to be the share
value of Pi.

• JrKABtoAC: We say that a randomness r is J· KABtoAC-
shared among parties {Pi}, if PA and PB hold sepa-
rately r0 and r1, while PC and PD both hold r, such
that r = r0 + r1. We define JrKPi

ABtoAC to be the share
value of Pi.

Suppose parties are willing to change share-mode of x
from [·]AC-sharing to [·]AB-sharing, we require parties to al-
ready hold JrKACtoAB after the pre-processing phase. During
the execution of ΠchMode, PA and PC simply exchange their



Protocol ΠMult

Private inputs: Parties hold [x]ψ, [y]ϕ, where ψ ̸=
ϕ.
Public inputs: Public parameters, θ.
Outputs: [z]θ with z = xy.
Preprocessing:

• Pi sends (ZeroSGen,Pi, sid) to FPre
4PC, receives

rPi as output.
Protocols:

1. Parties locally compute [z]4o4 = [xy]4o4, where
[z]Pi

4o4 := [x]Pi

ψ [y]Pi

ϕ .
2. We denote Pj

Pi as Pi’s reshare partner.
– If θ = AC: PA and PC set Pj

PA = PC and
Pj

PC = PA, respectively. PB and PD set
Pj

PB = PD and Pj
PD = PB, respectively.

– If θ = AB: PA and PB set Pj
PA = PB and

Pj
PB = PA, respectively. PC and PD set

Pj
PC = PD and Pj

PD = PC, respectively.
3. Each Pi computes ePi := [z]Pi

4o4+r
Pi and sends

ePi to its reshare partner Pj.
4. Upon receiving ePj from Pj

Pi , Pi sets [z]Pi

θ :=
ePi + ePj .

Fig. 3: Four party multiplication protocol

own 2-out-of-2 sharing masked with r0 and r1, obtaining
their new share x0+x1−r0−r1, while PB and PD set their
shares to be r locally. This yields a fresh [x]AB. The CMS
can be generated by computing PRF() with pre-shared keys
in the pre-processing stage. We formally define our CMS
generation protocol ΠCMSGen in Fig. 4, as well as the online
protocol ΠchMode in Fig. 5.

4.1.5. Division. If parties have to jointly divide a public
value γ which is not a power of two, they cannot simply
divide this public value locally, since this operation might
remove the carry bit of the shared values and thus leads to
a incorrect result. We use the truncation protocol Πtrunc2 in
[54] as a division protocol ΠDiv, which consumes a corre-
lated randomness that we call division share ([r]ψ, [r

′]ψ),
where [r′]ψ = [r/γ]ψ. The idea behind this protocol is to
first reveal the shared value [x]ψ masked with [r]ψ. Parties
can compute publicly (x− r)/γ then unmask this value by
computing (x− r)/γ + [r′]ψ locally.

4.2. Boolean Computation

This is the special case for ℓ = 1 in Z2ℓ . The linearity
preserves and parties can simply replace all additions (and
subtractions) with XORs and multiplication with ANDs
when executing boolean operations.

4.3. Share Conversion

For PPML, non-linear functions (such as ReLU, max-
pooling etc.) can be evaluated more appropriate with MPC

Protocol ΠCMSGen

Private inputs:
PA holds k0ACtoAB, k1ACtoAB, k0ABtoAC and k1ABtoAC.
PB holds k0ACtoAB, k2ACtoAB, k1ABtoAC and k2ABtoAC.
PC holds k1ACtoAB, k2ACtoAB, k0ABtoAC and k2ABtoAC.
PD holds k0ACtoAB, k2ACtoAB, k0ABtoAC and k2ABtoAC.

Public inputs: Public parameters, sid, ψtoϕ.
Outputs: JrKψtoϕ.
Protocols:

• If ψtoϕ = ACtoAB:
1. PA computes r0 := PRFk0ACtoAB(sid) −

PRFk1ACtoAB(sid) then sets JrKPA

ACtoAB := r0.
2. PC computes r1 := PRFk1ACtoAB(sid) −

PRFk2ACtoAB(sid) then sets JrKPC

ACtoAB = r1.
3. PB and PD compute:
r := PRFk0ACtoAB(sid)−PRFk2ACtoAB(sid) and set
JrKPB

ACtoAB = JrKPD

ACtoAB := r, respectively.
• Otherwise if ψtoϕ = ABtoAC:

1. PA computes r0 := PRFk0ACtoAB(sid) −
PRFk1ACtoAB(sid) then sets JrKPA

ACtoAB := r0.
2. PB computes r1 := PRFk1ACtoAB(sid) −

PRFk2ACtoAB(sid) then sets JrKPB

ACtoAB = r1.
3. PC and PD compute:
r := PRFk0ACtoAB(sid)−PRFk2ACtoAB(sid) and set
JrKPC

ACtoAB = JrKPD

ACtoAB := r, respectively.

Fig. 4: Four party changeM share generation protocol

Protocol ΠchMode

Private inputs: Parties hold [x]ψ.
Public inputs: Public parameters, ϕ.
Outputs: [x]ϕ.
Preprocessing:

• Pi sends (CMSGen, ψtoϕ Pi, sid) to FPre
4PC,

receives JrKPi

ψtoϕ as output.
Protocols:

• If ψ = AC and ϕ = AB:
1. PA computes d0 := [x]PA

ψ − JrKPA

ψtoϕ, then
sends d0 to PC.

2. PC computes d1 := [x]PC

ψ − JrKPC

ψtoϕ, then
sends d1 to PA.

3. Upon receiving d0 and d1, PA and PC set
[x]PA

ϕ := d0 + d1, [x]PC

ϕ := d0 + d1 respec-
tively.

4. PB and PD set [x]PB

ϕ := JrKPB

ψtoϕ, [x]PD

ϕ :=

JrKPD

ψtoϕ respectively.
• Otherwise if ψ = AB and ϕ = AC, switch the

role of PC with PB, do the same as above.

Fig. 5: Four party change share mode protocol

protocols over boolean inputs [42, 54, 59, 67, 73], while
other linear functions (multiplication, convolutions etc.) pre-
fer arithmetic shared values. In following we show how
conversion between sharing types works, and how parties



can determine the share-mode of outputs.

4.3.1. X -dabit. As an important building block, we extend
edabit introduced by Escudero et al. [22] to X -dabit. Here
b

$← Z2ℓ , and ψ and ϕ can be identical.

X -dabit := ([b]ψ, ⟨b⟩ϕ := (⟨b0⟩ϕ, · · · , ⟨bl−1⟩ϕ))

To generate X -dabit, the four parties are assigned into
two groups of size two. Then following the protocols pro-
posed by [22] for 2PC setting inside each group, parties
ends up holding the same randomness and generate shares
in both arithmetic and boolean worlds. This allows parties
to generate ([b]ψ, ⟨b⟩ϕ), where ψ = ϕ. To change the share-
mode of either [b]ψ or ⟨b⟩ϕ, parties run ΠchMode (Fig. 5).

