
Subset-optimized BLS Multi-signature with
Key Aggregation

Foteini Baldimtsi1,2, Konstantinos Kryptos Chalkias1, François Garillot⋆,
Jonas Lindstrøm1, Ben Riva1, Arnab Roy1, Alberto Sonnino1, Pun

Waiwitlikhit1,3⋆⋆, and Joy Wang1

1 Mysten Labs Research, research@mystenlabs.com
2 George Mason University

3 Stanford University

Abstract. We propose a variant of the original Boneh, Drijvers, and
Neven (Asiacrypt ’18) BLS multi-signature aggregation scheme best suited
to applications where the full set of potential signers is fixed and known
and any subset I of this group can create a multi-signature over a mes-
sage m. This setup is very common in proof-of-stake blockchains where
a 2f + 1 majority of 3f validators sign transactions and/or blocks and
is secure against rogue-key attacks without requiring a proof of key pos-
session mechanism.
In our scheme, instead of randomizing the aggregated signatures, we have
a one-time randomization phase of the public keys: each public key is re-
placed by a sticky randomized version (for which each participant can
still compute the derived private key). The main benefit compared to the
original Boneh at al. approach is that since our randomization process
happens only once and not per signature we can have significant sav-
ings during aggregation and verification. Specifically, for a subset I of t
signers, we save t exponentiations in G2 at aggregation and t exponenti-
ations in G1 at verification or vice versa, depending on which BLS mode
we prefer: minPK (public keys in G1) or minSig (signatures in G1).
Interestingly, our security proof requires a significant departure from the
co-CDH based proof of Boneh at al. When n (size of the universal set of
signers) is small, we prove our protocol secure in the Algebraic Group and
Random Oracle models based on the Discrete Log problem. For larger
n, our proof also requires the Random Modular Subset Sum (RMSS)
problem.

Keywords: BLS · multi-signatures · signature aggregation · blockchain

1 Introduction

A multi-signature scheme [Ita83] allows a set of n signers to generate a short
signature σ, on the same message m (where the size of the signature should

⋆ Work done at Mysten Labs
⋆⋆ Work done at Mysten Labs

2 Baldimtsi et al.

be independent of the number of signers). To verify the multi-signature one
needs all the signers’ public keys, m and σ. A useful property of many multi-
signature schemes, is that they additionally support public-key aggregation; thus
the verifier only needs a short aggregate public key instead of an explicit list of
all n public keys4.

Multi-signature with public key aggregation play a fundamental role in the
scalability of blockchain systems since they allow the compression of posted
signatures and verification keys up to a factor of n. Of particular interest are
multi-signature schemes the verification algorithm of which, is fully compatible
with algorithms supported by blockchain systems such as Schnorr or BLS.

BLS signatures in the Blockchain Space. The Boneh–Lynn–Shacham (BLS)
signature scheme [BLS01] is an efficient signature scheme using pairing friendly
elliptic curves. BLS supports multi-signing with signature/public-key aggrega-
tion [BDN18b] in a non-interactive, deterministic and non-malleable manner.
More specifically, the scheme proposed in [BDN18b] has signature sizes of size
O(λ), where λ is the security parameter and its security is proven in the random
oracle (RO) model under the computational co-Diffie Hellman assumption.

BLS signatures have recently seen an increased adoption in the blockchain
setting. Chia network adopted BLS5 as its main signature scheme, primarily
motivated by its non-interactiveness to generate threshold signatures. Instead of
requiring multiple communication rounds and a dealer to ensure t-of-n partici-
pants had signed, a BLS aggregated signature can be incrementally aggregated.
Celo developed a SNARK friendly BLS signature6 on the BLS12-377 curve us-
ing a bespoke hash-to-curve scheme7 to allow for efficient verification of multiple
signatures. This benefited the Plumo ultralight client [VGS+22] to be more ef-
ficient where the signers do not need to know in advance about the public keys
in the multi-signature group.

Dfinity is designed based on a Random Beacon that acts as a verifiable
random function8 to produce verifiable and deterministic randomness with the
threshold version of BLS signatures [Gro21]. Each participant signs a message
independently, and the aggregated signature itself serves as the determinis-
tic random number that no party controls. Algorand uses BLS12-381 for ag-
gregatable signatures in their proof-of-stake consensus [GW19], whereas File-
coin [BG18] uses BLS12-381 as one of the four signature schemes admissible for
the blockchain’s actors.

Although ECDSA signatures can be verified much faster individually, BLS
signatures on the same message can be verified much faster in the aggregated
form, therefore making it more practical for multiple validators attesting the

4 We note that aggregate signatures are a more general primitive, which as opposed
to multi-signatures, allow the aggregation of n signatures of different messages in a
short single signature.

5 https://github.com/Chia-Network/bls-signatures
6 https://github.com/celo-org/celo-bls-snark-rs
7 https://github.com/celo-org/celo-proposals/blob/master/CIPs/cip-0022.md
8 https://dfinity.org/pdf-viewer/library/dfinity-consensus.pdf

Subset-optimized BLS Multi-signature with Key Aggregation 3

same block or transaction. In particular, n aggregated signatures on the same
message can be performed with just 2 pairings instead of n + 1 [BDN18b]. No-
tably, the most recent, mainnet deployed, Ethereum Consensus client adopted
BLS signatures for validators attesting block proposals [Eth,Edg] addressing the
verification bottleneck [Dra18].

The BLS multi-signature [BDN18b]. When designing multi-signature schemes,
a great challenge is to avoid rogue-key attacks: a forgery attack caused in schemes
where the adversaries are allowed to choose their public keys arbitrarily. In a typ-
ical multi-signature rogue key attack, the adversary would attempt to create a
public key that is a function of an honest user’s key allowing possible forgeries.
An easy defense against such attacks is to require the parties to present a proof
of possession, i.e. a zero-knowledge proof of their secret keys. However this com-
plicates implementations and is not compatible with existing infrastructures.

The BLS multi-signature [BDN18b] avoids the need for proofs of posses-
sion by following the paradigm of [BN06] which allows the public keys to be
aggregated without the need to check their validity through a series of signa-
ture and public key randomizations. In a high level the BLS multi-signature
of [BDN18b] works as follows: let e : G1 × G2 → GT be a bilinear pairing in
groups G1,G2,GT of prime order q. Let g1, g2 be generators of G1,G2 respec-
tively and let H0 : {0, 1}∗ → G1 and H1 : {0, 1}∗ → Zq. A secret/public key pair

is (pk, sk) where sk
$←− Z∗

q and pk = gsk2 ∈ G2. To compute a multi-signature for
n signers each party computes σi = H0(m)ai·ski where ai = H1(pki ∥ PK) and a
designated combiner computes the final aggregated signature to be σ =

∏n
i=1 σi.

The combined public key across the n signers is apk =
∏n

i=1 pk
H1(pki∥PK)
i . The

signature can be verified by checking e(σ, g2) = e(H0(m), apk) (which is identical
to the single BLS verification process).

Our Results. Our results are inspired by the observation that the BLS multi-
signature of [BDN18b] requires a total of n exponentiations in G2 during the
aggregation of signature shares and n exponentiations in G1 during the compu-
tation of apk for signature verification in order to randomize the signature and
keys. While this cost is needed if the set of the n signers is dynamic and con-
stantly updated, it is not necessary in all settings. For example, in proof-of-stake
settings it is common to have a static set of n signers per epoch during which
multiple subsets of the n signers would be required to engage in multi-signing.

Our protocol takes advantage of that setting and moves the need of signature
and apk randomization to an one-time public key randomization process which
happens once the set of n signers is fixed. Thus, instead of randomizing every
single multi-signature and the corresponding aggregated public key, we random-
ize each signer’s public key once at the beginning of the protocol, and then
for every signing subset I we simply aggregate signatures and the randomized
public keys together via a cheap multiplication and without the need for any
exponentiations. The advantage is that now the cost of a multi-signature is the
same as a regular BLS signature. We first provide a new set of definitions that

4 Baldimtsi et al.

allow for subset multi-signing in Section 2.5, and then present our construction
in Section 3.
Security. The security analysis of our scheme is technically interesting as it has to
significantly depart from the analysis of the standard BLS multi-signature [BDN18b].
In particular, the rewinding approach of [BDN18b] would fail in our case unless
the adversary was forced to declare the signer subset for which it would output
its forgery (to explain the technicality of our proof we start with a security proof
for this weaker adversary in Section 3.1). To overcome this limitation, we lever-
age the algebraic group model (AGM) and we prove our scheme secure under
the discrete logarithm assumption in the combined AGM + RO models. When
n is very large our proof additionally requires the Random Modular Subset Sum
(RMSS) assumptions. We show that this requirement is intrinsic, as there is an
attack on our scheme if RMSS is easy when n is large. Our AGM proof can be
found in Section 3.2.
Implementation. Finally, in Section 4, we provide an implementation of our con-
struction and a baseline comparison with [BDN18b]. Notably, for n = 500 sign-
ers our signature aggregation saves between 150 ms - 180 ms; and our signature
verification saves between 40ms - 75 ms (depending on whether signatures are
in G2 and keys in G1 or vice versa). Our performance benefit increases linearly
with the number of signers.

