
Continuously Non-Malleable Codes from
Authenticated Encryptions in 2-Split-State

Model

Anit Kumar Ghosal 1 and Dipanwita Roychowdhury 1

Department of Computer Science and Engineering, IIT Kharagpur, India

Abstract. Tampering attack is the act of deliberately modifying the
codeword to produce another codeword of a related message. The main
application is to find out the original message from the codeword. Non-
malleable codes are introduced to protect the message from such at-
tack. Any tampering attack performed on the message encoded by non-
malleable codes, guarantee that output is either completely unrelated or
original message. It is useful mainly in the situation when privacy and
integrity of the message is important rather than correctness. Unfortu-
nately, standard version of non-malleable codes are used for one-time
tampering attack. In literature, it is shown that non-malleable codes can
be designed from authenticated encryption. But, such construction does
not provide security when an adversary tampers the codeword more than
once. Later, continuously non-malleable codes are constructed where an
attacker can tamper the message for polynomial number of times. In
this work, we propose a construction of continuously non-malleable code
from authenticated encryption in 2-split-state model. Our construction
provides security against polynomial number of tampering attacks and
non-malleability property is preserved. The security of proposed contin-
uously non-malleable code reduces to the security of underlying leakage
resilient storage when tampering experiment triggers self-destruct.

Keywords: Authenticated encryption · Non-malleable codes · 2-Split-
State model · Tamper-resilient cryptography.

1 Introduction

In the era of digital evaluation, various kind of attacks on the hardware devices
are the most threatening aspects for the crypto designers. The adversary wants
to exploit the weakness of physical implementation mechanism by injecting some
faults during runtime of the cryptographic algorithm. Then, it can analyze the
faulty and fault free output to get partial information about the internal state
of the algorithm. Tampering attack is one of the attack where an adversary
modifies the internal state of the device and manipulates some parameters of
the underlying algorithm. Such attack can be performed by a fault injection or
heating up the device. In case of software platform, a virus in the computer
can carry out such tampering attack on the storage device by corrupting some

https://orcid.org/0000-0002-9328-3673
https://orcid.org/0000-0003-1417-0425

2 Anit Kumar Ghosal and Dipanwita Roychowdhury

regions of the memory. The ultimate goal of the adversary is to find out the keys
so that they can destroy the cryptosystem completely. Boneh et al. [2] show such
an devastating attack where an adversary can make a minor modification in the
cryptographic device and the signing key can be recovered completely. A line
of research work have focused how to secure any cryptographic implementation
from such tampering attacks [4, 8, 9, 11,13,27,28].

Non-malleable codes are introduced by Dziembowski et al. [5] as one of the ap-
plications of tamper-resilient cryptography. It ensures with high probability that
if an adversary tampers any message encoded with non-malleable codes, output is
either completely unrelated or original message, when tampering has no effect.
Let k be the secret message, i.e., key of any cryptographic algorithm and f be a
tampering function. The secret message is encoded as Encode(k). An adversary
can apply the tampering function f on the encoded message as f(Encode(k)).
Then, it tries to decode the message in the following way Decode(f(Encode(k))).
The property of non-malleability ensures that Decode(f(Encode(k))) = k with
probability one, when tampering has no effect or in case of successful tampering
attempt Decode(f(Encode(k))) = k

′
, where k and k

′
both are computationally

independent. Let fincrement be a tampering function which tampers the en-
coded data as fincrement(Encode(k) + 1). After decoding output is k + 1, which
is highly related to the original secret message. Hence, non-malleable codes can
be constructed for some classes of tampering function only. In literature, the
most widely used model is 2-split-state where the codeword is split into two
different parts of the memory ML, MR and two different tampering functions
f = (f1(ML), f2(MR)) modify the codeword in an arbitrary and independent
way [15,18]. Standard notion of non-malleability deals with one-time tampering
attack only. It cannot handle the situation when an adversary tampers the code-
word polynomial number of times. Later, Faust et al. [14] propose a stronger
version of non-malleability called continuous non-malleable codes (CNMC)
where an adversary can perform the tampering attack for polynomial number
of times and still non-malleability is preserved.

