
Generalized Inverse Binary Matrix Construction
with PKC Application

Farshid, Haidary Makoui1 and Thomas Aaron, Gulliver1

1Department of Electrical and Computer Engineering, University of Victoria, Victoria, B.C.,
Canada. email: makoui@uvic.ca and agullive@ece.uvic.ca

Abstract

The generalized inverses of systematic non-square binary matrices have applica-
tions in mathematics, channel coding and decoding, navigation signals, machine learn-
ing, data storage, and cryptography, such as the McEliece and Niederreiter public-key
cryptosystems. A systematic non-square (n−k)×n matrix H, n > k, has 2k×(n−k) dif-
ferent generalized inverse matrices. This paper presents an algorithm for generating
these matrices and compares it with two well-known methods, i.e. Gauss-Jordan elimi-
nation and Moore-Penrose. A random generalized inverse matrix construction method
is given, which has a lower execution time than the Gauss-Jordan elimination and
Moore-Penrose approaches. This paper also expands the novel idea to non-systematic
non-square binary matrices and provides an application in public-key cryptosystems.

Keywords: Code-Based Cryptography, Generalized Inverse Binary Matrix, Error-
Correcting Applications, Blockchains, Post Quantum, Public Key Cryptosystem (PKC)

1 Introduction

The generalized inverse of a systematic binary matrix is used for decoding in all applica-
tions of error-correcting codes including digital communication [1], navigation signals [2],
data storage systems [3] and coding theory [4] in cryptography. Generalized inverse matri-
ces can be obtained using Gauss-Jordan elimination [5] and Moore-Penrose pseudoinverse
(MPP) techniques [6] [7].
A matrix is invertible if it has full rank. A non-square matrix A with m rows and n columns

1

where n > m is full rank if it is a full row rank matrix, where the rows are linearly indepen-
dent.

Gauss-Jordan elimination is used to solve linear systems Ax = b by employing row reduc-
tion operations to transform augmented matrices [A|b] to row-echelon form (REF). This
technique also provides a reduced row-echelon form (RREF) where the leading coefficient
in each row is the only non-zero element entry in its column. Gauss-Jordan elimination
uses an augmented matrix to construct the nullspace of the matrix A [8] and its associated
vectors that lead to the generalized inverse of full rank matrices.

The Moore-Penrose technique provides a single pseudoinverse matrix, where the multipli-
cation of the matrix and its pseudoinverse approximately equal the identity matrix. The
MPP can provide a pseudoinverse for any matrix. This technique is a useful tool for appli-
cation with data analysis, optimization, neural network and machine learning applications
[9].

Non-square binary matrices are used in error-correction coding, code-based cryptography
and decoding algorithms [10] [11]. This present paper introduces an efficient algorithm
for calculating all the generalized inverses of a binary matrix. A simplified algorithm is
also given to construct a random generalized inverse matrix with lower processing time in
comparison with Moore-Penrose and Gauss-Jordan methods.

The proposed algorithm of constructing a general inverse for systematic matrices expand
in section 3 to non-systematic non-square binary matrices as well. This paper also provides
PKC application for generalized inverse matrix construction in section 4. Three-tuple pub-
lic key construction with specified key relations for encryption, decryption, signing, verifi-
cation, and integrity check algorithms.

1.1 Binary Linear Block Codes

In modern communication systems, redundant bits are added to a message sequence to
detect and correct errors introduced by a noisy channel. The encoder assigns a binary
codeword ccc = (c1,c2, ...,cn) to a message mmm = (m1,m2, ...,mk). For a k-tuple message mmm,
there are 2k distinct messages and thus codewords. The set of all 2k codewords is referred
to a C(n,k) block code. The length of a C(n,k) block code is shown by n and k denoting
dimension where k < n.

The channel encoder adds redundancy in the binary information sequence to the transmitted

2

codewords, so each codeword has n− k redundant bits more than the message associated
with it. The message can scramble, permute and change the bits in the corresponding
codeword [12]. These redundant bits are used by the channel decoder at the receiver’s end
to detect and correct errors having occurred over a noisy channel.