Related Work. There exists a long line of multi-signature proposals re-
lying in different assumptions such as RSA [Ita83,OO93], discrete logarithm
and Schnorr signatures [NKDM03,BN06,BCJ08,NRSW20,NRS21], bilinear pair-
ings [Bol02,LOS+06,BGOY07,BDN18b] and more recently lattice based assump-
tions [ES16,FH20].

2 Preliminaries

Notations. We denote the security parameter by λ and $←− denotes sampling
uniformly at random.

2.1 Bilinear pairing

Let G1,G2,GT denote groups of prime order q and let g1, g2 be generators of G1

and G2, respectively. Also, let Zq be the field of order q.
A bilinear pairing is an efficiently computable map, e : G1 × G2 → GT ,

satisfying the following properties:

– Bilinearity: For all P ∈ G1, Q ∈ G2 and a, b ∈ Zq we have

e(P a, Qb) = e(P a, Q)b = e(P,Qb)a = e(P,Q)ab.

– Non-degeneracy: e(g1, g2) ̸= 1.

Subset-optimized BLS Multi-signature with Key Aggregation 5

Bilinear pairings can be of a few types depending on whether there is an efficient
isomorphism from G1 to G2 in both directions (Type 1), only one direction (Type
2), or in neither direction (Type 3). In general, BLS and derived protocols work
for all three types - so we ignore the distinctions in the following sections. Type
3 pairings are more efficient and commonly deployed.

2.2 Computational Assumptions

For our security proofs of BLS subset multi-signatures, we recall the defini-
tions of Discrete Log (DL), a generalization of the Computational Diffie-Hellman
(CDH) assumption, called co-CDH [BLS01], and the Random Modular Subset
Sum (RMSS) assumption [IN96,Lyu05].

Definition 1 (Discrete Logarithm Problem). For a group G = ⟨g⟩ of prime
order q, we define the advantage AdvDL

G (A) of an adversary A as:

Pr [z′ = z : z
$←− Zq, Z ← gz, z′ ← A(g, Z)]

where the probability is taken over the random choices of the adversary A and
the random selection of z. DL is (τ, ϵ)-hard if there is no adversary A that can
break the DL problem in time τ and with advantage AdvDL

G (A) > ϵ.

Following [FKL18], we show that our construction is secure in AGM assuming
the Discrete Log problem.

Definition 2 (Computational co-Diffie-Hellman Problem). For groups
G1 = ⟨g1⟩, G2 = ⟨g2⟩ of prime order q, we define the advantage Advco-DH

G1,G2
(A) of

an adversary A as:

Pr [y = gαβ1 : (α, β)
$←− Z2

q, y ← A(gα1 , g
β
1 , g

β
2)]

where the probability is taken over the random choices of the adversary A and the
random selection of (α, β). co-CDH is (τ, ϵ)-hard if there is no adversary A that
can break the co-CDH problem in time τ and with advantage Advco-DH

G1,G2
(A) > ϵ.

For symmetric pairing groups, co-CDH reduces to standard CDH.

Definition 3 (RMSS Problem). For a prime number q, we define the ad-
vantage AdvRMSS

n,q (A) of an adversary A as:

Pr

[∑
i∈I

si = t : S = {si}ni=1
$←− Zn

q , t← Zq, S ⊇ I ← A(S, t)

]
where the probability is taken over the random choices of the adversary A and
the random selection of (S, t). RMSS is (τ, ϵ)-hard if there is no adversary that
can break the RMSS problem in time τ and with advantage AdvRMSS

n,q (A) > ϵ.

Impagliazzo and Naor [IN96] argued that the hardest instances of RMSS are
characterized by n = c log(q), where c is a constant factor. Although RMSS is
poly-time solvable [LO85,Fri86] by reduction to lattice SVP problems for n =
O(
√

log(q)), this is of lesser consequence to us, as the probability of the existence
of a solution is low.

6 Baldimtsi et al.

2.3 Forking Lemma

Pointcheval and Stern [PS00] first formalized the Forking Lemma which is used
for bounding the success probability of reductions employing rewinding and re-
programming random oracles. In our proofs, we will adopt the General Forking
Lemma, as formalized by Bellare and Neven [BN06].

Lemma 1 (General Forking Lemma). Fix an integer q ≥ 1 and a set H of
size h ≥ 2. Let A be a randomized algorithm that on input x, h1, ..., hq returns a
pair, the first element of which is an integer in the range 0, ..., q and the second
element of which we refer to as a side output. Let IG be a randomized algorithm
that we call the input parameter. The accepting probability of A, denoted acc, is
defined as the probability that J ≥ 1 in the experiment

x
$←− IG; h1, ..., hq

$←− H; (J, σ)
$←− A(x, h1, ..., hq)

The forking algorithm FA associated to A is the randomized algorithm that takes
input x and proceeds as follows: Let

Algorithm FA(x)

Pick coins ρ for A at random
h1, ..., hq

$←− H

(I, σ)
$←− A(x, h1, ..., hq; ρ)

If (I = 0) then return (0, ϵ, ϵ)

h′
I , ..., h

′
q

$←− H

(I ′, σ′)
$←− A(x, h1, ..., hI−1, h

′
I , ..., h

′
q; ρ)

If (I = I ′ and hI ̸= h′
I) then return (1, σ, σ′)

Else return (0, ϵ, ϵ)

frk = Pr[b = 1 : x
$←− IG; (b, σ, σ′)

$←− FA(x)]

Then
frk ≥ acc ·

(
acc

q
− 1

h

)
Alternatively,

acc ≤ q

h
+
√

q · frk

2.4 Algebraic Group Model

The algebraic group model (AGM) introduced in [FKL18], is a model for security
proofs that lies between the generic group model (GGM) and the standard model.
In AGM the adversary is considered algebraic: whenever it outputs a group
element, it also outputs a representation of that group element relative to all of
the other input group elements the algorithm has received up to that point.

Subset-optimized BLS Multi-signature with Key Aggregation 7

Definition 4 (Algebraic Algorithm [FKL18]). An algorithm A is called
algebraic (over a group G) if for all group elements ζ ∈ G that A outputs, it
additionally outputs a vector z = (z0, . . . , zm) of integers such that ζ =

∏
i g

zi
i

where (g0, . . . , gm) is the list of group elements A has received so far (w.l.o.g.
g0 = g).

The AGM model was used before to tighten the security reduction of the
standard BLS signature scheme [FKL18]. While previous reductions non-tightly
reduced from the CDH problem with a tightness loss linear in the number of
signing queries, [FKL18] provided a tight reduction in the AGM+RO model
under discrete log.

2.5 Definitions of (Subset-optimized) Multi-signatures

Informally, a multi-signature scheme (MS) allows multiple signers with public
keys PK = {pk1, . . . , pkn} to sign the same message with a signature size inde-
pendent to the number of signers. The set of signers’ public keys is aggregated
in a single key apk.

We recall the definitions for multi-signatures by roughly following Bellare
and Neven [BN06] and Drijvers et al. [DEF+19]. A multi-signature scheme with
key aggregation consists of the following algorithms:

– MS.Setup(1λ): Outputs the scheme’s parameters par.
– MS.KeyGen(par): Given the parameters par, outputs a pair of public/secret

keys (pk, sk).
– for all i ∈ {1, . . . , n}: MS.Sign(par, PK, ski,m): On input the set of public

keys PK, a signing secret key ski and a message m, the signer outputs
the signature σi. A designated combiner outputs the combined signature σ.
(Instead of a designates combiner, this algorithm could be interactive.)

– MS.KeyAggr(par, PK): Output a single aggregated key apk for all the input
pubic keys PK = {pk1, . . . , pkn}.

– MS.Verify(par, apk, σ,m): Output 1 if the signature σ verifies for message
m under apk and 0 otherwise.

Subset multi-signatures (SMS). The main difference in our scheme is that
we assume a fixed set of signers with public keys PK = {pk1, . . . , pkn} and we
allow different subsets I of them to compute signatures. However, during signing,
the signer does not have to be aware of who are the rest of the subset members
as long as it knows PK. We additionally separate the signing process from the
signature aggregation. The updated definition is as follows:

– SMS.Setup(1λ): Outputs the scheme’s parameters par.
– SMS.KeyGen(par): Given the parameters par, output a pair of public/secret

keys (pk, sk).
– SMS.Sign(par, PK, ski,m): On input the set of public keys PK, a signing

secret key ski and a message m, the signer outputs the signature share σi.

8 Baldimtsi et al.

– SMS.SigAggr(par, {σi : i ∈ I},m): On input |I| signatures on message m,
it outputs an aggregated signature σI for the subset of users I. (It could
potentially also take PK as input.)

– SMS.SubsetKeyAggr(par, {pki : i ∈ I}) Output a subset aggregated key
apkI for all the input public keys of the subset I.

– SMS.Verify(par, apkI , σI ,m): Output 1 if the signature σ verifies for message
m under apk and 0 otherwise.

Security. A subset multi-signature scheme should satisfy the properties of
completeness and unforgeability.

