
Fully Homomorphic Encryption Based On
Polynomial Operation

Shuailiang Hu1[0000−0003−3934−9093]

Huazhong University of Science and Technology
HSL 03299319@126.com

Abstract. Homomorphic encryption requires the homomorphism of en-
crypted ciphertext, and the operation between ciphertexts can be re-
flected in plaintexts. Fully homomorphic encryption requires that the
encryption algorithm can satisfy additive homomorphism and multiplica-
tive homomorphism at the same time. At present, there are many fully
homomorphic encryption schemes, such as fully homomorphic encryption
based on ideal lattices, AGCD problem, LWE problem, RLWE problem,
and so on. But the improvement of efficiency, length of ciphertext, and
calculation limit of the fully homomorphic encryption scheme are still
problems that need further study.
Based on Lagrangian interpolation polynomials, we propose a fully ho-
momorphic encryption scheme according to the difficulty of finding roots
of a polynomial with the degree of at least two(mod n=p*q, p, q are
both private large primes). We reasonably construct polynomials trap1
and trap0 to generate the ciphertext of message m, so that calculation
between ciphertexts can directly act on plaintexts. Our scheme does not
involve noise in the whole encryption process and does not require any re-
lated techniques such as bootstrapping techniques or rescaling techniques
during the ciphertext evaluation process. Our decryption algorithm al-
ways outputs accurate results when decryption and our scheme is safe as
long as the Rabin encryption algorithm cannot be cracked.

Keywords: Fully Homomorphic Encryption · Lagrangian Interpolation
Polynomial · Secure Multiparty Computation.

1 Introduction

Homomorphic encryption is a cryptographic technique based on the computa-
tional complexity theory of mathematical puzzles. Using homomorphic encryp-
tion technology, a user performs operations on ciphertexts and then decrypts
the result of ciphertext to be consistent with the result obtained by directly
operating on plaintexts. This feature allows an untrusted third party to directly
perform operations on ciphertexts without a private key, avoiding the leakage
of sensitive information caused by a third party. Fully homomorphic encryption
technology is a trending technology that can be applied to outsourcing comput-
ing, privacy-preserving machine learning, secure multi-party computing, joint
learning, data exchange, sharing, etc.[1]

In 1978, Rivest et al. proposed the first public key encryption scheme: the
RSA encryption scheme. Then, they pointed out the multiplicative homomor-
phic property of the RSA cryptographic system. The effective ciphertext of the
plaintext m1∗m2 can be calculated using the ciphertext c1∗c2 ”homomorphism”
without knowing the private key information. Therefore, they proposed the def-
inition of ”Fully Homomorphic Encryption” (FHE)[2]. Considering the powerful
capabilities of fully homomorphic encryption, it has become an open issue in the
cryptographic community once it is proposed[3].

Cryptographic assumptions that can construct fully homomorphic encryp-
tion mainly include: Ideal Coset Problem called ICP based on ideal lattice[4],
Approximate Greatest Common Devisor (AGCD) on integers[5], Learning with
Errors (LWE)[6], Approximate eigenvectors[7], circuit control technology[8] and
so on. However, many restrictions still need to improve, such as inefficient infor-
mation processing, complex ciphertext and keys, the difficulty of implementing
encryption, etc. These restrictions make fully homomorphic encryption difficult
to use in practice.

To improve the efficiency of FHE, we propose a scheme based on the difficulty
of finding roots of a polynomial with the degree of at least two(mod n=p*q, p,
q are both private large primes), and it is secure as long as Rabin encryption
is secure. We call it a new high-efficiency polynomial-based fully homomorphic
encryption scheme, trap1 ×m (trap1 is a polynomial of degree three or higher-
degree polynomial and m ← Zn). Our encryption algorithm does not target
only one bit of information at a time but for an integer plaintext message m
(m← Zn).

In our fully homomorphic encryption scheme, calculations between cipher-
texts are all calculated by seven or higher degree polynomials. For example, if
a message is encrypted with polynomials of degree seven in our scheme, the
ciphertext length is only seven times the size of n. In addition, to make our
scheme more effective, we also propose a method to fix the ciphertext length
of our scheme. No matter how many ciphertexts are involved in the calcula-
tion, we still get a polynomial ciphertext of degree seven by modulo an octave
polynomial. Because of the unsolvable problem of the quadratic polynomial or
higher-degree polynomial of Zn(x) (n=p*q, p, q are both private large primes),
the security of our scheme is guaranteed.

1.1 Contribution

The contributions of this paper are divided into the following aspects:

– Different from existing fully homomorphic encryption schemes, we construct
an efficient fully homomorphic encryption based on Lagrangian interpolation
polynomials and operations between polynomials. Our scheme does not in-
volve noise in the whole encryption process and does not require any related
techniques such as bootstrapping techniques or rescaling techniques during
the ciphertexts evaluation process. The decryption algorithm is always able

2

to decrypt the ciphertext exactly. Our scheme satisfies the unsolvable prop-
erty of polynomials modulo n(n=p*q, p, q are both large private primes),
making our scheme feasible.

– We give an implementation of our scheme, Polynomial-based Fully Homo-
morphic Encryption(P-FHE). Compared with existing schemes, our scheme
is simpler to implement and only a few polynomials of degree s-1(s is La-
grangian interpolation parameter in Equation 2 and s=4 in this paper) mod-
ulo n are required to implement an efficient fully homomorphic encryption
scheme. The ciphertext in our scheme exists in the form of a polynomial
of degree six. We prove that our algorithm is safe with the safety of poly-
nomial computation and unsolvable polynomial modulo n. The security of
our encryption algorithm is guaranteed as long as the Rabin algorithm is safe.

– We also give a method to make the ciphertext size constant during the
evaluation between ciphertexts. Our scheme has no restriction on calculation
and the length of ciphertexts in our encryption remains unchanged during
the evaluation, which always keeps the 2s-1 size of n. The performance of our
algorithm will not decrease as the calculation between ciphertexts is always
equivalent to the calculation of polynomials of degree six.

It is worth noting that our encryption scheme is arithmetically homomorphic
because our scheme not only supports addition and multiplication operations but
also supports subtraction and division operations. However, relevant literature
indicates that only addition and multiplication are needed to satisfy Turing com-
pleteness. Therefore, the main contribution of this paper will be around the fully
homomorphic encryption scheme with addition and multiplication operations.

1.2 Related Works

In 1978 [2], the concept of homomorphic encryption was proposed by three re-
searchers, Rivest, Adleman, and Dertouzos. The earliest public key cryptosystem
RSA was introduced and it is also the earliest encryption scheme with mul-
tiplicative homomorphism. Then, Fully Homomorphic Encryption(FHE) came
into being.

