
Generic Security of the SAFE API and Its
Applications

Dmitry Khovratovich1, Mario Marhuenda Beltrán2, and Bart Mennink2

1 Ethereum Foundation, Luxembourg
khovratovich@gmail.com

2 Radboud University, Nijmegen, The Netherlands
mmarhuenda@cs.ru.nl, b.mennink@cs.ru.nl

Abstract. We provide security foundations for SAFE, a recently in-
troduced API framework for sponge-based hash functions tailored to
prime-field-based protocols. SAFE aims to provide a robust and fool-
proof interface, has been implemented in the Neptune hash framework
and some zero-knowledge proof projects, but currently lacks any security
proof.
In this work we identify the SAFECore as versatile variant sponge con-
struction underlying SAFE, we prove indifferentiability of SAFECore
for all (binary and prime) fields up to around |Fp|c/2 queries, where Fp
is the underlying field and c the capacity, and we apply this security
result to various use cases. We show that the SAFE-based protocols
of plain hashing, authenticated encryption, verifiable computation, non-
interactive proofs, and commitment schemes are secure against a wide
class of adversaries, including those dealing with multiple invocations of
a sponge in a single application. Our results pave the way of using SAFE
with the full taxonomy of hash functions, including SNARK-, lattice-,
and x86-friendly hashes.

Keywords: SAFE, sponge, API, field elements, indifferentiability

1 Introduction

The sponge construction is a permutation-based mode for cryptographic hashing.
It was first introduced by Bertoni et al. [13], and it quickly gained in popularity,
in particular in light of the SHA-3 competition [33], which was won by the Keccak
sponge function [11]. The sponge operates on a b-bit state, which is split into a
c-bit inner part, where c is called the “capacity”, and an r-bit outer part, where
r is called the “rate”. On input of a message, the sponge first injectively pads
this message and splits it into r-bit chunks. These chunks are then absorbed
one by one by adding them to the outer part of the state, where each addition
is interleaved with an evaluation of a b-bit permutation of the state. After the
message is absorbed, digests are squeezed r bits at a time by extracting them
from the outer part.

Under the assumption that the permutation is random, Bertoni et al. [13]
proved that the sponge behaves like a random oracle up to around 2c/2 queries

in the indifferentiability framework [29]. Naito and Ohta proved a similar result
for a slightly more general setting where the initial message block can be r+ c/2
bits, and the squeezing is performed with around r + c/2 − log2(c) bits at a
time [32].

These are powerful results: they imply that the sponge construction behaves
like a random oracle and can replace it as such in many applications, as long
as less than 2c/2 evaluations of the permutation are made. They imply that
finding collisions, preimages, or second preimages is not easier than finding them
for a random oracle (up to this bound),3 but they can also be used in keyed
applications [11]. Improved but comparable results for keyed applications are
derived by using the sponge’s sibling, namely the duplex construction [9,10,18,19,
31]. A thorough account of the duplex can be found in the work by Mennink [30].

1.1 Field-Based Sponges and SAFE API

Both the sponge and the duplex specification, however, see their inputs and out-
puts as raw bits, and leave application-specific encoding to the users. The exact
encoding, as long as it is injective and reasonably simple, does not pose a perfor-
mance problem for regular hash functions such as SHA-2/3 as they are usually
not a bottleneck in applications. The situation is drastically different in proto-
cols that operate on prime field elements rather than on bits, and particularly
in those that deal with verifiable computation of hash functions – e.g. private
cryptocurrencies and mixers [2, 25], recursive proof systems [15, 26], and zero-
knowledge virtual machine (ZKVM) computations [38]. The infamous example of
Zcash’s transaction requiring 40 seconds to be generated triggered the design of
field-oriented hash functions Poseidon [22], Rescue [4], MiMC [3], and Reinforced
Concrete [21]. With many of these functions designed in the sponge framework,
it became crucial to utilize as much throughput of the sponge as possible, ide-
ally removing all possible overhead such as padding. Indeed, a sponge-based hash
function with a rate of r = 2 elements spends one permutation to hash a pair
of unpadded field elements, but two permutation calls if the input is padded.
For obvious reasons, a straightforward removal of padding or building a hash
function directly from the inner permutation rather than the sponge framework
has led to terrible bugs [1] and, in general case, to bad practices. Extensive use of
a sponge function may also incur domain-separation issues or even cross-oracle
collisions, i.e. collisions between the implementations of two different random
oracles in the same protocol.

Another problem, not specific to sponge functions, arises in the context of
the interactive protocols and the Fiat-Shamir heuristic [20] to make them non-
interactive. Researchers have found several critical bugs in the implementations
of Fiat-Shamir [8,17,24], which are partly attributed to the fact that the protocol
state is stateful and interactive whereas the older hash functions from the SHA
family are not interactive and few implementations are stateful. It is natural to

3 For preimage resistance, an improved result is derived, cf. [27].

2

implement Fiat-Shamir via sponges, but no concrete design has been proposed
so far.

To salvage this issue, Aumasson et al. [5] proposed SAFE (Sponge API for
Field Elements), a generic API for sponge functions specifically tailored to-
wards its use on field elements. They also provided a production-ready refer-
ence implementation. SAFE has already been implemented in Filecoin’s Nep-
tune hash framework and has been integrated in other zero-knowledge proof
projects [28, 36]. A sponge call in SAFE takes as input an input-output (IO)
pattern IO , that among others contains the particular order of the absorb calls
and squeeze calls, and optionally a domain separator D. The IO and D are
then hashed onto c/2 elements of the inner part of the state (using a general
collision resistant hash function like SHA-3). Then, it operates a sponge in an
online mode, where data is absorbed as it comes and squeezed as it is needed,
provided the absorbing and squeezing happen in accordance with the IO pattern
IO . At first sight, this IO pattern seems to limit the generality as it encodes the
upcoming hash in advance, but this is not a problem for most applications of
SAFE: e.g. Merkle trees, interactive protocols, and verifiable encryption of cryp-
tocurrency transactions all know how much data and in which order should be
hashed. On the other hand, the usage of the IO avoids the need to use padding,
eliminates misuse patterns by limiting the set of callable operations, and con-
tributes to avoiding collisions between instantiations of different oracles. As such,
SAFE forms a versatile API for many protocols that use hash functions under
the hood, and would like to do it securely.

1.2 Generic and Improved Security of SAFE API

It is possible to argue security of SAFE in the random oracle model using the
indifferentiability result of Naito and Ohta [32], but the resulting bound is not
quite as good. Most importantly, Naito and Ohta apply an injective padding
to the message, which is absent in SAFE. Hovewer, noting that SAFE encodes
the message in the IO pattern, which gets hashed onto c/2 bits of the inner
part, and if these hash digests never collide, it is still possible to adapt the proof
from Naito and Ohta. Nevertheless, the bound obtained by this method can be
improved.

For authenticated encryption applications, i.e. where absorbing rounds and
squeezing rounds are interleaved, an additional point of concern is raised as one
uses the same IO pattern for different message lengths. These issues leave us
with an undesired situation: (i) the security proof is not rigorous, and (ii) even
if it were correct, only security up to |Fp|c/4 evaluations is guaranteed due to
possible hash function collisions.

In order to both derive a rigorous analysis and to improve this |Fp|c/4 bound,
we first describe a variant sponge construction, called SAFECore, on top of a
cryptographic hash function H and a permutation P. It gets as input an IO
pattern IO ∈ (N+)∗, optionally a domain separator D ∈ {0, 1}∗, and a message
M of appropriate length. The IO pattern is required to be of even length, and
alternatingly describes the number of field elements absorbed and squeezed. Note

3

that this definition is slightly different from the IO pattern in the SAFE API,
but the changes are only cosmetic and are made to make the security proof easier
to construct and process. Besides, a translation between the two is clear. The
SAFECore construction then operates by first hashing the IO pattern and the
domain separator onto the entire inner part (as opposed to half of it) using hash
function H, and processing a sponge as usual using permutation P. The message
is required to be of appropriate length as dictated by the IO pattern IO , and
the number of squeezed blocks will be determined by the next element in IO .
We stress that this seems like a restriction compared to the original SAFE API,
but this restriction is solely to make the proof convenient; after all, SAFECore
will be used as building block to argue security of the SAFE API. A detailed
description of SAFECore is given in Section 3, including our security result (proof
in Section 4) guaranteeing indifferentiability up to |Fp|c/2 queries. Here, we stress
that we have improved security compared to what was suggested for the SAFE
API based on the work of Naito and Ohta. This is because of our observation
that one can hash the IO pattern and the domain separator onto the entire inner
part, without any risk and thus with a free security improvement from |Fp|c/4
to |Fp|c/2. The observation is comparable to the truncated permutation without
initial value construction of Grassi and Mennink [23] with significant difference
that their construction only makes one permutation call on input of a partially
random partially chosen state, instead of a full-fledged sponge.

Our proof is field-agnostic, which extends the domain of SAFE from the
originally envisioned 256-bit fields to both bigger and smaller ones: processing
380-bit curve coordinates [14], 64-bit hashes for verifiable computation based
on FRI commitments [34], 12-bit hashes for aggregating post-quantum signa-
tures [35], and other lattice-based scenarios.