There are various flavours of continuous non-malleability. The original mes-
sage is denoted as m whereas m

′
is the decoded tampered message. Moreover, c

represents the original codeword and c
′
represents the tampered codeword in a

continuous tampering experiment. Usually, standard version of continuous non-
malleability refers to the situation where the decoded tampered message m

′
and

the original message m are completely independent but an attacker can create
an encoding such that c

′
is not equal to c but c

′
decodes to m as discussed in [5].

In case of strong continuous non-malleability, when c
′
is not equal to c, it is

guaranteed that both m
′
and m are independent. The more stronger flavour is

super-strong continuous non-malleability, where c
′
is not equal to c implies that

c
′
and c are independent [14,16,17]. We consider stronger version of continuous

non-malleability. Again, based on the situation that how tampering functions are
applied to the codeword, tampering experiment of continuous non-malleability
has two versions as shown in [17]. In case of non-persistent tampering, the ad-
versary applies the tampering functions on initial encoding of the codeword. In

https://orcid.org/0000-0002-9328-3673
https://orcid.org/0000-0003-1417-0425

Title Suppressed Due to Excessive Length 3

persistent version, tampering functions are applied to the previous version of
tampered codeword rather than initial encoding. An adversary can tamper two
different parts of the memory until decoding error is triggered. Continuously
non-malleable code constructions are broadly categorized into two domains as
information-theoretic [25] and computational [14, 22, 24]. Information-theoretic
continuous non-malleability is impossible to achieve in 2-split-state model as
mentioned in [14] due to the generic attack. Later, Aggarwal et al. [21] show that
information-theoretic continuous non-malleability is possible when tampering is
persistent in 2-split-state model. Ostrovsky et al. propose a more relaxed ver-
sion of CNMC from computational assumption in the plain model (i.e., without
common reference string (CRS) based setup) but it provides weaker security
guarantee. To achieve stronger security, it is necessary to rely on CRS based
setup assumptions as described in [26]. Hence, our construction relies on authen-
ticated encryption, robust non interactive zero knowledge (NIZK) [3] proof and
a commitment scheme with CRS based setup.

Scheme Model Security Assumption Tampering Attempt Security against
Tampering and Leakage Attacks

[14] Computational, NIZK, Collision resistant hash, Non-persistent Polynomial number of tampering attacks
CRS Leakage resilient storage with self-destruct and bounded leakage attacks

[21] Information NA Persistent Unbounded Adversary with polynomial number
theoretic with self-destruct of tampering attacks and bounded leakage attacks

[22] Computational, NIZK, Non-interactive commitment Non-persistent Polynomial number of tampering attacks
CRS Leakage resilient public key encryption with self-destruct and bounded leakage attacks

[24] Computational Only one-to-one Non-persistent Unbounded Adversary with polynomial number
one-way function with self-destruct of tampering attacks and bounded leakage attacks

Our work Computational, NIZK, Non-interactive commitment, Non-persistent Polynomial number of tampering attacks
CRS Leakage resilient storage with self-destruct and bounded leakage attacks

Table 1: Comparative results of various continuously non-malleable codes in the
2-split-state model.

Motivation of the construction. The initial construction of non-malleable
codes are keyless in nature. Further research work shows that such codeword
can be constructed from symmetric-key primitives, i.e., Authenticated Encryp-
tion (AE) [19], [28], [15, 20], related-key secure cipher [23] etc. Unfortunately,
the codeword of [15, 20] and [19], [23], [28] are secure against one-time tam-
pering attack only. It can not provide security when an adversary tampers the
codeword more than once. Moreover, an adversary can tamper the right part
of a codeword M1 and produce M

′

1. Such attack can create two valid code-
words (M0,M1) and (M0,M

′

1) such that their decoding does not return ⊥, i.e.,
⊥ ≠ Decodek(α, (M0,M1)) ̸= Decodek(α, (M0,M