4.3.2. Arithmetic vs. Boolean. We first consider one bit
case (ℓ = 1), where parties have to convert [x]ψ to ⟨x⟩ϕ
with x ∈ Z2 (a B2A protocol for one single bit). Note that
in this case, parties sample b $← Z2 in X -dabit. The boolean
share of this X -dabit becomes one-bit share among parties.
By using such an X -dabit, parties simply open their local
shares [x]Pi

ψ masked with [b]Pi

ψ , then locally unmask the
revealed value x − b with ⟨b⟩ϕ. Note that the unmasking
computation could be applied locally due to its linearity.
Converting ⟨x⟩ϕ to [x]ψ works in the same manner vice
versa. A detailed protocol description is in Fig. 6.

If x ∈ Z2ℓ with ℓ > 1, parties then generate an X -dabit
with more than one bit in boolean share to support the
conversion protocol.

Protocol 4: Bit to Arithmetic ΠBitToA

Private inputs: Parties hold ⟨x⟩ϕ, where x ∈ {0, 1}.
Public inputs: Public parameters, ψ.
Outputs: [x]ψ.
Preprocessing:

• Pi sends (X -dabitGen, ψ, ϕ, ℓB, Pi, sid) to
FPre

4PC with ℓB = 1, receives ([b]Pi

ψ , ⟨b⟩
Pi

ϕ ) as
output.

Protocols:
1. Parties locally compute and then reveal h :=
⟨x⟩ϕ ⊕ ⟨b⟩ϕ, where h ∈ {0, 1}.

2. If h = 0, parties set [x]ψ = [b]ψ, otherwise
[x]ψ = 1− [b]ψ.

Fig. 6: Four party bit to arithmetic protocol

4.4. Comparison

We now introduce our secure 4PC comparison protocol
ΠComp. Using the same technique mentioned in [73], par-
ties firstly reveal [x]ψ by masking it with [b]ψ (arithmetic
part of an X -dabit). Now parties hold ⟨b⟩ψ (boolean part
of an X -dabit) and a public revealed x − b over Z2ℓ .
After computing the bit decomposition of x − b, parties
will jointly compute a PPA circuit to securely extract the
sign bit of [x]ψ. To do so, parties will prepare a shared

propagator ⟨p⟩ψ = ⟨x− b⟩ψ ⊕ ⟨b⟩ψ and a shared generator
⟨g⟩ϕ = ⟨x−b⟩ϕ∗⟨b⟩ϕ, where A∗B denotes a bit-wise AND
of A and B, and ψ ̸= ϕ. To prepare such a ⟨g⟩ϕ, parties
call ΠchMode once before computing the PPA. In return now
50% of the secure AND protocols are already executable in
an efficient 4PC way. For the rest of AND computations,
we choose to let parties call ΠchMode once in each round to
change the share-mode of the updated propagator. We refer
readers to §5.3 for more details.

5. Efficient PPML Implementation

For further discussion, we highlight all technical details
and advantages given X -share for each layer implemen-
tation in CNN. We compare the necessary computation
and communication effort of our framework with existing
ones in 2PC, 3PC and 4PC. We show that our framework
achieves already optimized local computation overhead for
layers such as Convolution and Fully connected Layer §5.1.
Furthermore, parties benefit from holding X -share, which
enables them to locally rescale the output of multiplications
§5.2. In the end of this section, we provide a detailed
description about our activation layer implementation §5.3.

5.1. Convolution and FC

We use matmul for both element multiplication and
matrix multiplication (convolution) for conciseness. A sum-
mary of Force and existing works in multiplication at each
party is showed in Table 2.

CrypTen [42] implements 4PC protocols with 4-out-of-
4 sharing. The matmul needs Beaver triples, which yields
three local matmul operations, two elements/matrices send-
ing (to each peer) and six elements/matrices receiving at
each party. Let the bit-length of the element/matrix be ℓ.
While peer-to-peer channel is used, a total of 2×3+6 = 12ℓ
data volume has to be exchanged. We point out that even
using a broadcast channel mentioned in paper, each party
still has 8ℓ to send/receive.

P-FantasticFour [17, 73] on the other hand, uses repli-
cated share over four shares, which greatly reduces the com-
munication volume compared to CrypTen [42]. However,
even such an optimization still results 4ℓ communication
overhead for each party per matmul.

As already mentioned in §4.1.3 and Fig. 2, 3PC needs
the re-sharing protocol which requires one round communi-
cation, where each party needs 2ℓ. Thus, even compared to
the improved protocols designed by ABY2.0 [59], protocols
proposed for 3PC with replicated sharing (such as ABY3
[54], Piranha [73]) achieves already the same communica-
tion effort and much simpler local computation.

Although 3PC multiplication seems to dominate 2PC in
communication, we still observe a huge computational com-
plexity reduction and a much simplified connection channel
establishment given X -share in Force for 4PC. First of all,
parties only have to compute one single matmul locally,
eliminating 66% of local computation (see the underlined
parts in Fig. 2). And in fact, parties exchange their local



TABLE 5: Truncation cost. Comparison of Force and exist-
ing works against semi-honest adversary regarding Πtrunc

only and combined with ΠMult. Communication volume is
calculated for end-to-end channels.

SettingRef. Trunc only Comb. with Mult
Comm Rounds Comm Rounds

2PC P-SecureML[55] 0 0 4ℓ 1

3PC CryptGPU[67] ℓ 1 3ℓ 2
P-Falcon [73] 2ℓ 1 4ℓ 1

4PC
CrypTen[42] 4ℓ 1 12ℓ 2
P-FantasticFour[73][17] 2ℓ 1 6ℓ 2
Our Force 0 0 2ℓ 1

shares with one single partner instead of two in 3PC setting,
which yields a simpler peer-to-peer connection.

5.2. Truncation

As already mentioned in §4.1, parties have to rescale
the shared output of matmul for consistence in precision.
In 2PC, SecureML [55] has proposed a local truncation
technique, such that parties simply truncate the last p bits
without any interaction. However, ABY3 [54] has proven
that such technique only supports the 2-out-of-2 sharing
and fails in replicated sharing in 3PC setting. Instead, all
three parties perform Πtrunc2 with the help of a precom-
puted truncation share ([r], [r′]), where [r′] = [r/2p] (also
known as a division share with the public value γ = 2p).
This protocol could be separately executed after resharing
protocol, requiring one additional communication round. Or
it can be performed combined with the resharing protocol,
where parties reshare and truncate the 3-out-of-3 result in
a single round exchanging 4ℓ information overall. We call
such a protocol ΠRsTrunc2. Besides, CryptGPU [67] chooses
to implement another truncation protocol ΠTrunc1 proposed
by ABY3 [54] to skip the preprocessing stage generating
truncation share. As already pointed out, ΠTrunc1 requires
two rounds and 3ℓ bits communication volume totally.