1.3 Applications

We stress that SAFECore is not made to be ran only in isolation, it rather serves
as building block to argue security of the much more versatile and user-friendly
SAFE API. In more detail, the specification of the SAFE API [5] (discussed
in Section 5) is very general, but to assure generality in a foolproof interface, it
follows strict rules with respect to the IO pattern IO and the upcoming absorbing
and squeezing evaluations. SAFECore, in turn, is defined in such a way that it
is possible to describe any correct application of the SAFE API in terms of
the SAFECore construction. This immediately implies generic security of the
application in light of our indifferentiability result of Theorem 2.

To exemplify this, we discuss in Sections 5.1–5.4 various applications of SAFE
based on those given by the designers [5]: plain hashing, commitment schemes,
interactive protocols, and authenticated encryption. For each of these applica-
tions, we describe exactly how they can be built by using SAFECore internally,
and we derive generic security in the appropriate model for the application.
We demonstrate that all applications achieve 128-bit security in their respective
model, provided c ≥ µ elements and provided they output µ elements, where µ
is the number of field elements that correspond to 256 bits (or a little less). For

4

example, for prime fields stemming from elliptic curve groups, we typically set
µ = 1. Likewise, for 64-bit Goldilocks prime field [34], we would have µ = 4.

Our results, in fact, imply something stronger. Each particular application
defines for the underlying protocols which kind of adversaries it protects against.
As SAFE requires the protocol that uses it to specify the length of input and
output messages, in many real-world scenarios the application does not bother
with collisions or preimages that violate the specification. We call this setting
single-oracle security. A less frequent case is when the application needs protec-
tion against inputs of other lengths too. This case may arise when a protocol
employs different random oracles that take different inputs. We call this scenario
cross-oracle security. We show that when all the oracles are implemented with
SAFECore, and the adversary has only limited control on how these oracles are
initialized using the IO pattern and the domain separation, then the security
still holds up to 128-bit security.

Theorem 1. (Informal) Let P be a cryptographic protocol that employs ran-
dom oracles R1,R2, . . . ,Rk and is secure in the random oracle model against
adversaries that make up to 2λ queries to the oracles. Then, the implementation
of this protocol with oracle Ri instantiated with the SAFE API using a field of
size at least 22λ and a domain separator Di (pairwise distinct) is secure against
adversaries that make up to 2λ queries to underlying hash H and permutation P.

A more detailed statement can be found in Section 5.

1.4 Outline

Section 2 introduces the notation we will use and the necessary context, such
as the sponge construction and the indifferentiability framework. Section 3 de-
scribes the SAFECore construction in detail and its generic security result (Theo-
rem 2). In Section 4 we give a formal proof of the security result. We discuss the
SAFE API in detail in Section 5, where we also demonstrate how the security
of SAFECore implies the security of any proper evaluation of the SAFE API. In
Sections 5.1–5.4 this fundamental observation is applied to various use cases of
the SAFE API in order to derive simple and meaningful security claims. The
work is concluded in Section 6.

2 Preliminaries

2.1 Notation

We use machine typographic fonts to denote functions (e.g. A, a), upper case
bold to denote sets (e.g. A,B), and case sans-serif to denote variables (e.g. a, b).
To denote the set of natural numbers, we use N. We use ∅ to denote the empty
set and S∗ = ∪∞i=0S

i for a set S. Given x ∈ S∗, there exists a unique n so that
x ∈ Sn, we denote it by len(x) = n. Abusing notation, we denote the empty

string by ∅ as well. For a finite set S, we say that x
$←− S when x is sampled

5

uniformly from S. Throughout, we will use r to denote the rate and c to denote
the capacity. For an explanation of their meaning see Section 3.1.

Given a tuple x = (x1, x2, . . .) ∈ S∗, we also denote it x = x1‖x2‖ . . . and
we use both notations interchangeably. We denote x [1 : k] = (x1, . . . , xk). We
denote by leftr : S∗ → Sr and rightc : S∗ → Sc the functions defined by
leftr (mr‖mrest) = mr and rightc(mrest‖mc) = mc.

Given M ∈ S∗, we denote cutr (M) = (M1, . . . , M`), where:

M1 = M [1 : r] ,

M2 = M [r + 1 : 2r] ,

M3 = M [2r + 1 : 3r] ,

...

M` = M [(`− 1)r + 1 : len(M)]‖0−M mod r ,

where 0` denotes the all 0’s string of bits of length `. We denote by padr (·) an
injective padding, e.g. an injective function S∗ → (Sr)∗. A usual padding is the
10-padding, which works by appending one 1 and filling the rest with 0’s, in the
case elements S can be represented by a string of bits, e.g. when S is a finite
field.

We use RO to denote a random oracle [6].

2.2 Security Model

In this paper we use the indifferentiability framework, first introduced by Maurer
et al. [29] and refined to the context of hash functions by Coron et al. [16]. We
introduce the indifferentiability framework below. We will use it to analyze the
SAFECore construction in Section 3.

Consider a construction C, relying on an ideal primitive P: CP : S∗ → S∗.
Then consider a simulator, S, with the same interface as P. Finally, we consider
a distinguisher D, which is an algorithm having access to either (RO, SRO) or (CP, P).
In the first case we say that D is in the ideal world, denoted by WI , whereas in
the second case, it is said to be in the real world, denoted by WR. The goal of
D is to determine in which world it was placed. If D determines it is in WR, it
outputs 0, and 1 otherwise.

The advantage of D is defined as:

Adviff
C,S(D) =

∣∣Pr
[
DWI ⇒ 1

]
− Pr

[
DWR ⇒ 1

]∣∣ . (1)

2.3 Sponge Construction

In this section, we give a description of the standard sponge construction oper-
ating on bits. Let b, r , c ∈ N such that b = r + c. Let P : {0, 1}b → {0, 1}b be a
permutation.

First, the sponge gets an input, (M ,n) ∈ {0, 1}∗×N+. It absorbs the message
M and then it squeezes n bits as output. A formal description is given in Figure
1 and Algorithm 1.

6

0

0

outer

inner
P P P P P P

absorbing squeezing

M padr truncr H

\

r

\

c

\

r

\

c

\

n

Fig. 1: Sponge construction, with a requested output of n bits.

Algorithm 1 Sponge construction

Data: input (M ,n) ∈ {0, 1}∗ × N+

Result: output Z ∈ {0, 1}∞

1: S = 0b . State of the sponge construction
2: Z = ∅ . Output string
3: (M1, . . . ,M`) = padr (M)
4: for 1 ≤ i ≤ ` do . Absorb
5: S ← P(S ⊕ (Mi‖0c))
6: end for
7: for 1 ≤ i ≤ d n

r
e do . Squeeze

8: Z ← Z‖leftr (S)
9: S ← P(S)

10: end for
11: return Z [1 : n] . Z[1 : n] means the first n bits

2.4 Limitations in Application

The sponge construction is a powerful versatile tool. In particular, it can be used
to argue security of the duplex construction and security of keyed applications of
the sponge (e.g. the keyed sponge [12]) or keyed applications of the duplex (e.g.
SpongeWrap [10]) follow from the indifferentiability of the sponge construction.

On the downside, however, the sponge requires an injective padding. A typical
choice for this is the 10-padding, which on input of a message M ∈ {0, 1}∗
appends a single 1 and a sufficient number of 0’s such that the resulting string
is in ({0, 1}r)∗. Although in most use cases this is fine, it is problematic if the
sponge is not applied on raw bits but rather on (large) field elements where we
take a low value for r . For example, if one uses a permutation on top of two
field elements, one simply takes c = r = 1, and padding always incurs an extra
permutation call.

We stress that one cannot simply discard the 10-padding. The reason for
this is that ending with a 0r -block could be problematic. Consider, for the sake
of example, a simplified setting where the sponge is evaluated for two padded
messages, M ∈ {0, 1}3r with a requested digest of 2r bits and M ′ = M ‖0r ∈

7

{0, 1}4r with a requested digest of r bits. In this case, we will necessarily have

Sponge(M , 2r)[r + 1 : 2r] = Sponge(M ′, r)[1 : r] ,

which would happen for a RO with negligible probability.
We stress that it is possible to have padded messages ending with a 0r-block,

but only in very restricted settings, where in particular overlapping squeeze/absorb
evaluations are avoided. This case is, however, not supported by the current
sponge indifferentiability proofs [13,32].

3 SAFECore construction

In this section, we will describe the SAFECore construction, which will be a
building block that we will use in Section 5 to argue security of the full SAFE
API. We first describe the construction in Section 3.1, we give an extensive
example use case in Section 3.2, and we discuss the security of SAFECore in
Section 3.3.

