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Abstract. The secret key of any encryption scheme that are stored in
secure memory of the hardwired devices can be tampered using fault
attacks. The usefulness of tampering attack is to recover the key by al-
tering some regions of the memory. Such attack may also appear when
the device is stolen or viruses has been introduced. Non-malleable codes
are used to protect the secret information from tampering attacks. The
secret key can be encoded using non-malleable codes rather than stor-
ing it in plain form. An adversary can apply some arbitrary tampering
function on the encoded message but it guarantees that output is ei-
ther completely unrelated or original message. In this work, we propose
a computationally secure non-malleable code from leakage resilient au-
thenticated encryption along with 1-more extractable hash function in
split-state model with no common reference string (CRS) based trusted
setup. Earlier constructions of non-malleable code cannot handle the sit-
uation when an adversary has access to some arbitrary decryption leak-
age (i.e., during decoding of the codeword) function to get partial infor-
mation about the codeword. In this scenario, the proposed construction
is capable of handling such decryption leakages along with tampering
attacks.

Keywords: Authenticated encryption · Non-malleable codes · Split-
state model · Tamper resilient cryptography.

1 Introduction

In cryptography, the security of various primitives like encryption algorithms,
message authentication codes (MACs), digital signatures follow a generic tem-
plate, i.e., the adversary can observe input-output behaviour, and further it can
attack the primitives. Usually, the basic assumption is that an adversary is able
to learn input-output behaviour only, and the security of cryptographic primi-
tives preserve as long as secret key remains confidential. However, if an adver-
sary gains some partial information about the secret keys, the cryptosystem can
be broken easily. The adversary can mount Differential Fault Analysis attack,
Template Attack, Timing Attack etc. on the cryptosystem to learn the secret
information about keys. In reality, such model does not provide security guaran-
tee when an adversary can tamper the secret key (e.g., flip some bits) and it can
analyse the behaviour of the cryptosystem on these tampered keys to break it
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completely [1, 5]. Non-malleable codes (NMCs), introduced by Dziembowski et
al. [10,22], are used to protect secret message against related tampering, i.e., the
adversary cannot tamper the codeword to make another codeword of a related
message. More precisely, an adversary can apply the tampering function on the
codeword, and the guarantee is that, encoded message either remains completely
unchanged or essentially destroyed, i.e., ⊥. So, the attack on the tampered code-
word is now rendered useless and an adversary can not break the security of
the cryptosystem. Usually, NMCs are built for the specific classes of tamper-
ing functions. Let us consider a secret message d. Non-malleable code is used
to encode the message d and it generates the output as Enc(d). An adversary
can apply some tampering function fincrement on the message encoded by non-
malleable code as fincrement(Enc(d)). The output of such tampering experiment
produces result Enc(d)+1. Further, the adversary decodes the message in the
following way Dec(Enc(d)+1). The final result of the experiment is d+1, and
it has some relation with the original secret message. Therefore, NMCs can be
designed for the specific classes of tampering functions only. The most widely
used class of tampering function is the split-state model where the codeword is
divided into two different parts and stored into the memory ML, MR. Two
different functions fL and fR act independently but arbitrarily on the code-
word [12,14,17,18,20,23,24,26].

Scheme Codeword length Model Assumption Security against
leakages

[15] O((|m|+ k)7 log7(|m|+ k)) Information NA Encryption leakages
theoretic

[17] O(max(|m|, k)) Information NA Encryption leakages
theoretic

[15] + [20] |m|+O(k7) Computational Authenticated Encryption Encryption leakages

[6] + [8] |m|+O(k2) Computational, Leakage Encryption leakages
+ [12] + [20] CRS resilient PKE + Robust NIZK

[18] |m|+ 18k Computational, One-time leakage resilient Encryption leakages
CRS AE + KEA

[23] |m|+ 2k Computational Pseudorandom permutation Encryption leakages
with leakage + Fixed related-key

[25] |m|+ 5k Computational Entropic fixed related-key Encryption leakages

[26] |m|+ 2k Computational Related-key + PRP with leakage + Encryption leakages
Leakage resilient CBC-MAC unforgeability

Our work |m|+ 2k + 2log2(k) 1 Computational Leakage resilient AE with decryption leakages Encryption +
+ 1-more extractable hash Decryption leakages

Table 1: Comparative results of various multi-bit non-malleable codes in the
split-state model [18,23,26].