Definition 5 (Completeness). A subset multi-signature scheme (SMS) satis-
fies completeness, if for every n > 1, m ∈ {0, 1}∗, and subset I ⊆ {1, . . . , n} of
signers, we compute

– (ski, pki)← SMS.KeyGen(par), for all i ∈ [1, n]
– σi ← SMS.Sign(par,PK, ski,m), for all i ∈ I
– σI ← SMS.SigAggr(par, {σi : i ∈ I},m)
– apkI ← SMS.SubsetKeyAggr(par, {pki : i ∈ I}).

Then we have SMS.Verify(par, apkI , σI ,m) = 1 with overwhelming probability.

A multi-signature is unforgeable if an adversarial user cannot forge a sig-
nature that verifies under apkI for a set of signers where at least one signer is
honest. In other words, assuming n signers, even if an adversary has corrupted
all but one signer with public key pk0, the user should still not be able to forge
a signature that verifies under apkI that includes pk0. We recall the formal defi-
nition given in [BDN18b] as a three stage game (slightly adapted to capture our
subset scenario):

– Setup: The challenger generates the parameters par and the key pair
(sk0, pk0) of the honest signer. It runs the adversary A(par, pk0). The adver-
sary sets up a fixed set of public keys PKA = {pk1, . . . , pkn} and sends PKA

to the challenger. We denote PK = PKA ∪ {pk0}.
– Queries: The adversary is allowed to perform a series of signing queries,

where A picks m and queries a signing oracle O(par,PK,sk0,·)
sign which will simu-

late the honest user and return its signature share for message m. The oracle
queries can be repeated for different inputs m. A can make any number of
the above defined queries concurrently.

– Output: A outputs a multi-signature forgery (σ∗, m∗, I∗) and wins if no
signature queries were made on m∗ and SMS.Verify(par, apk∗, σ∗,m∗) =
1 for the aggregated subset public key apk∗ = SMS.SubsetKeyAggr(par,
{pki : i ∈ I∗ ∪ {0}}).

Definition 6 (Unforgeability). We say that A is a (τ, qS , qH , ϵ) forger if it
wins the above game with probability at least ϵ after running for time τ , and
making qS and qH signing queries and random oracle queries respectively. An
SMS scheme is (τ, qS , qH , ϵ)-unforgeable if no (τ, qS , qH , ϵ) adversary exists.

Subset-optimized BLS Multi-signature with Key Aggregation 9

2.6 BLS Multi-Signatures

We start by recalling the standard BLS Signature scheme. Let e : G1 × G2 →
GT be a bilinear pairing as defined above. Let g1, g2 be generators of G1,G2

respectively and let H0 : {0, 1}∗ → G1. BLS can be instantiated either as minSig
where signatures are in G1 and public keys in G2, or as minPK where signatures
are in G2 and keys are in G1. Below we take the minSig approach. The BLS
signature scheme consists of the following algorithms:

– BLS.Setup(1λ): Setup and output a bilinear group par = (q,G1,G2,GT , e, g1,
g2).

– BLS.KeyGen(par): Given the parameters par, output a pair of public/secret
keys (pk, sk) where sk

$←− Z∗
q and pk = gsk2 ∈ G2.

– BLS.Sign(par, sk,m): Given a message m ∈ {0, 1}∗, output a signature σ =
H0(m)sk ∈ G1.

– BLS.Verify(par, pk, σ,m): Given a public key pk ∈ G2, a signature σ ∈
G1 and a message m ∈ {0, 1}∗, output 1 if e(σ, g2) = e(H0(m), pk) and 0
otherwise.

BLS signatures can support multi-signing with public-key aggregation. Bellow,
we recall the MS scheme as proposed in [BDN18b]. We note that there ex-
ist two descriptions of the scheme: one in the full and proceedings version of
the paper [BDN18b], and a slightly modified version of the scheme described
by the authors in a blog-post [BDN18a]. We first recall the scheme from the
full/proceedings version [BDN18b] and then discuss the differences with the
blog-post version [BDN18a].

We assume the same setup as in BLS signatures and an additional hash
function H1 : {0, 1}∗ → Zq.

– MS.Setup(1λ): Output BLS.Setup(1λ).
– MS.KeyGen(par): Output BLS.KeyGen(par).
– MS.Sign(par, PK, ski,m): On input the set of public keys PK, a signing

secret key ski and a message m, compute σi = H0(m)ai·ski where ai =
H1(pki ∥ PK). Send the signature to a designated combiner who computes
the final signature to be σ =

∏n
i=1 σi. (The designated combiner can be one

of the signers or an external party.)
– MS.KeyAggr(par, {pk1, . . . , pkn}): let PK = {pk1, . . . , pkn}, then output

apk =

n∏
i=1

pk
H1(pki∥PK)
i

– MS.Verify(par, apk, σ,m): Output BLS.Verify(par, apk, σ,m).

The main difference between the scheme above and its blog-post version [BDN18a],
is that the later scheme makes the signature aggregation process distinct while
at the same time includes all the randomizations. Users compute their signatures
as regular, individual BLS signatures on message m, completely oblivious of who

10 Baldimtsi et al.

else is signing the message. Then, an aggregator, given the set of public keys for
the signers PK, and all individual signatures σi, computes the aggregated multi-
sig. As the scheme is described in the blog-post, the aggregator has to pay the
cost of n exponentiations in G1, instead of amortizing this cost across signers.

3 Scheme Description

Our scheme SMSKR (Subset Multi-Signature with Key Randomization) is a vari-
ant of the original Boneh at al. pairing-based BLS multi-signature scheme [BDN18b].
Our algorithms are defined in the same way as for subset multi-signatures (def-
inition given in Section 2.5) but in order to showcase our optimizations for the
specific case of BLS, we divide MS.Sign(par,PK, ski,m) into two modules:

– SMSKR.KeyRand(par, ski,PK): this algorithm creates randomized secret
and public keys (sk∗i , pk

∗
i) for user i and for the set of signers captured in

PK.
– SMSKR.Sign(par, sk∗i ,m): this is the sign algorithm but using the already

randomized secret key (and thus there is no need to include PK again.)

Let G1,G2 and GT be bilinear groups of prime order q as defined in Section
2.1. Let g1 and g2 be generators for G1 and G2 respectively and let e : G1 ×
G2 → GT be a bilinear pairing. Let H0 : {0, 1}∗ → G1 and H1 : {0, 1}∗ → Z∗

q

be random-output hash functions and let n denote the number of parties. In
our construction and definitions we will also assume minSig, as in Section 2.6,
although MSKR can work with both modes. We assume access to the functions
from a BLS signature scheme (as described in Section 2.6) over the same groups
using H0 as the hash function and define our SMSKR construction as follows:

– SMSKR.Setup(1λ): Output BLS.Setup(1λ).
– SMSKR.KeyGen(par): Output BLS.KeyGen(par).
– SMSKR.KeyRand(par, ski,PK): Given a set of public keys PK = {pk1, . . . ,

pkn}, output the randomized public and secret keys pk∗i = pk
H1(pki||PK)
i and

sk∗i = ski · H1(pki ∥ PK) ∈ Z∗
q respectively9.

– SMSKR.Sign(par, sk∗i ,m): Output the signature share σi = BLS.Sign(par, sk∗i ,
m).

– SMSKR.SigAggr(par, I, {σj : j ∈ I}): Given a subset of parties I ⊆ {1, . . . , n}
and a set of signatures from the corresponding parties, output the aggregated
multi-signature σI =

∏
j∈I σj .

– SMSKR.SubsetKeyAggr(par, I, {pk∗j : j ∈ I}): Given a subset of the parties
denoted by their indices I ⊆ {1, . . . , n} and their randomized public keys,
output apk∗I =

∏
j∈I pk

∗
j .

– SMSKR.Verify(par, apk∗I , σI ,m): Given an aggregated public key apk∗I ∈
G2, the set of public keys under which pk∗i ’s where computed, an aggregated
signature σI ∈ G1 and a message m ∈ {0, 1}∗, output BLS.Verify(par, apk∗I , σI ,
m).

9 We note that the randomization of the public key can happen by any third party
since no secret is required.

Subset-optimized BLS Multi-signature with Key Aggregation 11

The separation of key randomization and signing, is the key point of our
construction that allows for efficient implementations in the blockchain settings.
Assuming a known set of eligible signers PK = {pk1, . . . , pkn} at the beginning
of a blockchain epoch, all entities can appropriately randomize their keys once at
the beginning of the epoch and then participate in multiple BLS multi-signatures
for any subset of [n]. The advantage is that now the cost of a multi-signature is
the same as a regular BLS signature (plus the cost of an one-time key random-
ization), while the users do need to know who participates in the multi-signing
amongst the eligible signers. This is different than the original BLS multi-sig con-
structions [BDN18b] where the secret keys of each user were repeatedly random-
ized during each signing session for the specific set of signers that participated
in each multi-signature.