3.1 Construction

In this section we give a description of the SAFECore construction. Consider
a finite field Fp. Let b, r , c ∈ N such that b = r + c. Let P : Fb

p → Fb
p be a

permutation, and let H : (N+)
∗ × {0, 1}∗ → Fc

p be a hash function. Given X =

(Xr, Xc) ∈ Fb
p, we reuse the previous notation: leftr(X) = Xr and rightc(X) =

Xc.
SAFECore takes an input (IO ,D ,M) ∈ (N+)∗ × {0, 1}∗ × (Fp)∗. Here, IO is

the input-output (IO) pattern, D , an optional domain separator that will mostly
be of use in the applications in Section 5, and message, M , which is expected
to obey to IO in a certain way. To be precise, IO is a tuple of even length,
that we decompose as IO = (I1, O1, . . . , I`, O`), where the Ii correspond to the
number of elements of Fp absorbed and the Oi correspond to the number of
elements of Fp squeezed. Looking ahead, the SAFE API alternates absorbing
phases with squeezing phases as prescribed by IO . As SAFECore will be used
as building block, it is more restricted. To be precise, in SAFECore the message
M is restricted to the condition that its length len(M) should be equal to
I1 + I2 + · · ·+ Ik for some k ≤ `. In this case, the number of squeezed elements
will be Ok.

Formally, we define the set of acceptable inputs:

I =

(IO ,D ,M) ∈ (N+)
∗ × {0, 1}∗ × (Fp)∗

∣∣∣∣∣∣∣∣
IO = (I1, O1, . . . , I`, O`) ,

∃ k such that len(M) =

k∑
j=1

Ij

 .

(2)

For any (IO ,D ,M) ∈ I, we define absrnds(IO ,M) as the unique number k such

that len(M) =
∑k
j=1 Ij .

8

0

H

outer

inner
P P P P P P

absorbing squeezing

H

IO ,M SAFECorePadr truncr HIO , D

\

r

\

c

\

r

\

c

\

Ok

Fig. 2: SAFECore construction, where the input message M is of length I1+· · ·+Ik
elements and the digest consists of Ok elements. The function SAFECorePad is
described in Algorithm 3.

Algorithm 2 Description of SAFECorePad

Data: input (IO ,M) ∈ I
Result: output M ′ ∈ (Frp)∗

1: k = absrnds(IO ,M)
2: M ′ = ∅ . Output string
3: for 1 ≤ i ≤ k − 1 do
4: M ′ ← M ′‖M [I1 + · · ·+ Ii−1 + 1 : I1 + · · ·+ Ii]‖0−Ii mod r

5: M ′ ← M ′‖0rdOi/re

6: end for
7: M ′ ← M ′‖M [I1 + · · ·+ Ik−1 + 1 : I1 + · · ·+ Ik]‖0−Ik mod r

8: return M ′

On input of a tuple (IO ,D ,M) ∈ I, SAFECore evaluates H on input of (IO ,D)
to obtain a value H ∈ Fc

p, which it uses to initialize the inner part of the sponge.
Then, a variant of the sponge is used to absorb M in accordance with the IO
pattern IO . For this, a specific padding function SAFECorePad (Algorithm 2),
will be employed. SAFECorePad properly pads each absorption round (noting
that Ij is expressed in terms of elements and not in terms of r-element blocks)
and for blank evaluations of in-between squeezing rounds. Then, at the end,
it squeezes Oabsrnds(IO,M) elements in Fp. We stress that this last step is not in
accordance with how the SAFE API works, recalling that it alternates absorbing
and squeezing phases, but after all, SAFECore is defined more restrictively as
being an easy-to-analyze building block for the SAFE API. A full description of
the SAFECore construction is given in Figure 2 and Algorithm 3.

3.2 Example

Consider an instantiation of SAFECore with parameters c = 2, r = 2. A typical
IO pattern could be IO = (8, 6, 5, 3, 4, 7). In the SAFE API (that we will discuss
in Section 5), this pattern means that we start with absorbing 8 elements in Fp
(which happens in 4 rounds, as r = 2), followed by squeezing 6 elements in Fp

9

Algorithm 3 Description of SAFECore

Data: input (IO ,D ,M) ∈ I
Result: output Z ∈ (Fp)∗

1: S = 0r‖H(IO ,D) . State of the SAFECore construction
2: Z = ∅ . Output string
3: M ′ = SAFECorePad(IO ,M) . See Algorithm 2
4: for 1 ≤ i ≤ len(M ′)/r do . Absorb
5: S ← P(S ⊕ (M ′[r · (i− 1) + 1 : r · i]‖0c))
6: end for
7: k = absrnds(IO ,M)
8: for 1 ≤ i ≤ dOk/re do . Squeeze
9: Z ← Z‖leftr (S)

10: S ← P(S)
11: end for
12: return Z [1 : Ok] . Z[1 : Ok] means the first Ok elements

(which happens in 3 rounds), followed by absorbing 5 elements (which happens
in 3 rounds), and so on. However, SAFECore is more restrictive than that, in
order to be able to have an easy-to-analyze building block for the SAFE API.
Concretely, for the example IO , there are three permissible message lengths:

– 8 elements from Fp, in which case the output consists of 6 elements from Fp;
– 13 elements from Fp, in which case the output consists of 3 elements from

Fp;
– 17 elements from Fp, in which case the output consists of 7 elements from

Fp.

3.3 Security of SAFECore Construction

When D is in the real world, we count the cost of queries by how many times H

and P are called, where duplicate queries are only counted once. For our running
example of Section 3.2, if one makes three evaluations of SAFECore as suggested,
where the three message inputs are prefixes of each other, the total cost is the
total number of unique permutation evaluations, which happens to be as much
as the cost of the longest query of the three.

When D is in the ideal world, we likewise count the cost of queries by how
many times H and P would have been called, had the same query been made in
the real world.

We now state the main security result.

Theorem 2 (Security of SAFECore). Let C be the SAFECore construction based
on a random oracle H and random permutation P. There exists a simulator S,
such that for any distinguisher D making at most QH unique hash queries and QP

unique primitive queries:

Adviff
C,S(D) ≤

3 ·
(
QH

2

)
+ 2 ·

(
QP

2

)
+ 4 ·QP ·QH

|Fp|c
+

3 ·
(
QP

2

)
|Fp|b

. (3)

10

The proof is given in Section 4.

4 Proof of Theorem 2

Let C be the SAFECore construction based on a random oracle H and random per-
mutation P. Our goal is to construct a simulator S such that for any distinguisher
D, the following distance is “small”, in a precise way:

Adviff
C,S(D) =

∣∣∣Pr
[
DRO,S

RO

⇒ 1
]
− Pr

[
DC

H,P,H,P ⇒ 1
]∣∣∣ . (4)

Here, S simulates both the hash function H and the construction P. The world
(RO, SRO) is called the ideal world and (CH,P, H, P) is called the real world. These
worlds are depicted in Figure 3.

First, in Section 4.1, we will describe our simulator. In Section 4.2 we will
describe an intermediate world and apply the triangle inequality to derive two
easier-to-bound distances from (4). These two distances are then bounded in
Sections 4.4 and 4.5, using bad events introduced in Section 4.3. The proof is
inspired by that of Naito and Ohta [32], but in addition taking into account the
hashing functionality and its related bad events.

4.1 Simulator

We first define Iext (read I extended):

Iext =
⋃

(IO,D,M)∈I

(IO ,D ,M ′‖M ′′)

∣∣∣∣∣∣∣
M ′ = SAFECorePad(IO ,M) ,

M ′′ ∈ {∅, 0r, . . . , 0r(dOk/re−1)} ,
where k = absrnds(IO ,M)

 ,

where the function SAFECorePad is defined in Algorithm 3. Intuitively Iext covers
all tuples for which the simulator knows that, if it receives an input value X to
SP “completing” (IO ,D ,M) ∈ Iext, it will have to output a value consistent
with the random oracle. However, it will also need to know which indices of the
random oracle output it has to select. Therefore, for any (IO ,D ,M) ∈ Iext, we
define 0elts(IO ,M) as the total number of elements (i.e. the length of len(M ′′))
attached to M ′.

The simulator can be queried through three interfaces: SH, SP, and S−1
P . It

maintains tables CH and CP recording the query-response pairs of each query:
any input-output tuple SH(IO , D) 7→ H is stored as (IO , D,H) in CH, and any
input-output tuple SP(X) 7→ Y or S−1

P (Y) 7→ X is stored as (X,Y) in CP.
Furthermore, we define:

DH = {(IO ,D) ∈ (N+)
∗ × {0, 1}∗ | ∃H ∈ Fcp s.t. (IO ,D , H) ∈ CH} ,

RH = {H ∈ Fcp | ∃(IO ,D) ∈ (N+)
∗ × {0, 1}∗ s.t. (IO ,D , H) ∈ CH} ,

DP = {X ∈ Fb
p | ∃Y ∈ Fb

p s.t. (X,Y) ∈ CP} ,
RP = {Y ∈ Fb

p | ∃X ∈ Fb
p s.t. (X,Y) ∈ CP} .