Usually, constructions of NMCs can be divided broadly into two domains
as information-theoretic [14] and computational [20]. In [15], authors show a
construction of non-malleable code of length O((|m| + k)7log7(|m| + k)) in
information-theoretic domain, where m and k represent the message length and
security parameter respectively. In computational domain, the construction of
non-malleable code is shown from public key primitives [8] with robust non inter-
active Zero knowledge (NIZK) [2] proof [12]. Further, the length of codeword is
optimized into |m|+O(k7) by combining the idea of [15] and [20]. Subsequently,
the size of the codeword is reduced to |m| + O(k2) [6, 8, 12, 20]. Usually, non-
malleable codes are keyless encoding scheme. Further research work shows that

1 k is the security parameter.
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such codeword can be constructed from symmetric-key primitives, i.e., authenti-
cated encryption, block cipher etc. [18,23,26]. In [18], authors show non-malleable
codes from one-time leakage-resilient authenticated encryption along with l-more
extractable hash function, and the non-standard assumption, called knowledge
of exponent assumption (KEA) is used to prove the security in common refer-
ence string (CRS) model. The security margin of [18] is extremely high but the
construction is based on CRS which should be generated from honest, trusted
parties. It is difficult to manage such CRS setup in practical situation. Later,
Fehr et al. [23] show NMCs of optimal codeword length from related-key secure
block ciphers such as AES [3], SHACAL-2 [4] without any CRS based trusted
setup. Unfortunately, their assumption is not applicable when the tampering
function is cipher-dependent. Hence, a better construction [25] is proposed using
entropic fixed-related-key security but the length of codeword is not optimal. Re-
cently, Ghosal et al. [26] show a construction of non-malleable code of optimal
codeword length from a specific authenticated encryption.

Motivation of our work. Till now, all of the constructions of NMCs are
capable of handling encryption leakages but not the leakage during decryption.
An adversary can use arbitrary leakage function during decryption and it can
obtain partial information about the codeword that compromises the security of
the underlying codeword. Since the codeword length of a non-malleable code is
denoted as |m|2 + |security-parameter| and the value of such security-parameter is
heavily dependent on the maximum amount of leakage supported by the under-
lying primitive. The goal of our work is not to optimize the codeword length as
already optimal length NMCs are available in the literature [23,26]. Apart from
tampering attacks, we want to protect the codeword from arbitrary encryption
and decryption leakages. The main challenge of designing such codeword is to
provide security against one-time tampering attack but maintaining the length
of codeword optimum as much as possible. In short, the objective of our work is
mentioned as follows:

(a) To construct non-malleable codes from authenticated encryption along with
1-more extractable hash function that can handle encryption leakages as well
as decryption leakages.

(b) The codeword provides security against one-time tampering attack and bound-
ed leakage attack.

Our Contribution. In this work, we construct a computationally secure
non-malleable code from authenticated encryption [21] along with extractable hash
function [18] in split-state model. Though NMCs protect message only for tam-
pering attacks but leakage of information from the stored codeword or leak-
ages during encoding and decoding operation, compromises the security of non-
malleable code. Our proposed construction is secure against an adversary with
access to some arbitrary leakage function during the decoding step, (i.e., decryp-
tion leakages) and the adversary cannot gain much useful information from the
codeword. The resulting codeword has length of |m| + 2k + 2log2k compared
to other codewords as shown in Table 1.

2 |m| denotes the message length.
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Organization. The paper is arranged in the following way. The basics of
non-malleable code and various definitions are discussed in Section 2. There
after Section 3 illustrates the construction of codeword, while proof of security
is explained in Section 4. Finally, Section 5 concludes our work.

2 Preliminaries

Basic Notations. In split-state model, left and right half of the memories are
represented by ML and MR. Two tampering functions fL and fR are chosen
arbitrarily by an adversary working inML andMR respectively. SK denotes the
usable key set. If SK is the key set, |SK| is the maximum number of key elements

in SK. When sk is uniformly chosen at random from SK, we write sk
$←− SK.

Message set is represented by M whereas C denotes the codeword set. k is the
security parameter. m, e and c denote the plain message, encoded message and
codeword (m, e, c ∈ {0, 1}k). m can be broken into small chunks m1, m2 etc. and
similarly, e. We denote m1, m2 as two different messages. υ denotes the leakage
function. A function ϵ(k) is called negligible in k if it vanishes faster than the
inverse of any polynomial in k.

Definition 2.1 (Coding Scheme and Non-malleable Codes). Let (Encsk
, Dec) be a split-state coding scheme. The encoding algorithm Encsk takes in-
put a message m ∈ M , key sk ∈ SK and it outputs a codeword c ∈ C, divided
into ML and MR parts of the memory respectively. The decoding algorithm
Dec takes input a codeword stored in MR and ML, outputs the plain mes-
sage m ∈ M . Moreover, let us consider F be a family of tampering functions.
The coding scheme is said to satisfy non-malleability if for each tampering func-
tion f ∈ F and c ∈ C, the Dec(f(c)) produces m

′
, where m

′
can be m, ⊥ or

completely unrelated to m. The split-state coding scheme satisfying the non-
malleability property is said to be non-malleable codes.

Definition 2.2 (Strong Non-malleability). Let F be some family of tam-
pering functions. The tampering experiment for each f = (fL, fR) ∈ F and
m ∈M is defined as follows:

Tamperfm =


c← Encsk(m), c = {ML,MR}

{M′
L,M

′
R} = {fL(ML), fR(MR)}

c
′
= {M′

L,M
′
R},m

′
= Dec(c

′
)

output : same∗, ifc
′
= c, else m

′
.

,

where randomness comes from the encoding algorithm.