CrypTen [42] on the other hand, requires parties to
execute multiplication and truncation in two separate rounds,
where its truncation protocol results at least a total 6ℓ bits
communication volume (4ℓ bits volume based on a broadcast
channel). The idea was inspired by SecureNN [70].

P-FantasticFour [17, 73] extends the same technique
proposed by ABY3 to a four party version, which yields a
2ℓ communication overhead for each party and an additional
round.

Regardless, neither ΠRsTrunc2 is communication-free in
the truncation part. One of our main contribution is, that our
X -share is compatible with the local truncation technique.
We summarize the truncation cost of all systems in Table 5.

5.3. Activation Layer

5.3.1. Our Carryout Implementation. One of Piranha’s
main contribution is the iterator-based in-place carryout
implementation, which cuts the peak memory load in half.
We illustrate their procedure in Fig. 7. Notably, even though
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Fig. 7: An illustration of Piranha’s in-place carryout imple-
mentation for a 32-bit value. B means Byte.
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Fig. 8: An illustration of our Force’s in-place carryout
implementation for a 32-bit value. b means bit. A bold
border points to one byte memory.

they compute for a 32-bit value, they decompose it into 32
Bytes. Then perform the operation between even bytes and
odd bytes in a tree order. The total communication volume
is 16 + 8 + 4 + 2 + 1 = 31 Bytes.

To be more memory-efficient, we decompose the 32-
bit value into 4 Bytes, reducing the memory consumption
by c.a. 87.5%. Different from Piranha, we perform the
operation between higher bytes and lower bytes. When we
reach 1 Byte or 8 bits, we use bit operation within that byte.
The process is showed in Fig. 8. The total communication
volume of our Force is 2 + 1 + 1 + 1 + 1 = 6 Bytes.

5.3.2. Secure Comparison. The standard ReLU activation
function requires parties to execute a compare protocol to
extract the sign bit of an originally arithmetically shared
value.

ABY2.0 [59] chooses to compute PPA introduced in [29]
for boolean addition, which results total log ℓ + 1 rounds.
As a framework, CrypTen [42] provides two options to eval-



uate a PPA circuit. For memory-efficient approach, parties
will have to sequentially add their boolean shares together
(n log ℓ rounds), while executing a memory-inefficient ap-
proach requires logn log ℓ rounds.

Adaptively, our ΠComp can be designed either in a mixed
2PC and 4PC way, or completely in a 4PC way. An im-
plementation with both 2PC and 4PC protocol executions
achieves total log ℓ+ 2 rounds, which requires slightly one
more round compared to protocols in 2PC setting and 3PC
setting, but dominates 2 log ℓ rounds needed in CrypTen in
4PC setting. Even so, we choose to let parties only execute
4PC protocols during ΠComp. This results total 2log ℓ + 2
rounds, since execution of ΠchMode in each computation
round of a PPA doubles the communication rounds to com-
pute the carry out. As compensation, parties save at least
25% of local computations compared to a mixed protocol
executions, and meanwhile the communication volume stays
the same. To our experiments, ΠComp and its implementation
already achieves a huge speed up compared to other settings,
see Section 6.4 for more details.

5.4. Accelerated Backward in Training

In this section we introduce our accelerated implemen-
tation of backward phase. So far, we have discussed the
improvement of our framework comparing to others in each
single layer, and in particular during forward phase. A
more complex scenario occurs in the backward phase: for
example, parties hold a shared x in [·]AC-sharing, which has
to be multiplied with two shared values y in [·]AC-sharing
and y′ in [·]AB-sharing.

First of all, we exclude this situation from forward phase,
since no shared value has to be reused in different computa-
tion. The easiest way to implement the backward phase is to
let parties execute ΠchMode if needed. Such a naive solution
results an extra round and communication overhead, but it
already has a huge performance improvement comparing to
other frameworks in our early stage. Fortunately, we found
out that the most efficient way is to let parties hold one
shared value in both share-modes, which then enables parties
to perform 4PC computations everywhere during backward
phase. Such critical values are normally only weights in
each layer, meaning that parties are capable to trade a small
portion of their GPU memory benefit for a huge computation
acceleration. Remark that holding a shared value in both
share-modes does not leak any information to parties, since
local shares of each shared value in different share-modes
will be chosen freshly (e.g. x = x0 + x1 and x = x′0 + x′1).

6. Evaluations

We build Force on top of Piranha [73], which itself is
mainly inspired by Falcon [71]. All these are implemented in
C++. To differentiate from them, we introduce a new 4-party
sharing type X -share, and make it support all relevant PPML
operations. In this section, we will thoroughly evaluate
X -share and answer the following questions:

1) In Comparison to state-of-the-art PPML prior work,
how efficient X -share is when performing secure infer-
ence and secure training of neural networks (§6.2 and
§6.3)?

2) How well does X -share accelerate common computa-
tion tasks, for linear operations such as convolution
and matrix multiplication (§6.4.1) and non-linear op-
erations like ReLU (§6.4.2)?

3) How many resources does X -share consume? More
specifically, what are the requirements for network
(§6.5) and graphic memory (§6.6)?

4) Does PPML with X -share perfectly reproduce the ex-
pected results as in plaintext ML? Is the computation
accurate (§6.7)?

6.1. Evaluation Setup

6.1.1. Testbed Environment. We run our evaluations on
cloud servers. The servers come with 2 CPUs, Intel(R)
Xeon(R) Platinum 8360Y CPU @ 2.40GHz, and
12× 128GB of RAM. CPU and RAM are only relevant for
the evaluation of Cheetah [34]. All the other evaluations
mainly concern GPU and VRAM. Each of our servers is
equipped with one GPU, NVIDIA Tesla P100-PCIE,
which includes 16GB of dedicated VRAM. We consider
two types of network environments. One is the LAN setting
with 10Gbps bandwidth and 0.2ms round-trip latency. The
other is the WAN setting with 100Mbps bandwidth and
40ms round-trip latency. We simulate these two network
settings by using the tc tool 2.

Our server is running Ubuntu 18.04.6 LTS. As for
GPU support, we use CUDA 10.1.243. We do not use
the latest CUDA due to compatibility issues with PyTorch,
considering that both CryptGPU [67] and CrypTen [42]
rely on PyTorch. Our implementation is based on Piranha
[73] 3, at commit bd9c8c4. Except for our new sharing
type X -share, we integrate support for batch normalization,
while the original Piranha [73] only supports layer normal-
ization. We also add extra support for complex ResNet,
including ResNet50, ResNet101, ResNet152. In
Piranha, there is only basic block for ResNet18.

6.1.2. Baseline. We choose as baselines several state-of-
the-art systems that have semi-honest security. They are
summarized in Table 1.