Discussion. We note that in blockchain settings, it is very reasonable to
assume that applications already have access to full set of randomized public
keys PK∗ and they only require a bitmap that defines the indexes of the subset
of entities that signed the message in SMSKR.SubsetKeyAggr. To optimize even
further, applications could cache common subsets of I and their corresponding
aggregated keys.

We also note that in certain blockchain applications a party i might not
have direct access to the private key ski, but only to a BLS signing oracle
over the original private key. Thus, it could request a signature over m, receive
si = H0(m)ski and then randomize the signature by computing σ∗

i = s
H1(pki,PK)
i .

This approach is more expensive because signature randomization requires an
operation in G1, while SMSKR’s default approach randomizes the private key,
which is a fast operation in Zq∗ .

3.1 Security Analysis (for a weaker Adversary)

We start by noting that our suggested change is not a simple modification of
[BDN18b] as it requires a drastically different security proof. In [BDN18b] it is
critical that the key randomization process happens at the same time as key
aggregation as this allows the security reduction to handle all these hash queries
as one which in turn allows to fix a specific set of public keys for the adversary’s
forgery even after rewinding.

To showcase the complication of the security analysis for our scheme, we first
discuss the security of our scheme for a weaker unforgeability adversary which
in the security game of Definition 6, defines a target subset I for which it will
output its forgery before starting its queries. For this weaker case, our security
analysis follows [BDN18b].

Theorem 1. SMSKR is an unforgeable multi-signature scheme (for the weaker
variation of the Definition 6 explained above) under the computational co-Diffie-
Hellman problem in the random-oracle model.

Proof. Following the proof of [BDN18b], let F be a (τ, qS , qH , ϵ) forger that
breaks the unforgeability of SMSKR as defined in Definition 6.

12 Baldimtsi et al.

Let par denote the bilinear group parameters and assume it is given as input
everywhere below. Let IG be an algorithm that generates instances for the co-
CDH problem, i.e. it outputs (A,B1, B2) = (gα1 , g

β
1 , g

β
2) for α, β

$←− Zq.
We build an algorithm A that on input (A,B1, B2) proceeds as follows. A

picks an index k
$←− {1, . . . , qH} and runs the forger F on input the honest public

key pk0 ← B2 with random tape ρ. F defines PK and its target forgery subset
I.

H0 queries. When F makes an H0 query, A picks ri
$←− Zq and returns gri1 for

all i expect the k’th query for which it returns A. We assume w.l.o.g. that F
makes no repeated H0 queries.

H1 queries. When F queries on (pki,PK), A just returns a random value in
hi ∈ Zq.

Signing queries. The aggregated subset key apk∗ is computed as in the actual
protocol. When F makes a signing query on message m, A looks up H0(m). If the
lookup returns the value A, then A aborts. Else, the value must be of the form
gr1, and A can simulate the honest signer by computing and returning σ∗

i = Br
1 .

When F fails to output a successful forgery, then A aborts. If F successfully
outputs a forgery for a message m for which H0(m) ̸= A then A also aborts.
Otherwise, F outputs a forgery (σ∗, m∗, I) such that:

e(σ∗, g2) = e(A,SMSKR.SubsetKeyAggr(par, {pkj : j ∈ I ∪ {0}}))

Let jf be the forgery index, i.e. the index for which F queried H1(pk0,PK) =
hjf . Let hj = H1(pkj , PK) for PK = {pk0, pk1, . . . , pkn}.
Then A outputs (jf , {σ,PK, I, apkI , a1, . . . , an}).

To complete the proof, we construct an algorithm B that, on input a co-CDH
instance (A,B1, B2) ∈ G1×G1×G2 and a forger F , solves the co-CDH problem
in (G1,G2). B will invoke the generalized forking algorithm GFA (as defined in 1)
on input (A,B1, B2) with the algorithm A running as described above. (Note
that the co-CDH instance is distributed identically to the output of the IG). If
GFA aborts, then B outputs fail. If GFA outputs (jf , out1, out2), then B proceeds
as follows: B parses the two outputs as: out1 = {σ1,PK1, I1, apk1I , a

1
1, . . . , a

1
n} and

out2 = {σ2,PK2, I2, apk2I , a
2
1, . . . , a

2
n}. By the forking lemma, we know that those

two executions were identical up to the jf ’th H1 query. In particular, this means
that the arguments of the jf ’th query are identical, i.e., PK1 = PK2, I1 = I2,
and n1 = n2. Let hj1f

= a1i and hj2f
= a2i , then a1i ̸= a2i . Given that the two

subsets are the same, we have apk1I/apk
2
I = pk0

a1
i−a2

i . Thus, (σ1/σ2)1/(a
1
i−a2

i) is
a solution to the co-CDH instance. The probability of success can be bound with
the forking lemma.

As noted above, this proof would not go through if the adversary had not fixed
the subset I for its forgery ahead of time (and before forking). If the adversary
was allowed to output forgeries for different subsets before and after forking, the
security proof would require exponential time.

Subset-optimized BLS Multi-signature with Key Aggregation 13

3.2 Security Analysis in AGM

We now present a proof of our signature scheme in the Algebraic Group Model.
Using AGM allows us to withstand the subset mismatch problem we had before.
In particular, we have a reduction strategy even if the target subset is different
after a rewind. Although we still have a 2n security loss in the reduction, we
show that this loss is intrinsic and can only be avoided by additionally assuming
hardness of the RMSS problem.

We follow the security proof of BLS in [FKL18] up to a certain point - in
particular they provide reduction strategies to address 2 cases that may arise. In
addition to those 2 cases, we have an important 3rd case where our analysis high-
lights a fundamental distinguishing characteristic of the SMSKR construction.
Specifically, there is a subset-sum attack possible in SMSKR which can either
be negligibly low probability statistically, or be able to be argued to be compu-
tationally hard based on the RMSS assumption. We describe the proof in both
scenarios and analyze how we can leverage both the DL and RMSS assumptions
depending on concrete subset and universal set sizes.

Theorem 2. SMSKR is an unforgeable multi-signature scheme (as defined in
Definition 6) under the Discrete Logarithm problem in the random-oracle and
AGM models, given n = log(o(q)).

Proof. Let Aalg be an algebraic adversary for the multi-signature unforgeability
game defined in Definition 6. We build a Discrete Log adversary ADL which uses
Aalg. At the beginning, ADL receives a Discrete Log challenge (g, Z = gz), where
z is the desired discrete logarithm output. The challenger ADL samples pk0
uniformly from G in a couple of different ways as we will outline below. Briefly,
we will describe two algorithms B and C that ADL will call with probability
1/2 each. Algorithm B will embed the challenge Z in the target public key pk0,
while algorithm C will embed Z in the hash H0(mi) query responses. After
sampling pk0 either way, ADL sends it to Aalg as the public key of the target
party. Regardless of which algorithm is executed, define x ∈ Zq implicitly such
that pk0 = gx.

H0 and H1 queries. The challenger ADL also simulates the random oracles H0

and H1. Let Hi = H0(mi) = gri denote the responses to the qH hash H0 queries.
These are also sampled uniformly from G in different ways by algorithms B and
C: B samples ri directly, while C embed Z in the responses. The random oracle
H1 is simulated by returning random elements from Zq.

At some point, Aalg returns a set of keys PKA = {pk1, ..., pkn}. Let PK =
PKA ∪ {pk0}. As it’s an algebraic adversary, it also returns representations
{(ui, vi, w⃗i)}i such that pki = guipkvi0

∏qH
j=1 H

wij

j for all i ∈ {1, . . . , n}. It’s
possible that some of the H0 queries are sent after outputting PKA - for those
Aalg can set the wij exponents to 0.

The challenger ADL also simulates signature queries in the following way. If
the query is mj , it first simulates computation of H0(mj) and then simulates
and returns signature Σj = H0(mj)

x. While x is explicitly known to algorithm
C, it can be implicitly simulated by algorithm B, as we will describe below.

14 Baldimtsi et al.

Finally, Aalg returns a forgery Σ∗ on a message m∗ /∈ Q and a set of indices
I ⊆ [1, n] together with a representation a⃗ = (â, a′, ā1, ..., āqH , ã1, ..., ãqS),
consisting of Zq elements, such that:

Σ∗ = H0(m
∗)x·H1(pk0||PK)+

∑
i∈I ski·H1(pki||PK) = gâpka

′

0

qH∏
i=1

H āi
i

qS∏
j=1

Σ
ãj

j

Here g is the generator of the group, pk0 is the public key of the target party,
Hi = H0(mi) = gri are the responses to the qH hash H0 queries and Σj are the
signatures H0(mj)

x = gxrj returned by the signing oracle. Let H0(m
∗) = gr

∗
.

Let hi = H0(pki||PK), for i ∈ [0, n]. Implicitly, ski = ui +
∑qH

j=1 rjwij + vix, for
all i ∈ [1, n]. This equation is equivalent to:xh0 +

∑
i∈I

ui +

qH∑
j=1

rjwij + vix

hi

 r∗ = x

(
a′ +

qS∑
i=1

ãiri

)
+

(
â+

qH∑
i=1

āiri

)

Therefore,

x =
(â+

∑qH
i=1 āiri)−

∑
i∈I(ui +

∑qH
j=1 rjwij)hir

∗

(h0 +
∑

i∈I vihi)r∗ − (a′ +
∑qS

i=1 ãiri)
(1)

Define H = h0+
∑

i∈I vihi. We define events E and F , which will let different
strategies succeed for the reduction. Let E be the event that H = 0, and let F
be the event that H · r∗ − (a′ +

∑qS
i=1 ãiri) = 0. The challenger ADL randomly

chooses one of two algorithms B or C with probability 1/2 and executes the
chosen one.