A C(n,k) code is linear when its codewords form a k-dimensional vector subspace of the
n-tuple vector space. Therefore, there are k linearly independent codewords ggg1,ggg2, ...,gggk

that are settled as the rows of the generator matrix. The systematic form of generator matrix
G in linear code is given by

Gk×n = (Ik|Pk×(n−k)), (1)

where Ik is the k× k identity matrix and Pk×(n−k) is called the parity matrix. This can be
written as

G =

| p1,1 p1,2 p1,3 · · · p1,(n−k)

| p2,1 p2,2 p2,3 · · · p2,(n−k)

Ik | p3,1 p3,2 p3,3 · · · p3,(n−k)

| ...
...

...
...

| pk,1 pk,2 pk,3 · · · pk,(n−k)

 .

A parity check matrix H is an (n− k)× n matrix, such that GHT = 000 where T denotes
transpose, so H is a basis of the dual space of Cn,k. Thus, H generates the dual code
C⊥(n,k) with 2n−k codewords. This matrix can be employed to determine if a particular
vector is a codeword. The H matrix can also be used for decoding algorithms [11]. A
systematic parity check matrix has the form

H(n−k)×n = (PT
(n−k)×k|In−k). (2)

which can be expressed as

H =

p1,1 p2,1 p3,1 · · · pk,1 |
p1,2 p2,2 p3,2 · · · pk,2 |
p1,3 p2,3 p3,3 · · · pk,3 | In−k

...
...

...
... |

p1,(n−k) p2,(n−k) p3,(n−k) · · · pk,(n−k) |

 ,

3

denote the generalized inverse of this matrix as

H−1
n×(n−k) =

a1,1 a1,2 a1,3 · · · a1,(n−k)

a2,1 a2,2 a2,3 · · · a2,(n−k)

a3,1 a3,2 a3,3 · · · a3,(n−k)
...

...
...

...
an,1 an,2 an,3 · · · an,(n−k)

 , (3)

so that H(n−k)×nH−1
n×(n−k) = In−k, which can be expressed as

p1,1 p2,1 p3,1 · · · pk,1 |
p1,2 p2,2 p3,2 · · · pk,2 |
p1,3 p2,3 p3,3 · · · pk,3 | In−k

...
...

...
... |

p1,(n−k) p2,(n−k) p3,(n−k) · · · pk,(n−k) |

×

a1,1 a1,2 a1,3 · · · a1,(n−k)

a2,1 a2,2 a2,3 · · · a2,(n−k)

a3,1 a3,2 a3,3 · · · a3,(n−k)
...

...
...

...
an,1 an,2 an,3 · · · an,(n−k)

= In−k.

(4)

2 Generalized Inverse Matrix Construction

The matrix H−1 has n− k columns, each of which can have 2k different values, so the
number of matrices is 2k×(n−k)[13]. The i-th column of H−1 belongs to a column set Zi

which contains 2k vectors of length n

Zi =

z1,1 z1,2 z1,3 · · · z1,2k

z2,1 z2,2 z2,3 · · · z2,2k

z3,1 z3,2 z3,3 · · · z3,2k

...
...

...
...

zk,1 zk,2 zk,3 · · · zk,2k

−−− −−− −−− −− −−−
z(k+1),1 z(k+1),2 z(k+1),3 · · · z(k+1),2k

z(k+2),1 z(k+2),2 z(k+2),3 · · · z(k+2),2k

z(k+3),1 z(k+3),2 z(k+3),3 · · · z(k+3),2k

...
...

...
...

zn,1 zn,2 zn,3 · · · zn,2k

. (5)

4

This set can be divided into two subsets, Z1
i and Z2

i , where Z1
i contains rows 1 to k and Z2

i
contains rows k+1 to n, so that

Z1
i =

z1,1 z1,2 z1,3 · · · z1,2k

z2,1 z2,2 z2,3 · · · z2,2k

z3,1 z3,2 z3,3 · · · z3,2k

...
...

...
...

zk,1 zk,2 zk,3 · · · zk,2k

, (6)

Z2
i =

z(k+1),1 z(k+1),2 z(k+1),3 · · · z(k+1),2k

z(k+2),1 z(k+2),2 z(k+2),3 · · · z(k+2),2k

z(k+3),1 z(k+3),2 z(k+3),3 · · · z(k+3),2k

...
...