For 2PC, Cheetah [34] is the most recent PPML work
using FHE and correlated oblivious transfer (cOT), which is
completely different from ours. They declare to be the most
efficient on CPU. We run it on the same server as a baseline
of CPU-based PPML. SecureML [55] is also CPU-based and
the only 2-party system supporting both private inference
and private training. Piranha [73] ports it to GPU and states
to outperform the original version. Thus we only use the
new version as a baseline and refer to it as P-SecureML.

2. https://man7.org/linux/man-pages/man8/tc.8.html
3. https://github.com/ucbrise/piranha/

https://man7.org/linux/man-pages/man8/tc.8.html
https://github.com/ucbrise/piranha/


TABLE 6: Summary of tested neural network models con-
cerning different datasets. Layers for small and medium
datasets may slightly vary as mentioned in Section 6.1.3.

Model Number of Layers Number of Parameters
Conv ReLU FC Pool BN Total CIFAR10 Tiny ImageNet

AlexNet 5 7 3 3 0 18 3.9M 6.1M 35.9M
VGG16 13 15 3 6 0 37 14.9M 15.3M 54.5M

ResNet152 155 151 1 2 155 464 58.1M 58.6M 60.2M

For both 3-party and 4-party, we only consider the
honest-majority setting. Concerning the 3-party setting,
Falcon [71] is the fastest on CPU. Piranha [73] largely
improves the performance by porting it to GPU. We mark
it as P-Falcon. Even though P-Falcon is fast most of the
time, it loses to CryptGPU [67] on some large datasets.
We include both of them as baselines. CryptGPU [67] is
deployed with the latest Github source code 4, at commit
2ff57b2.

As for 4-party, CrypTen [42] is the only one which
has semi-honest security in an honest-majority setting. We
deploy it using their latest Github source code 5, at com-
mit efe8eda. All the other 4-party or more-party systems
are for malicious adversaries, which are slowed down by
heavy verification or validations [3, 18, 26, 33, 36, 65].
For fairness, we should not compare with them. Yet, for
better insight, we include the benchmarks of GPU version
of FantasticFour [17], re-implemented by Piranha [73] for
semi-honest security, which we call P-FantasticFour. Con-
sidering that we completely outperform P-FantasticFour in
all settings, Force would only be much faster than the actual
maliciously secure FantasticFour.

We run all the evaluations with 20 bits of fixed-point
precision. The calculations are over the 64-bit ring Z264 ,
except Cheetah [34], which supports maximum 44-bit. All
the experiments are performed multiple times. Then we
calculate the benchmarks by averaging all the results except
the first run, to mitigate the influence of system initialization
and runtime randomness.

6.1.3. Models and Datasets. We consider three datasets in
different sizes for our evaluations:

• Small dataset: CIFAR10[45], 60, 000 32 × 32 RGB
images in 10 classes.

• Medium dataset: TinyImageNet[48] (Tiny for
short), 100, 000 64× 64 RGB images in 200 classes.

• Large dataset: ImageNet[64], 1, 000, 000 224 × 224
RGB images in 1, 000 classes.

These datasets are evaluated in three neural network
models of different depths:

• Shallow model: AlexNet[46], an 8-layer convolu-
tional network.

• Medium model: VGG16[66], a 16-layer convolutional
network.

• Deep model: ResNet152[31], a 152-layer convolu-
tional network.

4. https://github.com/jeffreysijuntan/CryptGPU
5. https://github.com/facebookresearch/CrypTen

We try to keep the models as much as they are in their
original publications. However, due to the various input sizes
of different datasets, as well as performance considerations,
we slightly adjust the structure similarly to CryptGPU [67]
and Falcon [71]. We summarize the typical number of layers
and number of parameters in Table 6.

6.2. Secure Inference of Neural Networks

In Table 7, we list Force’s total running time of an
inference pass for all datasets and models described in §6.1.3
in LAN setting. Our Force completely outperform all the
baseline systems in all evaluations.

Firstly, we notice that in current LAN setting, the state-
of-the-art CPU-based Cheetah is slower than all other GPU-
based systems in all experiments. To our evaluation, the
performance of Cheetah is comparable with those of GPU-
based frameworks in the case of small datasets and shallow
models. For example, they can be as good as 2 times slower
in CIFAR10+AlexNet. However, concerning big datasets
and medium or deep models like ImageNet+VGG16, they
are at least 100 times slower.

When comparing all GPU-based systems, the C++-
implemented (P-SecureML, P-Falcon, P-FantasticFour and
Force) perform much better than the Python-implemented
(CryptGPU and CrypTen). This could result from the lan-
guage performance difference. CryptGPU is faster than
CrypTen most of the time, except on ResNet152. The
main reason may be that newer PyTorch involves an
optimization called Fused Batch Normalization, which only
affects ResNet152 in our evaluations.

With the acceleration brought by our novel sharing type
X -share, Force beats the other three Piranha-based systems,
P-SecureML, P-Falcon and P-FantasticFour, in all experi-
ments. Force is at least 3.1 times faster than P-SecureML,
at least 2 times faster than P-Falcon and at least 5 times
faster than P-FantasticFour.

The results are a bit different in WAN setting, as showed
in Table 8. Yet, our Force still outperforms all the other
systems. Cheetah sometimes does better than CryptGPU
and CrypTen, benefiting from fewer communication rounds.
On large datasets and deep models such as ImageNet +
VGG16, CryptGPU is faster than P-Falcon, due to lower
communication volume.

6.3. Secure Training of Neural Networks

Under the same setting as in §6.2, we list Force’s total
running time of a training pass for all datasets and models in
Table 10. Considering that Cheetah does not support private
training, it is omitted here. Again, our Force completely
outperform all the baseline systems in all evaluations.

Python-implemented (CryptGPU and CrypTen) still
perform worse than the C++-implemented systems. The per-
formance gap between CryptGPU and CrypTen gets larger
compared to the inference pass. CryptGPU could even be
7.4 times faster than CrypTen, when training CIFAR10 on

https://github.com/jeffreysijuntan/CryptGPU
https://github.com/facebookresearch/CrypTen


TABLE 7: Running time (Second) of an inference pass in LAN setting with BatchSize = 1.

CIFAR10 Tiny ImageNet
AlexNet VGG16 ResNet152 AlexNet VGG16 ResNet152 AlexNet VGG16 ResNet152

P-SecureML 0.41 1.48 7.89 0.55 2.19 9.44 2.50 15.70 31.46
CryptGPU 1.15 2.91 35.58 1.14 3.83 38.21 2.42 12.74 49.54
P-Falcon 0.29 0.89 5.18 0.35 1.37 6.24 1.12 10.03 20.39
CrypTen 1.05 3.48 26.04 1.25 5.20 29.10 4.59 32.75 62.58

P-FantasticFour 0.72 2.20 12.81 0.87 3.40 15.59 2.72 24.03 49.74
Force 0.12 0.35 2.54 0.14 0.54 3.01 0.43 3.26 9.70

Cheetah 2.67 80.43 66.96 19.74 325.30 263.87 383.97 4026.87 3226.62
PyTorch 0.0008 0.0017 0.0264 0.0009 0.0017 0.0266 0.0009 0.0017 0.0268

TABLE 8: Running time (Second) of an inference pass in WAN setting with BatchSize = 1.