Algorithm B: The algorithm B sets pk0 = Z, the Discrete Log challenge.
It can simulate a signature on a message mi by setting Σi = Zri , such that
H(mi) = gri . If event F occurs, then B aborts. If event ¬F occurs, then it
can compute z = x, by Equation 1, as the denominator is not 0. Therefore,
AdvDL(B) = AdvSMSKR(Aalg) · Pr[¬F].

Algorithm C: The algorithm C generates pk0 = gx by sampling x itself. It
also generates the H0 responses by sampling bi and r̂i and setting H0(mi) =
gri = Zbigr̂i . If event E ∨ ¬F occurs, then C aborts. Otherwise, assume event
¬E ∧ F occurs.

Given F , we get:

H · (zb∗ + r̂∗) = H · r∗ = a′ +

qS∑
i=1

ãiri = a′ +

qS∑
i=1

ãi(r̂i + zbi)

Hence,

z =
(a′ +

∑qS
i=1 ãir̂i)−H · r̂∗

H · b∗ −
∑qS

i=1 ãibi

Subset-optimized BLS Multi-signature with Key Aggregation 15

Note that the value of b∗ is information-theoretically hidden from Aalg and
is also absent from the sum

∑qS
i=1 ãibi, as the forgery message mustn’t have

been queried to the signing oracle. Although the bi’s are also hidden to Aalg,
note that it could set all the ãi’s to 0 and hence force the sum

∑qS
i=1 ãibi to

be 0. Given ¬E, H is non-zero, thus the denominator is whp ̸= 0. Therefore,
AdvDL(C) = AdvSMSKR(Aalg) · Pr[¬E ∧ F].

Event E: We show that the probability of this event is negligible given Dis-
crete Log hardness. Let AE be an adversary which wins if it makes event E
happen. We construct a challenger AEDL which rewinds AE and applies Gen-
eral Forking Lemma (Lemma 1) to break Discrete Log hardness.

We now describe the algorithm AE . It runs like algorithm B as described
above in simulating the target public key, H0, H1, and signature queries, to
the adversary Aalg. Let Aalg return a set of public keys and representations
PKA, {(ui, vi, w⃗i)}ni=1 and produce a forgery (Σ∗,m∗, I, a⃗) as described before.
If event E didn’t happen, then AE returns (0, ϵ). Otherwise, let u be the index
of the first query of the form (pkiu ||PK) to H1, where PK = PKA ∪ {pk0} and
pkiu ∈ PK. Let hi = H1(pki||PK) for i ∈ [0, n], and ri be such that H0(mi) =
gri for i ∈ [1, qH]. Then AE returns (u, (PK, {(ui, vi, w⃗i)}ni=1, {ri}

qH
i=1, {hi}ni=0, I)).

Based on this the General Forking Lemma algorithm GFAE
returns:

1, (PK, {(ui, vi, w⃗i)}ni=1, {ri}
qH
i=1, {hi}ni=0, I),

(PK ′, {(u′
i, v

′
i, w⃗

′
i)}ni=1, {r′i}

qH
i=1, {h

′
i}ni=0, I

′)

Since the u-th query is identical for the two executions, we must have PK =
PK ′. Also, by construction the sets {hi}ni=0 and {h′

i}ni=0 in the two executions
are independently random.

We first show that the probability that the vectors (v1, ..., vn) and (v′1, ..., v
′
n)

are equal is negligible if n = log o(q).

Lemma 2. For a given vector v⃗ = (v1, ..., vn) ∈ Zn
q , the probability that for

some I ⊆ [1, n], h0 +
∑

i∈I hivi = 0 with h0, h1, ..., hn ← Zq, is < 2n/q.

Proof. Let EH denote the event that ∃I ⊆ [1, n] : h0 +
∑

i∈I hivi = 0. For
any fixed I, the probability of EH is 1/q. Therefore, if we union bound the
probabilities over all possible I ⊆ [1, n], then the probability of EH is at most
2n/q.

Since (h′
0, ..., h

′
1) are chosen independent of (v1, ..., vn), we must have whp

(v1, ..., vn) ̸= (v′1, ..., v
′
n), by the above lemma. In that case there is an index

k, such that v′k ̸= vk. The Discrete Log challenger AEDL then calculates the
discrete log of pk0 as (uk +

∑qH
j=1 rjwkj − u′

k −
∑qH

j=1 r
′
jw

′
kj)/(v

′
k − vk).

Using Generalized Forking Lemma, we get:

Adv(AE) ≤ qH/q +
√
qH ·Adv(AEDL)/(1− 2n/q)

Since the sample space of AE matches that of ADL, therefore Pr[E] ≤ qH/q +√
qH ·Adv(AEDL)/(1− 2n/q)

16 Baldimtsi et al.

Putting everything together, we get that

AdvDL(ADL) = 1/2(AdvDL(B) +AdvDL(C))

= 1/2AdvSMSKR(Aalg)(Pr[¬F]+Pr[¬E∧F]) = 1/2AdvSMSKR(Aalg)(1−Pr[E∧F])

≥ 1/2AdvSMSKR(Aalg)(1− Pr[E])

Therefore,

AdvSMSKR(Aalg) ≤ 2AdvDL(ADL)(1− Pr[E])−1 ≤ 2AdvDL(ADL)(1 + 2Pr[E])

≤ 2AdvDL(ADL)(1 + 2qH/q + 2
√
qH ·Adv(AEDL)/(1− 2n/q))

Is the 2n security loss intrinsic? We argue that the 2n security loss incurred
in the above reduction is intrinsic, unless we resort to a hardness assumption
related to random modular subset sums (RMSS), such as Definition 3. An ad-
versary which can efficiently solve RMSS problems can break the security of the
system as we show here.

Once this adversary A receives a target pk0 = gx, it chooses {(ui, vi)}ni=1

randomly as Zq elements and sends PKA = {pki = guipkvi0 }ni=1 to the challenger.
Let hi = H1(pki||PK) for all i ∈ [0, n], where PK = PKA∪{pk0}. The adversary
solves the following RMSS instance:

– Target sum: −h0 mod q
– Set: {hi · vi}ni=1

If n = Ω(log q), whp there is a solution. Let’s say the solution is I ⊆ [1, n].
This means h0+

∑
i∈I hivi = 0. A SMSKR signature on a message m∗ with subset

I ∪ {0} is thus H(m∗)h0x+
∑

i∈I hi(ui+vix) = H(m∗)
∑

i∈I hiui . This quantity can
be readily computed by the adversary as it is independent of x.

Is the [BDN18b] multi-sig immune from this attack? In the multi-sig
scheme of [BDN18b] the hash is computed on the exact subset which is signing
the multi-sig. Thus the exact subset is committed in the random oracle exponent
multipliers. There is no room to apply it to different subsets as is the case with
SMSKR. Hence the above attack does not apply to [BDN18b].

Proof with RMSS assumption. The above attack highlights the need to
assume that random subset sum problems are hard to compute for an adversary.
In fact, now we show that the RMSS (Definition 3) and Discrete Log Problems
together suffice to prove security of the scheme without an exponential loss in
reduction.

Theorem 3. SMSKR is an unforgeable multi-signature scheme (as per Defini-
tion 6) under the Discrete Logarithm and RMSS problems in the random-oracle
and AGM models.

Subset-optimized BLS Multi-signature with Key Aggregation 17

Proof. We only show that the probability of event E is bound by Discrete Log
and RMSS hardness. Rest of the proof same as the last one.

Let AE be an adversary which wins if it makes event E happen. We construct
a challenger AEDL which selects randomly, with probability 1/2 each, from two
rewinding strategies GF eq

AE
and GF¬eq

AE
and applies forking to break Discrete Log

hardness.
We now describe the algorithm AE . It runs like algorithm B as described

above in simulating the target public key, H0, H1, and signature queries, to
the adversary Aalg. Let Aalg return a set of public keys and representations
PKA, {(ui, vi, w⃗i)}ni=1 and produce a forgery (Σ∗,m∗, I, a⃗) as described before.
If event E didn’t happen, then AE returns (0, ϵ). Otherwise, let u be the in-
dex of the first query of the form (pkiu ||PK) to H1, where PK = PKA ∪
{pk0} and pkiu ∈ PK. Let hi = H1(pki||PK) for i ∈ [0, n]. Then AE returns
(u, (PK, {(ui, vi, w⃗ij)}ni=1, {ri}

qH
i=1, {hi}ni=0, I)). Based on this the algorithm GF¬eq

AE

returns:
1, (PK, {(ui, vi, w⃗i)}ni=1, {ri}

qH
i=1, {hi}ni=0, I),

(PK ′, {(u′
i, v

′
i, w⃗

′
i)}ni=1, {r′i}

qH
i=1, {h

′
i}ni=0, I

′)

Since the u-th query is identical for the two executions, we must have PK =
PK ′. Let Eeq denote the event ∀i ∈ [1, n] : vi = v′i. If Eeq occurs, then AEDL

aborts. Otherwise, there is an index k, such that v′k ̸= vk. The Discrete Log
challenger AEDL then calculates the discrete log of pk0 as (uk +

∑qH
j=1 rjwkj −

u′
k −

∑qH
j=1 r

′
jw

′
kj)/(v

′
k − vk).