...
...

zn,1 zn,2 zn,3 · · · zn,2k

, (7)

Z1
i contains all 2k possible binary vectors from all zeros to all ones. For example, if k = 3

then Z1
i contains the eight binary vectors of length 3

Z1
i =

0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1

 .

For Z2
i , the value of z(k+b),d , 1≤ b≤ n− k,1≤ d ≤ 2k, is determined as follows. Multipli-

cation of H by a column of Z1 must satisfy

p1,1 p2,1 · · · pk,1 |
p1,2 p2,2 · · · pk,2 | In−k

...
...

... |
p1,(n−k) p2,(n−k) · · · pk,(n−k) |

×

z1,d

z2,d
...

zk,d

−−−
z(k+1),d

z(k+2),d
...

zn,d

=

1
0
...
0

 , (8)

Thus, for b = 1 the result is 1, and otherwise, it is 0.

5

so, if b = 1

z(k+1),d = 1+ p1,1z1,d + p2,1z2,d + · · ·+ pk,1zk,d,1≤ d ≤ 2k,

and if b ̸= 1
z(k+b),d = p1,bz1,d + p2,bz2,d + · · ·+ pk,bzk,d,1≤ d ≤ 2k.

The columns of Z2 satisfy

p1,1 p2,1 · · · pk,1 |
p1,2 p2,2 · · · pk,2 | In−k

...
... |

p1,(n−k) p2,(n−k) · · · pk,(n−k) |

×

z1,d

z2,d
...

zk,d

−−−
z(k+1),d

z(k+2),d
...

zn,d

=

0
1
...
0

 , (9)

so for b = 2

z(k+2),d = 1+ p1,2z1,d + p2,2z2,d + · · ·+ pk,2zk,d,1≤ d ≤ 2k,

and for b ̸= 2

z(k+b),d = p1,bz1,d + p2,bz2,d + · · ·+ pk,bzk,d,1≤ d ≤ 2k.

Similarly, the columns of Zn−k must satisfy

p1,1 p2,1 · · · pk,1 |
p1,2 p2,2 · · · pk,2 | In−k

...
... |

p1,(n−k) p2,(n−k) · · · pk,(n−k) |

×

z1,d

z2,d
...

zk,d

−−−
z(k+1),d

z(k+2),d
...

zn,d

=

0
0
...
1

 , (10)

6

so for b = n− k the result is 1 and for b ̸= n− k the result is 0. Thus if b = n− k

z(k+(n−k)),d = zn,d = 1+ p1,(n−k)z1,d + p2,(n−k)z2,d + · · ·+ pk,(n−k)zk,d),1≤ d ≤ 2k,

and if b ̸= n− k

z(k+b),d = p1,bz1,d + p2,bz2,d + · · ·+ pk,bzk,d,1≤ d ≤ 2k.

2.1 Example

Let n = 6 and k = 3 with

G = (Ik|Pk×(n−k)) =

1 0 0 0 1 1
0 1 0 1 1 0
0 0 1 1 0 1

 ,

and

H = (PT |In−k) =

0 1 1 1 0 0
1 1 0 0 1 0
1 0 1 0 0 1

 ,

Thus, H−1 has n− k = 3 columns and there are three column sets Z1,Z2 and Z3 available
(1≤ i≤ n−k) with a total of 2k×(n−k) = 23×3 = 512 possible matrices. The sets Z1

i and Z2
i

are defined as follows. Z1
i is common for all i and is given by

Z1
i =

0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1

 ,

and Z2
i can be expressed as

Z2 =

z(k+1),1 z(k+1),2 z(k+1),3 z(k+1),4 z(k+1),5 z(k+1),6 z(k+1),7 z(k+1),8

z(k+2),1 z(k+2),2 z(k+2),3 z(k+2),4 z(k+2),5 z(k+2),6 z(k+2),7 z(k+2),8

z(k+3),1 z(k+3),2 z(k+3),3 z(k+3),4 z(k+3),5 z(k+3),6 z(k+3),7 z(k+3),8

 .