CIFAR10 Tiny ImageNet
AlexNet VGG16 ResNet152 AlexNet VGG16 ResNet152 AlexNet VGG16 ResNet152

P-SecureML 12.20 57.54 239.81 21.64 121.05 241.73 179.19 1126.83 1907.65
CryptGPU 18.41 44.17 807.32 19.46 65.15 846.11 48.53 359.46 1387.28
P-Falcon 2.85 11.08 91.06 3.80 28.27 119.33 30.79 370.70 730.97
CrypTen 34.37 103.26 721.67 43.47 256.77 876.92 397.49 2203.29 4649.98

P-FantasticFour 7.60 41.39 218.33 13.00 125.80 368.82 135.93 1489.91 2853.29
Force 2.60 6.75 75.28 2.94 14.21 85.85 13.59 155.15 324.17

Cheetah 12.64 233.34 220.16 52.59 908.09 711.77 827.68 11012.47 8101.88

TABLE 9: Communication volume (MByte) of an inference pass with BatchSize = 1.

CIFAR10 Tiny ImageNet
AlexNet VGG16 ResNet152 AlexNet VGG16 ResNet152 AlexNet VGG16 ResNet152

P-SecureML 65.93 381.39 1178.82 130.16 849.01 2082.17 1186.00 8361.98 15718.33
CryptGPU 2.32 53.59 236.17 13.32 214.12 677.61 226.08 2622.02 7376.14
P-Falcon 3.72 84.48 168.85 20.83 337.62 680.50 350.09 4134.47 8441.19
CrypTen 74.67 579.78 1409.07 178.98 1641.77 3034.04 2005.10 18069.92 27607.43

P-FantasticFour 7.01 159.50 300.42 39.24 637.43 1218.99 659.45 7805.96 15150.84
Force 1.49 33.76 79.95 8.38 134.93 316.65 140.95 1652.33 3907.41

Cheetah 40.10 951.35 773.51 249.24 3792.40 3091.30 4493.92 46450.00 37876.50

TABLE 10: Running time (Second) of a training pass in LAN setting with BatchSize = 1.

CIFAR10 Tiny ImageNet
AlexNet VGG16 ResNet152 AlexNet VGG16 ResNet152 AlexNet VGG16 ResNet152

P-SecureML 1.62 4.55 29.20 7.53 5.99 27.81 7.41 28.82 65.51
CryptGPU 2.27 5.49 40.24 3.23 8.06 41.37 9.10 38.86 53.28
P-Falcon 0.75 2.44 12.08 0.96 3.04 13.55 4.13 16.14 35.78
CrypTen 13.48 40.86 27.68 18.39 50.34 33.35 FAIL FAIL 74.07

P-FantasticFour 1.65 4.99 25.65 2.17 6.64 29.96 9.69 37.10 79.78
Force 0.35 1.23 6.40 0.51 1.59 7.53 2.89 8.57 22.77

PyTorch 0.0031 0.0067 0.0659 0.0027 0.0049 0.0637 0.0034 0.0077 0.0683

VGG16. Yet, CryptGPU is still 4.5 times slower than our
Force.

When compared with the other three Piranha-based
systems, P-SecureML, P-Falcon and P-FantasticFour, our
Force is also faster in all experiments. On average, Force
is 4.9 times faster than P-SecureML, 1.8 times faster than
P-Falcon and 4 times faster than P-FantasticFour.

6.4. Linear vs. Non-Linear Operations

We Further look into how well X -share accelerates
common computation tasks. We are mainly interested in
linear operations and non-linear operations (ReLU). Con-
sidering the existence of Fused Batch Normalization, which
fuses batch normalization into convolution, we combine all
convolution, matrix multiplication and batch normalization
into one, as linear operations.

We plot the running time of different operations during
an inference pass in LAN setting with BatchSize = 1 in
Fig. 9. Due to the huge time difference between Cheetah and
all other systems, all the experiments other than CIFAR10+
AlexNet and CIFAR10+ ResNet152 are rarely visible
as bar charts. Thus we only include those two here.

We also make some micro-benchmark of matrix mul-
tiplication and ReLU in four Piranha-based systems. We
perform matmul and ReLU of different input data size
and record the average running time. The results are plotted
in Fig. 10. We omit some of the data of P-SecureML in
Fig. 10a, since they are too large to show.

6.4.1. Linear Operations. As we can see from Fig. 9,
Cheetah is extremely slow in linear operations. This princi-
pally results from the underlining cryptographic mechanism
and the experiment platform. FHE requires much more
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Fig. 9: Running time of different operations during an
inference pass in LAN setting with BatchSize = 1. X-axis
is time in seconds.

2000 4000 6000 8000 10000
0

100

200

300

400

500

(a) Matrix Multiplication

2000 4000 6000 8000 10000
0

20

40

60

80

100

120
P-SecureML
P-Falcon
P-FantasticFour
Force

(b) ReLU

Fig. 10: Micro-benchmark of matmul and ReLU in three
Piranha-based systems. X-axis is data dimension and Y-axis
is time in Milliseconds. For matmul, we multiply an x×x
matrix by an x× 1 vector.

computation than MPC. And different from CPUs, which
are for generic computation, GPUs are specialized for data-
intensive computations. It is not surprising that the CPU-
FHE-based Cheetah is slower that all other GPU-MPC-
based systems in linear operations.

Considering the implementation language difference,
it is reasonable that Python-implemented CryptGPU
and CrypTen are slower than the C++-implemented
(P-SecureML, P-Falcon and Force). This is more observable
in deeper networks, which involves more calculations, for
example, in ResNet152 as showed in Fig. 9b.

Among those three C++-implemented systems, our
Force completely outperforms the other two, with the opti-
mizations described in §5.1 and §5.2. P-SecureML’s multi-
plication does not scale well with problem size, as we can
see from Fig. 10a. On the other side, both P-Falcon and
Force scale linearly as the matrix becomes larger. Our Force
is about 3 times faster than P-Falcon, which matches our

analysis in §5.1.

6.4.2. Non-Linear Operations - ReLU. This is a different
story. Originally, CPUs do better in non-linear operations
than GPUs. When performing comparison in private infer-
ence, Cheetah is much faster than CryptGPU and CrypTen.
Yet, still slower than other three Piranha-based systems.

ReLU accounts for more than 50% of total running time
for both CryptGPU and CrypTen, which is quite surprising.
In the plaintext situation, linear operations definitely domi-
nate the whole procedure. We study their implementations
and find out the reasons, as explained in §5.3.