11

Algorithm 4 Simulator S

Function SH:
Data: input (IO ,D) ∈ (N+)∗ × {0, 1}∗
Result: output H ∈ Fc

p

1: H
$←− Fc

p

2: CH ← CH ∪ {(IO ,D ,H)}
3: return H

Function SP:
Data: input X ∈ Fb

p

Result: output Y ∈ Fb
p

1: if ∃(IO ,D ,M ‖u) ∈ Iext,H ∈ Fc
p : (IO ,D ,H) ∈ CH∧

(
0r‖H M

=⇒ X ⊕ (u‖0c)
)
then

2: α← 0elts(IO ,M ‖u)
3: M ′ ← leftlen(M‖u)−α(M ‖u)
4: Yr ← RO(IO ,D ,M ′)[α+ 1 : α+ r]

5: Yc
$←− Fc

p

6: Y ← Yr‖Yc

7: else
8: Y

$←− Fb
p

9: end if
10: CP ← CP ∪ {(X ,Y)}
11: return Y

Function S−1
P :

Data: input Y ∈ Fb
p

Result: output X ∈ Fb
p

1: X
$←− Fb

p

2: CP ← CP ∪ {(X ,Y)}
3: return Y

The simulator maintains a graph that it uses to avoid discrepancies that D

might detect. We adopt the graph representation from Bertoni et al. [13].

The nodes are elements of Fb
p. Two nodes X ,Y ∈ Fb

p are joined by an edge
if ∃M ∈ Fr

p such that (X ⊕ (M‖0c),Y) ∈ CP. Then M is the label of the edge

joining X and Y , which we denote as X
M−→ Y . We write X −→ Y to denote

that X and Y are linked through a 0-string label. We say that X is a root node
if there exists (IO ,D ,H) ∈ CH so that X = 0r‖H . For simplicity, we denote

X
M1−−→ Y

M2−−→ Z by X
M1‖M2
=====⇒ Z . The graph is initialized by the simulator as

being empty, then it is updated lazily in the following way: When a query is
made, it is added to the table, and the proper edges and labels are added to the
graph.

The three simulator interfaces are formally described in Algorithm 4. Here,
we recall that the distinguisher does not make redundant queries.

12

WI : Ideal World
RO

SH
SP
S−1
P

Game 1

WS : Intermediate World
CSH,SP

SH
SP
S−1
P

Game 2

WR: Real World
CH,P

H

P

P−1

Game 3

Fig. 3: Worlds involved in the security proof.

4.2 Intermediate World

We will use an intermediate world, which we denote WS . This world behaves
like the real world, with the exception that the ideal primitives, i.e. H and P, are
replaced by the simulator interfaces. The world is depicted in Figure 3.

By the triangle inequality, we have:

(4) ≤
∣∣Pr[DWI ⇒ 1]−Pr[DWS ⇒ 1]

∣∣ (5)

+
∣∣Pr[DWS ⇒ 1]−Pr[DWR ⇒ 1]

∣∣ . (6)

Distance (5) is bounded in Section 4.4 and distance (6) is bounded in Section 4.5.
Before doing so, we define bad events in Section 4.3.

4.3 Bad events

When the distinguisher makes a query, the simulator will try to maintain con-
sistency with the ideal world. However, it is possible that an earlier response is
such that the simulator cannot guarantee consistency anymore. To capture these
cases, we will define additional bad events. Note that the distinguisher can make
Q queries, QH of which to the hash interface and QP of which to the permutation
interface. Consider i ∈ {1, . . . ,Q}. We define the following bad events:

– CollHi : the i-th query is a query (IO ,D , H) to SH and there exists (IO ′,D ′, H ′) ∈
CH such that (IO ,D) 6= (IO ′,D ′) and H = H ′.

– CollPi : the i-th query is a query (X,Y) to SP or S−1
P and there exists

(X ′, Y ′) ∈ CP such that either4

• X 6= X ′ and Y = Y ′, or
• Y 6= Y ′ and X = X ′.

– ConnectPi : either
• the i-th query is a query (X,Y) to SP and there exists (X ′, Y ′) ∈ CP

such that rightc(Y) = rightc(X
′), or

• the i-th query is a query (X,Y) to S−1
P and there exists (X ′, Y ′) ∈ CP

such that rightc(X) = rightc(Y
′).

4 Here, we remark that the distinguisher never makes a redundant query, so it can
never set the former condition in an inverse query or the latter condition in a forward
query.

13

– ConnectPHi : either

• the i-th query is a query (X,Y) to SP and there exists (IO ,D , H) ∈ CH

such that rightc(Y) = H, or
• the i-th query is a query (X,Y) to S−1

P and there exists (IO ,D , H) ∈ CH

such that rightc(X) = H, or
• the i-th query is a query (IO ,D , H) to SH and there exists (X,Y) ∈ CP

such that H = rightc(X) or H = rightc(Y).

We furthermore define:

Badi = CollHi ∨CollPi ∨ConnectPi ∨ConnectPHi .

For each of the bad events Eventi ∈ {Badi ,CollHi ,CollPi ,ConnectPi ,ConnectPHi},
we write:

Event =

Q⋃
i=1

Eventi .

Bad event CollH avoids hash collisions, which are problematic as they would
allow different IO patterns and domain separators leading to the same root in
the graph. Bad event CollP avoids collisions in the permutation interface. Bad
event ConnectP avoids the case that a permutation query accidentally extends
a path in the graph. Finally, bad event ConnectPH avoids accidentally making
a non-rooted path rooted and avoids accidental collisions at the H-value.

For each of these events, if relevant, we add a superscript (like Bad(1),

Bad(2), or Bad(3)) to indicate to which of the games (see Figure 3) it applies.
The bad events are quite straightforward to bound, and we can obtain the

following lemma. In this lemma, we consider both the general bad event Bad as
the isolated bad event CollP, as both results are needed separately.

Lemma 1. For any distinguisher D making at most QH unique hash queries and
QP unique primitive queries, the following holds for j = 1, 2:

Pr[CollP(j)] ≤
(
QP

2

)
|Fp|b

, (7)

Pr[Bad(j)] ≤
(
QH

2

)
+
(
QP

2

)
+ 2 ·QP ·QH

|Fp|c
+

(
QP

2

)
|Fp|b

, (8)

and the following holds for j = 1, 2, 3:

Pr[CollH(j)] ≤
(
QH

2

)
|Fp|c

. (9)

Proof. The bad events can in fact be easily bounded in isolation:

Pr[Bad] ≤ Pr[CollH] + Pr[CollP] + Pr[ConnectP] + Pr[ConnectPH] .

14

For each of these four events, Event ∈ {CollH,CollP,ConnectP,ConnectPH},
we observe that:

Pr[Event] ≤
Q∑
i=1

Pr[Eventi | ¬Eventi−1] ≤
Q∑
i=1

Pr[Eventi] .

We will now consider the events separately, where the reasoning for CollH holds
for j = 1, 2, 3 and the reasoning of the other events for j = 1, 2. In the rest of
this proof we omit the superscript.

CollH. Note that this bad event only involves hash queries, so w.l.o.g. i runs
from 1 to QH. At the point of the i-th query, there are at most i−1 tuples in CH.
As the response H of the i-th query is uniformly randomly selected from Fc

p, it
sets the bad event with probability (i− 1)/|Fp|c. We thus obtain that:

Pr[CollH] ≤
QH∑
i=1

i− 1

|Fp|c
≤
(
QH

2

)
|Fp|c

.

CollP. Note that this bad event only involved primitive queries, so w.l.o.g. i
runs from 1 to QP. At the point of the i-th query, there are at most i−1 tuples in
CP. If the i-th query is a forward query, since the b elements of Y are uniformly
randomly selected from Fp, it sets the bad event with probability (i− 1)/|Fp|b.
The same holds in case the i-th query is an inverse query. As any query is either
a forward or an inverse query (not both), we obtain that:

Pr[CollP] ≤
QP∑
i=1

i− 1

|Fp|b
≤
(
QP

2

)
|Fp|b

.

ConnectP. Note that this bad event only involves primitive queries, so w.l.o.g.
i runs from 1 to QP. At the point of the i-th query, there are at most i − 1
tuples in CP. If the i-th query is a forward query, as the c inner elements of Y
are uniformly randomly selected from Fc

p, it sets the bad event with probability
(i− 1)/|Fp|c. The same holds in case the i-th query is an inverse query. As any
query is either a forward or an inverse query (not both), we obtain that

Pr[ConnectP] ≤
QP∑
i=1

i− 1

|Fp|c
≤
(
QP

2

)
|Fp|c

.

ConnectPH. Any query to SP/S
−1
P may set the bad event if its response (either

Y in forward queries or X in inverse queries) has its c inner elements equal to
H for an earlier query to SH. Likewise, any query to SH may set the bad event if
its response H equals the c inner elements of any X or Y for an earlier query to
SP/S

−1
P . As all fresh inner values and all fresh values H are uniformly randomly

selected from Fc
p, and there are at most QP queries to SP/S

−1
P and at most QH

15

queries to SH, and any pair sets bad with probability 2/|Fp|c. We thus obtain
that:

Pr[ConnectPH] ≤ 2 ·QP ·QH

|Fp|c
.