′

1)) ̸= ⊥, where M1 ̸= M
′

1.
The goal of the adversary is to produce two valid messages m, m

′
. Further,

the adversary may not activate the self -destruct feature and it can leak all
the bits of M1 with the assumption that the underlying tampering function is
non-persistent. In general, for any continuously non-malleable codes, finding
two valid codewords (M0,M1) and (M0,M

′

1) such that Decodek(α, (M0,M1))
̸= Decodek(α, (M0,M

′

1)) should be computationally hard to the adversary. This
property is called message uniqueness as described in [14]. Our goal is to design
non-malleable codes from authenticated encryption (i.e., Encrypt then MAC)

4 Anit Kumar Ghosal and Dipanwita Roychowdhury

that is secure against polynomial number of tampering attempts. Table 1 shows
various constructions of continuous non-malleable codes in 2-split-state model.

Our Contribution. In this work, we propose a continuous version of non-
malleable code in 2-split-state model from authenticated encryption (i.e., Encrypt
then MAC) along with robust NIZK proof and a commitment scheme, instan-
tiated with one-to-one one-way function [1]. Initially, the message is encoded
into leakage resilient storage (lrs) to protect from leakage attacks. Further, it
is encoded with authenticated encryption along with robust NIZK and a com-
mitment scheme. The authenticated encryption used in our construction should
satisfy the following assumption:

a) If the decryption algorithm of an authenticated encryption with a key k
succeeds, it should return ⊥ when it is decrypted with a different key k

′
,

where k ̸= k
′
.

Organization. The paper is structured as follows. Section 2 describes some
preliminaries whereas Section 3 provides a brief description about continuous
non-malleability. Code construction, limitations and future enhancements are
illustrated in Section 4. Finally, we conclude the paper in Section 5.

2 Preliminaries

Basic Notations. We describe a summary of notations in Table 2.

Notation Terminology

m Original message

M0, M1 Left and right half of a codeword

ML,MR Left and right half of the memory

OT
cnmc(., .) Tampering oracle

f1, f2 Tampering functions

K Key set

k
$←− K A particular key is selected

n Security parameter

Ol(s) Leakage oracle with s as input

α Common reference string

S0, S1 Two simulators

ϵ(n) A negligible function

E ≈
s
F Statistical indistinguishability

τ() Leakage function

λ Public label

π Proof of a statement

pk, sk Public and private key pair

r Randomness

Table 2: Summary of notations

2.1 Leakage Resilient Storage

The purpose of leakage resilient storage (lrs) scheme is to encode the message in
such a way that an adversary with access to some additional leakage information

https://orcid.org/0000-0002-9328-3673
https://orcid.org/0000-0003-1417-0425

Title Suppressed Due to Excessive Length 5

is unable to guess the original message from the encoded one. The security of
leakage resilient storage is preserved until some bounded information is available
to the adversary [14]. It consists of a pair of algorithms (Enclrs,Declrs) described
as follows:

– Enclrs algorithm inputs a message m and produces the output p0, p1.
– Declrs algorithm inputs p0, p1 and generates m as output.

The leakage experiment is defined below:

leakβA,m =

{
(p0, p1)← Enclrs(m);L ← AOl(p0,.),Ol(p1,.)

output : (pβ ,LA), β ∈ {0, 1}

}
Initially, a counter ctr is initialized to 0. When strings are passed into the

oracle Ol(p0, .), Ol(p1, .), the leakage function τ(p0), τ(p1) are used to calculate
the value and finally, it is added to ctr, until ctr ≤ l from each part. Oracle
terminates if ctr > l, and further query would return ⊥. The storage scheme is
said to be strong lrs if an adversary should not be able to distinguish between
two arbitrarily chosen messages m and m