The first fully homomorphic encryption scheme was proposed in 2009 and
it was proposed by Gentry. This fully homomorphic encryption is constructed
based on ideal lattice[4] and its security is based on two assumptions: some
Worst-case problems, and sparse (or low-weight) subset-sum problems. The pro-
posal of this scheme has caused an upsurge in the research of fully homomorphic
encryption. In 2010, Dijk, Gentry, Halevi, and Vaikuntanathan[5] proposed a
fully homomorphic encryption scheme based on integers(DGHV), and the de-
sign is based on the approximate greatest common factor problem. This scheme
uses many tools of Gentry’s construction but does not require ideal lattices.
As a result, their scheme is conceptually simpler than Gentry’s ideal lattice
scheme, but operational efficiency has not been improved and the original scheme

3

only supports low-order polynomial operations. In 2011, Brakerski and Vaikun-
tanathan introduced two FHE schemes based on LWE[9] and RLWE[10] prob-
lems using bootstrapping technique and circular security assumption. They also
introduce two new techniques called ”re-linearization” and dimension-modulus
reduction to reduce the multiplication ciphertext size. In 2012, Brakerski, Gen-
try, and Vaikunthanathan[11] present a method for defining a leveled fully ho-
momorphic scheme that avoids computationally expensive bootstrapping tech-
niques. Their scheme of RLWE problem was implemented and optimized by
Fan and Vercauteren[12]. In 2013, Gentry, Sahai, and Waters (GSW)[13] pro-
posed a new technique for constructing FHE scheme that avoids the expensive
”re-linearization” step in homomorphic multiplication. Brakerski and Vaikun-
tanathan observed that for certain types of circuits, GSW cryptosystems have
slower noise growth, and are more efficient and secure. These techniques were
further refined to develop efficient loop variants of the GSW cryptosystem:
FHEW[14] and TFHE[15]. In 2017, Cheon proposed a new fully homomorphic
encryption scheme, CKKS[7]. This scheme supports the homomorphic opera-
tions of addition and multiplication of floating-point numbers for real or complex
numbers. The calculation results obtained by it are approximate values, which
are suitable for scenarios that do not require accurate results, such as machine
learning model training. However, these FHE schemes still have great defects,
such as low encryption efficiency, only supporting bit operations, and requiring
the assistance of control circuits, etc.

An article from a long time ago gave us the inspiration for our encryption
scheme. In 1979, the Rabin encryption algorithm was released by Michael O.
Rabin[16]. It is an asymmetric encryption algorithm based on the modular square
root and its security is based on the difficulty of finding the modular square root
of composite number n(n=p*q, p, q are both private large primes)[17]. We know
Rabin’s algorithm is secure as long as the factorization of large numbers remains
practically intractable. It is said that finding the modular square root of an
equation when modulo a composite number n is difficult. Through the Rabin
algorithm, we know that polynomials with the second degree and above are
not rootable in the case of modulo composite number n(n=p*q, p, q are both
private large primes). At the same time, we have found that fully homomorphic
encryption has high feasibility in the polynomial field, and it is challenging to
construct a fully homomorphic encryption scheme using the polynomial-solving
problem. In this paper, we hope to construct trapdoor polynomials trap1 and
trap0 through high-degree polynomials and then construct a fully homomorphic
encryption scheme about trap1 ×m + trap0. Our scheme is safe as long as the
quadratic congruence equation in Rabin’s algorithm is not successfully cracked.

2 Preliminaries

In this section, we define trap1, trap0, and give the basic definition of trap1×m.
We state that they are the basis of our fully homomorphic encryption, and they
are actually some polynomial mechanisms. In addition, we give the assump-

4

tion of our scheme, finding roots of a polynomial modulo n(n=p*q, p, q are
both private large primes), and prove it is difficult using the security of Rabin
algorithm[16]. We also give a simple method about how to realize trap1, trap0 by
using Lagrangian interpolation polynomial[18] and give the general expression
of trap1 ×m.

2.1 Overview of Our Scheme

Our fully homomorphic encryption scheme is called Polynomial-based Fully Ho-
momorphic Encryption, as our encryption is performed with polynomial opera-
tions. During the encryption process, we let the Enc algorithm be expressed as
trap1×m+ trap0, and the Dec algorithm directly outputs the result in the form
of plaintext. We explain that trap1 and trap0 are the key encryption mechanism
of our scheme, and trap0 serves as an auxiliary item to assist trap1 for encryp-
tion. Here we give the simple definition of trap1 and trap0:

trap1 : A public cryptographic mechanism that allows the mechanism to out-
put 1 after bringing in secret information k. It satisfies trap1 × trap1 = trap1.
This mechanism guarantees the security of secret information k. It means that
the cryptographic mechanism trap1 can be obtained through k and output num-
ber 1, but the secret information k cannot be obtained through trap1. In this
paper, a polynomial with a high degree modulo n is used to realize trap1.

trap0 : This mechanism is similar to trap1, except that number 0 is output
after secret information k is brought in. It satisfies trap0×trap1 = trap0, trap0+
trap1 = trap1, trap0 × else = trap0 and trap1 − 1 = trap0. The main role of
mechanism trap0 is to assist trap1 to ensure the security of plaintext message m
and secret information k.

We explain here that × is used to represent the multiplication calculation
of the mechanism trap1 and trap0, while ∗ represents the calculation of the
implementation method of trap1 and trap0. Since trap0 outputs 0 when it is
correctly decrypted, we use trap1 × m to represent our encryption scheme for
the convenience of expression. Then, we give a general representation method of
fully homomorphic encryption, trap1×m(Setup, Encrypt, Evaluate, Decryption)
here:

Setup(1λ): On input the security parameter λ, output the master public
encryption key mpk(mainly include trap1 and trap0), and secret key sk.

Encrypt(mpk,m): On input public encryption key mpk and message m,
output c=trap1 ×m + trap0.

Evaluate(mpk, C,[c1, c2, c3...]): On input public encryption key mpk, a
batch of ciphertexts [c1, c2, c3...], and an algorithm C that supports multiplication
and addition operations, output c′=Encrypt(mpk, C(m1,m2,m3, ...))=C(c1, c2, c3...).

Decryption(sk, c′): On input secret key sk and ciphertext c′, then output:
C(m1,m2,m3, ...).

Among them, the Setup algorithm generates mpk represented as trap1 and
trap0, and the Enc algorithm adds elements trap1 and trap0 to m for encryption.

5

Then a ciphertext c containing trap1 and trap0 is generated and can calculate
with other ciphertexts. Finally, the Dec algorithm removes trap1 and trap0 in
the final ciphertext c′ after evaluation and outputs the result of plaintext m′.