Conclusion. The lemma immediately follows from adding the individual bad
events. ut

4.4 Bound of (5)

We will use the following lemma, which informally states that the simulator in
game 2 operates consistently with the random oracle in game 1 as long as no
bad event occurs.

Lemma 2. Unless a bad event happens in game 1 or game 2, we always have
the following result. For any rooted path in the simulator graph of the following
form

0r‖H SAFECorePad(M)
==========⇒ Y1 −→ · · · −→ Y` , (10)

where (IO , D,H) ∈ CH, (IO ,D ,M) ∈ I, and where ` ≤ dOk/re for k =
absrnds(IO ,M),

leftr(Y1)‖ · · · ‖leftr(Y`) = RO(IO ,D , SAFECorePad(M))[1 : r · `] . (11)

Proof. We proceed by induction on the number of queries the distinguisher D

makes. Clearly, Bad
(j)
1 never happens. Assume that the lemma holds for any

simulator performing Q − 1 queries. Consider distinguisher D making its Q-th

query, where Bad
(j)
i has not occurred for i < Q. By hypothesis,

leftr(Y1)‖ · · · ‖leftr(Y`) = RO(IO ,D , SAFECorePad(M))[1 : r · `] , ` < Q

for any path on the simulator’s graph.

Assume Bad
(j)
Q does not occur in the Q-th query and suppose there is a path

on the simulator’s graph contradicting (10). In other words, there is a path:

0r‖H SAFECorePad(M)
==========⇒ Y1 −→ · · · −→ Y`−1 −→ Y` ,

where necessarily

leftr(Y1)‖ · · · ‖leftr(Y`−1) = RO(IO ,D , SAFECorePad(M))[1 : r · (`− 1)]

but

leftr(Yl) 6= RO(IO ,D , SAFECorePad(M))[r · (`− 1) + 1 : r · `] .

By the construction of the simulator, we know there must be another path from
0r‖H to Y` satisfying (10). This implies that in the simulator’s graph there

16

is a node with two out-going (or two in-going) edges, in which case CollPQ

must have occurred, there is a rooted node with an in-going edge, in which case
ConnectPHQ must have occurred, there is a cycle, in which case ConnectPQ

must have occurred, or the selection of (IO , D) was ambiguous in the first place,
in which case CollHQ must have occurred. Since by hypothesis, neither of those
occurred, we conclude that the result holds. ut

From Lemma 2, we can conclude that WI and WS are identical, i.e. their
outputs are identically distributed, as long as Bad does not happen in either
world. More formally, by the fundamental lemma of game playing [7] (or by [37])
we have:

Pr[DWI ⇒ 1 | ¬Bad(1)] = Pr[DWS ⇒ 1 | ¬Bad(2)] .

Similar to Naito and Ohta [32, Section 3.4], we obtain from (8) of Lemma 1:5

(5) ≤ Pr[Bad(1)] + Pr[Bad(2)] ≤
2 ·
(
QH

2

)
+ 2 ·

(
QP

2

)
+ 4 ·QP ·QH

|Fp|c
+

2 ·
(
QP

2

)
|Fp|b

.

(12)

4.5 Bound of (6)

The intermediate world WS and the real world WR (see Figure 3) are identical,
except for the fact that P/P−1 is a permutation whereas SP/S

−1
P is a random func-

tion. First note that SP queries its oracle on input of a tuple (IO ,D , SAFECorePad(M)),
which is always distinct for each evaluation. Thus, the outputs of SP/S

−1
P are al-

ways uniformly randomly drawn. In the real world, it may happen that P is
evaluated twice for the same value for a different construction evaluation, while
this would not happen in the intermediate world. However, this would only hap-
pen in case of event CollH(3). Assuming that this never happens, the two oracles
P/P−1 and SP/S

−1
P are identical as long as the latter does not output colliding

values, which would in turn trigger event CollP(2). From (7) and (9) of Lemma 1:

(6) ≤ Pr[CollH(3)] + Pr[CollP(2)] ≤
(
QH

2

)
|Fp|c

+

(
QP

2

)
|Fp|b

.

5 SAFE API

The SAFE API [5] considers a sponge with a state of b = r+ c field elements in
Fb
p, where r is the rate and c the capacity. The sponge operates on a permutation

P : Fb
p → Fb

p. In addition, a hash function H : (N+)
∗ × {0, 1}∗ → Fc

p is involved
upon initialization. A sponge object exposes four operations:

5 In their work, Naito and Ohta omitted a factor 2, which is included here. Our bound
can also be derived from [37, Lemma 1].

17

– START. This operation officially marks the start of a sponge life. It receives
as input an IO pattern, IO , and a domain separator D . The input, IO , pre-
scribes exactly the sequence of future calls and their respective lengths in the
form of a string of 32-bit words (the exact encoding is slightly different from
that of Section 3, but the difference is irrelevant for the current discussion),
and D is an arbitrary domain separator which could for instance be used
to distinguish between different use cases. It feeds IO and D into the hash
function to obtain a c-element tag T = H(IO ,D). This tag is then used to
initialize the inner part of the state.

– ABSORB. It receives as input a length L and an array X [L] of L field elements,
and absorbs them r elements at a time, interleaved with a call of P. The
function also checks if the input matches the IO pattern.

– SQUEEZE. It receives as input a length L stating the requested number of
blocks, and squeezes them r elements at a time, interleaved with a call of P.
The function also checks if the input matches the IO pattern.

– FINISH. This operation officially marks the end of a sponge life. It receives
no input and outputs ‘OK ’ or ‘NOK ’, depending on whether the sponge
evaluation was correctly executed.

It is important to note that the functions ABSORB and SQUEEZE can be evaluated
element-wise, and they only evaluate the permutation once they exhausted the
entire outer part, i.e. once they absorbed/squeezed r elements. In addition, a
transition from ABSORB to SQUEEZE is always made through a permutation eval-
uation, even if they did not exhaust the outer part. The other way around, this is
not the case: one can e.g. squeeze r elements and then absorb r elements before
the next permutation call is made. Details on this, and how it is implemented,
can be found in [5].

Example 1. We will explain how the example of Section 3.2 would appear in
the SAFE API, with parameters c = 2, r = 2. We have an IO pattern IO =
(8, 6, 5, 3, 4, 7), and any domain separator D . Let M = M [1 : 17] be any input
of the correct length. We describe two different ways to process this IO pattern,
domain separator, and a message using the SAFE API in Algorithms 5 and 6.
The two evaluations are, in fact, equivalent. For example, in Algorithm 5, line
3 incurs 4 evaluations of P (recall that r = 2), whereas in Algorithm 6, line 3
incurs 2 evaluations of P and line 4 incurs 2 evaluations of P. The two evaluations
in Algorithms 5 and 6 succeed upon finishing; if there were a mismatch between
the number of absorbed/squeezed elements and what was prescribed by the IO
pattern, finish would fail.

18

Algorithm 5 Example evaluation of
SAFE API

1: Z = ∅
2: START(IO ,D)
3: ABSORB(8,M [1 : 8])
4: Z ← Z‖SQUEEZE(6)
5: ABSORB(5,M [9 : 13])
6: Z ← Z‖SQUEEZE(3)
7: ABSORB(4,M [14 : 17])
8: Z ← Z‖SQUEEZE(7)
9: return FINISH() ? Z : ⊥

Algorithm 6 Example evaluation of
SAFE API

1: Z = ∅
2: START(IO ,D)
3: ABSORB(5,M [1 : 5])
4: ABSORB(3,M [6 : 8])
5: Z ← Z‖SQUEEZE(3)
6: Z ← Z‖SQUEEZE(3)
7: ABSORB(4,M [9 : 12])
8: ABSORB(1,M [13])
9: Z ← Z‖SQUEEZE(3)

10: ABSORB(4,M [14 : 17])
11: Z ← Z‖SQUEEZE(3)
12: Z ← Z‖SQUEEZE(4)
13: return FINISH() ? Z : ⊥

By definition, these evaluations of the SAFE operations are covered almost
exactly by SAFECore, with the crucial difference that SAFE for efficiency and im-
plementation reasons allows element-wise data processing whereas in SAFECore

all inputs are basically absorbed at once before the first squeezing starts. It turns
out that this does not restrict the generality of SAFECore, and in particular, we
can argue security of any use case of the SAFE API. For example, for Example 1,
we have

Z ← SAFECore(IO ,D ,M [1 : 8]) (13a)

‖ SAFECore(IO ,D ,M [1 : 13]) (13b)

‖ SAFECore(IO ,D ,M [1 : 17]) . (13c)

Note that in SAFECore, the function SAFECorePad assures proper padding of
M to account for squeezing rounds in (13b) and (13c). Because in Theorem 2
we proved that SAFECore is indifferentiable from a random oracle up to bound
(4), we can obtain that the output string (13) is indistinguishable from random,
provided QH,QP � |Fp|c/2.