We say that the coding scheme (Encsk, Dec) is strongly non-malleable with
respect to some tampering function family F if the following indistinguishability
Tamperfm0(m

0) ≈
c
Tamperfm1(m

1) holds for two arbitrarily chosen messages

m0 and m1.

Definition 2.3 (Extractable Hash). A hash function Hk is said to be
extractable hash [13] if for any PPT algorithm A, there exists a PPT extractor

1 k denotes the security parameter
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EA, such that for all k ∈ N , for any input p ∈ {0, 1}k and a negligible function
ϵ(k):

Prh←Hk
[y ← A(h, p),∃x : h(x) = y, x

′ ← EA(h, p) ∧ h(x
′
) ̸= y] ≤ ϵ(k).

Definition 2.4 (1-more Extractable Hash). A hash functionHk is said to
be 1-more extractable hash [18] if for any PPT algorithmAv and any pv ∈ {0, 1}k,
there exists a PPT extractor Ev and pE ∈ {0, 1}k, such that for all PPT algorithm
As, k ∈ N , for any input message s ∈ {0, 1}k and a negligible function ϵ(k):

Prhz←Hk
[Exps,hz

Av,As,Ev (1, pv, pE) = 1] ≤ ϵ(k),

where Exps,hz

Av,As,Ev (1, pv, pE) should satisfy all the four properties [18] as follows:

- (Hash computation) : (h1)← hz(sk)
- (Hash tampering) : (h

′

1)← Av(hz, h1, pv)

- (Preimage extraction) : (ŝk)← Ev(hz, h1, pE)
- (Preimage tampering) : (sk′)← As(hz, sk)

If hz(sk
′
) = h

′

1 ∧ hz(ŝk) ̸= h
′

1, return 1

else, return 0

The experiment Exps,hz

Av,As,Ev (1, pv, pE) works as follows. We use deterministic
hash function with no randomness. An adversary Av tries to produce a tampered
hash h

′

1, given a hash value h1 with auxiliary information pv. Then, extractor
Ev is used to extract the preimage, given h1 and auxiliary input pE . Finally, an
adversary As tries to produce preimage of h

′

1 with all the information collected
in the execution. The experiment outputs 1, if Av is able to generate a valid
hash h

′

1, and As produces a valid preimage of h
′

1, while the extractor algorithm
fails.

Definition 2.5 (Pseudorandom Function). Let F : SK ×M → T be a
deterministic function. We say that F is a pseudorandom function (PRF) if for
all (q, t) bounded adversary A, the below advantage holds:

Pr[AFsk(.) = 1] - Pr[Af(.) = 1] ≤ ϵ(k),

where sk
$←− SK, ϵ(k) denotes a negligible function and the function f : M →

T is chosen uniformly at random.

Definition 2.6 (Strong Pseudorandom Function). Let F : SK×M → T
be a deterministic function. We say that F is a strong pseudorandom function
(SPRF) if for all (q, t) bounded adversary A with oracle access to the function
and its inverse, the below advantage holds:

Pr[AFsk(.),F
−1
sk (.) = 1] - Pr[Af(.),f−1(.) = 1] ≤ ϵF (k),

where sk
$←− SK, ϵF (k) denotes a negligible function and the function f :

M → T is chosen uniformly at random.

Similarly, a deterministic function F is said to be (q, t, ϵF ) pseudorandom
permutation (PRP) if for all sk, Fsk is a permutation, and the above advantage is
upper bounded by ϵF . The function f is selected among the permutation onM =
T uniformly at random. In case of strong pseudorandom permutation(SPRP), the
adversary A has oracle access to the function and its inverse.

Definition 2.7 (Tweakable Pseudorandom Function). Let F ∗ : SK ×
T K ×M → T be a deterministic function. It is said to be (q, t, ϵF∗) tweakable
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pseudorandom function (TPRF) if for all (q, t) bounded adversary A, the below
advantage holds:

Pr[AF
∗,(.)
sk (.) = 1] - Pr[Af(.)(.) = 1] ≤ ϵF∗(k),

where sk
$←− SK is selected uniformly at random and f is chosen from the

set of functions T K ×M → T uniformly at random.
Definition 2.8 (Strong Tweakable Pseudorandom Function). Let F ∗ :

SK× T K×M →M be a deterministic function. We say that F ∗ is a (q, t, ϵF∗)

strong tweakable pseudorandom function (STPRF) if for all sk, tweaks F ∗,T Ksk :
M → M and for all (q, t) bounded adversary A that has oracle access to the
function and its inverse, the below advantage holds:

Pr[AF
∗,(.)
sk (.),F

∗,−1,(.)
sk (.) = 1] - Pr[Af(.)(.),f−1,(.)(.) = 1] ≤ ϵF∗(k),

where sk
$←− SK and f

$←− f tk is chosen uniformly at random from their
domain. Further, f tk is selected from an independent uniformly random permu-
tation on M for each value of tk.