We find that the existence of trap1 and trap0 in the whole process of en-
cryption and evaluation makes operations between different ciphertexts possible.
When decrypting, we can bring the decryption key sk in ciphertext to eliminate
trap1 and trap0 carried in ciphertext to get the final arithmetic plaintext because
trap1, trap0, and sk exist together. As long as the Setup party does not publish
sk, calculations in the entire process are performed in the form of ciphertext.
Anyone who doesn’t have the decryption key sk can’t get any useful information
about calculations and plaintexts. Therefore, the key point to realizing the en-
cryption scheme is how to realize trap1 and trap0, and the calculations between
ciphertexts.

The calculations between polynomials give us the idea to realize the scheme
we desire. We say if there is polynomial f(x) satisfying f(x0)=1 and f(x) is guar-
anteed to be complex enough that x0 cannot be solved, we can get the trap1
we want to construct trap1× m. The same is true for trap0, but the polynomial
needs to output 0 after bringing in x0.

2.2 Finding Roots of Polynomial Modulo n

Finding roots of polynomial modulo n(FROP-MN) was introduced as follows:

Assumption 1 FROP-MN. In the case of modulo n(n=p*q, p, q are both
private primes), the polynomial with a degree of at least 2 cannot be solved if
neither p nor q is known. That means that given a polynomial with a degree
of at least 2 such as the cubic polynomial, or higher-degree polynomial equation
satisfying P (x) = c, we cannot find even a root of P .

Through the Rabin encryption algorithm[16], we have known that quadratic
polynomials cannot be solved modulo n (n=p*q, p, q are both private large
primes). Then, we have the following theorem:

Theorem 1. In the case of modulo n(n=p*q, p, q are both private primes), a
quadratic equation P satisfying P (x) = c cannot be solved if neither p nor q is
known.

Proof. Suppose p, q are two large prime numbers satisfying n=p*q, and c is an
element in Zn. We want to solve the following equation:

x2 ≡ c(mod n)

This is a quadratic equation about the unknown element x in Zn. Decryption
requires finding the square root modulo n, equivalent to solving the following
congruence equations. {

x2 ≡ c(mod p)

x2 ≡ c(mod q)

6

Because p, q are unknowns, solving x2 ≡ c(mod n) is as difficult as factoring
a large integer n to get p, q and it is impossible as p and q are large enough. The
quadratic equation can be transformed into a quadratic congruence equation as
shown above, so a quadratic equation modulus n cannot be solved.

Theorem 2. If two independent polynomials P1 and P2 are given at the same
time and P1(x1) = P2(x1) = 0, then the minimum order of solving equations can
be reduced by 1. But given two non-independent polynomials P1 and P2 satisfying
P1(x1) = P2(x1) = 0 at the same time, no effective information about x1 can be
obtained.

Proof. Here we take quadratic polynomials and cubic polynomials as an example.
Suppose there are two polynomials satisfying P2(x1) ≡ 0, P3(x1) ≡ 0(mod n,
n=p*q, and p, q are unknown) and P2, P3 are independent for each other, where
P2 and P3 are quadratic polynomial and cubic polynomial respectively.

Suppose we have P2 = x2 + ax+ b and P3 = x3 + a′x2 + b′x+ c′ satisfy:

P3 ≡0(mod n)

and

P2 ≡0(mod n)

To find intersection coordinate point x1, let us combine two polynomials to
get the following system of equations:{

P3 = x3 + a′x2 + b′x+ c′ ≡ 0(mod n)

P2 = x2 + ax+ b ≡ 0(mod n)

Then, we can change the solution of the above system of equations into
the solution of the following system of equations(convert P3 to the quadratic
equation) {

P3 = x3 + a′x2 + b′x+ c′ ≡ 0(mod n)

x2 = −ax− b ≡ 0(mod n)

Finally, we can compute the above system of equations to obtain a first-order
equation for x(convert P3 to a first-order equation by using x2). On the contrary,
if P2 and P3 are not independent of each other, P3 can not be calculated through
P2, and the result obtained through the above equation will be 0=0 instead of a
usable first-degree polynomial. This method is also applicable to higher-degree
equations.

Proof of Assumption 1. We perform a generous condition to this assumption.
We use the polynomial intersection problem to prove it: Given multiple poly-
nomials passing through the same point at the same time, we can reduce the

7

intersection problem to the problem of solving polynomials with a lower degree.
Suppose we have a polynomial P1 of degree s-1(s is an integer) that satisfies
P1(x1) = 0. In order to solve intersection point x1, we generously give another
s-3 polynomials satisfying P2(x1) = 0, P3(x1) = 0, ..., Ps−2(x1) = 0.

We know that given two polynomials passing through the same point, the
minimum degree of polynomials to be solved can be reduced by 1(Reference to
Theorem 2). In this proof process, we have generously given s-2 polynomials
P1(x1) = 0, P2(x1) = 0, P3(x1) = 0, ..., Ps−2(x1) = 0 and we can combine these
polynomials to get a quadratic polynomial P through point x1 satisfying P (x1) =
0. For example, we can first combine P1, P2 through Theorem 2 to obtain a
polynomial of degree s-2, and then combine the new polynomial with P3 to
obtain a polynomial of degree s-3. In this way, we can finally get a quadratic
polynomial P through the point x1 satisfying P (x1) = 0 by combing these s-2
polynomials. Then, according to Theorem 1, we have known that the second-
degree polynomial modulo n is unsolvable, so we say higher-degree polynomials
are also unsolvable.

In other words, assuming that there exists an algorithm F that can solve the
roots of high-degree polynomials modulo n in polynomial time, then the theorem
1 is incorrect and the quadratic polynomial can also be solved. We already know
that the security of the Rabin algorithm is based on the quadratic congruence
equation under modulo n. If F exists, then Rabin’s security is compromised.
Therefore, we have successfully reduced the security of higher-degree equations
to quadratic congruence equations. Therefore, as long as the Rabin algorithm
is still safe, the higher-order congruence equations modulo n are unsolvable and
Assumption 1 is correct.

2.3 Lagrangian Interpolation Polynomial and trap1 × m

According to Assumption 1, if we can construct sufficiently complex polynomials
of at least second-degree modulo n, we can successfully implement trap1 and
trap0. Therefore, we intend to use polynomials with high-degree to represent
trap1 and trap0 and the encryption scheme trap1 ×m. As for how to construct
complex polynomials of more than two-degree, the realization of the Lagrangian
interpolation polynomial effectively solves this problem.