7

Combining Z1
i and Z2

i gives

Zi =

0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1
−− −− −− −− −− −− −− −−
z4,1 z4,2 z4,3 z4,4 z4,5 z4,6 z4,7 z4,8

z5,1 z5,2 z5,3 z5,4 z5,5 z5,6 z5,7 z5,8

z6,1 z6,2 z6,3 z6,4 z6,5 z6,6 z6,7 z6,8

.

For i = 1, we have

0 1 1 1 0 0
1 1 0 0 1 0
1 0 1 0 0 1

×

0
0
0
−

z4,1

z5,1

z6,1

=

1
0
0

 ,

so
z41 = 1+(0)(0)+(1)(0)+(1)(0) = 1,
z51 = (1)(0)+(1)(0)+(0)(0) = 0,
z61 = (1)(0)+(0)(0)+(1)(0) = 0.

The elements of Z2
1 are

z4,d = 1+ p1,1z1,d + p2,1z2,d + p3,1z3,d,

z5,d = p1,2z1,d + p2,2z2,d + p3,2z3,d,

z6,d = p1,3z1,d + p2,3z2,d + p3,3z3,d,

so

Z1 =

0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1
−− −− −− −− −− −− −− −−

1 1 0 0 0 0 1 1
0 1 1 0 0 1 1 0
0 1 0 1 1 0 1 0

.

8

The elements of Z2
2 are

z4,d = p1,1z1,d + p2,1z2,d + p3,1z3,d,

z5,d = 1+ p1,2z1,d + p2,2z2,d + p3,2z3,d,

z6,d = p1,3z1,d + p2,3z2,d + p3,3z3,d,

so

Z2 =

0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1
−− −− −− −− −− −− −− −−

0 0 1 1 1 1 0 0
1 0 0 1 1 0 0 1
0 1 0 1 1 0 1 0

.

The elements of Z2
3 are given by

z4,d = p1,1z1,d + p2,1z2,d + p3,1z3,d,

z5,d = p1,2z1,d + p2,2z2,d + p3,2z3,d,

z6,d = 1+ p1,3z1,d + p2,3z2,d + p3,3z3,d,

so

Z3 =

0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1
−− −− −− −− −− −− −− −−

0 0 1 1 1 1 0 0
0 1 1 0 0 1 1 0
1 0 1 0 0 1 0 1

.

Selecting columns from each column set Z1,Z2,Z3 in order gives 2k×(n−k) = 29 = 512 H−1

matrices which satisfy HH−1 = In−k.

2.2 Random Generalized inverse Matrix Construction

An generalized inverse matrix H−1 can be divided into two parts, A1 and A2, where A1

consists of rows 1 to k and A2 consists of rows k+1 to n

9

H−1
n×(n−k) =

a1,1 a1,2 a1,3 · · · a1,(n−k)

a2,1 a2,2 a2,3 · · · a2,(n−k)

a3,1 a3,2 a3,3 · · · a3,(n−k)
...

...
...

...
ak,1 ak,2 ak,3 · · · ak,(n−k)

−−− −−− −−− −− −−−
a(k+1),1 a(k+1),2 a(k+1),3 · · · a(k+1),(n−k)

a(k+2),1 a(k+2),2 a(k+2),3 · · · a(k+2),(n−k)

a(k+3),1 a(k+3),2 a(k+3),3 · · · a(k+3),(n−k)
...

...
...

...
an,1 an,2 an,3 · · · an,(n−k)

=

A1

−
A2

 . (11)

A random generalized inverse matrix H−1 can be constructed by selecting a random A1

and constructing the corresponding matrix A2. For example, if n = 20 and k = 12, then A1

contains n− k = 8 random binary column vectors of length 12 such as

A1 =

1 1 0 1 0 1 0 1
0 0 1 1 0 1 0 0
1 0 0 0 1 1 0 0
0 0 1 1 1 1 0 0
1 0 1 0 0 0 1 1
1 1 1 1 1 1 0 0
0 1 0 0 0 1 1 1
0 1 1 1 1 1 0 0
0 0 1 0 1 1 0 0
1 1 0 1 0 0 0 1
0 0 1 1 1 1 0 0
0 1 0 1 1 0 1 1

.

Hence, the elements of A2 are

A2 =

a(k+1),1 a(k+1),2 a(k+1),3 · · · a(k+1),(n−k)

a(k+2),1 a(k+2),2 a(k+2),3 · · · a(k+2),(n−k)

a(k+3),1 a(k+3),2 a(k+3),3 · · · a(k+3),(n−k)
...