Similarly, we say that F ∗ is a (q, t, ϵF∗) strong tweakable pseudorandom per-

mutation (STPRP) if F ∗,tksk is a permutation for all sk, tk. Moreover, f tk is a
random permutation on M = T and we select it for each value of tk.

Definition 2.9 (Authenticated Encryption). Let (SK, Enc,Dec) be an
authenticated encryption (AE) that consists of the following algorithms:
- Enc : SK ×M → C algorithm inputs a key sk ∈ SK and message m ∈ M .
It produces ciphertext c ∈ C as output. We denote it as c← Enc(sk,m).

- Dec : SK × C → M ∪ {⊥} algorithm inputs a key sk ∈ SK and ciphertext
c ∈ C. It produces m ∈ M or ⊥, if decryption fails. We denote it as m ←
Dec(sk, c).
Moreover, it should satisfy the correctness property thatDec(sk,Enc (sk,m))

= m, for all sk ∈ SK, m ∈M and c ∈ C.
Definition 2.10 (Semantically Secure AE). Let υ be the leakage function

that outputs λ bits, i.e., υ : {0, 1}∗ → {0, 1}λ. An authenticated encryption(AE)
scheme is said to satisfy semantically secure property with respect to m and m1

if {Enc(sk,m), υ(sk)} and {Enc(sk,m1), υ(sk)} are computationally indistin-
guishable.

Definition 2.11 (Strong Misuse Resistance of AE). An AE scheme is
said to be strong misuse resistance [19], if for every (q, t) bounded adversary A,
the below advantage holds:

[Pr[AEnc(.,.),Dec(.,.) = 1] - Pr[AR(.),⊥(.) = 1]] ≤ ϵ(k),

where sk
$←− SK and ϵ(k) denotes a negligible function. The function R(m)

outputs c and the length of such random bit string is |Enc(sk,m)|. Oracle ⊥(c)
produces output ⊥ only if c is generated by R(m) oracle earlier, in that case it
returns m.

Definition 2.12 (Encrypt Digest Tag AE). Let H : {0, 1}k × {0, 1}∗ →
{0, 1}k be a collision resistant, range oriented, preimage resistant hash function,
F ∗ : {0, 1}k × {0, 1} × {0, 1}k → {0, 1}k be a strong tweakable pseudorandom
function, F ∗k be a leak-free pseudorandom function and Fk be a pseudorandom
function which can leak some information. An AE is called encrypt digest tag
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(EDT) [21], if it combines a tweaked versions of PSV Enc [16] with an “hash-
then-MAC” scheme. Further, it can minimize the decryption leakages by giving
an invalid ciphertext to restrict the impact of differential power analysis (DPA)
attacks on message confidentiality.

Definition 2.13 (Pseudorandom Generator).A deterministic polynomial-
time algorithm G is called pseudorandom generator (PRG) [9] against an adver-
sary A if for all A ∈ A, there exists a stretching function l : N → N (domain of
l, i.e., |N | = 2λ and codomain of l, i.e., |N | = |m|+ k) such that {Gk}k∈N and
{Uk}k∈N are computationally indistinguishable:

(a) The probability distribution Gk is defined as the output of G. The length of
Gk is l(k) on a uniformly selected seed in {0, 1}k.

(b) The probability distribution Uk is defined as the uniform distribution on
{0, 1}l(k), l(k) > k.

Let Uk be the uniform distribution over {0, 1}k, we need that for any PPT
algorithm A, any positive polynomial p(.), and for all sufficiently large k, it
holds that

|Pr[A(G(Uk)) = 1] - Pr[A(Ul(k))) = 1]| < 1
p(k) .

3 Code Construction

We propose the construction of non-malleable code from leakage resilient authen-
ticated encryption [21] along with 1-more extractable hash function. Such authen-
ticated encryption can handle encryption leakages as well as decryption leakages.
Initially, a pseudorandom generator (PRG) is used to encode the secret key. The
pseudorandom generator : {0, 1}2λ → {0, 1}|m|+k of [7] considers secret key |sk|
= 2λ/α, and it can tolerate maximum αλ bits of leakage [9], where α ∈ [0, 1]
and the value depends on underlying assumption. In our case, we consider the
strongest assumption, i.e., α = 1 which implies |sk| = 2λ. The complete encoding
and decoding steps are described below:

– Encoding. The encoding algorithm takes a message block m, pseudoran-
dom generator with the secret key sk and generates r1, r2 as output (|r1| =
|m|, |r2| = |k|). The message block m is further divided into small chunks
of m1,m2, .....,ml and the randomness r1 is also broken into r11, r

2
1, ....., r

l
1.