The Lagrange interpolation formula refers to a node basis function given on
the nodes of a two-dimensional coordinate system. Then a linear combination of
this basis function is made, and the combination coefficient is an interpolation
polynomial of the node function value. In simple words, a polynomial function
with the degree of s-1 can be determined by s coordinate points (xi, yi)(1 ≤
i ≤ s) in a two-dimensional rectangular coordinate system. As shown in Fig. 1,
a curve can be determined according to s (s is an integer and s≥2) points that
are different from each other in the rectangular coordinate system. For this
curve, there is only one definite polynomial corresponding to it. Similarly, if a
polynomial function expression (polynomial coefficient) of this curve is known, as
long as any abscissa value xi can be given, its ordinate value yi can be obtained.
Therefore, if we can give s coordinate points, we can also construct a polynomial

8

with polynomial degree s-1.

x

y

A(x1, y1)

B(x2, y2)

C(x3, y3)

D(x4, y4)

Fig. 1. Lagrangian interpolation polynomial

Suppose there are s pairs of coordinate points, the generalized definition of
the Lagrangian interpolation formula is shown in equation (1).

p(x) =

s∑
i=1

s∏
j ̸=i

(x− xj)

(xi − xj)
∗ yi

=
(x− x2). . . (x− xs)

(x1 − x2). . . (x1 − xs)
∗ y1+

(x− x1)(x− x3). . . (x− xs)

(x2 − x1). . . (x2 − xs)
∗ y2+

... +

(x− x1). . . (x− xs−1)

(xs − x1). . . (xs − xs−1)
∗ ys

=Ps−1 ∗ xs−1 + Ps−2 ∗ xs−2 + ...+ P0 ∗ x0

(1)

We extract the coefficients of each term and give the following definition:

Ri =

s∏
j ̸=i

(x− xj)

(xi − xj)

then Ri(xi) = 1 and Ri(xj) = 0 j ̸= i satisfy 1 ≤ i, j ≤ s

Ri(xl) = else s < l

(2)

(We ignore the case where values of two coordinate points are equal.)

9

To facilitate the construction of our encryption scheme, we denote x above
as k, y as m, and approximately denote Ri as a candidate encryption key, ki as a

decryption key. Therefore, according to equation (2) we have Ri =
∏s

j ̸=i
(k−kj)
(ki−kj)

and Ri(ki) = 1, Ri(kj) = 0, Ri(kl) = else(1 ≤ i, j ≤ s < l, j ̸= i). Then we

have R1 =
∏s

j ̸=1
(k−kj)
(k1−kj)

and R1(k1) = 1, R1(kj) = 0, R1(kl) = else(1 < j ≤
s < l, j ̸= i). We can find that for users with k1, he can calculate R1 = 1 and
Rj = 0(1 ≤ j ≤ s < l, j ̸= 1). But other users without k1 get nothing from
these polynomials. We already know that high-order congruence equations are
unsolvable modulo n (p, q are unknown) according to Assumption 1. So, we put
R1 modulo n as our desired trap1, Rj(1 < j ≤ s) modulo n as the components
of trap0, and k1 as the secret information to let R1 = 1 and Rj = 0. If there are
no special instructions, we use R1 as the master encryption key trap1 and k1 as
the decryption key later. Then, according to the particularity of the Lagrange
interpolation polynomials, we can get the following theorem:

Theorem 3. According to equation (1) and (2), given s k, the s-coefficient poly-
nomials R1, R2, ..., Rs composed of Lagrange interpolation polynomial are inde-
pendent of each other. In other words, {R1, R2, ..., Rs} is a set of linearly inde-
pendent vectors.

Proof. According to equation (2), we know that polynomial Ri(1 ≤ i ≤ s)
satisfies following property:

R1[k1, k2, ..., ks] = [1, 0, ..., 0, ..., 0]

R2[k1, k2, ..., ks] = [0, 1, ..., 0, ..., 0]

......

Ri[k1, k2, ..., ks] = [0, 0, ..., 1, ..., 0]

Rs[k1, k2, ..., ks] = [0, 0, ..., 0, ..., 1]

According to the above equations, we can get the matrix:
1 0 ... 0 ... 0
0 1 ... 0 ... 0

... ...
0 0 ... 1 ... 0
0 0 ... 0 ... 1

According to the matrix, we know that R1, R2...Rs is a set of linearly inde-

pendent vectors.

Through the implementation of Rabin encryption algorithm[16] and Assump-
tion 1, we know that k1 cannot be obtained according to polynomial R1 in equa-
tion (2) if s is equal to at least 3 when modulo n(n = p*q, p,q are both large
private primes). If no special instruction exists, the following Ri in equation (2)
are all calculated modulo n. Therefore, we can use R1 as the public encryption

10

key and k1 as the decryption key to construct the fully homomorphic encryption
we want. Then, we can get the following algorithm to represent trap1 ×m:

Enc(ek = trap1 = R1,m) = trap1 ×m+ trap0 = Rl
1 ∗m+ trap0(1 ≤ l)

Dec(sk = k1, c) = R1(k1) ∗m+ 0 = m
(3)

Since the existence of trap1(R
l
1) and trap0, we find that ciphertext obtained

by equation (3) is fully homomorphic. Because for users who have decryption
key k1, trap1(k1) = Rl

1(k1) is equal to 1, and trap0(k1) is equal to 0. So during
decryption, all R1 and trap0 elements of the operation between ciphertexts can
be removed, and the result of m′ can be obtained from the final ciphertext. For
example, c′ = ((c1+c2)∗c3+c4) = (trap1)

2×(m1+m2)∗m3+trap1×m4+trap0 =
R2l

1 ∗(m1+m2)∗m3+Rl
1∗m4+trap0, and then Dec(sk = k1) = R1(k1)

2l∗(m1+
m2)∗m3+Rl

1(k1)∗m4+0 = 1∗(m1+m2)∗m3+1∗m4 = (m1+m2)∗m3+m4).
The problem now is how to construct a safe and reasonable fully homomorphic
encryption scheme through these contents.

Through Assumption 1, we already know that a high-degree equation, i.e.
quadratic polynomial is unsolvable modulo n(n=p*q, p, q are both private large
primes). It shows that it is impossible to find a root of polynomials of degree
two and more modulo n(n=p*q, p, q are all both large primes). We say that
our constructions of the FHE scheme covered in this paper are all computed
in Zn[x](n=p*q, p, q are both private large primes). We set s=4, l=2, and the
ciphertext obtained using trap1 × m is represented by a polynomial of degree
six, such as c = a ∗ k6 + bk5 + ck4 + dk3 + ek2 + fk1 + g = [a, b, c, d, e, f, g].

In the following sections, we give a construction of polynomial-based fully
homomorphic encryption(P-FHE), Construction 1, and we also give the corre-
sponding security proof. Then, to maximize efficiency, we proposed a method for
fixing the length of ciphertext by assigning a safe octave polynomial to restrict
all computations to polynomials of degree six.

3 Polynomial-based Fully Homomorphic Encryption

Through the introduction in the previous part, we know that ciphertext con-
structed by equation (3) satisfies the property of full homomorphism. We have
known that a quadratic polynomial is unsolvable when modulo n(n=p*q, p, q
are both private large primes), and the same is true for a polynomial of higher
degree. So we use cubic polynomials to build a general fully homomorphic en-
cryption scheme trap1 ×m(also called trap1 ×m+ trap0). We donate the poly-
nomials in equation 2 except R1 such as R2 as the trap0 because the values of
these polynomials are all 0 after the secret information k1 is brought in. Because
trap1× one = one, R2

1 can also be used as encryption parameter trap1. In addi-
tion, because trap1 − 1 = trap0, we also use R1 − 1 as a trap0, where R1 − 1 is
expressed as the constant term of R1 minus 1.