′
except with negligible probability,

i.e., leakβA,m ≈c leakβ
A,m′

2.2 Robust Non-interactive Zero Knowledge

Let L be the language with relation R, denoted as LR = { m : ∃ w such that
R(m,w) = 1} and m ∈ M. Robust non-interactive zero knowledge (NIZK)
proof system for the language LR consists of a set of algorithms (CRSGen, Prove,
V rfy, S = (S0, S1), Xtr), defined as follows. CRSGen algorithm inputs a se-
curity parameter 1n and generates α ∈ {0, 1}n as common reference string
(CRS). Prove algorithm inputs α, a label λ, (m,w) ∈ R and produces the proof
π = Proveλ(α,m,w) as output. The deterministic verification algorithm V rfy
outputs true in case of successful statement verification, i.e., V rfyλ(α,m,Proveλ

(α,m,w)) = 1. S algorithm consists of two simulators, i.e., S0 and S1. The sim-
ulator S0 generates a CRS and the trapdoor key whereas S1 performs simulated
game with an adversary A.Xtr outputs the hidden value of the relationR(m,w).
It satisfies all the below properties as mentioned in [3]:

– Completeness. For every m ∈ LR and all w such that R(m,w) = 1, for
all α← CRSGen(1n), we require that Pr[V rfy(α,m,Prove(α,w,m)) = 1]
should be satisfied.

– Multi-Theorem zero knowledge. The honestly computed proof does not
reveal anything except the validity of the statement. Formally, we can de-
fine it as follows. For every PPT adversary A, the real experiment and the
simulated experiment are indistinguishable, i.e., Real(n) ≈ Simulated(n).

Real(n) and Simulated(n) are described below:

Real(n) =

{
α← CRSGen(1n);L ← AProve(α,.,.)(α)

output : L

}

6 Anit Kumar Ghosal and Dipanwita Roychowdhury

Simulated(n) =

{
(α, pk)← S0(1

n);L ← AS1(α,.,pk)(α)
output : L

}
– Extractability. Extractability property describes that for every PPT ad-

versary A, there exists a PPT algorithm Xtr, a negligible function ϵ and
a security parameter n such that Pr[GXtr = 1] ≤ ϵ(n), where GXtr is de-
scribed below:

GXtr =

(α, pk, sk)← S0(1

n)
(m,π)← AS1(α,.,pk)(α);w ← Xtr(α, (m,π), sk)
(m,π) /∈ Q ∧R(m,w) ̸= 1 ∧ V rfy(α,m, π) = 1

,

The query set Q stores (m,π) pairs that an adversary A asks to S1.

Our assumption is that if any statement is modified, proof of verification
should be unsuccessful as illustrated in [10,14]. Also, the proof system supports
public label λ and this label is appended to the statementm during calculation of
all the above properties, i.e., Proveλ(., ., .), V rfyλ(., ., .), Xtrλ(., ., .), Sλ

1 (., ., .)
etc.

2.3 Authenticated Encryption

An authenticated encryption (AE) scheme1consists of following algorithms (k =
{kenc||kmac}, Encypt,Decrypt) such that

- Encrypt : Encryption algorithm takes a key kenc ∈ K, message m ∈M and
produces a ciphertext c ∈ C. We write it as c← Encrypt(kenc,m). Then, it
produces tag← tag(kmac, c). Finally, it outputs (c||tag).

- Decrypt : Decryption algorithm checks first the tag. If it matches, the plain-
text is retrieved as m← Decrypt(kenc, c) or ⊥ if decryption fails.

Moreover, the correctness property Decrypt(k,Encrypt(k,m)) = m, for all
k ∈ K, m ∈M and c ∈ C should be satisfied.

2.4 Non-interactive Commitment Scheme

ANon-interactive Commitment Scheme consists of two algorithms, i.e., CRSGen
and Commit. CRSGen takes input security parameter 1n and generates α ∈
{0, 1}n as a commitment key. Commit algorithm takes the commitment key α,
message m ∈ {0, 1}n, randomness r ∈ {0, 1}n and generates γ as output. It
satisfies the following properties:

– Computationally binding. The commitment scheme is said to satisfy sta-
tistically binding property if there does not exist messages m0,m1 ∈ {0, 1}n
such that m0 ̸= m1 and pair (m0, r0), (m

1, r1) produces Commit(α,m0, r0)
= Commit(α,m1, r1).