Then, PSV Encr2(r1,m) [16] is invoked that takes input a message block
m, randomness r1 and secret key r2, and it generates encoded message
e1, e2, ..., el. The PSV Encr2(r1,m) function uses a tweakable leak-free pseu-
dorandom function F ∗,twki−1

(.) to generate the master key k1 and another pseu-

dorandom function Fk(.) that can leak some information, used to generate
the remaining keys ki from the master key, for all i > 1. The pseudoran-
dom function is instantiated with AES algorithm. Output of the function is
XOR-ed with mi and ri1, and it produces ei. Next, Tagr2(r1, e) is invoked
with the encoded message e, randomness r1 and secret key r2. Further, the
collision resistant hash function H generates a hash value h based on e and
r1. Finally, F

∗,1
r2 (h) returns a tag τ . Apart from that, 1-more extractable hash

function hz is used to generate a hash value for the secret key sk, and the
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codeword C = (sk, e, τ, h1) is stored as ML = {sk}, MR = {e, τ, h1}. The
encoding steps are illustrated as follows:

Algorithm 1 Function of ExpNMC
f,m
A,1

()

Input: sk, m
Output: same∗, m

′

1: sk ← {0, 1}2λ
2: (sk, e, τ, h1) ← Encsk(m)
3: c = (sk, e, τ, h1)
4: ML = (sk)
5: MR = (e, τ, h1)

6: sk
′

= fL(sk)

7: (e
′
, τ
′
, h
′
1) = fR(e, τ, h1)

8: c
′

= (sk
′
, e
′
, τ
′
, h
′
1)

9: if c = c
′

then
10: output same∗
11: else

12: output m
′

= Dec(c
′
)

13: end Function

Algorithm 2 Function of ExpNMC
f,m
A,2

()

Input: sk, m
Output: same∗, m

′
or ⊥

1: sk ← {0, 1}2λ
2: (sk, e, τ, h1) ← Encsk(m)
3: c = (sk, e, τ, h1)
4: ML = (sk)
5: MR = (e, τ, h1)

6: sk
′

= fL(sk)

7: (e
′
, τ
′
, h
′
1) = fR(e, τ, h1)

8: c
′

= (sk
′
, e
′
, τ
′
, h
′
1)

9: if (h1, sk, e) = (h
′
1, sk

′
, e
′
) then

10: if τ ̸= τ
′

then
11: output ⊥
12: else
13: output same∗

14: else

15: output m
′

= Dec(c
′
)

16: end Function

KeyGen(1k): sk ← {0, 1}2λ

Encsk(m):
• (r1, r2)← PRG(sk)
• |r1| = |m|, |r2| = |k|
• parse m = (m1,m2, .....,ml)
• parse r1 = (r11, r

2
1, ....., r

l
1)

• e = {e1, e2, ..., el} ← PSV Encr2(r1,m)
• PSV Encr2(r1,m)

- k1 ← F ∗,0r2 (r11), also ki ← F ∗,twki−1
(pA) and tw ∈ {0, 1}

- e1 ← Fk1
(pB)⊕m1 ⊕ r11

- ∀i = 2 to l
- ki ← Fki−1(pA)
- ei ← Fki

(pB)⊕mi ⊕ ri1
- e = {e1, ......, el}

• τ ← Tagr2(r1, e)
- h← H(r1||e)
- τ ← F ∗,1r2 (h)

• hz ← Hk, h1 ← hz(sk)
• return C = (sk, e, τ, h1)

– Decoding. The decoding algorithm first inputs a secret key sk to the PRG
and it generates r1 and r2. Next, it parses the codeword C. Collision resis-
tant hash function H(r1||e) is invoked that returns a hash value h. Inverse
tweakable pseudorandom function (F ∗,1r2 )−1() takes τ as input and produces
the hash hc. Further, hc is checked with h for consistency, if they are same,
output of 1-more extractable hash hz(sk) is compared with h1. Whenever
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both the hash values are equal, PSV Encr2(r1, e) returns the message m.
Decoding steps are described as follows:

Dec(C):

- Parse C = (sk, e, τ, h1)
- (r1, r2)← PRG(sk)
- h← H(r1||e)
- hc ← (F ∗,1r2 )−1(τ)
- If h ̸= hc, return ⊥
- If h1 ̸= hz(sk), return ⊥
- m← PSV Encr2(r1, e)
- return m

Liu et al. [11] observe that an adversary can check the equality between

fL(ŝk) and fL(sk) using the leakage of a universal hash and it generates log2k
bits as output. Kiayias et al. [18] show that a similar kind of equality check

between fL(r̂, ŝk) and fL(r, sk) can be performed using the leakage of a universal
hash that generates 2k+log2k bits as output, where |r̂| = 2k. The proposed split-
state non-malleable code is defined as Enc : m→ {sk}||{e, τ, h1}. The length of
codeword is |m| +|security-bits|. By setting λ = log2k, we get |sk|+|e|+|τ |+|h1|,
i.e., |m| + 2k + 2log2(k) (where |e| = |m|), assuming the size of |τ |, |h1| are k
bits each.

Let hz ← Hk be a hash function that is collision resistant, 1-more extractable

hash and efficiently samplable as defined in [18]. An adversary chooses h̃← H̃λ−1
from universal hash function family. The hash function outputs λ − 1 bits. Let
υ be the leakage function defined as follows:

υh̃(sk)= (0, h̃(fL(sk)) if (fL(sk) = sk).

else, υh̃(sk)= (1, h̃(fL(sk)), (fL(sk) ̸= sk).