Algorithm GF eq
AE

gets an RMSS challenge (S = {si}ni=1, t). It sends h0, h1, ...,
hn ← Zq as usual in the first execution and gets back (v1, ..., vn). In the rewinded
execution, it sends h′

0 = −t, h′
1 = siv

−1
i , ..., h′

n = snv
−1
n . Observe that this

respects the distribution of the original game and is also independently random
from h0, h1, ..., hn. Now if event ¬Eeq occurs, then ADL aborts. Otherwise, we
have (v1, ..., vn) = (v′1, ..., v

′
n). Therefore, we have −t +

∑
i∈I′ visiv

−1
i = 0. In

other words, t =
∑

i∈I′ si, and hence I ′ is a valid solution to the RMSS problem.

Summing up, we have:

Pr[AE wins] = 1/2(Pr[AE wins DL] + Pr[AE wins RMSS])

= 1/2 (Pr[GF¬eq
AE

wins] · Pr[¬Eeq] + Pr[GF eq
AE

] · Pr[Eeq])

Now, observe that,

Pr[GF eq
AE

wins] = Pr[GF¬eq
AE

wins] ≥ Pr[AE wins] · (Pr[AE wins]/qH − 1/q)

Therefore,

2 Pr[AE wins] ≥ Pr[GF eq
AE

] ≥ Pr[AE wins] · (Pr[AE wins]/qH − 1/q)

Therefore, following [BN06], we get:

Pr[AE wins] ≤ qH/q +
√
qH · 2Pr[AE wins]

= qH/q +
√
qH · (Pr[AE wins DL] + Pr[AE wins RMSS])

18 Baldimtsi et al.

On the dependence of assumptions on subset size. Our scheme allows
any number of signers to form a subset, of size k out of a universe of size n, to
aggregate sign the message. Some applications do restrict k to be within some
limits, for example PoS blockchains that require 2/3 of the validators to sign.
We take a look here to see how our security assumptions depend on the relation
between k, n, q and the security parameter λ. Let’s say we allow k to range
between 1 and an upper bound max_k. The case of the range [n −max_k, n]
is symmetric.

– When the number of possible subsets is negligibly smaller than q, then the
probability of existence of a subset sum solution is negligible. In this case, no
subset attacks are possible and just the Discrete Log assumption is enough.
This case arises if

∑max_k
k=1

(
n
k

)
/q ≤ 2−λ.

– In all other cases, we have to additionally assume RMSS, albeit it will also
include the maximum subset size max_k as a parameter.

We do an analysis with some concrete numbers of practical relevance. We
pick the group size q to be a 256-bit prime, and security parameter λ = 128. In
Figure 1, we plot the upper bound on subset size where the number of possible
subsets is less than the tolerance level q/2λ ≈ 2128. To be precise, we plot the
value of max_k_aggregated_sum in the y-axis against n in the x-axis, such that:

max_k_aggregated_sum = max

max_k ∈ [1, n] :

max_k∑
k=1

(
n

k

)
≤ 2128

Observe that the plot climbs linearly till n = 128. This is expected as the size
of the full set of subsets keeps below threshold up to that point. When n = 129,
the curve drops abruptly to k = 64. This is because, now the threshold is half
the size of the full set of subsets, which is 2129, and hence is realized at half
the subset size. After this drop, the curve gradually slides down, reaching subset
size ≤ 11 for n = 10, 000. Python code for reproducing these are available open
source. 10

Future Work. We concluded that the flexibility in choosing subsets, after
committing to a superset of public keys, prevented us from using the [BDN18b]
template for security proof. This prompted us to explore the AGM model, led us
to discover the subset-sum attack, and mitigate that using the RMSS assump-
tion. In hindsight, we suspect that there may be further avenues to shore up the
security proof. We plan to explore in the future if we can prove the scheme se-
cure in the random oracle model assuming co-CDH and RMSS, or prove it in the
Generic Group Model [Nec94,Sho97], instead of AGM. In addition, we are also
exploring if it is possible to tweak the construction minimally to bolster security
by binding to the subset, but at the same time retain its efficiency advantages.

10 https://github.com/MystenLabs/research/tree/main/cryptography/
bls_aggregation_combinatorics

Subset-optimized BLS Multi-signature with Key Aggregation 19

Fig. 1: Plots of upper bound on subset size where the number of possible subsets
is less than the tolerance level. The top plot is for n going up to 300, and the
bottom is for n going up to 10000.

4 Implementation and Evaluation

Implementation Details. We implement the scheme presented in Section 3 in
Rust on top of the curve bls12381. We provide two production-ready implemen-
tations11, one where the signature is a group element of G1 and the public key
is a group elements of G2 (noted as minSig), and a second where the signature
is a group element of G2 and the public key is group elements of G1 (noted as
minPk). Our implementations are built on top of the library blst [Sup22] that
provides base group operations over the curve bls12381. We implement the ran-
domization components of the scheme as a self-contained Randomize trait allow-
ing to augment existing BLS implementations to support SMSKR with minimal
modifications. As a result, supporting our scheme only requires the addition of
50 LOC to define the Randomize trait and and extra 150 LOC to implement it.
Furthermore, we provide an additional minimal prototype implementation12 for
didactic proposes (and that we do not benchmark). Its scope is to illustrate the
implementation of our scheme with clarity without the numerous performance

11 https://github.com/MystenLabs/fastcrypto,
(6eb758ba78612e5e22a2748dd7a4b2c8b3724377)

12 https://github.com/asonnino/mskr, (b212cb1ade13533ef330278dc8784d84641111e8)

20 Baldimtsi et al.

optimizations of our production-ready implementations. This minimal prototype
is build on top of the library bls12_381 [zkc22] providing base group operations
over the curve bls12381.

Evaluation Results. We evaluate the performance of our production-ready
SMSKR implementations described above. We perform our benchmarks on both a
cheap Amazon Web Services (AWS) instance and a Macbook Pro equipped with
a M1 processor. Our AWS experiments illustrates the performance of SMSKR on
low-end devices. We select a t3.medium instance that comes with 2 virtual CPUs
(1 physical core) on a 2.5GHz Intel Xeon Platinum 8259 and 4GB of RAM. Our
experiments on the Macbook Pro illustrate the performance of our scheme on
high-end devices with powerful CPUs. We select a Macbook Pro 14" equipped
with a M1 Pro and 16GB of RAM. All our evaluations use Rust 1.65 and run
with cargo criterion [bhe22]. We open-source our benchmarking scripts to
enable reproducible results13.

Our experiments aim to demonstrate the following claims. (C1) All functions
of SMSKR are lightweight and performant even on low-end devices, (C2) SMSKR
scales well when the number of signers increases, and (C3) SMSKR strictly
outperforms the baseline scheme multi-signature of Boneh et.al. [BDN18b] (and
the performance benefit increases with the number of signers).

4.1 Microbenchmarks

Table 1 illustrates the performance of both our implementations (minSig and
minPk) on a single CPU core. The implementation of SMSKR.SubsetKeyAggr
is deeply embedded into the function SMSKR.Verify. We thus report the per-
formance of both functions together in the last row of the table. All functions
are evaluated for 100 signers, except SMSKR.Sign which is independent of the
number of signers. We compute the average time over 100 runs.

The table shows that key generation is cheap, taking respectively about 250
and 180 µs on our low-end AWS instance and on our high-end M1 Macbook
Pro. Signing is also cheap and can be performed in less than 500 µs even on our
low-end machine. Aggregating 100 signatures is the cheapest operation taking
only a few microseconds on any machine. Finally, verifying 100 signatures takes
1.39 ms on our low-end machine and half that time (0.72 ms) on our high-
end machine. The table shows there is little difference between our minSig and
minPk implementations when operating with 100 signers. Section 4.2 illustrates
that the performance difference between these implementations increases rapidly
with the number of signers.

The results of Table 1 illustrates that even the most expensive function
(SMSKR.Verify) running on a low-end machine takes less than 2 milliseconds.
This demonstrates that SMSKR is lightweight and performant even on low-end
devices, thus validating our claim C1.
13 https://github.com/MystenLabs/fastcrypto/blob/mskr-

bench/fastcrypto/src/mskr_bench.rs,
(4d1bad60b6db5bfbb448d98d89a72cfaebab6e56)

Subset-optimized BLS Multi-signature with Key Aggregation 21

Function AWS M1
minSig minPk minSig minPk

SMSKR.KeyGen 0.25 0.25 0.18 0.18
SMSKR.Sign 0.44 0.44 0.31 0.31
SMSKR.SigAggr 0.06 0.17 0.05 0.11
SMSKR.Verify 1.39 1.46 0.72 0.75

Table 1: Micro-benchmark of the main SMSKR functions on a a low-end
t3.medium AWS instance and a high-end Macbook Pro equipped with a M1
CPU. Each data point represents the average time (over 100 runs) in millisec-
onds required to evaluate the function. All functions are evaluated for 100 public
keys (except SMSKR.Sign that is independent of the number of public keys).