P-SecureML and P-Falcon use similar ReLU imple-
mentations. The only difference is the underline sharing
type and corresponding bit operations. Thus they have close
performance, which can be also verified in Fig. 10b. Given
our new sharing type X -share and optimized relevant bit
operations described in §5.3, Force is brought a huge boost.
As we can see in Fig. 10b, the performance improves more
as the problem size increases.

TABLE 11: Maximum batch size when training ImageNet
in VGG16

Batch Size 1 2 4 8 16 32
P-SecureML ✓ ✓ ✓
CryptGPU ✓
P-Falcon ✓ ✓ ✓
CrypTen

P-FantasticFour✓ ✓
Force ✓ ✓ ✓ ✓ ✓

6.5. Communication Cost
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Fig. 11: Ratio of communication time and computation time
when our Force performs inference on ResNet152 with
BatchSize = 1.

Cheetah states that one of their main contribution is to
reduce the communication volume and save communication
time. We would like to point out that we do much better than
them. More precisely, we have the minimal communication
volume and lowest communication time in all datasets and
models when performing inference with BatchSize = 1. We
show the actual communication volume in Table 9.

However, we still notice high communication cost during
all phases, especially for large datasets and WAN settings.



As an example, we plot the ratio of communication and
computation time of our Force in Fig. 11. We can see that
as the dataset gets larger, mainly the image dimensions,
communication consumes more time. When the network
latency is high, like in WAN, the whole running time is
dominated by communication.

6.6. Memory Efficiency

Compared with RAM, which could easily reach 1TB
nowadays, VRAM is an extremely limited resource. Typical
GPU clusters are equipped with 16GB or maximum 24GB
dedicated VRAM per card.

To measure the utilization efficiency of graphic memory,
we run a simple experiment. We train one large dataset,
ImageNet, on one of the large models, VGG16, with differ-
ent batch sizes. Then we try to find out what the maximum
batch size is for each system. The result is displayed in
Table 11.

Our Force is the only system which supports train-
ing ImageNet on VGG16 with BatchSize = 8 and
BatchSize = 16. All the other systems can only train with
batch size up to 4. CrypTen could not even train with
BatchSize = 1.

6.7. Accuracy Comparison

TABLE 12: Accuracy comparison of Force’s private infer-
ence protocol against PyTorch’s plaintext algorithm.

Inference CIFAR10 Tiny ImageNet
PyTorch Force PyTorch Force PyTorch Force

AlexNet 69.65% 69.69% 26.38% 26.39% 22.84% 22.84%
VGG16 88.31% 88.34% 54.90% 54.89% 56.41% 56.42%

ResNet152 83.99% 83.98% 65.14% 65.15% 67.36% 67.36%

To measure the accuracy, we run both inference and
training with Force. We first train the models on all the
datasets with PyTorch to get pre-trained models. Starting
from those pre-trained models, we perform the accuracy
evaluation. We run all the evaluation with 26 bits of fixed-
point precision, as suggested by Piranha.

For inference, we use the whole validation set of
CIFAR10 and a randomly selected subset of the validation
sets of Tiny and ImageNet, so that the actual inference
datasets contain 10,000 images each. The result is displayed
in Table 12.

The experiment shows that models running over Force
provide almost the same accuracy as the plaintext models,
only with a tiny relative error of less than 0.1% for all
models and datasets.

For training, we use the whole training set of CIFAR10,
as well as the whole validation set for validation. Starting
from a pre-trained model, we train AlexNet on CIFAR10
with both Force and PyTorch for 9 epochs. We plot the
validation accuracy in Fig. 12.

After 9 epochs, the accuracy of PyTorch is 49.59%,
of Force is 49.71%, which is even 0.12% higher. We
also plot the validation accuracy of Piranha in Fig. 12,

which indicates that Force has no accuracy loss compar-
ing with Piranha. Note that the three Piranha-based sys-
tems (P-SecureML, P-Falcon and P-FantasticFour) have the
same accuracy, so we only plot a single line for them.
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Fig. 12: Validation accuracy of 9 training epochs when
training AlexNet on CIFAR10.

7. Conclusion

In this paper, we construct a powerful system Force
for PPML. Our implementation and thorough evaluation
showcase that Force is by far the most efficient in terms of
time, memory consumption and overall performance. It can
be meaningful future work to extend Force with security
against fully malicious adversaries, guarantee of delivery,
and generalization for any even number of parties.
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Appendix A.
Ideal Functionalities in 4PC

See Figure 13, 14 and 15.

Appendix B.
CNN, an Example

See Fig. 16.

Appendix C.
Security Proof

C.1. Multiplication Protocol ΠMult

Theorem 1. Protocol ΠMult UC-realizes FMULT
4PC in the

FPre
4PC-hybrid model, in the presence of a semi-honest adver-

sary who can corrupt Pi where Pi ∈ {PA,PB,PC,PD},
with static corruption.

Proof Sketch: Suppose parties hold [x]AC, [y]AB and are
willing to compute [z]AC. We construct an adversary S
interacting FMULT

4PC such that no environment Z can tell with
non-negligible probability whether it is interacting with A
and the protocol ΠMult in the real world or with S in the
ideal process for FMULT

4PC . Since each Pi is corrupted by a
semi-honest A, even if A is able to modify the input tape of
Pi, this is actually the modified value sent from environment
machine Z [12]. Suppose PA is corrupted, the secret value
x and y are AC and AB shared, and the output z is AC
shared. Recall that S has already received the input of A,
denoted as [x]PA

AC , [y]PA

AB , which is modified by Z . First, S
plays the role of FPre

4PC, sends kZero and k′Zero to A as PRF
keys computing zero sharing (other keys are irrelevant in
this case). Note that S receives A’s output by sending its in-
put to FMULT

4PC , denoted as [z]PA

AC . Thus, to perfectly simulate
PB, S firstly computes rPA = PRFkZero(sid)−PRFk′Zero(sid)
just as A will do and sends rPA to A. Then S computes and
sends mPB = [z]PA

AC −rPA− [x]PA

AC [y]PA

AB to A. Note that in
the real protocol execution, PB computes [x]PB

AC [y]PB

AB +rPB ,
where rPB is distributed uniformly at random to the environ-
ment machine Z . Thus, the message mPB sent from S in the
ideal execution is indistinguishable from [x]PB

AC [y]PB

AB + rPB

computed by PB in the real protocol execution. This yields
a perfect simulation.
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FPre
4PC

Private inputs: No.
Public inputs: Public parameters.
Output: Triples to support other computation.

• Upon receiving a corrupt query from Pi

– Send kZero and k′Zero to Pi.
– Send (kACtoAB, k

′
ACtoAB), (kABtoAC, k

′
ABtoAC)

to Pi.
• Upon receiving (ZeroSGen,Pi, sid) from the

corrupted Pi, and other Pj ∈ P/{Pi}:
– rPi := PRFkZero(sid)− PRFk′Zero(sid).
– Sample rPj

$← Z2ℓ , where Pj ∈ P\{Pi}
and

∑
rPj = 0 for all Pj ∈ P .