The leakage function outputs λ = β(logk)+ω(k) bits. Our experiment checks
the leaked value instead of the output generated by fL.

4 Proof of Security

Theorem 1. Let Hk be 1-more extractable hash function that generates ω(k) bits
as output, where ω(k) = poly(k), (SK, Enc, Dec) be a leakage resilient authen-
ticated encryption that can handle λ bits of leakage, where λ = β(logk) + ω(k)
and k denotes the security parameter. Then, (KeyGen(1k), Encsk(m), Dec(C))
is strongly non-malleable.

Proof. We need to show that for the tampering function f = (fL, fR) and

messages m, m1, the experiment Tamperfm(m) and Tamperfm1(m
1) are com-

putationally indistinguishable, i.e., Tamperfm(m) ≈
c
Tamperfm1(m

1). We define

the experiment ExpNMCf,m
A,1 () (Algorithm 1) and change it incrementally to

ExpNMCf,m
A,2 (), ExpNMCf,m

A,3 (), ExpNMCf,m
A,4 () and show that they are com-

putationally indistinguishable except with negligible probability. Given a mes-
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sagem and tampering function f = (fL, fR) ∈ F , the experimentExpNMCf,m
A,1 ()

is exactly same as the original tampering experiment, i.e., Tamperfm(m).

Algorithm 3 Function of ExpNMC
f,m
A,3

()

Input: sk, m
Output: same∗, m

′
or ⊥

1: sk ← {0, 1}2λ
2: (sk, e, τ, h1) ← Encsk(m)
3: c = (sk, e, τ, h1)
4: ML = (sk)
5: MR = (e, τ, h1)

6: sk
′

= fL(sk)

7: (e
′
, τ
′
, h
′
1) = fR(e, τ, h1)

8: if (h1, sk, e) = (h
′
1, sk

′
, e
′
) then

9: if τ ̸= τ
′

then
10: output ⊥
11: else
12: output same∗

13: if h1 ̸= h
′
1 then

14: ŝk ← E(hz, h1)

15: if sk
′

= ŝk then

16: if h
′
1 = hz(ŝk) then

17: output m
′

= Dec(c
′
)

18: else
19: output ⊥
20: else
21: output ⊥
22: end Function

Algorithm 4 Function of ExpNMC
f,m
A,4

()

Input: sk, m
Output: same∗, m

′
or ⊥

1: sk ← {0, 1}2λ
2: (sk, e, τ, h1) ← Encsk(m)
3: c = (sk, e, τ, h1)
4: ML = (sk)
5: MR = (e, τ, h1)

6: sk
′

= fL(sk)

7: (e
′
, τ
′
, h
′
1) = fR(e, τ, h1)

8: (b, hl
1) ← υh̃(sk)

9: if (hl
1, sk, e) = (h

′
1, sk

′
, e
′
) then

10: if τ = τ
′

then
11: output same∗
12: else
13: output ⊥
14: ŝk ← E(hz, h1)

15: if h̃(ŝk) ̸= hl
1 then

16: if sk
′

= ŝk then

17: if h
′
1 = hz(ŝk) then

18: output m
′

= Dec(c
′
)

19: else
20: output ⊥
21: else
22: output ⊥
23: end Function

In ExpNMCf,m
A,2 () (Algorithm 2), we check whether an adversary has mod-

ified the hash value of sk and e. As the hash function Hk is collision resistant,
if the adversary does not modify the hash h1, secret key is not changed at all,
i.e., (hz(sk) = h1) and the condition (h1, sk, e) = (h

′

1, sk
′
, e
′
) should be sat-

isfied. Next, tag is calculated from Encsk(m). New tag and modified tag are
compared and if they are equal, output is set to same∗. Whenever (τ ̸= τ

′
)

output is set to ⊥, otherwise, it breaks the authenticity property under leakage.
If (h1, sk, e) ̸= (h

′

1, sk
′
, e
′
), it outputs m

′
which is same as ExpNMCf,m

A,1 ().

ExpNMCf,m
A,3 () (Algorithm 3) does not use the real decoding procedure but

it uses extractor Ev (i.e., in short E) of 1-more extractable hash function to get

preimage of the hash value h1, i.e., ŝk. Using the preimage, it again calculates
hz(ŝk) and compares with h

′

1. Whenever the condition (h1 ̸= h
′

1) is satisfied,

tampered secret key sk
′
is compared with ŝk, and the new hash value is computed

for ŝk to check consistency with h
′

1. This part only differs with ExpNMCf,m
A,2 ()

and output m
′
is generated, otherwise, it returns ⊥. To illustrate the working

strategy of Ev, we define Av, pv, with respect hz, (e, τ), h1, and the tampering
function f = (fL, fR).