1 We refer only Encrypt then MAC scheme .

https://orcid.org/0000-0002-9328-3673
https://orcid.org/0000-0003-1417-0425

Title Suppressed Due to Excessive Length 7

– Statistically hiding. A Non-interactive Commitment Scheme is said to
satisfy computationally hiding property if for messages m0,m1 ∈ {0, 1}n,
the equation Commit(α,m0) ≈

s
Commit(α,m1) should be satisfied.

3 Continuously Non-malleable Codes

Leakage Oracle. The purpose of stateful leakage oracle Ol(.) is to calculate
the total leakage through arbitrary leakage function τ(). The complete leakage
experiment is defined in Algorithm 1. Initially, the value of counter ctr is ini-
tialized to 0. When a new string is passed through the oracle, leakage value
is calculated and the result is added with the ctr, until ctr ≤ l. Otherwise, it
returns ⊥.

Algorithm 1 Leakage Oracle Ol(s, .)

1: Set ctr = 0
2: Apply leakage function τ() on s and calculate leakage
3: Update ctr = ctr + |τ(s)|
4: if ctr ≤ l then
5: return ctr
6: else
7: return ⊥
8: end if

Tampering Oracle. The tampering Oracle OT
cnmc(., .) in 2-split-state model

is a stateful oracle that takes input two codewords M0,M1 and tampering func-
tion f = (f0, f1) ∈ F with initial state = alive. The tampering oracle experiment
is defined in Algorithm 2.

Coding Scheme. Let CNMC = (CRSGen,Encodek,Decodek) be a split-
state coding scheme in the CRS model.

– CRSGen algorithm takes security parameter 1n as input and generates
output α ∈ {0, 1}n as CRS.

– Encodek algorithm takes key k ∈ K, CRS α, message m ∈M and produces
the codeword (M0,M1).

– Decodek algorithm takes the codeword (M0,M1), key k ∈ K, CRS α and
generates message m or special symbol ⊥.

8 Anit Kumar Ghosal and Dipanwita Roychowdhury

Algorithm 2 Tampering Oracle OT
cnmc((M0,M1), (f0, f1))

1: if state = self -destruct then
2: return ⊥
3: end if
4: (M

′
0,M

′
1) = (f0(M0), f1(M1))

5: if (M0,M1) = (M
′
0,M

′
1) then

6: return same∗

7: end if
8: if Decodek(α, (M

′
0,M

′
1)) = ⊥ then

9: set state = self -destruct and return ⊥
10: else
11: return Decodek(α, (M

′
0,M

′
1))

12: end if

Continuous Non-malleability. The coding scheme CNMC is said to be l
leakage resilient, q continuously non-malleable code in split-state model if for all
messages m,m

′ ∈ {0, 1}n and for all probabilistic polynomial-time adversaries

A, TamperA,m
cnmc and TamperA,m

′

cnmc are computationally indistinguishable, i.e.,

AdvStrong
TamperAcnmc

(A) = [Pr[A(TamperA,m
cnmc) = 1] - Pr[A (TamperA,m

′

cnmc) = 1]] ≤
ϵ(n), where m, m

′ ∈ {0, 1}n and

TamperA,m
cnmc =

α← CRSGen(1n); i = 0; (M0,M1)← Encodek(α,m)
while i ≤ q

Li
A ← AOl(Mi

0),O
l(Mi

1),O
T
cnmc(M

i
0,M

i
1)

i = i+ 1
end while

output : Li
A.

,

The complete view of an adversary is stored into Li
A with two parameters µ

and δ, where i denotes the number of tampering queries (i ≤ q). The array µ
captures the value of all leakage queries (µ ≤ 2l) whereas δ array stores the value
of tampering queries (δ ≤ q) from OT

cnmc(). In case, the value i = 1 denotes that
the codeword can handle one-time tampering attack only. Further, the value i
= 0 denotes that the codeword is capable of handling leakage attacks [6].