This result can be straightforwardly generalized to the observation that all
outputs of an evaluation of the SAFE API are indistinguishable from random,
except in case two evaluations have a common prefix. To understand this, let us
first consider the example case above, where we query the SAFE API on input
of IO = (8, 6, 5, 3, 4, 7), any domain separator D , and on two different messages
M = M [1 : 17] and M ′ = M ′[1 : 17] satisfying that M [1 : 8] = M ′[1 : 8]. Then,
in the evaluation of the SAFE API in Algorithm 5 or 6, the first 6 squeezed
elements will be equal in the two evaluations, the remaining 10 elements may
be either equal or independently distributed depending on the values M [9 : 17]
and M ′[9 : 17]. This can in fact also be concluded from (13).

19

More formally, we say that two tuples (IO ,D ,M) and (IO ′,D ′,M ′) have a
common prefix of k phases if

(IO ,D ,M [1 : I1 + I2 + · · ·+ Ik]) = (IO ′,D ′,M ′[1 : I1 + I2 + · · ·+ Ik])

but

M [I1 + I2 + · · ·+ Ik + 1 : I1 + I2 + · · ·+ Ik+1] 6=
M ′[I1 + I2 + · · ·+ Ik + 1 : I1 + I2 + · · ·+ Ik+1] .

Then, in the SAFE API, the first O1 + O2 + · · · + Ok squeezed elements will
be identical but the future squeezes will be mutually independent. Obviously,
common digests for common prefixes is not a bug, but rather a feature that is also
present in duplex constructions [9, 10, 18, 19, 31]. By using different IO patterns
IO 6= IO ′, different domain separators D 6= D ′, or a nonce that initializes M ,
the problem is avoided all the way.

We can conclude the following for the SAFE API.

Corollary 1 (Security of SAFE API). Under the assumption that H is a
random oracle and P a random permutation, and as long as the total number of
primitive evaluations QH,QP are less than |Fp|c/2, outputs of SAFE are indistin-
guishable from random up to common prefix.

This corollary, in turn, has immediate consequences for many practical use cases
of the SAFE API. In the remainder of this section, we discuss various examples in
more detail. In each of these applications, µ ∈ N is the number of field elements
that correspond to 256 bits (or a little less), and we take c ≥ µ.

5.1 Fixed-Length Hashing

In order to hash an array of ` ∈ N field elements M = M [1 : `] ∈ F`p and obtain
a digest of µ elements, one can evaluate the SAFE operations as follows. First,
we fix IO pattern IO = (`, µ) and arbitrary domain separator D. Then, the hash
digest is generated as follows:

1: START(IO ,D)
2: ABSORB(`,M [1 : `])
3: Z ← SQUEEZE(µ)
4: return FINISH() ? Z : ⊥

By definition, this is exactly the same as evaluating SAFECore:

Z ← SAFECore(IO , D,M) , (14)

where M is restricted to match the IO pattern IO and the length of Z is pre-
scribed by IO as well. Note that, just like in the comparison of Algorithms 5
and 6, for hashing the consumer is allowed to absorb and squeeze element-wise,
but it does not matter much. We obtain the following corollary.

20

Corollary 2. Under the assumption that H is a random oracle and P a ran-
dom permutation, above fixed-length hashing construction outputs Z that is in-
distinguishable from random as long as the total number of START calls and
the total number of permutation calls do not exceed |Fp|c/2. In particular, for
c ≥ µ = logp 2256−ε the fixed-length hashing construction is preimage resis-

tant against an adversary that makes at most min{|Fp|c/2, |Fp|µ/2} queries and
collision resistant against an adversary that makes at most min{|Fp|c/2, |Fp|µ}
queries implying security up to 128− ε/2 bits.

Merkle tree hashing is a subclass of this scenario.

5.2 Commitment Schemes

In order to commit to ` d-tuples of field elements X1, X2, . . . , X` ∈ Fdp and
randomness R ∈ Fp and obtain a digest of µ elements, one can evaluate the
SAFE operations as follows. First, we fix IO pattern IO = (` ·d, µ) and arbitrary
domain separator D. Then, the commitment is generated as follows:

1: START(IO ,D)
2: ABSORB(` · d+ 1, X1, ||X2|| . . . ||X`||R)
3: Z ← SQUEEZE(µ)
4: return FINISH() ? Z : ⊥

By definition, this is exactly the same as evaluating SAFECore:

Z ← SAFECore(IO , D,X1‖X2‖ · · · ‖X`‖R) , (15)

just like for the example of Section 5.1. In fact, the application is merely identical,
but the security model is different. Here, we do not aim for collision or preimage
resistance as in Corollary 2, but rather to binding and hiding. Moreover, as
our adversary can freely choose IO and D, our security results applies not to a
single invocation of a commitment scheme but also to protocols where several
commitment schemes are used in parallel.

Corollary 3. Under the assumption that H is a random oracle and P a ran-
dom permutation, above commitment scheme construction outputs Z that is in-
distinguishable from random as long as the total number of START calls and
the total number of permutation calls do not exceed |Fp|c/2. In particular, for
c ≥ µ = log|F| 2

256−ε the commitment scheme construction is computationally

binding and hiding against an adversary that makes at most min{|Fp|c/2, |Fp|µ}
queries to H and P, implying security up to 128− ε/2 bits.

Note that the IO pattern will be the same for committing `·d 1-field elements.
If this difference matters for an application, a domain separator should be used.

5.3 Multi-Round Interactive Protocols

A non-interactive argument of knowledge is often based on a multi-round in-
teractive protocol, where a verifier is replaced by a hash function within the

21

Fiat-Shamir paradigm. SAFE is suitable for implementing such a hash with
minimum overhead. As an example, consider a 5-round protocol. Let n ∈ N be
the length of the common input, and let λ1, λ2, λ3 ∈ N be the lengths of proof
elements:

– Prover and verifier agree on the common input N ∈ Fnp ;

– Prover prepares and sends proof elements π1 ∈ Fλ1
p and π2 ∈ Fλ2

p ;
– Verifier responds with challenge C1 ∈ Fµp ;

– Prover prepares and sends proof element π3 ∈ Fλ3
p ;

– Verifier responds with challenges C2, C3 ∈ Fµp ;
– Prover sends final proof π4.

Here the prover sends a proof of knowledge in three steps while getting verifier’s
challenges in-between. To make the protocol non-interactive we apply the Fiat-
Shamir transformation where the challenges are generated as follows. First, we
fix IO pattern IO = (n+ λ1 + λ2, µ, λ3, 2µ) and arbitrary domain separator D.
Then, the challenges are generated as follows:

1: START(IO ,D)
2: ABSORB(n+ λ1 + λ2, N‖π1‖π2)
3: C1 ← SQUEEZE(µ)
4: ABSORB(λ3, π3)
5: C2 ← SQUEEZE(µ)
6: C3 ← SQUEEZE(µ)
7: return FINISH() ? (C1, C2, C3) : ⊥

By definition, this is exactly the same as evaluating SAFECore:

C1 ← SAFECore(IO , D,N‖π1‖π2) , (16a)

C2‖C3 ← SAFECore(IO , D,N‖π1‖π2‖π3) . (16b)

We obtain, by security of SAFECore, that this non-interactive version of the
protocol is as secure as the interactive one up to the security of SAFECore. We
note that as our adversary is powerful enough to choose arbitrary IO and D, the
security holds when several such protocols co-exist in one application, whether
in parallel or recursively.

Corollary 4. Suppose the multi-round interactive protocol construction is com-
putationally sound against an adversary that makes up to 2t calls to H and P

assuming H is a random oracle and P a random permutation. Then the non-
interactive protocol (above) outputs (C1, C2, C3) that are indistinguishable from
random as long as the total number of START calls and the total number of per-
mutation calls do not exceed |Fp|c/2. In particular, for c ≥ µ = log|F| 2

256−ε the
noninteractive protocol construction is sound against an adversary that makes
at most min{2t, |Fp|c/2, |Fp|µ} queries, implying security up to 128− ε/2 bits.

5.4 Authenticated Encryption

SAFE allows to perform authenticated encryption using the SpongeWrap mode [10],
with subtle differences that the 1-padding (present in the original SpongeWrap)

22

can be avoided by using the IO pattern de facto as prefix. Let k be the key
length, n the nonce length, and t the tag length. In order to encrypt and au-
thenticate ` blocks of data M1,M2, . . . ,M` each of length λi with key K ∈ Fkp
and nonce N ∈ Fnp in order to obtain ciphertext blocks C1, C2, . . . , C` and tag
T ∈ Fµp , we proceed as follows. First, we fix IO pattern

IO = (k + n, λ1, λ1, λ2, λ2, . . . , λ`, λ`, µ)

and an arbitrary domain separator D. Then, the message is encrypted and au-
thenticated as follows:

1: START(IO ,D)
2: ABSORB(k + n,K‖N)
3: Z1 ← SQUEEZE(λ1)
4: ABSORB(λ1,M1)
5: Z2 ← SQUEEZE(λ2)
6: ABSORB(λ2,M2)
7: · · ·
8: Z` ← SQUEEZE(λ`)
9: ABSORB(λ`,M`)

10: T ← SQUEEZE(µ)
11: (C1, C2, . . . , C`)← (Z1 +M1, Z2 +M2, . . . , Z` +M`)
12: return FINISH() ? (C1, . . . , C`, T) : ⊥

By definition, this is exactly the same as evaluating SAFECore:

Z1 ← SAFECore(IO , D,K‖N) , (17a)

Z2 ← SAFECore(IO , D,K‖N‖M1) , (17b)

...