- (Define Av) : Av(hz, h1, pv) = ([fR(h1, pv)])
- (Auxiliary info for Av) : pv = (e, τ)
- (Existence of extractor Ev, and auxiliary input pE): Given Av and
pv, using 1-more extractability of the hash function Hk, an extractor Ev can
be constructed, with hardwired auxiliary info pE , and it computes ŝk ←
Ev(hz, h1). We denote Ev as E for brevity.

https://orcid.org/0000-0002-9328-3673
https://orcid.org/0000-0003-1417-0425
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In ExpNMCf,m
A,4 () (Algorithm 4), we perform consistency check procedure

through leakage. Let h̃← H̃λ−1 be selected from universal hash function family.
The underlying hash function generates λ−1 bits as output. The leakage function
is defined as follows:

υh̃(sk)= (0, h̃(fL(sk)) if (fL(sk) = sk)

else, υh̃(sk)= (1, h̃(fL(sk)), (fL(sk) ̸= sk).

An adversary has access to the leakage function υh̃(sk) to calculate hl
1. A

random variable b is used to store the output, and b is set to 0 if (fL(sk) = sk).

Next, (hl
1, sk, e) = (h

′

1, sk
′
, e
′
) is checked. If there is a collision against h̃, it

induces statistical difference only. Since h̃ is a universal hash function and it is
chosen independently for the current experiment, the probability of occurrence is
negligible. Further, the tampered tag τ

′
and the original tag τ are compared and

output is set to same∗, if they are equal. Whenever (h̃(ŝk) ̸= hl
1), it compares

tampered secret key sk
′
with the extracted secret key ŝk and the hash value

(h
′

1 = hz(ŝk)). If it is successful, output m
′
= Dec(c

′
), otherwise, it outputs ⊥.

Lastly, we show that ExpNMCf,m
A,4 () and ExpNMCf,m1

A,4 () are computa-

tionally indistinguishable for any two arbitrarily chosen messages m and m1.

Lemma 1. Let H be a collision resistant, range-oriented, preimage resis-
tant hash function, (SK, Enc,Dec) is a leakage resilient authenticated encryp-
tion with decryption leakages, f = (fL, fR) ∈ F be a tampering function and

for any message m, ExpNMCf,m
A,1 () and ExpNMCf,m

A,2 () are computationally
indistinguishable.

Proof. ExpNMCf,m
A,1 () and ExpNMCf,m

A,2 () are different in the following
branch condition:

- (h1, sk, e) = (h
′

1, sk
′
, e
′
) ∧ (τ ̸= τ

′
)

- (h1, sk, e) = (h
′

1, sk
′
, e
′
) ∧ (τ = τ

′
)

Let the branch condition (h1, sk, e) = (h
′

1, sk
′
, e
′
) ∧ (τ ̸= τ

′
) be denoted

by the event C and ExpNMCf,m
A,2 () experiment returns ⊥ when the event C

occurs. So, ExpNMCf,m
A,2 () and ExpNMCf,m

A,1 () output same∗ conditioned on

the event ∼ C. Let F be the event that (τ = τ
′
). Now, Pr[C] = Pr[C ∧ F ] +

Pr[C∧ ∼ F ]. We have to show that Pr[C∧F ], Pr[C∧ ∼ F ] occurs with negligible
probability. Here, we follow proof by contradiction technique. Let us consider
Pr[C∧ ∼ F ] > ϵ(k), for some negligible function ϵ(k). Then, there exists a PPT
adversary A which can break the collision resistance property of hash function
H. Further, the adversary simulates ExpNMCf,m

A,2 () and outputs τ , τ
′
, (sk, e),

(sk
′
, e
′
) (h ← H(r1||e) and τ ← F ∗,1r2 (h)). The function f is polynomial time

computable. So, the running time of the adversary is also polynomial and it wins
the event Pr[C∧ ∼ F ], where the assumption is that Pr[C∧ ∼ F ] > ϵ(k). Hence,
the adversary breaks the collision resistance property of hash function with non-
negligible probability. Let us consider that Pr[C ∧F ] > ϵ(k), for some negligible
function ϵ(k). An adversary with access to tampering function f = (fL, fR)
with (e

′
, τ
′
, h
′

1) = fR(e, τ, h1) breaks the authenticity property under leakage.
Firstly, Encsk(m) is invoked and the tag is recomputed using h ← H(r1||e),
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τ ← F ∗,1r2 (h). Assuming Pr[C ∧ F ] > ϵ(k), the inequality (τ ̸= τ
′
) generates

a valid ciphertext with respect to sk and authenticity property under leakage
breaks with non-negligible probability ϵ(k). Hence, the proof of lemma concludes.

Lemma 2. Let Hk be 1-more extractable hash function and f = (fL, fR) be

a tampering function, for any message m, ExpNMCf,m
A,2 () and ExpNMCf,m

A,3 ()
are computationally indistinguishable.