...
...

...
an,1 an,2 an,3 · · · an,(n−k)

 , (12)

10

where

a(k+b),d =
k

∑
i=1

pibaid,(b ̸= d),

and

a(k+b),d = 1+
k

∑
i=1

pibaid,(b = d).

In general, this can be expressed as

a(k+b),d = 2|b−d| mod 2+
k

∑
i=1

pibaid. (13)

For example, a(k+1),1 in A2 is given by

a(k+1),1 = 1+ p11a11 + p21a21 + · · ·+ pk1ak1.

The result in matrix form to construct A2 is shown as follows.

Let B1 = PT
(n−k)×k and B2 = In−k, so

HH−1 =
(

B1|B2

)
×

A1

−
A2

= In−k,

= B1A1 +B2A2 = In−k,

A2 = B1A1 + In−k, (14)

so A2 = B1A1 + In−k and then

HH−1 =
(

B1|B2

)
×

A1

−
A2

=
(

B1|B2

)
×

 A1

B1A1 + In−k

 ,

= B1A1 +B2(B1A1 + In−k) = B1A1 +B1A1 + In−k = In−k.

The next section provides the analysis of the proposed algorithm for constructing a random
generalized inverse matrix.

11

2.3 Construction Comparison and Analysis

In this section, the processing time of Moore-Penrose pseudoinverses and the proposed
method for constructing random generalized inverse matrices are compared.
The computation time is given in Table 1 for several parameter values. As an example,
the processing time required to construct the random generalized inverse of H matrix with
524× 1568 would be 594 millisecond using the proposed method, compared with 2172
milliseconds using the Moore-Penrose pseudoinverse.

Matrix size Moore-Penrose (ms) Proposed (ms)
k = 213, n = 500 94 16
k = 524, n = 1568 2172 594
k = 768, n = 2048 5109 2368
k = 1024, n = 2896 14735 5211

Table 1: Processing time

An algorithm’s computational efficiency depends on the number of arithmetic operations,
algorithm complexity and the amount of resources, including time and memory, needed to
run the algorithm.
Solving a system of n equations with n variables using Gauss-Jordan row elimination re-
quires approximately (2n3 +3n2−5n)/3 arithmetic operations to achieve the row echelon
form (REF) [14], and (n3 + 3/2n2− 5/2n) arithmetic operations to form RREF which is
about fifty percent more than the number of REF arithmetic operations. Hence, the number
of arithmetic operations that Gauss-Jordan elimination required to form RREF for a parity
check matrix H with (n− k)×n index would be (n− k)3 +3/2(n− k)2−5/2(n− k).

After performing RREF, Gauss-Jordan needs to solve a system of linear equations using
the null-space approach to find the set of associated vectors. Therefore, not all the aug-
mented matrices can form RREF, known as inconsistent matrices. When RREF is formed,
additional n(n−k−1) arithmetic operations need to construct a generalized inverse matrix.

There are many different choices of row combinations to perform Gauss-Jordan row elim-
ination on large-size matrices, and finding an optimum choice of linear combinations is
NP-hard [15]. In fact, there are numerous different execution sequences and therefore time
complexity is exponential [15].
Moore-Penrose requires (n− k)2(2n− 1) arithmetic operations to construct a full-rank
HHT and approximately (n− k)(2n2− 2nk− n) arithmetic operations, exclude determi-

12

nant, to construct HT [HHT]−1 of a parity check matrix H. The algorithm is less complex
than Gauss-Jordan, and in fact, it is faster than the Guass-Jordan elimination algorithm.

The number of arithmetic operations the proposed method requires to construct a random
generalized inverse would equal the number of operations to build A2 = B1A1+ In−k, which
would be (2k−1)(n−k)2+(n−k). Therefore, the multiplication of B1 with index (n−k)×
k and A1 with index k× (n− k) required (2k−1)(n− k)2 number of arithmetic operations.