11

3.1 Construction of P-FHE

Construction 1 Let P-FHE = (Setup, Encrypt, Evaluate, Decrypt) be a highly
efficient Polynomial-based Fully Homomorphic Encryption. We construct P-
FHE as follows:

Setup(1λ): On input security parameter λ and set s=4, the setup algorithm
does following process:

1.Generate large prime numbers p, q according to λ and compute n=p*q.
2.Randomly select k1, k2, k3, k4 ← Zn.
3.Use k1, k2, k3, k4, to generate R1, R2 according to equation (2) and check

whether R1, R2 are linear independent. If not, come back to process 2, else
continue.

Output dk=msk= k1, mpk={n,R1, R2}.

Encrypt(m, ek=mpk): On input message m and ek=mpk, sample ran-
dom element R′

0 = [r3, r2, r1, r0] ← Z4
n,(R

′
0 = r3k

3 + r2k
2 + r1k + r0), R

′
1 =

[r7, r6, r5, r4]← Z4
n (R′

1 = r7k
3 + r6k

2 + r5k + r4) and output:
c = trap1 ×m+ trap0 = R2

1 ∗m+ (R1 − 1) ∗R′
0 +R2 ∗R′

1 mod n

Evaluate(mpk, C, (c1, c2, ...)): On input public key mpk, an algorithm C
that supports multiply and adds operations(calculations of polynomial multipli-
cation and addition), a set of input ciphertext (c1, c2, ...) and then output:

c′ = C(c1, c2, ...) mod n

Decrypt(c′, dk=k1): On input secret key sk, and a ciphertext c′=C(c1,
c2,...), output:

m′ = c′(sk) = c′(k1) = 1 ∗ C(m1,m2, ...) = C(m1,m2, ...)
R1(k1) is equal to 1, but R2(k1) is equal to 0.

3.2 Fully Homomorphic Operations of Ciphertexts

Let’s review the ciphertext generated by the encryption algorithm. During en-
crypting, the ciphertext is generated in the form of c = R2

1∗m+(R1−1)∗R′
0+R2∗

R′
1, which is equal to trap1×m+trap0 since R1(k1) = 1 and other polynomials is

equal to 0 during decryption. When two ciphertexts are added, the coefficients of
the same polynomial term between the ciphertexts c0 and c1 will be combined.
There is only simple addition between these two polynomials, which will not
affect the decryption result. Therefore, the additive homomorphic property of
computation between ciphertexts is guaranteed and we have Decrypt(C1 + c2,
dk=k1)=Decrypt(C1, dk=k1) +Decrypt(c2, dk=k1)=m1 +m2.

When performing multiplication between ciphertexts, we have trap0×trap1 =
trap0, trap0×trap0 = trap0, trap1×trap1 = trap1 since trap1(k1) = 1, trap0(k1) =
0. Suppose there are two ciphertexts c0, c1 for multiplication calculation, where
c0 = trap1×m0+trap0, c1 = trap1×m1+trap0(trap1 and trap0 may be different
between different ciphertexts). We have c0∗c1 = trap1×trap1×m1∗m2+trap0 =

12

trap1×m1∗m2+trap0, where trap1 and trap0 have changed. Therefore, the mul-
tiplicative homomorphic property of computation between ciphertexts is guaran-
teed and we have Decrypt(c1 ∗c2, dk=k1)=Decrypt(c1, dk=k1) *Decrypt(c2,
dk=k1)=m1 ∗m2. In short, we say that our encryption scheme satisfies the fully
homomorphic property.

3.3 Correctness

We show that the correctness of the above fully homomorphic encryption holds.
Ciphertext in this encryption is encrypted in the form of c=trap1×m+ trap0 =
R2

1 ∗m + (R1 − 1) ∗ R′
0 + R2 ∗ R′

1. When decrypting, trap1=R1 → 1, trap0 =
(R1 − 1) ∗ R′

0 + R2 ∗ R′
1 → 0 can be made to get message m=m+0=m from

ciphertext c.
According to equation (2) and equation (3), we can know that the ciphertext

of the entire encryption process exists in the form of trap1×m+ trap0. Because
users without k1 have no secret key k1, they can only get a ciphertext that
participated in the operation but get nothing about message m. However, for
users who have the decryption key k1, R1 in the ciphertext is equal to 1, and
R2 is equal to 0. He can easily use the key to remove R1, (R1 − 1), R2, R

′
0, R

′
1,

and other polynomials in the final ciphertext to obtain the calculated plaintext
m′. For example, we say for c′ = (c1 + c2) ∗ c3 + c4, we have c′ = R4

1 ∗ (m1 +
m2) ∗m3 +R2

1 ∗m4 + trap0. With the help of sk=k1 we can get Dec(sk = k1) =
R1(k1)

4 ∗ (m1+m2) ∗m3+R2
1(k1) ∗m4+ trap0(k1) = 14 ∗ (m1+m2) ∗m3+12 ∗

m4 + 0 = (m1 +m2) ∗m3 +m4). But for others who have no sk=k1, since the
polynomials of ciphertext cannot be removed, they cannot successfully decrypt.
Therefore, in the process of calculating different ciphertexts, it still satisfies the
form of trap1 ×m+ trap0 to ensure the correctness of the decryption process.

3.4 IND-CPA Security

We indicate that our encryption algorithm satisfies IND-CPA security. To prove
this, we only need to prove the security of the Encrypt algorithm in Construction
1 since the Evaluate algorithm can be expressed as a computation of ciphertexts
generated by Encrypt algorithm.

Assuming that an adversary wants to recover the plaintext information m,
he needs to solve the following equation:

c = R2
1 ∗m+ (R1 − 1) ∗R′

0 +R2 ∗R′
1

We know that the purpose of (R1−1)∗R′
0,R2∗R′

1 is to introduce more random
elements in the encryption process, so as to protect message m from being leaked.
If we want to solve for m, we have to construct a system of equations by R1, R2

and m, r,R′
0, R

′
1. In this way, the number of unknowns is 2s+1(s=4 and we treat

R′
0 and R′

1 as two polynomials consisting of four unknowns) and it is greater
than 2s-1(the length of ciphertexts generated by Encrypt) for the attacker.
Normally, the adversary cannot know any of the unknowns of m, r,R′

0, R
′
1, and

13

then he cannot solve the above equation to get m. But in the IND-CPA game,
the attacker can choose m as he wishes. In this case, the attacker can know an
unknown, m, in the ciphertext equations. However, there are still 2s unknowns
that make it impossible for the attacker to make further attacks since there are
2s unknowns but 2s-1 equations for the attacker.