Proof. In ExpNMCf,m
A,3 (), we do not use real decoding procedure. Here,

the role of extractor function in the 1-more extractable hash is used, and ŝk
is compared with the tampered key sk

′
if (h1 ̸= h

′

1). This part only differs

with ExpNMCf,m
A,2 (). If (h

′

1 = hz(ŝk)) and (sk
′
= ŝk) is true, output of the

two experiments are equal. We need to show that two experiments are indis-
tinguishable, i.e., the probability of occurrence of the following two conditions
(sk

′ ̸= ŝk) ∧ (h
′

1 = hz(ŝk)) and (sk
′
= ŝk) ∧ (h

′

1 ̸= hz(ŝk)) are negligible. From
the property of 1-more extractable hash function, the probability of occurrence
(sk

′
= ŝk) ∧ (h

′

1 ̸= hz(ŝk)) is negligible. Let E be the event that (sk
′ ̸= ŝk).

Consider the below events, denoted as E1, E2.

- E ∧ (hz(sk
′
) = hz(ŝk) = h

′

1) : It happens when there is a collision and by
the property of hash function used in our scheme Pr[E1] ≤ ϵ(k).

- E ∧ (hz(sk
′
) = h

′

1 ∧ hz(ŝk) ̸= h
′

1) : Since the hash function is 1-more ex-
tractable [11], we can conclude that Pr[E2] ≤ ϵ(k). Now, we can relate

ExpNMCf,m
A,3 () with Exps,hz

Av,As,Ev (1, pv, pE), for some messagem
′
, algorithm

Av, As, extractor Ev and inputs pv, pE .

Therefore, we get Pr[E1] + Pr[E2] ≤ ϵ(k). Hence, ExpNMCf,m
A,2 () and

ExpNMCf,m
A,3 () are computationally indistinguishable. This concludes the proof

of lemma.

Lemma 3. Let H be a collision resistant, range-oriented, preimage resis-

tant hash function, h̃ ← H̃λ−1 is chosen from universal hash function family
that generates λ − 1 bits as output, where λ = β(logk), for any message m,

ExpNMCf,m
A,3 () and ExpNMCf,m

A,4 () are computationally indistinguishable.

Proof. In ExpNMCf,m
A,4 (), we present h1 as leakage over sk and such thing

does not make any statistical difference. h̃ ← H̃λ−1 is chosen from univer-
sal hash function family and we compare (hl

1, sk, e) = (h
′

1, sk
′
, e
′
), whereas

in ExpNMCf,m
A,3 (), we compare (h1, sk, e) = (h

′

1, sk
′
, e
′
). The remaining part

(τ = τ
′
) is exactly same as previous experiment. If (hl

1, sk, e) = (h
′

1, sk
′
, e
′
) and

(τ = τ
′
) is satisfied, output is set to same∗. The only difference between current

and previous experiment is that the calculation of hash value of the secret key
over leakage. Let B be the event (h̃(ŝk) = hl

1) ∧ (sk
′ ̸= ŝk). It is clear that the

statistical difference between the two experiments are upper bounded by Pr[B].

We choose the universal hash function h̃ independently from its input, and the
probability of collision is bounded by λ− 1 = ϵ(k). The collision event B is ex-
actly same and we have Pr[B] ≤ ϵ(k). Further, the probability of occurrence

of the condition (hz(ŝk) ̸= h
′

1) ∧ (sk
′
= ŝk), denoted as B1, is negligible, i.e.,

https://orcid.org/0000-0002-9328-3673
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Pr[B1] ≤ ϵ(k), since the hash function is deterministic. Therefore, the proof of
lemma completes.

Lemma 4. Let (SK, Enc,Dec) be a leakage resilient authenticated encryp-
tion scheme, f = (fL, fR) be a tampering function and for two arbitrarily chosen

messages m and m1, ExpNMCf,m
A,4 () and ExpNMCf,m1

A,4 () are computationally
indistinguishable.

Proof. Here, we use proof by contradiction approach. Let us assume that for
the two arbitrarily chosen messages m, m1, there exists a tampering function
f = (fL, fR) and PPT distinguisher D such that |Pr[D(ExpNMCf,m

A,4 ()) = 1] -

Pr[D(ExpNMCf,m1

A,4 ()) = 1]| > ϵ, where ϵ = 1/poly(k). The adversary A is able
to break the semantic security of encryption scheme (Definition 2.10) under

leakage. It picks up the leakage function υh̃(sk), connect the function with hard-

ware, and performs the experiment ExpNMCf,m
A,4 () for two arbitrarily chosen

messagesm andm1. It is straightforward to see that A simulates ExpNMCf,m
A,4 ()

and the advantage of breaking semantic security is same as distinguisher D, in

distinguishing ExpNMCf,m
A,4 () and ExpNMCf,m1

A,4 (), which is non-negligible by
assumption. Therefore, we arrive at the contradiction and it completes the proof
of lemma.

From the above analysis, it is evident that for the tampering function f ,
two arbitrarily chosen messages m, m1, Tamperfm(m) and Tamperfm1(m

1) are

computationally indistinguishable, i.e., Tamperfm(m) ≈
c
Tamperfm1(m

1).

5 Conclusion

In this work, we construct a computationally secure non-malleable code from
authenticated encryption with 1-more extractable hash function. Our proposed
construction removes the requirement of common reference string based trusted
setup. The codeword provides security against one-time tampering attack and
bounded leakage attack.
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