The arithmetic computation is given in Table 2 for Gauss-Jordan elimination, Moore-
Penrose, and the proposed algorithm for constructing a random non-square binary gen-
eralized inverse matrix. The introduced method provides optimum choices to construct a
random generalized inverse matrix with less processing time and complexity than Moore-
Penrose and Gauss-Jordan elimination methods.

Gauss-Jordan
Elimination

Moore-Penrose Proposed

(n− k)3 +3/2(n−
k)2−5/2(n− k)+
n(n− k−1)

(n− k)2(4n−1)−
n(n− k)

(2k−1)(n− k)2 +(n−
k)

Table 2: Computational Cost

2.4 Key change interval comparison

Based on the security key management, it is recommended to increase the system security
by changing the keys in shorter time intervals. Every time that a new key is selected, the
generator matrix and its associated parity-check matrix will be replaced, the Gauss-Jordan
elimination method ought to transform the H matrix to RREF and find out the associated
vectors to construct a random generalized inverse matrix. For instance, finding the opti-
mum choice of linear combinations of an H matrix with 1280 rows (n = 2048,k = 768) to
form RREF is time-consuming and may affect the performance of the system applications.
The Moore-Penrose pseudoinverse also is slower than the proposed method. In fact, any
time matrix H changes, the proposed algorithm can construct a random generalized inverse
matrix with less complexity and lower processing time. This fact could make the proposed
algorithm a suitable candidate for any system that requires changing the key (including the
code-based public key with G and H matrices) periodically in a shorter time interval.

13

3 Random Inverse for Non-Systematic Matrices

The section expands the idea for non-systematic non-square binary matrices. lets assume
matrix B is a non-systematic binary matrix with m rows and n columns (m < n) such

Bm×n =
(

B1b1 B2b2 . . . Bxby

)
, (15)

where (B1)m×n1,(B2)m×n2, . . . ,(Bx)m×nx

with y column vectors (bi)m×1

and (n1)+(n2)+ . . .+(nx)+(y) = n.

As a full rank matrix, the matrix B should have minimum m independent linear combination
column vectors (bi)m×1,1 ≤ i ≤ y that can be anywhere within the matrix B in a group or
individual.

Lets assume matrix A is an inverse matrix of non-syestematic non-square binary matrix B
with n rows and m columns such

An×m =

A1

a1

A2

a2
...

Ax

ay

, (16)

where (A1)n1×m,(A2)n2×m, . . . ,(Ax)nx×m

with x times row matrix (ai)1×m

Hence the A is an inverse of the B matrix, then

BA =
(

B1b1 B2b2 . . . Bxby

)
×

A1

a1

A2

a2
...

Ax

ay

= Im×m,

14

(
B1A1 +b1a1 +B2A2 +b2a2+ . . . +BxAx +byay

)
= Im×m

x

∑
i=1

BiAi +
y

∑
i=1

biai = Im×m (17)

A random generalized inverse matrix A can be constructed by selecting a random
A1,A2, . . . ,Ax and constructing the corresponding row matrix a1,a2, . . . ,ay variables.

Lets call Aa as a coressponded varibale matrix such

(Aa)m×m =

a1

a2
...

ay

 ,(Bb)m×m =
(

b1 b2 . . . by

)

Therefore,
x

∑
i=1

BiAi +BbAa = Im×m

BbAa = Im×m +
x

∑
i=1

BiAi

Aa = (Bb)
−1(Im×m +

x

∑
i=1

BiAi) (18)

Hence all the columns of the (Bb) matrix are linearly independent. Therefore the determi-
nant of (Bb) matrix is equal to 1, and the (Bb) is an invertible matrix.

For example, B is a non-systematic-non-square binary matrix with index n = 9 and m = 5
such

B5×9 =

0 1 0 1 1 1 0 1 1
0 1 0 1 1 0 1 0 1
1 1 0 1 0 1 1 1 0
1 0 1 1 1 1 1 0 1
0 0 0 0 0 1 0 1 1

 .

where x = 1 and y = 5 (five colorful columns in two groups, green and yellow)

Therefore,

Aa = (Bb)
−1(I5 +B1A1)

15

so by selecting a random A1 and constructing (Bb)
−1

A1 =

0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
0 1 1 0 1

 ,B1 =

1 1 1 0
1 1 0 1
1 0 1 1
1 1 1 1
0 0 1 0

and constructing (Bb)

−1

(Bb)5×5 =

0 1 0 1 1
0 1 0 0 1
1 1 0 1 0
1 0 1 0 1
0 0 0 1 1

 ,(Bb)
−1 =

0 1 1 0 1
1 0 0 0 1
1 0 1 1 0
1 1 0 0 0
1 1 0 0 1

the Aa can be constructed as

Aa = (Bb)
−1(I5 +B1A1)

(Aa)5×5 =

1 0 1 1 1
0 0 1 1 0
0 1 1 0 0
0 0 0 1 0
1 0 1 0 0

 .