– Send rPj to Pj for all Pj ∈ P .
• Upon receiving (CMSGen, ψtoϕ,Pi, sid) from

the corrupted party Pi and other Pj where Pj ∈
P/{Pi}:
– If ψtoϕ = ACtoAB:
∗ If Pi ∈ {PB,PD}, compute r :=

PRFkACtoAB(sid) − PRFk′ACtoAB(sid), set
JrKPB

ACtoAB = JrKPD

ACtoAB := r. Choose
JrKPA

ACtoAB
$← Z2ℓ , JrKPC

ACtoAB
$←

Z2ℓ , where JrKPA

ACtoAB + JrKPC

ACtoAB =
JrKPB

ACtoAB = JrKPD

ACtoAB.
∗ If Pi ∈ {PA,PC}, compute ri :=

PRFkACtoAB(sid) − PRFk′ACtoAB(sid), set
JrKPi

ACtoAB := ri. Choose JrKPh

ACtoAB
$←

Z2ℓ where Ph ∈ {PA,PC}/Pi. Com-
pute r := JrKPA

ACtoAB + JrKPC

ACtoAB, set
JrKPB

ACtoAB = JrKPD

ACtoAB := r.
– If ψtoϕ = ABtoAC, switch the role of PB

and PC, use (kABtoAC, k
′
ABtoAC) instead of

(kACtoAB, k
′
ACtoAB) and do the same as above.

– Send JrKPj

ψtoϕ to Pj for all Pj ∈ P .
• Upon receiving (X -dabitGen, ψ, ϕ, ℓB,Pi, sid)

from parties where Pi ∈ P:
– Sample (α0, α1)

$← Z2ℓ .
– Sample {(β0

0 , β
1
0), (β

0
1 , β

1
1), · · · , (β0

ℓB−1, β
1
ℓB−1)}

$← Z2, such that b := α0 + α1 and ⟨bi⟩ :=
⊕1
j=0β

j
i .

– If ψ = AC, send α0 to PA and PB, α1 to
PC and PD. Otherwise, send α0 to PA and
PC, α1 to PB and PD.

– If ϕ = AC, send {β0
i }i∈[ℓB−1] to PA and

PB, {β1
i }i∈[ℓB−1] to PC and PD. Other-

wise, send {β0
i }i∈[ℓB−1] to PA and PC,

{β1
i }i∈[ℓB−1] to PB and PD.

Fig. 13: Four Party Functionality FPre
4PC.

C.2. Change Share Mode Protocol ΠchMode

Theorem 2. Protocol ΠchMode UC-realizes F chMode
4PC in the

FPre
4PC-hybrid model, in the presence of a semi-honest adver-

sary who can corrupt Pi where Pi ∈ {PA,PB,PC,PD},
with static corruption.

FMULT
4PC

Private inputs: Let P = {PA,PB,PC,PD}.
Each party Pi ∈ P holds [x]Pi

ψ and [y]Pi

ϕ , where
ψ ̸= ϕ.
Public inputs: Public parameters, θ.
Outputs: [z]Pi

θ for all Pi ∈ P, with z = x · y.
Initialization: All Lsid = ∅.
Compute:

• Upon receiving (MULT, [x]Pi

ψ , [y]
Pi

ϕ ,Pi, sid)
from any party Pi ∈ P .

• If Lsid = ⊥, do nothing.
• Check if every other record (MULT, [x]

Pj

ψ ,

[y]
Pj

ϕ , Pj, sid), Pj ∈ P\{Pi} is in Lsid:
– If yes, compute z = rec([x]ψ) rec([y]ϕ),

where rec() is the reconstruction function.
Choose r

$← Z2ℓ . If θ = AC, set [z]PA

θ =
[z]PB

θ := z − r and [z]PB

θ = [z]PD

θ := r.
Otherwise θ = AB, set [z]PA

θ = [z]PC

θ :=
z − r and [z]PC

θ = [z]PD

θ := r.
Send (Pj, sid, [z]

Pj

θ ) to Pj for all Pj ∈ P .
Set Lsid = ⊥.

– Otherwise, set Lsid ← Lsid∪{(MULT, [x]Pi

ψ ,

[y]Pi

ϕ , Pi, sid)}.

Fig. 14: Four Party Functionality FMULT
4PC .

FComp
4PC

Private inputs: Let P = {PA,PB,PC,PD}.
Each party Pi ∈ P holds [x]Pi

ψ .
Public inputs: Public parameters.
Outputs: ⟨b⟩Pi

ψ for all Pi ∈ P, with b = 1 if x ≥ 0
and b = 0 otherwise.
Compute:

• Upon receiving (Comp, [x]Pi

ψ ,Pi, sid) from any
party Pi ∈ P .

• If Lsid = ⊥, do nothing.
• Check if every other record (Comp, [x]

Pj

ψ , Pj,
sid), Pj ∈ P\{Pi} is in Lsid:
– If yes, compute x = rec([x]Pi

ψ ), where rec()
is the reconstruction function.
If x ≥ 0, set b = 1, otherwise set b = 0.
Choose r

$← Z2, if ψ = AC, set ⟨b⟩PA

ψ =

⟨b⟩PB

ψ := b ⊕ r and ⟨b⟩PC

ψ = ⟨b⟩PD

ψ := r.
Otherwise if ψ = AB, set ⟨b⟩PA

ψ = ⟨b⟩PC

ψ :=

b⊕ r and ⟨b⟩PB

ψ = ⟨b⟩PD

ψ := r.
Send (Pj, sid, ⟨b⟩

Pj

ψ ) to Pj for all Pj ∈ P .
Set Lsid = ⊥.

– Otherwise, set Lsid ← Lsid ∪ {(Comp, [x]Pi

ψ ,
Pi, sid)}.

Fig. 15: Four Party Functionality for Comparison FComp
4PC .

Proof Sketch: Suppose parties hold [x]AC are willing to
compute [x]AB. We construct an adversary S interacting
F chMode

4PC such that no environment Z can tell with non-



Input

3x3 pooling

Activation

Pooling

Feature Extraction

Activation Function 

Flatten

Classifier

 
kernel 

 

...

... ...