0 100 200 300 400 500 600 700 800 900 1,000
0

0.5

1

1.5

2

2.5

3

Number of signers

E
xe

cu
ti

on
ti

m
e

(m
s)

SMSKR SigAggr (minSig) SMSKR KeyAggr + Verify (minSig)
SMSKR SigAggr (minPk) SMSKR KeyAggr + Verify (minPk)

Fig. 2: Scalability of SMSKR on a low-end t3.medium AWS instance. Every data
point on the graph is the average of 100 runs.

4.2 Scalability

Figure 2 and Figure 3 illustrate the performance of SMSKR when the number of
signers increases. We omit SMSKR.KeyGen and SMSKR.Sign from our analysis
since the former function is only ran once at setup and the latter is independent
of the number of signers. Each data point on the graphs below represent the
average time computed over 100 runs. Similarly to Section 4.1 the verification
process (green lines) includes both SMSKR.SubsetKeyAggr and SMSKR.Verify.
The signature aggregation process (blue lines) is simply a call to SMSKR.SigAggr.

Figure 2 shows the time required to aggregate and verify signatures on our
low-end machine. As expected, the figures show the time required to execute the
aggregation and verification process increases linearly with the number of pub-
lic keys. The signature and key aggregation processes require one EC addition
for each signature (and public key) to aggregate. This cost quickly dominates
the cost of any other operation (including the single pairing check required by
the verification process) as the number of signers increases. Both our minSig

22 Baldimtsi et al.

0 100 200 300 400 500 600 700 800 900 1,000
0

0.5

1

1.5

2

Number of signers

E
xe

cu
ti

on
ti

m
e

(m
s)

SMSKR SigAggr (minSig) SMSKR KeyAggr + Verify (minSig)
SMSKR SigAggr (minPk) SMSKR KeyAggr + Verify (minPk)

Fig. 3: Scalability of SMSKR on a high-end Macbook Pro equipped with a M1
processor. Every data point on the graph is the average of 100 runs.

and minPk SMSKR implementations require less than 200 µs to aggregate sig-
natures in a setting with less than 100 signers. SMSKR’s signature aggregation
scales well: our minSig and minPk implementations respectively require 300
µs and 800 µs to aggregate 500 signatures, and only 0.6 ms and 1.6 ms (re-
spectively) to aggregate 1,000 signatures. We observe that our minSig signature
aggregation implementation is faster than our minPk implementation. Indeed,
our minSig (resp. minPk) implementation represents signatures in G1 (resp.
G2) and EC additions are faster in G1 than in G2. The SMSKR verification
process (SMSKR.SubsetKeyAggr and SMSKR.Verify) also scales well. Both our
minSig and minPk implementations take about 1.5ms to run with 100 signers
and respectively require 3 ms and 2 ms to run the verification process with
1,000 signers. Contrarily to signature aggregation, the verification process of our
minPk implementation is faster than our minSig implementation. This is ex-
pected as our minPk implementation represents public keys in G1 (while minSig
represents them in G2) where their aggregation is faster.

Figure 3 shows the time required to aggregate and verify signatures on our
high-end machine. The graphs are similar to Figure 2 but display better perfor-
mance. Signature aggregation (1,000 signatures) takes respectively 0.5 ms and
1.3 ms for our minSig and minPk implementations. The verification process
(1,000 signers) takes respectively 1.7 ms and 1.3 ms for our minSig and minPk
implementations.

Figure 2 and Figure 3 thus validate our scalability claim C2.

For completeness, Figure 4 and Figure 5 provide a ‘zoomed’ view on SMSKR’s
performance when the number of signers ranges from 10 to 100. We observe that
signature aggregation is only affected by a few microseconds and the verification
time does not visibly change.

Subset-optimized BLS Multi-signature with Key Aggregation 23

0 20 40 60 80 100
0

0.5

1

1.5

Number of signers

E
xe

cu
ti

on
ti

m
e

(m
s)

SMSKR SigAggr (minSig)
SMSKR SigAggr (minPk)

SMSKR KeyAggr + Verify (minSig)
SMSKR KeyAggr + Verify (minPk)

Fig. 4: Performance of SMSKR on a
low-end t3.medium AWS instance. Ev-
ery data point on the graph is the av-
erage of 100 runs.

0 20 40 60 80 100
0

0.25

0.5

0.75

Number of signers

E
xe

cu
ti

on
ti

m
e

(m
s)

SMSKR SigAggr (minSig)
SMSKR SigAggr (minPk)

SMSKR KeyAggr + Verify (minSig)
SMSKR KeyAggr + Verify (minPk)

0 20 40 60 80 100
0

0.25

0.5

0.75

Number of signers

E
xe

cu
ti

on
ti

m
e

(m
s)

SMSKR SigAggr (minSig)
SMSKR SigAggr (minPk)

SMSKR KeyAggr + Verify (minSig)
SMSKR KeyAggr + Verify (minPk)

Fig. 5: Performance of SMSKR on a
high-end Macbook Pro equipped with
a M1 processor. Every data point on
the graph is the average of 100 runs.

4.3 Baseline Comparison

Figure 6 and Figure 7 compare the performance of SMSKR with the baseline
scheme of Boneh et.al. [BDN18b] 14.

Figure 6 compares the time required to aggregate and verify SMSKR signa-
tures with the baseline on our low-end machine. The figure shows that signatures
aggregation of our SMSKR minSig and minPk implementations outperforms the
baseline by two orders of magnitude, regardless of the number of signers. Our SM-
SKR minSig and minPk implementations respectively save 25 ms and 50 ms with
respect to the baseline when aggregating 100 signatures, and a staggering 250 ms
and 300 ms when aggregating 500 signatures. Similarly, the verification process
of both our SMSKR minSig and minPk implementations outperforms the base-
line by respectively 50x and 30x. The baseline scheme of Boneh et.al. [BDN18b]
randomizes each signature before aggregation. Furthermore, it multiplies each
signature and public key by a random exponent before their aggregation, thus
paying the cost of one EC addition and one scalar multiplication for every signa-
ture and public key. This accounts for the performance differences with SMSKR
that randomizes secret keys (upon setup) rather than individual signatures and
entirely forgoes any scalar multiplication during signature aggregation.

Figure 7 compares the time required to aggregate and verify SMSKR signa-
tures with the baseline on our high-end machine. SMSKR greatly outperforms the
baseline. The performance benefits are similar to the experiments on our low-end
machine as the more powerful CPU scales performance roughly linearly. For 500
signers our SMSKR minSig and minPk signature aggregation respectively save

14 Note that in both Figure 6 and Figure 7 the performance results for all SMSKR
operations collapse to a single line.

24 Baldimtsi et al.

0 100 200 300 400 500
0

50

100

150

200

250

300

Number of signers

E
xe

cu
ti

on
ti

m
e

(m
s)

SMSKR SigAggr (minSig) SMSKR KeyAggr + Verify (minSig)
SMSKR SigAggr (minPk) SMSKR KeyAggr + Verify (minPk)
Baseline SigAggr (minSig) Baseline KeyAggr + Verify (minSig)
Baseline SigAggr (minPk) Baseline KeyAggr + Verify (minPk)

Fig. 6: Comparative performance of SMSKR with the baseline scheme of
Boneh et.al. [BDN18b] on a low-end t3.medium AWS instance. Every data point
on the graph is the average of 100 runs.

0 100 200 300 400 500
0

30

60

90

120

150

180

Number of signers

E
xe

cu
ti

on
ti

m
e

(m
s)

SMSKR SigAggr (minSig) SMSKR KeyAggr + Verify (minSig)
SMSKR SigAggr (minPk) SMSKR KeyAggr + Verify (minPk)
Baseline SigAggr (minSig) Baseline KeyAggr + Verify (minSig)
Baseline SigAggr (minPk) Baseline KeyAggr + Verify (minPk)

Fig. 7: Comparative performance of SMSKR with the baseline scheme of
Boneh et.al. [BDN18b] on a high-end Macbook Pro equipped with a M1 proces-
sor. Every data point on the graph is the average of 100 runs.

150 ms and 180 ms; and our SMSKR minSig and minPk signature verification
implementations respectively save around 75 ms and 40 ms with respect to the
baseline.

Subset-optimized BLS Multi-signature with Key Aggregation 25

These figures validate our final claim C3 by showing that SMSKR strictly
outperforms the baseline and that the performance benefit increases linearly
with the number of signers.

Acknowledgement

We thank the a16z crypto team for reviewing the paper, recommending improve-
ments, and providing future extension ideas. In particular, we thank Dan Boneh
(Stanford University) and Valeria Nikolaenko (a16z crypto research).