Message Uniqueness. Let CNMC = (CRSGen,Encodek,Decodek) be a
2-split-state (l, q) continuously non-malleable code. The codeword is said to sat-
isfy message uniqueness property if there does not exist a valid pair (M0,M1),
(M0,M

′

1) such that ⊥ ̸= Decodek(α, (M0,M1)) ̸= Decodek(α, (M0,M
′

1)) ̸= ⊥,
where M1 ̸= M

′

1 and the experiment produces two valid messages m, m
′
. A

continuously non-malleable code should not violate uniqueness property as men-
tioned in [14].

https://orcid.org/0000-0002-9328-3673
https://orcid.org/0000-0003-1417-0425

Title Suppressed Due to Excessive Length 9

4 Code Construction

To construct continuously non-malleable codes, we use authenticated encryption
along with robust NIZK and a commitment scheme. The complete codeword
construction is described as follows:

1. CRSGen(1n). The CRS generation algorithm inputs 1n as a security param-
eter and produces the common reference string α as output.

2. Encodek(α,m). To encode the message m ∈ M, a uniformly random key
k ∈ K (k = {kenc||kmac}) is selected with CRS α. The algorithm first com-
putes (p0, p1) ← Enclrs(m||r) with some randomness r ← {0, 1}n. Further,
p0, p1 (i.e., c0 ← Encrypt(kenc, p0), c1 ← Encrypt(kenc, p1)) are encrypted
by encryption algorithm of the authenticated encryption. The tagp0

and
tagp1

are generated as tagp0
← tag(kmac, c0), tagp1

← tag(kmac, c1). Com-
mitment scheme is used to check uniqueness of the key k = {kenc, kmac}, i.e.,
com = commit(α, k; r). The next step is to calculate the proof of statement,
i.e., π0 = Provec1(α, k, (com, c0)), π1 = Provec0(α, k, c1). Finally, the code-
word (M0,M1) = ((k, p0, (tagp1

, com, c1), π0, π1), (k, p1, (tagp0
, c0),π0, π1)) is

stored intoML andMR respectively.

3. Decodek(α, (M0,M1)). To decode the codeword, π0, π1 are parsed and the
following steps are performed:

(a) Left & Right verification. If the verification algorithm V rfyc1(α, (com, c0)
, π0) and V rfyc0(α, c1, π1) return false in (M0,M1), output ⊥. Other-
wise, go to the next step.

(b) Uniqueness check. If com = commit(α, k; r), go to the next step. Other-
wise, return ⊥.

(c) Cross check & Decode. If tagp0
and tagp1

are not matched, return ⊥.
Otherwise, compare p0 ̸= Decrypt(kenc, c0), p1 ̸= Decrypt(kenc, c1).
Whenever the following proofs π0, π1 are not matched, return ⊥. Fi-
nally, the equality of p0, p1 are checked in M0 and M1, if it is satisfied,
call decode Declrs(p0, p1).

Lemma 1. CNMC = (CRSGen,Encodek,Decodek) satisfies message unique-
ness property if implemented with a commitment scheme.

Proof. The binding property of the commitment scheme implies message
uniqueness. Let us consider an adversary A has the capability to generate a pair
(M0,M1), (M0,M

′

1) such that both are valid and M1 ̸= M
′

1. Therefore, the ad-
versary is able to generate the following equation: ⊥ ≠ Decodek(α, (M0,M1)) ̸=
Decodek(α, (M0,M

′

1)) ̸= ⊥. It is only possible if an adversary generates a valid
key pair (k, k

′
) in such a way that satisfies commit(α, k, r) = com = commit

(α, k
′
, r), where k ̸= k

′
. Unfortunately, such equation violates the binding prop-

erty of the commitment scheme. Hence, commit(α, k, r) = com ̸= commit
(α, k

′
, r). Therefore, we can conclude that integrity of the key is violated and

10 Anit Kumar Ghosal and Dipanwita Roychowdhury

decoding should return ⊥ as per property (a) of the underlying authenticated
encryption.