Z` ← SAFECore(IO , D,K‖N‖M1‖ · · · ‖M`−1) , (17c)

T ← SAFECore(IO , D,K‖N‖M1‖ · · · ‖M`) , (17d)

with the final output being (Z1 +M1, Z2 +M2, . . . , Z` +M`, T). We obtain, by
security of SAFECore, that this authenticated encryption scheme is secure.

Corollary 5. Under the assumption that H is a random oracle and P a ran-
dom permutation, above authenticated encryption construction outputs Z that
is indistinguishable from random as long as the total number of START calls
and the total number of permutation calls do not exceed |Fp|c/2. In particu-
lar, for c ≥ µ = log|F| 2

256−ε the authenticated encryption construction of-
fers confidentiality and authenticity against an adversary that makes at most
min{|Fp|c/2, |Fp|µ} queries, implying security up to 128− ε/2 bits.

This construction is the most efficient when λi ≡ 0 mod r, that is, all blocks
fit the rate parameter of the sponge. This mode can be adapted to support
associated data (authenticated but not encrypted), in the same vein as the
SpongeWrap mode. Note that there is no padding overhead, nor we spend un-
needed calls to the inner permutation.

23

6 Conclusion

We have formally proven the security of the SAFE API with applications to
many use cases, from hashing to interactive protocols. A number of typical ap-
plications have been highlighted in Sections 5.1–5.4, but extensions to protocol
composition, variable-length hashing, PRNGs, and support of multiple fields are
possible. The most important observation is that it is possible to get rid of the
padding schemes at the (arguably smaller) cost of pre-declaring the pattern of
absorptions and squeezes. As the majority of applications of the SAFE API know
this pattern in advance, we have placed no significant burden on the designers.
Our results, perhaps surprisingly, demonstrated that SAFE API is better than
it was originally considered. In particular, our results demonstrate that the full
inner part of the sponge can be used to hash the IO pattern onto, without any
security loss. This principle can be used in the future applications of sponges,
which may put all the application/run metadata (properly processed) into the
capacity, and then run the sponge in a simple but flexible and foolproof way.

Acknowledgements. Mario Marhuenda Beltrán and Bart Mennink are sup-
ported by the Netherlands Organisation for Scientific Research (NWO) under
grant VI.Vidi.203.099.

References

1. Longsight faulty design (2018), https://github.com/zcash/zcash/issues/2233#
issuecomment-416648993

2. Tornado Cash Privacy Solution Version 1.4 (2021), https://tornado.cash/

Tornado.cash_whitepaper_v1.4.pdf

3. Albrecht, M.R., Grassi, L., Rechberger, C., Roy, A., Tiessen, T.: MiMC: Efficient
Encryption and Cryptographic Hashing with Minimal Multiplicative Complexity.
In: Cheon, J.H., Takagi, T. (eds.) Advances in Cryptology - ASIACRYPT 2016
- 22nd International Conference on the Theory and Application of Cryptology
and Information Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part
I. Lecture Notes in Computer Science, vol. 10031, pp. 191–219 (2016), https:

//doi.org/10.1007/978-3-662-53887-6_7

4. Aly, A., Ashur, T., Ben-Sasson, E., Dhooghe, S., Szepieniec, A.: Design of
Symmetric-Key Primitives for Advanced Cryptographic Protocols. IACR Trans.
Symmetric Cryptol. 2020(3), 1–45 (2020), https://doi.org/10.13154/tosc.

v2020.i3.1-45

5. Aumasson, J., Khovratovich, D., Quine, P.: SAFE (Sponge API for Field Elements)
– A Toolbox for ZK Hash Applications (2022), https://safe-hash.dev/

6. Bellare, M., Rogaway, P.: Random Oracles are Practical: A Paradigm for Designing
Efficient Protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) CCS ’93, Proceedings of the 1st ACM Conference on Computer and
Communications Security, Fairfax, Virginia, USA, November 3-5, 1993. pp. 62–73.
ACM (1993), https://doi.org/10.1145/168588.168596

7. Bellare, M., Rogaway, P.: Code-Based Game-Playing Proofs and the Security of
Triple Encryption. Cryptology ePrint Archive, Paper 2004/331 (2004), https://
eprint.iacr.org/2004/331, https://eprint.iacr.org/2004/331

24

https://github.com/zcash/zcash/issues/2233#issuecomment-416648993
https://github.com/zcash/zcash/issues/2233#issuecomment-416648993
https://tornado.cash/Tornado.cash_whitepaper_v1.4.pdf
https://tornado.cash/Tornado.cash_whitepaper_v1.4.pdf
https://doi.org/10.1007/978-3-662-53887-6_7
https://doi.org/10.1007/978-3-662-53887-6_7
https://doi.org/10.13154/tosc.v2020.i3.1-45
https://doi.org/10.13154/tosc.v2020.i3.1-45
https://safe-hash.dev/
https://doi.org/10.1145/168588.168596
https://eprint.iacr.org/2004/331
https://eprint.iacr.org/2004/331
https://eprint.iacr.org/2004/331

8. Bernhard, D., Pereira, O., Warinschi, B.: How not to prove yourself: Pitfalls of
the fiat-shamir heuristic and applications to helios. In: Advances in Cryptology–
ASIACRYPT 2012: 18th International Conference on the Theory and Application
of Cryptology and Information Security, Beijing, China, December 2-6, 2012. Pro-
ceedings 18. pp. 626–643. Springer (2012)

9. Bertoni, G., Daemen, J., Hoffert, S., Peeters, M., Van Assche, G., Van Keer, R.: Far-
falle: parallel permutation-based cryptography. IACR Trans. Symmetric Cryptol.
2017(4), 1–38 (2017), https://tosc.iacr.org/index.php/ToSC/article/view/

801

10. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Duplexing the sponge: Single-
pass authenticated encryption and other applications. In: Miri, A., Vaudenay, S.
(eds.) Selected Areas in Cryptography - 18th International Workshop, SAC 2011,
Toronto, ON, Canada, August 11-12, 2011, Revised Selected Papers. Lecture Notes
in Computer Science, vol. 7118, pp. 320–337. Springer (2011), https://doi.org/
10.1007/978-3-642-28496-0_19

11. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Keccak. In: International Con-
ference on the Theory and Application of Cryptographic Techniques (2013)

12. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge Functions (2007)
13. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the Indifferentiabil-

ity of the Sponge Construction. In: Smart, N.P. (ed.) Advances in Cryptology -
EUROCRYPT 2008, 27th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Istanbul, Turkey, April 13-17, 2008.
Proceedings. Lecture Notes in Computer Science, vol. 4965, pp. 181–197. Springer
(2008), https://doi.org/10.1007/978-3-540-78967-3_11

14. Bowe, S.: BLS12-381: New zk-SNARK elliptic curve construction (2017), https:
//electriccoin.co/blog/new-snark-curve

15. Chiesa, A., Ojha, D., Spooner, N.: Fractal: Post-quantum and transparent recur-
sive proofs from holography. In: Canteaut, A., Ishai, Y. (eds.) Advances in Cryptol-
ogy - EUROCRYPT 2020 - 39th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Zagreb, Croatia, May 10-14, 2020,
Proceedings, Part I. Lecture Notes in Computer Science, vol. 12105, pp. 769–793.
Springer (2020), https://doi.org/10.1007/978-3-030-45721-1_27

16. Coron, J., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damg̊ard Revisited: How to
Construct a Hash Function. In: Shoup, V. (ed.) Advances in Cryptology - CRYPTO
2005: 25th Annual International Cryptology Conference, Santa Barbara, California,
USA, August 14-18, 2005, Proceedings. Lecture Notes in Computer Science, vol.
3621, pp. 430–448. Springer (2005), https://doi.org/10.1007/11535218_26

17. Cortier, V., Gaudry, P., Yang, Q.: How to fake zero-knowledge proofs, again. In: E-
Vote-Id 2020-The International Conference for Electronic Voting (2020), available
at https://hal.inria.fr/hal-02928953/document

18. Daemen, J., Mennink, B., Van Assche, G.: Full-State Keyed Duplex with Built-
In Multi-user Support. In: Takagi, T., Peyrin, T. (eds.) Advances in Cryptology -
ASIACRYPT 2017 - 23rd International Conference on the Theory and Applications
of Cryptology and Information Security, Hong Kong, China, December 3-7, 2017,
Proceedings, Part II. Lecture Notes in Computer Science, vol. 10625, pp. 606–637.
Springer (2017), https://doi.org/10.1007/978-3-319-70697-9_21