Definition 1 IND-CPA. Consider the following game between a challenger C
and a stateful adversary A.

Game Definition Oracle Definition

1.(mpk, msk)←Setup(1λ); OG(∗) :
2.(m0,m1)← AOG(∗),OE(∗)(mpk); 1.Output k ← Zn;
3.b← {0, 1};
4.c← Enc(mpk,mb); OE(∗) :
5.b′ ← AOG(∗),OE(∗)(c); 1.Output c← Enc(mpk,m);

We say that A wins IND-CPA game if b = b′, |m0| = |m1| and the following
holds:

For all queries to OG(∗) with k, it holds that:

k /∈Setup

This definition restricts the adversary from obtaining the k used in the Setup
algorithm, thus ensuring the security of the encryption process.

We state that the encryption proposed above is secure if for any PPT adver-
sary A, it holds that:

Pr[advA]= |Pr[A wins the IND-CPA Game]− 1
2 | ≤ negl(κ)

Proof. We define the general IND-CPA adversary-challenger game. The chal-
lenger C initializes the encryption system in Construction 1. Then he sends the
public parameters of the system to adversary A. We assume that A is polynomi-
ally conditional, and he can choose the plaintext pair (m0,m1) to be encrypted
at will. At the same time, A also has access to encryption oracle and key oracle.

During the process of Encrypt algorithm, the composition of ciphertext c is
R2

1 ∗ m + (R1 − 1) ∗ R′
0 + R2 ∗ R′

1. Suppose adversary A chooses m0,m1 and
sends them to challenger C. C generates different ciphertexts c0, c1 satisfying
cb = R2

1 ∗mb + (R1 − 1) ∗R′
b0 +R2 ∗R′

b1. Then C randomly selects b← 0, 1 and
gives cb to A. Because (R1 − 1) ∗R′

0, R2 ∗R′
1 cannot be eliminated as A doesn’t

know k1, the random elements R′
0, R

′
1 cannot be eliminated in the ciphertext.

Therefore, A cannot distinguish ciphertext cb from c0 and c1 and our scheme
satisfies the IND-CPA security.

14

3.5 Security

To prove the security of Construction 1, we give the following definitions:

Proposition 1 According to polynomials R1, R2, sk=k1 cannot be solved. In
other words, users other than Setup cannot get sk=k1.

Proposition 2 If a polynomial Ri cannot be solved for point (ki, 1) correspond-
ing to ki, then the new point corresponding to ki cannot be solved after Ri is
multiplied or added by a random element r. In other words, given an unsolv-
able equation, it is still unsolvable after multiplying or adding a certain value.
It means that the equation is still unsolvable after calculations such as addition
and multiplication.

Proposition 3 If a polynomial Ri cannot solve the point corresponding to ki,
then the point corresponding to ki cannot be solved after multiplying or adding
an unsolvable polynomial Rj. Obtaining information about ki points of two poly-
nomials before the calculation is impossible.

Proposition 4 Given polynomials R1, R2, and a ciphertext c in Construction
1, we cannot solve m for c.

Proof. According to the given theorems, we prove that the above propositions
are correct, and correspondingly prove that our scheme is safe and efficient.

First, we prove that Proposition 1 is correct. We say that if an adversary
wants to crack sk = k1, he must attack from R1, R2. We think it is impossible
because the length of n we set is generally at least 2048 bits and longer.

According to Theorem 3, we know that R1, R2 are independent of each other,
which means we only use two independent polynomials in k1 for encryption.
Through Assumption 1, we know that it is difficult to crack a polynomial of the
second degree or more in the case of modulo n. So we say it is impossible to
get sk by cracking R1, such as letting R1 = 1 get sk=k1. The same is true for
R2. Of course, if we want to combine R1, R2 to solve k1, we say it is impossible.
In Construction 1, because s is equal to 4, R1, R2 are both cubic polynomials.
According to the polynomial intersection problem, we can get a quadratic poly-
nomial R satisfying R(k1) = 0 by combining the above polynomials, and we
know it is unsolvable according to 1. Therefore, we say that sk=k1 is unsolvable,
meaning Proposition 1 is correct. But it needs to be noted that if we give a new
polynomial R7 satisfying equation (2) in Construction 1, then k1 can be solved
by combining existing polynomials because the first-degree polynomial can be
solved. This also means that we need to control the number of given indepen-
dent polynomials to be less than the degree of polynomials of Construction 1 to
ensure the scheme we built is safe.

Then we prove that a polynomial multiplied by a number or adding a num-
ber is still unsolvable, meaning Proposition 2 is correct. We know that for a
polynomial, no matter how many times it is expanded or numbers added, the

15

solution to its equation remains unchanged. So if the polynomial in Proposition
1 cannot be solved, Proposition 2 is correct.

Likewise, we prove that Proposition 3 is correct. Suppose there are three
polynomials P1, P2, P3 satisfying P1 = P2 ∗ P3, and P2, P3 are unsolvable poly-
nomials. If P1 is solvable, then at least one of P2 and P3 participating in the
calculation is solvable according to the principle of polynomial calculation. But
P2, P3 are all unsolvable polynomials, so P1 is also an unsolvable polynomial.
The main purpose of this proposition is to prove that the calculation between
ciphertexts in the encryption process is legal and safe. Because ciphertexts in
our scheme are all in the form of polynomials, we need to ensure the calculation
security of polynomial ciphertext.

For Proposition 4, we have c = R2
1 ∗m+(R1−1)∗R′

0+R2 ∗R′
1, where R1, R2

is known, and the unknowns include m and two cubic polynomials R′
0, R

′
1. It

is a system of s+2 unknowns and s equations. If we want to solve m, we need
at least two unknowns in r0, r1, r2, r3, r4, r5, r6, r7. Then, we can only guess the
composition of R′

0 or R′
1 to try to solve m, but it is impossible. Therefore, given

the encryption parameters R1, R2 and ciphertext c, the plaintext information m
cannot be deciphered. Proposition 4 is correct.

In summary, the above theorems and propositions are all satisfied in Con-
struction 1 proposed in this section. For example, Theorems 1, 2 and Proposi-
tions 1, 2, 3 guarantee the security of the encryption system key, so that the
attacker cannot crack the decryption key k1 through public parameters or other
information. Propositions 4 guarantee the security of the encryption process. In
addition, our scheme satisfies IND-CPA security. Thus, combined with the above
security definition, we prove that Construction 1 is secure.