Having random A1, and Aa the inverse matrix A can be constructed such

A9×5 =

1 0 1 1 1
0 0 1 1 0
0 1 1 0 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
0 1 1 0 1
0 0 0 1 0
1 0 1 0 0

where B(5×9)×A(9×5) = III5×5

16

4 PKC Application

The PKC is a generalized inverse matrix construction application that can generate public
and private keys for encryption, decryption, and digital signature (signing and verification)
algorithms. The proposed random inverse matrix construction is used in [16] for the public
key infrastructure of the scheme to define three-tuple public keys for a new code-based
digital signature algorithm.

Public Key Infrustructure

(pk,sk)← Gen(λ) where λ denotes the key generation scheme.

The following matrices are used in the proposed public key infrustructure in [16].

• G, a generator matrix of size k×n.

• H, a parity check matrix of size (n− k)×n.

• S, a non-singular scrambling matrix of size k× k.

• P, a permutation matrix of size n×n.

• L, a non-singular matrix of size (n− k)× (n− k).

The proposed algorithm in [16] generates a public key (pk) and a private key (pr(sk)).

Key Generation Algorithm Gen(λ)

1. Obtain a generator matrix G and corresponding parity matrix H for C(n,k).

2. Select a random H−1 from the 2k×(n−k) choices using a random matrix A1 and con-
structing the corresponding matrix A2

H−1 = A1
A2

.

3. As in the McEliece cryptosystem, use the generator matrix G, the scrambling matrix
S and the permutation matrix P to mask G
p1 = G

′
= SGP.

4. Use the non-singular random matrix L and P to mask H−1

p2 = L−1(H−1)T P.

5. Verification of the digital signatures requires
p3 = P−1(H−1H)T P.

17

6. Construct a parity check matrix corresponding to G
′
= SGP

Q = H
′T = P−1HT L H

′
= LT H(P−1)T .

7. Public key: pk← (p1, p2, p3).

8. Private key: pr(sk)← (S−1,P−1,G,Q), where sk denotes the secret key.

It is shown in [16] that the key relations defined by Lemma 1 and Lemma 2 are used
in the signing, verification, and integrity check algorithms of the new code-based digital
signature.

Lemma 1. The public key pk = (p1, p2, p3) satisfies the following

(p1)(p3) = 000 (19)

(p2)(p3) = p2 (20)

(p3)(p3) = p3 (21)

Lemma 2. The public key pk = (p1, p2, p3) and the secret key (Q) are related as follows.

(p1)(Q) = 000 (22)

(p2)(Q) = III (23)

(p3)(Q) = Q (24)

(Q)(p2) = p3 (25)

It was shown that the proposed generalized inverse matrix could construct 2k×(n−k) inverse
matrices. Therefore it is also proven in [16] that the probability of an adversary constructing
a secret key using the public key is 2−(k×(n−k)). Therefore, the probability of an adversary
forging the algorithm by finding the exact secret key is negligible, and the algorithm is
secure against an structural public key attack.

Pr[(Adv,γ) = 1]<
1

2k×(n−k)
.

5 Conclusion

This paper considered the construction of all H generalized inverse matrices of a non-
square (n ̸= k) matrix H. The matrix H−1 has n− k columns. The paper proposes a

18

column set Zi where 1≤ i≤ n− k. The “i” column of H−1 belongs to a column set Zi that
contains 2k vectors. It also divides the column set Zi into two subsets which simplifies the
calculation of all 2k vectors and leads to the construction of all the 2k×(n−k) generalized
inverse matrices.