Correctness and Security. To prove the security of the proposed construc-
tion, we need to use reduction. Informally, we can say that when the tampering
experiment triggers self -destruct, the security of continuously non-malleable
code reduces to the security of underlying leakage resilient storage. Alternatively,
we can say that if the underlying leakage resilient storage is secure, the proposed
continuously non-malleable code is secure. Our future work is to analyse the
proof in detail.

Application to Tamper-Resilient Cryptography. In cryptography, the
main assumption is that an adversary only has black-box view of the cryptosys-
tem. Further, it can only observe the input-output behavior to the system. Un-
fortunately, such model does not provide security when an adversary has phys-
ical access to the cryptosystem. It can attack the hardware or software module
where the actual implementation of the algorithm is present. An adversary can
have some arbitrary leakage function to get partial information about the cryp-
tosystem (i.e., using timing, radiation, heating, power consumption etc. of the
device). The other way, it can physically tamper the device by heating up to
introduce some random errors in the memory or cut the wires. The goal of an
adversary is to learn the secret key. Our proposed codeword can be used to pro-
tect sensitive information against both leakage and tampering attacks against
polynomial number of times until self -destruct occurs. The codeword takes
any secret key < K > and converts into < Kencoded >, i.e., key encoded with
continuously non-malleable codes secured against leakage and tampering attacks.

Limitations and Future Directions. Our codeword provides security
against non-persistent tampering attacks only until self -destruct state is trig-
gered. The proposed construction is capable of handling polynomial number
of tampering attacks in computational domain. The future work is to design
continuously non-malleable codes for persistent tampering attacks with self -
destruct feature from authenticated encryptions (i.e., Encrypt then MAC and
others generic AE scheme) in common reference string model or plain model.
Also it is not known whether continuously non-malleable codes can be designed
from authenticated encryption for persistent tampering attacks in information-
theoretic domain for computationally unbounded adversary.

5 Conclusion

In this work, we show a construction of continuously non-malleable code from au-
thenticated encryption (i.e., Encrypt then MAC) in common reference string
model. The codeword is capable of handing non-persistent tampering attacks
with self -destruct feature only. To the best of our knowledge, this work is the
first one that considers authenticated encryption to design continuously non-
malleable codes and handles polynomial number of tampering attacks.

https://orcid.org/0000-0002-9328-3673
https://orcid.org/0000-0003-1417-0425

Title Suppressed Due to Excessive Length 11

References

1. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
for all languages in NP have zero-knowledge proof systems. J. ACM 38(3), 691–729
(1991)

2. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of eliminating errors in
cryptographic computations. J. Cryptology 14(2), 101–119 (2001)

3. De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Robust non-
interactive zero knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp.
566–598. Springer, Heidelberg (2001)

4. Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: Rka-prps,
rka-prfs, and applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656,
pp. 491–506. Springer, Heidelberg (2003)

5. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: Yao, A.C.-C.
(ed.) ICS 2010, Beijing, China, January 5-7, pp. 434–452. Tsinghua University Press
(2010)

6. Dav̀ı, F., Dziembowski, S., Venturi, D.: Leakage-resilient storage. In: Garay, J.A.,
De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 121–137. Springer, Heidelberg
(2010)

7. Dziembowski, S., Faust, S.: Leakage-resilient cryptography from the inner-product
extractor. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp.
702–721. Springer, Heidelberg (2011)

8. Bellare, M., Cash, D., Miller, R.: Cryptography secure against related-key attacks
and tampering. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073,
pp. 486–503. Springer, Heidelberg (2011)

9. Kalai, Y.T., Kanukurthi, B., Sahai, A.: Cryptography with Tamperable and Leaky
Memory. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 373–390.
Springer, Heidelberg (2011)

10. Liu, F.-H., Lysyanskaya, A.: Tamper and leakage resilience in the split-state
model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417,
pp. 517–532. Springer, Heidelberg (2012)