19. Dobraunig, C., Mennink, B.: Leakage Resilience of the Duplex Construction. In:
Galbraith, S.D., Moriai, S. (eds.) Advances in Cryptology - ASIACRYPT 2019
- 25th International Conference on the Theory and Application of Cryptology
and Information Security, Kobe, Japan, December 8-12, 2019, Proceedings, Part

25

https://tosc.iacr.org/index.php/ToSC/article/view/801
https://tosc.iacr.org/index.php/ToSC/article/view/801
https://doi.org/10.1007/978-3-642-28496-0_19
https://doi.org/10.1007/978-3-642-28496-0_19
https://doi.org/10.1007/978-3-540-78967-3_11
https://electriccoin.co/blog/new-snark-curve
https://electriccoin.co/blog/new-snark-curve
https://doi.org/10.1007/978-3-030-45721-1_27
https://doi.org/10.1007/11535218_26
https://hal.inria.fr/hal-02928953/document
https://doi.org/10.1007/978-3-319-70697-9_21

III. Lecture Notes in Computer Science, vol. 11923, pp. 225–255. Springer (2019),
https://doi.org/10.1007/978-3-030-34618-8_8

20. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Crypto. vol. 86, pp. 186–194. Springer (1986)

21. Grassi, L., Khovratovich, D., Lüftenegger, R., Rechberger, C., Schofnegger, M.,
Walch, R.: Reinforced Concrete: A Fast Hash Function for Verifiable Computation.
In: Proceedings of the 2022 ACM SIGSAC Conference on Computer and Commu-
nications Security. p. 1323–1335. CCS ’22, Association for Computing Machinery,
New York, NY, USA (2022), https://doi.org/10.1145/3548606.3560686

22. Grassi, L., Khovratovich, D., Rechberger, C., Roy, A., Schofnegger, M.: Poseidon:
A new hash function for zero-knowledge proof systems. In: Bailey, M., Greenstadt,
R. (eds.) 30th USENIX Security Symposium, USENIX Security 2021, August 11-
13, 2021. pp. 519–535. USENIX Association (2021), https://www.usenix.org/

conference/usenixsecurity21/presentation/grassi

23. Grassi, L., Mennink, B.: Security of Truncated Permutation Without Initial Value.
In: Agrawal, S., Lin, D. (eds.) Advances in Cryptology - ASIACRYPT 2022 -
28th International Conference on the Theory and Application of Cryptology and
Information Security, Taipei, Taiwan, December 5-9, 2022, Proceedings, Part II.
Lecture Notes in Computer Science, vol. 13792, pp. 620–650. Springer (2022),
https://doi.org/10.1007/978-3-031-22966-4_21

24. Haines, T., Lewis, S.J., Pereira, O., Teague, V.: How not to prove your elec-
tion outcome. In: 2020 IEEE Symposium on Security and Privacy, SP 2020,
San Francisco, CA, USA, May 18-21, 2020. pp. 644–660. IEEE (2020), https:

//doi.org/10.1109/SP40000.2020.00048

25. Hopwood, D., Bowe, S., Hornby, T., Wilcox, N.: ZCash protocol specification
(2023), https://github.com/zcash/zips/blob/master/protocol/protocol.pdf

26. Kothapalli, A., Setty, S., Tzialla, I.: Nova: Recursive Zero-Knowledge Arguments
from Folding Schemes. In: Dodis, Y., Shrimpton, T. (eds.) Advances in Cryptology
- CRYPTO 2022 - 42nd Annual International Cryptology Conference, CRYPTO
2022, Santa Barbara, CA, USA, August 15-18, 2022, Proceedings, Part IV. Lecture
Notes in Computer Science, vol. 13510, pp. 359–388. Springer (2022), https://
doi.org/10.1007/978-3-031-15985-5_13

27. Lefevre, C., Mennink, B.: Tight Preimage Resistance of the Sponge Construction.
In: Dodis, Y., Shrimpton, T. (eds.) Advances in Cryptology - CRYPTO 2022 -
42nd Annual International Cryptology Conference, CRYPTO 2022, Santa Bar-
bara, CA, USA, August 15-18, 2022, Proceedings, Part IV. Lecture Notes in Com-
puter Science, vol. 13510, pp. 185–204. Springer (2022), https://doi.org/10.

1007/978-3-031-15985-5_7

28. Maller, M., Khovratovich, D.: Baloo: open source implementation (2022), https:
//github.com/mmaller/caulk-dev/tree/main/baloo

29. Maurer, U.M., Renner, R., Holenstein, C.: Indifferentiability, Impossibility Results
on Reductions, and Applications to the Random Oracle Methodology. In: Naor,
M. (ed.) Theory of Cryptography, First Theory of Cryptography Conference, TCC
2004, Cambridge, MA, USA, February 19-21, 2004, Proceedings. Lecture Notes in
Computer Science, vol. 2951, pp. 21–39. Springer (2004), https://doi.org/10.
1007/978-3-540-24638-1_2

30. Mennink, B.: Understanding the Duplex and Its Security. IACR Cryptol. ePrint
Arch. p. 1340 (2022), https://eprint.iacr.org/2022/1340

31. Mennink, B., Reyhanitabar, R., Vizár, D.: Security of Full-State Keyed Sponge
and Duplex: Applications to Authenticated Encryption. In: Iwata, T., Cheon, J.H.

26

https://doi.org/10.1007/978-3-030-34618-8_8
https://doi.org/10.1145/3548606.3560686
https://www.usenix.org/conference/usenixsecurity21/presentation/grassi
https://www.usenix.org/conference/usenixsecurity21/presentation/grassi
https://doi.org/10.1007/978-3-031-22966-4_21
https://doi.org/10.1109/SP40000.2020.00048
https://doi.org/10.1109/SP40000.2020.00048
https://github.com/zcash/zips/blob/master/protocol/protocol.pdf
https://doi.org/10.1007/978-3-031-15985-5_13
https://doi.org/10.1007/978-3-031-15985-5_13
https://doi.org/10.1007/978-3-031-15985-5_7
https://doi.org/10.1007/978-3-031-15985-5_7
https://github.com/mmaller/caulk-dev/tree/main/baloo
https://github.com/mmaller/caulk-dev/tree/main/baloo
https://doi.org/10.1007/978-3-540-24638-1_2
https://doi.org/10.1007/978-3-540-24638-1_2
https://eprint.iacr.org/2022/1340

(eds.) Advances in Cryptology - ASIACRYPT 2015 - 21st International Conference
on the Theory and Application of Cryptology and Information Security, Auckland,
New Zealand, November 29 - December 3, 2015, Proceedings, Part II. Lecture Notes
in Computer Science, vol. 9453, pp. 465–489. Springer (2015), https://doi.org/
10.1007/978-3-662-48800-3_19

32. Naito, Y., Ohta, K.: Improved Indifferentiable Security Analysis of PHOTON. In:
Abdalla, M., Prisco, R.D. (eds.) Security and Cryptography for Networks - 9th
International Conference, SCN 2014, Amalfi, Italy, September 3-5, 2014. Proceed-
ings. Lecture Notes in Computer Science, vol. 8642, pp. 340–357. Springer (2014),
https://doi.org/10.1007/978-3-319-10879-7_20

33. NIST: SHA-3 Competition. In: International Conference on the Theory and Ap-
plication of Cryptographic Techniques (2007-2012)

34. Polygon Team: Introducing Plonky2 (2017), https://polygon.technology/blog/
introducing-plonky2

35. Prest, T., Fouque, P.A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin,
T., Ricosset, T., Seiler, G., Whyte, W., Zhang, Z.: Falcon: Fast-Fourier lattice-
based compact signatures over NTRU. Submission to the NIST’s post-quantum
cryptography standardization process 36(5) (2018)

36. Setty, S.: Nova: open source implementation
37. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs.

Cryptology ePrint Archive, Paper 2004/332 (2004), https://eprint.iacr.org/

2004/332, https://eprint.iacr.org/2004/332
38. Zhang, Y.: Introducing zkEVM (2022), https://scroll.io/blog/zkEVM

27

https://doi.org/10.1007/978-3-662-48800-3_19
https://doi.org/10.1007/978-3-662-48800-3_19
https://doi.org/10.1007/978-3-319-10879-7_20
https://polygon.technology/blog/introducing-plonky2
https://polygon.technology/blog/introducing-plonky2
https://eprint.iacr.org/2004/332
https://eprint.iacr.org/2004/332
https://eprint.iacr.org/2004/332
https://scroll.io/blog/zkEVM

	Generic Security of the SAFE API and Its Applications
	Introduction
	Field-Based Sponges and SAFE API
	Generic and Improved Security of SAFE API
	Applications
	Outline

	Preliminaries
	Notation
	Security Model
	Sponge Construction
	Limitations in Application

	SAFECore construction
	Construction
	Example
	Security of SAFECore Construction

	Proof of Theorem 2
	Simulator
	Intermediate World
	Bad events
	Bound of (5)
	Bound of (6)

	SAFE API
	Fixed-Length Hashing
	Commitment Schemes
	Multi-Round Interactive Protocols
	Authenticated Encryption

	Conclusion