Furthermore, the random generalized inverse matrix construction method presented, intro-
duces matrix A1 and A2, where A1 consists of n− k binary vectors. In simple term, the
elements of the matrix A1 can be selected on a random basis and the matrix A2 can be
constructed using a simplified proposed equation. In fact, the proposed approach provides
a shorter processing time and computational simplicity to construct a random generalized
inverse matrix that can be suitable for applications that demand new keys to be generated
periodically in shorter interval times.

The proposed approach was compared with the restricted applicability of Moore-Penrose
and Gauss-Jordan methods, and it showed that it is faster with less computational cost. The
PKC application and three tuples public key generation algorithm for digital signature and
encryption was given. The three tuple key relations were given in Lemma1 and Lemma2
that can be used for encryption, decryption, signing, verification, and integrity check al-
gorithms. It also was shown that the proposed PKC is secure against structural public key
attacks.

References

[1] C. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J.,, vol. 27,
no. 3, pp. 379-423, 1948.

[2] R. Acharya, “Undrestanding satellite navigation,” Mobile geographic info systems,
Academic press, electronic books, 2014.

[3] Alexander Thomasian, “Storage Systems: Organization, Performance, Coding, Reli-
ability, and Their Data Processing,” Storage systems book, publisher Waltham, Mas-
sachusetts, Elsevier, 2011.

[4] S. Saraf, S. Dhingra, and G. Pinheiro, “Parallel algorithm for finding inverse of a
matrix and its application in message sharing (coding theory),” International Journal
of Computer Applications, vol. 975, p. 8887, 2016.

[5] P. S. Stanimirović and M. D. Petković, “Gauss–Jordan elimination method for com-
puting outer inverses,” Applied Mathematics and Computation, vol. 219, no. 9, pp.
4667–4679, Jan. 2013.

19

[6] J.C.A. Barata, M.S. Hussein, “The Moore-Penrose Pseudoinverse. A Tutorial Review
of the Theory,” Instituto de F´ısica, Universidade de S˜ao Paulo, C.P. 66318, 05314-
970 S˜ao Paulo, SP, Brazil, Oct. 2011.

[7] H. Chen and Y. Wang, “A family of higher-order convergent iterative methods for
computing the Moore–Penrose inverse,” Applied Mathematics and Computation, vol.
218, no. 8, pp. 4012–4016, Dec. 2011.

[8] N. Guglielmi, M. L. Overton, and G. Stewart, “An efficient algorithm for computing
the generalized null space decomposition,” SIAM Journal on Matrix Analysis and
Applications, vol. 36, no. 1, pp. 38–54, 2015.

[9] J Tapson, A van Schaik, “Learning the inverse solution to network weights,” Neural
networks, vol. 45, pp. 94–100, 2013.

[10] R. J. McEliece, “A public-key cryptosystem based on algebraic coding theory,” Jet
Propulsion Lab, DSN Tech. Rep. 42.44, pp. 114–116, 1978.

[11] H. Niederreiter, “Knapsack-type cryptosystems and algebraic coding theory,” Prob-
lems of Control and Information Theory, vol. 15, pp. 159–166, 1986.

[12] M. Esmaeili, T.A.Gulliver, “Joint channel coding-cryptography based on random in-
sertions and deletions in quasi-cyclic-low-density parity check codes,” IET communi-
cations, vol.9 (12), pp. 1555-1560, 2015.

[13] M. Esmaeili, T.A.Gulliver, “Application of Linear Block Codes in Cryptography,”
University of Victoria department of Electrical and Computer Engineering, Chapter
5, Security analysis. pp. 45-53, 2019.

[14] Farebrother, R.W., “Linear least squares computations,” Statistics, textbooks and
monographs, London. Taylor and Francis. pp. 12, 2017.

[15] Fang Xin, Havas George, “On the worst-case complexity of integer Gaussian elimina-
tion,” International Conference on Symbolic and Algebraic Computation, ISSAC 97,
Proceedings of the 1997 international symposium on Symbolic and algebraic compu-
tation. pp. 28-31, July 1997.

[16] F. Haidary Makoui, T.A. Gulliver, M. Dakhilaian “A New Code-Based Digital Signa-
ture Based on the McEliece Cryptosystem,” IET communications, published online,
doi: cmu2.12607, April 2023.

20