11. Bellare, M., Paterson, K.G., Thomson, S.: RKA security beyond the linear barrier:
IBE, encryption and signatures. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012.
LNCS, vol. 7658, pp. 331–348. Springer, Heidelberg (2012)

12. Dziembowski, S., Kazana, T., Obremski, M.: Non-malleable codes from two-source
extractors. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp.
239–257. Springer, Heidelberg (2013)

13. Damg̊ard, I., Faust, S., Mukherjee, P., Venturi, D.: Bounded tamper resilience: How
to go beyond the algebraic barrier. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013,
Part II. LNCS, vol. 8270, pp. 140–160. Springer, Heidelberg (2013)

14. Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: Continuous non-malleable
codes. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 465–488. Springer,
Heidelberg (2014)

15. Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive combina-
torics. In: STOC, pp. 774–783 (2014)

16. Faust, S., Mukherjee, P., Venturi, D., Wichs, D.: Efficient non-malleable codes
and key-derivation for poly-size tampering circuits. In: EUROCRYPT. pp. 111–128
(2014)

17. Jafargholi, Z., Wichs, D.: Tamper detection and continuous non-malleable codes.
In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 451–480. Springer,
Heidelberg (2015)

12 Anit Kumar Ghosal and Dipanwita Roychowdhury

18. Aggarwal, D., Dodis, Y., Kazana, T., Obremski, M.: Non-malleable reductions and
applications. In: Proceedings of the Forty-Seventh Annual ACM on Symposium on
Theory of Computing, pp. 459–468. ACM (2015)

19. Kiayias, A., Liu, F.H., Tselekounis, Y.: Practical non-malleable codes from l-more
extractable hash functions. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers,
A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 1317–1328. ACM Press, October 2016

20. Aggarwal, D., Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.:
Optimal computational split-state non-malleable codes. In: Kushilevitz, E., Malkin,
T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 393–417. Springer, Heidelberg (2016)

21. Aggarwal, D., Kazana, T., Obremski, M.: Inception makes non-malleable codes
stronger. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10678, pp. 319–343.
Springer, Cham (2017)

22. Faonio, A., Nielsen, J.B., Simkin, M., Venturi, D.: Continuously non-malleable
codes with split-state refresh. In: Preneel, B., Vercauteren, F. (eds.) ACNS 2018.
LNCS, vol. 10892, pp. 1–19. Springer, Cham (2018)

23. Fehr, S., Karpman, P., Mennink, B.: Short Non-Malleable Codes from Related-
Key Secure Block Ciphers. IACR Transactions on Symmetric Cryptology, 336-352,
(2018)

24. Ostrovsky, R., Persiano, G., Venturi, D., Visconti, I.: Continuously non-malleable
codes in the split-state model from minimal assumptions. In: Shacham, H.,
Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 608–639.
Springer, Cham (2018)

25. Aggarwal, D., Döttling, N., Nielsen, J.B., Obremski, M., Purwanto, E.: Continu-
ous non-malleable codes in the 8-split-state model. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019, Part I. LNCS, vol. 11476, pp. 531–561. Springer, Cham (2019)

26. D. Dachman-Soled, M. Kulkarni, Upper and lower bounds for continuous non-
malleable codes, in PKC (2019), pp. 519–548

27. B. Chen, Y. Chen, K. Hostáková, P. Mukherjee, Continuous space-bounded non-
malleable codes from stronger proofs-of-space, in CRYPTO (2019), pp. 467–495

28. Ghosal, A.K., Ghosh, S., Roychowdhury, D.: Practical Non-malleable Codes from
Symmetric-Key Primitives in 2-Split-State Model. In: Ge, C., Guo, F. (eds) Provable
and Practical Security, (2022).

https://orcid.org/0000-0002-9328-3673
https://orcid.org/0000-0003-1417-0425

	Continuously Non-Malleable Codes from Authenticated Encryptions in 2-Split-State Model