4 Making Ciphertexts of Our Scheme Constant Size

We have given the construction of polynomial-based fully homomorphic encryp-
tion, and the ciphertexts are all based on polynomials of degree six. There is
still a serious problem that we need to pay attention to. Because the calcula-
tion between ciphertexts is polynomials calculation, the length of new ciphertext
changes as multiplication occurs. For example, if two ciphertexts are multiplied,
the length of the calculated ciphertext is the sum of two ciphertexts minus 1.
However, if two ciphertexts are added, the resulting ciphertext length is the
longest of them. In this way, an attacker can easily infer whether there is a mul-
tiplication calculation involved and the calculation efficiency between ciphertexts
will also decrease with the multiplication. Therefore, in this section, we will give a
method to improve the fully homomorphic encryption scheme given above based
on the modulus calculation of polynomials to make the length of ciphertexts
fixed.

4.1 Overview

We know that the encryption constructions given above are constructed on basis
elements R1, R2, and s = 4 according to Equation 2. Therefore, ciphertexts gen-

16

erated by Encrypt are all ciphertexts represented by polynomials of degree six.
However, when different ciphertexts are multiplied, the new ciphertext appears
as a polynomial with a higher degree. For example, multiplying two ciphertexts
in the form of polynomials of degree six will produce a ciphertext in the form of
polynomial of degree 12.

In order to not limit the calculation of ciphertexts and make encryption more
efficient, we need to keep the calculation result of ciphertexts to polynomials of
degree six and keep the length of ciphertext at (2s − 1) ∗ |n|(s=4 here). We
use a high-degree polynomial to limit the calculation of low-degree polynomials
so that the result of the calculation of low-degree polynomials can be kept at
a low level. Therefore, we can use a polynomial of degree seven P satisfying
P (k1) = 0 to limit the generation of high-degree polynomials generated between
ciphertexts during evaluation. However, when we introduce P , we need to ensure
that the newly introduced polynomial and random element satisfy the theorems
and propositions proposed before. Therefore, we give the idea of how to im-
prove the fully homomorphic encryption constructions given above(P-FHE and
P-FHEs) based on the modulus calculation of polynomials to make the length
of ciphertexts fixed.

To ensure the normal progress of encryption, we cannot destroy the security of
the original scheme when introducing a new polynomial P . For example, P must
remain non-independent from the public polynomials that have been used, and
not affect the theorems and propositions that the encryption scheme satisfies.
Therefore, the simplest improvement is using trap0, (R

2
1 − 1) and combining

it with the basic polynomial k to construct P . We give a typical Evaluate
algorithm with the constant size of ciphertext according to Construction 1.

4.2 Constant-Size of Evaluate Between Ciphertexts

To make the ciphertexts of our encryption constant size, we use R1 in Con-
struction 1 and basic polynomial k to construct a polynomial of degree seven
P (k) = k ∗ (R2

1 − 1) that satisfies P (k1)=0(mod n) during the setup process.
In this way, we can use the high-order terms of P to convert terms with the
degree over s-1 generated by ciphertexts into low-order terms during polynomial
multiplication.

Based on Construction 1 and P , we can limit the computation of ciphertexts
to the polynomials of degree six(shown in equation 4). Because in the process of
ciphertext calculation, once the result of calculations exceeds the polynomial of
degree six, we can call P (k1)=0 to convert polynomials of more than the degree
of six into a polynomial of lower degree. For example, multiplying two ciphertexts
of polynomials of degree six can generate a new polynomial of degree 12, and
we can convert coefficients of high-degree over six into coefficients of degree less
than or including six. With the help of P = k ∗ (R2

1 − 1), we give the following

17

equations.

Let

R2
1 ≡ k6 + bk5 + ck4 + dk3 + ek2 + fk + g + 1(mod n)

P = k ∗ (R2
1 − 1)

= k7 + bk6 + ck5 + dk4 + ek3 + fk2 + gk

Then, we have

k7 = −bk6 − ck5 − dk4 − ek3 − fk2 − gk

(4)

Through appropriate construction of P such as the second half of equation
(4), we can get the formula R4

1 = R2
1 + R2

1(R
2
1 − 1) = R2

1 + C ∗ (R2
1 − 1) =

trap1+ trap0 = trap1(l ≥ 2, C is a number decided by the constant term of R2
1),

making R4
1(k1) = R2

1(k1) = 1. Other multiplication operations between polyno-
mials contain trap0 output 0. In this way, we can limit the result of computation
between ciphertexts to polynomials of six. We know R2

1 = 1 is the problem of
solving a polynomial in Zn(k), while P (k) = 0 is equal to k∗(R1) = 0. Therefore,
we say that it has the same difficulty as solving k1 by R1 = 1. Then, Assump-
tion 1 tells us that it is difficult to solve a polynomial of at least second-degree
modulo n. The length of ciphertext in our fully homomorphic operation is the
size of a polynomial and our security parameter n can be set long enough such
as 2048bit, 4096bit, and so on. Therefore, the safety of P (k) is guaranteed and
we give the Evaluate algorithm as follows.

Evaluate(mpk, C, (c1, c2, ...)): On input public key mpk, an algorithm C
that supports multiply and adds operations(calculations of polynomial multipli-
cation and addition), a set of input ciphertext (c1, c2, ...) and then output:

c′ = C(c1, c2, ...) mod P = k ∗ (R2
1 − 1) mod n, which has the same property

of Encrypt(C(m1,m2, ...),mpk). With the help of P , c′ is a polynomial of degree
six modulo n.

Correctness. At the beginning of this section we have explained why P al-
lows the computation of polynomials to be restricted to polynomials of degree
seven (see equation (4)). Because P (k1)=0, it is feasible to use P to replace
higher-order polynomials with polynomials of seven. Other calculations includ-
ing encryption, ciphertext, and decryption calculation are the same as Construc-
tion 1. Therefore, the ciphertext modulo P can also be decrypted correctly..

Security. Same as R1, the security of P (k) is also based on the difficulty of
finding roots of polynomial modulo large integer n since P (k) = k ∗ (R2

1 − 1).
Therefore, we denote that P (k) is secure, and an attacker cannot solve any
useful information about k1 through P (k). The security of other polynomials
computing is held through the definitions of Construction 1. The reason why
P=k ∗ (R2

1−1) is because theorems and propositions must be satisfied to ensure
the security of encryption are given in Construction 1. For example, Theorem 2,
Proposition 3, and Proposition 4 need to ensure that polynomials used cannot

18

disclose decryption key k1 by collusion and message m cannot be obtained by
solving equations. Before introducing P , we need to carefully consider whether
P will cause trouble to other polynomials, invalidate previous theorems and
propositions, and destroy the security of the encryption scheme. The introduc-
tion of P=k∗(R2

1−1) perfectly conforms to these conditions, and we can restrict
polynomials to polynomials of degree six by modular multiplication without in-
troducing a new independent polynomial. In other words, we limit the length of
ciphertext to 2s-1=7, and it perfectly conforms to the encryption in Construction
1.