References

[BCJ08] Ali Bagherzandi, Jung Hee Cheon, and Stanislaw Jarecki. Multisignatures
secure under the discrete logarithm assumption and a generalized fork-
ing lemma. In Peng Ning, Paul F. Syverson, and Somesh Jha, editors,
ACM CCS 2008: 15th Conference on Computer and Communications Se-
curity, pages 449–458, Alexandria, Virginia, USA, October 27–31, 2008.
ACM Press.

[BDN18a] Dan Boneh, Manu Drijvers, and Gregory Neven.
Bls multi-signatures with public-key aggregation.
https://crypto.stanford.edu/ dabo/pubs/papers/BLSmultisig.html, 2018.

[BDN18b] Dan Boneh, Manu Drijvers, and Gregory Neven. Compact multi-signatures
for smaller blockchains. In Thomas Peyrin and Steven Galbraith, editors,
Advances in Cryptology – ASIACRYPT 2018, Part II, volume 11273 of
Lecture Notes in Computer Science, pages 435–464, Brisbane, Queensland,
Australia, December 2–6, 2018. Springer, Heidelberg, Germany.

[BG18] J Benet and N Greco. Filecoin: A decentralized storage network. Protocol
Labs, 2018.

[BGOY07] Alexandra Boldyreva, Craig Gentry, Adam O’Neill, and Dae Hyun Yum.
Ordered multisignatures and identity-based sequential aggregate signa-
tures, with applications to secure routing. In Peng Ning, Sabrina De Cap-
itani di Vimercati, and Paul F. Syverson, editors, ACM CCS 2007: 14th
Conference on Computer and Communications Security, pages 276–285,
Alexandria, Virginia, USA, October 28–31, 2007. ACM Press.

[bhe22] bheisler. cargo-criterion. https://github.com/bheisler/cargo-criterion,
2022.

[BLS01] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the
Weil pairing. In Colin Boyd, editor, Advances in Cryptology – ASI-
ACRYPT 2001, volume 2248 of Lecture Notes in Computer Science, pages
514–532, Gold Coast, Australia, December 9–13, 2001. Springer, Heidel-
berg, Germany.

[BN06] Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key
model and a general forking lemma. In Ari Juels, Rebecca N. Wright, and
Sabrina De Capitani di Vimercati, editors, ACM CCS 2006: 13th Confer-
ence on Computer and Communications Security, pages 390–399, Alexan-
dria, Virginia, USA, October 30 – November 3, 2006. ACM Press.

26 Baldimtsi et al.

[Bol02] Alexandra Boldyreva. Threshold Signatures, Multisignatures and Blind
Signatures Based on the Gap-Diffie-Hellman-Group Signature Scheme. In
Yvo G. Desmedt, editor, Public Key Cryptography — PKC 2003, Lecture
Notes in Computer Science, pages 31–46, Berlin, Heidelberg, 2002. Springer.

[DEF+19] Manu Drijvers, Kasra Edalatnejad, Bryan Ford, Eike Kiltz, Julian Loss,
Gregory Neven, and Igors Stepanovs. On the security of two-round multi-
signatures. In 2019 IEEE Symposium on Security and Privacy, pages 1084–
1101, San Francisco, CA, USA, May 19–23, 2019. IEEE Computer Society
Press.

[Dra18] Justin Drake. Pragmatic signature aggregation with BLS - Sharding, May
2018.

[Edg] Ben Edginton. Upgrading Ethereum.
[ES16] Rachid El Bansarkhani and Jan Sturm. An efficient lattice-based multisig-

nature scheme with applications to bitcoins. In Sara Foresti and Giuseppe
Persiano, editors, CANS 16: 15th International Conference on Cryptology
and Network Security, volume 10052 of Lecture Notes in Computer Science,
pages 140–155, Milan, Italy, November 14–16, 2016. Springer, Heidelberg,
Germany.

[Eth] Ethereum Core developers. Ethereum Proof-of-Stake Consensus Specifica-
tions.

[FH20] Masayuki Fukumitsu and Shingo Hasegawa. A lattice-based provably secure
multisignature scheme in quantum random oracle model. In Khoa Nguyen,
Wenling Wu, Kwok-Yan Lam, and Huaxiong Wang, editors, ProvSec 2020:
14th International Conference on Provable Security, volume 12505 of Lec-
ture Notes in Computer Science, pages 45–64, Singapore, November 29 –
December 1, 2020. Springer, Heidelberg, Germany.

[FKL18] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model
and its applications. In Hovav Shacham and Alexandra Boldyreva, editors,
Advances in Cryptology – CRYPTO 2018, Part II, volume 10992 of Lec-
ture Notes in Computer Science, pages 33–62, Santa Barbara, CA, USA,
August 19–23, 2018. Springer, Heidelberg, Germany.

[Fri86] Alan M Frieze. On the lagarias-odlyzko algorithm for the subset sum prob-
lem. SIAM Journal on Computing, 15(2):536–539, 1986.

[Gro21] Jens Groth. Non-interactive distributed key generation and key resharing,
2021. Report Number: 339.

[GW19] Sergey Gorbunov and Hoeteck Wee. Digital Signatures for Consensus, 2019.
Report Number: 269.

[IN96] Russell Impagliazzo and Moni Naor. Efficient cryptographic schemes prov-
ably as secure as subset sum. Journal of Cryptology, 9(4):199–216, Septem-
ber 1996.

[Ita83] K. Itakura. A public-key cryptosystem suitable for digital multisignatures.
1983.

[LO85] Jeffrey C Lagarias and Andrew M Odlyzko. Solving low-density subset sum
problems. Journal of the ACM (JACM), 32(1):229–246, 1985.

[LOS+06] Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent Wa-
ters. Sequential aggregate signatures and multisignatures without ran-
dom oracles. In Serge Vaudenay, editor, Advances in Cryptology – EURO-
CRYPT 2006, volume 4004 of Lecture Notes in Computer Science, pages
465–485, St. Petersburg, Russia, May 28 – June 1, 2006. Springer, Heidel-
berg, Germany.

Subset-optimized BLS Multi-signature with Key Aggregation 27

[Lyu05] Vadim Lyubashevsky. On random high density subset sums. Electron.
Colloquium Comput. Complex., TR05, 2005.

[Nec94] Vasilii Il’ich Nechaev. Complexity of a determinate algorithm for the dis-
crete logarithm. Matematicheskie Zametki, 55(2):91–101, 1994.

[NKDM03] Antonio Nicolosi, Maxwell N. Krohn, Yevgeniy Dodis, and David Mazières.
Proactive two-party signatures for user authentication. In ISOC Network
and Distributed System Security Symposium – NDSS 2003, San Diego, CA,
USA, February 5–7, 2003. The Internet Society.

[NRS21] Jonas Nick, Tim Ruffing, and Yannick Seurin. MuSig2: Simple two-round
Schnorr multi-signatures. In Tal Malkin and Chris Peikert, editors, Ad-
vances in Cryptology – CRYPTO 2021, Part I, volume 12825 of Lecture
Notes in Computer Science, pages 189–221, Virtual Event, August 16–20,
2021. Springer, Heidelberg, Germany.

[NRSW20] Jonas Nick, Tim Ruffing, Yannick Seurin, and Pieter Wuille. MuSig-DN:
Schnorr multi-signatures with verifiably deterministic nonces. In Jay Lig-
atti, Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors, ACM CCS
2020: 27th Conference on Computer and Communications Security, pages
1717–1731, Virtual Event, USA, November 9–13, 2020. ACM Press.

[OO93] Kazuo Ohta and Tatsuaki Okamoto. A digital multisignature scheme based
on the Fiat-Shamir scheme. In Hideki Imai, Ronald L. Rivest, and Tsutomu
Matsumoto, editors, Advances in Cryptology – ASIACRYPT’91, volume
739 of Lecture Notes in Computer Science, pages 139–148, Fujiyoshida,
Japan, November 11–14, 1993. Springer, Heidelberg, Germany.

[PS00] David Pointcheval and Jacques Stern. Security arguments for digital sig-
natures and blind signatures. Journal of Cryptology, 13(3):361–396, June
2000.

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems.
In Walter Fumy, editor, Advances in Cryptology – EUROCRYPT’97, vol-
ume 1233 of Lecture Notes in Computer Science, pages 256–266, Konstanz,
Germany, May 11–15, 1997. Springer, Heidelberg, Germany.

[Sup22] Supranational. blst. https://github.com/supranational/blst, 2022.
[VGS+22] Psi Vesely, Kobi Gurkan, Michael Straka, Ariel Gabizon, Philipp Jovanovic,

Georgios Konstantopoulos, Asa Oines, Marek Olszewski, and Eran Tromer.
Plumo: An Ultralight Blockchain Client. In Financial Cryptography and
Data Security: 26th International Conference, FC 2022, Grenada, May
2–6, 2022, Revised Selected Papers, pages 597–614, Berlin, Heidelberg, May
2022. Springer-Verlag.

[zkc22] zkcrypto. bls12_381. https://github.com/zkcrypto/bls12_381, 2022.