... Batch: 

Convolution

Batch
Normalization

kernels

Fig. 16: An example of CNN pipeline and corresponding layer decomposition.

negligible probability whether it is interacting with A and
the protocol ΠMult in the real world or with S in the ideal
process for F chMode

4PC . Suppose PA is corrupted, the A’s input
is denoted as [x]PA

AC , and the output should be the same
secret value x in [·]AB-sharing. During preprocessing stage,
S plays the role of FPre

4PC, which sends kACtoAB and k′ACtoAB
to A (other keys are irrelevant in this case). Note that S
receives A’s output by sending its input to F chMode

4PC , denoted
as [x]PA

AB . To perfectly simulate PC, S firstly computes
JrKPA

ACtoAB = PRFkACtoAB(sid)−PRFk′ACtoAB(sid) just as A will
do and sends JrKPA

ACtoAB to A. Then acting as an honest PC,
S computes and sends mPC = [x]PA

AB − [x]PA

AC − JrKPA

ACtoAB
to PA. Remark that in the real protocol execution, PC

computes [x]PC

AC − JrKPC

ACtoAB, where JrKPC

ACtoAB is distributed
uniformly at random to the environment machine Z . Thus,
the message mPC sent by S in the ideal execution is
indistinguishable from [x]PC

AC − JrKPC

ACtoAB computed by PC

in the real protocol execution. This yields a perfect simu-
lation. We now consider the case when PB is corrupted,
the A’s input is denoted as [x]PB

AC , and the output should
be the same secret value x in [·]AB-sharing. Again, S
plays the role of FPre

4PC and sends k1 and k2 to A. S
computes JrKPB

ACtoAB = PRFkACtoAB(sid)−PRFk′ACtoAB(sid) just
as A will do and sends JrKPB

ACtoAB to A. Then, S sends
cPB = JrKPB

ACtoAB to F chMode
4PC and halts. Remark that the

simulation in this case is a local simulation, since A just
locally outputs [x]PB

AB . Thus, this simulation is perfect.

C.3. Bit to Arithmetic Protocol ΠBitToA

Theorem 3. Protocol ΠBitToA UC-realizes FB2A
4PC in the

FPre
4PC-hybrid model, in the presence of a semi-honest adver-

sary who can corrupt Pi where Pi ∈ {PA,PB,PC,PD},
with static corruption.

Proof Sketch: Suppose parties hold ⟨x⟩AC with x ∈ Z2

and are willing to compute [x]AB. We construct an adversary
S interacting FB2A

4PC such that no environment Z can tell with
non-negligible probability whether it is interacting with A
and the protocol ΠBitToA in the real world or with S in
the ideal process for FB2A

4PC . Suppose PA is corrupted, the
A’s input is denoted as ⟨x⟩PA

AC and the output should be
AB shared. During preprocessing stage, S plays the role
of FPre

4PC, which sends [b]PA

AB , ⟨b⟩PA

AC to A. Upon receiving
mPA = ⟨x⟩PA

AC ⊕ ⟨b⟩
PA

AC from PA, S chooses mPC
$← Z2,

then sends to PA. If mPA ⊕ mPC = 0, S sends [b]PA

AB

to FB2A
4PC , otherwise 1 − [b]PA

AB . We notice that in the real
protocol execution, PC computes ⟨x⟩PC

AC ⊕ ⟨b⟩
PC

AC , where
⟨b⟩PC

AC is distributed uniformly at random to the environment
machine Z . Thus, the ideal execution and the real protocol
execution are indistinguishable. The simulation in this case
is perfect.



F chMode
4PC

Private inputs: Let P = {PA,PB,PC,PD}.
Each party Pi ∈ P holds [x]Pi

ψ .
Public inputs: Public parameters.
Outputs: [x]Pi

ϕ for all Pi ∈ P, with ϕ ̸= ψ.
Initialization: All Lsid = ∅.
Compute:

• Upon receiving (chMode, [x]Pi

ψ ,Pi, sid) from
the corrupted Pi where Pi ∈ P .

• If Lsid = ⊥, do nothing.
• Check if every other record (chMode, [x]

Pj

ψ ,
Pj, sid), Pj ∈ P\{Pi} is in Lsid:
– If yes, compute x = rec([x]ψ), where rec()

is the reconstruction function.
If ϕ = AB:
∗ If Pi ∈ {PB,PD}, upon receiving cPi

from Pi, set [x]PB

ϕ = [x]PD

ϕ := cPi . Set
[x]PA

ϕ = [x]PC

ϕ := x− cPi .
∗ If Pi ∈ {PA,PC}, choose r

$← Z2ℓ ,
set [x]PA

ϕ = [x]PC

ϕ := r. Set [x]PB

ϕ =

[x]PD

ϕ := x− r.
If ϕ = AC:
∗ If Pi ∈ {PC,PD}, upon receiving cPi

from Pi, set [x]PC

ϕ = [x]PD

ϕ := cPi . Set
[x]PA

ϕ = [x]PB

ϕ := x− cPi .
∗ If Pi ∈ {PA,PB}, choose r

$← Z2ℓ ,
set [x]PA

ϕ = [x]PB

ϕ := r. Set [x]PC

ϕ =

[x]PD

ϕ := x− r.

Send (Pj, sid, [x]
Pj

ϕ ) to Pj for all Pj ∈ P .
Set Lsid = ⊥.

– Otherwise, set Lsid ← Lsid ∪ {(chMode,
[x]Pi

ϕ , Pi, sid)}.

Fig. 17: Four Party Functionality F chMode
4PC .

FB2A
4PC

Private inputs: Let P = {PA,PB,PC,PD}.
Each party Pi ∈ P holds ⟨x⟩Pi

ψ .
Public inputs: Public parameters, ϕ.
Outputs: [x]Pi

ϕ for all Pi ∈ P .
Initialization: All Lsid = ∅.
Compute:

• Upon receiving (BToA, ⟨x⟩Pi

ψ ,Pi, sid) from the
corrupted party Pi ∈ P .

• If Lsid = ⊥, do nothing.
• Check if every other record (BToA, ⟨x⟩Pj

ψ , Pj,
sid), Pj ∈ P\{Pi} is in Lsid:
– If yes, compute x = rec([x]ψ), where rec()

is the reconstruction function.
If ϕ = AB:
∗ If Pi ∈ {PB,PD}, upon receiving cPi

from Pi, set [x]PB

ϕ = [x]PD

ϕ := cPi . Set
[x]PA

ϕ = [x]PC

ϕ := x− cPi .
∗ If Pi ∈ {PA,PC}, upon receiving cPi

from Pi, set [x]PA

ϕ = [x]PC

ϕ := cPi . Set
[x]PB

ϕ = [x]PD

ϕ := x− cPi .
If ϕ = AC:
∗ If Pi ∈ {PC,PD}, upon receiving cPi

from Pi, set [x]PC

ϕ = [x]PD

ϕ := cPi . Set
[x]PA

ϕ = [x]PB

ϕ := x− cPi .
∗ If Pi ∈ {PA,PB}, upon receiving cPi

from Pi, set [x]PA

ϕ = [x]PB

ϕ := cPi . Set
[x]PC

ϕ = [x]PD

ϕ := x− cPi .

Send (Pj, sid, [x]
Pj

ϕ ) to Pj for all Pj ∈ P .
Set Lsid = ⊥.

– Otherwise, set Lsid ← Lsid ∪ {(BToA, [x]Pi

ψ ,
Pi, sid)}.

Fig. 18: Four Party Functionality FB2A
4PC .
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