5 Conclusion

In this work, we innovatively use the polynomial-based operations to construct a
fully homomorphic encryption scheme, which we called trap1×m. The key point
of our scheme is to use high-order polynomials that are difficult to find roots to
realize the encryption parameter trap1 and trap0 we want. We have explained
how to realize trap1 and trap0 through the Lagrangian interpolation theorem,
making it easier for us to build the encryption scheme.

There is no doubt about the efficiency of our scheme because of the efficiency
of polynomials. When building an encryption system, we can use a sufficiently
large modulus n to make our encryption scheme more secure. In addition, it is
not difficult to see that those ciphertexts in our scheme can be directly used
for addition, subtraction, multiplication, and division calculations without any
key. Based on this property, our schemes can be used in various blind computing
application scenarios. For example, we can try them in the following application
scenarios:

– The stock market[19]. Assuming that the stock index of shareholder A has
risen by a certain percentage, he does not want others to know how much cap-
ital he has invested. He can encrypt his wallet, and then send the encrypted
ciphertext wallet to the stock center for new stock calculation directly. After
receiving the encrypted Wallet over evaluation, shareholder A can decrypt it
to obtain the final stock. But users except A cannot know how much amount
A owns because they do not have A’s decryption key.

– Encrypted digital wallet[20]. When conducting a transaction, user A en-
crypts his wallet and sends the encrypted wallet to the transaction partner.
Then transaction partner directly performs operations such as deduction and
payment on the received encrypted wallet and sends it to A in the form of
ciphertext. A can get his balance after decrypting the encrypted wallet as
the transaction closes. This idea is generally used in public domains such
as digital wallets. We can perform encrypted homomorphic calculations on
users’ wallets. Then users can use their encrypted wallets to perform any
transaction, but only the wallet’s owner can know the balance during the
transaction.

To facilitate the improvement of our scheme and propose a better fully ho-
momorphic encryption scheme, we give the prospect of future work:

19

1) Further analyze the feasibility and security of our scheme, and give a more
efficient fully homomorphic encryption scheme trap1 ×m.

2) Our encryption scheme uses Lagrange interpolation polynomials to realize
trap1. We know that there are many polynomials available in the Lagrange
interpolation theorem, and it can be considered whether our scheme can be
extended to realize the fully homomorphic encryption operation of batch
processing.

3) Find other techniques that are more suitable for constructing trap1 and trap0
to replace the Lagrangian interpolation polynomials, and try more efficient
methods to improve our scheme.

References

1. P. Martins, L. Sousa, and A. Mariano, “A survey on fully homomorphic encryption:
An engineering perspective,” ACM Computing Surveys (CSUR), vol. 50, no. 6,
pp. 1–33, 2017.

2. R. L. Rivest, L. Adleman, M. L. Dertouzos, et al., “On data banks and privacy
homomorphisms,” Foundations of secure computation, vol. 4, no. 11, pp. 169–180,
1978.

3. C. Marcolla, V. Sucasas, M. Manzano, R. Bassoli, F. H. Fitzek, and N. Aaraj,
“Survey on fully homomorphic encryption, theory, and applications,” Proceedings
of the IEEE, vol. 110, no. 10, pp. 1572–1609, 2022.

4. C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proceedings of
the forty-first annual ACM symposium on Theory of computing, pp. 169–178, 2009.

5. M. Van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully homomorphic
encryption over the integers,” in Advances in Cryptology–EUROCRYPT 2010: 29th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, French Riviera, May 30–June 3, 2010. Proceedings 29, pp. 24–43,
Springer, 2010.

6. M. Li, “Leveled certificateless fully homomorphic encryption schemes from learning
with errors,” IEEE Access, vol. 8, pp. 26749–26763, 2020.

7. J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption for arith-
metic of approximate numbers,” in Advances in Cryptology–ASIACRYPT 2017:
23rd International Conference on the Theory and Applications of Cryptology and
Information Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part
I 23, pp. 409–437, Springer, 2017.

8. C. Gentry, S. Halevi, and N. P. Smart, “Homomorphic evaluation of the aes circuit,”
in Advances in Cryptology–CRYPTO 2012: 32nd Annual Cryptology Conference,
Santa Barbara, CA, USA, August 19-23, 2012. Proceedings, pp. 850–867, Springer,
2012.

9. Z. Brakerski and V. Vaikuntanathan, “Efficient fully homomorphic encryption from
(standard) lwe,” SIAM Journal on computing, vol. 43, no. 2, pp. 831–871, 2014.

10. Z. Brakerski and V. Vaikuntanathan, “Fully homomorphic encryption from ring-
lwe and security for key dependent messages,” in Advances in Cryptology–CRYPTO
2011: 31st Annual Cryptology Conference, Santa Barbara, CA, USA, August 14-18,
2011. Proceedings 31, pp. 505–524, Springer, 2011.

11. Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully homomorphic
encryption without bootstrapping,” ACM Transactions on Computation Theory
(TOCT), vol. 6, no. 3, pp. 1–36, 2014.

20

12. J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic encryption,”
Cryptology ePrint Archive, 2012.

13. C. Gentry, A. Sahai, and B. Waters, “Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based,” in Advances
in Cryptology–CRYPTO 2013: 33rd Annual Cryptology Conference, Santa Barbara,
CA, USA, August 18-22, 2013. Proceedings, Part I, pp. 75–92, Springer, 2013.

14. L. Ducas and D. Micciancio, “Fhew: bootstrapping homomorphic encryption in
less than a second,” in Advances in Cryptology–EUROCRYPT 2015: 34th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I 34, pp. 617–640,
Springer, 2015.

15. I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “Tfhe: fast fully homo-
morphic encryption over the torus,” Journal of Cryptology, vol. 33, no. 1, pp. 34–91,
2020.

16. M. O. Rabin, “Digitalized signatures and public-key functions as intractable as
factorization,” tech. rep., Massachusetts Inst of Tech Cambridge Lab for Computer
Science, 1979.

17. W. Alexi, B. Chor, O. Goldreich, and C. P. Schnorr, “Rsa and rabin functions:
Certain parts are as hard as the whole,” SIAM Journal on Computing, vol. 17,
no. 2, pp. 194–209, 1988.

18. T. Sauer and Y. Xu, “On multivariate lagrange interpolation,” Mathematics of
computation, vol. 64, no. 211, pp. 1147–1170, 1995.

19. G. Spanos and L. Angelis, “The impact of information security events to the stock
market: A systematic literature review,” Computers & Security, vol. 58, pp. 216–
229, 2016.

20. S. Jokić, A. S. Cvetković, S. Adamović, N. Ristić, and P. Spalević, “Comparative
analysis of cryptocurrency wallets vs traditional wallets,” ekonomika, vol. 65, no. 3,
pp. 65–75, 2019.

21

	Fully Homomorphic Encryption Based On Polynomial Operation

